Minimal Representations and Reductive Dual Pairs in Conformal Field Theory
International Nuclear Information System (INIS)
Todorov, Ivan
2010-01-01
A minimal representation of a simple non-compact Lie group is obtained by 'quantizing' the minimal nilpotent coadjoint orbit of its Lie algebra. It provides context for Roger Howe's notion of a reductive dual pair encountered recently in the description of global gauge symmetry of a (4-dimensional) conformal observable algebra. We give a pedagogical introduction to these notions and point out that physicists have been using both minimal representations and dual pairs without naming them and hence stand a chance to understand their theory and to profit from it.
Conformational analysis of a covalently cross-linked Watson-Crick base pair model.
Jensen, Erik A; Allen, Benjamin D; Kishi, Yoshito; O'Leary, Daniel J
2008-11-15
Low-temperature NMR experiments and molecular modeling have been used to characterize the conformational behavior of a covalently cross-linked DNA base pair model. The data suggest that Watson-Crick or reverse Watson-Crick hydrogen bonding geometries have similar energies and can interconvert at low temperatures. This low-temperature process involves rotation about the crosslink CH(2)C(5') (psi) carbon-carbon bond, which is energetically preferred over the alternate CH(2)N(3) (phi) carbon-nitrogen bond rotation.
Conformational Analysis of a Covalently Cross-Linked Watson-Crick Base Pair Model
Jensen, Erik A.; Allen, Benjamin D.; Kishi, Yoshito; O'Leary, Daniel J.
2008-01-01
Low temperature NMR experiments and molecular modeling have been used to characterize the conformational behavior of a covalently cross-linked DNA base pair model. The data suggest that Watson-Crick or reverse Watson-Crick hydrogen bonding geometries have similar energies and can interconvert at low temperatures. This low-temperature process involves rotation about the crosslink CH2–C(5′) (ψ) carbon-carbon bond, which is energetically preferred over the alternate CH2–N(3) (ϕ) carbon-nitrogen ...
Surprising conformers of the biologically important A·T DNA base pairs: QM/QTAIM proofs
Brovarets', Ol'ha O.; Tsiupa, Kostiantyn S.; Hovorun, Dmytro M.
2018-02-01
For the first time novel high-energy conformers – A·T(wWC) (5.36), A·T(wrWC) (5.97), A·T(wH) (5.78) and A·T(wrH) (ΔG=5.82 kcal•mol-1) were revealed for each of the four biologically important A·T(WC) DNA base pairs – Watson-Crick A·T(WC), reverse Watson-Crick A·T(rWC), Hoogsteen A·T(H) and reverse Hoogsteen A·T(rH) at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of quantum-mechanical theory in the continuum with ɛ=4 under normal conditions. Each of these conformers possesses substantially non-planar wobble (w) structure and is stabilized by the participation of the two anti-parallel N6H/N6H'…O4/O2 and N3H…N6 H-bonds, involving the pyramidalized amino group of the A DNA base as an acceptor and a donor of the H-bonding. The transition states – TSA·T(WC)↔A·T(wWC), TSA·T(rWC)↔A·T(wrWC), TSA·T(H)↔A·T(wH) and TSA·T(rH)↔A·T(wrH), controlling the dipole-active transformations of the conformers from the main plane-symmetric state into the high-energy, significantly non-planar state and vice versa, were localized. They also possess wobble structures similarly to the high-energy conformers and are stabilized by the participation of the N6H/N6H'…O4/O2 and N3H…N6 H-bonds. Discovered conformers of the A·T DNA base pairs are dynamically stable short-lived structures (lifetime τ = (1.4-3.9) ps). Their possible biological significance and future perspectives have been briefly discussed.
Surprising Conformers of the Biologically Important A·T DNA Base Pairs: QM/QTAIM Proofs
Directory of Open Access Journals (Sweden)
Ol'ha O. Brovarets'
2018-02-01
Full Text Available For the first time novel high-energy conformers–A·T(wWC (5.36, A·T(wrWC (5.97, A·T(wH (5.78, and A·T(wrH (ΔG = 5.82 kcal·mol−1 (See Graphical Abstract were revealed for each of the four biologically important A·T DNA base pairs – Watson-Crick A·T(WC, reverse Watson-Crick A·T(rWC, Hoogsteen A·T(H and reverse Hoogsteen A·T(rH at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p level of quantum-mechanical theory in the continuum with ε = 4 under normal conditions. Each of these conformers possesses substantially non-planar wobble (w structure and is stabilized by the participation of the two anti-parallel N6H/N6H′…O4/O2 and N3H…N6 H-bonds, involving the pyramidalized amino group of the A DNA base as an acceptor and a donor of the H-bonding. The transition states – TSA·T(WC↔A·T(wWC, TSA·T(rWC↔A·T(wrWC, TSA·T(H↔A·T(wH, and TSA·T(rH↔A·T(wrH, controlling the dipole-active transformations of the conformers from the main plane-symmetric state into the high-energy, significantly non-planar state and vice versa, were localized. They also possess wobble structures similarly to the high-energy conformers and are stabilized by the participation of the N6H/N6H′…O4/O2 and N3H…N6 H-bonds. Discovered conformers of the A·T DNA base pairs are dynamically stable short-lived structures [lifetime τ = (1.4–3.9 ps]. Their possible biological significance and future perspectives have been briefly discussed.
2011-01-01
Background The performance of 3D-based virtual screening similarity functions is affected by the applied conformations of compounds. Therefore, the results of 3D approaches are often less robust than 2D approaches. The application of 3D methods on multiple conformer data sets normally reduces this weakness, but entails a significant computational overhead. Therefore, we developed a special conformational space encoding by means of Gaussian mixture models and a similarity function that operates on these models. The application of a model-based encoding allows an efficient comparison of the conformational space of compounds. Results Comparisons of our 4D flexible atom-pair approach with over 15 state-of-the-art 2D- and 3D-based virtual screening similarity functions on the 40 data sets of the Directory of Useful Decoys show a robust performance of our approach. Even 3D-based approaches that operate on multiple conformers yield inferior results. The 4D flexible atom-pair method achieves an averaged AUC value of 0.78 on the filtered Directory of Useful Decoys data sets. The best 2D- and 3D-based approaches of this study yield an AUC value of 0.74 and 0.72, respectively. As a result, the 4D flexible atom-pair approach achieves an average rank of 1.25 with respect to 15 other state-of-the-art similarity functions and four different evaluation metrics. Conclusions Our 4D method yields a robust performance on 40 pharmaceutically relevant targets. The conformational space encoding enables an efficient comparison of the conformational space. Therefore, the weakness of the 3D-based approaches on single conformations is circumvented. With over 100,000 similarity calculations on a single desktop CPU, the utilization of the 4D flexible atom-pair in real-world applications is feasible. PMID:21733172
DEFF Research Database (Denmark)
Nuermaimaiti, Ajiguli; Schultz-Falk, Vickie; Lind Cramer, Jacob
2016-01-01
Self-assembly of a molecule with many distinct conformational states, resulting in eight possible pairs of surface enantiomers, is investigated on a Au(111) surface under UHV conditions. The complex molecule is equipped with alkyl and carboxyl moieties to promote controlled self-assembly of lamel......Self-assembly of a molecule with many distinct conformational states, resulting in eight possible pairs of surface enantiomers, is investigated on a Au(111) surface under UHV conditions. The complex molecule is equipped with alkyl and carboxyl moieties to promote controlled self......-assembly of lamellae structures. From statistical analysis of Scanning Tunnelling Microscopy (STM) data we observe a clear selection of specific conformational states after self-assembly. Using Density Functional Theory (DFT) calculations we rationalise how this selection is correlated to the orientation of the alkyl...
Energy Technology Data Exchange (ETDEWEB)
Hong, Mei [Iowa State University, Department of Chemistry (United States)], E-mail: mhong@iastate.edu; McMillan, R. Andrew; Conticello, Vincent P. [Emory University, Department of Chemistry (United States)
2002-02-15
We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve {sup 13}CO{sub i} {sup {yields}} {sup 15}N{sub i} {sup {yields}} {sup 13}C{alpha}{sub i} transfer between two residues. A {sup 13}C, {sup 15}N-labeled elastin mimetic protein (VPGVG){sub n} is used to demonstrate the method. The technique selected the Gly3 C{alpha} signal while suppressing the Gly5 C{alpha} signal, and allowed the measurement of the Gly3 C{alpha} chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues.
International Nuclear Information System (INIS)
Hong, Mei; McMillan, R. Andrew; Conticello, Vincent P.
2002-01-01
We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve 13 CO i → 15 N i → 13 Cα i transfer between two residues. A 13 C, 15 N-labeled elastin mimetic protein (VPGVG) n is used to demonstrate the method. The technique selected the Gly3 Cα signal while suppressing the Gly5 Cα signal, and allowed the measurement of the Gly3 Cα chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues
One step paired electrochemical synthesis of iron and iron oxide nanoparticles
Directory of Open Access Journals (Sweden)
Ordoukhanian Juliet
2016-09-01
Full Text Available In this study, a new one step paired electrochemical method is developed for simultaneous synthesis of iron and iron oxide nanoparticles. iron and iron oxide are prepared as cathodic and anodic products from iron (ii sulfate aqueous solution in a membrane divided electrolytic cell by the pulsed current electrosynthesis. Because of organic solvent-free and electrochemical nature of the synthesis, the process could be considered as green and environmentally friendly. The reduction of energy consumption and low cost are the other significant advantages of this new method that would have a great application potential in the chemical industry. The nanostructure of prepared samples was characterized by Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The magnetic properties were studied by vibrating sample magnetometer (VsM.
International Nuclear Information System (INIS)
Chu, Wally; Weerasekera, Akila; Kim, Chul-Hyun
2017-01-01
Two identical 5′GACG3′ tetra-loop motifs with different stem sequences (called H2 and H3) are found in the 5′ end region of Moloney Murine Leukemia Virus (MMLV) genomic RNA. They play important roles in RNA dimerization and encapsidation through two identical tetra-loops (5′GACG3′) forming a loop-to-loop kissing complex, the smallest RNA kissing complex ever found in nature. We examined the effects of a loop-closing base pair as well as a stem sequence on the conformational stability of the kissing complex. UV melting analysis and gel electrophoresis were performed on eight RNA sequences mimicking the H2 and H3 hairpin tetra-loops with variation in loop-closing base pairs. Our results show that changing the loop-closing base pair from the wildtype (5′A·U3′ for H3, 5′U·A3′ for H2) to 5′G·C3’/5′C·G3′ has significant effect on the stability of the kissing complexes: the substitution to 5′C·G3′ significantly decreases both thermal and mechanical stability, while switching to the 5′G·C3′ significantly increases the mechanical stability only. The kissing complexes with the wildtype loop-closing base pairs (5′A·U3′ for H3 and 5′U·A3′ for H2) show different stability when attached to a different stem sequence (H2 stem vs. H3 stem). This suggests that not only the loop-closing base pair itself, but also the stem sequence, affects the conformational stability of the RNA kissing complex. - Highlights: • Thermodynamic parameters of the smallest RNA kissing interactions were measured. • The effects of loop-closing base pairs on the RNA kissing complex was investigated. • Changing the base pair to 5′CG3′ decreases the stability of the kissing complex. • Changing it to 5′GC3′ increases the mechanical resilience of the kissing complex. • Difference in its stem sequence also affects the stability of the kissing complex.
International Nuclear Information System (INIS)
Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune
2012-01-01
NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional [U- 13 C, 15 N]-proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across disulfide bonds. We describe a robust approach for alleviating such difficulties, by using proteins selectively labeled with an equimolar mixture of (2R, 3S)-[β- 13 C; α,β- 2 H 2 ] Cys and (2R, 3R)-[β- 13 C; α,β- 2 H 2 ] Cys, but otherwise fully deuterated. Since either one of the prochiral methylene protons, namely β2 (proS) or β3 (proR), is always replaced with a deuteron and no other protons remain in proteins prepared by this labeling scheme, all four of the expected NOEs for the β-protons across disulfide bonds could be measured without any spin diffusion interference, even with long mixing times. Therefore, the NOEs for the β2 and β3 pairs across each of the disulfide bonds could be observed at high sensitivity, even though they are 25% of the theoretical maximum for each pair. With the NOE information, the disulfide bond connectivities can be unambiguously established for proteins with multiple disulfide bonds. In addition, the conformations around disulfide bonds, namely χ 2 and χ 3 , can be determined based on the precise proton distances of the four β-proton pairs, by quantitative measurements of the NOEs across the disulfide bonds. The feasibility of this method is demonstrated for bovine pancreatic trypsin inhibitor, which has three disulfide bonds.
Millen, Andrea L; Churchill, Cassandra D M; Manderville, Richard A; Wetmore, Stacey D
2010-10-14
Bulky DNA addition products (adducts) formed through attack at the C8 site of guanine can adopt the syn orientation about the glycosidic bond due to changes in conformational stability or hydrogen-bonding preferences directly arising from the bulky group. Indeed, the bulky substituent may improve the stability of (non-native) Hoogsteen pairs. Therefore, such adducts often result in mutations upon DNA replication. This work examines the hydrogen-bonded pairs between the Watson-Crick and Hoogsteen faces of the ortho or para C8-phenoxyl-2'-deoxyguanosine adduct and each natural (undamaged) nucleobase with the goal to clarify the conformational preference of this type of damage, as well as provide insight into the likelihood of subsequent mutation events. B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) hydrogen-bond strengths were determined using both nucleobase and nucleoside models for adduct pairs, as well as the corresponding complexes involving natural 2'-deoxyguanosine. In addition to the magnitude of the binding strengths, the R(C1'···C1') distances and ∠(N9C1'C1') angles, as well as the degree of propeller-twist and buckle distortions, were carefully compared to the values observed in natural DNA strands. Due to structural changes in the adduct monomer upon inclusion of the sugar moiety, the monomer deformation energy significantly affects the relative hydrogen-bond strengths calculated with the nucleobase and nucleoside models. Therefore, we recommend the use of at least a nucleoside model to accurately evaluate hydrogen-bond strengths of base pairs involving flexible, bulky nucleobase adducts. Our results also emphasize the importance of considering both the magnitude of the hydrogen-bond strength and the structure of the base pair when predicting the preferential binding patterns of nucleobases. Using our best models, we conclude that the Watson-Crick face of the ortho phenoxyl adduct forms significantly more stable complexes than the Hoogsteen face, which
International Nuclear Information System (INIS)
Pickles, Tom; Keyes, Mira; Morris, W. James
2010-01-01
Purpose: In the absence of randomized study data, institutional case series have shown brachytherapy (BT) to produce excellent biochemical control (bNED) in patients with localized prostate cancer compared with alternative curative treatments. This study was designed to overcome some of the limitations of case series studies by using a matched-pair design in patients treated contemporaneously with BT and external beam radiation therapy (EBRT) at a single institution. Methods and Materials: Six hundred one eligible patients treated between 1998 and 2001 were prospectively followed up in our institutional databases and matched on a 1:1 basis for the following known prognostic variables: prostate-specific antigen (PSA) level, Gleason score, T stage, the use and duration of neoadjuvant androgen deprivation therapy, and the percentage of positive tissue core samples. Two hundred seventy-eight perfect matches of patients (139 in each group) with low- and intermediate-risk cancer were further analyzed. bNED (Phoenix definition) was the primary endpoint. Other endpoints were toxicity, PSA kinetics, and the secondary use of androgen deprivation therapy. Results: The 5-year bNED rates were 95% (BT) and 85% (EBRT) (p < 0.001). After 7 years, the BT bNED result was unchanged, but the rate in EBRT patients had fallen to 75%. The median posttreatment PSA nadirs were 0.04 ng/mL (BT) and 0.62 ng/mL (EBRT, p < 0.001), which predicted a higher ongoing treatment failure rate in association with EBRT use than with BT use. Late urinary toxicity and rectal/bowel toxicity were worse in patients treated with BT and EBRT, respectively. Conclusions: BT for both low-risk and selected intermediate-risk cancers achieves exceptional cure rates. Even with dose escalation, it will be difficult for EBRT to match the proven track record of BT seen over the past decade.
Energy Technology Data Exchange (ETDEWEB)
Savanier, Marc, E-mail: msavanier@eng.ucsd.edu; Mookherjea, Shayan, E-mail: smookherjea@eng.ucsd.edu [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)
2016-06-20
Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, we generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.
Two-step quantum direct communication protocol using the Einstein- Podolsky-Rosen pair block
Fu Guo Deng; Xiao Shu Liu; 10.1103/PhysRevA.68.042317
2003-01-01
A protocol for quantum secure direct communication using blocks of Einstein-Podolsky-Rosen (EPR) pairs is proposed. A set of ordered N EPR pairs is used as a data block for sending secret message directly. The ordered N EPR set is divided into two particle sequences, a checking sequence and a message-coding sequence. After transmitting the checking sequence, the two parties of communication check eavesdropping by measuring a fraction of particles randomly chosen, with random choice of two sets of measuring bases. After insuring the security of the quantum channel, the sender Alice encodes the secret message directly on the message-coding sequence and sends them to Bob. By combining the checking and message-coding sequences together, Bob is able to read out the encoded messages directly. The scheme is secure because an eavesdropper cannot get both sequences simultaneously. We also discuss issues in a noisy channel. (30 refs).
Split-step scheme for photon-pair generation through spontaneous four-wave mixing
DEFF Research Database (Denmark)
Koefoed, Jacob Gade; Christensen, Jesper Bjerge; Rottwitt, Karsten
2017-01-01
The rapid development of quantum information technology requires the ability to reliably create and distribute single photons [1]. Photon-pair production through spontaneous four-wave mixing (SpFWM) allows heralded single photons to be generated at communication wavelengths and in fiber, compatible...... with conventional communication systems, with small losses. Creating single photons in desired quantum states require careful design of waveguide structures. This is greatly facilitated by a general numerical approach as presented here. Additionally, such a numerical approach allows detailed analysis of real...... systems where all relevent effects are included....
Monestier, Auriane; Aleksandrov, Alexey; Coureux, Pierre-Damien; Panvert, Michel; Mechulam, Yves; Schmitt, Emmanuelle
2017-05-01
Translation initiation in eukaryotes and archaea involves a methionylated initiator tRNA delivered to the ribosome in a ternary complex with e/aIF2 and GTP. Eukaryotic and archaeal initiator tRNAs contain a highly conserved A 1 -U 72 base pair at the top of the acceptor stem. The importance of this base pair to discriminate initiator tRNAs from elongator tRNAs has been established previously using genetics and biochemistry. However, no structural data illustrating how the A 1 -U 72 base pair participates in the accurate selection of the initiator tRNAs by the translation initiation systems are available. Here, we describe the crystal structure of a mutant E. coli initiator tRNA f Met A 1 -U 72 , aminoacylated with methionine, in which the C 1 :A 72 mismatch at the end of the tRNA acceptor stem has been changed to an A 1 -U 72 base pair. Sequence alignments show that the mutant E. coli tRNA is a good mimic of archaeal initiator tRNAs. The crystal structure, determined at 2.8 Å resolution, shows that the A 1 -U 72 pair adopts an unusual arrangement. A 1 is in a syn conformation and forms a single H-bond interaction with U 72 This interaction requires protonation of the N1 atom of A 1 Moreover, the 5' phosphoryl group folds back into the major groove of the acceptor stem and interacts with the N7 atom of G 2 A possible role of this unusual geometry of the A 1 -U 72 pair in the recognition of the initiator tRNA by its partners during eukaryotic and archaeal translation initiation is discussed. © 2017 Monestier et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Sugimoto, Toshikazu; Habuchi, Satoshi; Ogino, Kenji; Vacha, Martin
2009-09-10
We study conformation-dependent photophysical properties of polythiophene (PT) by molecular dynamics simulations and by ensemble and single-molecule optical experiments. We use a graft copolymer consisting of a polythiophene backbone and long polystyrene branches and compare its properties with those obtained on the same polythiophene derivative without the side chains. Coarse-grain molecular dynamics simulations show that in a poor solvent, the PT without the side chains (PT-R) forms a globulelike conformation in which distances between any two conjugated segments on the chain are within the Forster radius for efficient energy transfer. In the PT with the polystyrene branches (PT-PS), the polymer main PT chain retains an extended coillike conformation, even in a poor solvent, and the calculated distances between conjugated segments favor energy transfer only between a few neighboring chromophores. The theoretical predictions are confirmed by measurements of fluorescence anisotropy and fluorescence blinking of the polymers' single chains. High anisotropy ratios and two-state blinking in PT-R are due to localization of the exciton on a single conjugated segment. These signatures of exciton localization are absent in single chains of PT-PS. Electric-field-induced quenching measured as a function of concentration of PT dispersed in an inert matrix showed that in well-isolated chains of PT-PS, the exciton dissociation is an intrachain process and that aggregation of the PT-R chains causes an increase in quenching due to the onset of interchain interactions. Measurements of the field-induced quenching on single chains indicate that in PT-R, the exciton dissociation is a slower process that takes place only after the exciton is localized on one conjugated segment.
Czech Academy of Sciences Publication Activity Database
Lavery, R.; Zakrzewska, K.; Beveridge, D.; Bishop, T. C.; Case, D. A.; Cheatham III, T. E.; Dixit, S.; Jayaram, B.; Lankaš, Filip; Laughton, Ch.; Maddocks, J. H.; Michon, A.; Osman, R.; Orozco, M.; Pérez, A.; Singh, T.; Špačková, Naďa; Šponer, Jiří
Roč. 38, č. 1 ( 2010 ), s. 299-313 ISSN 0305-1048 R&D Projects: GA MŠk(CZ) LC06030; GA AV ČR(CZ) IAA400040802; GA ČR GA203/09/1476; GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : B-DNA * molecular dynamics * sequence dependet structure and dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.836, year: 2010
International Nuclear Information System (INIS)
Martín-García, Fernando; Mendieta-Moreno, Jesús Ignacio; Mendieta, Jesús; Gómez-Puertas, Paulino
2012-01-01
Highlights: ► Initial conformational change of paramyxovirus F protein is caused only by mechanical forces. ► HRA region undergoes a structural change from a beta + alpha conformation to an extended coil and then to an all-alpha conformation. ► HRS domains of F protein form three single α-helices prior to generation of the coiled coil. -- Abstract: The fusion of paramyxovirus to the cell membrane is mediated by fusion protein (F protein) present in the virus envelope, which undergoes a dramatic conformational change during the process. Unlike hemagglutinin in orthomyxovirus, this change is not mediated by an alteration of environmental pH, and its cause remains unknown. Steered molecular dynamics analysis leads us to suggest that the conformational modification is mediated only by stretching mechanical forces once the transmembrane fusion peptide of the protein is anchored to the cell membrane. Such elongating forces will generate major secondary structure rearrangement in the heptad repeat A region of the F protein; from β-sheet conformation to an elongated coil and then spontaneously to an α-helix. In addition, it is proposed that the heptad repeat A region adopts a final three-helix coiled coil and that this structure appears after the formation of individual helices in each monomer.
Paulechka, Yauheni U; Kabo, Gennady J; Emel'yanenko, Vladimir N
2008-12-11
Energies, geometries, and frequencies of normal vibrations have been calculated by quantum-chemical methods for different conformers of a bis(trifluoromethylsulfonyl)imide anion (NTf2-), 1-alkyl-3-methylimidazolium cations ([C(n)mim]+, n = 2, 4, 6, 8), and [C(n)mim]NTf2 ionic pairs. The assignment of frequencies for NTf2-, [C2mim]+, and [C4mim]+ in the vibrational spectra of ionic liquids have been performed. Thermodynamic properties of [C(n)mim]NTf2, [C(n)mim]+, and NTf2- in the gas state have been calculated by the statistical thermodynamic methods. The resulting entropies are in satisfactory agreement with the values obtained from the experimental data previously reported in literature.
Directory of Open Access Journals (Sweden)
Shih-Yin Lin
2013-10-01
Full Text Available In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation in which they had to learn from a solved problem provided and take advantage of what they learned from it to solve another isomorphic problem (which we call the quiz problem. The solved problem provided has two subproblems while the quiz problem has three subproblems, which is known from previous research to be challenging for introductory students. In addition to the solved problem, students also received extra scaffolding supports that were intended to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. The data analysis suggests that students had great difficulty in transferring what they learned from a two-step problem to a three-step problem. Although most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem, they were not necessarily able to apply the principles correctly. We also conducted think-aloud interviews with six introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. The interviews suggest that students often superficially mapped the principles employed in the solved problem to the quiz problem without necessarily understanding the governing conditions underlying each principle and examining the applicability of the principle in the new situation in an in-depth manner. Findings suggest that more scaffolding is needed to help students in transferring from a two-step problem to a three-step problem and applying the physics principles appropriately. We outline a few
Lin, Shih-Yin; Singh, Chandralekha
2013-12-01
In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation in which they had to learn from a solved problem provided and take advantage of what they learned from it to solve another isomorphic problem (which we call the quiz problem). The solved problem provided has two subproblems while the quiz problem has three subproblems, which is known from previous research to be challenging for introductory students. In addition to the solved problem, students also received extra scaffolding supports that were intended to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. The data analysis suggests that students had great difficulty in transferring what they learned from a two-step problem to a three-step problem. Although most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem, they were not necessarily able to apply the principles correctly. We also conducted think-aloud interviews with six introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. The interviews suggest that students often superficially mapped the principles employed in the solved problem to the quiz problem without necessarily understanding the governing conditions underlying each principle and examining the applicability of the principle in the new situation in an in-depth manner. Findings suggest that more scaffolding is needed to help students in transferring from a two-step problem to a three-step problem and applying the physics principles appropriately. We outline a few possible strategies
International Nuclear Information System (INIS)
Offermans, Ton; Meskers, Stefan C.J.; Janssen, Rene A.J.
2005-01-01
The Monte-Carlo simulations are used to investigate the dissociation of a Coulomb correlated charge pair at an idealized interface between an electron accepting and an electron donating molecular material. In the simulations the materials are represented by cubic lattices of sites, with site the energies spread according to Gaussian distributions. The influence of temperature, applied external fields, and the width of the Gaussian densities of states distribution for both the electron and the hole transporting material are investigated. The results show that the dissociation of geminate charge pairs is assisted by disorder and the results can be understood in terms of a two-step model. In the first step, the slow carrier in the most disordered material jumps away from the interface. In the following, second step, the reduced Coulombic attraction allows the faster carrier in the less disordered material to escape from the interface by thermally activated hopping. When the rate for geminate recombination at the interface is very low ( -1 ) the simulations predict a high yield for carrier collection, as observed experimentally. Comparison of the simulated and experimentally observed temperature dependence of the collection efficiency indicates that at low temperature dissociation of the geminate charge pairs may be one of the factors limiting the device performance
SIMULATION COMPARISON AND STEPS TO DO SIMULATION BY AUTOLISP (AUTOCAD) AND PRO-E FOR GEAR PAIR.
PRATIK A. SOLANKI; KALPESH P. PATEL; J.R.LIMBACHIYA
2012-01-01
This paper gives the basic idea of steps required for doing simulation in AutoCAD with the help of AutoLisp and Pro-Engineering. It includes the comparison between both methods. AutoCAD 2005 and Pro-E wildfireV4.0 used as software to do simulation (Animation).
International Nuclear Information System (INIS)
Kirova, Youlia M.; Campana, Francois; Fournier-Bidoz, Nathalie; Stilhart, Anne; Dendale, Remi; Bollet, Marc A.; Fourquet, Alain
2007-01-01
Purpose: Electron beam radiotherapy of the chest wall with or without lymph node irradiation has been used at the Institut Curie for >20 years. The purpose of this report was to show the latest improvements of our technique developed to avoid hot spots and improve the homogeneity. Methods and Materials: The study was split into two parts. A new electron irradiation technique was designed and compared with the standard one (dosimetric study). The dose distributions were calculated using our treatment planning software ISIS (Technologie Diffusion). The dose calculation was performed using the same calculation parameters for the new and standard techniques. Next, the early skin toxicity of our new technique was evaluated prospectively in the first 25 patients using Radiation Therapy Oncology Group criteria (clinical study). Results: The maximal dose found on the five slices was 53.4 ± 1.1 Gy for the new technique and 59.1 ± 2.3 Gy for the standard technique. The hot spots of the standard technique plans were situated at the overlap between the internal mammary chain and chest wall fields. The use of one unique field that included both chest wall and internal mammary chain volumes solved the problem of junction. To date, 25 patients have been treated with the new technique. Of these patients, 12% developed Grade 0, 48% Grade 1, 32% Grade 2, and 8% Grade 3 toxicity. Conclusions: This report describes an improvement in the standard postmastectomy electron beam technique of the chest wall. This new technique provides improved target homogeneity and conformality compared with the standard technique. This treatment was well tolerated, with a low rate of early toxicity events
International Nuclear Information System (INIS)
Rodriguez S, A.; Martinez Q, E.
1990-08-01
The structural elucidation of the cluster hexamerico (MO 6 C1 8 ) 4+ , it has been characterized for but of twenty-five years like a conformation octahedrica of simple metallic connections. However, the determination has not been attempted of some physical characteristics of this conformation by means of measures espectroscopicas. We present the electronegatividad measures now, constant of force and it distances of connection of the nuclear couple Mo-Cl, using only their frequency vibracional taken directly of the infrared spectra. (Author)
Yurenko, Yevgen P; Zhurakivsky, Roman O; Samijlenko, Svitlana P; Hovorun, Dmytro M
2011-08-01
The aim of this work is to cast some light on the H-bonds in double-stranded DNA in its AI and BI forms. For this purpose, we have performed the MP2 and DFT quantum chemical calculations of the canonical nucleoside conformers, relative to the AI and BI DNA forms, and their Watson-Crick pairs, which were regarded as the simplest models of the double-stranded DNA. Based on the atoms-in-molecules analysis (AIM), five types of the CH···O hydrogen bonds, involving bases and sugar, were detected numerically from 1 to 3 per a conformer: C2'H···O5', C1'H···O2, C6H···O5', C8H···O5', and C6H···O4'. The energy values of H-bonds occupy the range of 2.3-5.6 kcal/mol, surely exceeding the kT value (0.62 kcal/mol). The nucleoside CH···O hydrogen bonds appeared to "survive" turns of bases against the sugar, sometimes in rather large ranges of the angle values, pertinent to certain conformations, which points out to the source of the DNA lability, necessary for the conformational adaptation in processes of its functioning. The calculation of the interactions in the dA·T nucleoside pair gives evidence, that additionally to the N6H···O4 and N1···N3H canonical H-bonds, between the bases adenine and thymine the third one (C2H···O2) is formed, which, though being rather weak (about 1 kcal/mol), satisfies the AIM criteria of H-bonding and may be classified as a true H-bond. The total energy of all the CH···O nontraditional intramolecular H-bonds in DNA nucleoside pairs appeared to be commensurable with the energy of H-bonds between the bases in Watson-Crick pairs, which implies their possible important role in the DNA shaping.
Qiao, Qin; Zhang, Hou-Dao; Huang, Xuhui
2016-04-01
Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.
International Nuclear Information System (INIS)
Qiao, Qin; Zhang, Hou-Dao; Huang, Xuhui
2016-01-01
Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.
Energy Technology Data Exchange (ETDEWEB)
Qiao, Qin, E-mail: qqiao@ust.hk; Zhang, Hou-Dao [Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Huang, Xuhui, E-mail: xuhuihuang@ust.hk [Department of Chemistry, Division of Biomedical Engineering, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); The HKUST Shenzhen Research Institute, Shenzhen (China)
2016-04-21
Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.
On functional representations of the conformal algebra
Energy Technology Data Exchange (ETDEWEB)
Rosten, Oliver J.
2017-07-15
Starting with conformally covariant correlation functions, a sequence of functional representations of the conformal algebra is constructed. A key step is the introduction of representations which involve an auxiliary functional. It is observed that these functionals are not arbitrary but rather must satisfy a pair of consistency equations corresponding to dilatation and special conformal invariance. In a particular representation, the former corresponds to the canonical form of the exact renormalization group equation specialized to a fixed point whereas the latter is new. This provides a concrete understanding of how conformal invariance is realized as a property of the Wilsonian effective action and the relationship to action-free formulations of conformal field theory. Subsequently, it is argued that the conformal Ward Identities serve to define a particular representation of the energy-momentum tensor. Consistency of this construction implies Polchinski's conditions for improving the energy-momentum tensor of a conformal field theory such that it is traceless. In the Wilsonian approach, the exactly marginal, redundant field which generates lines of physically equivalent fixed points is identified as the trace of the energy-momentum tensor. (orig.)
Killing tensors and conformal Killing tensors from conformal Killing vectors
International Nuclear Information System (INIS)
Rani, Raffaele; Edgar, S Brian; Barnes, Alan
2003-01-01
Koutras has proposed some methods to construct reducible proper conformal Killing tensors and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal Killing vectors exist in a given space. We give the completely general result demonstrating that this severe restriction of orthogonality is unnecessary. In addition, we correct and extend some results concerning Killing tensors constructed from a single conformal Killing vector. A number of examples demonstrate that it is possible to construct a much larger class of reducible proper conformal Killing tensors and Killing tensors than permitted by the Koutras algorithms. In particular, by showing that all conformal Killing tensors are reducible in conformally flat spaces, we have a method of constructing all conformal Killing tensors, and hence all the Killing tensors (which will in general be irreducible) of conformally flat spaces using their conformal Killing vectors
Conformal Nets II: Conformal Blocks
Bartels, Arthur; Douglas, Christopher L.; Henriques, André
2017-08-01
Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.
Dickenson, Nicholas E; Zhang, Lingling; Epler, Chelsea R; Adam, Philip R; Picking, Wendy L; Picking, William D
2011-01-18
Shigella flexneri uses its type III secretion apparatus (TTSA) to inject host-altering proteins into targeted eukaryotic cells. The TTSA is composed of a basal body and an exposed needle with invasion plasmid antigen D (IpaD) forming a tip complex that controls secretion. The bile salt deoxycholate (DOC) stimulates recruitment of the translocator protein IpaB into the maturing TTSA needle tip complex. This process appears to be triggered by a direct interaction between DOC and IpaD. Fluorescence spectroscopy and NMR spectroscopy are used here to confirm the DOC-IpaD interaction and to reveal that IpaD conformational changes upon DOC binding trigger the appearance of IpaB at the needle tip. Förster resonance energy transfer between specific sites on IpaD was used here to identify changes in distances between IpaD domains as a result of DOC binding. To further explore the effects of DOC binding on IpaD structure, NMR chemical shift mapping was employed. The environments of residues within the proposed DOC binding site and additional residues within the "distal" globular domain were perturbed upon DOC binding, further indicating that conformational changes occur within IpaD upon DOC binding. These events are proposed to be responsible for the recruitment of IpaB at the TTSA needle tip. Mutation analyses combined with additional spectroscopic analyses confirm that conformational changes in IpaD induced by DOC binding contribute to the recruitment of IpaB to the S. flexneri TTSA needle tip. These findings lay the foundation for determining how environmental factors promote TTSA needle tip maturation prior to host cell contact.
Dickenson, Nicholas E.; Zhang, Lingling; Epler, Chelsea R.; Adam, Philip R.; Picking, Wendy L.; Picking, William D.
2011-01-01
Shigella flexneri uses its type III secretion apparatus (TTSA) to inject host-altering proteins into targeted eukaryotic cells. The TTSA is composed of a basal body and an exposed needle with invasion plasmid antigen D (IpaD) forming a tip complex that controls secretion. The bile salt deoxycholate (DOC) stimulates recruitment of the translocator protein IpaB into the maturing TTSA needle tip complex. This process appears to be triggered by a direct interaction between DOC and IpaD. Fluorescence spectroscopy and NMR spectroscopy are used here to confirm the DOC-IpaD interaction and to reveal that IpaD conformational changes upon DOC binding trigger the appearance of IpaB at the needle tip. Förster resonance energy transfer between specific sites on IpaD was used here to identify changes in distances between IpaD domains as a result of DOC binding. To further explore the effects of DOC binding on IpaD structure, NMR chemical shift mapping was employed. The environments of residues within the proposed DOC binding site and additional residues within the “distal” globular domain were perturbed upon DOC binding, further indicating that conformational changes occur within IpaD upon DOC binding. These events are proposed to be responsible for the recruitment of IpaB at the TTSA needle tip. Mutation analyses combined with additional spectroscopic analyses confirms that conformational changes in IpaD induced by DOC binding contribute to the recruitment of IpaB to the S. flexneri TTSA needle tip. These findings lay the foundation for determining how environmental factors promote TTSA needle tip maturation prior to host cell contact. PMID:21126091
DEFF Research Database (Denmark)
Ryttov, Thomas Aaby; Sannino, Francesco
2010-01-01
fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions...... at the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms...
This section provides information on: current laws, regulations and guidance, policy and technical guidance, project-level conformity, general information, contacts and training, adequacy review of SIP submissions
Hongo, Kenta; Cuong, Nguyen Thanh; Maezono, Ryo
2013-02-12
We report fixed-node diffusion Monte Carlo (DMC) calculations of stacking interaction energy between two adenine(A)-thymine(T) base pairs in B-DNA (AA:TT), for which reference data are available, obtained from a complete basis set estimate of CCSD(T) (coupled-cluster with singles, doubles, and perturbative triples). We consider four sets of nodal surfaces obtained from self-consistent field calculations and examine how the different nodal surfaces affect the DMC potential energy curves of the AA:TT molecule and the resulting stacking energies. We find that the DMC potential energy curves using the different nodes look similar to each other as a whole. We also benchmark the performance of various quantum chemistry methods, including Hartree-Fock (HF) theory, second-order Møller-Plesset perturbation theory (MP2), and density functional theory (DFT). The DMC and recently developed DFT results of the stacking energy reasonably agree with the reference, while the HF, MP2, and conventional DFT methods give unsatisfactory results.
Mondal, Bhaskar; Neese, Frank; Ye, Shengfa
2015-08-03
The development of efficient catalysts with base metals for CO2 hydrogenation has always been a major thrust of interest. A series of experimental and theoretical work has revealed that the catalytic cycle typically involves two key steps, namely, base-promoted heterolytic H2 splitting and hydride transfer to CO2, either of which can be the rate-determining step (RDS) of the entire reaction. To explore the determining factor for the nature of RDS, we present herein a comparative mechanistic investigation on CO2 hydrogenation mediated by [M(H)(η(2)-H2)(PP3(Ph))](n+) (M = Fe(II), Ru(II), and Co(III); PP3(Ph) = tris(2-(diphenylphosphino)phenyl)phosphine) type complexes. In order to construct reliable free energy profiles, we used highly correlated wave function based ab initio methods of the coupled cluster type alongside the standard density functional theory. Our calculations demonstrate that the hydricity of the metal-hydride intermediate generated by H2 splitting dictates the nature of the RDS for the Fe(II) and Co(III) systems, while the RDS for the Ru(II) catalyst appears to be ambiguous. CO2 hydrogenation catalyzed by the Fe(II) complex that possesses moderate hydricity traverses an H2-splitting RDS, whereas the RDS for the high-hydricity Co(III) species is found to be the hydride transfer. Thus, our findings suggest that hydricity can be used as a practical guide in future catalyst design. Enhancing the electron-accepting ability of low-hydricity catalysts is likely to improve their catalytic performance, while increasing the electron-donating ability of high-hydricity complexes may speed up CO2 conversion. Moreover, we also established the active roles of base NEt3 in directing the heterolytic H2 splitting and assisting product release through the formation of an acid-base complex.
Directory of Open Access Journals (Sweden)
Nikolay Ivantchev
2013-10-01
Full Text Available Conformism was studied among 46 workers with different kinds of occupations by means of two modified scales measuring conformity by Santor, Messervey, and Kusumakar (2000 – scale for perceived peer pressure and scale for conformism in antisocial situations. The hypothesis of the study that workers’ conformism is expressed in a medium degree was confirmed partly. More than a half of the workers conform in a medium degree for taking risk, and for the use of alcohol and drugs, and for sexual relationships. More than a half of the respondents conform in a small degree for anti-social activities (like a theft. The workers were more inclined to conform for risk taking (10.9%, then – for the use of alcohol, drugs and for sexual relationships (8.7%, and in the lowest degree – for anti-social activities (6.5%. The workers who were inclined for the use of alcohol and drugs tended also to conform for anti-social activities.
Directory of Open Access Journals (Sweden)
Frauendiener Jörg
2000-08-01
Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, ``conformal infinity'' is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.
Frauendiener, Jörg
2004-01-01
The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.
Directory of Open Access Journals (Sweden)
Frauendiener Jörg
2004-01-01
Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.
The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.
Frauendiener, J?rg
2000-01-01
The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory...
Conformation radiotherapy and conformal radiotherapy
International Nuclear Information System (INIS)
Morita, Kozo
1999-01-01
In order to coincide the high dose region to the target volume, the 'Conformation Radiotherapy Technique' using the multileaf collimator and the device for 'hollow-out technique' was developed by Prof. S. Takahashi in 1960. This technique can be classified a type of 2D-dynamic conformal RT techniques. By the clinical application of this technique, the late complications of the lens, the intestine and the urinary bladder after radiotherapy for the maxillary cancer and the cervical cancer decreased. Since 1980's the exact position and shape of the tumor and the surrounding normal tissues can be easily obtained by the tremendous development of the CT/MRI imaging technique. As a result, various kinds of new conformal techniques such as the 3D-CRT, the dose intensity modulation, the tomotherapy have been developed since the beginning of 1990'. Several 'dose escalation study with 2D-/3D conformal RT' is now under way to improve the treatment results. (author)
International Nuclear Information System (INIS)
Hooft, G.
2012-01-01
The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)
Sagan, Bruce E.; Savage, Carla D.
2012-01-01
We introduce the notion of a Mahonian pair. Consider the set, P^*, of all words having the positive integers as alphabet. Given finite subsets S,T of P^*, we say that (S,T) is a Mahonian pair if the distribution of the major index, maj, over S is the same as the distribution of the inversion number, inv, over T. So the well-known fact that maj and inv are equidistributed over the symmetric group, S_n, can be expressed by saying that (S_n,S_n) is a Mahonian pair. We investigate various Mahonia...
Rahaman, Obaidur; Estrada, Trilce P; Doren, Douglas J; Taufer, Michela; Brooks, Charles L; Armen, Roger S
2011-09-26
The performances of several two-step scoring approaches for molecular docking were assessed for their ability to predict binding geometries and free energies. Two new scoring functions designed for "step 2 discrimination" were proposed and compared to our CHARMM implementation of the linear interaction energy (LIE) approach using the Generalized-Born with Molecular Volume (GBMV) implicit solvation model. A scoring function S1 was proposed by considering only "interacting" ligand atoms as the "effective size" of the ligand and extended to an empirical regression-based pair potential S2. The S1 and S2 scoring schemes were trained and 5-fold cross-validated on a diverse set of 259 protein-ligand complexes from the Ligand Protein Database (LPDB). The regression-based parameters for S1 and S2 also demonstrated reasonable transferability in the CSARdock 2010 benchmark using a new data set (NRC HiQ) of diverse protein-ligand complexes. The ability of the scoring functions to accurately predict ligand geometry was evaluated by calculating the discriminative power (DP) of the scoring functions to identify native poses. The parameters for the LIE scoring function with the optimal discriminative power (DP) for geometry (step 1 discrimination) were found to be very similar to the best-fit parameters for binding free energy over a large number of protein-ligand complexes (step 2 discrimination). Reasonable performance of the scoring functions in enrichment of active compounds in four different protein target classes established that the parameters for S1 and S2 provided reasonable accuracy and transferability. Additional analysis was performed to definitively separate scoring function performance from molecular weight effects. This analysis included the prediction of ligand binding efficiencies for a subset of the CSARdock NRC HiQ data set where the number of ligand heavy atoms ranged from 17 to 35. This range of ligand heavy atoms is where improved accuracy of predicted ligand
Multichannel conformal blocks for scattering amplitudes
Belitsky, A. V.
2018-05-01
By performing resummation of small fermion-antifermion pairs within the pentagon form factor program to scattering amplitudes in planar N = 4 superYang-Mills theory, we construct multichannel conformal blocks within the flux-tube picture for N-sided NMHV polygons. This procedure is equivalent to summation of descendants of conformal primaries in the OPE framework. The resulting conformal partial waves are determined by multivariable hypergeometric series of Lauricella-Saran type.
International Nuclear Information System (INIS)
Kaplan, David B.; Lee, Jong-Wan; Son, Dam T.; Stephanov, Mikhail A.
2009-01-01
We consider zero-temperature transitions from conformal to nonconformal phases in quantum theories. We argue that there are three generic mechanisms for the loss of conformality in any number of dimensions: (i) fixed point goes to zero coupling, (ii) fixed point runs off to infinite coupling, or (iii) an IR fixed point annihilates with a UV fixed point and they both disappear into the complex plane. We give both relativistic and nonrelativistic examples of the last case in various dimensions and show that the critical behavior of the mass gap behaves similarly to the correlation length in the finite temperature Berezinskii-Kosterlitz-Thouless (BKT) phase transition in two dimensions, ξ∼exp(c/|T-T c | 1/2 ). We speculate that the chiral phase transition in QCD at large number of fermion flavors belongs to this universality class, and attempt to identify the UV fixed point that annihilates with the Banks-Zaks fixed point at the lower end of the conformal window.
Recent advancements in conformal gravity
International Nuclear Information System (INIS)
O’Brien, James G.; Chaykov, Spasen S.; Moss, Robert J.; Dentico, Jeremy; Stulge, Modestas; Stefanski, Brian
2017-01-01
In recent years, due to the lack of direct observed evidence of cold dark matter, coupled with the shrinking parameter space to search for new dark matter particles, there has been increased interest in Alternative Gravitational theories. This paper, addresses three recent advances in conformal gravity, a fourth order renormalizable metric theory of gravitation originally formulated by Weyl, and later advanced by Mannheim and Kazanas. The first section of the paper applies conformal gravity to the rotation curves of the LITTLE THINGS survey, extending the total number of rotation curves successfully fit by conformal gravity to well over 200 individual data sets without the need for additional dark matter. Further, in this rotation curve study, we show how MOND and conformal gravity compare for each galaxy in the sample. Second, we look at the original Zwicky problem of applying the virial theorem to the Coma cluster in order to get an estimate for the cluster mass. However, instead of using the standard Newtonian potential, here we use the weak field approximation of conformal gravity. We show that in the conformal case we can get a much smaller mass estimate and thus there is no apparent need to include dark matter. We then show that this calculation is in agreement with the observational data from other well studied clusters. Last, we explore the calculation of the deflection of starlight through conformal gravity, as a first step towards applying conformal gravity to gravitaitonal lensing. (paper)
Conformal radiotherapy: principles and classification
International Nuclear Information System (INIS)
Rosenwald, J.C.; Gaboriaud, G.; Pontvert, D.
1999-01-01
'Conformal radiotherapy' is the name fixed by usage and given to a new form of radiotherapy resulting from the technological improvements observed during the last ten years. While this terminology is now widely used, no precise definition can be found in the literature. Conformal radiotherapy refers to an approach in which the dose distribution is more closely 'conformed' or adapted to the actual shape of the target volume. However, the achievement of a consensus on a more specific definition is hampered by various difficulties, namely in characterizing the degree of 'conformality'. We have therefore suggested a classification scheme be established on the basis of the tools and the procedures actually used for all steps of the process, i.e., from prescription to treatment completion. Our classification consists of four levels: schematically, at level 0, there is no conformation (rectangular fields); at level 1, a simple conformation takes place, on the basis of conventional 2D imaging; at level 2, a 3D reconstruction of the structures is used for a more accurate conformation; and level 3 includes research and advanced dynamic techniques. We have used our personal experience, contacts with colleagues and data from the literature to analyze all the steps of the planning process, and to define the tools and procedures relevant to a given level. The corresponding tables have been discussed and approved at the European level within the Dynarad concerted action. It is proposed that the term 'conformal radiotherapy' be restricted to procedures where all steps are at least at level 2. (author)
Unstable Hoogsteen base pairs adjacent to echinomycin binding sites within a DNA duplex
International Nuclear Information System (INIS)
Gilbert, D.E.; van der Marel, G.A.; van Boom, J.H.; Feigon, J.
1989-01-01
The bisintercalation complex present between the DNA octamer [d(ACGTACGT)] 2 and the cyclic octadepsipeptide antibiotic echinomycin has been studied by one- and two-dimensional proton NMR, and the results obtained have been compared with the crystal structures of related DNA-echinomycin complexes. Two echinomycins are found to bind cooperatively to each DNA duplex at the CpG steps, with the two quinoxaline rings of each echinomycin bisintercalating between the C·G and A·T base pairs. At low temperatures, the A·T base pairs on either side of the intercalation site adopt the Hoogsteen conformation, as observed in the crystal structures. However, as the temperature is raised, the Hoogsteen base pairs in the interior of the duplex are destabilized and are observed to be exchanging between the Hoogsteen base pair and either an open or a Watson-Crick base-paired state. The terminal A·T base pairs, which are not as constrained by the helix as the internal base pairs, remain stably Hoogsteen base-paired up to at least 45 degree C. The implications of these results for the biological role of Hoogsteen base pairs in echinomycin-DNA complexes in vivo are discussed
Tomaschitz, R
2000-01-01
We study tachyons conformally coupled to the background geometry of a Milne universe. The causality of superluminal signal transfer is scrutinized in this context. The cosmic time of the comoving frame determines a distinguished time order for events connected by superluminal signals. An observer can relate his rest frame to the galaxy frame, and compare so the time order of events in his proper time to the cosmic time order. All observers can in this way arrive at identical conclusions on the causality of events connected by superluminal signals. An unambiguous energy concept for tachyonic rays is defined by means of the cosmic time of the comoving reference frame, without resorting to an antiparticle interpretation. On that basis we give an explicit proof that no signals can be sent into the past of observers. Causality violating signals are energetically forbidden, as they would have negative energy in the rest frame of the emitting observer. If an observer emits a superluminal signal, the tachyonic respon...
Quantum Conformal Algebras and Closed Conformal Field Theory
Anselmi, D
1999-01-01
We investigate the quantum conformal algebras of N=2 and N=1 supersymmetric gauge theories. Phenomena occurring at strong coupling are analysed using the Nachtmann theorem and very general, model-independent, arguments. The results lead us to introduce a novel class of conformal field theories, identified by a closed quantum conformal algebra. We conjecture that they are the exact solution to the strongly coupled large-N_c limit of the open conformal field theories. We study the basic properties of closed conformal field theory and work out the operator product expansion of the conserved current multiplet T. The OPE structure is uniquely determined by two central charges, c and a. The multiplet T does not contain just the stress-tensor, but also R-currents and finite mass operators. For this reason, the ratio c/a is different from 1. On the other hand, an open algebra contains an infinite tower of non-conserved currents, organized in pairs and singlets with respect to renormalization mixing. T mixes with a se...
Conformal field theory in conformal space
International Nuclear Information System (INIS)
Preitschopf, C.R.; Vasiliev, M.A.
1999-01-01
We present a new framework for a Lagrangian description of conformal field theories in various dimensions based on a local version of d + 2-dimensional conformal space. The results include a true gauge theory of conformal gravity in d = (1, 3) and any standard matter coupled to it. An important feature is the automatic derivation of the conformal gravity constraints, which are necessary for the analysis of the matter systems
Belaghzal, Houda; Dekker, Job; Gibcus, Johan H
2017-07-01
Chromosome conformation capture-based methods such as Hi-C have become mainstream techniques for the study of the 3D organization of genomes. These methods convert chromatin interactions reflecting topological chromatin structures into digital information (counts of pair-wise interactions). Here, we describe an updated protocol for Hi-C (Hi-C 2.0) that integrates recent improvements into a single protocol for efficient and high-resolution capture of chromatin interactions. This protocol combines chromatin digestion and frequently cutting enzymes to obtain kilobase (kb) resolution. It also includes steps to reduce random ligation and the generation of uninformative molecules, such as unligated ends, to improve the amount of valid intra-chromosomal read pairs. This protocol allows for obtaining information on conformational structures such as compartment and topologically associating domains, as well as high-resolution conformational features such as DNA loops. Copyright © 2017 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Shirbisheh, Vahid
2012-01-01
As the first step towards developing noncommutative geometry over Hecke C ∗ -algebras, we study property (RD) (Rapid Decay) for Hecke pairs. When the subgroup H in a Hecke pair (G, H) is finite, we show that the Hecke pair (G, H) has (RD) if and only if G has (RD). This provides us with a family of examples of Hecke pairs with property (RD). We also adapt Paul Jolissant’s works in Jolissaint (J K-Theory 2:723–735, 1989; Trans Amer Math Soc 317(1):167–196, 1990) to the setting of Hecke C ∗ -algebras and show that when a Hecke pair (G, H) has property (RD), the algebra of rapidly decreasing functions on the set of double cosets is closed under holomorphic functional calculus of the associated (reduced) Hecke C ∗ -algebra. Hence they have the same K 0 -groups.
Viscous conformal gauge theories
DEFF Research Database (Denmark)
Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.
2017-01-01
We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....
International Nuclear Information System (INIS)
Kozameh, C.N.; Newman, E.T.; Tod, K.P.
1985-01-01
Conformal transformations in four-dimensional. In particular, a new set of two necessary and sufficient conditions for a space to be conformal to an Einstein space is presented. The first condition defines the class of spaces conformal to C spaces, whereas the last one (the vanishing of the Bach tensor) gives the particular subclass of C spaces which are conformally related to Einstein spaces. (author)
Superspace conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Superspace conformal field theory
International Nuclear Information System (INIS)
Quella, Thomas
2013-07-01
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Unraveling the sequence-dependent polymorphic behavior of d(CpG) steps in B-DNA.
Dans, Pablo Daniel; Faustino, Ignacio; Battistini, Federica; Zakrzewska, Krystyna; Lavery, Richard; Orozco, Modesto
2014-10-01
We have made a detailed study of one of the most surprising sources of polymorphism in B-DNA: the high twist/low twist (HT/LT) conformational change in the d(CpG) base pair step. Using extensive computations, complemented with database analysis, we were able to characterize the twist polymorphism in the d(CpG) step in all the possible tetranucleotide environment. We found that twist polymorphism is coupled with BI/BII transitions, and, quite surprisingly, with slide polymorphism in the neighboring step. Unexpectedly, the penetration of cations into the minor groove of the d(CpG) step seems to be the key element in promoting twist transitions. The tetranucleotide environment also plays an important role in the sequence-dependent d(CpG) polymorphism. In this connection, we have detected a previously unexplored intramolecular C-H···O hydrogen bond interaction that stabilizes the low twist state when 3'-purines flank the d(CpG) step. This work explains a coupled mechanism involving several apparently uncorrelated conformational transitions that has only been partially inferred by earlier experimental or theoretical studies. Our results provide a complete description of twist polymorphism in d(CpG) steps and a detailed picture of the molecular choreography associated with this conformational change. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Non-conformable, partial and conformable transposition
DEFF Research Database (Denmark)
König, Thomas; Mäder, Lars Kai
2013-01-01
and the Commission regarding a directive’s outcome, play a much more strategic role than has to date acknowledged in the transposition literature. Whereas disagreement of a member state delays conformable transposition, it speeds up non-conformable transposition. Disagreement of the Commission only prolongs...... the transposition process. We therefore conclude that a stronger focus on an effective sanctioning mechanism is warranted for safeguarding compliance with directives....
Conformal FDTD modeling wake fields
Energy Technology Data Exchange (ETDEWEB)
Jurgens, T.; Harfoush, F.
1991-05-01
Many computer codes have been written to model wake fields. Here we describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non- cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements of the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall motions. 4 refs., 5 figs.
Lerner, Eitan; Ingargiola, Antonino; Weiss, Shimon
2018-03-01
Bio-macromolecules carry out complicated functions through structural changes. To understand their mechanism of action, the structure of each step has to be characterized. While classical structural biology techniques allow the characterization of a few "structural snapshots" along the enzymatic cycle (usually of stable conformations), they do not cover all (and often fast interconverting) structures in the ensemble, where each may play an important functional role. Recently, several groups have demonstrated that structures of different conformations in solution could be solved by measuring multiple distances between different pairs of residues using single-molecule Förster resonance energy transfer (smFRET) and using them as constrains for hybrid/integrative structural modeling. However, this approach is limited in cases where the conformational dynamics is faster than the technique's temporal resolution. In this study, we combine existing tools that elucidate sub-millisecond conformational dynamics together with hybrid/integrative structural modeling to study the conformational states of the transcription bubble in the bacterial RNA polymerase-promoter open complex (RPo). We measured microsecond alternating laser excitation-smFRET of differently labeled lacCONS promoter dsDNA constructs. We used a combination of burst variance analysis, photon-by-photon hidden Markov modeling, and the FRET-restrained positioning and screening approach to identify two conformational states for RPo. The experimentally derived distances of one conformational state match the known crystal structure of bacterial RPo. The experimentally derived distances of the other conformational state have characteristics of a scrunched RPo. These findings support the hypothesis that sub-millisecond dynamics in the transcription bubble are responsible for transcription start site selection.
Peer influence: neural mechanisms underlying in-group conformity.
Stallen, Mirre; Smidts, Ale; Sanfey, Alan G
2013-01-01
People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is mediated by both positive affect as well as the cognitive capacity of perspective taking. Examining the processes that drive in-group conformity by utilizing a basic decision-making paradigm combined with neuroimaging methods provides important insights into the potential mechanisms of conformity. These results may provide an integral step in developing more effective campaigns using group conformity as a tool for behavioral change.
Induced quantum conformal gravity
International Nuclear Information System (INIS)
Novozhilov, Y.V.; Vassilevich, D.V.
1988-11-01
Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs
Thickenings and conformal gravity
Lebrun, Claude
1991-07-01
A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason [B-M].
Thickenings and conformal gravity
Energy Technology Data Exchange (ETDEWEB)
LeBrun, C. (State Univ. of New York, Stony Brook, NY (USA). Dept. of Mathematics)
1991-07-01
A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason (B-M). (orig.).
Thickenings and conformal gravity
International Nuclear Information System (INIS)
LeBrun, C.
1991-01-01
A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason [B-M]. (orig.)
Conformal transformations in superspace
International Nuclear Information System (INIS)
Dao Vong Duc
1977-01-01
The spinor extension of the conformal algebra is investigated. The transformation law of superfields under the conformal coordinate inversion R defined in the superspace is derived. Using R-technique, the superconformally covariant two-point and three-point correlation functions are found
Conformational stability of calreticulin
DEFF Research Database (Denmark)
Jørgensen, C.S.; Trandum, C.; Larsen, N.
2005-01-01
The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (T-m) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C......-terminal a-helix was of major importance to the conformational stability of calreticulin....
International Nuclear Information System (INIS)
Feuvret, Loic; Noel, Georges; Mazeron, Jean-Jacques; Bey, Pierre
2006-01-01
We present a critical analysis of the conformity indices described in the literature and an evaluation of their field of application. Three-dimensional conformal radiotherapy, with or without intensity modulation, is based on medical imaging techniques, three-dimensional dosimetry software, compression accessories, and verification procedures. It consists of delineating target volumes and critical healthy tissues to select the best combination of beams. This approach allows better adaptation of the isodose to the tumor volume, while limiting irradiation of healthy tissues. Tools must be developed to evaluate the quality of proposed treatment plans. Dosimetry software provides the dose distribution in each CT section and dose-volume histograms without really indicating the degree of conformity. The conformity index is a complementary tool that attributes a score to a treatment plan or that can compare several treatment plans for the same patient. The future of conformal index in everyday practice therefore remains unclear
Conformal invariance in supergravity
International Nuclear Information System (INIS)
Bergshoeff, E.A.
1983-01-01
In this thesis the author explains the role of conformal invariance in supergravity. He presents the complete structure of extended conformal supergravity for N <= 4. The outline of this work is as follows. In chapter 2 he briefly summarizes the essential properties of supersymmetry and supergravity and indicates the use of conformal invariance in supergravity. The idea that the introduction of additional symmetry transformations can make clear the structure of a field theory is not reserved to supergravity only. By means of some simple examples it is shown in chapter 3 how one can always introduce additional gauge transformations in a theory of massive vector fields. Moreover it is shown how the gauge invariant formulation sometimes explains the quantum mechanical properties of the theory. In chapter 4 the author defines the conformal transformations and summarizes their main properties. He explains how these conformal transformations can be used to analyse the structure of gravity. The supersymmetric extension of these results is discussed in chapter 5. Here he describes as an example how N=1 supergravity can be reformulated in a conformally-invariant way. He also shows that beyond N=1 the gauge fields of the superconformal symmetries do not constitute an off-shell field representation of extended conformal supergravity. Therefore, in chapter 6, a systematic method to construct the off-shell formulation of all extended conformal supergravity theories with N <= 4 is developed. As an example he uses this method to construct N=1 conformal supergravity. Finally, in chapter 7 N=4 conformal supergravity is discussed. (Auth.)
On the physical origin of galactic conformity
Hearin, Andrew P.; Behroozi, Peter S.; van den Bosch, Frank C.
2016-09-01
Correlations between the star formation rates (SFRs) of nearby galaxies (so-called galactic conformity) have been observed for projected separations up to 4 Mpc, an effect not predicted by current semi-analytic models. We investigate correlations between the mass accretion rates (dMvir/dt) of nearby haloes as a potential physical origin for this effect. We find that pairs of host haloes `know about' each others' assembly histories even when their present-day separation is greater than thirty times the virial radius of either halo. These distances are far too large for direct interaction between the haloes to explain the correlation in their dMvir/dt. Instead, halo pairs at these distances reside in the same large-scale tidal environment, which regulates dMvir/dt for both haloes. Larger haloes are less affected by external forces, which naturally gives rise to a mass dependence of the halo conformity signal. SDSS measurements of galactic conformity exhibit a qualitatively similar dependence on stellar mass, including how the signal varies with distance. Based on the expectation that halo accretion and galaxy SFR are correlated, we predict the scale-, mass- and redshift-dependence of large-scale galactic conformity, finding that the signal should drop to undetectable levels by z ≳ 1. These predictions are testable with current surveys to z ˜ 1; confirmation would establish a strong correlation between dark matter halo accretion rate and central galaxy SFR.
Conformal expansions and renormalons
Energy Technology Data Exchange (ETDEWEB)
Rathsman, J.
2000-02-07
The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients. As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.
Conformal sequestering simplified
International Nuclear Information System (INIS)
Schmaltz, Martin; Sundrum, Raman
2006-01-01
Sequestering is important for obtaining flavor-universal soft masses in models where supersymmetry breaking is mediated at high scales. We construct a simple and robust class of hidden sector models which sequester themselves from the visible sector due to strong and conformally invariant hidden dynamics. Masses for hidden matter eventually break the conformal symmetry and lead to supersymmetry breaking by the mechanism recently discovered by Intriligator, Seiberg and Shih. We give a unified treatment of subtleties due to global symmetries of the CFT. There is enough review for the paper to constitute a self-contained account of conformal sequestering
Conformally connected universes
International Nuclear Information System (INIS)
Cantor, M.; Piran, T.
1983-01-01
A well-known difficulty associated with the conformal method for the solution of the general relativistic Hamiltonian constraint is the appearance of an aphysical ''bag of gold'' singularity at the nodal surface of the conformal factor. This happens whenever the background Ricci scalar is too large. Using a simple model, it is demonstrated that some of these singular solutions do have a physical meaning, and that these can be considered as initial data for Universe containing black holes, which are connected, in a conformally nonsingular way with each other. The relation between the ADM mass and the horizon area in this solution supports the cosmic censorship conjecture. (author)
Conformable variational iteration method
Directory of Open Access Journals (Sweden)
Omer Acan
2017-02-01
Full Text Available In this study, we introduce the conformable variational iteration method based on new defined fractional derivative called conformable fractional derivative. This new method is applied two fractional order ordinary differential equations. To see how the solutions of this method, linear homogeneous and non-linear non-homogeneous fractional ordinary differential equations are selected. Obtained results are compared the exact solutions and their graphics are plotted to demonstrate efficiency and accuracy of the method.
Delineating the conformal window
DEFF Research Database (Denmark)
Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael
2011-01-01
We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....
Statistical deprojection of galaxy pairs
Nottale, Laurent; Chamaraux, Pierre
2018-06-01
Aims: The purpose of the present paper is to provide methods of statistical analysis of the physical properties of galaxy pairs. We perform this study to apply it later to catalogs of isolated pairs of galaxies, especially two new catalogs we recently constructed that contain ≈1000 and ≈13 000 pairs, respectively. We are particularly interested by the dynamics of those pairs, including the determination of their masses. Methods: We could not compute the dynamical parameters directly since the necessary data are incomplete. Indeed, we only have at our disposal one component of the intervelocity between the members, namely along the line of sight, and two components of their interdistance, i.e., the projection on the sky-plane. Moreover, we know only one point of each galaxy orbit. Hence we need statistical methods to find the probability distribution of 3D interdistances and 3D intervelocities from their projections; we designed those methods under the term deprojection. Results: We proceed in two steps to determine and use the deprojection methods. First we derive the probability distributions expected for the various relevant projected quantities, namely intervelocity vz, interdistance rp, their ratio, and the product rp v_z^2, which is involved in mass determination. In a second step, we propose various methods of deprojection of those parameters based on the previous analysis. We start from a histogram of the projected data and we apply inversion formulae to obtain the deprojected distributions; lastly, we test the methods by numerical simulations, which also allow us to determine the uncertainties involved.
Pairing correlations in nuclei
International Nuclear Information System (INIS)
Baba, C.V.K.
1988-01-01
There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs
Conformity and statistical tolerancing
Leblond, Laurent; Pillet, Maurice
2018-02-01
Statistical tolerancing was first proposed by Shewhart (Economic Control of Quality of Manufactured Product, (1931) reprinted 1980 by ASQC), in spite of this long history, its use remains moderate. One of the probable reasons for this low utilization is undoubtedly the difficulty for designers to anticipate the risks of this approach. The arithmetic tolerance (worst case) allows a simple interpretation: conformity is defined by the presence of the characteristic in an interval. Statistical tolerancing is more complex in its definition. An interval is not sufficient to define the conformance. To justify the statistical tolerancing formula used by designers, a tolerance interval should be interpreted as the interval where most of the parts produced should probably be located. This tolerance is justified by considering a conformity criterion of the parts guaranteeing low offsets on the latter characteristics. Unlike traditional arithmetic tolerancing, statistical tolerancing requires a sustained exchange of information between design and manufacture to be used safely. This paper proposes a formal definition of the conformity, which we apply successively to the quadratic and arithmetic tolerancing. We introduce a concept of concavity, which helps us to demonstrate the link between tolerancing approach and conformity. We use this concept to demonstrate the various acceptable propositions of statistical tolerancing (in the space decentring, dispersion).
Axiomatic conformal field theory
International Nuclear Information System (INIS)
Gaberdiel, M.R.; Goddard, P.
2000-01-01
A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)
Conformal Transformations and Conformal Killing Fields
Definition 1.1 A semi-Riemannian manifold is a pair (M,g) consisting of a differentiate (i.e. C∞) manifold M and a differentiable tensor field g which assigns to each point a ∈ M a non-degenerate and symmetric bilinear form on the tangent space TaM: g_a :T_a M × T_a M to R.
International Nuclear Information System (INIS)
Goddard, Peter
1990-01-01
The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
Secure pairing with biometrics
Buhan, I.R.; Boom, B.J.; Doumen, J.M.; Hartel, Pieter H.; Veldhuis, Raymond N.J.
Secure pairing enables two devices that share no prior context with each other to agree upon a security association, which they can use to protect their subsequent communication. Secure pairing offers guarantees of the association partner identity and it should be resistant to eavesdropping and to a
Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.
2011-01-01
Pairings on elliptic curves are being used in an increasing number of cryptographic applications on many different devices and platforms, but few performance numbers for cryptographic pairings have been reported on embedded and mobile devices. In this paper we give performance numbers for affine and
International Nuclear Information System (INIS)
Balantekin, A. B.; Pehlivan, Y.
2007-01-01
We give the exact solution of orbit dependent nuclear pairing problem between two nondegenerate energy levels using the Bethe ansatz technique. Our solution reduces to previously solved cases in the appropriate limits including Richardson's treatment of reduced pairing in terms of rational Gaudin algebra operators
International Nuclear Information System (INIS)
Shimizu, Yoshifumi
2009-01-01
Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)
International Nuclear Information System (INIS)
Valles, James
2008-01-01
Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.
DEFF Research Database (Denmark)
Dalgas, Karina Märcher
2015-01-01
pair-sending families in the Philippines, this dissertation examines the long-term trajectories of these young Filipinas. It shows how the au pairs’ local and transnational family relations develop over time and greatly influence their life trajectories. A focal point of the study is how au pairs...... that Filipina au pairs see their stay abroad as an avenue of personal development and social recognition, I examine how the au pairs re-position themselves within their families at home through migration, and how they navigate between the often conflicting expectations of participation in the sociality......Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send...
Energy Technology Data Exchange (ETDEWEB)
Rodriguez S, A.; Martinez Q, E
1990-08-15
The structural elucidation of the cluster hexamerico (MO{sub 6}C1{sub 8}) {sup 4+}, it has been characterized for but of twenty-five years like a conformation octahedrica of simple metallic connections. However, the determination has not been attempted of some physical characteristics of this conformation by means of measures espectroscopicas. We present the electronegatividad measures now, constant of force and it distances of connection of the nuclear couple Mo-Cl, using only their frequency vibracional taken directly of the infrared spectra. (Author)
A new fundamental type of conformational isomerism
Canfield, Peter J.; Blake, Iain M.; Cai, Zheng-Li; Luck, Ian J.; Krausz, Elmars; Kobayashi, Rika; Reimers, Jeffrey R.; Crossley, Maxwell J.
2018-06-01
Isomerism is a fundamental chemical concept, reflecting the fact that the arrangement of atoms in a molecular entity has a profound influence on its chemical and physical properties. Here we describe a previously unclassified fundamental form of conformational isomerism through four resolved stereoisomers of a transoid (BF)O(BF)-quinoxalinoporphyrin. These comprise two pairs of enantiomers that manifest structural relationships not describable within existing IUPAC nomenclature and terminology. They undergo thermal diastereomeric interconversion over a barrier of 104 ± 2 kJ mol-1, which we term `akamptisomerization'. Feasible interconversion processes between conceivable synthesis products and reaction intermediates were mapped out by density functional theory calculations, identifying bond-angle inversion (BAI) at a singly bonded atom as the reaction mechanism. We also introduce the necessary BAI stereodescriptors parvo and amplo. Based on an extended polytope formalism of molecular structure and stereoisomerization, BAI-driven akamptisomerization is shown to be the final fundamental type of conformational isomerization.
A probabilistic model of RNA conformational space
DEFF Research Database (Denmark)
Frellsen, Jes; Moltke, Ida; Thiim, Martin
2009-01-01
, the discrete nature of the fragments necessitates the use of carefully tuned, unphysical energy functions, and their non-probabilistic nature impairs unbiased sampling. We offer a solution to the sampling problem that removes these important limitations: a probabilistic model of RNA structure that allows...... conformations for 9 out of 10 test structures, solely using coarse-grained base-pairing information. In conclusion, the method provides a theoretical and practical solution for a major bottleneck on the way to routine prediction and simulation of RNA structure and dynamics in atomic detail.......The increasing importance of non-coding RNA in biology and medicine has led to a growing interest in the problem of RNA 3-D structure prediction. As is the case for proteins, RNA 3-D structure prediction methods require two key ingredients: an accurate energy function and a conformational sampling...
International Nuclear Information System (INIS)
Faria, F. F.
2014-01-01
We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.
International Nuclear Information System (INIS)
Moore, G.; Seiberg, N.
1989-01-01
All known rational conformal field theories may be obtained from (2+1)-dimensional Chern-Simons gauge theories by appropriate choice of gauge group. We conjecture that all rational field theories are classified by groups via (2+1)-dimensional Chern-Simons gauge theories. (orig.)
International Nuclear Information System (INIS)
Maia, M.D.
2006-01-01
It is shown that the information loss/recovery theorem based on the ADS/CFT correspondence is not consistent with the stability of the Schwarzschild or Reissner-Nordstrom black holes. Nonetheless, the conformal invariance of Yang-Mills theory points to new relativity principle compatible with quantum unitarity near those black holes
Animal culture: chimpanzee conformity?
van Schaik, Carel P
2012-05-22
Culture-like phenomena in wild animals have received much attention, but how good is the evidence and how similar are they to human culture? New data on chimpanzees suggest their culture may even have an element of conformity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Parafermionic conformal field theory
International Nuclear Information System (INIS)
Kurak, V.
1989-09-01
Conformal parafermionic field theories are reviewed with emphasis on the computation of their OPE estructure constants. It is presented a simple computational of these for the Z(N) parafermions, unveilling their Lie algebra content. (A.C.A.S.) [pt
Quantifying polypeptide conformational space: sensitivity to conformation and ensemble definition.
Sullivan, David C; Lim, Carmay
2006-08-24
Quantifying the density of conformations over phase space (the conformational distribution) is needed to model important macromolecular processes such as protein folding. In this work, we quantify the conformational distribution for a simple polypeptide (N-mer polyalanine) using the cumulative distribution function (CDF), which gives the probability that two randomly selected conformations are separated by less than a "conformational" distance and whose inverse gives conformation counts as a function of conformational radius. An important finding is that the conformation counts obtained by the CDF inverse depend critically on the assignment of a conformation's distance span and the ensemble (e.g., unfolded state model): varying ensemble and conformation definition (1 --> 2 A) varies the CDF-based conformation counts for Ala(50) from 10(11) to 10(69). In particular, relatively short molecular dynamics (MD) relaxation of Ala(50)'s random-walk ensemble reduces the number of conformers from 10(55) to 10(14) (using a 1 A root-mean-square-deviation radius conformation definition) pointing to potential disconnections in comparing the results from simplified models of unfolded proteins with those from all-atom MD simulations. Explicit waters are found to roughen the landscape considerably. Under some common conformation definitions, the results herein provide (i) an upper limit to the number of accessible conformations that compose unfolded states of proteins, (ii) the optimal clustering radius/conformation radius for counting conformations for a given energy and solvent model, (iii) a means of comparing various studies, and (iv) an assessment of the applicability of random search in protein folding.
Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.
Directory of Open Access Journals (Sweden)
Michael F Sloma
2017-11-01
Full Text Available Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package.
Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.
Sloma, Michael F; Mathews, David H
2017-11-01
Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package.
Pair Negotiation When Developing English Speaking Tasks
Bohórquez Suárez, Ingrid Liliana; Gómez Sará, Mary Mily; Medina Mosquera, Sindy Lorena
2011-01-01
This study analyzes what characterizes the negotiations of seventh graders at a public school in Bogotá when working in pairs to develop speaking tasks in EFL classes. The inquiry is a descriptive case study that follows the qualitative paradigm. As a result of analyzing the data, we obtained four consecutive steps that characterize students'…
Essential role of conformational selection in ligand binding.
Vogt, Austin D; Pozzi, Nicola; Chen, Zhiwei; Di Cera, Enrico
2014-02-01
Two competing and mutually exclusive mechanisms of ligand recognition - conformational selection and induced fit - have dominated our interpretation of ligand binding in biological macromolecules for almost six decades. Conformational selection posits the pre-existence of multiple conformations of the macromolecule from which the ligand selects the optimal one. Induced fit, on the other hand, postulates the existence of conformational rearrangements of the original conformation into an optimal one that are induced by binding of the ligand. In the former case, conformational transitions precede the binding event; in the latter, conformational changes follow the binding step. Kineticists have used a facile criterion to distinguish between the two mechanisms based on the dependence of the rate of relaxation to equilibrium, kobs, on the ligand concentration, [L]. A value of kobs decreasing hyperbolically with [L] has been seen as diagnostic of conformational selection, while a value of kobs increasing hyperbolically with [L] has been considered diagnostic of induced fit. However, this simple conclusion is only valid under the rather unrealistic assumption of conformational transitions being much slower than binding and dissociation events. In general, induced fit only produces values of kobs that increase with [L] but conformational selection is more versatile and is associated with values of kobs that increase with, decrease with or are independent of [L]. The richer repertoire of kinetic properties of conformational selection applies to kinetic mechanisms with single or multiple saturable relaxations and explains the behavior of nearly all experimental systems reported in the literature thus far. Conformational selection is always sufficient and often necessary to account for the relaxation kinetics of ligand binding to a biological macromolecule and is therefore an essential component of any binding mechanism. On the other hand, induced fit is never necessary and
Paired quantum Hall states on noncommutative two-tori
Energy Technology Data Exchange (ETDEWEB)
Marotta, Vincenzo [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN, Sezione di Napoli, Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy); Naddeo, Adele, E-mail: naddeo@sa.infn.i [CNISM, Unita di Ricerca di Salerno and Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, Via Salvador Allende, 84081 Baronissi (Italy)
2010-08-01
By exploiting the notion of Morita equivalence for field theories on noncommutative tori and choosing rational values of the noncommutativity parameter theta (in appropriate units), a one-to-one correspondence between an Abelian noncommutative field theory (NCFT) and a non-Abelian theory of twisted fields on ordinary space can be established. Starting from this general result, we focus on the conformal field theory (CFT) describing a quantum Hall fluid (QHF) at paired states fillings nu=m/(pm+2) Cristofano et al. (2000) , recently obtained by means of m-reduction procedure, and show that it is the Morita equivalent of a NCFT. In this way we extend the construction proposed in Marotta and Naddeo (2008) for the Jain series nu=m/(2pm+1) . The case m=2 is explicitly discussed and the role of noncommutativity in the physics of quantum Hall bilayers is emphasized. Our results represent a step forward the construction of a new effective low energy description of certain condensed matter phenomena and help to clarify the relationship between noncommutativity and quantum Hall fluids.
Mesoscopic pairing without superconductivity
Hofmann, Johannes
2017-12-01
We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.
Investigations into nuclear pairing
International Nuclear Information System (INIS)
Clark, R.M.
2006-01-01
This paper is divided in two main sections focusing on different aspects of collective nuclear behavior. In the first section, solutions are considered for the collective pairing Hamiltonian. In particular, an approximate solution at the critical point of the pairing transition from harmonic vibration (normal nuclear behavior) to deformed rotation (superconducting behavior) in gauge space is found by analytic solution of the Hamiltonian. The eigenvalues are expressed in terms of the zeros of Bessel functions of integer order. The results are compared to the pairing bands based on the Pb isotopes. The second section focuses on the experimental search for the Giant Pairing Vibration (GPV) in nuclei. After briefly describing the origin of the GPV, and the reasons that the state has remained unidentified, a novel idea for populating this state is presented. A recent experiment has been performed using the LIBERACE+STARS detector system at the 88-Inch Cyclotron of LBNL to test the idea. (Author)
Transportation Conformity Training and Presentations
EPA's OTAQ has provided multiple conformity training sessions in the past to assist state and local governments in implementing conformity requirements. As training information is prepared for other venues, it will be posted on this page.
DEFF Research Database (Denmark)
Mojaza, Matin; Pica, Claudio; Sannino, Francesco
2010-01-01
of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...
Conformational flexibility of aspartame.
Toniolo, Claudio; Temussi, Pierandrea
2016-05-01
L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016. © 2016 Wiley Periodicals, Inc.
Conformal description of spinning particles
International Nuclear Information System (INIS)
Todorov, I.T.
1986-01-01
This book is an introduction to the application of the conformal group to quantum field theory of particles with spin. After an introduction to the twistor representations of the conformal group of a conformally flat space-time and twistor flag manifolds with Su(2,2) orbits the classical phase space of conformal spinning particles is described. Thereafter the twistor description of classical zero mass fields is considered together with the quantization. (HSI)
Conformal boundaries of warped products
DEFF Research Database (Denmark)
Kokkendorff, Simon Lyngby
2006-01-01
In this note we prove a result on how to determine the conformal boundary of a type of warped product of two length spaces in terms of the individual conformal boundaries. In the situation, that we treat, the warping and conformal distortion functions are functions of distance to a base point....... The result is applied to produce examples of CAT(0)-spaces, where the conformal and ideal boundaries differ in interesting ways....
Conformal radiotherapy: a glossary
International Nuclear Information System (INIS)
Dubray, B.; Giraud, P.; Beaudre, A.
1999-01-01
Most of the concepts and terms related to conformal radiotherapy were produced by English-speaking authors and eventually validated by international groups of experts, whose working language was also English. Therefore, a significant part of this literature is poorly accessible to the French-speaking radiation oncology community. The present paper gathers the 'official' definitions already published in French, along with propositions for the remaining terms which should be submitted to a more formal and representative validation process. (author)
International Nuclear Information System (INIS)
1980-10-01
This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.
[Paired kidneys in transplant].
Regueiro López, Juan C; Leva Vallejo, Manuel; Prieto Castro, Rafael; Anglada Curado, Francisco; Vela Jiménez, Francisco; Ruiz García, Jesús
2009-02-01
Many factors affect the graft and patient survival on the renal transplant outcome. These factors depend so much of the recipient and donor. We accomplished a study trying to circumvent factors that depend on the donor. We checked the paired kidneys originating of a same donor cadaver. We examined the risk factors in the evolution and follow-up in 278 couples of kidney transplant. We describe their differences, significance, the graft and patient survival, their functionality in 3 and 5 years and the risk factors implicated in their function. We study immunogenic and no immunogenic variables, trying to explain the inferior results in the grafts that are established secondly. We regroup the paired kidneys in those that they did not show paired initial function within the same couple. The results yield a discreet deterioration in the graft and patient survival for second group establish, superior creatinina concentration, without obtaining statistical significance. The Cox regression study establishes the early rejection (inferior to three months) and DR incompatibility values like risk factors. This model of paired kidneys would be able to get close to best-suited form for risk factors analysis in kidney transplant from cadaver donors, if more patients examine themselves in the same way. The paired kidneys originating from the same donor do not show the same function in spite of sharing the same conditions of the donor and perioperative management.
Junctionless Cooper pair transistor
Energy Technology Data Exchange (ETDEWEB)
Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)
2017-02-15
Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.
Conformational analysis by intersection: CONAN.
Smellie, Andrew; Stanton, Robert; Henne, Randy; Teig, Steve
2003-01-15
As high throughput techniques in chemical synthesis and screening improve, more demands are placed on computer assisted design and virtual screening. Many of these computational methods require one or more three-dimensional conformations for molecules, creating a demand for a conformational analysis tool that can rapidly and robustly cover the low-energy conformational spaces of small molecules. A new algorithm of intersection is presented here, which quickly generates (on average heuristics are applied after intersection to generate a small representative collection of conformations that span the conformational space. In a study of approximately 97,000 randomly selected molecules from the MDDR, results are presented that explore these conformations and their ability to cover low-energy conformational space. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 24: 10-20, 2003
Conformal superalgebras via tractor calculus
Lischewski, Andree
2015-01-01
We use the manifestly conformally invariant description of a Lorentzian conformal structure in terms of a parabolic Cartan geometry in order to introduce a superalgebra structure on the space of twistor spinors and normal conformal vector fields formulated in purely algebraic terms on parallel sections in tractor bundles. Via a fixed metric in the conformal class, one reproduces a conformal superalgebra structure that has been considered in the literature before. The tractor approach, however, makes clear that the failure of this object to be a Lie superalgebra in certain cases is due to purely algebraic identities on the spinor module and to special properties of the conformal holonomy representation. Moreover, it naturally generalizes to higher signatures. This yields new formulas for constructing new twistor spinors and higher order normal conformal Killing forms out of existing ones, generalizing the well-known spinorial Lie derivative. Moreover, we derive restrictions on the possible dimension of the space of twistor spinors in any metric signature.
Effects of Student Pairing and Public Review on Physical Activity during School Recess
Zerger, Heather M.; Miller, Bryon G.; Valbuena, Diego; Miltenberger, Raymond G.
2017-01-01
The purpose of this study was to evaluate the effects of student pairing and feedback during recess on children's step counts. During baseline, participants wore a sealed pedometer during recess. During intervention, we paired participants with higher step counts with participants with lower step counts. We encouraged teams to compete for the…
Classical extended conformal symmetries
International Nuclear Information System (INIS)
Viswanathan, R.
1990-02-01
Extensions of the Virasoro algebra are constructed as Poisson brackets of higher spin fields which appear as coefficient fields in certain covariant derivative operators of order N. These differential operators are constructed so as to be covariant under reparametrizations on fields of definite conformal dimension. Factorization of such an N-th order operator in terms of first order operators, together with the inclusion of a spin one U(1) current, is shown to lead to a two-parameter W-algebra. One of these parameters plays the role of interpolating between W-algebras based on different Lie algebras of the same rank. (author). 11 refs
Step out - Step in Sequencing Games
Musegaas, M.; Borm, P.E.M.; Quant, M.
2014-01-01
In this paper a new class of relaxed sequencing games is introduced: the class of Step out - Step in sequencing games. In this relaxation any player within a coalition is allowed to step out from his position in the processing order and to step in at any position later in the processing order.
Step out-step in sequencing games
Musegaas, Marieke; Borm, Peter; Quant, Marieke
2015-01-01
In this paper a new class of relaxed sequencing games is introduced: the class of Step out–Step in sequencing games. In this relaxation any player within a coalition is allowed to step out from his position in the processing order and to step in at any position later in the processing order. First,
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Frustrated Lewis Pairs : Enabling via inability. Sanjoy Mukherjee ... Author Affiliations. Sanjoy Mukherjee Pakkirisamy Thilagar1. Department of Inorgainic and Physical Chemistry Indian Institute of Science Bangalore 560 012, India.
DEFF Research Database (Denmark)
Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel
2015-01-01
In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...
Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.; Abdalla, M.; Lange, T.
2013-01-01
We report on relative performance numbers for affine and projective pairings on a dual-core Cortex A9 ARM processor. Using a fast inversion in the base field and doing inversion in extension fields by using the norm map to reduce to inversions in smaller fields, we find a very low ratio of
Energy Technology Data Exchange (ETDEWEB)
Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)
2001-02-01
Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es
Predicting the Mechanism and Kinetics of the Watson-Crick to Hoogsteen Base Pairing Transition
Vreede, J.; Bolhuis, P.G.; Swenson, D.W.H.
2016-01-01
DNA duplexes predominantly contain Watson-Crick (WC) base pairs. Yet, a non-negligible number of base pairs converts to the Hoogsteen (HG) hydrogen bonding pattern, involving a 180° rotation of the purine base relative to Watson-Crick. These WC to HG conversions alter the conformation of DNA, and
Conformally symmetric traversable wormholes
International Nuclear Information System (INIS)
Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.
2007-01-01
Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced
Supergravitational conformal Galileons
Deen, Rehan; Ovrut, Burt
2017-08-01
The worldvolume actions of 3+1 dimensional bosonic branes embedded in a five-dimensional bulk space can lead to important effective field theories, such as the DBI conformal Galileons, and may, when the Null Energy Condition is violated, play an essential role in cosmological theories of the early universe. These include Galileon Genesis and "bouncing" cosmology, where a pre-Big Bang contracting phase bounces smoothly to the presently observed expanding universe. Perhaps the most natural arena for such branes to arise is within the context of superstring and M -theory vacua. Here, not only are branes required for the consistency of the theory, but, in many cases, the exact spectrum of particle physics occurs at low energy. However, such theories have the additional constraint that they must be N = 1 supersymmetric. This motivates us to compute the worldvolume actions of N = 1 supersymmetric three-branes, first in flat superspace and then to generalize them to N = 1 supergravitation. In this paper, for simplicity, we begin the process, not within the context of a superstring vacuum but, rather, for the conformal Galileons arising on a co-dimension one brane embedded in a maximally symmetric AdS 5 bulk space. We proceed to N = 1 supersymmetrize the associated worldvolume theory and then generalize the results to N = 1 supergravity, opening the door to possible new cosmological scenarios
Multi-pair states in electron–positron pair creation
Energy Technology Data Exchange (ETDEWEB)
Wöllert, Anton, E-mail: woellert@mpi-hd.mpg.de; Bauke, Heiko, E-mail: heiko.bauke@mpi-hd.mpg.de; Keitel, Christoph H.
2016-09-10
Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.
Multi-pair states in electron–positron pair creation
International Nuclear Information System (INIS)
Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.
2016-01-01
Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.
Treatment of pairing correlations based on the equations of motion for zero-coupled pair operators
International Nuclear Information System (INIS)
Andreozzi, F.; Covello, A.; Gargano, A.; Ye, L.J.; Porrino, A.
1985-01-01
The pairing problem is treated by means of the equations of motion for zero-coupled pair operators. Exact equations for the seniority-v states of N particles are derived. These equations can be solved by a step-by-step procedure which consists of progressively adding pairs of particles to a core. The theory can be applied at several levels of approximation depending on the number of core states which are taken into account. Some numerical applications to the treatment of v = 0, v = 1, and v = 2 states in the Ni isotopes are performed. The accuracy of various approximations is tested by comparison with exact results. For the seniority-one and seniority-two problems it turns out that the results obtained from the first-order theory are very accurate, while those of higher order calculations are practically exact. Concerning the seniority-zero problem, a fifth-order calculation reproduces quite well the three lowest states
A paired wedge filter system for compensation in dose differences
International Nuclear Information System (INIS)
Kobayashi, H.; Sakurai, Y.; Kondo, S.; Abe, S.; Hayakawa, N.; Aoyama, Y.; Obata, Y.; Ishigaki, T.
1998-01-01
Objective: In radiotherapy, it is important to conform the high dose volume to the planned target volume. A variable thickness paired wedge filter system was developed to compensate for dose inhomogeneity arising from field width segment variation in conformal irradiation. Materials and methods: The present study used a 6 MV linear accelerator equipped with multileaf collimator leaves and a paired wedge compensating filter system. The dose variation due to field width was measured in each field segment width. The variation in attenuation of the compensators was measured as a function of filter position. As the field width increases, the relative absorbed dose also increases; this is the point of requiring compensation, so it can be in reverse proportion. Results: As the field width increases, the relative absorbed dose also increases; this is why compensation is required and thus it must be in reverse proportion. Attenuation of the absorbed dose by the paired filters was in proportion to the filter position. The filter position to compensate for the difference of absorbed doses was defined by the square root of the field width. For a field varying in width from 4 to 16 cm, the variation in the absorbed dose across the field was reduced from 12% to 2.7%. Conclusion: This paired wedge filter system reduced absorbed dose variations across multileaf collimator shaped fields and can facilitate treatment planning in conformal therapy. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
Ward identities for conformal models
International Nuclear Information System (INIS)
Lazzarini, S.; Stora, R.
1988-01-01
Ward identities which express the symmetry of conformal models are treated. Diffeomorphism invariance or locally holomorphic coordinate transformations are used. Diffeomorphism invariance is then understood in terms of Riemannian geometry. Two different sets of Ward identities expressing diffeomorphism invariance in a conformally invariant way are found for the free bosonic string. Using a geometrical argument, the correct invariance for a large class of conformal models is given
Conformational analysis of lignin models
International Nuclear Information System (INIS)
Santos, Helio F. dos
2001-01-01
The conformational equilibrium for two 5,5' biphenyl lignin models have been analyzed using a quantum mechanical semiempirical method. The gas phase and solution structures are discussed based on the NMR and X-ray experimental data. The results obtained showed that the observed conformations are solvent-dependent, being the geometries and the thermodynamic properties correlated with the experimental information. This study shows how a systematic theoretical conformational analysis can help to understand chemical processes at a molecular level. (author)
On the linear conformal gravitation
International Nuclear Information System (INIS)
Pal'chik, M.Ya.; Fradkin, E.S.
1984-01-01
Conformal gravitation is analyzed under the assumption that its solution possesses the property of conformal symmetry. This assumption has sense in the case of small distances and only for definite types of matter fields, namely: at special choice of matter fields and their interactions, providing a lack of conformal anomalies; or at definite magnitudes of binding constants, coinciding with the zeroes of the Gell-Mann-Low function. The field equations, of the group-theoretical natura are obtained
Fermion-scalar conformal blocks
Energy Technology Data Exchange (ETDEWEB)
Iliesiu, Luca [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Kos, Filip [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); Poland, David [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States)
2016-04-13
We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. Conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.
Instantons in conformal gravity
International Nuclear Information System (INIS)
Strominger, A.; Horowitz, G.T.; Perry, M.J.
1984-01-01
Fe study extrema of the general conformally invariant action: Ssub(c)=∫1/sub(α) 2 Csup(abcd)Csub(abcd)+γRsup(abcd*)Rsup(*)sub(abcd)+iTHETARsup(abcd)*Rsub(abcd). We find the first examples in four dimensions of asymptotically euclidean gravitational instantons. These have arbitrary Euler number and Hirzebruch signature. Some of these instantons represent tunneling between zero-curvature vacua that are not related by small gauge transformations. Others represent tunneling between flat space and topologically non-trivial zero-energy initial data. A general formula for the one-loop determinant is derived in terms of the renormalization group invariant masses, the volume of space-time, the Euler number and the Hirzebruch signature. (orig.)
DEFF Research Database (Denmark)
Gjerdrum Pedersen, Esben Rahbek; Neergaard, Peter; Thusgaard Pedersen, Janni
2013-01-01
This paper analyses how large Danish companies are responding to new governmental regulation which requires them to report on corporate social responsibility (CSR). The paper is based on an analysis of 142 company annual reports required by the new Danish regulation regarding CSR reporting, plus 10...... interviews with first-time reporting companies and six interviews with companies that failed to comply with the new law. It is concluded that coercive pressures from government have an impact on CSR reporting practices. Further, the analysis finds traces of mimetic isomorphism which inspires a homogenisation...... in CSR reporting practices. Finally, it is argued that non-conformance with the new regulatory requirements is not solely about conscious resistance but may also be caused by, for example, lack of awareness, resource limitations, misinterpretations, and practical difficulties....
Reflections on Conformal Spectra
CERN. Geneva
2015-01-01
We use modular invariance and crossing symmetry of conformal field theory to reveal approximate reflection symmetries in the spectral decompositions of the partition function in two dimensions in the limit of large central charge and of the four-point function in any dimension in the limit of large scaling dimensions Δ0 of external operators. We use these symmetries to motivate universal upper bounds on the spectrum and the operator product expansion coefficients, which we then derive by independent techniques. Some of the bounds for four-point functions are valid for finite Δ0 as well as for large Δ0. We discuss a similar symmetry in a large spacetime dimension limit. Finally, we comment on the analogue of the Cardy formula and sparse light spectrum condition for the four-point function. (based on 1510.08772 with Kim & Ooguri). This seminar will be given via videolink
CD2 probe infrared method for determining polymethylene chain conformation
International Nuclear Information System (INIS)
Maroncelli, M.; Strauss, H.L.; Snyder, R.G.
1985-01-01
The rocking mode frequency of a CD 2 group substituted in a polymethylene chain is sensitive to conformation in the immediate vicinity of the CD 2 group. This sensitivity forms the basis of a commonly used infrared method for determining site-specific conformation in polymethylene systems. In the present work, the CD 2 probe method has been extended and quantified with the use of infrared data on model CD 2 -substituted n-alkanes. The frequency of the CD 2 rocking band is determined primarily by the conformation of adjoining CC bonds, i.e., by tt, gt, and gg pairs. However, we have found that there are significant frequency shifts associated with other factors. These include the conformation of the next nearest CC bonds, both with the CD 2 positioned at the end and in the interior of the chain, and chain length. In addition, the ratio of the absorptivities of the tt to gt bands has been established. These results enable the method to provide new details about the conformation of the chains in polymethylene systems and reliable estimates of the concentrations of specific kinds of short conformational sequences. 14 references, 6 figures, 2 tables
Conformal boundary loop models
International Nuclear Information System (INIS)
Jacobsen, Jesper Lykke; Saleur, Hubert
2008-01-01
We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S
2003-11-19
Theoretical and phenomenological evidence is now accumulating that the QCD coupling becomes constant at small virtuality; i.e., {alpha}{sub s}(Q{sup 2}) develops an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. For example, the hadronic decays of the {tau} lepton can be used to determine the effective charge {alpha}{sub {tau}}(m{sub {tau}{prime}}{sup 2}) for a hypothetical {tau}-lepton with mass in the range 0 < m{sub {tau}{prime}} < m{sub {tau}}. The {tau} decay data at low mass scales indicates that the effective charge freezes at a value of s = m{sub {tau}{prime}}{sup 2} of order 1 GeV{sup 2} with a magnitude {alpha}{sub {tau}} {approx} 0.9 {+-} 0.1. The near-constant behavior of effective couplings suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer and why there are no significant running coupling corrections to quark counting rules for exclusive processes. The AdS/CFT correspondence of large N{sub c} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time also has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes and light-front wavefunctions. The utility of light-front quantization and light-front Fock wavefunctions for analyzing nonperturbative QCD and representing the dynamics of QCD bound states is also discussed.
Logarithmic conformal field theory through nilpotent conformal dimensions
International Nuclear Information System (INIS)
Moghimi-Araghi, S.; Rouhani, S.; Saadat, M.
2001-01-01
We study logarithmic conformal field theories (LCFTs) through the introduction of nilpotent conformal weights. Using this device, we derive the properties of LCFTs such as the transformation laws, singular vectors and the structure of correlation functions. We discuss the emergence of an extra energy momentum tensor, which is the logarithmic partner of the energy momentum tensor
International Nuclear Information System (INIS)
Omelyan, Igor; Kovalenko, Andriy
2013-01-01
We develop efficient handling of solvation forces in the multiscale method of multiple time step molecular dynamics (MTS-MD) of a biomolecule steered by the solvation free energy (effective solvation forces) obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model complemented with the Kovalenko-Hirata closure approximation). To reduce the computational expenses, we calculate the effective solvation forces acting on the biomolecule by using advanced solvation force extrapolation (ASFE) at inner time steps while converging the 3D-RISM-KH integral equations only at large outer time steps. The idea of ASFE consists in developing a discrete non-Eckart rotational transformation of atomic coordinates that minimizes the distances between the atomic positions of the biomolecule at different time moments. The effective solvation forces for the biomolecule in a current conformation at an inner time step are then extrapolated in the transformed subspace of those at outer time steps by using a modified least square fit approach applied to a relatively small number of the best force-coordinate pairs. The latter are selected from an extended set collecting the effective solvation forces obtained from 3D-RISM-KH at outer time steps over a broad time interval. The MTS-MD integration with effective solvation forces obtained by converging 3D-RISM-KH at outer time steps and applying ASFE at inner time steps is stabilized by employing the optimized isokinetic Nosé-Hoover chain (OIN) ensemble. Compared to the previous extrapolation schemes used in combination with the Langevin thermostat, the ASFE approach substantially improves the accuracy of evaluation of effective solvation forces and in combination with the OIN thermostat enables a dramatic increase of outer time steps. We demonstrate on a fully flexible model of alanine dipeptide in aqueous solution that the MTS-MD/OIN/ASFE/3D-RISM-KH multiscale method of molecular dynamics
Replacement between conformity and counter-conformity in consumption decisions.
Chou, Ting-Jui; Chang, En-Chung; Dai, Qi; Wong, Veronica
2013-02-01
This study assessed, in a Chinese context, how self-esteem interacts with perceived similarity and uniqueness to yield cognitive dissonance, and whether the dissonance leads to self-reported conformity or counter-conformity behavior. Participants were 408 respondents from 4 major Chinese cities (M age = 33.0 yr., SD = 4.3; 48% men). Self-perceptions of uniqueness, similarity, cognitive dissonance, self-esteem and need to behave in conformity or counter-conformity were measured. A theoretical model was assessed in four situations, relating the ratings of self-esteem and perceived similarity/uniqueness to the way other people at a wedding were dressed, and the resultant cognitive dissonance and conformity/ counter-conformity behavior. Regardless of high or low self-esteem, all participants reported cognitive dissonance when they were told that they were dressed extremely similarly to or extremely differently from the other people attending the wedding. However, the conforming/counter-conforming strategies used by participants to resolve the cognitive dissonance differed. When encountering dissonance induced by the perceived extreme uniqueness of dress, participants with low self-esteem tended to say they would dress next time so as to conform with the way others were dressed, while those with high self-esteem indicated they would continue their counter-conformity in attire. When encountering dissonance induced by the perceived extreme similarity to others, both those with high and low self-esteem tended to say they would dress in an unorthodox manner to surprise other people in the future.
On Associative Conformal Algebras of Linear Growth
Retakh, Alexander
2000-01-01
Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...
Overduin, James; Everitt, Francis; Worden, Paul; Mester, John
2012-09-01
The Satellite Test of the Equivalence Principle (STEP) will advance experimental limits on violations of Einstein's equivalence principle from their present sensitivity of two parts in 1013 to one part in 1018 through multiple comparison of the motions of four pairs of test masses of different compositions in a drag-free earth-orbiting satellite. We describe the experiment, its current status and its potential implications for fundamental physics. Equivalence is at the heart of general relativity, our governing theory of gravity and violations are expected in most attempts to unify this theory with the other fundamental interactions of physics, as well as in many theoretical explanations for the phenomenon of dark energy in cosmology. Detection of such a violation would be equivalent to the discovery of a new force of nature. A null result would be almost as profound, pushing upper limits on any coupling between standard-model fields and the new light degrees of freedom generically predicted by these theories down to unnaturally small levels.
International Nuclear Information System (INIS)
Overduin, James; Everitt, Francis; Worden, Paul; Mester, John
2012-01-01
The Satellite Test of the Equivalence Principle (STEP) will advance experimental limits on violations of Einstein's equivalence principle from their present sensitivity of two parts in 10 13 to one part in 10 18 through multiple comparison of the motions of four pairs of test masses of different compositions in a drag-free earth-orbiting satellite. We describe the experiment, its current status and its potential implications for fundamental physics. Equivalence is at the heart of general relativity, our governing theory of gravity and violations are expected in most attempts to unify this theory with the other fundamental interactions of physics, as well as in many theoretical explanations for the phenomenon of dark energy in cosmology. Detection of such a violation would be equivalent to the discovery of a new force of nature. A null result would be almost as profound, pushing upper limits on any coupling between standard-model fields and the new light degrees of freedom generically predicted by these theories down to unnaturally small levels. (paper)
Molecular insight into conformational transmission of human P-glycoprotein
International Nuclear Information System (INIS)
Chang, Shan-Yan; Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan
2013-01-01
P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp
Conformal invariance in harmonic superspace
International Nuclear Information System (INIS)
Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.
1985-01-01
N=2 conformal supersymmetry is realized in harmonic superspace, its peculiarities are analyzed. The coordinate group and analytical prepotentials for N=2 conformal supergravity are found. A new version of the N=2 Einstein supergravity with infinite number of auxiliary fields is suggested. A hypermultiplet without central charges and constraints is used as a compensator
Counselor Identity: Conformity or Distinction?
McLaughlin, Jerry E.; Boettcher, Kathryn
2009-01-01
The authors explore 3 debates in other disciplines similar to counseling's identity debate in order to learn about common themes and outcomes. Conformity, distinction, and cohesion emerged as common themes. They conclude that counselors should retain their distinctive, humanistic approach rather than conforming to the dominant, medical approach.
Cortes, Adriano Mauricio; Dalcin, Lisandro; Sarmiento, Adel; Collier, N.; Calo, Victor M.
2016-01-01
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity-pressure pairs for viscous incompressible flows that are at the same time inf−supinf−sup stable and pointwise divergence
International Nuclear Information System (INIS)
Hrasko, P.; Foeldy, L.; Toth, A.
1986-07-01
Electron-positron pair production in strong Coulomb fields is outlined. It is shown that the singular behaviour of the adiabatic basis can be removed if solutions of the time dependent external field Dirac equation are used as a basis to expand the fermion field operator. This latter 'asymptotic basis' makes it possible to introduce Feynman-propagator. Applying the reduction technique, the computation of all of the basic quantities can be reduced to the solution of an integral equation. The positron spectrum for separable potential model with Lorentzian time dependence and for potential jump is analyzed in the pole approximation. (author)
Pairing correlations around scission
International Nuclear Information System (INIS)
Krappe, H.J.; Fadeev, S.
2001-01-01
To describe pairing correlations in a fissioning system one commonly projects the BCS wave function separately onto good particle numbers in each fragment in the exit channel, but only onto the total number of particles in the parent system. We propose to interpolate between these limiting situations by the generator-coordinate method with the particle-number difference between the nascent fragments as the generator coordinate. Model calculations are presented for the Hill-Wheeler-box potential with a δ-function diaphragm to mimic scission
DEFF Research Database (Denmark)
Dalgas, Karina Märcher
2016-01-01
Ethnographers are increasingly making use of Facebook to acquire access and general acquaintance with their field of study. However, little has been written on how Facebook is used methodologically in research that does not have social media sites as the main focus of interest. This article argues...... the au pairs resist and embrace such dominant representations, and on how such representations are ascribed different meanings in the transnational social fields of which the migrant are a part. The article is based on ethnographic fieldwork conducted between 2010 and 2014 in Denmark, the Philippines...
Recursion Relations for Conformal Blocks
Penedones, João; Yamazaki, Masahito
2016-09-12
In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension $\\Delta$ of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in 1307.6856 for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.
Conformal algebra of Riemann surfaces
International Nuclear Information System (INIS)
Vafa, C.
1988-01-01
It has become clear over the last few years that 2-dimensional conformal field theories are a crucial ingredient of string theory. Conformal field theories correspond to vacuum solutions of strings; or more precisely we know how to compute string spectrum and scattering amplitudes by starting from a formal theory (with a proper value of central charge of the Virasoro algebra). Certain non-linear sigma models do give rise to conformal theories. A lot of progress has been made in the understanding of conformal theories. The author discusses a different view of conformal theories which was motivated by the development of operator formalism on Riemann surfaces. The author discusses an interesting recent work from this point of view
The logarithmic conformal field theories
International Nuclear Information System (INIS)
Rahimi Tabar, M.R.; Aghamohammadi, A.; Khorrami, M.
1997-01-01
We study the correlation functions of logarithmic conformal field theories. First, assuming conformal invariance, we explicitly calculate two- and three-point functions. This calculation is done for the general case of more than one logarithmic field in a block, and more than one set of logarithmic fields. Then we show that one can regard the logarithmic field as a formal derivative of the ordinary field with respect to its conformal weight. This enables one to calculate any n-point function containing the logarithmic field in terms of ordinary n-point functions. Finally, we calculate the operator product expansion (OPE) coefficients of a logarithmic conformal field theory, and show that these can be obtained from the corresponding coefficients of ordinary conformal theory by a simple derivation. (orig.)
Conformal solids and holography
Esposito, A.; Garcia-Saenz, S.; Nicolis, A.; Penco, R.
2017-12-01
We argue that a SO( d) magnetic monopole in an asymptotically AdS space-time is dual to a d-dimensional strongly coupled system in a solid state. In light of this, it would be remiss of us not to dub such a field configuration solidon. In the presence of mixed boundary conditions, a solidon spontaneously breaks translations (among many other symmetries) and gives rise to Goldstone excitations on the boundary — the phonons of the solid. We derive the quadratic action for the boundary phonons in the probe limit and show that, when the mixed boundary conditions preserve conformal symmetry, the longitudinal and transverse sound speeds are related to each other as expected from effective field theory arguments. We then include backreaction and calculate the free energy of the solidon for a particular choice of mixed boundary conditions, corresponding to a relevant multi-trace deformation of the boundary theory. We find such free energy to be lower than that of thermal AdS. This suggests that our solidon undergoes a solid-to-liquid first order phase transition by melting into a Schwarzschild-AdS black hole as the temperature is raised.
Intensity modulated conformal radiotherapy
International Nuclear Information System (INIS)
Noel, Georges; Moty-Monnereau, Celine; Meyer, Aurelia; David, Pauline; Pages, Frederique; Muller, Felix; Lee-Robin, Sun Hae; David, Denis Jean
2006-12-01
This publication reports the assessment of intensity-modulated conformal radiotherapy (IMCR). This assessment is based on a literature survey which focussed on indications, efficiency and safety on the short term, on the risk of radio-induced cancer on the long term, on the role in the therapeutic strategy, on the conditions of execution, on the impact on morbidity-mortality and life quality, on the impact on the health system and on public health policies and program. This assessment is also based on the opinion of a group of experts regarding the technical benefit of IMCR, its indications depending on the cancer type, safety in terms of radio-induced cancers, and conditions of execution. Before this assessment, the report thus indicates indications for which the use of IMCR can be considered as sufficient or not determined. It also proposes a technical description of IMCR and helical tomo-therapy, discusses the use of this technique for various pathologies or tumours, analyses the present situation of care in France, and comments the identification of this technique in foreign classifications
International Nuclear Information System (INIS)
Zotto, Michele Del; Heckman, Jonathan J.; Tomasiello, Alessandro; Vafa, Cumrun
2015-01-01
A single M5-brane probing G, an ADE-type singularity, leads to a system which has G×G global symmetry and can be viewed as “bifundamental” (G,G) matter. For the A N series, this leads to the usual notion of bifundamental matter. For the other cases it corresponds to a strongly interacting (1,0) superconformal system in six dimensions. Similarly, an ADE singularity intersecting the Hořava-Witten wall leads to a superconformal matter system with E 8 ×G global symmetry. Using the F-theory realization of these theories, we elucidate the Coulomb/tensor branch of (G,G ′ ) conformal matter. This leads to the notion of fractionalization of an M5-brane on an ADE singularity as well as fractionalization of the intersection point of the ADE singularity with the Hořava-Witten wall. Partial Higgsing of these theories leads to new 6d SCFTs in the infrared, which we also characterize. This generalizes the class of (1,0) theories which can be perturbatively realized by suspended branes in IIA string theory. By reducing on a circle, we arrive at novel duals for 5d affine quiver theories. Introducing many M5-branes leads to large N gravity duals.
5G MIMO Conformal Microstrip Antenna Design
Directory of Open Access Journals (Sweden)
Qian Wang
2017-01-01
Full Text Available With the development of wireless communication technology, 5G will develop into a new generation of wireless mobile communication systems. MIMO (multiple-input multiple-output technology is expected to be one of the key technologies in the field of 5G wireless communications. In this paper, 4 pairs of microstrip MIMO conformal antennas of 35 GHz have been designed. Eight-element microstrip Taylor antenna array with series-feeding not only achieves the deviation of the main lobe of the pattern but also increases the bandwidth of the antenna array and reduces sidelobe. MIMO antennas have been fabricated and measured. Measurement results match the simulation results well. The return loss of the antenna at 35 GHz is better than 20 dB, the first sidelobe level is −16 dB, and the angle between the main lobe and the plane of array is 60°.
Assessing Intimacy: The Pair Inventory.
Schaefer, Mark T.; Olson, David H.
1981-01-01
Personal Assessment of Intimacy in Relationships (PAIR) provides systematic information in five types of intimacy: emotional, social, sexual, intellectual and recreational. PAIR can be used with couples in marital therapy and enrichment groups. (Author)
Towards conformal loop quantum gravity
International Nuclear Information System (INIS)
Wang, Charles H-T
2006-01-01
A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity
Benchmarking Commercial Conformer Ensemble Generators.
Friedrich, Nils-Ole; de Bruyn Kops, Christina; Flachsenberg, Florian; Sommer, Kai; Rarey, Matthias; Kirchmair, Johannes
2017-11-27
We assess and compare the performance of eight commercial conformer ensemble generators (ConfGen, ConfGenX, cxcalc, iCon, MOE LowModeMD, MOE Stochastic, MOE Conformation Import, and OMEGA) and one leading free algorithm, the distance geometry algorithm implemented in RDKit. The comparative study is based on a new version of the Platinum Diverse Dataset, a high-quality benchmarking dataset of 2859 protein-bound ligand conformations extracted from the PDB. Differences in the performance of commercial algorithms are much smaller than those observed for free algorithms in our previous study (J. Chem. Inf. 2017, 57, 529-539). For commercial algorithms, the median minimum root-mean-square deviations measured between protein-bound ligand conformations and ensembles of a maximum of 250 conformers are between 0.46 and 0.61 Å. Commercial conformer ensemble generators are characterized by their high robustness, with at least 99% of all input molecules successfully processed and few or even no substantial geometrical errors detectable in their output conformations. The RDKit distance geometry algorithm (with minimization enabled) appears to be a good free alternative since its performance is comparable to that of the midranked commercial algorithms. Based on a statistical analysis, we elaborate on which algorithms to use and how to parametrize them for best performance in different application scenarios.
QSO Pairs across Active Galaxies
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... Several QSO pairs have been reported and their redshifts determined, where the two objects in each pair are located across an active galaxy. The usually accepted explanation of such occurrences is that the pair is ejected from the parent galaxy. Currently interpreted redshifted spectra for both the QSOs ...
International Nuclear Information System (INIS)
Chela-Flores, J.
1981-08-01
A many-body approach to hadron structure is presented, in which we consider two parton species: spin-0 (b-partons), and spin-1/2 (f-partons). We extend a boson and a fermion pairing scheme for the b-, and f-partons respectively, into a Yang-Mills gauge theory. The main feature of this theory is that the gauge field is not identified with the usual gluon field variable in QCD. We study the confinement problem of the hadron constituents, and obtain, for low temperatures, partons that are confined by energy gaps. As the critical temperatures for the corresponding phase transitions are approached, the energy gap gradually disappears, and confinement is lost. The theory goes beyond the non-relativistic harmonic oscillator quark model, in the sense of giving physical reasons why a non-relativistic approximation is adequate in describing the internal dynamics of hadron structure. (author)
Conformal invariance in harmonic superspace
International Nuclear Information System (INIS)
Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.
1987-01-01
In the present paper we show how the N = 2 superconformal group is realised in harmonic superspace and examine conformal invariance of N = 2 off-shell theories. We believe that the example of N = O self-dual Yang-Mills equations can serve as an instructive introduction to the subject of harmonic superspace and this is examined. The rigid N = 2 conformal supersymmetry and its local version, i.e. N = 2 conformal supergravity is also discussed. The paper is a contribution to the book commemorating the sixtieth birthday of E.S. Fradkin. (author)
Two dimensional infinite conformal symmetry
International Nuclear Information System (INIS)
Mohanta, N.N.; Tripathy, K.C.
1993-01-01
The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs
Harmony of spinning conformal blocks
Energy Technology Data Exchange (ETDEWEB)
Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Sobko, Evgeny [Stockholm Univ. (Sweden); Nordita, Stockholm (Sweden); Isachenkov, Mikhail [Weizmann Institute of Science, Rehovoth (Israel). Dept. of Particle Physics and Astrophysics
2016-12-07
Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.
Harmony of spinning conformal blocks
Energy Technology Data Exchange (ETDEWEB)
Schomerus, Volker [DESY Hamburg, Theory Group,Notkestraße 85, 22607 Hamburg (Germany); Sobko, Evgeny [Nordita and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Isachenkov, Mikhail [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel)
2017-03-15
Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.
International Nuclear Information System (INIS)
Greiter, M.
1992-01-01
This dissertation contains a collection of individual articles on various topics. Their significance in the corresponding field as well as connections between them are emphasized in a general and comprehensive introduction. In the first article, the author explores the consequences for macroscopic effective Lagrangians of assuming that the momentum density is proportional to the flow of conserved current. The universal corrections obtained for the macroscopic Lagrangian of a superconductor describe the London Hall effect, and provide a fully consistent derivation of it. In the second article, a heuristic principle is proposed for quantized Hall states: the existence and incompressibility of fractionally quantized Hall states is explained by an argument based on an adiabatic localization of magnetic flux, the process of trading uniform flux for an equal amount of fictitious flux attached to the particles. This principle is exactly implemented in the third article. For a certain class of model Hamiltonians, the author obtains Laughlin's Jastrow type wave functions explicitly from a filled Landau level, by smooth extrapolation in quantum statistics. The generalization of this analysis to the torus geometry shows that theorems restricting the possibilities of quantum statistics on closed surfaces are circumvented in the presence of a magnetic field. In the last article, the existence is proposed of a novel incompressible quantum liquid, a paired Hall state, at a half filled Landau level. This state arises adiabatically from free fermions in zero magnetic field, and reduces to a state previously proposed by Halperin in the limit of tightly bound pairs. It supports unusual excitations, including neutral fermions and charge e/4 anyons with statistical parameter θ = π/8
Mass generation within conformal invariant theories
International Nuclear Information System (INIS)
Flato, M.; Guenin, M.
1981-01-01
The massless Yang-Mills theory is strongly conformally invariant and renormalizable; however, when masses are introduced the theory becomes nonrenormalizable and weakly conformally invariant. Conditions which recover strong conformal invariance are discussed in the letter. (author)
Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins
Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru
2014-03-01
A powerful conformational sampling method for accelerating structural transitions of proteins, "Fluctuation Flooding Method (FFM)," is proposed. In FFM, cycles of the following steps enhance the transitions: (i) extractions of largely fluctuating snapshots along anisotropic modes obtained from trajectories of multiple independent molecular dynamics (MD) simulations and (ii) conformational re-sampling of the snapshots via re-generations of initial velocities when re-starting MD simulations. In an application to bacteriophage T4 lysozyme, FFM successfully accelerated the open-closed transition with the 6 ns simulation starting solely from the open state, although the 1-μs canonical MD simulation failed to sample such a rare event.
Conformational preferences of γ-aminobutyric acid in the gas phase and in water
Song, Il Keun; Kang, Young Kee
2012-09-01
The conformational study of γ-aminobutyric acid (GABA) has been carried out at the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water. In the gas phase, the folded conformation gG1 with gauche- and gauche+ conformations for the Cβsbnd Cα and Cγsbnd Cβ bonds, respectively, is found to be lowest in energy and enthalpy, which can be ascribed to the favored hyperconjugative n → π* interaction between the lone electron pair of the amine nitrogen atom and the Cdbnd O bond of the carboxylic group and the favored antiparallel dipole-dipole interaction between the Nsbnd H bond and the Cdbnd O bond. In addition, the intramolecular hydrogen bonds between the carboxylic group and the amine Nsbnd H group have contributed to stabilize some low-energy conformers. However, the most preferred conformation is found to be tG1 and more stable by 0.4 kcal/mol in ΔG than the conformer gG1, in which the favored entropic term due to the conformational flexibility and the other favored n → σ*, σ → σ*, and π → σ* interactions seem to play a role. The conformational preferences of the neutral GABA calculated by ΔG's are reasonably consistent with the populations deduced from FT microwave spectroscopy in supersonic jets combined with laser ablation. In water, the two folded conformers Gg and gG of the zwitterionic GABA are dominantly populated, each of which has the population of 47%, and the hydrogen bond between the ammonium Nsbnd H group and the lone electron pair of the Csbnd O- group seems to be crucial in stabilizing these conformers. Our calculated result that the folded conformers preferentially exist in water is consistent with the 1H NMR experiments in D2O.
Fast, clash-free RNA conformational morphing using molecular junctions.
Héliou, Amélie; Budday, Dominik; Fonseca, Rasmus; van den Bedem, Henry
2017-07-15
Non-coding ribonucleic acids (ncRNA) are functional RNA molecules that are not translated into protein. They are extremely dynamic, adopting diverse conformational substates, which enables them to modulate their interaction with a large number of other molecules. The flexibility of ncRNA provides a challenge for probing their complex 3D conformational landscape, both experimentally and computationally. Despite their conformational diversity, ncRNAs mostly preserve their secondary structure throughout the dynamic ensemble. Here we present a kinematics-based procedure to morph an RNA molecule between conformational substates, while avoiding inter-atomic clashes. We represent an RNA as a kinematic linkage, with fixed groups of atoms as rigid bodies and rotatable bonds as degrees of freedom. Our procedure maintains RNA secondary structure by treating hydrogen bonds between base pairs as constraints. The constraints define a lower-dimensional, secondary-structure constraint manifold in conformation space, where motions are largely governed by molecular junctions of unpaired nucleotides. On a large benchmark set, we show that our morphing procedure compares favorably to peer algorithms, and can approach goal conformations to within a low all-atom RMSD by directing fewer than 1% of its atoms. Our results suggest that molecular junctions can modulate 3D structural rearrangements, while secondary structure elements guide large parts of the molecule along the transition to the correct final conformation. The source code, binaries and data are available at https://simtk.org/home/kgs . amelie.heliou@polytechnique.edu or vdbedem@stanford.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Internship guide : Work placements step by step
Haag, Esther
2013-01-01
Internship Guide: Work Placements Step by Step has been written from the practical perspective of a placement coordinator. This book addresses the following questions : what problems do students encounter when they start thinking about the jobs their degree programme prepares them for? How do you
The way to collisions, step by step
2009-01-01
While the LHC sectors cool down and reach the cryogenic operating temperature, spirits are warming up as we all eagerly await the first collisions. No reason to hurry, though. Making particles collide involves the complex manoeuvring of thousands of delicate components. The experts will make it happen using a step-by-step approach.
Logarithmic conformal field theory
Gainutdinov, Azat; Ridout, David; Runkel, Ingo
2013-12-01
Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more
Higher-derivative generalization of conformal mechanics
Baranovsky, Oleg
2017-08-01
Higher-derivative analogs of multidimensional conformal particle and many-body conformal mechanics are constructed. Their Newton-Hooke counterparts are derived by applying appropriate coordinate transformations.
Multi-pair states in electron–positron pair creation
Directory of Open Access Journals (Sweden)
Anton Wöllert
2016-09-01
Full Text Available Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.
Naturality in conformal field theory
International Nuclear Information System (INIS)
Moore, G.; Seiberg, N.
1989-01-01
We discuss constraints on the operator product coefficients in diagonal and nondiagonal rational conformal field theories. Nondiagonal modular invariants always arise from automorphisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the chiral algebra has been maximally extended a strong form of the naturality principle of field theory can be proven for rational conformal field theory: operator product coefficients vanish if and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be understood in terms of a symmetry. We illustrate these ideas with several examples. We also generalize our ideas about rational conformal field theories to a larger class of theories: 'quasi-rational conformal field theories' and we explore some of their properties. (orig.)
Steady states in conformal theories
CERN. Geneva
2015-01-01
A novel conjecture regarding the steady state behavior of conformal field theories placed between two heat baths will be presented. Some verification of the conjecture will be provided in the context of fluid dynamics and holography.
National Automated Conformity Inspection Process -
Department of Transportation — The National Automated Conformity Inspection Process (NACIP) Application is intended to expedite the workflow process as it pertains to the FAA Form 81 0-10 Request...
Aspect of the conformal invariance
International Nuclear Information System (INIS)
Bauer, M.
1990-11-01
This thesis is about the study of several physical and mathematical aspects of critical phenomena at two dimensions. These phenomena have remarkable symmetry properties in the coordonnates changes keeping the angles. They are named conformal theories
Some Progress in Conformal Geometry
Directory of Open Access Journals (Sweden)
Sun-Yung A. Chang
2007-12-01
Full Text Available This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $sigma_2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.
Conformity Adequacy Review: Region 5
Resources are for air quality and transportation government and community leaders. Information on the conformity SIP adequacy/inadequacy of state implementation plans (SIPs) in EPA Region 5 (IL, IN, MI, OH, WI) is provided here.
Inverse bootstrapping conformal field theories
Li, Wenliang
2018-01-01
We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.
Chakraborty, Debayan; Wales, David J
2018-01-04
The recent discovery that Hoogsteen (HG) base pairs are widespread in DNA across diverse sequences and positional contexts could have important implications for understanding DNA replication and DNA-protein recognition. While evidence is emerging that the Hoogsteen conformation could be a thermodynamically accessible conformation of the DNA duplex and provide a means to expand its functionality, relatively little is known about the molecular mechanism underlying the Watson-Crick (WC) to HG transition. In this Perspective, we describe pathways and kinetics for this transition at an atomic level of detail, using the energy landscape perspective. We show that competition between the duplex conformations results in a double funnel landscape, which explains some recent experimental observations. The interconversion pathways feature a number of intermediates, with a variable number of WC and HG base pairs. The relatively slow kinetics, with possible deviations from two-state behavior, suggest that this conformational switch is likely to be a challenging target for both simulation and experiment.
Pair potentials in liquid metals
International Nuclear Information System (INIS)
Faber, T.E.
1980-01-01
The argument which justifies the use of a pair potential to describe the structure-dependent term in the energy of liquid metals is briefly reviewed. Because there is an additional term in the energy which depends upon volume rather than structure, and because the pair potential itself is volume-dependent, the relationship between pair potential and observable properties such as pressure, bulk modulus and pair distribution function is more complicated for liquid metals than it is for molecular liquids. Perhaps for this reason, the agreement between pair potentials inferred from observable properties and pair potentials calculated by means of pseudo-potential theory is still far from complete. The pair potential concept is applicable only to simple liquid metals, in which the electron-ion interaction is weak. No attempt is made to discuss liquid transition and rare-earth metals, which are not simple in this sense. (author)
Experimental many-pairs nonlocality
Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian
2017-08-01
Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.
Conformal Cosmology and Supernova Data
Behnke, Danilo; Blaschke, David; Pervushin, Victor; Proskurin, Denis
2000-01-01
We define the cosmological parameters $H_{c,0}$, $\\Omega_{m,c}$ and $\\Omega_{\\Lambda, c}$ within the Conformal Cosmology as obtained by the homogeneous approximation to the conformal-invariant generalization of Einstein's General Relativity theory. We present the definitions of the age of the universe and of the luminosity distance in the context of this approach. A possible explanation of the recent data from distant supernovae Ia without a cosmological constant is presented.
Scalar perturbations and conformal transformation
International Nuclear Information System (INIS)
Fabris, J.C.; Tossa, J.
1995-11-01
The non-minimal coupling of gravity to a scalar field can be transformed into a minimal coupling through a conformal transformation. We show how to connect the results of a perturbation calculation, performed around a Friedman-Robertson-Walker background solution, before and after the conformal transformation. We work in the synchronous gauge, but we discuss the implications of employing other frames. (author). 16 refs
Towards an Approximate Conformance Relation for Hybrid I/O Automata
Directory of Open Access Journals (Sweden)
Morteza Mohaqeqi
2016-12-01
Full Text Available Several notions of conformance have been proposed for checking the behavior of cyber-physical systems against their hybrid systems models. In this paper, we explore the initial idea of a notion of approximate conformance that allows for comparison of both observable discrete actions and (sampled continuous trajectories. As such, this notion will consolidate two earlier notions, namely the notion of Hybrid Input-Output Conformance (HIOCO by M. van Osch and the notion of Hybrid Conformance by H. Abbas and G.E. Fainekos. We prove that our proposed notion of conformance satisfies a semi-transitivity property, which makes it suitable for a step-wise proof of conformance or refinement.
Microsoft Office professional 2010 step by step
Cox, Joyce; Frye, Curtis
2011-01-01
Teach yourself exactly what you need to know about using Office Professional 2010-one step at a time! With STEP BY STEP, you build and practice new skills hands-on, at your own pace. Covering Microsoft Word, PowerPoint, Outlook, Excel, Access, Publisher, and OneNote, this book will help you learn the core features and capabilities needed to: Create attractive documents, publications, and spreadsheetsManage your e-mail, calendar, meetings, and communicationsPut your business data to workDevelop and deliver great presentationsOrganize your ideas and notes in one placeConnect, share, and accom
Conformational interpretation of vescalagin and castalagin physicochemical properties.
Vivas, Nicolas; Laguerre, Michel; Pianet de Boissel, Isabelle; Vivas de Gaulejac, Nathalie; Nonier, Marie-Françoise
2004-04-07
Vescalagin and castalagin are two diastereoisomers. The variability of their principal physicochemical properties, compared with their small structural differences, suggests important conformational variations. This study shows, experimentally, that vescalagin has a greater effect on polarity, oxidizability in solution, and thermodegradability than castalagin. Conformational analysis by molecular mechanics demonstrated that vescalagin was more hydrophilic and was more reactive to electrophilic reagents than castalagin. Experimental results were thus explained and demonstrated the distinct behaviors of vescalagin and castalagin. These results were attributed to the C1 position of the two compounds because vescalin and castalin have comparable characteristics. Experimental data were confirmed and interpreted by molecular mechanics. This work represents one of the first attempts to correlate conformation and the properties of phenolic compounds. This step constitutes a predictive method for the pharmacology or chemistry of new compounds.
Pairing symmetry transitions in the even-denominator FQHE system
International Nuclear Information System (INIS)
Nomura, Kentaro; Yoshioka, Daijiro
2001-01-01
Transitions from a paired quantum Hall state to another quantum Hall state in bilayer systems are discussed in the framework of the edge theory. Starting from the edge theory for the Haldane-Rezayi state, it is shown that the charging effect of a bilayer system which breaks the SU (2) symmetry of the pseudospin shifts the central charge and the conformal dimensions of the fermionic fields which describe the pseudospin sector in the edge theory. This corresponds to the transition from the Haldane-Rezayi state to Halperin's 331 state, or from a singlet d-wave to a triplet p-wave ABM type paired state in the composite fermion picture. Considering interlayer tunneling, the tunneling rate-capacitance phase diagram for the ν=5/2 paired bilayer system is discussed. (author)
Pairing Symmetry Transitions in the Even-Denominator FQHE System
Nomura, Kentaro; Yoshioka, Daijiro
2001-12-01
Transitions from a paired quantum Hall state to another quantum Hall state in bilayer systems are discussed in the framework of the edge theory. Starting from the edge theory for the Haldane Rezayi state, it is shown that the charging effect of a bilayer system which breaks the SU(2) symmetry of the pseudospin shifts the central charge and the conformal dimensions of the fermionic fields which describe the pseudospin sector in the edge theory. This corresponds to the transition from the Haldane Rezayi state to Halperin's 331 state, or from a singlet d-wave to a triplet p-wave ABM type paired state in the composite fermion picture. Considering interlayer tunneling, the tunneling rate-capacitance phase diagram for the ν=5/2 paired bilayer system is discussed.
Pair Negotiation When Developing English Speaking Tasks
Directory of Open Access Journals (Sweden)
Ingrid Liliana Bohórquez Suárez
2011-12-01
Full Text Available This study analyzes what characterizes the negotiations of seventh graders at a public school in Bogotá when working in pairs to develop speaking tasks in EFL classes. The inquiry is a descriptive case study that follows the qualitative paradigm. As a result of analyzing the data, we obtained four consecutive steps that characterize students’ negotiations: Establishing a connection with a partner to work with, proposing practical alternatives, refusing mates’ propositions, and making practical decisions. Moreover, we found that the constant performance of the process of negotiation provokes students to construct a sociolinguistic identity that allows agreements to emerge.
Gauge fixing problem in the conformal QED
International Nuclear Information System (INIS)
Ichinose, Shoichi
1986-01-01
The gauge fixing problem in the conformal (spinor and scalar) QED is examined. For the analysis, we generalize Dirac's manifestly conformal-covariant formalism. It is shown that the (vector and matter) fields must obey a certain mixed (conformal and gauge) type of transformation law in order to fix the local gauge symmetry preserving the conformal invariance in the Lagrangian. (orig.)
40 CFR 93.154 - Conformity analysis.
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Conformity analysis. 93.154 Section 93...) DETERMINING CONFORMITY OF FEDERAL ACTIONS TO STATE OR FEDERAL IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 93.154 Conformity analysis. Any Federal...
Widespread Transient Hoogsteen Base-Pairs in Canonical Duplex DNA with Variable Energetics
Alvey, Heidi S.; Gottardo, Federico L.; Nikolova, Evgenia N.; Al-Hashimi, Hashim M.
2015-01-01
Hoogsteen base-pairing involves a 180 degree rotation of the purine base relative to Watson-Crick base-pairing within DNA duplexes, creating alternative DNA conformations that can play roles in recognition, damage induction, and replication. Here, using Nuclear Magnetic Resonance R1ρ relaxation dispersion, we show that transient Hoogsteen base-pairs occur across more diverse sequence and positional contexts than previously anticipated. We observe sequence-specific variations in Hoogsteen base-pair energetic stabilities that are comparable to variations in Watson-Crick base-pair stability, with Hoogsteen base-pairs being more abundant for energetically less favorable Watson-Crick base-pairs. Our results suggest that the variations in Hoogsteen stabilities and rates of formation are dominated by variations in Watson-Crick base pair stability, suggesting a late transition state for the Watson-Crick to Hoogsteen conformational switch. The occurrence of sequence and position-dependent Hoogsteen base-pairs provide a new potential mechanism for achieving sequence-dependent DNA transactions. PMID:25185517
Conformational Clusters of Phosphorylated Tyrosine.
Abdelrasoul, Maha; Ponniah, Komala; Mao, Alice; Warden, Meghan S; Elhefnawy, Wessam; Li, Yaohang; Pascal, Steven M
2017-12-06
Tyrosine phosphorylation plays an important role in many cellular and intercellular processes including signal transduction, subcellular localization, and regulation of enzymatic activity. In 1999, Blom et al., using the limited number of protein data bank (PDB) structures available at that time, reported that the side chain structures of phosphorylated tyrosine (pY) are partitioned into two conserved conformational clusters ( Blom, N.; Gammeltoft, S.; Brunak, S. J. Mol. Biol. 1999 , 294 , 1351 - 1362 ). We have used the spectral clustering algorithm to cluster the increasingly growing number of protein structures with pY sites, and have found that the pY residues cluster into three distinct side chain conformations. Two of these pY conformational clusters associate strongly with a narrow range of tyrosine backbone conformation. The novel cluster also highly correlates with the identity of the n + 1 residue, and is strongly associated with a sequential pYpY conformation which places two adjacent pY side chains in a specific relative orientation. Further analysis shows that the three pY clusters are associated with distinct distributions of cognate protein kinases.
International Nuclear Information System (INIS)
Lown, J.W.; Chauhan, S.M.S.
1981-01-01
The synthesis of certain specifically 15 N, 13 C, and 2 H isotope labeled 1-(2-chloroethyl)-3-alkyl-1-nitrosoureas (CENUs) is described. Spectroscopic examination of CENUs and their isotope-labeled counterparts by 1 H, 15 N, and 13 C NMR and infrared spectra indicates that they adopt preferred conformations in nonpolar aprotic solvents in which the NO group is aligned toward the 2-chloroethyl group. The result is in accord with the conformation of MeCCNU in the crystalline state derived from X-ray diffraction. The chemical shifts and coupling constants in the CENUs change with both solvent polarity and basicity. In aqueous phosphate buffer there is evidence for the formation of a tetrahedral intermediate, the conformation of which alters according to the reaction conditions and ultimately controls the formation of the aqueous decomposition products of CENUs. This is revealed most clearly by 13 C NMR of carbonyl- 13 C- and nitroso- 15 N-labeled BCNU and CCNU where two distinct 15 N-coupled 13 C doublets with different chemical shifts are observed. The rate of conformational change is comparable with the rate of decomposition of CENUs (via the second conformer) and may therefore represent the critical initial step of the latter process in vivo. The intermediacy of the postulated tetrahedral intermediates for CENUs is supported by observed 18 O exchange into the carbonyl group in 18 O-enriched water. Consideration of the conformations of the intermediates and of the alignment of the heteroatom lone pairs provides a satisfactory interpretation of the reactions of CENUs in aqueous solution as well as their pH dependence in terms of strict steroelectronic control and accounts for the formation of the observed products
Conformally invariant processes in the plane
International Nuclear Information System (INIS)
Lawler, G.F.
2004-01-01
These lectures will focus on recent rigorous work on continuum limits of planar lattice models from statistical physics at criticality. For an introduction, I would like to discuss the general problem of critical exponents and scaling limits for lattice models in equilibrium statistical mechanics. There are a number of models, [e.g., self-avoiding walk (polymers), percolation, loop-erased random walk (uniform spanning trees, domino tilings), Ising model, Potts model, nonintersecting simple random walks] that fall under this general framework. These lectures will consider the case d = 2. Mathematicians are now starting to understand rigorously the scaling limit of two-dimensional systems. For most of these models, the general strategy can be described as: Construct possible continuum limits for these models. Show that there are only a limited number of such limits that are conformally invariant. Prove that the lattice model approaches the continuum limit. We should think of the first step as being similar for all of these models. We will spend the next couple of lectures discussing the continuum limits. One example you should already know - the scaling limit of simple random walk is Brownian motion (which in two dimensions is conformally invariant). The important new ideas are restriction measures and stochastic Loewner evolution (SLE). The later lectures will discuss rigorous results about lattice models approaching the continuum limit - we will discuss nonintersecting random walks (which can be shown to be equivalent to problems about exceptional sets of Brownian paths), percolation on the triangular lattice, and the loop-erased random walk. As a rule, the methods used for the second step are particular to each model
Conformational Dynamics of Thermus aquaticus DNA Polymerase I during Catalysis
Suo, Zucai
2014-01-01
Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme commonly used for DNA amplification in PCR. However, little has been done to characterize the motions of other structural domains of Taq Pol or any other DNA polymerase during catalysis. Here, we used stopped-flow Förster resonance energy transfer (FRET) to investigate the conformational dynamics of all five structural domains of the full-length Taq Pol relative to the DNA substrate during nucleotide binding and incorporation. Our study provides evidence for a rapid conformational change step induced by dNTP binding and a subsequent global conformational transition involving all domains of Taq Pol during catalysis. Additionally, our study shows that the rate of the global transition was greatly increased with the truncated form of Taq Pol lacking the N-terminal domain. Finally, we utilized a mutant of Taq Pol containing a de novo disulfide bond to demonstrate that limiting protein conformational flexibility greatly reduced the polymerization activity of Taq Pol. PMID:24931550
Renyi entropy and conformal defects
Energy Technology Data Exchange (ETDEWEB)
Bianchi, Lorenzo [Humboldt-Univ. Berlin (Germany). Inst. fuer Physik; Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Meineri, Marco [Scuola Normale Superiore, Pisa (Italy); Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Myers, Robert C. [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Smolkin, Michael [California Univ., Berkely, CA (United States). Center for Theoretical Physics and Department of Physics
2016-04-18
We propose a field theoretic framework for calculating the dependence of Renyi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Renyi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Renyi entropy arising from small deformations of a spherical entangling surface, extending Mezei's results for the entanglement entropy.
Conformal dimension theory and application
Mackay, John M
2010-01-01
Conformal dimension measures the extent to which the Hausdorff dimension of a metric space can be lowered by quasisymmetric deformations. Introduced by Pansu in 1989, this concept has proved extremely fruitful in a diverse range of areas, including geometric function theory, conformal dynamics, and geometric group theory. This survey leads the reader from the definitions and basic theory through to active research applications in geometric function theory, Gromov hyperbolic geometry, and the dynamics of rational maps, amongst other areas. It reviews the theory of dimension in metric spaces and of deformations of metric spaces. It summarizes the basic tools for estimating conformal dimension and illustrates their application to concrete problems of independent interest. Numerous examples and proofs are provided. Working from basic definitions through to current research areas, this book can be used as a guide for graduate students interested in this field, or as a helpful survey for experts. Background needed ...
Elementary introduction to conformal invariance
International Nuclear Information System (INIS)
Grandati, Y.
1992-01-01
These notes constitute an elementary introduction to the concept of conformal invariance and its applications to the study of bidimensional critical phenomena. The aim is to give an access as pedestrian as possible to this vast subject. After a brief account of the general properties of conformal transformation in D dimensions, we study more specifically the case D = 2. The center of the discussion is then the consequences of the action of this symmetry group on bidimensional field theories, and in particular the links between the representations of the Virasoro algebra and the structure of the correlation functions of conformal field theories. Finally after showing how the Ising model reduces to a Majorana fermionic field theory, we see how the general formalism previously discussed can be applied to the Ising case at the critical point. (orig.)
Conformal geometry and quasiregular mappings
Vuorinen, Matti
1988-01-01
This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. Teichmüller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook an...
Renyi entropy and conformal defects
International Nuclear Information System (INIS)
Bianchi, Lorenzo; Myers, Robert C.; Smolkin, Michael
2016-01-01
We propose a field theoretic framework for calculating the dependence of Renyi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Renyi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Renyi entropy arising from small deformations of a spherical entangling surface, extending Mezei's results for the entanglement entropy.
SUSY Unparticle and Conformal Sequestering
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Yu; Nakayama, Yu
2007-07-17
We investigate unparticle physics with supersymmetry (SUSY). The SUSY breaking effects due to the gravity mediation induce soft masses for the SUSY unparticles and hence break the conformal invariance. The unparticle physics observable in near future experiments is only consistent if the SUSY breakingeffects from the hidden sector to the standard model sector are dominated by the gauge mediation, or if the SUSY breaking effects to the unparticle sector are sufficiently sequestered. We argue that the natural realization of the latter possibility is the conformal sequestering scenario.
Epigenetic dominance of prion conformers.
Directory of Open Access Journals (Sweden)
Eri Saijo
2013-10-01
Full Text Available Although they share certain biological properties with nucleic acid based infectious agents, prions, the causative agents of invariably fatal, transmissible neurodegenerative disorders such as bovine spongiform encephalopathy, sheep scrapie, and human Creutzfeldt Jakob disease, propagate by conformational templating of host encoded proteins. Once thought to be unique to these diseases, this mechanism is now recognized as a ubiquitous means of information transfer in biological systems, including other protein misfolding disorders such as those causing Alzheimer's and Parkinson's diseases. To address the poorly understood mechanism by which host prion protein (PrP primary structures interact with distinct prion conformations to influence pathogenesis, we produced transgenic (Tg mice expressing different sheep scrapie susceptibility alleles, varying only at a single amino acid at PrP residue 136. Tg mice expressing ovine PrP with alanine (A at (OvPrP-A136 infected with SSBP/1 scrapie prions propagated a relatively stable (S prion conformation, which accumulated as punctate aggregates in the brain, and produced prolonged incubation times. In contrast, Tg mice expressing OvPrP with valine (V at 136 (OvPrP-V136 infected with the same prions developed disease rapidly, and the converted prion was comprised of an unstable (U, diffusely distributed conformer. Infected Tg mice co-expressing both alleles manifested properties consistent with the U conformer, suggesting a dominant effect resulting from exclusive conversion of OvPrP-V136 but not OvPrP-A136. Surprisingly, however, studies with monoclonal antibody (mAb PRC5, which discriminates OvPrP-A136 from OvPrP-V136, revealed substantial conversion of OvPrP-A136. Moreover, the resulting OvPrP-A136 prion acquired the characteristics of the U conformer. These results, substantiated by in vitro analyses, indicated that co-expression of OvPrP-V136 altered the conversion potential of OvPrP-A136 from the S to
Topics in conformal field theory
International Nuclear Information System (INIS)
Kiritsis, E.B.
1988-01-01
In this work two major topics in Conformal Field Theory are discussed. First a detailed investigation of N = 2 Superconformal theories is presented. The structure of the representations of the N = 2 superconformal algebras is investigated and the character formulae are calculated. The general structure of N = 2 superconformal theories is elucidated and the operator algebra of the minimal models is derived. The first minimal system is discussed in more detail. Second, applications of the conformal techniques are studied in the Ashkin-Teller model. The c = 1 as well as the c = 1/2 critical lines are discussed in detail
Kramers Pairs in configuration interaction
DEFF Research Database (Denmark)
Avery, John Scales; Avery, James Emil
2003-01-01
The theory of symmetry-preserving Kramers pair creation operators is reviewed and formulas for applying these operators to configuration interaction calculations are derived. A new and more general type of symmetry-preserving pair creation operator is proposed and shown to commute with the total ...
Quantum cosmology of a conformal multiverse
Robles-Pérez, Salvador J.
2017-09-01
This paper studies the cosmology of a homogeneous and isotropic spacetime endorsed with a conformally coupled massless scalar field. We find six different solutions of the Friedmann equation that represent six different types of universes, and all of them are periodically distributed along the complex time axis. From a classical point of view, they are then isolated, separated by Euclidean regions that represent quantum mechanical barriers. Quantum mechanically, however, there is a nonzero probability for the state of the universes to tunnel out through a Euclidean instanton and suffer a sudden transition to another state of the spacetime. We compute the probability of transition for this and other nonlocal processes like the creation of universes in entangled pairs and, generally speaking, in multipartite entangled states. We obtain the quantum state of a single universe within the formalism of the Wheeler-DeWitt equation and give the semiclassical state of the universes that describes the quantum mechanics of a scalar field propagating in a de Sitter background spacetime. We show that the superposition principle of the quantum mechanics of matter fields alone is an emergent feature of the semiclassical description of the universe that is not valid, for instance, in the spacetime foam. We use the third quantization formalism to describe the creation of an entangled pair of universes with opposite signs of the momentum conjugated to the scale factor. Each universe of the entangled pair represents an expanding spacetime in terms of the Wentzel-Kramers-Brillouin (WKB) time experienced by internal observers in their particle physics experiments. We compute the effective value of the Friedmann equation of the background spacetime of the two entangled universes, and thus, the effect that the entanglement would have in their expansion rates. We analyze as well the effects of the interuniversal entanglement in the properties of the scalar fields that propagate in each
Step by Step Microsoft Office Visio 2003
Lemke, Judy
2004-01-01
Experience learning made easy-and quickly teach yourself how to use Visio 2003, the Microsoft Office business and technical diagramming program. With STEP BY STEP, you can take just the lessons you need, or work from cover to cover. Either way, you drive the instruction-building and practicing the skills you need, just when you need them! Produce computer network diagrams, organization charts, floor plans, and moreUse templates to create new diagrams and drawings quicklyAdd text, color, and 1-D and 2-D shapesInsert graphics and pictures, such as company logosConnect shapes to create a basic f
Instability of vortex pair leapfrogging
DEFF Research Database (Denmark)
Tophøj, Laust; Aref, Hassan
2013-01-01
Leapfrogging is a periodic solution of the four-vortex problem with two positive and two negative point vortices all of the same absolute circulation arranged as co-axial vortex pairs. The set of co-axial motions can be parameterized by the ratio 0 vortex pair sizes at the time when one...... pair passes through the other. Leapfrogging occurs for α > σ2, where is the silver ratio. The motion is known in full analytical detail since the 1877 thesis of Gröbli and a well known 1894 paper by Love. Acheson ["Instability of vortex leapfrogging," Eur. J. Phys.21, 269-273 (2000...... pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...
Conformations of stereoisomeric base adducts to 4-hydroxyequilenin.
Ding, Shuang; Shapiro, Robert; Geacintov, Nicholas E; Broyde, Suse
2003-06-01
Exposure to estrogen through estrogen replacement therapy increases the risk of women developing cancer in hormone sensitive tissues. Premarin (Wyeth), which has been the most frequent choice for estrogen replacement therapy in the United States, contains the equine estrogens equilin and equilenin as major components. 4-Hydroxyequilenin (4-OHEN) is a phase I metabolite of both of these substances. This catechol estrogen autoxidizes to potent cytotoxic quinoids that can react with dG, dA, and dC to form unusual stereoisomeric cyclic adducts (Bolton, J. L., et al. (1998) Chem. Res. Toxicol. 11, 1113-1127). Like other bulky DNA adducts, these lesions may exhibit different susceptibilities to DNA repair and mutagenic potential, if not repaired in a structure-dependent manner. To ultimately gain insights into structure-function relationships, we computed conformations of stereoisomeric guanine, adenine, and cytosine base adducts using density functional theory. We find near mirror image conformations in stereoisomer adduct pairs for each modified base, suggesting opposite orientations with respect to the 5' --> 3' direction of the modified strand when the stereoisomer pairs are incorporated into duplex DNA. Such opposite orientations could cause stereoisomer pairs of lesions to respond differently to DNA replication and repair enzymes.
Free Modal Algebras Revisited: The Step-by-Step Method
Bezhanishvili, N.; Ghilardi, Silvio; Jibladze, Mamuka
2012-01-01
We review the step-by-step method of constructing finitely generated free modal algebras. First we discuss the global step-by-step method, which works well for rank one modal logics. Next we refine the global step-by-step method to obtain the local step-by-step method, which is applicable beyond
Diabetes PSA (:30) Step By Step
Centers for Disease Control (CDC) Podcasts
2009-10-24
First steps to preventing diabetes. For Hispanic and Latino American audiences. Created: 10/24/2009 by National Diabetes Education Program (NDEP), a joint program of the Centers for Disease Control and Prevention and the National Institutes of Health. Date Released: 10/24/2009.
Diabetes PSA (:60) Step By Step
Centers for Disease Control (CDC) Podcasts
2009-10-24
First steps to preventing diabetes. For Hispanic and Latino American audiences. Created: 10/24/2009 by National Diabetes Education Program (NDEP), a joint program of the Centers for Disease Control and Prevention and the National Institutes of Health. Date Released: 10/24/2009.
Comparing live and remote models in eating conformity research.
Feeney, Justin R; Polivy, Janet; Pliner, Patricia; Sullivan, Margot D
2011-01-01
Research demonstrates that people conform to how much other people eat. This conformity occurs in the presence of other people (live model) and when people view information about how much food prior participants ate (remote models). The assumption in the literature has been that remote models produce a similar effect to live models, but this has never been tested. To investigate this issue, we randomly paired participants with a live or remote model and compared their eating to those who ate alone. We found that participants exposed to both types of model differed significantly from those in the control group, but there was no significant difference between the two modeling procedures. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Globally conformal invariant gauge field theory with rational correlation functions
Nikolov, N M; Todorov, I T; CERN. Geneva; Todorov, Ivan T.
2003-01-01
Operator product expansions (OPE) for the product of a scalar field with its conjugate are presented as infinite sums of bilocal fields $V_{\\kappa} (x_1, x_2)$ of dimension $(\\kappa, \\kappa)$. For a {\\it globally conformal invariant} (GCI) theory we write down the OPE of $V_{\\kappa}$ into a series of {\\it twist} (dimension minus rank) $2\\kappa$ symmetric traceless tensor fields with coefficients computed from the (rational) 4-point function of the scalar field. We argue that the theory of a GCI hermitian scalar field ${\\cal L} (x)$ of dimension 4 in $D = 4$ Minkowski space such that the 3-point functions of a pair of ${\\cal L}$'s and a scalar field of dimension 2 or 4 vanish can be interpreted as the theory of local observables of a conformally invariant fixed point in a gauge theory with Lagrangian density ${\\cal L} (x)$.
Spin-4 extended conformal algebras
International Nuclear Information System (INIS)
Kakas, A.C.
1988-01-01
We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)
Defects in conformal field theory
International Nuclear Information System (INIS)
Billò, Marco; Gonçalves, Vasco; Lauria, Edoardo; Meineri, Marco
2016-01-01
We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.
Conformal symmetry and holographic cosmology
Bzowski, A.W.
2013-01-01
This thesis presents a novel approach to cosmology using gauge/gravity duality. Analysis of the implications of conformal invariance in field theories leads to quantitative cosmological predictions which are in agreement with current data. Furthermore, holographic cosmology extends the theory of
Checking behavioral conformance of artifacts
Fahland, D.; Leoni, de M.; Dongen, van B.F.; Aalst, van der W.M.P.
2011-01-01
The usefulness of process models (e.g., for analysis, improvement, or execution) strongly depends on their ability to describe reality. Conformance checking is a technique to validate how good a given process model describes recorded executions of the actual process. Recently, artifacts have been
Conformation analysis of oligomeric flavanoids
Jan P. Steynberg; E. Vincent Brandt; Daneel Ferreira; Carin A. Helfer; Wayne L. Mattice; Dominika Gornik; Richard W. Hemingway
1995-01-01
The profisetinidins are the most important polyflavanoids of commerce, making up the major constituents of wattle and quebracho tannins. Within the dimeric profisetinidins, substantial complexity exists because of stereo-, regio, rotational and conformational isomers. Definition of the stereochemistry of the upper and lower flavan units, the location of the...
Conformational analysis of oligomeric flavanoids
Jan P. Steynberg; E. Vincent Brandt; Daneel Ferreira; Carin A. Helfer; Wayne L. Mattice; Dominika Gornik; Richard W. Hemingway
1995-01-01
The profisetinidins are the most important polyflavanoids of commerce, making up the major constituents of wattle and quebracho tannins. Even within the dimeric profisetinidins, substantial complexity exists because of stereo-, regio-, rotational and conformational isomers. Definition of the stereochemistry of the upper and lower flavan units, the location of the...
Inversion theory and conformal mapping
Blair, David E
2000-01-01
It is rarely taught in an undergraduate or even graduate curriculum that the only conformal maps in Euclidean space of dimension greater than two are those generated by similarities and inversions in spheres. This is in stark contrast to the wealth of conformal maps in the plane. The principal aim of this text is to give a treatment of this paucity of conformal maps in higher dimensions. The exposition includes both an analytic proof in general dimension and a differential-geometric proof in dimension three. For completeness, enough complex analysis is developed to prove the abundance of conformal maps in the plane. In addition, the book develops inversion theory as a subject, along with the auxiliary theme of circle-preserving maps. A particular feature is the inclusion of a paper by Carath�odory with the remarkable result that any circle-preserving transformation is necessarily a M�bius transformation, not even the continuity of the transformation is assumed. The text is at the level of advanced undergr...
Defects in conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Billò, Marco [Dipartimento di Fisica, Università di Torino, and Istituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Gonçalves, Vasco [Centro de Física do Porto,Departamento de Física e Astronomia Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); ICTP South American Institute for Fundamental Research Instituto de Física Teórica,UNESP - University Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Lauria, Edoardo [Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Meineri, Marco [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Scuola Normale Superiore, and Istituto Nazionale di Fisica Nucleare - sezione di Pisa,Piazza dei Cavalieri 7 I-56126 Pisa (Italy)
2016-04-15
We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.
Supertwistor connection and conformal supergravity
International Nuclear Information System (INIS)
Merkulov, S.A.
1985-01-01
Supersymmetry expansion of the geometry of local twistors is suggested. Definition of the space of local supertwistors is given and its differential geometry is formulated. Variational principles are discussed, and it is shown that corresponding Euler-Lagrange equations also coincide and result in superzero equations of N=1 conformal supergravitation, which generalize Bach equations
Conformal symmetry and string theories
International Nuclear Information System (INIS)
Kumar, A.
1987-01-01
This thesis is devoted to the study of various aspects of the 2-dimensional conformal field theory and its applications to strings. We make a short review of the conformal field theory and its supersymmetric extension, called superconformal field theory. We present an elegant superspace formulation of these theories and solve the condition for the closure of the superconformal algebra. The we go on to classify the superconformal field theories according to these solutions. We prove that N ≥ 5 superconformal algebra, with N being the number of supersymmetries, does not have central charge. We find the primary representations of all the interesting superconformal algebra. We study the quantization of the superconformal theories and derive the constraints on the central charge of the algebra that has to be satisfied for a consistent quantum theory. This quantization process also determines the ground state energy of the system and the spectrum of the model. We study the global aspects of the conformal symmetry and its role in the construction of consistent heterotic string theories. We prove the uniqueness of heterotic superstring theories in 10 dimensions in the fermionic constructions. We show how the vertex operators are closely associated with the primary field representation of the conformal algebra. We utilize these vertex operator constructions to obtain tree amplitudes in the 10-dimensional heterotic string theory. We show by explicit calculation at the 3-point level that the scattering amplitudes derived from the heterotic superstring are same as the ones obtained from 10-dimensional supergravity theories
Exceptional and Spinorial Conformal Windows
DEFF Research Database (Denmark)
Mojaza, Matin; Pica, Claudio; Ryttov, Thomas
2012-01-01
We study the conformal window of gauge theories containing fermionic matter fields, where the gauge group is any of the exceptional groups with the fermions transforming according to the fundamental and adjoint representations and the orthogonal groups where the fermions transform according...
Anomalous Dimensions of Conformal Baryons
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...
AGT, Burge pairs and minimal models
International Nuclear Information System (INIS)
Bershtein, M.; Foda, O.
2014-01-01
We consider the AGT correspondence in the context of the conformal field theory M p,p ′ ⊗M H , where M p,p ′ is the minimal model based on the Virasoro algebra V p,p ′ labeled by two co-prime integers {p,p ′ }, 1
conformal blocks in M p,p ′ ⊗M H leads to ill-defined or incorrect expressions. Let B n p,p ′ ,H be a conformal block in M p,p ′ ⊗M H , with n consecutive channels χ ι , ι=1,⋯,n, and let χ ι carry states from H r ι ,s ι p,p ′ ⊗F, where H r ι ,s ι p,p ′ is an irreducible highest-weight V p,p ′ -representation, labeled by two integers {r ι ,s ι }, 0
Counterion-Induced Inversion of Conformer Stability of a [5]Helquat Dication
Czech Academy of Sciences Publication Activity Database
Severa, Lukáš; Jirásek, Michael; Švec, Pavel; Teplý, Filip; Révész, Agnes; Schröder, Detlef; Koval, Dušan; Kašička, Václav; Císařová, I.; Šaman, David
2012-01-01
Roč. 77, č. 8 (2012), s. 624-635 ISSN 2192-6506 R&D Projects: GA ČR GAP207/10/2391; GA ČR(CZ) GA203/08/1428 Institutional research plan: CEZ:AV0Z40550506 Keywords : conformers * density functional calculations * dications * helical molecules * ion pairs * mass spectrometry Subject RIV: CC - Organic Chemistry
Microsoft Office Word 2007 step by step
Cox, Joyce
2007-01-01
Experience learning made easy-and quickly teach yourself how to create impressive documents with Word 2007. With Step By Step, you set the pace-building and practicing the skills you need, just when you need them!Apply styles and themes to your document for a polished lookAdd graphics and text effects-and see a live previewOrganize information with new SmartArt diagrams and chartsInsert references, footnotes, indexes, a table of contentsSend documents for review and manage revisionsTurn your ideas into blogs, Web pages, and moreYour all-in-one learning experience includes:Files for building sk
Triple helical DNA in a duplex context and base pair opening
Esguerra, Mauricio; Nilsson, Lennart; Villa, Alessandra
2014-01-01
It is fundamental to explore in atomic detail the behavior of DNA triple helices as a means to understand the role they might play in vivo and to better engineer their use in genetic technologies, such as antigene therapy. To this aim we have performed atomistic simulations of a purine-rich antiparallel triple helix stretch of 10 base triplets flanked by canonical Watson–Crick double helices. At the same time we have explored the thermodynamic behavior of a flipping Watson–Crick base pair in the context of the triple and double helix. The third strand can be accommodated in a B-like duplex conformation. Upon binding, the double helix changes shape, and becomes more rigid. The triple-helical region increases its major groove width mainly by oversliding in the negative direction. The resulting conformations are somewhere between the A and B conformations with base pairs remaining almost perpendicular to the helical axis. The neighboring duplex regions maintain a B DNA conformation. Base pair opening in the duplex regions is more probable than in the triplex and binding of the Hoogsteen strand does not influence base pair breathing in the neighboring duplex region. PMID:25228466
Conformal and Nearly Conformal Theories at Large N
Tarnoplskiy, Grigory M.
In this thesis we present new results in conformal and nearly conformal field theories in various dimensions. In chapter two, we study different properties of the conformal Quantum Electrodynamics (QED) in continuous dimension d. At first we study conformal QED using large Nf methods, where Nf is the number of massless fermions. We compute its sphere free energy as a function of d, ignoring the terms of order 1/Nf and higher. For finite Nf we use the epsilon-expansion. Next we use a large Nf diagrammatic approach to calculate the leading corrections to CT, the coefficient of the two-point function of the stress-energy tensor, and CJ, the coefficient of the two-point function of the global symmetry current. We present explicit formulae as a function of d and check them versus the expectations in 2 and 4 - epsilon dimensions. In chapter three, we discuss vacuum stability in 1 + 1 dimensional conformal field theories with external background fields. We show that the vacuum decay rate is given by a non-local two-form. This two-form is a boundary term that must be added to the effective in/out Lagrangian. The two-form is expressed in terms of a Riemann-Hilbert decomposition for background gauge fields, and is given by its novel "functional'' version in the gravitational case. In chapter four, we explore Tensor models. Such models possess the large N limit dominated by the melon diagrams. The quantum mechanics of a real anti-commuting rank-3 tensor has a large N limit similar to the Sachdev-Ye-Kitaev (SYK) model. We also discuss the quantum mechanics of a complex 3-index anti-commuting tensor and argue that it is equivalent in the large N limit to a version of SYK model with complex fermions. Finally, we discuss models of a commuting tensor in dimension d. We study the spectrum of the large N quantum field theory of bosonic rank-3 tensors using the Schwinger-Dyson equations. We compare some of these results with the 4 - epsilon expansion, finding perfect agreement. We
Conformal invariance in the quantum field theory
International Nuclear Information System (INIS)
Kurak, V.
1975-09-01
Basic features concerning the present knowledge of conformal symmetry are illustrated in a simple model. Composite field dimensions of this model are computed and related to the conformal group. (author) [pt
Pair production of scalar dyons in Kerr-Newman black holes
Chen, Chiang-Mei; Kim, Sang Pyo; Sun, Jia-Rui; Tang, Fu-Yi
2018-06-01
We study the spontaneous pair production of scalar dyons in the near extremal dyonic Kerr-Newman (KN) black hole, which contains a warped AdS3 structure in the near horizon region. The leading term contribution of the pair production rate and the absorption cross section ratio are also calculated using the Hamilton-Jacobi approach and the thermal interpretation is given. In addition, the holographic dual conformal field theories (CFTs) descriptions of the pair production rate and absorption cross section ratios are analyzed both in the J-, Q- and P-pictures respectively based on the threefold dyonic KN/CFTs dualities.
The Conformational Behaviour of Glucosamine
Peña, Isabel; Kolesniková, Lucie; Cabezas, Carlos; Bermúdez, Celina; Berdakin, Matías; Simao, Alcides; Alonso, José L.
2014-06-01
A laser ablation method has been successfully used to vaporize the bioactive amino monosaccharide D-glucosamine. Three cyclic α-4C1 pyranose forms have been identified using a combination of CP-FTMW and LA-MB-FTMW spectroscopy. Stereoelectronic hyperconjugative factors, like those associated with anomeric or gauche effects, as well as the cooperative OH\\cdotsO, OH\\cdotsN and NH\\cdotsO chains, extended along the entire molecule, are the main factors driving the conformational behavior. All observed conformers exhibit a counter-clockwise arrangement (cc) of the network of intramolecular hydrogen bonds. The results are compared with those recently obtained for D-glucose. J. L. Alonso, M. A. Lozoya, I. Peña, J. C. López, C. Cabezas, S. Mata, S. Blanco, Chem. Sci. 2014, 5, 515.
Conformal invariance from nonconformal gravity
International Nuclear Information System (INIS)
Meissner, Krzysztof A.; Nicolai, Hermann
2009-01-01
We discuss the conditions under which classically conformally invariant models in four dimensions can arise out of nonconformal (Einstein) gravity. As an 'existence proof' that this is indeed possible we show how to derive N=4 super Yang-Mills theory with any compact gauge group G from nonconformal gauged N=4 supergravity as a special flat space limit. We stress the role that the anticipated UV finiteness of the (so far unknown) underlying theory of quantum gravity would have to play in such a scheme, as well as the fact that the masses of elementary particles would have to arise via quantum gravitational effects which mimic the conformal anomalies of standard (flat space) UV divergent quantum field theory.
Conformal methods in general relativity
Valiente Kroon, Juan A
2016-01-01
This book offers a systematic exposition of conformal methods and how they can be used to study the global properties of solutions to the equations of Einstein's theory of gravity. It shows that combining these ideas with differential geometry can elucidate the existence and stability of the basic solutions of the theory. Introducing the differential geometric, spinorial and PDE background required to gain a deep understanding of conformal methods, this text provides an accessible account of key results in mathematical relativity over the last thirty years, including the stability of de Sitter and Minkowski spacetimes. For graduate students and researchers, this self-contained account includes useful visual models to help the reader grasp abstract concepts and a list of further reading, making this the perfect reference companion on the topic.
Gel dosimetry for conformal radiotherapy
Energy Technology Data Exchange (ETDEWEB)
Gambarini, G [Department of Physics of the University and INFN, Milan (Italy)
2005-07-01
With the continuum development of conformal radio therapies, aimed at delivering high dose to tumor tissue and low dose to the healthy tissue around, the necessities has appeared of suitable improvement of dosimetry techniques giving the possibility of obtaining dose images to be compared with diagnostic images. Also if wide software has been developed for calculating dose distributions in the fields of various radiotherapy units, experimental verifications are necessary, in particular in the case of complex geometries in conformal radiotherapy. Gel dosimetry is a promising method for imaging the absorbed dose in tissue-equivalent phantoms, with the possibility of 3D reconstruction of the spatial dose distribution, with milli metric resolution. Optical imaging of gel dosimeters, based on visible light absorbance analysis, has shown to be a reliable technique for achieving dose distributions. (Author)
Conformal manifolds: ODEs from OPEs
Behan, Connor
2018-03-01
The existence of an exactly marginal deformation in a conformal field theory is very special, but it is not well understood how this is reflected in the allowed dimensions and OPE coefficients of local operators. To shed light on this question, we compute perturbative corrections to several observables in an abstract CFT, starting with the beta function. This yields a sum rule that the theory must obey in order to be part of a conformal manifold. The set of constraints relating CFT data at different values of the coupling can in principle be written as a dynamical system that allows one to flow arbitrarily far. We begin the analysis of it by finding a simple form for the differential equations when the spacetime and theory space are both one-dimensional. A useful feature we can immediately observe is that our system makes it very difficult for level crossing to occur.
Conformal field theories and critical phenomena
International Nuclear Information System (INIS)
Xu, Bowei
1993-01-01
In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories
Conformal group actions and Segal's cosmology
International Nuclear Information System (INIS)
Werth, J.-E.
1984-01-01
A mathematical description of Segal's cosmological model in the framework of conformal group actions is presented. The relation between conformal and causal group actions on time-orientable Lorentzian manifolds is analysed and several examples are discussed. A criterion for the conformality of a map between Lorentzian manifolds is given. The results are applied to Segal's 'conformal compactification' of Minkowski space. Furthermore, the 'unitary formulation' of Segal's cosmology is regarded. (Author) [pt
2-Step IMAT and 2-Step IMRT in three dimensions
International Nuclear Information System (INIS)
Bratengeier, Klaus
2005-01-01
In two dimensions, 2-Step Intensity Modulated Arc Therapy (2-Step IMAT) and 2-Step Intensity Modulated Radiation Therapy (IMRT) were shown to be powerful methods for the optimization of plans with organs at risk (OAR) (partially) surrounded by a target volume (PTV). In three dimensions, some additional boundary conditions have to be considered to establish 2-Step IMAT as an optimization method. A further aim was to create rules for ad hoc adaptations of an IMRT plan to a daily changing PTV-OAR constellation. As a test model, a cylindrically symmetric PTV-OAR combination was used. The centrally placed OAR can adapt arbitrary diameters with different gap widths toward the PTV. Along the rotation axis the OAR diameter can vary, the OAR can even vanish at some axis positions, leaving a circular PTV. The width and weight of the second segment were the free parameters to optimize. The objective function f to minimize was the root of the integral of the squared difference of the dose in the target volume and a reference dose. For the problem, two local minima exist. Therefore, as a secondary criteria, the magnitude of hot and cold spots were taken into account. As a result, the solution with a larger segment width was recommended. From plane to plane for varying radii of PTV and OAR and for different gaps between them, different sets of weights and widths were optimal. Because only one weight for one segment shall be used for all planes (respectively leaf pairs), a strategy for complex three-dimensional (3-D) cases was established to choose a global weight. In a second step, a suitable segment width was chosen, minimizing f for this global weight. The concept was demonstrated in a planning study for a cylindrically symmetric example with a large range of different radii of an OAR along the patient axis. The method is discussed for some classes of tumor/organ at risk combinations. Noncylindrically symmetric cases were treated exemplarily. The product of width and weight of
Generative Models of Conformational Dynamics
Langmead, Christopher James
2014-01-01
Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term ‘generative’ refers to a...
Holographic multiverse and conformal invariance
Energy Technology Data Exchange (ETDEWEB)
Garriga, Jaume [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08193 Barcelona (Spain); Vilenkin, Alexander, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, 212 College Ave., Medford, MA 02155 (United States)
2009-11-01
We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV.
Holographic multiverse and conformal invariance
International Nuclear Information System (INIS)
Garriga, Jaume; Vilenkin, Alexander
2009-01-01
We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV
Integrability of conformal fishnet theory
Gromov, Nikolay; Kazakov, Vladimir; Korchemsky, Gregory; Negro, Stefano; Sizov, Grigory
2018-01-01
We study integrability of fishnet-type Feynman graphs arising in planar four-dimensional bi-scalar chiral theory recently proposed in arXiv:1512.06704 as a special double scaling limit of gamma-deformed N = 4 SYM theory. We show that the transfer matrix "building" the fishnet graphs emerges from the R-matrix of non-compact conformal SU(2 , 2) Heisenberg spin chain with spins belonging to principal series representations of the four-dimensional conformal group. We demonstrate explicitly a relationship between this integrable spin chain and the Quantum Spectral Curve (QSC) of N = 4 SYM. Using QSC and spin chain methods, we construct Baxter equation for Q-functions of the conformal spin chain needed for computation of the anomalous dimensions of operators of the type tr( ϕ 1 J ) where ϕ 1 is one of the two scalars of the theory. For J = 3 we derive from QSC a quantization condition that fixes the relevant solution of Baxter equation. The scaling dimensions of the operators only receive contributions from wheel-like graphs. We develop integrability techniques to compute the divergent part of these graphs and use it to present the weak coupling expansion of dimensions to very high orders. Then we apply our exact equations to calculate the anomalous dimensions with J = 3 to practically unlimited precision at any coupling. These equations also describe an infinite tower of local conformal operators all carrying the same charge J = 3. The method should be applicable for any J and, in principle, to any local operators of bi-scalar theory. We show that at strong coupling the scaling dimensions can be derived from semiclassical quantization of finite gap solutions describing an integrable system of noncompact SU(2 , 2) spins. This bears similarities with the classical strings arising in the strongly coupled limit of N = 4 SYM.
Objective interpretation as conforming interpretation
Directory of Open Access Journals (Sweden)
Lidka Rodak
2011-12-01
Full Text Available The practical discourse willingly uses the formula of “objective interpretation”, with no regards to its controversial nature that has been discussed in literature.The main aim of the article is to investigate what “objective interpretation” could mean and how it could be understood in the practical discourse, focusing on the understanding offered by judicature.The thesis of the article is that objective interpretation, as identified with textualists’ position, is not possible to uphold, and should be rather linked with conforming interpretation. And what this actually implies is that it is not the virtue of certainty and predictability – which are usually associated with objectivity- but coherence that makes the foundation of applicability of objectivity in law.What could be observed from the analyses, is that both the phenomenon of conforming interpretation and objective interpretation play the role of arguments in the interpretive discourse, arguments that provide justification that interpretation is not arbitrary or subjective. With regards to the important part of the ideology of legal application which is the conviction that decisions should be taken on the basis of law in order to exclude arbitrariness, objective interpretation could be read as a question “what kind of authority “supports” certain interpretation”? that is almost never free of judicial creativity and judicial activism.One can say that, objective and conforming interpretation are just another arguments used in legal discourse.
Conformational kinetics of aliphatic tails
Ferrarini, Alberta; Moro, Giorgio; Nordio, Pier Luigi
The master equation describing the random walk between sites identified with the stable conformers of a chain molecule, represents the extension to the time domain of the Rotational Isomeric State model. The asymptotic analysis of the multidimensional diffusion equation in the continuous torsional variables subjected to the configurational potential, provides a rigorous justification for the discrete models, and it supplies, without resorting to phenomenological parameters, molecular definitions of the kinetic rates for the conformational transitions occurring at each segment of the chain. The coupling between the torsional variables is fully taken into account, giving rise to cooperative effects. A complete calculation of the specific correlation functions which describe the time evolution of the angular functions probed by N.M.R. and dielectric relaxation measurements, has been performed for alkyl chains attached to a massive core. The resulting behaviour has been compared with the decay of trans and gauche populations of specific bonds, expressed in terms of suitable correlation functions whose time integrals lead quite naturally to the definition of effective kinetic constants for the conformational transitions.
Anomalies, conformal manifolds, and spheres
Energy Technology Data Exchange (ETDEWEB)
Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Hsin, Po-Shen [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Komargodski, Zohar; Schwimmer, Adam [Weizmann Institute of Science,Rehovot 76100 (Israel); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Golm (Germany)
2016-03-04
The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space M is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail N=(2,2) and N=(0,2) supersymmetric theories in d=2 and N=2 supersymmetric theories in d=4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For N=(2,2) theories in d=2 and N=2 theories in d=4 we also show that the relation between the sphere partition function and the Kähler potential of M follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.
Electrophysiological precursors of social conformity
Rieskamp, Jörg; Tugin, Sergey; Ossadtchi, Alexey; Krutitskaya, Janina; Klucharev, Vasily
2013-01-01
Humans often change their beliefs or behavior due to the behavior or opinions of others. This study explored, with the use of human event-related potentials (ERPs), whether social conformity is based on a general performance-monitoring mechanism. We tested the hypothesis that conflicts with a normative group opinion evoke a feedback-related negativity (FRN) often associated with performance monitoring and subsequent adjustment of behavior. The experimental results show that individual judgments of facial attractiveness were adjusted in line with a normative group opinion. A mismatch between individual and group opinions triggered a frontocentral negative deflection with the maximum at 200 ms, similar to FRN. Overall, a conflict with a normative group opinion triggered a cascade of neuronal responses: from an earlier FRN response reflecting a conflict with the normative opinion to a later ERP component (peaking at 380 ms) reflecting a conforming behavioral adjustment. These results add to the growing literature on neuronal mechanisms of social influence by disentangling the conflict-monitoring signal in response to the perceived violation of social norms and the neural signal of a conforming behavioral adjustment. PMID:22683703
CONFORMITY IN CHRIST 1. THE TRANSFORMATION PROCESS
African Journals Online (AJOL)
This essay investigates the notion of conformity in Christ as it is part of a compre- hensive, multilayered process of transformation. In the first part it focuses on the process of transformation in creation, re-creation, conformity, love and glory. In the second part it discusses transformation in Christ by looking at conformation and ...
40 CFR 52.938 - General conformity.
2010-07-01
... 40 Protection of Environment 3 2010-07-01 2010-07-01 false General conformity. 52.938 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Kentucky § 52.938 General conformity. The General Conformity regulations were submitted on November 10, 1995, and adopted into the Kentucky State...
40 CFR 51.854 - Conformity analysis.
2010-07-01
... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Conformity analysis. 51.854 Section 51... FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 51.854 Conformity analysis. Link to an...
40 CFR 52.2133 - General conformity.
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false General conformity. 52.2133 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Carolina § 52.2133 General conformity. The General Conformity regulations adopted into the South Carolina State Implementation Plan which...
Conformity in Christ | Waaijman | Acta Theologica
African Journals Online (AJOL)
This essay investigates the notion of conformity in Christ as it is part of a comprehensive, multilayered process of transformation. In the first part it focuses on the process of transformation in creation, re-creation, conformity, love and glory. In the second part it discusses transformation in Christ by looking at conformation and ...
Structures of closed and open conformations of dimeric human ATM
Baretić, Domagoj; Pollard, Hannah K.; Fisher, David I.; Johnson, Christopher M.; Santhanam, Balaji; Truman, Caroline M.; Kouba, Tomas; Fersht, Alan R.; Phillips, Christopher; Williams, Roger L.
2017-01-01
ATM (ataxia-telangiectasia mutated) is a phosphatidylinositol 3-kinase–related protein kinase (PIKK) best known for its role in DNA damage response. ATM also functions in oxidative stress response, insulin signaling, and neurogenesis. Our electron cryomicroscopy (cryo-EM) suggests that human ATM is in a dynamic equilibrium between closed and open dimers. In the closed state, the PIKK regulatory domain blocks the peptide substrate–binding site, suggesting that this conformation may represent an inactive or basally active enzyme. The active site is held in this closed conformation by interaction with a long helical hairpin in the TRD3 (tetratricopeptide repeats domain 3) domain of the symmetry-related molecule. The open dimer has two protomers with only a limited contact interface, and it lacks the intermolecular interactions that block the peptide-binding site in the closed dimer. This suggests that the open conformation may be more active. The ATM structure shows the detailed topology of the regulator-interacting N-terminal helical solenoid. The ATM conformational dynamics shown by the structures represent an important step in understanding the enzyme regulation. PMID:28508083
Pairing induced superconductivity in holography
Bagrov, Andrey; Meszena, Balazs; Schalm, Koenraad
2014-09-01
We study pairing induced superconductivity in large N strongly coupled systems at finite density using holography. In the weakly coupled dual gravitational theory the mechanism is conventional BCS theory. An IR hard wall cut-off is included to ensure that we can controllably address the dynamics of a single confined Fermi surface. We address in detail the interplay between the scalar order parameter field and fermion pairing. Adding an explicitly dynamical scalar operator with the same quantum numbers as the fermion-pair, the theory experiences a BCS/BEC crossover controlled by the relative scaling dimensions. We find the novel result that this BCS/BEC crossover exposes resonances in the canonical expectation value of the scalar operator. This occurs not only when the scaling dimension is degenerate with the Cooper pair, but also with that of higher derivative paired operators. We speculate that a proper definition of the order parameter which takes mixing with these operators into account stays finite nevertheless.
Conformal symmetry inheritance in null fluid spacetimes
International Nuclear Information System (INIS)
Tupper, B O J; Keane, A J; Hall, G S; Coley, A A; Carot, J
2003-01-01
We define inheriting conformal Killing vectors for null fluid spacetimes and find the maximum dimension of the associated inheriting Lie algebra. We show that for non-conformally flat null fluid spacetimes, the maximum dimension of the inheriting algebra is seven and for conformally flat null fluid spacetimes the maximum dimension is eight. In addition, it is shown that there are two distinct classes of non-conformally flat generalized plane wave spacetimes which possess the maximum dimension, and one class in the conformally flat case
Nuclear scissors mode with pairing
International Nuclear Information System (INIS)
Balbutsev, E. B.; Malov, L. A.; Schuck, P.; Urban, M.; Vinas, X.
2008-01-01
The coupled dynamics of the scissors mode and the isovector giant quadrupole resonance are studied using a generalized Wigner function moments method, taking into account pair correlations. Equations of motion for angular momentum, quadrupole moment, and other relevant collective variables are derived on the basis of the time-dependent Hartree-Fock-Bogolyubov equations. Analytical expressions for energy centroids and transition probabilities are found for the harmonic-oscillator model with the quadrupole-quadrupole residual interaction and monopole pairing force. Deformation dependences of energies and B(M1) values are correctly reproduced. The inclusion of pair correlations leads to a drastic improvement in the description of qualitative and quantitative characteristics of the scissors mode.
Pairing mechanism in oxide superconductors
International Nuclear Information System (INIS)
Hirsch, J.E.
1988-01-01
A useful way to learn about the pairing mechanism that is responsible for high T c superconductivity is to study properties of model Hamiltonians on small systems. The goal is to find the simplest model that can describe the essential physics of high T c superconductivity. The authors have used Monte Carlo simulation and exact diagonalization techniques to study properties of systems of up to 64 sites. Their results show that spin fluctuations and other spin related mechanisms induced by a Hubbard on-site repulsion U are not likely to give rise to pairing, neither in one nor in multiple band models. In contrast, charge fluctuations in a model with both strong U and V (repulsion between Cu and O) are shown to give rise to pairing and it is suggested that this model provides a plausible mechanism for high T c superconductivity
Focal cryotherapy: step by step technique description
Directory of Open Access Journals (Sweden)
Cristina Redondo
Full Text Available ABSTRACT Introduction and objective: Focal cryotherapy emerged as an efficient option to treat favorable and localized prostate cancer (PCa. The purpose of this video is to describe the procedure step by step. Materials and methods: We present the case of a 68 year-old man with localized PCa in the anterior aspect of the prostate. Results: The procedure is performed under general anesthesia, with the patient in lithotomy position. Briefly, the equipment utilized includes the cryotherapy console coupled with an ultrasound system, argon and helium gas bottles, cryoprobes, temperature probes and an urethral warming catheter. The procedure starts with a real-time trans-rectal prostate ultrasound, which is used to outline the prostate, the urethra and the rectal wall. The cryoprobes are pretested and placed in to the prostate through the perineum, following a grid template, along with the temperature sensors under ultrasound guidance. A cystoscopy confirms the right positioning of the needles and the urethral warming catheter is installed. Thereafter, the freeze sequence with argon gas is started, achieving extremely low temperatures (-40°C to induce tumor cell lysis. Sequentially, the thawing cycle is performed using helium gas. This process is repeated one time. Results among several series showed a biochemical disease-free survival between 71-93% at 9-70 month- follow-up, incontinence rates between 0-3.6% and erectile dysfunction between 0-42% (1–5. Conclusions: Focal cryotherapy is a feasible procedure to treat anterior PCa that may offer minimal morbidity, allowing good cancer control and better functional outcomes when compared to whole-gland treatment.
Families and degenerations of conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Roggenkamp, D.
2004-09-01
In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)
QCD pairing in primordial nuggets
Lugones, G.; Horvath, J. E.
2003-08-01
We analyze the problem of boiling and surface evaporation of quark nuggets in the cosmological quark-hadron transition. Recently, it has been shown that QCD pairing modifies the stability properties of strange quark matter. More specifically, strange quark matter in a color-flavor locked state was found to be absolutely stable for a much wider range of the parameters than ordinary unpaired strange quark matter (G. Lugones and J. E. Horvath, Phys. Rev. D, 66, 074017 (2002)). Assuming that primordial quark nuggets are actually formed we analyze the consequences of pairing on the rates of boiling and surface evaporation in order to determine whether they could have survived.
Exclusive electroproduction of pion pairs
International Nuclear Information System (INIS)
Warkentin, N.; Schaefer, A.; Diehl, M.; Ivanov, D. Yu.
2007-01-01
We investigate electroproduction of pion pairs on the nucleon in the framework of QCD factorization for hard exclusive processes. We extend previous analyses by taking the hard-scattering coefficients at next-to-leading order in α s . The dynamics of the produced pion pair is described by two-pion distribution amplitudes, for which we perform a detailed theoretical and phenomenological analysis. In particular, we obtain constraints on these quantities by comparing our results with measurements of angular observables that are sensitive to the interference between two-pion production in the isoscalar and isovector channels. (orig.)
Instantons in lepton pair production
International Nuclear Information System (INIS)
Brandenburg, A.; Ringwald, A.; Utermann, A.
2006-05-01
We consider QCD instanton-induced contributions to lepton pair production in hadron-hadron collisions. We relate these contributions to those known from deep inelastic scattering and demonstrate that they can be calculated reliably for sufficiently large momentum transfer. We observe that the instanton contribution to the angular distribution of the lepton pairs at finite momentum transfer strongly violates the Lam-Tung relation - a relation between coefficient functions of the angular distribution which is valid within the framework of ordinary perturbation theory. The drastic violation of this relation, as seen in experimental data, might be related to such instanton-induced effects. (Orig.)
The Biological Bases of Conformity
Morgan, T. J. H.; Laland, K. N.
2012-01-01
Humans are characterized by an extreme dependence on culturally transmitted information and recent formal theory predicts that natural selection should favor adaptive learning strategies that facilitate effective copying and decision making. One strategy that has attracted particular attention is conformist transmission, defined as the disproportionately likely adoption of the most common variant. Conformity has historically been emphasized as significant in the social psychology literature, and recently there have also been reports of conformist behavior in non-human animals. However, mathematical analyses differ in how important and widespread they expect conformity to be, and relevant experimental work is scarce, and generates findings that are both mutually contradictory and inconsistent with the predictions of the models. We review the relevant literature considering the causation, function, history, and ontogeny of conformity, and describe a computer-based experiment on human subjects that we carried out in order to resolve ambiguities. We found that only when many demonstrators were available and subjects were uncertain was subject behavior conformist. A further analysis found that the underlying response to social information alone was generally conformist. Thus, our data are consistent with a conformist use of social information, but as subjects’ behavior is the result of both social and asocial influences, the resultant behavior may not be conformist. We end by relating these findings to an embryonic cognitive neuroscience literature that has recently begun to explore the neural bases of social learning. Here conformist transmission may be a particularly useful case study, not only because there are well-defined and tractable opportunities to characterize the biological underpinnings of this form of social learning, but also because early findings imply that humans may possess specific cognitive adaptations for effective social learning. PMID:22712006
Conformance Testing: Measurement Decision Rules
Mimbs, Scott M.
2010-01-01
The goal of a Quality Management System (QMS) as specified in ISO 9001 and AS9100 is to provide assurance to the customer that end products meet specifications. Measuring devices, often called measuring and test equipment (MTE), are used to provide the evidence of product conformity to specified requirements. Unfortunately, processes that employ MTE can become a weak link to the overall QMS if proper attention is not given to the measurement process design, capability, and implementation. Documented "decision rules" establish the requirements to ensure measurement processes provide the measurement data that supports the needs of the QMS. Measurement data are used to make the decisions that impact all areas of technology. Whether measurements support research, design, production, or maintenance, ensuring the data supports the decision is crucial. Measurement data quality can be critical to the resulting consequences of measurement-based decisions. Historically, most industries required simplistic, one-size-fits-all decision rules for measurements. One-size-fits-all rules in some cases are not rigorous enough to provide adequate measurement results, while in other cases are overly conservative and too costly to implement. Ideally, decision rules should be rigorous enough to match the criticality of the parameter being measured, while being flexible enough to be cost effective. The goal of a decision rule is to ensure that measurement processes provide data with a sufficient level of quality to support the decisions being made - no more, no less. This paper discusses the basic concepts of providing measurement-based evidence that end products meet specifications. Although relevant to all measurement-based conformance tests, the target audience is the MTE end-user, which is anyone using MTE other than calibration service providers. Topics include measurement fundamentals, the associated decision risks, verifying conformance to specifications, and basic measurement
The Biological Bases of Conformity
Directory of Open Access Journals (Sweden)
Thomas Joshau Henry Morgan
2012-06-01
Full Text Available Humans are characterized by an extreme dependence on culturally transmitted information and recent formal theory predicts that natural selection should favour adaptive learning strategies that facilitate effective use of social information in decision making. One strategy that has attracted particular attention is conformist transmission, defined as the disproportionately likely adoption of the most common variant. Conformity has historically been emphasized as significant in the social psychology literature, and recently there have also been reports of conformist behaviour in nonhuman animals. However, mathematical analyses differ in how important and widespread they expect conformity to be, and relevant experimental work is scarce, and generates findings that are both mutually contradictory and inconsistent with the predictions of the models. We review the relevant literature considering the causation, function, history and ontogeny of conformity and describe a computer-based experiment on human subjects that we carried out in order to resolve ambiguities. We found that only when many demonstrators were available and subjects were uncertain was subject behaviour conformist. A further analysis found that the underlying response to social information alone was generally conformist. Thus, our data are consistent with a conformist use of social information, but as subject’s behaviour is the result of both social and asocial influences, the resultant behaviour may not be conformist. We end by relating these findings to an embryonic cognitive neuroscience literature that has recently begun to explore the neural bases of social learning. Here conformist transmission may be a particularly useful case study, not only because there are well-defined and tractable opportunities to characterize the biological underpinnings of this form of social learning, but also because early findings imply that humans may possess specific cognitive adaptations for
Conformal covariance of general relativity
International Nuclear Information System (INIS)
Ionescu-Pallas, N.; Gottlieb, I.
1980-01-01
The Einstein's equations of General Relativity are written in a conformal metric, resulting as a consequence of geometrizing the pressure forces. Accordingly, the trajectory of a test body pursues a geodetic line even inside the source of gravitational field. Moreover, the pressure, entering the perfect fluid scheme, may be replaced by a certain scalar interaction. This new manner of interpreting General Relativity is then applied to Cosmology, in order to build up a model of Universe whose static limit should coincide with that of Einstein. At the same time, the cosmological constant is connected to the scalar interaction acquiring a plausible explanation. (author)
International Nuclear Information System (INIS)
Appelquist, T.; Fleming, G. T.; Neil, E. T.; Avakian, A.; Babich, R.; Brower, R. C.; Cohen, S. D.; Rebbi, C.; Schaich, D.; Cheng, M.; Vranas, P.; Clark, M. A.; Kiskis, J.; Osborn, J. C.
2010-01-01
We study the chiral properties of an SU(3) gauge theory with N f massless Dirac fermions in the fundamental representation when N f is increased from 2 to 6. For N f =2, our lattice simulations lead to a value of /F 3 , where F is the Nambu-Goldstone-boson decay constant and is the chiral condensate, which agrees with the measured QCD value. For N f =6, this ratio shows significant enhancement, presaging an even larger enhancement anticipated as N f increases further, toward the critical value for transition from confinement to infrared conformality.
Introduction to twisted conformal fields
International Nuclear Information System (INIS)
Kazama, Y.
1988-01-01
A pedagogical account is given of the recent developments in the theory of twisted conformal fields. Among other things, the main part of the lecture concerns the construction of the twist-emission vertex operator, which is a generalization of the fermion emission vertex in the superstring theory. Several different forms of the vertex are derived and their mutural relationships are clarified. In this paper, the authors include a brief survey of the history of the fermion emission vertex, as it offers a good perspective in which to appreciate the logical development
Méndez-Arriaga, José M; Maldonado, Carmen R; Dobado, José A; Galindo, Miguel A
2018-03-26
DNA sequences comprising noncanonical 7-deazaguanine ( 7C G) and canonical cytosine (C) are capable of forming Watson-Crick base pairs via hydrogen bonds as well as silver(I)-mediated base pairs by coordination to central silver(I) ions. Duplexes I and II containing 7C G and C have been synthesized and characterized. The incorporation of silver(I) ions into these duplexes has been studied by means of temperature-dependent UV spectroscopy, circular dichroism, and DFT calculations. The results suggest the formation of DNA molecules comprising contiguous metallated 7C G-Ag I -C Watson-Crick base pairs that preserve the original B-type conformation. Furthermore, additional studies performed on duplex III indicated that, in the presence of Ag I ions, 7C G-C and 7C A-T Watson-Crick base pairs ( 7C A, 7-deazadenine; T, thymine) can be converted to metallated 7C G-Ag I -C and 7C A-Ag I -T base pairs inside the same DNA molecule whilst maintaining its initial double helix conformation. These findings are very important for the development of customized silver-DNA nanostructures based on a Watson-Crick complementarity pattern. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guanidinium Pairing Facilitates Membrane Translocation
Czech Academy of Sciences Publication Activity Database
Allolio, Christoph; Baxová, Katarína; Vazdar, M.; Jungwirth, Pavel
2016-01-01
Roč. 120, č. 1 (2016), s. 143-153 ISSN 1520-6106 R&D Projects: GA ČR GA13-06181S Institutional support: RVO:61388963 Keywords : ab initio molecular dynamics * guanidinium * like charge pairing * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.177, year: 2016
Pairing Linguistic and Music Intelligences
DiEdwardo, MaryAnn Pasda
2005-01-01
This article describes how music in the language classroom setting can be a catalyst for developing reading, writing, and understanding skills. Studies suggest that pairing music and linguistic intelligences in the college classroom improves students' grades and abilities to compose theses statements for research papers in courses that emphasize…
Conjugal Pairing in Escherichia Coli
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 8. Conjugal Pairing in Escherichia Coli. Joshua Lederberg. Classics Volume 13 Issue 8 August 2008 pp 793-794. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/013/08/0793-0794 ...
DEFF Research Database (Denmark)
Martinez Peñas, Umberto; Pellikaan, Ruud
2017-01-01
Error-correcting pairs were introduced as a general method of decoding linear codes with respect to the Hamming metric using coordinatewise products of vectors, and are used for many well-known families of codes. In this paper, we define new types of vector products, extending the coordinatewise ...
'Leonard pairs' in classical mechanics
International Nuclear Information System (INIS)
Zhedanov, Alexei; Korovnichenko, Alyona
2002-01-01
Leonard pairs (LP) are matrices with the property of mutual tri-diagonality. We introduce and study a classical analogue of LP. We show that corresponding classical 'Leonard' dynamical variables satisfy non-linear relations of the AW-type with respect to Poisson brackets. (author)
Step-by-step cyclic processes scheduling
DEFF Research Database (Denmark)
Bocewicz, G.; Nielsen, Izabela Ewa; Banaszak, Z.
2013-01-01
Automated Guided Vehicles (AGVs) fleet scheduling is one of the big problems in Flexible Manufacturing System (FMS) control. The problem is more complicated when concurrent multi-product manufacturing and resource deadlock avoidance policies are considered. The objective of the research is to pro......Automated Guided Vehicles (AGVs) fleet scheduling is one of the big problems in Flexible Manufacturing System (FMS) control. The problem is more complicated when concurrent multi-product manufacturing and resource deadlock avoidance policies are considered. The objective of the research...... is to provide a declarative model enabling to state a constraint satisfaction problem aimed at AGVs fleet scheduling subject to assumed itineraries of concurrently manufactured product types. In other words, assuming a given layout of FMS’s material handling and production routes of simultaneously manufactured...... orders, the main objective is to provide the declarative framework aimed at conditions allowing one to calculate the AGVs fleet schedule in online mode. An illustrative example of the relevant algebra-like driven step-by-stem cyclic scheduling is provided....
Superstrings, conformal field theories and holographic duality
International Nuclear Information System (INIS)
Benichou, R.
2009-06-01
The first half of this work is dedicated to the study of non-compact Gepner models.The Landau-Ginzburg description provides an easy and direct access to the geometry of the singularity associated to the non-compact Gepner models. Using these tools, we are able to give an intuitive account of the chiral rings of the models, and of the massless moduli in particular. By studying orbifolds of the singular linear dilaton models, we describe mirror pairs of non-compact Gepner models by suitably adapting the Greene-Plesser construction of mirror pairs for the compact case. For particular models, we take a large level, low curvature limit in which we can analyze corrections to a flat space orbifold approximation of the non-compact Gepner models. We have also studied bound states in N=2 Liouville theory with boundary and deep throat D-branes. We have shown that the bound states can give rise to massless vector and hyper multiplets in a low-energy gauge theory on D-branes deep inside the throat. The second half of this work deals with the issue of the quantization of the string in the presence of Ramond-Ramond backgrounds. Using the pure spinor formalism on the world-sheet, we derive the T-duality rules for all target space couplings in an efficient manner. The world-sheet path integral derivation is a proof of the equivalence of the T-dual Ramond-Ramond backgrounds which is valid non-perturbatively in the string length over the curvature radius and to all orders in perturbation theory in the string coupling. Sigma models on supergroup manifolds are relevant for quantifying string in various Anti-de-Sitter space-time with Ramond-Ramond backgrounds. We show that the conformal current algebra is realized in non-linear sigma models on supergroup manifolds with vanishing dual Coxeter number, with or without a Wess-Zumino term. The current algebra is computed. We also prove that these models realize a non-chiral Kac-Moody algebra and construct an infinite set of commuting
Generative Models of Conformational Dynamics
Langmead, Christopher James
2014-01-01
Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term ‘generative’ refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GrAphical Models of Energy LANdscapes), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc) from long timescale simulation data. PMID:24446358
On bidimensional Lagrangian conformal models
International Nuclear Information System (INIS)
Lazzarini, S.
1990-04-01
The main topic of this thesis is the study of Conformal Field Theories defined on an arbitrary compact Riemann surface without boundary. The Beltrami parametrization of complexe structures endowing such a surface provides a local bidimensional diffeomorphism invariance of the theory and the holomorphic factorization. The perturbative quantization a la Feynman is then constrained by local factorized Ward identities. The renormalization is analysed in the Esptein-Glaser scheme. A first part deals with the simplest free field models where one checks the interesting conjecture that renormalized perturbative expansions could be resumed by a Polyakov's formula which is a Wess-Zumino action for the diffeomorphism anomaly. For a higher genus surface, only a differential version is proposed. The second part of this thesis is devoted to the characterization of some observables of the free bosonic string in the corresponding gauge theory with the aid of the nilpotent Slavnov s-operator. It is conjectured that part of the observables of this theory is labelled by the local cohomology of s modulo d and corresponds to the vertex operators, as it is verified for the tachyon vertex in the conformal gauge [fr
Focused conformational sampling in proteins
Bacci, Marco; Langini, Cassiano; Vymětal, Jiří; Caflisch, Amedeo; Vitalis, Andreas
2017-11-01
A detailed understanding of the conformational dynamics of biological molecules is difficult to obtain by experimental techniques due to resolution limitations in both time and space. Computer simulations avoid these in theory but are often too short to sample rare events reliably. Here we show that the progress index-guided sampling (PIGS) protocol can be used to enhance the sampling of rare events in selected parts of biomolecules without perturbing the remainder of the system. The method is very easy to use as it only requires as essential input a set of several features representing the parts of interest sufficiently. In this feature space, new states are discovered by spontaneous fluctuations alone and in unsupervised fashion. Because there are no energetic biases acting on phase space variables or projections thereof, the trajectories PIGS generates can be analyzed directly in the framework of transition networks. We demonstrate the possibility and usefulness of such focused explorations of biomolecules with two loops that are part of the binding sites of bromodomains, a family of epigenetic "reader" modules. This real-life application uncovers states that are structurally and kinetically far away from the initial crystallographic structures and are also metastable. Representative conformations are intended to be used in future high-throughput virtual screening campaigns.
Computer controlled multi-leaf conformation radiotherapy
Energy Technology Data Exchange (ETDEWEB)
Matsuda, T [Tokyo Metropolitan Komagome Hospital (Japan); Inamura, K
1981-10-01
A conformation radiotherapy system with 5-split collimators of which openings can be controlled symmetrically by computerized techniques during rotational irradiation by a linear accelerator has been developed. Outline of the system performance and its clinical applications are described as follows. 1. Profile of the system: The hardware is composed of three parts, namely, the multi-split collimator, the electronic data processor, and the interface between those two parts. 1) The multi-leaf collimator is composed of 5 pairs (10 leaves) diaphragms. It can be mounted to the X-ray head of a linear accelerator when used, and can be dismounted after its use. 2) The electronic data processor sends control signal to the collimator according to the 5-leaf target volume data which can be stored into a minifloppy disc through the curve digitizer previously. This part is composed of a) dedicated micro processor, b) I/O expansion unit, c) color CRT display with key board, d) dual mini-floppy disc unit, e) curve digitizer and f) digital plotter for recording and verification of resulted accuracy. 2. Performance of the system: 1) Maximum field size: 15 cm x 15 cm at isocenter. 2) Maximum elongation ratio of the target volume: 3 : 1 when the longer diameter is 15 cm. 3) Control accuracy: Within +-3 mm deviation from planned beam focus at isocenter. 3. Clinical application: The method of treatment planning and clinical advantages of this irradiation method are explained by raising clinical experiences such as treating brain tumor and rectal cancer.
Computer controlled multi-leaf conformation radiotherapy
International Nuclear Information System (INIS)
Matsuda, Tadayoshi; Inamura, Kiyonari.
1981-01-01
A conformation radiotherapy system with 5-split collimators of which openings can be controlled symmetrically by computerized techniques during rotational irradiation by a linear accelerator has been developed. Outline of the system performance and its clinical applications are described as follows. 1. Profile of the system: The hardware is composed of three parts, namely, the multi-split collimator, the electronic data processor, and the interface between those two parts. 1) The multi-leaf collimator is composed of 5 pairs (10 leaves) diaphragms. It can be mounted to the X-ray head of a linear accelerator when used, and can be dismounted after its use. 2) The electronic data processor sends control signal to the collimator according to the 5-leaf target volume data which can be stored into a minifloppy disc through the curve digitizer previously. This part is composed of a) dedicated micro processor, b) I/O expansion unit, c) color CRT display with key board, d) dual mini-floppy disc unit, e) curve digitizer and f) digital plotter for recording and verification of resulted accuracy. 2. Performance of the system: 1) Maximum field size: 15 cm x 15 cm at isocenter. 2) Maximum elongation ratio of the target volume: 3 : 1 when the longer diameter is 15 cm. 3) Control accuracy: Within +-3 mm deviation from planned beam focus at isocenter. 3. Clinical application: The method of treatment planning and clinical advantages of this irradiation method are explained by raising clinical experiences such as treating brain tumor and rectal cancer. (author)
Readout ASIC of pair-monitor for international linear collider
International Nuclear Information System (INIS)
Sato, Yutaro; Ikeda, Hirokazu; Ito, Kazutoshi; Miyamoto, Akiya; Nagamine, Tadashi; Sasaki, Rei; Takubo, Yosuke; Tauchi, Toshiaki; Yamamoto, Hitoshi
2010-01-01
The pair-monitor is a beam profile monitor at the interaction point of the international linear collider. A prototype of the readout ASIC for the pair-monitor has been designed and tested. Since the pair-monitor uses the hit distribution of electrons and positrons generated by the beam-crossing to measure the beam profile, the readout ASIC is designed to count the number of hits. In a prototype ASIC, 36 readout cells were implemented by TSMC 0.25-μm CMOS process. Each readout cell is equipped with an amplifier, comparator, 8-bit counter and 16 count-registers. By the operation test, all the ASIC component were confirmed to work correctly. As the next step, we develop the prototype ASIC with the silicon on insulator technology. It is produced with OKI 0.2-μm FD-SOI CMOS process.
Conformal symmetries of FRW accelerating cosmologies
International Nuclear Information System (INIS)
Kehagias, A.; Riotto, A.
2014-01-01
We show that any accelerating Friedmann–Robertson–Walker (FRW) cosmology with equation of state w<−1/3 (and therefore not only a de Sitter stage with w=−1) exhibits three-dimensional conformal symmetry on future constant-time hypersurfaces if the bulk theory is invariant under bulk conformal Killing vectors. We also offer an alternative derivation of this result in terms of conformal Killing vectors and show that long wavelength comoving curvature perturbations of the perturbed FRW metric are just conformal Killing motions of the FRW background. We then extend the boundary conformal symmetry to the bulk for accelerating cosmologies. Our findings indicate that one can easily generate perturbations of scalar fields which are not only scale invariant, but also fully conformally invariant on super-Hubble scales. Measuring a scale-invariant power spectrum for the cosmological perturbation does not automatically imply that the universe went through a de Sitter stage
Maxwell equations in conformal invariant electrodynamics
International Nuclear Information System (INIS)
Fradkin, E.S.; AN SSSR, Novosibirsk. Inst. Avtomatiki i Ehlektrometrii); Kozhevnikov, A.A.; Palchik, M.Ya.; Pomeransky, A.A.
1983-01-01
We consider a conformal invariant formulation of quantum electrodynamics. Conformal invariance is achieved with a specific mathematical construction based on the indecomposable representations of the conformal group associated with the electromagnetic potential and current. As a corolary of this construction modified expressions for the 3-point Green functions are obtained which both contain transverse parts. They make it possible to formulate a conformal invariant skeleton perturbation theory. It is also shown that the Euclidean Maxwell equations in conformal electrodynamics are manifestations of its kinematical structure: in the case of the 3-point Green functions these equations follow (up to constants) from the conformal invariance while in the case of higher Green functions they are equivalent to the equality of the kernels of the partial wave expansions. This is the manifestation of the mathematical fast of a (partial) equivalence of the representations associated with the potential, current and the field tensor. (orig.)
Operator algebras and conformal field theory
International Nuclear Information System (INIS)
Gabbiani, F.; Froehlich, J.
1993-01-01
We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)
Measuring the mechanical properties of molecular conformers
Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.
2015-09-01
Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules.
AGT, Burge pairs and minimal models
Energy Technology Data Exchange (ETDEWEB)
Bershtein, M. [Landau Institute for Theoretical Physics,Chernogolovka (Russian Federation); Institute for Information Transmission Problems,Moscow (Russian Federation); National Research University Higher School of Economics, International Laboratory of Representation Theory and Mathematical Physics, Independent University of Moscow, Moscow (Russian Federation); Foda, O. [Mathematics and Statistics, University of Melbourne,Parkville, VIC 3010 (Australia)
2014-06-30
We consider the AGT correspondence in the context of the conformal field theory M{sup p,p{sup ′}}⊗M{sup H}, where M{sup p,p{sup ′}} is the minimal model based on the Virasoro algebra V{sup p,p{sup ′}} labeled by two co-prime integers {p,p"′}, 1
conformal blocks in M{sup p,p{sup ′}}⊗M{sup H} leads to ill-defined or incorrect expressions. Let B{sub n}{sup p,p{sup ′,H}} be a conformal block in M{sup p,p{sup ′}}⊗M{sup H}, with n consecutive channels χ{sub ι}, ι=1,⋯,n, and let χ{sub ι} carry states from H{sub r{sub ι,s{sub ι}{sup p,p{sup ′}}}}⊗F, where H{sub r{sub ι,s{sub ι}{sup p,p{sup ′}}}} is an irreducible highest-weight V{sup p,p{sup ′}}-representation, labeled by two integers {r_ι,s_ι}, 0
International Nuclear Information System (INIS)
Koning, A.J.
1992-07-01
In recent years a variety of statistical theories has been developed concerning multistep direct (MSD) nuclear reactions. In addition, dominant in applications is a whole class of semiclassical models that may be subsumed under the heading of 'generalized exciton models'; these are basically MSD-type extensions on top of compound-like concepts. In this report the relation between their underlying statistical MSD-postulates are highlighted. A command framework is sketched that enables to generate the various MSD theories through assigning statistical properties to different parts of the nuclear Hamiltonian. Then it is shown that distinct forms of nuclear randomness are embodied in the mentioned theories. All these theories appear to be very similar at a qualitative level. In order to explain the high energy-tails and forward-peaked angular distribution typical for particles emitted in MSD reactions, it is imagined that the incident continuum particle stepwise looses its energy and direction in a sequence of collisions, thereby creating new particle-hole pairs in the target system. At each step emission may take place. The statistical aspect comes in because many continuum states are involved in the process. These are supposed to display chaotic behavior, the associated randomness assumption giving rise to important simplifications in the expression for MSD emission cross sections. This picture suggests that mentioned MSD models can be interpreted as a variant of essentially one and the same theory. 113 refs.; 25 figs.; 9 tabs
Preparation and biological evaluation of conformationally constrained BACE1 inhibitors.
Winneroski, Leonard L; Schiffler, Matthew A; Erickson, Jon A; May, Patrick C; Monk, Scott A; Timm, David E; Audia, James E; Beck, James P; Boggs, Leonard N; Borders, Anthony R; Boyer, Robert D; Brier, Richard A; Hudziak, Kevin J; Klimkowski, Valentine J; Garcia Losada, Pablo; Mathes, Brian M; Stout, Stephanie L; Watson, Brian M; Mergott, Dustin J
2015-07-01
The BACE1 enzyme is a key target for Alzheimer's disease. During our BACE1 research efforts, fragment screening revealed that bicyclic thiazine 3 had low millimolar activity against BACE1. Analysis of the co-crystal structure of 3 suggested that potency could be increased through extension toward the S3 pocket and through conformational constraint of the thiazine core. Pursuit of S3-binding groups produced low micromolar inhibitor 6, which informed the S3-design for constrained analogs 7 and 8, themselves prepared via independent, multi-step synthetic routes. Biological characterization of BACE inhibitors 6-8 is described. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hubalkova, Zora; Rencova, Eva
2011-10-01
A one-step polymerase chain reaction (PCR) method for the simultaneous detection of the major allergens of pecan and Brazil nuts was developed. Primer pairs for the amplification of partial sequences of genes encoding the allergens were designed and tested for their specificity on a range of food components. The targeted amplicon size was 173 bp of Ber e 1 gene of Brazil nuts and 72 bp of vicilin-like seed storage protein gene in pecan nuts. The primer pair detecting the noncoding region of the chloroplast DNA was used as the internal control of amplification. The intrinsic detection limit of the PCR method was 100 pg mL(-1) pecan or Brazil nuts DNA. The practical detection limit was 0.1% w/w (1 g kg(-1)). The method was applied for the investigation of 63 samples with the declaration of pecans, Brazil nuts, other different nut species or nuts generally. In 15 food samples pecans and Brazil nuts allergens were identified in the conformity with the food declaration. The presented multiplex PCR method is specific enough and can be used as a fast approach for the detection of major allergens of pecan or Brazil nuts in food. Copyright © 2011 Society of Chemical Industry.
Lattice models and conformal field theories
International Nuclear Information System (INIS)
Saleur, H.
1988-01-01
Theoretical studies concerning the connection between critical physical systems and the conformal theories are reviewed. The conformal theory associated to a critical (integrable) lattice model is derived. The obtention of the central charge, critical exponents and torus partition function, using renormalization group arguments, is shown. The quantum group structure, in the integrable lattice models, and the theory of Visaro algebra representations are discussed. The relations between off-critical integrable models and conformal theories, in finite geometries, are studied
Conformal hyperbolicity of Lorentzian warped products
International Nuclear Information System (INIS)
Markowitz, M.J.
1982-01-01
A space-time M is said to be conformally hyperbolic if the intrinsic conformal Lorentz pseudodistance dsub(M) is a true distance. In this paper criteria are derived which insure the conformal hyperbolicity of certain space-times which are generalizations of the Robertson-Walker spaces. Then dsub(M) is determined explicitly for Einstein-de Sitter space, and important cosmological model. (author)
Conformal hyperbolicity of Lorentzian warped products
Energy Technology Data Exchange (ETDEWEB)
Markowitz, M.J. (Chicago Univ., IL (USA). Dept. of Mathematics)
1982-12-01
A space-time M is said to be conformally hyperbolic if the intrinsic conformal Lorentz pseudodistance dsub(M) is a true distance. In this paper criteria are derived which insure the conformal hyperbolicity of certain space-times which are generalizations of the Robertson-Walker spaces. Then dsub(M) is determined explicitly for Einstein-de Sitter space, and important cosmological model.
Conformational changes in glycine tri- and hexapeptide
DEFF Research Database (Denmark)
Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.
2006-01-01
conformations and calculated the energy barriers for transitions between them. Using a thermodynamic approach, we have estimated the times of the characteristic transitions between these conformations. The results of our calculations have been compared with those obtained by other theoretical methods...... also investigated the influence of the secondary structure of polypeptide chains on the formation of the potential energy landscape. This analysis has been performed for the sheet and the helix conformations of chains of six amino acids....
Pair plasma relaxation time scales.
Aksenov, A G; Ruffini, R; Vereshchagin, G V
2010-04-01
By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.
Schaffer, Connie
2017-01-01
Many well-intended instructors use Socratic or leveled questioning to facilitate the discussion of an assigned reading. While this engages a few students, most can opt to remain silent. The seven step strategy described in this article provides an alternative to classroom silence and engages all students. Students discuss a single reading as they…
Myelography Iodinated Contrast Media. 2. Conformational Versatility of Iopamidol in the Solid State.
Bellich, Barbara; Di Fonzo, Silvia; Tavagnacco, Letizia; Paolantoni, Marco; Masciovecchio, Claudio; Bertolotti, Federica; Giannini, Giovanna; De Zorzi, Rita; Geremia, Silvano; Maiocchi, Alessandro; Uggeri, Fulvio; Masciocchi, Norberto; Cesàro, Attilio
2017-02-06
The phenomenon of polymorphism is of great relevance in pharmaceutics, since different polymorphs have different physicochemical properties, e.g., solubility, hence, bioavailability. Coupling diffractometric and spectroscopic experiments with thermodynamic analysis and computational work opens to a methodological approach which provides information on both structure and dynamics in the solid as well as in solution. The present work reports on the conformational changes in crystalline iopamidol, which is characterized by atropisomerism, a phenomenon that influences both the solution properties and the distinct crystal phases. The conformation of iopamidol is discussed for three different crystal phases. In the anhydrous and monohydrate crystal forms, iopamidol molecules display a syn conformation of the long branches stemming out from the triiodobenzene ring, while in the pentahydrate phase the anti conformation is found. IR and Raman spectroscopic studies carried out on the three crystal forms, jointly with quantum chemical computations, revealed that the markedly different spectral features can be specifically attributed to the different molecular conformations. Our results on the conformational versatility of iopamidol in different crystalline phases, linking structural and spectroscopic evidence for the solution state and the solid forms, provide a definite protocol for grasping the signals that can be taken as conformational markers. This is the first step for understanding the crystallization mechanism occurring in supersaturated solution of iopamidol molecules.
Nature vs. nurture in human sociality: multi-level genomic analyses of social conformity.
Chen, Biqing; Zhu, Zijian; Wang, Yingying; Ding, Xiaohu; Guo, Xiaobo; He, Mingguang; Fang, Wan; Zhou, Qin; Zhou, Shanbi; Lei, Han; Huang, Ailong; Chen, Tingmei; Ni, Dongsheng; Gu, Yuping; Liu, Jianing; Rao, Yi
2018-05-01
Social conformity is fundamental to human societies and has been studied for more than six decades, but our understanding of its mechanisms remains limited. Individual differences in conformity have been attributed to social and cultural environmental influences, but not to genes. Here we demonstrate a genetic contribution to conformity after analyzing 1,140 twins and single-nucleotide polymorphism (SNP)-based studies of 2,130 young adults. A two-step genome-wide association study (GWAS) revealed replicable associations in 9 genomic loci, and a meta-analysis of three GWAS with a sample size of ~2,600 further confirmed one locus, corresponding to the NAV3 (Neuron Navigator 3) gene which encodes a protein important for axon outgrowth and guidance. Further multi-level (haplotype, gene, pathway) GWAS strongly associated genes including NAV3, PTPRD (protein tyrosine phosphatase receptor type D), ARL10 (ADP ribosylation factor-like GTPase 10), and CTNND2 (catenin delta 2), with conformity. Magnetic resonance imaging of 64 subjects shows correlation of activation or structural features of brain regions with the SNPs of these genes, supporting their functional significance. Our results suggest potential moderate genetic influence on conformity, implicate several specific genetic elements in conformity and will facilitate further research on cellular and molecular mechanisms underlying human conformity.
Geometrical formulation of the conformal Ward identity
International Nuclear Information System (INIS)
Kachkachi, M.
2002-08-01
In this paper we use deep ideas in complex geometry that proved to be very powerful in unveiling the Polyakov measure on the moduli space of Riemann surfaces and lead to obtain the partition function of perturbative string theory for 2, 3, 4 loops. Indeed, a geometrical interpretation of the conformal Ward identity in two dimensional conformal field theory is proposed: the conformal anomaly is interpreted as a deformation of the complex structure of the basic Riemann surface. This point of view is in line with the modern trend of geometric quantizations that are based on deformations of classical structures. Then, we solve the conformal Ward identity by using this geometrical formalism. (author)
Fabrication challenges associated with conformal optics
Schaefer, John; Eichholtz, Richard A.; Sulzbach, Frank C.
2001-09-01
A conformal optic is typically an optical window that conforms smoothly to the external shape of a system platform to improve aerodynamics. Conformal optics can be on-axis, such as an ogive missile dome, or off-axis, such as in a free form airplane wing. A common example of conformal optics is the automotive head light window that conforms to the body of the car aerodynamics and aesthetics. The unusual shape of conformal optics creates tremendous challenges for design, manufacturing, and testing. This paper will discuss fabrication methods that have been successfully demonstrated to produce conformal missile domes and associated wavefront corrector elements. It will identify challenges foreseen with more complex free-form configurations. Work presented in this paper was directed by the Precision Conformal Optics Consortium (PCOT). PCOT is comprised of both industrial and academic members who teamed to develop and demonstrate conformal optical systems suitable for insertion into future military programs. The consortium was funded under DARPA agreement number MDA972-96-9-08000.
Gluon amplitudes as 2 d conformal correlators
Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew
2017-10-01
Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.
Noncommutative geometry and twisted conformal symmetry
International Nuclear Information System (INIS)
Matlock, Peter
2005-01-01
The twist-deformed conformal algebra is constructed as a Hopf algebra with twisted coproduct. This allows for the definition of conformal symmetry in a noncommutative background geometry. The twisted coproduct is reviewed for the Poincare algebra and the construction is then extended to the full conformal algebra. The case of Moyal-type noncommutativity of the coordinates is considered. It is demonstrated that conformal invariance need not be viewed as incompatible with noncommutative geometry; the noncommutativity of the coordinates appears as a consequence of the twisting, as has been shown in the literature in the case of the twisted Poincare algebra
Unconstrained multiplet in N=2 conformal supergravity
International Nuclear Information System (INIS)
Hayashi, Masahito; Uehara, Shozo.
1985-02-01
An unconstrained (general) multiplet was studied in N = 2 conformal supergravity. Transformation law, embedding formula and multiplication rule are explicitly presented at the linearized level. (author)
Superintegrability of d-dimensional conformal blocks
International Nuclear Information System (INIS)
Isachenkov, Mikhail
2016-02-01
We observe that conformal blocks of scalar 4-point functions in a d-dimensional conformal field theory can mapped to eigenfunctions of a 2-particle hyperbolic Calogero-Sutherland Hamiltonian. The latter describes two coupled Poeschl-Teller particles. Their interaction, whose strength depends smoothly on the dimension d, is known to be superintegrable. Our observation enables us to exploit the rich mathematical literature on Calogero-Sutherland models in deriving various results for conformal field theory. These include an explicit construction of conformal blocks in terms of Heckman-Opdam hypergeometric functions and a remarkable duality that relates the blocks of theories in different dimensions.
Superintegrability of d-dimensional conformal blocks
Energy Technology Data Exchange (ETDEWEB)
Isachenkov, Mikhail [Weizmann Institute of Science, Rehovot (Israel). Dept. of Particle Physics and Astronomy; Schomerus, Volker [DESY Theory Group, Hamburg (Germany)
2016-02-15
We observe that conformal blocks of scalar 4-point functions in a d-dimensional conformal field theory can mapped to eigenfunctions of a 2-particle hyperbolic Calogero-Sutherland Hamiltonian. The latter describes two coupled Poeschl-Teller particles. Their interaction, whose strength depends smoothly on the dimension d, is known to be superintegrable. Our observation enables us to exploit the rich mathematical literature on Calogero-Sutherland models in deriving various results for conformal field theory. These include an explicit construction of conformal blocks in terms of Heckman-Opdam hypergeometric functions and a remarkable duality that relates the blocks of theories in different dimensions.
Riemann monodromy problem and conformal field theories
International Nuclear Information System (INIS)
Blok, B.
1989-01-01
A systematic analysis of the use of the Riemann monodromy problem for determining correlators (conformal blocks) on the sphere is presented. The monodromy data is constructed in terms of the braid matrices and gives a constraint on the noninteger part of the conformal dimensions of the primary fields. To determine the conformal blocks we need to know the order of singularities. We establish a criterion which tells us when the knowledge of the conformal dimensions of primary fields suffice to determine the blocks. When zero modes of the extended algebra are present the analysis is more difficult. In this case we give a conjecture that works for the SU(2) WZW case. (orig.)
Rotational Spectroscopy Unveils Eleven Conformers of Adrenaline
Cabezas, C.; Cortijo, V.; Mata, S.; Lopez, J. C.; Alonso, J. L.
2013-06-01
Recent improvements in our LA-MB-FTMW instrumentation have allowed the characterization of eleven and eight conformers for the neurotransmitters adrenaline and noradrenaline respectively. The observation of this rich conformational behavior is in accordance with the recent observation of seven conformers for dopamine and in sharp contrast with the conformational reduction proposed for catecholamines. C. Cabezas, I. Peña, J. C. López, J. L. Alonso J. Phys. Chem. Lett. 2013, 4, 486. H. Mitsuda, M. Miyazaki, I. B. Nielsen, P. Carcabal,C. Dedonder, C. Jouvet, S. Ishiuchi, M. Fujii J. Phys. Chem. Lett. 2010, 1, 1130.
Conformal Dimensions via Large Charge Expansion.
Banerjee, Debasish; Chandrasekharan, Shailesh; Orlando, Domenico
2018-02-09
We construct an efficient Monte Carlo algorithm that overcomes the severe signal-to-noise ratio problems and helps us to accurately compute the conformal dimensions of large-Q fields at the Wilson-Fisher fixed point in the O(2) universality class. Using it, we verify a recent proposal that conformal dimensions of strongly coupled conformal field theories with a global U(1) charge can be obtained via a series expansion in the inverse charge 1/Q. We find that the conformal dimensions of the lowest operator with a fixed charge Q are almost entirely determined by the first few terms in the series.
Conformal maps between pseudo-Finsler spaces
Voicu, Nicoleta
The paper aims to initiate a systematic study of conformal mappings between Finsler spacetimes and, more generally, between pseudo-Finsler spaces. This is done by extending several results in pseudo-Riemannian geometry which are necessary for field-theoretical applications and by proposing a technique that reduces some problems involving pseudo-Finslerian conformal vector fields to their pseudo-Riemannian counterparts. Also, we point out, by constructing classes of examples, that conformal groups of flat (locally Minkowskian) pseudo-Finsler spaces can be much richer than both flat Finslerian and pseudo-Euclidean conformal groups.
Conformal frame dependence of inflation
International Nuclear Information System (INIS)
Domènech, Guillem; Sasaki, Misao
2015-01-01
Physical equivalence between different conformal frames in scalar-tensor theory of gravity is a known fact. However, assuming that matter minimally couples to the metric of a particular frame, which we call the matter Jordan frame, the matter point of view of the universe may vary from frame to frame. Thus, there is a clear distinction between gravitational sector (curvature and scalar field) and matter sector. In this paper, focusing on a simple power-law inflation model in the Einstein frame, two examples are considered; a super-inflationary and a bouncing universe Jordan frames. Then we consider a spectator curvaton minimally coupled to a Jordan frame, and compute its contribution to the curvature perturbation power spectrum. In these specific examples, we find a blue tilt at short scales for the super-inflationary case, and a blue tilt at large scales for the bouncing case
Conformable eddy current array delivery
Summan, Rahul; Pierce, Gareth; Macleod, Charles; Mineo, Carmelo; Riise, Jonathan; Morozov, Maxim; Dobie, Gordon; Bolton, Gary; Raude, Angélique; Dalpé, Colombe; Braumann, Johannes
2016-02-01
The external surface of stainless steel containers used for the interim storage of nuclear material may be subject to Atmospherically Induced Stress Corrosion Cracking (AISCC). The inspection of such containers poses a significant challenge due to the large quantities involved; therefore, automating the inspection process is of considerable interest. This paper reports upon a proof-of-concept project concerning the automated NDT of a set of test containers containing artificially generated AISCCs. An Eddy current array probe with a conformable padded surface from Eddyfi was used as the NDT sensor and end effector on a KUKA KR5 arc HW robot. A kinematically valid cylindrical raster scan path was designed using the KUKA|PRC path planning software. Custom software was then written to interface measurement acquisition from the Eddyfi hardware with the motion control of the robot. Preliminary results and analysis are presented from scanning two canisters.
Conformal frame dependence of inflation
Energy Technology Data Exchange (ETDEWEB)
Domènech, Guillem; Sasaki, Misao, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2015-04-01
Physical equivalence between different conformal frames in scalar-tensor theory of gravity is a known fact. However, assuming that matter minimally couples to the metric of a particular frame, which we call the matter Jordan frame, the matter point of view of the universe may vary from frame to frame. Thus, there is a clear distinction between gravitational sector (curvature and scalar field) and matter sector. In this paper, focusing on a simple power-law inflation model in the Einstein frame, two examples are considered; a super-inflationary and a bouncing universe Jordan frames. Then we consider a spectator curvaton minimally coupled to a Jordan frame, and compute its contribution to the curvature perturbation power spectrum. In these specific examples, we find a blue tilt at short scales for the super-inflationary case, and a blue tilt at large scales for the bouncing case.
Strings, conformal fields and topology
International Nuclear Information System (INIS)
Kaku, Michio
1991-01-01
String Theory has advanced at an astonishing pace in the last few years, and this book aims to acquaint the reader with the most active topics of research in the field. Building on the foundations laid in his Introduction to Superstrings, Professor Kaku discusses such topics as the classification of conformal string theories, knot theory, the Yang-Baxter relation, quantum groups, the non-polynominal closed string field theory, matrix models, and topological field theory. Several chapters review the fundamentals of string theory, making the presentation of the material self-contained while keeping overlap with the earlier book to a minimum. The book conveys the vitality of current research in string theory and places readers at its forefront. (orig.) With 40 figs. in 50 parts
Light gauginos and conformal sequestering
International Nuclear Information System (INIS)
Hanaki, Kentaro; Ookouchi, Yutaka
2011-01-01
In a wide class of direct and semidirect gauge mediation models, it has been observed that the gaugino masses vanish at leading order. It implies that there is a hierarchy between the gaugino and sfermion masses, invoking a fine-tuning problem in the Higgs sector via radiative corrections. In this paper, we explore the possibility of solving this anomalously light gaugino problem exploiting strong conformal dynamics in the hidden sector. With a mild assumption on the anomalous dimensions of the hidden sector operators, we show that the next-to-leading order contributions to the gaugino masses can naturally be in the same order as the sfermion masses. The μ/B μ problem is also discussed.
Low-cost addition-subtraction sequences for the final exponentiation computation in pairings
DEFF Research Database (Denmark)
Guzmán-Trampe, Juan E; Cruz-Cortéz, Nareli; Dominguez Perez, Luis
2014-01-01
In this paper, we address the problem of finding low cost addition–subtraction sequences for situations where a doubling step is significantly cheaper than a non-doubling one. One application of this setting appears in the computation of the final exponentiation step of the reduced Tate pairing d...
Global conformational dynamics of a Y-family DNA polymerase during catalysis.
Directory of Open Access Journals (Sweden)
Cuiling Xu
2009-10-01
Full Text Available Replicative DNA polymerases are stalled by damaged DNA while the newly discovered Y-family DNA polymerases are recruited to rescue these stalled replication forks, thereby enhancing cell survival. The Y-family DNA polymerases, characterized by low fidelity and processivity, are able to bypass different classes of DNA lesions. A variety of kinetic and structural studies have established a minimal reaction pathway common to all DNA polymerases, although the conformational intermediates are not well defined. Furthermore, the identification of the rate-limiting step of nucleotide incorporation catalyzed by any DNA polymerase has been a matter of long debate. By monitoring time-dependent fluorescence resonance energy transfer (FRET signal changes at multiple sites in each domain and DNA during catalysis, we present here a real-time picture of the global conformational transitions of a model Y-family enzyme: DNA polymerase IV (Dpo4 from Sulfolobus solfataricus. Our results provide evidence for a hypothetical DNA translocation event followed by a rapid protein conformational change prior to catalysis and a subsequent slow, post-chemistry protein conformational change. Surprisingly, the DNA translocation step was induced by the binding of a correct nucleotide. Moreover, we have determined the directions, rates, and activation energy barriers of the protein conformational transitions, which indicated that the four domains of Dpo4 moved in a synchronized manner. These results showed conclusively that a pre-chemistry conformational change associated with domain movements was too fast to be the rate-limiting step. Rather, the rearrangement of active site residues limited the rate of correct nucleotide incorporation. Collectively, the conformational dynamics of Dpo4 offer insights into how the inter-domain movements are related to enzymatic function and their concerted interactions with other proteins at the replication fork.
Conformal FDTD modeling of 3-D wake fields
International Nuclear Information System (INIS)
Jurgens, T.G.; Harfoush, F.A.
1991-01-01
Many computer codes have been written to model wake fields. Here the authors describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non-cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements so as to conform to the interface. These improvements to the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall monitors
International Nuclear Information System (INIS)
Haniger, L.; Elger, R.; Kocandrle, L.; Zdebor, J.
1986-01-01
A linear step drive is described developed in Czechoslovak-Soviet cooperation and intended for driving WWER-1000 control rods. The functional principle is explained of the motor and the mechanical and electrical parts of the drive, power control, and the indicator of position are described. The motor has latches situated in the reactor at a distance of 3 m from magnetic armatures, it has a low structural height above the reactor cover, which suggests its suitability for seismic localities. Its magnetic circuits use counterpoles; the mechanical shocks at the completion of each step are damped using special design features. The position indicator is of a special design and evaluates motor position within ±1% of total travel. A drive diagram and the flow chart of both the control electronics and the position indicator are presented. (author) 4 figs
Computational Abstraction Steps
DEFF Research Database (Denmark)
Thomsen, Lone Leth; Thomsen, Bent; Nørmark, Kurt
2010-01-01
and class instantiations. Our teaching experience shows that many novice programmers find it difficult to write programs with abstractions that materialise to concrete objects later in the development process. The contribution of this paper is the idea of initiating a programming process by creating...... or capturing concrete values, objects, or actions. As the next step, some of these are lifted to a higher level by computational means. In the object-oriented paradigm the target of such steps is classes. We hypothesise that the proposed approach primarily will be beneficial to novice programmers or during...... the exploratory phase of a program development process. In some specific niches it is also expected that our approach will benefit professional programmers....
... please turn JavaScript on. Feature: Type 2 Diabetes Step 3: Manage Your Diabetes Past Issues / Fall 2014 ... 2 Diabetes" Articles Diabetes Is Serious But Manageable / Step 1: Learn About Diabetes / Step 2: Know Your ...
The Minkowski and conformal superspaces the classical and quantum descriptions
Fioresi, Rita
2015-01-01
This book is aimed at graduate students and researchers in physics and mathematics who seek to understand the basics of supersymmetry from a mathematical point of view. It provides a bridge between the physical and mathematical approaches to the superworld. The physicist who is devoted to learning the basics of supergeometry can find a friendly approach here, since only the concepts that are strictly necessary are introduced. On the other hand, the mathematician who wants to learn from physics will find that all the mathematical assumptions are firmly rooted in physical concepts. This may open up a channel of communication between the two communities working on different aspects of supersymmetry. Starting from special relativity and Minkowski space, the idea of conformal space and superspace is built step by step in a mathematically rigorous way, and always connecting with the ideas and notation used in physics. While the book is mainly devoted to these important physical examples of superspaces, it can also ...
Charge Aspects of Composite Pair Superconductivity
Flint, Rebecca
2014-03-01
Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.
Perspectives on electrostatics and conformational motions in enzyme catalysis.
Hanoian, Philip; Liu, C Tony; Hammes-Schiffer, Sharon; Benkovic, Stephen
2015-02-17
CONSPECTUS: Enzymes are essential for all living organisms, and their effectiveness as chemical catalysts has driven more than a half century of research seeking to understand the enormous rate enhancements they provide. Nevertheless, a complete understanding of the factors that govern the rate enhancements and selectivities of enzymes remains elusive, due to the extraordinary complexity and cooperativity that are the hallmarks of these biomolecules. We have used a combination of site-directed mutagenesis, pre-steady-state kinetics, X-ray crystallography, nuclear magnetic resonance (NMR), vibrational and fluorescence spectroscopies, resonance energy transfer, and computer simulations to study the implications of conformational motions and electrostatic interactions on enzyme catalysis in the enzyme dihydrofolate reductase (DHFR). We have demonstrated that modest equilibrium conformational changes are functionally related to the hydride transfer reaction. Results obtained for mutant DHFRs illustrated that reductions in hydride transfer rates are correlated with altered conformational motions, and analysis of the evolutionary history of DHFR indicated that mutations appear to have occurred to preserve both the hydride transfer rate and the associated conformational changes. More recent results suggested that differences in local electrostatic environments contribute to finely tuning the substrate pKa in the initial protonation step. Using a combination of primary and solvent kinetic isotope effects, we demonstrated that the reaction mechanism is consistent across a broad pH range, and computer simulations suggested that deprotonation of the active site Tyr100 may play a crucial role in substrate protonation at high pH. Site-specific incorporation of vibrational thiocyanate probes into the ecDHFR active site provided an experimental tool for interrogating these microenvironments and for investigating changes in electrostatics along the DHFR catalytic cycle
The butane condensed matter conformational problem
Weber, A.C.J.; de Lange, C.A.; Meerts, W.L.; Burnell, E.E.
2010-01-01
From the dipolar couplings of orientationally ordered n-butane obtained by NMR spectroscopy we have calculated conformer probabilities using the modified Chord (Cd) and Size-and-Shape (CI) models to estimate the conformational dependence of the order matrix. All calculation methods make use of
Conformity to Peer Pressure in Preschool Children
Haun, Daniel B. M.; Tomasello, Michael
2011-01-01
Both adults and adolescents often conform their behavior and opinions to peer groups, even when they themselves know better. The current study investigated this phenomenon in 24 groups of 4 children between 4;2 and 4;9 years of age. Children often made their judgments conform to those of 3 peers, who had made obviously erroneous but unanimous…
Dissecting the large-scale galactic conformity
Seo, Seongu
2018-01-01
Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.
Conformal deformation of Riemann space and torsion
International Nuclear Information System (INIS)
Pyzh, V.M.
1981-01-01
Method for investigating conformal deformations of Riemann spaces using torsion tensor, which permits to reduce the second ' order equations for Killing vectors to the system of the first order equations, is presented. The method is illustrated using conformal deformations of dimer sphere as an example. A possibility of its use when studying more complex deformations is discussed [ru
Conformal invariance and two-dimensional physics
International Nuclear Information System (INIS)
Zuber, J.B.
1993-01-01
Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness
Fusion rules in conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.
1993-06-01
Several aspects of fusion rings and fusion rule algebras, and of their manifestations in two-dimensional (conformal) field theory, are described: diagonalization and the connection with modular invariance; the presentation in terms of quotients of polynomial rings; fusion graphs; various strategies that allow for a partial classification; and the role of the fusion rules in the conformal bootstrap programme. (orig.)
A viewpoint on nearly conformally symmetric manifold
International Nuclear Information System (INIS)
Rahman, M.S.
1990-06-01
Some observations, with definition, on Nearly Conformally Symmetric (NCS) manifold are made. A number of theorems concerning conformal change of metric and parallel tensors on NCS manifolds are presented. It is illustrated that a manifold M = R n-1 x R + 1 , endowed with a special metric, is NCS but not of harmonic curvature. (author). 8 refs
Closed forms for conformally flat Green's functions
International Nuclear Information System (INIS)
Brown, M.R.; Grove, P.G.; Ottewill, A.C.
1981-01-01
A closed form is obtained for the massless scalar Green's function on Rindler space. This is related by conformal transformation to the Green's function for a massless, conformally coupled scalar field on the open Einstein universe. A closed form is also obtained for the corresponding Green's function on the Einstein static universe. (author)
BCS wave function, matrix product states, and the Ising conformal field theory
Montes, Sebastián; Rodríguez-Laguna, Javier; Sierra, Germán
2017-11-01
We present a characterization of the many-body lattice wave functions obtained from the conformal blocks (CBs) of the Ising conformal field theory (CFT). The formalism is interpreted as a matrix product state using continuous ancillary degrees of freedom. We provide analytic and numerical evidence that the resulting states can be written as BCS states. We give a complete proof that the translationally invariant 1D configurations have a BCS form and we find suitable parent Hamiltonians. In particular, we prove that the ground state of the finite-size critical Ising transverse field (ITF) Hamiltonian can be obtained with this construction. Finally, we study 2D configurations using an operator product expansion (OPE) approximation. We associate these states to the weak pairing phase of the p +i p superconductor via the scaling of the pairing function and the entanglement spectrum.
Kinetic equations with pairing correlations
International Nuclear Information System (INIS)
Fauser, R.
1995-12-01
The Gorkov equations are derived for a general non-equilibrium system. The Gorkov factorization is generalized by the cumulant expansion of the 2-particle correlation and by a generalized Wick theorem in the case of a perturbation expansion. A stationary solution for the Green functions in the Schwinger-Keldysh formalism is presented taking into account pairing correlations. Especially the effects of collisional broadening on the spectral functions and Green functions is discussed. Kinetic equations are derived in the quasi-particle approximation and in the case of particles with width. Explicit expressions for the self-energies are given. (orig.)
Endocrine factors of pair bonding.
Stárka, L
2007-01-01
Throughout literature--fiction and poetry, fine arts and music--falling in love and enjoying romantic love plays a central role. While several psychosocial conceptions of pair attachment consider the participation of hormones, human endocrinology has dealt with this theme only marginally. According to some authors in addictology, falling in love shows some signs of hormonal response to stressors with changes in dopamine and serotonin signalling and neurotrophin (transforming growth factor b) concentration. Endorphins, oxytocin and vasopressin may play a role during the later phases of love. However, proof of hormonal events associated with love in humans has, until recently, been lacking.
DEFF Research Database (Denmark)
Christensen, Ole; Goh, Say Song
2012-01-01
The time–frequency analysis of a signal is often performed via a series expansion arising from well-localized building blocks. Typically, the building blocks are based on frames having either Gabor or wavelet structure. In order to calculate the coefficients in the series expansion, a dual frame...... is needed. The purpose of the present paper is to provide constructions of dual pairs of frames in the setting of the Hilbert space of periodic functions L2(0,2π). The frames constructed are given explicitly as trigonometric polynomials, which allows for an efficient calculation of the coefficients...
Juang, T; Stauffer, P R; Neuman, D G; Schlorff, J L
2006-11-01
The purpose of this study was to construct and perform preliminary functionality evaluations of a multilayer conformal applicator with provisions for thermal monitoring, tight conformity and simultaneous microwave heating and brachytherapy treatment of large-area contoured surfaces. The multilayer conformal applicator consists of thermal monitoring catheters for fibre-optic monitoring of skin temperatures, a waterbolus, a PCB microwave antenna array, a dielectric spacer for brachytherapy considerations, brachytherapy catheters for delivering HDR radiation and an inflatable air bladder for improving conformity to contoured surfaces. The applicator also includes an elastic attachment structure to hold the applicator securely in place on the patient. The conformity of the applicator to irregular surfaces was evaluated through CT imaging of the applicator fitted onto a life-sized human torso phantom. The fluid flow dynamics of the waterbolus, which impact the effectiveness of temperature control, were evaluated with thermometry during a 19 degrees C step change temperature of the circulating water. CT imaging showed improved conformity to the torso phantom surface following the application of gentle inward pressure from inflating the outer air bladder. Only a small number of 1-5 mm sized air gaps separated the conformal applicator and tissue surface. Thermometry testing of the bolus fluid flow dynamics demonstrated temperature uniformity within +/-0.82 degrees C across a 19 x 34 x 0.6 cm area bolus and +/-0.85 degrees C across a large 42 x 32 x 0.6 cm area bolus. CT scans of the applicator confirmed that the applicator conforms well to complex body contours and should maintain good conformity and positional stability even when worn on a mobile patient. Thermometry testing of two different waterbolus geometries demonstrated that uniform circulation and temperature control can be maintained throughout large, complex bolus shapes.
Vertex operator algebras and conformal field theory
International Nuclear Information System (INIS)
Huang, Y.Z.
1992-01-01
This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics
Conformation Generation: The State of the Art.
Hawkins, Paul C D
2017-08-28
The generation of conformations for small molecules is a problem of continuing interest in cheminformatics and computational drug discovery. This review will present an overview of methods used to sample conformational space, focusing on those methods designed for organic molecules commonly of interest in drug discovery. Different approaches to both the sampling of conformational space and the scoring of conformational stability will be compared and contrasted, with an emphasis on those methods suitable for conformer sampling of large numbers of drug-like molecules. Particular attention will be devoted to the appropriate utilization of information from experimental solid-state structures in validating and evaluating the performance of these tools. The review will conclude with some areas worthy of further investigation.
Conformal Symmetry Patterns in Baryon Spectra
International Nuclear Information System (INIS)
Kirchbach, Mariana; Compean, Cliffor B
2011-01-01
Attention is drawn to the fact that the spectra of the baryons of the lightest flavors, the nucleon and the Δ, carry quantum numbers characteristic for an unitary representation of the conformal group. We show that the above phenomenon is well explained for baryons whose internal structure is dominated by a quark-diquark configuration that resides in a conformally compactified Minkowski space time, R 1 x S 3 , and is described by means of the conformal scale equation there. The R 1 x S 3 space-time represents the boundary of the conformally compactified AdS 5 , on which one expects to encounter a conformal theory in accord with the gauge-gravity duality. Within this context, our model is congruent with AdS 5 /CFT 4 .
Molecular dynamics study of some non-hydrogen-bonding base pair DNA strands
Tiwari, Rakesh K.; Ojha, Rajendra P.; Tiwari, Gargi; Pandey, Vishnudatt; Mall, Vijaysree
2018-05-01
In order to elucidate the structural activity of hydrophobic modified DNA, the DMMO2-D5SICS, base pair is introduced as a constituent in different set of 12-mer and 14-mer DNA sequences for the molecular dynamics (MD) simulation in explicit water solvent. AMBER 14 force field was employed for each set of duplex during the 200ns production-dynamics simulation in orthogonal-box-water solvent by the Particle-Mesh-Ewald (PME) method in infinite periodic boundary conditions (PBC) to determine conformational parameters of the complex. The force-field parameters of modified base-pair were calculated by Gaussian-code using Hartree-Fock /ab-initio methodology. RMSD Results reveal that the conformation of the duplex is sequence dependent and the binding energy of the complex depends on the position of the modified base-pair in the nucleic acid strand. We found that non-bonding energy had a significant contribution to stabilising such type of duplex in comparison to electrostatic energy. The distortion produced within strands by such type of base-pair was local and destabilised the duplex integrity near to substitution, moreover the binding energy of duplex depends on the position of substitution of hydrophobic base-pair and the DNA sequence and strongly supports the corresponding experimental study.
DEFF Research Database (Denmark)
Dalgas, Karina Märcher
2016-01-01
Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial interdep......Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial...
International Nuclear Information System (INIS)
Mishra, S.P.; Srivastava, Anoop Kumar; Rastogi, Madhup; Khurana, Rohini; Pawaskar, Asawari
2016-01-01
This study has been performed in clinical setting by creating the treatment plan in dynamic conformal arc mode as the treatment delivery technique; with add on collimator APEX system having 56 pairs of 2.5 mm each as treatment unit. Photon beam energy selected for the study was 6 MV. Various number of treatment arcs were applied depending upon the location of the PTV. The PTV was prescribed a total dose of 60 Gy in five fractions
Conformal symmetry in two-dimensional space: recursion representation of conformal block
International Nuclear Information System (INIS)
Zamolodchikov, A.B.
1988-01-01
The four-point conformal block plays an important part in the analysis of the conformally invariant operator algebra in two-dimensional space. The behavior of the conformal block is calculated in the present paper in the limit in which the dimension Δ of the intermediate operator tends to infinity. This makes it possible to construct a recursion relation for this function that connects the conformal block at arbitrary Δ to the blocks corresponding to the dimensions of the zero vectors in the degenerate representations of the Virasoro algebra. The relation is convenient for calculating the expansion of the conformal block in powers of the uniformizing parameters q = i π tau
International Nuclear Information System (INIS)
Kirchner, Barbara; Malberg, Friedrich; Firaha, Dzmitry S; Hollóczki, Oldamur
2015-01-01
In the present article we briefly review the extensive discussion in literature about the presence or absence of ion pair-like aggregates in ionic liquids. While some experimental studies point towards the presence of neutral subunits in ionic liquids, many other experiments cannot confirm or even contradict their existence. Ion pairs can be detected directly in the gas phase, but no direct method is available to observe such association behavior in the liquid, and the corresponding indirect experimental proofs are based on such assumptions as unity charges at the ions. However, we have shown by calculating ionic liquid clusters of different sizes that assuming unity charges for ILs is erroneous, because a substantial charge transfer is taking place between the ionic liquid ions that reduce their total charge. Considering these effects might establish a bridge between the contradicting experimental results on this matter. Beside these results, according to molecular dynamics simulations the lifetimes of ion–ion contacts and their joint motions are far too short to verify the existence of neutral units in these materials. (topical review)
Some advances in pairing theory
International Nuclear Information System (INIS)
Rowe, D.J.
2001-01-01
Two advances are reviewed in the application of pairing-force theory in the nuclear shell model. The first exploits a discovery that a wide range of two-nucleon interactions conserve seniority as a good quantum number. As a consequence, the eigenstates of a Hamiltonian with such an interaction belong to irreducible representations of a compact unitary-symplectic group. This makes it possible to extend the simply-solvable models with J=0 pairing forces to a much richer set of models and still obtain states uniquely classified by their seniority and angular momentum quantum numbers. Moreover, many of the low-lying energy levels of such models can be obtained algebraically; in technical terms, the models are in some cases completely solvable and in other cases partially solvable by algebraic methods. The second advance exploits the discovery that, in a coherent state representation, states of good nucleon number can be projected analytically from BCS vacuum and excited quasiparticle states. This makes it possible to perform calculations in a number-projected BCS basis without losing much of the advantage of working of the quasiparticle scheme. (Author)
Conformal invariance in hydrodynamic turbulence
International Nuclear Information System (INIS)
Falkovich, Gregory
2007-01-01
This short survey is written by a physicist. It contains neither theorems nor precise definitions. Its main content is a description of the results of numerical solution of the equations of fluid mechanics in the regime of developed turbulence. Due to limitations of computers, the results are not very precise. Despite being neither exact nor rigorous, the findings may nevertheless be of interest for mathematicians. The main result is that the isolines of some scalar fields (vorticity, temperature) in two-dimensional turbulence belong to the class of conformally invariant curves called SLE (Scramm-Loewner evolution) curves. First, this enables one to predict and find a plethora of quantitative relations going far beyond what was known previously about turbulence. Second, it suggests relations between phenomena that seemed unrelated, like the Euler equation and critical percolation. Third, it shows that one is able to get exact analytic results in statistical hydrodynamics. In short, physicists have found something unexpected and hope that mathematicians can help to explain it.
Holographic description of 2D conformal block in semi-classical limit
Energy Technology Data Exchange (ETDEWEB)
Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University, 5 Yiheyuan Rd, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University, 5 Yiheyuan Rd, Beijing 100871 (China); Wu, Jie-qiang [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University, 5 Yiheyuan Rd, Beijing 100871 (China); Zhang, Jia-ju [Theoretical Physics Division, Institute of High Energy Physics,Chinese Academy of Sciences, 19B Yuquan Rd, Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China)
2016-10-20
In this paper, we study the holographic descriptions of the conformal block of heavy operators in two-dimensional large c conformal field theory. We consider the case that the operators are pairwise inserted such that the distance between the operators in a pair is much smaller than the others. In this case, each pair of heavy operators creates a conical defect in the bulk. We propose that the conformal block is dual to the on-shell action of three dimensional geometry with conical defects in the semi-classical limit. We show that the variation of the on-shell action with respect to the conical angle is equal to the length of the corresponding conical defect. We derive this differential relation on the conformal block in the field theory by introducing two extra light operators as both the probe and the perturbation. Our study also suggests that the area law of the holographic Rényi entropy must holds for a large class of states generated by a finite number of heavy operators insertion.
47 CFR 2.1072 - Limitation on Declaration of Conformity.
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Limitation on Declaration of Conformity. 2.1072... Conformity § 2.1072 Limitation on Declaration of Conformity. (a) The Declaration of Conformity signifies that...'s rules. (b) A Declaration of Conformity by the responsible party is effective until a termination...
Directory of Open Access Journals (Sweden)
Emily Lyle
2012-03-01
Full Text Available Indo-European mythology is known only through written records but it needs to be understood in terms of the preliterate oral-cultural context in which it was rooted. It is proposed that this world was conceptually organized through a memory-capsule consisting of the current generation and the three before it, and that there was a system of alternate generations with each generation taking a step into the future under the leadership of a white or red king.
On ''conformal spinor geometry'': An attempt to ''understand'' internal symmetry
International Nuclear Information System (INIS)
Budinich, P.
1982-01-01
The natural homomorphism of pure spinors corresponding to a given Clifford algebra Csub(2n) to polarized isotropic n-planes of complex Euclidean space Esub(2n)sup(c) is taken as a starting point for the construction of a geometry called spinor geometry where pure spinors are the only elements out of which all tensors have to be constructed (analytically as bilinear polynomials of the components of a pure spinor). C 4 and C 6 spinor geometry are analyzed, but it seems that C 8 spinor geometry is necessary to construct Minkowski space Msup(3,1). C 6 spinor field equations give rise in Minkowski space to a pair of Dirac equations (for conformal semispinors) presenting an su(2) internal symmetry algebra. Mass is generated by breaking spontaneously the original O(4,2) symmetry of the spinor equation. (author)
On ''conformal spinor geometry'': An attempt to ''understand'' internal symmetry
International Nuclear Information System (INIS)
Budinich, P.
1981-09-01
The natural homomorphism of pure spinors corresponding to a given Clifford algebra Csub(2n) to polarized isotropic n-planes of complex Euclidean space Esub(2n)sup(c) is taken as a starting point for the construction of a geometry called spinor geometry where pure spinors are the only elements out of which all tensors have to be constructed (analytically as bilinear polynomia of the components of a pure spinor). C 4 and C 6 spinor geometry are analyzed but it seems that C 8 spinor geometry is necessary to construct Minkowski space Msup(3,1). C 6 spinor field equations give rise in Minkowski space to a pair of Dirac equations (for conformal semispinors) presenting an SU(2) internal symmetry algebra. Mass is generated by spontaneously breaking the original O(4,2) symmetry of the spinor equation. (author)
SYSTEMATIZATION OF THE BASIC STEPS OF THE STEP-AEROBICS
Directory of Open Access Journals (Sweden)
Darinka Korovljev
2011-03-01
Full Text Available Following the development of the powerful sport industry, in front of us appeared a lot of new opportunities for creating of the new programmes of exercising with certain requisites. One of such programmes is certainly step-aerobics. Step-aerobics can be defined as a type of aerobics consisting of the basic aerobic steps (basic steps applied in exercising on stepper (step bench, with a possibility to regulate its height. Step-aerobics itself can be divided into several groups, depending on the following: type of music, working methods and adopted knowledge of the attendants. In this work, the systematization of the basic steps in step-aerobics was made on the basis of the following criteria: steps origin, number of leg motions in stepping and relating the body support at the end of the step. Systematization of the basic steps of the step-aerobics is quite significant for making a concrete review of the existing basic steps, thus making creation of the step-aerobics lesson easier
C-metric solution for conformal gravity with a conformally coupled scalar field
Energy Technology Data Exchange (ETDEWEB)
Meng, Kun, E-mail: mengkun@tjpu.edu.cn [School of Science, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Liu, E-mail: lzhao@nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China)
2017-02-15
The C-metric solution of conformal gravity with a conformally coupled scalar field is presented. The solution belongs to the class of Petrov type D spacetimes and is conformal to the standard AdS C-metric appeared in vacuum Einstein gravity. For all parameter ranges, we identify some of the physically interesting static regions and the corresponding coordinate ranges. The solution may contain a black hole event horizon, an acceleration horizon, either of which may be cut by the conformal infinity or be hidden behind the conformal infinity. Since the model is conformally invariant, we also discussed the possible effects of the conformal gauge choices on the structure of the spacetime.
Generating intrinsically disordered protein conformational ensembles from a Markov chain
Cukier, Robert I.
2018-03-01
Intrinsically disordered proteins (IDPs) sample a diverse conformational space. They are important to signaling and regulatory pathways in cells. An entropy penalty must be payed when an IDP becomes ordered upon interaction with another protein or a ligand. Thus, the degree of conformational disorder of an IDP is of interest. We create a dichotomic Markov model that can explore entropic features of an IDP. The Markov condition introduces local (neighbor residues in a protein sequence) rotamer dependences that arise from van der Waals and other chemical constraints. A protein sequence of length N is characterized by its (information) entropy and mutual information, MIMC, the latter providing a measure of the dependence among the random variables describing the rotamer probabilities of the residues that comprise the sequence. For a Markov chain, the MIMC is proportional to the pair mutual information MI which depends on the singlet and pair probabilities of neighbor residue rotamer sampling. All 2N sequence states are generated, along with their probabilities, and contrasted with the probabilities under the assumption of independent residues. An efficient method to generate realizations of the chain is also provided. The chain entropy, MIMC, and state probabilities provide the ingredients to distinguish different scenarios using the terminologies: MoRF (molecular recognition feature), not-MoRF, and not-IDP. A MoRF corresponds to large entropy and large MIMC (strong dependence among the residues' rotamer sampling), a not-MoRF corresponds to large entropy but small MIMC, and not-IDP corresponds to low entropy irrespective of the MIMC. We show that MorFs are most appropriate as descriptors of IDPs. They provide a reasonable number of high-population states that reflect the dependences between neighbor residues, thus classifying them as IDPs, yet without very large entropy that might lead to a too high entropy penalty.
Understanding modern magnets through conformal mapping
International Nuclear Information System (INIS)
Halbach, K.
1989-10-01
I want to show with the help of a number of examples that conformal mapping is a unique and enormously powerful tool for thinking about, and solving, problems. Usually one has to write down only a few equations, and sometimes none at all exclamation point When I started getting involved in work for which conformal mapping seemed to be a powerful tool, I did not think that I would ever be able to use that technique successfully because it seemed to require a nearly encyclopedic memory, an impression that was strengthened when I saw K. Kober's Dictionary of Conformal Representations. This attitude changed when I started to realize that beyond the basics of the theory of a function of a complex variable, I needed to know only about a handful of conformal maps and procedures. Consequently, my second goal for this talk is to show that in most cases conformal mapping functions can be obtained by formulating the underlying physics appropriately. This means particularly that encyclopedic knowledge of conformal maps is not necessary for successful use of conformal mapping techniques. To demonstrate these facts I have chosen examples from an area of physics/engineering in which I am active, namely accelerator physics. In order to do that successfully I start with a brief introduction into high energy charged particle storage ring technology, even though not all examples used in this paper to elucidate my points come directly from this particular field of accelerator technology
Entanglement evolution across a conformal interface
Wen, Xueda; Wang, Yuxuan; Ryu, Shinsei
2018-05-01
For two-dimensional conformal field theories (CFTs) in the ground state, it is known that a conformal interface along the entanglement cut can suppress the entanglement entropy from to , where L is the length of the subsystem A, and is the effective central charge which depends on the transmission property of the conformal interface. In this work, by making use of conformal mappings, we show that a conformal interface has the same effect on entanglement evolution in non-equilibrium cases, including global, local and certain inhomogeneous quantum quenches. I.e. a conformal interface suppresses the time evolution of entanglement entropy by effectively replacing the central charge c with , where is exactly the same as that in the ground state case. We confirm this conclusion by a numerical study on a critical fermion chain. Furthermore, based on the quasi-particle picture, we conjecture that this conclusion holds for an arbitrary quantum quench in CFTs, as long as the initial state can be described by a regularized conformal boundary state.
Conformational effects in photoelectron circular dichroism
Turchini, S.
2017-12-01
Photoelectron circular dichroism (PECD) is a novel type of spectroscopy, which presents surprising sensitivity to conformational effects in chiral systems. While classical photoelectron spectroscopy mainly responds to conformational effects in terms of energy level shifts, PECD provides a rich and detailed response to tiny changes in electronic and structural properties by means of the intensity dispersion of the circular dichroism as a function of photoelectron kinetic energy. In this work, the basics of PECD will be outlined, emphasizing the role of interference from the l,l+/- 1 outgoing partial wave of the photoelectron in the PECD transition matrix element, which is responsible for the extreme sensitivity to conformational effects. Examples using molecular systems and interfaces will shed light on the powerful application of PECD to classical conformational effects such as group substitution, isomerism, conformer population and clustering. Moreover, the PECD results will be reported in challenging new fields where conformations play a key role, such as vibrational effects, transient chirality and time- resolved experiments. To date, PECD has mostly been based on synchrotron radiation facilities, but it also has a future as a table-top lab experiment by means of multiphoton ionization. An important application of PECD as an analytical tool will be reported. The aim of this review is to illustrate that in PECD, the presence of conformational effects is essential for understanding a wide range of effects from a new perspective, making it different from classical spectroscopy.
Conformity index for brain cancer patients
International Nuclear Information System (INIS)
Petkovska, Sonja; Tolevska, Cveta; Kraleva, Slavica; Petreska, Elena
2010-01-01
The purpose of this study is to present the level of conformity achieved by using 3D conformal radiotherapy for brain cancer patients. Conformity index is a helpful quantitative tool for assessing (evaluating) the quality of a treatment plan. Treatment plans made for ninety patients with brain tumor are worked on this paper. The patients are in supine position and immobilized with thermoplastic masks for the head. Computed tomography data sets with 5 mm scan thickness are used to create a 3D image. All structures of interest are contoured. In order to obtain an optimal dose distribution, treatment fields are fit around target volume with set-up margins of 7mm in each direction. The conformity index values are between 1.21 and 2.04. Value of 1.8 is exceeded in eighteen cases; nine of them are bigger than 1.9 and only three of them are above 2. The target volume for each of these extreme CI values is ideal covered (between 95% and 105% of the prescribed dose). The most acceptable conformity index value in this paper belongs to the plan with the lowest minimal dose (84.7%). It can be concluded that conformity index is necessary but not sufficient factor for assessing radiation treatment plan conformity. To be able to estimate the acceptability of some treatment plan in daily practice, additional information as minimal, maximal and mean dose into target volume, as well as health tissues coverage must be taken into account.(Author)
International Nuclear Information System (INIS)
Galyean, W.J.; Whaley, A.M.; Kelly, D.L.; Boring, R.L.
2011-01-01
This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from the psychology literature.
Energy Technology Data Exchange (ETDEWEB)
W. J. Galyean; A. M. Whaley; D. L. Kelly; R. L. Boring
2011-05-01
This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from the psychology literature.
PandA : pairings and arithmetic
Chuengsatiansup, C.; Naehrig, M.; Ribarski, P.; Schwabe, P.; Cao, Z.; Zhang, F.
2014-01-01
This paper introduces PandA, a software framework for Pairings and Arithmetic. It is designed to bring together advances in the efficient computation of cryptographic pairings and the development and implementation of pairing-based protocols. The intention behind the PandA framework is to give
Dynamical pairing correlations in rotating nuclei
International Nuclear Information System (INIS)
Szymanski, Z.
1985-01-01
When the atomic nucleus rotates fast enough the static pair correlations may be destroyed. In this situation the pair-vibrations become an important manifestation of the short-range attractive pairing force. The influence of this effect on nuclear properties at high spin is discussed. (orig.)
Conformation-dependent DNA attraction
Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang
2014-05-01
Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by
Spectra of conformal sigma models
International Nuclear Information System (INIS)
Tlapak, Vaclav
2015-04-01
In this thesis the spectra of conformal sigma models defined on (generalized) symmetric spaces are analysed. The spaces where sigma models are conformal without the addition of a Wess-Zumino term are supermanifolds, in other words spaces that include fermionic directions. After a brief review of the general construction of vertex operators and the background field expansion, we compute the diagonal terms of the one-loop anomalous dimensions of sigma models on semi-symmetric spaces. We find that the results are formally identical to the symmetric case. However, unlike for sigma models on symmetric spaces, off diagonal terms that lead to operator mixing are also present. These are not computed here. We then present a detailed analysis of the one-loop spectrum of the supersphere S 3 vertical stroke 2 sigma model as one of the simplest examples. The analysis illustrates the power and simplicity of the construction. We use this data to revisit a duality with the OSP(4 vertical stroke 2) Gross-Neveu model that was proposed by Candu and Saleur. With the help of a recent all-loop result for the anomalous dimension of (1)/(2)BPS operators of Gross-Neveu models, we are able to recover the entire zero-mode spectrum of the supersphere model. We also argue that the sigma model constraints and its equations of motion are implemented correctly in the Gross-Neveu model, including the one-loop data. The duality is further supported by a new all-loop result for the anomalous dimension of the ground states of the sigma model. However, higher-gradient operators cannot be completely recovered. It is possible that this discrepancy is related to a known instability of the sigma model. The instability of sigma models is due to symmetry preserving high-gradient operators that become relevant at arbitrarily small values of the coupling. This feature has been observed long ago in one-loop calculations of the O(N)-vector model and soon been realized to be a generic property of sigma models
Conformation-dependent DNA attraction.
Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang
2014-06-21
Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg(2+) ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg(2+) or Na(+), benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg(2+) bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.
Poly (3, 4-ethylendioxithiophene) (PEDOT) oxidation: activation energy and conformational energy
International Nuclear Information System (INIS)
Otero, T F; Romero, M C
2008-01-01
The oxidation kinetics of films of the conducting polymer PEDOT-C1O4 after electrochemical reduction by polarization at increasing cathodic potential was studied by potential steps. The response i/t presents a maximum at intermediate oxidation times. At the maximum the reaction occurs under chemical kinetic control following the expected current variations from the Chemical and Electrochemical Kinetics, when reactant concentrations or temperatures are changed. The obtained activation energy of the oxidation present two ranges as a function of the cathodic potential of prepolarization: constant values after prepolarization at low cathodic potentials and a lineal variation after prepolarization at increasing high cathodic potentials. According with the conformational relaxation model during electrochemical reduction the polymer shrinks, closes and packs the conformational structure. The activation energy for the subsequent oxidation includes two terms: the constant chemical activation energy and the conformational energy required to relax the packed polymeric structure. The conformational energy only appears after prepolarization at more cathodic potentials than the closing potential where more packed conformations were obtained. The conformational activation energy accounts the energetic requirements to relax and unfold the polymeric chains generating the required free volume to lodge balancing counterions; meanwhile the chemical activation energy accounts the energetic requirements for the electrochemical reaction to occur.
RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts
International Nuclear Information System (INIS)
Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E.; Eghbalnia, Hamid R.
2012-01-01
The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ( 1 H– 15 N 2D HMQC) and proton–proton nuclear Overhauser enhancement spectroscopy ( 1 H– 1 H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino resonances for a
RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts
Energy Technology Data Exchange (ETDEWEB)
Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E. [National Magnetic Resonance Facility at Madison (United States); Eghbalnia, Hamid R., E-mail: eghbalhd@uc.edu [University of Cincinnati, Department of Molecular and Cellular Physiology (United States)
2012-04-15
The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ({sup 1}H-{sup 15}N 2D HMQC) and proton-proton nuclear Overhauser enhancement spectroscopy ({sup 1}H-{sup 1}H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino
Wong, Chung F
2016-01-01
This short article examines the usefulness of fast simulations of conformational transition paths in elucidating enzymatic mechanisms and guiding drug discovery for protein kinases. It applies the transition path method in the MOIL software package to simulate the paths of conformational transitions between six pairs of structures from the Protein Data Bank. The structures along the transition paths were found to resemble experimental structures that mimic transient structures believed to form during enzymatic catalysis or conformational transitions, or structures that have drug candidates bound. These findings suggest that such simulations could provide quick initial insights into the enzymatic mechanisms or pathways of conformational transitions of proteins kinases, or could provide structures useful for aiding structure-based drug design. © 2015 The Protein Society.
Willmore energy estimates in conformal Berger spheres
International Nuclear Information System (INIS)
Barros, Manuel; Ferrandez, Angel
2011-01-01
Highlights: → The Willmore energy is computed in a wide class of surfaces. → Isoperimetric inequalities for the Willmore energy of Hopf tori are obtained. → The best possible lower bound is achieved on isoareal Hopf tori. - Abstract: We obtain isoperimetric inequalities for the Willmore energy of Hopf tori in a wide class of conformal structures on the three sphere. This class includes, on the one hand, the family of conformal Berger spheres and, on the other hand, a one parameter family of Lorentzian conformal structures. This allows us to give the best possible lower bound of Willmore energies concerning isoareal Hopf tori.
Dilogarithm identities in conformal field theory
International Nuclear Information System (INIS)
Nahm, W.; Recknagel, A.; Terhoeven, M.
1992-11-01
Dilogarithm identities for the central charges and conformal dimensions exist for at least large classes of rational conformally invariant quantum field theories in two dimensions. In many cases, proofs are not yet known but the numerical and structural evidence is convincing. In particular, close relations exist to fusion rules and partition identities. We describe some examples and ideas, and present conjectures useful for the classification of conformal theories. The mathematical structures seem to be dual to Thurston's program for the classification of 3-manifolds. (orig.)
Conformal Gravity: Dark Matter and Dark Energy
Directory of Open Access Journals (Sweden)
Robert K. Nesbet
2013-01-01
Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.
The decomposition of global conformal invariants
Alexakis, Spyros
2012-01-01
This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Dese
Non-local Effects of Conformal Anomaly
Meissner, Krzysztof A.; Nicolai, Hermann
2018-03-01
It is shown that the nonlocal anomalous effective actions corresponding to the quantum breaking of the conformal symmetry can lead to observable modifications of Einstein's equations. The fact that Einstein's general relativity is in perfect agreement with all observations including cosmological or recently observed gravitational waves imposes strong restrictions on the field content of possible extensions of Einstein's theory: all viable theories should have vanishing conformal anomalies. It is shown that a complete cancellation of conformal anomalies in D=4 for both the C^2 invariant and the Euler (Gauss-Bonnet) invariant can only be achieved for N-extended supergravity multiplets with N ≥ 5.
Static validation of licence conformance policies
DEFF Research Database (Denmark)
Hansen, Rene Rydhof; Nielson, Flemming; Nielson, Hanne Riis
2008-01-01
Policy conformance is a security property gaining importance due to commercial interest like Digital Rights Management. It is well known that static analysis can be used to validate a number of more classical security policies, such as discretionary and mandatory access control policies, as well...... as communication protocols using symmetric and asymmetric cryptography. In this work we show how to develop a Flow Logic for validating the conformance of client software with respect to a licence conformance policy. Our approach is sufficiently flexible that it extends to fully open systems that can admit new...
Conformation sensitive charge transport in conjugated polymers
International Nuclear Information System (INIS)
Mattias Andersson, L.; Hedström, Svante; Persson, Petter
2013-01-01
Temperature dependent charge carrier mobility measurements using field effect transistors and density functional theory calculations are combined to show how the conformation dependent frontier orbital delocalization influences the hole- and electron mobilities in a donor-acceptor based polymer. A conformationally sensitive lowest unoccupied molecular orbital results in an electron mobility that decreases with increasing temperature above room temperature, while a conformationally stable highest occupied molecular orbital is consistent with a conventional hole mobility behavior and also proposed to be one of the reasons for why the material works well as a hole transporter in amorphous bulk heterojunction solar cells
Multiresolution Computation of Conformal Structures of Surfaces
Directory of Open Access Journals (Sweden)
Xianfeng Gu
2003-10-01
Full Text Available An efficient multiresolution method to compute global conformal structures of nonzero genus triangle meshes is introduced. The homology, cohomology groups of meshes are computed explicitly, then a basis of harmonic one forms and a basis of holomorphic one forms are constructed. A progressive mesh is generated to represent the original surface at different resolutions. The conformal structure is computed for the coarse level first, then used as the estimation for that of the finer level, by using conjugate gradient method it can be refined to the conformal structure of the finer level.
77 FR 14979 - Transportation Conformity Rule Restructuring Amendments
2012-03-14
... Transportation Conformity Rule Restructuring Amendments AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is amending the transportation conformity rule to finalize provisions that were proposed on August 13, 2010. These amendments restructure several sections of the transportation conformity...
Solid state conformational classification of eight-membered rings
DEFF Research Database (Denmark)
Pérez, J.; García, L.; Kessler, M.
2005-01-01
A statistical classification of the solid state conformation in the title complexes using data retrieved from the Cambridge Structural Database (CSD) has been made. Phosphate and phosphinate complexes show a chair conformation preferably. In phosphonate complexes, the most frequent conformations...
Hippocampus discovery First steps
Directory of Open Access Journals (Sweden)
Eliasz Engelhardt
Full Text Available The first steps of the discovery, and the main discoverers, of the hippocampus are outlined. Arantius was the first to describe a structure he named "hippocampus" or "white silkworm". Despite numerous controversies and alternate designations, the term hippocampus has prevailed until this day as the most widely used term. Duvernoy provided an illustration of the hippocampus and surrounding structures, considered the first by most authors, which appeared more than one and a half century after Arantius' description. Some authors have identified other drawings and texts which they claim predate Duvernoy's depiction, in studies by Vesalius, Varolio, Willis, and Eustachio, albeit unconvincingly. Considering the definition of the hippocampal formation as comprising the hippocampus proper, dentate gyrus and subiculum, Arantius and Duvernoy apparently described the gross anatomy of this complex. The pioneering studies of Arantius and Duvernoy revealed a relatively small hidden formation that would become one of the most valued brain structures.
International Nuclear Information System (INIS)
Widom, Julia R; Marcus, Andrew H; Johnson, Neil P; Von Hippel, Peter H
2013-01-01
We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analogue of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS)—a fluorescence-detected variation of 2D electronic spectroscopy—to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point–dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R 12 = 3.5 ± 0.5 Å , twist angle θ 12 = 5° ± 5° ), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV–2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein–nucleic acid complexes. (paper)
SCit: web tools for protein side chain conformation analysis
Gautier, R.; Camproux, A.-C.; Tufféry, P.
2004-01-01
SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each...
Natural display mode for digital DICOM-conformant diagnostic imaging.
Peters, Klaus-Ruediger; Ramsby, Gale R
2002-09-01
The authors performed this study to investigate the verification of the contrast display properties defined by the digital imaging and communication in medicine (DICOM) PS (picture archiving and communication system [PACS] standard) 3.14-2001 gray-scale display function standard and their dependency on display luminance range and video signal bandwidth. Contrast sensitivity and contrast linearity of DICOM-conformant displays were measured in just-noticeable differences (JNDs) on special perceptual contrast test patterns. Measurements were obtained six times at various display settings under dark room conditions. Display luminance range and video bandwidth had a significant effect on contrast perception. The perceptual promises of the standard could be established only with displays that were calibrated to a unity contrast resolution, at which the number of displayed intensity steps was equal to the number of perceivable contrast steps (JNDs). Such display conditions provide for visual perception information at the level of single-step contrast sensitivity and full-range contrast linearity. These "natural display" conditions also help minimize the Mach banding effects that otherwise reduce contrast sensitivity and contrast linearity. Most, if not all, conventionally used digital display modalities are driven with a contrast resolution larger than 1. Such conditions reduce contrast perception when compared with natural imaging conditions. The DICOM-conformant display conditions at unity contrast resolution were characterized as the "natural display" mode, and, thus, the authors a priori recommend them as being useful for making a primary diagnosis with PACS and teleradiology and as a standard for psychophysical research and performance measurements.
Revealing time bunching effect in single-molecule enzyme conformational dynamics.
Lu, H Peter
2011-04-21
In this perspective, we focus our discussion on how the single-molecule spectroscopy and statistical analysis are able to reveal enzyme hidden properties, taking the study of T4 lysozyme as an example. Protein conformational fluctuations and dynamics play a crucial role in biomolecular functions, such as in enzymatic reactions. Single-molecule spectroscopy is a powerful approach to analyze protein conformational dynamics under physiological conditions, providing dynamic perspectives on a molecular-level understanding of protein structure-function mechanisms. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of a polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. Based on the single-molecule spectroscopic results, molecular dynamics simulation, a random walk model analysis, and a novel 2D statistical correlation analysis, we have revealed a time bunching effect in protein conformational motion dynamics that is critical to enzymatic functions. Bunching effect implies that conformational motion times tend to bunch in a finite and narrow time window. We show that convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. Evidently, the bunching effect is likely common in protein conformational dynamics involving in conformation-gated protein functions. In this perspective, we will also discuss a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anti-correlated fluctuations under a non-correlated noise background. Using this new method, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anti-correlated, or non-correlated; after which, a
Astronomical sketching a step-by-step introduction
Handy, Richard; Perez, Jeremy; Rix, Erika; Robbins, Sol
2007-01-01
This book presents the amateur with fine examples of astronomical sketches and step-by-step tutorials in each medium, from pencil to computer graphics programs. This unique book can teach almost anyone to create beautiful sketches of celestial objects.
Energy Technology Data Exchange (ETDEWEB)
Kumar, Amit; Park, HaJeung; Fang, Pengfei; Parkesh, Raman; Guo, Min; Nettles, Kendall W.; Disney, Matthew D. (Scripps)
2012-03-27
RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5'CUG/3'GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures of a model DM1 triplet repeating construct, 5'r[{und UU}GGGC(C{und U}G){sub 3}GUCC]{sub 2}, refined to 2.20 and 1.52 {angstrom} resolution are disclosed. Here, differences in the orientation of the 5' dangling UU end between the two structures induce changes in the backbone groove width, which reveals that noncanonical 1 x 1 nucleotide UU internal loops can display an ensemble of pairing conformations. In the 2.20 {angstrom} structure, CUGa, the 5' UU forms a one hydrogen-bonded pair with a 5' UU of a neighboring helix in the unit cell to form a pseudoinfinite helix. The central 1 x 1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1 x 1 nucleotide UU internal loops each form a one-hydrogen bond pair. In the 1.52 {angstrom} structure, CUGb, the 5' UU dangling end is tucked into the major groove of the duplex. While the canonically paired bases show no change in base pairing, in CUGb the terminal 1 x 1 nucleotide UU internal loops now form two hydrogen-bonded pairs. Thus, the shift in the major groove induced by the 5' UU dangling end alters noncanonical base patterns. Collectively, these structures indicate that 1 x 1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands.
Pair shell model description of collective motions
International Nuclear Information System (INIS)
Chen Hsitseng; Feng Dahsuan
1996-01-01
The shell model in the pair basis has been reviewed with a case study of four particles in a spherical single-j shell. By analyzing the wave functions according to their pair components, the novel concept of the optimum pairs was developed which led to the proposal of a generalized pair mean-field method to solve the many-body problem. The salient feature of the method is its ability to handle within the framework of the spherical shell model a rotational system where the usual strong configuration mixing complexity is so simplified that it is now possible to obtain analytically the band head energies and the moments of inertia. We have also examined the effects of pair truncation on rotation and found the slow convergence of adding higher spin pairs. Finally, we found that when the SDI and Q .Q interactions are of equal strengths, the optimum pair approximation is still valid. (orig.)
Conformal anomalies in curved space--time
Energy Technology Data Exchange (ETDEWEB)
Duncan, A.
1976-11-01
The general form of the conformal anomaly in a dimensionally regularized theory of massless fermions in a background metric is shown to be determined by the first few terms of weak field perturbation theory.
Steffensen's integral inequality for conformable fractional integrals
Directory of Open Access Journals (Sweden)
Mehmet Zeki Sarikaya
2017-09-01
Full Text Available The aim of this paper is to establish some Steffensen’s type inequalities for conformable fractional integral. The results presented here would provide generalizations of those given in earlier works.
Some Improvements of Conformable Fractional Integral Inequalities
Directory of Open Access Journals (Sweden)
Fuat Usta
2017-07-01
Full Text Available In this study, we wish to set up and present some new conformable fractional integral inequalities of the Gronwall type which have a great variety of implementation area in differential and integral equations.
UV conformal window for asymptotic safety
Bond, Andrew D.; Litim, Daniel F.; Vazquez, Gustavo Medina; Steudtner, Tom
2018-02-01
Interacting fixed points in four-dimensional gauge theories coupled to matter are investigated using perturbation theory up to three loop order. It is shown how fixed points, scaling exponents, and anomalous dimensions are obtained as a systematic power series in a small parameter. The underlying ordering principle is explained and contrasted with conventional perturbation theory and Weyl consistency conditions. We then determine the conformal window with asymptotic safety from the complete next-to-next-to-leading order in perturbation theory. Limits for the conformal window arise due to fixed point mergers, the onset of strong coupling, or vacuum instability. A consistent picture is uncovered by comparing various levels of approximation. The theory remains perturbative in the entire conformal window, with vacuum stability dictating the tightest constraints. We also speculate about a secondary conformal window at strong coupling and estimate its lower limit. Implications for model building and cosmology are indicated.
Timed Safety Automata and Logic Conformance
National Research Council Canada - National Science Library
Young, Frank
1999-01-01
Timed Logic Conformance (TLC) is used to verify the behavioral and timing properties of detailed digital circuits against abstract circuit specifications when both are modeled as Timed Safety Automata (TSA...
Surface Design Based on Discrete Conformal Transformations
Duque, Carlos; Santangelo, Christian; Vouga, Etienne
Conformal transformations are angle-preserving maps from one domain to another. Although angles are preserved, the lengths between arbitrary points are not generally conserved. As a consequence there is always a given amount of distortion associated to any conformal map. Different uses of such transformations can be found in various fields, but have been used by us to program non-uniformly swellable gel sheets to buckle into prescribed three dimensional shapes. In this work we apply circle packings as a kind of discrete conformal map in order to find conformal maps from the sphere to the plane that can be used as nearly uniform swelling patterns to program non-Euclidean sheets to buckle into spheres. We explore the possibility of tuning the area distortion to fit the experimental range of minimum and maximum swelling by modifying the boundary of the planar domain through the introduction of different cutting schemes.
Conformal invariance of extended spinning particle mechanics
International Nuclear Information System (INIS)
Siegel, W.
1988-01-01
Recently a mechanics action has been considered with extended, local, one-dimensional supersymmetry. The authors show this action is conformally invariant in arbitrary spacetime dimensions, and derive the corresponding quantum mechanical restriction on the Lorentz representations it describes
A Novel, Low-Cost Conformable Lander
National Aeronautics and Space Administration — The primary focus of this activity will be to outline a preliminary mechanical design for this conforming lander. Salient issues to be worked include (1) determining...
Hidden conformal symmetry of extremal black holes
International Nuclear Information System (INIS)
Chen Bin; Long Jiang; Zhang Jiaju
2010-01-01
We study the hidden conformal symmetry of extremal black holes. We introduce a new set of conformal coordinates to write the SL(2,R) generators. We find that the Laplacian of the scalar field in many extremal black holes, including Kerr(-Newman), Reissner-Nordstrom, warped AdS 3 , and null warped black holes, could be written in terms of the SL(2,R) quadratic Casimir. This suggests that there exist dual conformal field theory (CFT) descriptions of these black holes. From the conformal coordinates, the temperatures of the dual CFTs could be read directly. For the extremal black hole, the Hawking temperature is vanishing. Correspondingly, only the left (right) temperature of the dual CFT is nonvanishing, and the excitations of the other sector are suppressed. In the probe limit, we compute the scattering amplitudes of the scalar off the extremal black holes and find perfect agreement with the CFT prediction.
Conformal Killing horizons and their thermodynamics
Nielsen, Alex B.; Shoom, Andrey A.
2018-05-01
Certain dynamical black hole solutions can be mapped to static spacetimes by conformal metric transformations. This mapping provides a physical link between the conformal Killing horizon of the dynamical black hole and the Killing horizon of the static spacetime. Using the Vaidya spacetime as an example, we show how this conformal relation can be used to derive thermodynamic properties of such dynamical black holes. Although these horizons are defined quasi-locally and can be located by local experiments, they are distinct from other popular notions of quasi-local horizons such as apparent horizons. Thus in the dynamical Vaidya spacetime describing constant accretion of null dust, the conformal Killing horizon, which is null by construction, is the natural horizon to describe the black hole.
Reciprocity Outperforms Conformity to Promote Cooperation.
Romano, Angelo; Balliet, Daniel
2017-10-01
Evolutionary psychologists have proposed two processes that could give rise to the pervasiveness of human cooperation observed among individuals who are not genetically related: reciprocity and conformity. We tested whether reciprocity outperformed conformity in promoting cooperation, especially when these psychological processes would promote a different cooperative or noncooperative response. To do so, across three studies, we observed participants' cooperation with a partner after learning (a) that their partner had behaved cooperatively (or not) on several previous trials and (b) that their group members had behaved cooperatively (or not) on several previous trials with that same partner. Although we found that people both reciprocate and conform, reciprocity has a stronger influence on cooperation. Moreover, we found that conformity can be partly explained by a concern about one's reputation-a finding that supports a reciprocity framework.
Social conformity despite individual preferences for distinctiveness.
Smaldino, Paul E; Epstein, Joshua M
2015-03-01
We demonstrate that individual behaviours directed at the attainment of distinctiveness can in fact produce complete social conformity. We thus offer an unexpected generative mechanism for this central social phenomenon. Specifically, we establish that agents who have fixed needs to be distinct and adapt their positions to achieve distinctiveness goals, can nevertheless self-organize to a limiting state of absolute conformity. This seemingly paradoxical result is deduced formally from a small number of natural assumptions and is then explored at length computationally. Interesting departures from this conformity equilibrium are also possible, including divergence in positions. The effect of extremist minorities on these dynamics is discussed. A simple extension is then introduced, which allows the model to generate and maintain social diversity, including multimodal distinctiveness distributions. The paper contributes formal definitions, analytical deductions and counterintuitive findings to the literature on individual distinctiveness and social conformity.
General Information for Transportation and Conformity
Transportation conformity is required by the Clean Air Act section 176(c) (42 U.S.C. 7506(c)) to ensure that federal funding and approval are given to highway and transit projects that are consistent with SIP.
Film dosimetry in conformal radiotherapy
Energy Technology Data Exchange (ETDEWEB)
Danciu, C; Proimos, B S [Patras Univ. (Greece). Dept. of Medical Physics
1995-12-01
Dosimetry, through a film sandwiched in a transverse cross-section of a solid phantom, is a method of choice in Conformal Radiotherapy because: (a) the blackness (density) of the film at each point offers a measure of the total dose received at that point, and (b) the film is easily calibrated by exposing a film strip in the same cross-section, through a stationary field. The film must therefore have the following properties: (a) it must be slow, in order not to be overexposed, even at a therapeutic dose of 200 cGy, and (b) the response of the film (density versus dose curve) must be independent of the photon energy spectrum. A few slow films were compared. It was found that the Kodak X-Omat V for therapy verification was the best choice. To investigate whether the film response was independent of the photon energy, response curves for six depths, starting from the depth of maximum dose to the depth of 25 cm, in solid phantom were derived. The vertical beam was perpendicular to the anterior surface of the phantom, which was at the distance of 100 cm from the source and the field was 15x15 cm at that distance. This procedure was repeated for photon beams emitted by a Cobalt-60 unit, two 6 MV and 15 MV Linear Accelerators, as well as a 45 MV Betatron. For each of those four different beams the film response was the same for all six depths. The results, as shown in the diagrams, are very satisfactory. The response curve under a geometry similar to that actually applied, when the film is irradiated in a transverse cross-section of the phantom, was derived. The horizontal beam was almost parallel (angle of 85) to the plane of the film. The same was repeated with the central ray parallel to the film (angle 90) and at a distance of 1.5 cm from the horizontal film. The field size was again 15x15 at the lateral entrance surface of the beam. The response curves remained the same, as when the beam was perpendicular to the films.
International Nuclear Information System (INIS)
Degiovanni, P.
1990-01-01
We compute the modular properties of the possible genus-one characters of some Rational Conformal Field Theories starting from their fusion rules. We show that the possible choices of S matrices are indexed by some automorphisms of the fusion algebra. We also classify the modular invariant partition functions of these theories. This gives the complete list of modular invariant partition functions of Rational Conformal Field Theories with respect to the A N (1) level one algebra. (orig.)
Analytic aspects of rational conformal field theories
International Nuclear Information System (INIS)
Kiritsis, E.B.; Lawrence Berkeley Lab., CA
1990-01-01
The problem of deriving linear differential equations for correlation functions of Rational Conformal Field Theories is considered. Techniques from the theory of fuchsian differential equations are used to show that knowledge of the central charge, dimensions of primary fields and fusion rules are enough to fix the differential equations for one- and two-point functions on the tours. Any other correlation function can be calculated along similar lines. The results settle the issue of 'exact solution' of rational conformal field theories. (orig.)
Virtual and solution conformations of oligosaccharides
International Nuclear Information System (INIS)
Cumming, D.A.; Carver, J.P.
1987-01-01
The possibility that observed nuclear Overhauser enhancements and bulk longitudinal relaxation times, parameters measured by 1 H NMR and often employed in determining the preferred solution conformation of biologically important molecules, are the result of averaging over many conformational states is quantitatively evaluated. Of particular interest was to ascertain whether certain 1 H NMR determined conformations are virtual in nature; i.e., the fraction of the population of molecules actually found at any time within the subset of conformational space defined as the solution conformation is vanishingly small. A statistical mechanics approach was utilized to calculate an ensemble average relaxation matrix from which (NOE)'s and (T 1 )'s are calculated. Model glycosidic linkages in four oligosaccharides were studied. The nature of the resultant population distributions is such that 50% of the molecular population is found within 1% of available microstates, while 99% of the molecular population occupies about 10% of the ensemble microstates, a number roughly equal to that sterically allowed. From this analysis the authors conclude that in many cases quantitative interpretation of NMR relaxation data, which attempts to define a single set of allowable torsion angle values consistent with the observed data, will lead to solution conformations that are either virtual or reflect torsion angle values possessed by a minority of the molecular population. Observed values of NMR relaxation data are the result of the complex interdependence of the population distribution and NOE (or T 1 ) surfaces in conformational space. In conformational analyses, NMR data can therefore be used to test different population distributions calculated from empirical potential energy functions
Effective Conformal Descriptions of Black Hole Entropy
Directory of Open Access Journals (Sweden)
Steven Carlip
2011-07-01
Full Text Available It is no longer considered surprising that black holes have temperatures and entropies. What remains surprising, though, is the universality of these thermodynamic properties: their exceptionally simple and general form, and the fact that they can be derived from many very different descriptions of the underlying microscopic degrees of freedom. I review the proposal that this universality arises from an approximate conformal symmetry, which permits an effective “conformal dual” description that is largely independent of the microscopic details.
On the Conformable Fractional Quantum Mechanics
Mozaffari, F. S.; Hassanabadi, H.; Sobhani, H.; Chung, W. S.
2018-05-01
In this paper, a conformable fractional quantum mechanic has been introduced using three postulates. Then in such a formalism, Schr¨odinger equation, probability density, probability flux and continuity equation have been derived. As an application of considered formalism, a fractional-radial harmonic oscillator has been considered. After obtaining its wave function and energy spectrum, effects of the conformable fractional parameter on some quantities have been investigated and plotted for different excited states.
94: Treatment plan optimization for conformal therapy
International Nuclear Information System (INIS)
Rosen, I.I.; Lane, R.G.
1987-01-01
Computer-controlled conformal radiation therapy techniques can deliver complex treatments utilizing large numbers of beams, gantry angles and beam shapes. Linear programming is well-suited for planning conformal treatments. Given a list of available treatment beams, linear programming calculates the relative weights of the beams such that the objective function is optimized and doses to constraint points are within the prescribed limits. 5 refs.; 3 figs
Testing conformal mapping with kitchen aluminum foil
Haas, S.; Cooke, D. A.; Crivelli, P.
2016-01-01
We report an experimental verification of conformal mapping with kitchen aluminum foil. This experiment can be reproduced in any laboratory by undergraduate students and it is therefore an ideal experiment to introduce the concept of conformal mapping. The original problem was the distribution of the electric potential in a very long plate. The correct theoretical prediction was recently derived by A. Czarnecki (Can. J. Phys. 92, 1297 (2014)).
Conformal (WEYL) invariance and Higgs mechanism
International Nuclear Information System (INIS)
Zhao Shucheng.
1991-10-01
A massive Yang-Mills field theory with conformal invariance and gauge invariance is proposed. It involves gravitational and various gauge interactions, in which all the mass terms appear as a uniform form of interaction m(x) KΦ(x). When the conformal symmetry is broken spontaneously and gravitation is ignored, the Higgs field emerges naturally, where the imaginary mass μ can be described as a background curvature. (author). 7 refs
Conformal Symmetry as a Template for QCD
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S
2004-08-04
Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero {beta} function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as {tau} decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized.
Rapid roll inflation with conformal coupling
International Nuclear Information System (INIS)
Kofman, Lev; Mukohyama, Shinji
2008-01-01
Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1-100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S 3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities
Rapid roll inflation with conformal coupling
Kofman, Lev; Mukohyama, Shinji
2008-02-01
Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D¯3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1 100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities.
Conformal field theories and tensor categories. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics
2014-08-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Conformal field theories and tensor categories. Proceedings
International Nuclear Information System (INIS)
Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph
2014-01-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Universal hydrodynamics of non-conformal branes
International Nuclear Information System (INIS)
Kanitscheider, Ingmar; Skenderis, Kostas
2009-01-01
We examine the hydrodynamic limit of non-conformal branes using the recently developed precise holographic dictionary. We first streamline the discussion of holography for backgrounds that asymptote locally to non-conformal brane solutions by showing that all such solutions can be obtained from higher dimensional asymptotically locally AdS solutions by suitable dimensional reduction and continuation in the dimension. As a consequence, many holographic results for such backgrounds follow from the corresponding results of the Asymptotically AdS case. In particular, the hydrodynamics of non-conformal branes is fully determined in terms of conformal hydrodynamics. Using previous results on the latter we predict the form of the non-conformal hydrodynamic stress tensor to second order in derivatives. Furthermore we show that the ratio between bulk and shear viscosity is fixed by the generalized conformal structure to be ζ/η = 2(1/(d-1)-c s 2 ), where c s is the speed of sound in the fluid.
Conformal Symmetry as a Template for QCD
International Nuclear Information System (INIS)
Brodsky, S
2004-01-01
Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero β function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as τ decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized
Stanislavsky, A.; Volvach, Ya.; Konovalenko, A.; Koval, A.
2017-08-01
In this paper a new sight on the study of solar bursts historically called drift pairs (DPs) is presented. Having a simple morphology on dynamic spectra of radio records (two short components separated in time, and often they are very similar) and discovered at the dawn of radio astronomy, their features remain unexplained totally up to now. Generally, the DPs are observed during the solar storms of type III bursts, but not every storm of type III bursts is linked with DPs. Detected by ground-based instruments at decameter and meter wavelengths, the DP bursts are limited in frequency bandwidth. They can drift from high frequencies to low ones and vice versa. Their frequency drift rate may be both lower and higher than typical rates of type III bursts at the same frequency range. The development of low-frequency radio telescopes and data processing provide additional possibilities in the research. In this context the fresh analysis of DPs, made from recent observations in the summer campaign of 2015, are just considered. Their study was implemented by updated tools of the UTR-2 radio telescope at 9-33 MHz. During 10-12 July of 2015, DPs forming the longest patterns on dynamic spectra are about 7% of the total number of recorded DPs. Their marvelous resemblance in frequency drift rates with the solar S-bursts is discussed.
Production of magnetic monopole pairs
International Nuclear Information System (INIS)
Maher, R.L.
1980-01-01
Using a covariant photon propagator (developed by W.B. Campbell) to represent a photon exchange between a magnetic monopole and an electric charge, the first order production amplitudes in a Feynman-Dyson perturbation expansion and the resulting differential cross-sections are calculated for monopole pair creation from: (i) electron positron annihilation, (ii) photon scattering in the presence of a nucleus, and (iii) electron scattering in the presence of a nucleus. This theory does not specify the spin character of magnetic monopoles, so all processes are calculated twice: for spin zero monopoles and for spin one-half monopoles. In the first and last processes the differential cross-sections have sufficiently different dependences on the production angles (associated with the monopoles momenta), so that near threshold experiments could distinguish between whether monopoles are either spin one-half or spin zero entities. For the t'Hooft monopole mass estimate (5-8 x 10 3 GeV) very high energy particle and photon beam sources would be required to achieve threshold for these production processes
Kahlen, Franz-Josef; Sankaranarayanan, Srikanth; Kar, Aravinda
1997-09-01
Subject of this investigation is a one-step rapid machining process to create miniaturized 3D parts, using the original sample material. An experimental setup where metal powder is fed to the laser beam-material interaction region has been built. The powder is melted and forms planar, 2D geometries as the substrate is moved under the laser beam in XY- direction. After completing the geometry in the plane, the substrate is displaced in Z-direction, and a new layer of material is placed on top of the just completed deposit. By continuous repetition of this process, 3D parts wee created. In particular, the impact of the focal spot size of the high power laser beam on the smallest achievable structures was investigated. At a translation speed of 51 mm/s a minimum material thickness of 590 micrometers was achieved. Also, it was shown that a small Z-displacement has a negligible influence on the continuity of the material deposition over this power range. A high power CO2 laser was used as energy source, the material powder under investigation was stainless steel SS304L. Helium was used as shield gas at a flow rate of 15 1/min. The incident CO2 laser beam power was varied between 300 W and 400 W, with the laser beam intensity distribute in a donut mode. The laser beam was focused to a focal diameter of 600 (Mu) m.
... please turn JavaScript on. Feature: Type 2 Diabetes Step 1: Learn About Diabetes Past Issues / Fall 2014 ... the whole family healthy! Here are four key steps to help you control your diabetes and live ...
Report on Pairing-based Cryptography.
Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily
2015-01-01
This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST's position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed.
Energy Technology Data Exchange (ETDEWEB)
April M. Whaley; Dana L. Kelly; Ronald L. Boring; William J. Galyean
2012-06-01
Step-by-step guidance was developed recently at Idaho National Laboratory for the US Nuclear Regulatory Commission on the use of the Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method for quantifying Human Failure Events (HFEs). This work was done to address SPAR-H user needs, specifically requests for additional guidance on the proper application of various aspects of the methodology. This paper overviews the steps of the SPAR-H analysis process and highlights some of the most important insights gained during the development of the step-by-step directions. This supplemental guidance for analysts is applicable when plant-specific information is available, and goes beyond the general guidance provided in existing SPAR-H documentation. The steps highlighted in this paper are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff.
Multiple stage miniature stepping motor
International Nuclear Information System (INIS)
Niven, W.A.; Shikany, S.D.; Shira, M.L.
1981-01-01
A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed
Second-Order Conformally Equivariant Quantization in Dimension 1|2
Directory of Open Access Journals (Sweden)
Najla Mellouli
2009-12-01
Full Text Available This paper is the next step of an ambitious program to develop conformally equivariant quantization on supermanifolds. This problem was considered so far in (superdimensions 1 and 1|1. We will show that the case of several odd variables is much more difficult. We consider the supercircle S^{1|2} equipped with the standard contact structure. The conformal Lie superalgebra K(2 of contact vector fields on S^{1|2} contains the Lie superalgebra osp(2|2. We study the spaces of linear differential operators on the spaces of weighted densities as modules over osp(2|2. We prove that, in the non-resonant case, the spaces of second order differential operators are isomorphic to the corresponding spaces of symbols as osp(2|2-modules. We also prove that the conformal equivariant quantization map is unique and calculate its explicit formula.
Introductory lectures on Conformal Field Theory and Strings
International Nuclear Information System (INIS)
Randjbar-Daemi, S.; Strathdee, J.
1990-01-01
The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. They are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these
Introductory lectures on conformal field theory and strings
International Nuclear Information System (INIS)
Randjbar-Daemi, S.; Strathdee, J.
1990-01-01
The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. The are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these lectures
CsI Calorimeter for a Compton-Pair Telescope
Grove, Eric J.
We propose to build and test a hodoscopic CsI(Tl) scintillating-crystal calorimeter for a medium-energy γ-ray Compton and pair telescope. The design and technical approach for this calorimeter relies deeply on heritage from the Fermi LAT CsI Calorimeter, but it dramatically improves the low-energy performance of that design by reading out the scintillation light with silicon photomultipliers (SiPMs), making the technology developed for Fermi applicable in the Compton regime. While such a hodoscopic calorimeter is useful for an entire class of medium-energy γ-ray telescope designs, we propose to build it explicitly to support beam tests and balloon flight of the Proto-ComPair telescope, the development and construction of which was funded in a four-year APRA program beginning in 2015 ("ComPair: Steps to a Medium Energy γ-ray Mission" with PI J. McEnery of GSFC). That award did not include funding for its CsI calorimeter subsystem, and this proposal is intended to cover that gap. ComPair is a MIDEX-class instrument concept to perform a high-sensitivity survey of the γ-ray sky from 0.5 MeV to 500 MeV. ComPair is designed to provide a dramatic increase in sensitivity relative to previous instruments in this energy range (predominantly INTEGRAL/SPI and Compton COMPTEL), with the same transformative sensitivity increase - and corresponding scientific return- that the Fermi Large Area Telescope provided relative to Compton EGRET. To enable transformative science over a broad range of MeV energies and with a wide field of view, ComPair is a combined Compton telescope and pair telescope employing a silicon-strip tracker (for Compton scattering and pair conversion and tracking) and a solid-state CdZnTe calorimeter (for Compton absorption) and CsI calorimeter (for pair calorimetry), surrounded by a plastic scintillator anti-coincidence detector. Under the current proposal, we will complete the detailed design, assembly, and test of the CsI calorimeter for the risk
Joko Widodo
2007-01-01
The result of teaching-learning by using Think Pair Share method can improve the studentsâ€™ activities. It can be seen from the steps to apply the Think Pair Share method that focused on student-centre. Think pair share learning has a simple structure, as a basic of the development â€˜cooperative classâ€™ which can help the learning process actively for students, thus it can improve the studentsâ€™ study result. Students actively can show their ability to discuss and share and express the an...
Widodo, Joko
2007-01-01
The result of teaching-learning by using Think Pair Share method can improve the studentsâ€™ activities. It can be seen from the steps to apply the Think Pair Share method that focused on student-centre. Think pair share learning has a simple structure, as a basic of the development â€˜cooperative classâ€™ which can help the learning process actively for students, thus it can improve the studentsâ€™ study result. Students actively can show their ability to discuss and share and express the an...
An Entropic Approach for Pair Trading
Directory of Open Access Journals (Sweden)
Daisuke Yoshikawa
2017-06-01
Full Text Available In this paper, we derive the optimal boundary for pair trading. This boundary defines the points of entry into or exit from the market for a given stock pair. However, if the assumed model contains uncertainty, the resulting boundary could result in large losses. To avoid this, we develop a more robust strategy by accounting for the model uncertainty. To incorporate the model uncertainty, we use the relative entropy as a penalty function in the expected profit from pair trading.
Magnetized pair Bose gas: relativistic superconductor
International Nuclear Information System (INIS)
Daicic, J.; Frankel, N.E.; Kowalenko, V.
1993-01-01
The magnetized Bose gas at temperatures above pair threshold is investigated. New magnetization laws are obtained for a wide range of field strengths, and the gas is shown to exhibit the Meissner effect. Some related results for the Fermi gas, a relativistic paramagnet, are also discussed. It is concluded that the pair gases, through the interplay between pair creation, temperature, field strength, statistics and/in the case of fermions/spin, have remarkable magnetic properties. 14 refs
The effect of tensile stress on the conformational free energy landscape of disulfide bonds.
Directory of Open Access Journals (Sweden)
Padmesh Anjukandi
Full Text Available Disulfide bridges are no longer considered to merely stabilize protein structure, but are increasingly recognized to play a functional role in many regulatory biomolecular processes. Recent studies have uncovered that the redox activity of native disulfides depends on their C-C-S-S dihedrals, χ2 and χ'2. Moreover, the interplay of chemical reactivity and mechanical stress of disulfide switches has been recently elucidated using force-clamp spectroscopy and computer simulation. The χ2 and χ'2 angles have been found to change from conformations that are open to nucleophilic attack to sterically hindered, so-called closed states upon exerting tensile stress. In view of the growing evidence of the importance of C-C-S-S dihedrals in tuning the reactivity of disulfides, here we present a systematic study of the conformational diversity of disulfides as a function of tensile stress. With the help of force-clamp metadynamics simulations, we show that tensile stress brings about a large stabilization of the closed conformers, thereby giving rise to drastic changes in the conformational free energy landscape of disulfides. Statistical analysis shows that native TDi, DO and interchain Ig protein disulfides prefer open conformations, whereas the intrachain disulfide bridges in Ig proteins favor closed conformations. Correlating mechanical stress with the distance between the two a-carbons of the disulfide moiety reveals that the strain of intrachain Ig protein disulfides corresponds to a mechanical activation of about 100 pN. Such mechanical activation leads to a severalfold increase of the rate of the elementary redox S(N2 reaction step. All these findings constitute a step forward towards achieving a full understanding of functional disulfides.
Variational study of the pair hopping model
International Nuclear Information System (INIS)
Fazekas, P.
1990-01-01
We study the ground state of a Hamiltonian introduced by Kolb and Penson for modelling situations in which small electron pairs are formed. The Hamiltonian consists of a tight binding band term, and a term describing the nearest neighbour hopping of electron pairs. We give a Gutzwiller-type variational treatment, first with a single-parameter Ansatz treated in the single site Gutzwiller approximation, and then with more complicated trial wave functions, and an improved Gutzwiller approximation. The calculation yields a transition from a partially paired normal state, in which the spin susceptibility has a diminished value, into a fully paired state. (author). 16 refs, 2 figs
Dual origin of pairing in nuclei
Energy Technology Data Exchange (ETDEWEB)
Idini, A. [University of Jyvaskyla, Department of Physics (Finland); Potel, G. [Michigan State University, National Superconducting Cyclotron Laboratory (United States); Barranco, F. [Escuela Superior de Ingenieros, Universidad de Sevilla, Departamento de Fìsica Aplicada III (Spain); Vigezzi, E., E-mail: enrico.vigezzi@mi.infn.it [INFN Sezione di Milano (Italy); Broglia, R. A. [Università di Milano, Dipartimento di Fisica (Italy)
2016-11-15
The pairing correlations of the nucleus {sup 120}Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong {sup 1}S{sub 0} short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v{sub p}{sup bare}) and long-range (v{sub p}{sup ind}) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.
Pair production in small angle Bhabha scattering
International Nuclear Information System (INIS)
Arbuzov, A.B.; Kuraev, Eh.A.; Merenkov, N.P.; Trentadue, L.
1995-01-01
The radiative corrections due to a pair production in the small angle high energy e + e - Bhabha scattering are considered. The corrections due to the production of virtual pairs as well as real soft and hard ones are calculated analytically. The collinear and semi-collinear kinematical regions of the hard pair production are taken into account. The results in the leading and next-to-leading logarithmic approximations provide the accuracy of Ο (0.1%). The results of numerical calculations show that the effects of pairs production are to be taken into account in the precise luminosity determination at LEP. 9 refs., 3 figs., 2 tabs
Heteroditopic receptors for ion-pair recognition.
McConnell, Anna J; Beer, Paul D
2012-05-21
Ion-pair recognition is a new field of research emerging from cation and anion coordination chemistry. Specific types of heteroditopic receptor designs for ion pairs and the complexity of ion-pair binding are discussed to illustrate key concepts such as cooperativity. The importance of this area of research is reflected by the wide variety of potential applications of ion-pair receptors, including applications as membrane transport and salt solubilization agents and sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dual origin of pairing in nuclei
Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.
2016-11-01
The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.
Finding Maximal Pairs with Bounded Gap
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Lyngsø, Rune B.; Pedersen, Christian N. S.
1999-01-01
. In this paper we present methods for finding all maximal pairs under various constraints on the gap. In a string of length n we can find all maximal pairs with gap in an upper and lower bounded interval in time O(n log n+z) where z is the number of reported pairs. If the upper bound is removed the time reduces...... to O(n+z). Since a tandem repeat is a pair where the gap is zero, our methods can be seen as a generalization of finding tandem repeats. The running time of our methods equals the running time of well known methods for finding tandem repeats....
Application of Conformational Space Search in Drug Action | Adikwu ...
African Journals Online (AJOL)
The role of conformational space in drug action is presented. Two examples of molecules in different therapeutic groups are presented. Conformational space search will lead to isolating the exact conformation with the desired medicinal properties. Many conformations of a plant isolate may exist which are active, weakly ...
47 CFR 2.906 - Declaration of Conformity.
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Declaration of Conformity. 2.906 Section 2.906... Conformity. (a) A Declaration of Conformity is a procedure where the responsible party, as defined in § 2.909... of Conformity attaches to all items subsequently marketed by the responsible party which are...
40 CFR 91.106 - Certificate of conformity.
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Certificate of conformity. 91.106... Provisions § 91.106 Certificate of conformity. (a) Every manufacturer of a new marine SI engine produced... obtain a certificate of conformity covering each engine family. The certificate of conformity must be...
47 CFR 68.320 - Supplier's Declaration of Conformity.
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Supplier's Declaration of Conformity. 68.320... Approval § 68.320 Supplier's Declaration of Conformity. (a) Supplier's Declaration of Conformity is a... Supplier's Declaration of Conformity attaches to all items subsequently marketed by the responsible party...
21 CFR 26.70 - Conformity assessment bodies.
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Conformity assessment bodies. 26.70 Section 26.70...Frameworkâ Provisions § 26.70 Conformity assessment bodies. Each party recognizes that the conformity... conformity in relation to its requirements as specified in subpart B of this part. The parties shall specify...
A note on fashion cycles, novelty and conformity
Federica Alberti
2013-01-01
We develop a model in which novelty and conformity motivate fashion behavior. Fashion cycles occur if conformity is not too high. The duration of fashion cycles depends on individual-specific conformity, novelty, and the number of available styles. The use of individual-specific novelty and conformity allows us to also identify fashion leaders.
Path operator algebras in conformal quantum field theories
International Nuclear Information System (INIS)
Roesgen, M.
2000-10-01
Two different kinds of path algebras and methods from noncommutative geometry are applied to conformal field theory: Fusion rings and modular invariants of extended chiral algebras are analyzed in terms of essential paths which are a path description of intertwiners. As an example, the ADE classification of modular invariants for minimal models is reproduced. The analysis of two-step extensions is included. Path algebras based on a path space interpretation of character identities can be applied to the analysis of fusion rings as well. In particular, factorization properties of character identities and therefore of the corresponding path spaces are - by means of K-theory - related to the factorization of the fusion ring of Virasoro- and W-algebras. Examples from nonsupersymmetric as well as N=2 supersymmetric minimal models are discussed. (orig.)
Effects of walking speed on the step-by-step control of step width.
Stimpson, Katy H; Heitkamp, Lauren N; Horne, Joscelyn S; Dean, Jesse C
2018-02-08
Young, healthy adults walking at typical preferred speeds use step-by-step adjustments of step width to appropriately redirect their center of mass motion and ensure mediolateral stability. However, it is presently unclear whether this control strategy is retained when walking at the slower speeds preferred by many clinical populations. We investigated whether the typical stabilization strategy is influenced by walking speed. Twelve young, neurologically intact participants walked on a treadmill at a range of prescribed speeds (0.2-1.2 m/s). The mediolateral stabilization strategy was quantified as the proportion of step width variance predicted by the mechanical state of the pelvis throughout a step (calculated as R 2 magnitude from a multiple linear regression). Our ability to accurately predict the upcoming step width increased over the course of a step. The strength of the relationship between step width and pelvis mechanics at the start of a step was reduced at slower speeds. However, these speed-dependent differences largely disappeared by the end of a step, other than at the slowest walking speed (0.2 m/s). These results suggest that mechanics-dependent adjustments in step width are a consistent component of healthy gait across speeds and contexts. However, slower walking speeds may ease this control by allowing mediolateral repositioning of the swing leg to occur later in a step, thus encouraging slower walking among clinical populations with limited sensorimotor control. Published by Elsevier Ltd.
Conformal anomaly of super Wilson loop
Energy Technology Data Exchange (ETDEWEB)
Belitsky, A.V., E-mail: andrei.belitsky@asu.edu [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)
2012-09-11
Classically supersymmetric Wilson loop on a null polygonal contour possesses all symmetries required to match it onto non-MHV amplitudes in maximally supersymmetric Yang-Mills theory. However, to define it quantum mechanically, one is forced to regularize it since perturbative loop diagrams are not well defined due to presence of ultraviolet divergences stemming from integration in the vicinity of the cusps. A regularization that is adopted by practitioners by allowing one to use spinor helicity formalism, on the one hand, and systematically go to higher orders of perturbation theory is based on a version of dimensional regularization, known as Four-Dimensional Helicity scheme. Recently it was demonstrated that its use for the super Wilson loop at one loop breaks both conformal symmetry and Poincare supersymmetry. Presently, we exhibit the origin for these effects and demonstrate how one can undo this breaking. The phenomenon is alike the one emerging in renormalization group mixing of conformal operators in conformal theories when one uses dimensional regularization. The rotation matrix to the diagonal basis is found by means of computing the anomaly in the Ward identity for the conformal boost. Presently, we apply this ideology to the super Wilson loop. We compute the one-loop conformal anomaly for the super Wilson loop and find that the anomaly depends on its Grassmann coordinates. By subtracting this anomalous contribution from the super Wilson loop we restore its interpretation as a dual description for reduced non-MHV amplitudes which are expressed in terms of superconformal invariants.
Seed conformal blocks in 4D CFT
Energy Technology Data Exchange (ETDEWEB)
Echeverri, Alejandro Castedo; Elkhidir, Emtinan; Karateev, Denis [SISSA and INFN,Via Bonomea 265, I-34136 Trieste (Italy); Serone, Marco [SISSA and INFN,Via Bonomea 265, I-34136 Trieste (Italy); ICTP,Strada Costiera 11, I-34151 Trieste (Italy)
2016-02-29
We compute in closed analytical form the minimal set of “seed' conformal blocks associated to the exchange of generic mixed symmetry spinor/tensor operators in an arbitrary representation (ℓ,ℓ̄) of the Lorentz group in four dimensional conformal field theories. These blocks arise from 4-point functions involving two scalars, one (0,|ℓ−ℓ̄|) and one (|ℓ−ℓ̄|,0) spinors or tensors. We directly solve the set of Casimir equations, that can elegantly be written in a compact form for any (ℓ,ℓ̄), by using an educated ansatz and reducing the problem to an algebraic linear system. Various details on the form of the ansatz have been deduced by using the so called shadow formalism. The complexity of the conformal blocks depends on the value of p=|ℓ−ℓ̄| and grows with p, in analogy to what happens to scalar conformal blocks in d even space-time dimensions as d increases. These results open the way to bootstrap 4-point functions involving arbitrary spinor/tensor operators in four dimensional conformal field theories.
SCit: web tools for protein side chain conformation analysis.
Gautier, R; Camproux, A-C; Tufféry, P
2004-07-01
SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit.
Pair plasma in pulsar magnetospheres
International Nuclear Information System (INIS)
Asseo, Estelle
2003-01-01
The main features of radiation received from pulsars imply that they are neutron stars which contain an extremely intense magnetic field and emit coherently in the radio domain. Most recent studies attribute the origin of the coherence to plasma instabilities arising in pulsar magnetospheres; they mainly concern the linear, or the nonlinear, character of the involved unstable waves. We briefly introduce radio pulsars and specify physical conditions in pulsar emission regions: geometrical properties, magnetic field, pair creation processes and repartition of relativistic charged particles. We point to the main ingredients of the linear theory, extensively explored since the 1970s: (i) a dispersion relation specific to the pulsar case; (ii) the characteristics of the waves able to propagate in relativistic pulsar plasmas; (iii) the different ways in which a two-humped distribution of particles may arise in a pulsar magnetosphere and favour the development of a two-stream instability. We sum up recent improvements of the linear theory: (i) the determination of a 'coupling function' responsible for high values of the wave field components and electromagnetic energy available; (ii) the obtention of new dispersion relations for actually anisotropic pulsar plasmas with relativistic motions and temperatures; (iii) the interaction between a plasma and a beam, both with relativistic motions and temperatures; (iv) the interpretation of observed 'coral' and 'conal' features, associated with the presence of boundaries and curved magnetic field lines in the emission region; (v) the detailed topology of the magnetic field in the different parts of the emission region and its relation to models recently proposed to interpret drifting subpulses observed from PSR 0943+10, showing 20 sub-beams of emission. We relate the nonlinear evolution of the two-stream instability and development of strong turbulence in relativistic pulsar plasmas to the emergence of relativistic solitons, able
Differential active site loop conformations mediate promiscuous activities in the lactonase SsoPox.
Directory of Open Access Journals (Sweden)
Julien Hiblot
Full Text Available Enzymes are proficient catalysts that enable fast rates of Michaelis-complex formation, the chemical step and products release. These different steps may require different conformational states of the active site that have distinct binding properties. Moreover, the conformational flexibility of the active site mediates alternative, promiscuous functions. Here we focused on the lactonase SsoPox from Sulfolobus solfataricus. SsoPox is a native lactonase endowed with promiscuous phosphotriesterase activity. We identified a position in the active site loop (W263 that governs its flexibility, and thereby affects the substrate specificity of the enzyme. We isolated two different sets of substitutions at position 263 that induce two distinct conformational sampling of the active loop and characterized the structural and kinetic effects of these substitutions. These sets of mutations selectively and distinctly mediate the improvement of the promiscuous phosphotriesterase and oxo-lactonase activities of SsoPox by increasing active-site loop flexibility. These observations corroborate the idea that conformational diversity governs enzymatic promiscuity and is a key feature of protein evolvability.
Influence of DNA conformation on radiation-induced single-strand breaks
International Nuclear Information System (INIS)
Barone, F.; Belli, M.; Mazzei, F.
1994-01-01
We performed experiments on two DNA fragments of about 300 bp having different conformation to test whether radiation-induced single-strand breakage is dependent on DNA conformation. Breakage analysis was carried out by denaturing polyacrylamide gel electrophoresis, which allows determination of the broken site at single nucleotide resolution. We found uniform cutting patterns in B-form regions. On the contrary, X- or γ-irradiation of curved fragments of kinetoplast DNA showed that the distribution of single-strand breaks was not uniform along the fragment, as the cleavage pattern was modulated in phase with the runs of A-T pairs. This modulation likely reflected the reduced accessibility of the sites which on hydroxyl-radical attack give rise to strand breaks. The cleavage pattern was phased with the runs of A-T pairs. Moreover, the overall yield of strand breaks was considerably lower in curved DNA fragments than in those with extended straight regions. The conformation effect found here indicates that the cleavage pattern reflects the fine structural features of DNA. (orig./MG)
The conformal method and the conformal thin-sandwich method are the same
International Nuclear Information System (INIS)
Maxwell, David
2014-01-01
The conformal method developed in the 1970s and the more recent Lagrangian and Hamiltonian conformal thin-sandwich methods are techniques for finding solutions of the Einstein constraint equations. We show that they are manifestations of a single conformal method: there is a straightforward way to convert back and forth between the parameters for these methods so that the corresponding solutions of the Einstein constraint equations agree. The unifying idea is the need to clearly distinguish tangent and cotangent vectors to the space of conformal classes on a manifold, and we introduce a vocabulary for working with these objects without reference to a particular representative background metric. As a consequence of these conceptual advantages, we demonstrate how to strengthen previous near-CMC (constant mean curvature) existence and non-existence theorems for the original conformal method to include metrics with scalar curvatures that change sign. (paper)
DEFF Research Database (Denmark)
Markham, George D.; Norrby, Per-Ola; Bock, Charles W.
2002-01-01
S-Adenosylmethionine (AdoMet) and other sulfonium ions play central roles in the metabolism of all organisms. The conformational preferences of AdoMet and two other biologically important sulfonium ions, S-methylmethionine and dimethylsulfonioproprionic acid, have been investigated by NMR...... and computational studies. Molecular mechanics parameters for the sulfonium center have been developed for the AMBER force field to permit analysis of NMR results and to enable comparison of the relative energies of the different conformations of AdoMet that have been found in crystal structures of complexes...... with proteins. S-Methylmethionine and S-dimethylsulfonioproprionate adopt a variety of conformations in aqueous solution; a conformation with an electrostatic interaction between the sulfonium sulfur and the carboxylate group is not noticeably favored, in contrast to the preferred conformation found by in vacuo...
Gordon, Keith C.; McAdam, C. John; Moratti, Stephen C.; Shillito, Georgina E.; Simpson, Jim
2017-10-01
Crystalline dibenzo-tetroxecin (I) has been prepared from a reaction between catechol and dichloromethane and its molecular and crystal structure, together with the Raman spectrum of the material in the solid state and in solution, is reported. The molecular structure shows the molecule adopts an anti or stepped conformation. Density functional theory (DFT) optimisation and frequency calculations using the B3LYP functional with the 6-31G(d) basis set showed the presence of syn- and anti-conformers of (I), with the anti-conformer predicted to be the lower in energy by 13.6 kJ mol-1. The vibrational frequencies and relative Raman intensities of the anti-conformer are well modelled by the DFT calculations. The bond lengths and angles obtained for the anti-conformer are also in good agreement with the crystal structure. The crystal structure of (I) is stabilised by intermolecular Csbnd H⋯O hydrogen bonds that generate a three dimensional network.
Conformal blocks in Virasoro and W theories: Duality and the Calogero-Sutherland model
International Nuclear Information System (INIS)
Estienne, Benoit; Pasquier, Vincent; Santachiara, Raoul; Serban, Didina
2012-01-01
We study the properties of the conformal blocks of the conformal field theories with Virasoro or W-extended symmetry. When the conformal blocks contain only second-order degenerate fields, the conformal blocks obey second order differential equations and they can be interpreted as ground-state wave functions of a trigonometric Calogero-Sutherland Hamiltonian with non-trivial braiding properties. A generalized duality property relates the two types of second order degenerate fields. By studying this duality we found that the excited states of the Calogero-Sutherland Hamiltonian are characterized by two partitions, or in the case of WA k-1 theories by k partitions. By extending the conformal field theories under consideration by a u(1) field, we find that we can put in correspondence the states in the Hilbert state of the extended CFT with the excited non-polynomial eigenstates of the Calogero-Sutherland Hamiltonian. When the action of the Calogero-Sutherland integrals of motion is translated on the Hilbert space, they become identical to the integrals of motion recently discovered by Alba, Fateev, Litvinov and Tarnopolsky in Liouville theory in the context of the AGT conjecture. Upon bosonization, these integrals of motion can be expressed as a sum of two, or in general k, bosonic Calogero-Sutherland Hamiltonian coupled by an interaction term with a triangular structure. For special values of the coupling constant, the conformal blocks can be expressed in terms of Jack polynomials with pairing properties, and they give electron wave functions for special Fractional Quantum Hall states.
Using Analogy to Solve a Three-Step Physics Problem
Lin, Shih-Yin; Singh, Chandralekha
2010-10-01
In a companion paper, we discuss students' ability to take advantage of what they learn from a solved problem and transfer their learning to solve a quiz problem that has different surface features but the same underlying physics principles. Here, we discuss students' ability to perform analogical reasoning between another pair of problems. Both the problems can be solved using the same physics principles. However, the solved problem provided was a two-step problem (which can be solved by decomposing it into two sub-problems) while the quiz problem was a three-step problem. We find that it is challenging for students to extend what they learned from a two-step problem to solve a three-step problem.
Scanning tunneling microscope with a rotary piezoelectric stepping motor
Yakimov, V. N.
1996-02-01
A compact scanning tunneling microscope (STM) with a novel rotary piezoelectric stepping motor for coarse positioning has been developed. An inertial method for rotating of the rotor by the pair of piezoplates has been used in the piezomotor. Minimal angular step size was about several arcsec with the spindle working torque up to 1 N×cm. Design of the STM was noticeably simplified by utilization of the piezomotor with such small step size. A shaft eccentrically attached to the piezomotor spindle made it possible to push and pull back the cylindrical bush with the tubular piezoscanner. A linear step of coarse positioning was about 50 nm. STM resolution in vertical direction was better than 0.1 nm without an external vibration isolation.
Conformational sampling in template-free protein loop structure modeling: an overview.
Li, Yaohang
2013-01-01
Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a "mini protein folding problem" under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized.
CONFORMATIONAL SAMPLING IN TEMPLATE-FREE PROTEIN LOOP STRUCTURE MODELING: AN OVERVIEW
Directory of Open Access Journals (Sweden)
Yaohang Li
2013-02-01
Full Text Available Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized.
The conforming brain and deontological resolve.
Pincus, Melanie; LaViers, Lisa; Prietula, Michael J; Berns, Gregory
2014-01-01
Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC) during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.
Double-trace deformations of conformal correlations
Giombi, Simone; Kirilin, Vladimir; Perlmutter, Eric
2018-02-01
Large N conformal field theories often admit unitary renormalization group flows triggered by double-trace deformations. We compute the change in scalar four-point functions under double-trace flow, to leading order in 1/ N. This has a simple dual in AdS, where the flow is implemented by a change of boundary conditions, and provides a physical interpretation of single-valued conformal partial waves. We extract the change in the conformal dimensions and three-point coefficients of infinite families of double-trace composite operators. Some of these quantities are found to be sign-definite under double-trace flow. As an application, we derive anomalous dimensions of spinning double-trace operators comprised of non-singlet constituents in the O( N) vector model.
Causality Constraints in Conformal Field Theory
CERN. Geneva
2015-01-01
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinni...
Asymptotic mass degeneracies in conformal field theories
International Nuclear Information System (INIS)
Kani, I.; Vafa, C.
1990-01-01
By applying a method of Hardy and Ramanujan to characters of rational conformal field theories, we find an asymptotic expansion for degeneracy of states in the limit of large mass which is exact for strings propagating in more than two uncompactified space-time dimensions. Moreover we explore how the rationality of the conformal theory is reflected in the degeneracy of states. We also consider the one loop partition function for strings, restricted to physical states, for arbitrary (irrational) conformal theories, and obtain an asymptotic expansion for it in the limit that the torus degenerates. This expansion depends only on the spectrum of (physical and unphysical) relevant operators in the theory. We see how rationality is consistent with the smoothness of mass degeneracies as a function of moduli. (orig.)
Hidden symmetries of integrable conformal mechanical systems
International Nuclear Information System (INIS)
Hakobyan, Tigran; Krivonos, Sergey; Lechtenfeld, Olaf; Nersessian, Armen
2010-01-01
We split the generic conformal mechanical system into a 'radial' and an 'angular' part, where the latter is defined as the Hamiltonian system on the orbit of the conformal group, with the Casimir function in the role of the Hamiltonian. We reduce the analysis of the constants of motion of the full system to the study of certain differential equations on this orbit. For integrable mechanical systems, the conformal invariance renders them superintegrable, yielding an additional series of conserved quantities originally found by Wojciechowski in the rational Calogero model. Finally, we show that, starting from any N=4 supersymmetric 'angular' Hamiltonian system one may construct a new system with full N=4 superconformal D(1,2;α) symmetry.
The conforming brain and deontological resolve.
Directory of Open Access Journals (Sweden)
Melanie Pincus
Full Text Available Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.
An introduction to conformal field theory
International Nuclear Information System (INIS)
Gaberdiel, Matthias R.; Fitzwilliam College, Cambridge
2000-01-01
A comprehensive introduction to two-dimensional conformal field theory is given. The structure of the meromorphic subtheory is described in detail, and a number of examples are presented explicitly. Standard constructions such as the coset and the orbifold construction are explained. The concept of a representation of the meromorphic theory is introduced, and the role of Zhu's algebra in classifying highest weight representations is elucidated. The fusion product of two representations and the corresponding fusion rules are defined, and Verlinde's formula is explained. Finally, higher correlation functions are considered, and the polynomial relations of Moore and Seiberg and the quantum group structure of chiral conformal field theory are discussed. The treatment is relatively general and also allows for a description of less well known classes of theories such as logarithmic conformal field theories. (author)
Coadjoint orbits and conformal field theory
International Nuclear Information System (INIS)
Taylor, W. IV.
1993-08-01
This thesis is primarily a study of certain aspects of the geometric and algebraic structure of coadjoint orbit representations of infinite-dimensional Lie groups. The goal of this work is to use coadjoint orbit representations to construct conformal field theories, in a fashion analogous to the free-field constructions of conformal field theories. The new results which are presented in this thesis are as follows: First, an explicit set of formulae are derived giving an algebraic realization of coadjoint orbit representations in terms of differential operators acting on a polynomial Fock space. These representations are equivalent to dual Verma module representations. Next, intertwiners are explicitly constructed which allow the construction of resolutions for irreducible representations using these Fock space realizations. Finally, vertex operators between these irreducible representations are explicitly constructed as chain maps between the resolutions; these vertex operators allow the construction of rational conformal field theories according to an algebraic prescription
Conformal geometry computational algorithms and engineering applications
Jin, Miao; He, Ying; Wang, Yalin
2018-01-01
This book offers an essential overview of computational conformal geometry applied to fundamental problems in specific engineering fields. It introduces readers to conformal geometry theory and discusses implementation issues from an engineering perspective. The respective chapters explore fundamental problems in specific fields of application, and detail how computational conformal geometric methods can be used to solve them in a theoretically elegant and computationally efficient way. The fields covered include computer graphics, computer vision, geometric modeling, medical imaging, and wireless sensor networks. Each chapter concludes with a summary of the material covered and suggestions for further reading, and numerous illustrations and computational algorithms complement the text. The book draws on courses given by the authors at the University of Louisiana at Lafayette, the State University of New York at Stony Brook, and Tsinghua University, and will be of interest to senior undergraduates, gradua...
Causality constraints in conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Hartman, Thomas; Jain, Sachin; Kundu, Sandipan [Department of Physics, Cornell University,Ithaca, New York (United States)
2016-05-17
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂ϕ){sup 4} coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators.
Stereo Pair: Wellington, New Zealand
2000-01-01
Wellington, the capital city of New Zealand, is located on the shores of Port Nicholson, a natural harbor at the south end of North Island. The city was founded in 1840 by British emigrants and now has a regional population of more than 400,000 residents. As seen here, the natural terrain imposes strong control over the urban growth pattern (urban features generally appear gray or white in this view). Rugged hills generally rising to 300 meters (1,000 feet) help protect the city and harbor from strong winter windsNew Zealand is seismically active and faults are readily seen in the topography. The Wellington Fault forms the straight northwestern (left) shoreline of the harbor. Toward the southwest (down) the fault crosses through the city, then forms linear canyons in the hills before continuing offshore at the bottom. Toward the northeast (upper right) the fault forms the sharp mountain front along the northern edge of the heavily populated Hutt Valley.This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced true color Landsat7 satellite image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30 meter (99 foot) spatial resolution of most Landsat images and will provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) data Center, Sioux Falls, South Dakota.Elevation data used in this image
SRTM Stereo Pair: Fiji Islands
2000-01-01
image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.This image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (about 200 feet) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.Size: 192 km (119 miles) x 142 km (88 miles) Location: 17.8 deg. South lat., 178.0 deg. East lon. Orientation: North at top Date Acquired: February 19, 2000 Image: NASA/JPL/NIMA
Hole pairing induced by antiferromagnetic spin fluctuations
International Nuclear Information System (INIS)
Su, Z.B.; Yu Lu; Dong, J.M.; Tosatti, E.
1987-08-01
The effective interaction induced by antiferromagnetic spin fluctuations is considered in the random phase approximation in the context of the recently discovered high T c oxide superconductors. This effective attraction favours a triplet pairing of holes. The implications of such pairing mechanism are discussed in connection with the current experimental observations. (author). 30 refs, 2 figs
Exploring Pair Programming Benefits for MIS Majors
Dongo, Tendai; Reed, April H.; O'Hara, Margaret
2016-01-01
Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS) and Software Engineering (SE) majors have identified benefits such as technical productivity, program/design quality, academic…
Exclusive production of W pairs in CMS
INSPIRE-00002838
2014-01-01
We report the results on the search for exclusive production of $W$ pairs in the LHC with data collected by the Compact Muon Solenoid detector in proton-proton collisions at $\\sqrt{s}$~=~7~TeV. The analysis comprises the two-photon production of a $W$ pairs, ${pp\\to p\\,W^{+}W^{-}\\,p\\to p\\,\
Exclusive production of $W$ pairs in CMS
Da Silveira, Gustavo Gil; CMS
2014-01-01
We report the results on the search for exclusive production of $W$ pairs in the LHC with data collected by the Compact Muon Solenoid detector in proton-proton collisions at $\\sqrt{s}$~=~7~TeV. The analysis comprises the two-photon production of a $W$ pairs, ${pp\\to p\\,W^{+}W^{-}\\,p\\to p\\,\
Becoming independent through au pair migration
DEFF Research Database (Denmark)
Dalgas, Karina Märcher
2015-01-01
. This article argues that, despite this critique, au pairing does play an important formative role for young Filipinas because it opens up for experiences abroad that enable them to be recognised as independent adults in Philippine society. Rather than autonomy, however, au pairs define their independence...
Indian Academy of Sciences (India)
ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.
A New Secure Pairing Protocol using Biometrics
Buhan, I.R.
2008-01-01
Secure Pairing enables two devices, which share no prior context with each other, to agree upon a security association that they can use to protect their subsequent communication. Secure pairing offers guarantees of the association partner identity and it should be resistant to eavesdropping or to a
Pair creation at large inherent angles
International Nuclear Information System (INIS)
Chen, P.; Tauchi, T.; Schroeder, D.V.
1992-01-01
In the next-generation linear colliders, the low-energy e + e - pairs created during the collision of high-energy e + e - beams would cause potential deleterious background problems to the detectors. At low collider energies, the pairs are made essentially by the incoherent process, where the pair is created by the interaction of beamstrahlung photons on the individual particles in the oncoming beam. This problem was first identified by Zolotarev, et al. At energies where the beamstrahlung parameter Υ lies approximately in the range 0.6 approx-lt Υ approx-lt 100, pair creation from the beamstrahlung photons is dominated by a coherent process, first noted by Chen. The seriousness of this pair creation problem lies in the transverse momenta that the pair particles carry when leaving the interaction point (IP) with large angles. Since the central issue is the transverse momentum for particles with large angles, the authors notice that there is another source for it. Namely, when the pair particles are created at low energies, the intrinsic angles of these pairs when produced may already be large. In this paper they reinvestigate the problem, following essentially the same equivalent photon approach, but with changes in specific details including the virtual photon spectrum. In addition, various assumptions are made more explicit. The formulas derived are then applied to the collider parameters designed by Palmer
Optimized dose conformation of multi-leaf collimator fields
International Nuclear Information System (INIS)
Serago, Christopher F.; Buskirk, Steven J.; Foo, May L.; McLaughlin, Mark P.
1996-01-01
Purpose/Objective: Current commercially available multi-leaf collimators (MLC) have leaf widths of about 1 cm. These leaf widths may produce stepped dose gradients at the fields edges at the 50% dose level. Small local perturbations of the dose distribution from the prescribed/expected dose distribution may not be acceptable for some clinical applications. Improvements to the conformation of the MLC dose distribution may be achieved using multiple exposures per MLC field, with either shifting the table/patient position, or rotating the orientation of the MLC jaws between exposures. Material and Methods: Dose distributions for MLC, primary jaws only, and lead alloy block fields were measured with film dosimetry for 6 and 20 MV photon beams in a solid water phantom. Square, circular, and typical clinical prostate, brain, lung, esophagus, and head and neck fields were measured. MLC field shapes were produced using a commercial MLC with a leaf width of 1 cm at the treatment isocenter. The dose per MLC field was delivered in either single (conventional) or multiple exposures. The table(patient) position or the collimator rotation was shifted between exposures when multiple exposure MLC fields were used. Differences in the dose distribution were evaluated at the 90% and 50% isodose level. Displacements of the measured 50% isodose from the prescribed/expected 50% isodose were measured at 5 degree intervals. Results: Measurements of the penumbra at a 10 cm depth for square fields show that using double exposure MLC fields with .5 cm table index decreases the effective penumbra by 1 mm. For clinical shaped fields, displacements between the prescribed/expected 50% isodose and the measured 50% isodose for conventional single exposure MLC fields are measured to be as great as 9 mm, and discrepancies on the order of 5 to 6 mm are common. In contrast, the maximum displacement errors measured with multiple exposure MLC fields are less than 5 mm and rarely more than 4 mm. In some