WorldWideScience

Sample records for pacls methods application

  1. Comparison of the Performance of Poly Aluminum Chloride (PACl, Ferric Chloride (FeCl3, in Turbidity and Organic Matter Removal; from Water Source, Case-Study: Karaj River, in Tehran Water Treatment Plant No. 2

    Directory of Open Access Journals (Sweden)

    Mohammad Abdolah zadeh

    2009-06-01

    Full Text Available Coagulation and flocculation are the principal units in water treatment processes. In this study, the Jar test was used to investigate the effects of the pH and TOC on FeCl3 and PACl coagulants for further removal of turbidity, organic matter, aluminum, total organic carbon (TOC, dissolved organic carbon (DOC, organic Aadsorption at a wavelength of 254 nm (UV254 nm , alkalinity, residual aluminum and ferric, total trihalomethans (TTHMs in the Karaj River in the year 2007- 2008. These experiments were conducted through a bench scale study using conventional coagulation in the influent to Tehran Water Treatment Plant No. 2 (TWTP2.With normal pH levels, PACl demonstrated more efficiency than FeCl3 in removing turbidity, TOC, UV254 nm, and TTHMs. The lower coagulant consumption, high floc size, lower floc detention time, lower sludge production, lack of the need for pH adjustment in turbidity of 25 NTU and the lower alum consumption were the advantages of PACl application instead of FeCl3 as a coagulant. Also, PACl application was efficient at low turbidity (2 NTU, average turbidity (6 NTU, and high turbidity (100 NTU in TOC, turbidity, UV254 nm , and DOC removal. Thus, PACl is an economical alternative as a coagulant in TWTP2.

  2. Characteristics of BPA removal from water by PACl-Al13 in coagulation process.

    Science.gov (United States)

    Xiaoying, Ma; Guangming, Zeng; Chang, Zhang; Zisong, Wang; Jian, Yu; Jianbing, Li; Guohe, Huang; Hongliang, Liu

    2009-09-15

    This paper discussed the coagulation characteristics of BPA with polyaluminum chloride (PACl-Al(13)) as coagulant, examined the impact of coagulation pH, PACl-Al(13) dosage, TOC (total organic carbon) and turbidity on BPA removal, and analyzed the possible dominant mechanisms in water coagulation process. Formation and performance of flocs during coagulation processes were monitored using photometric dispersion analyzer (PDA). When the concentration of humic acid matters and turbidity was low in the solution, the experimental results showed that the removal of BPA experienced increase and subsequently decrease with the PACl-Al(13) dosage increasing. The optimal PACl-Al(13) dosage was found at BPA/PACl-Al(13)=1:2.6(M/M) under our experiment conditions. Results show that the maximum BPA removal efficiency occurred at pH 9.0 due to the adsorption by Al(13) aggregates onto BPA rather than charge neutralization mechanism by polynuclear aluminous salts in the solution. The humic acid matters and kaolin in the solution have significant effect on BPA removal with PACl-Al(13) in the coagulation. The BPA removal will be weakened at high humic matters. The removal rate of BPA increased and subsequently decreased with the turbidity increasing.

  3. Sparse Classification - Methods & Applications

    DEFF Research Database (Denmark)

    Einarsson, Gudmundur

    for analysing such data carry the potential to revolutionize tasks such as medical diagnostics where often decisions need to be based on only a few high-dimensional observations. This explosion in data dimensionality has sparked the development of novel statistical methods. In contrast, classical statistics...

  4. Kriging : Methods and Applications

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2017-01-01

    In this chapter we present Kriging— also known as a Gaussian process (GP) model— which is a mathematical interpolation method. To select the input combinations to be simulated, we use Latin hypercube sampling (LHS); we allow uniform and non-uniform distributions of the simulation inputs. Besides

  5. Combinatorial methods with computer applications

    CERN Document Server

    Gross, Jonathan L

    2007-01-01

    Combinatorial Methods with Computer Applications provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. Requiring only a foundation in discrete mathematics, it can serve as the textbook in a combinatorial methods course or in a combined graph theory and combinatorics course.After an introduction to combinatorics, the book explores six systematic approaches within a comprehensive framework: sequences, solving recurrences, evaluating summation exp

  6. Informetrics theory, methods and applications

    CERN Document Server

    Qiu, Junping; Yang, Siluo; Dong, Ke

    2017-01-01

    This book provides an accessible introduction to the history, theory and techniques of informetrics. Divided into 14 chapters, it develops the content system of informetrics from the theory, methods and applications; systematically analyzes the six basic laws and the theory basis of informetrics and presents quantitative analysis methods such as citation analysis and computer-aided analysis. It also discusses applications in information resource management, information and library science, science of science, scientific evaluation and the forecast field. Lastly, it describes a new development in informetrics- webometrics. Providing a comprehensive overview of the complex issues in today's environment, this book is a valuable resource for all researchers, students and practitioners in library and information science.

  7. Biometrics Theory, Methods, and Applications

    CERN Document Server

    Boulgouris, N V; Micheli-Tzanakou, Evangelia

    2009-01-01

    An in-depth examination of the cutting edge of biometrics. This book fills a gap in the literature by detailing the recent advances and emerging theories, methods, and applications of biometric systems in a variety of infrastructures. Edited by a panel of experts, it provides comprehensive coverage of:. Multilinear discriminant analysis for biometric signal recognition;. Biometric identity authentication techniques based on neural networks;. Multimodal biometrics and design of classifiers for biometric fusion;. Feature selection and facial aging modeling for face recognition;. Geometrical and

  8. Distance sampling methods and applications

    CERN Document Server

    Buckland, S T; Marques, T A; Oedekoven, C S

    2015-01-01

    In this book, the authors cover the basic methods and advances within distance sampling that are most valuable to practitioners and in ecology more broadly. This is the fourth book dedicated to distance sampling. In the decade since the last book published, there have been a number of new developments. The intervening years have also shown which advances are of most use. This self-contained book covers topics from the previous publications, while also including recent developments in method, software and application. Distance sampling refers to a suite of methods, including line and point transect sampling, in which animal density or abundance is estimated from a sample of distances to detected individuals. The book illustrates these methods through case studies; data sets and computer code are supplied to readers through the book’s accompanying website.  Some of the case studies use the software Distance, while others use R code. The book is in three parts.  The first part addresses basic methods, the ...

  9. Asymptotic Expansions - Methods and Applications

    International Nuclear Information System (INIS)

    Harlander, R.

    1999-01-01

    Different viewpoints on the asymptotic expansion of Feynman diagrams are reviewed. The relations between the field theoretic and diagrammatic approaches are sketched. The focus is on problems with large masses or large external momenta. Several recent applications also for other limiting cases are touched upon. Finally, the pros and cons of the different approaches are briefly discussed. (author)

  10. Statistical methods and computer applications

    CERN Document Server

    Arora, PN

    2009-01-01

    Some of the exclusive features of the book are: Every concept has been explained with the help of solved examples. Working rules showing the various steps for the applications of formulae have also been given. The diagrams and graphs have been neatly and correctly drawn in such a way that the students have the complete understanding of the problem by simply looking at them. Efforts have been made to make the subject throughly exhaustive and nothing important has been omitted. Answer to all the problems have been throughly checked. It is a user-friendly book containing many, solved problems and

  11. Data mining methods and applications

    CERN Document Server

    Lawrence, Kenneth D; Klimberg, Ronald K

    2007-01-01

    With today's information explosion, many organizations are now able to access a wealth of valuable data. Unfortunately, most of these organizations find they are ill-equipped to organize this information, let alone put it to work for them. Gain a Competitive Advantage Employ data mining in research and forecasting Build models with data management tools and methodology optimization Gain sophisticated breakdowns and complex analysis through multivariate, evolutionary, and neural net methodsLearn how to classify data and maintain qualityTransform Data into Business Acumen Data Mining Methods and

  12. Electrodeposition: Principles, Applications and Methods

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Ying, K.K.; Khuan, N.I.

    2011-01-01

    Electrodeposition technique has been around for a very long time. It is a process of coating a thin layer of one metal on top of a different metal to modify its surface properties, by donating electrons to the ions in a solution. This bottom-up fabrication technique is versatile and can be applied to a wide range of potential applications. Electrodeposition is gaining popularity in recent years due to its capability in fabricating one-dimensional nano structures such as nano rods, nao wires and nano tubes. In this paper, we present an overview on the fabrication and characterization of high aspect ratio nano structures prepared using the nano electrochemical deposition system set up in our laboratory. (author)

  13. Applications of the reduction method

    International Nuclear Information System (INIS)

    Zimmermann, W.

    1987-01-01

    A renoramalizable model of quantum field theory involving several independent coupling parameters, λ 0 , ..., λ n and a normalization mass K is considered. If the model involves massive particles a formulation of the renormalization group should be used in which the β-functions are independent of the masses. The aim of the reduction method is to reduce the model to a description in terms of a single coupling parameter. Although the reduction method does not work for the gauge couplings it leads to reasonable mass constraints if applied to the Yukawa and the Higgs couplings. The underlying idea is that - whatever the fundamental interaction if going to be - eventually there is only one coupling which determines all parameters of the standard model. However, one should be skeptical about numerical results in the standard model. For the standard model is only an effective theory, its β-functions are only approximate and change on their lowest order coefficients may have large effects on the reduction solutions

  14. Differential equations methods and applications

    CERN Document Server

    Said-Houari, Belkacem

    2015-01-01

    This book presents a variety of techniques for solving ordinary differential equations analytically and features a wealth of examples. Focusing on the modeling of real-world phenomena, it begins with a basic introduction to differential equations, followed by linear and nonlinear first order equations and a detailed treatment of the second order linear equations. After presenting solution methods for the Laplace transform and power series, it lastly presents systems of equations and offers an introduction to the stability theory. To help readers practice the theory covered, two types of exercises are provided: those that illustrate the general theory, and others designed to expand on the text material. Detailed solutions to all the exercises are included. The book is excellently suited for use as a textbook for an undergraduate class (of all disciplines) in ordinary differential equations. .

  15. The SIESTA method; developments and applicability

    International Nuclear Information System (INIS)

    Artacho, Emilio; Anglada, E; Dieguez, O; Gale, J D; Garcia, A; Junquera, J; Martin, R M; Ordejon, P; Pruneda, J M; Sanchez-Portal, D; Soler, J M

    2008-01-01

    Recent developments in and around the SIESTA method of first-principles simulation of condensed matter are described and reviewed, with emphasis on (i) the applicability of the method for large and varied systems (ii) efficient basis sets for the standards of accuracy of density-functional methods (iii) new implementations, and (iv) extensions beyond ground-state calculations

  16. Finite element method - theory and applications

    International Nuclear Information System (INIS)

    Baset, S.

    1992-01-01

    This paper summarizes the mathematical basis of the finite element method. Attention is drawn to the natural development of the method from an engineering analysis tool into a general numerical analysis tool. A particular application to the stress analysis of rubber materials is presented. Special advantages and issues associated with the method are mentioned. (author). 4 refs., 3 figs

  17. GNSS remote sensing theory, methods and applications

    CERN Document Server

    Jin, Shuanggen; Xie, Feiqin

    2014-01-01

    This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. It contains detailed theory and study cases to help the reader put the material into practice.

  18. Advanced computational electromagnetic methods and applications

    CERN Document Server

    Li, Wenxing; Elsherbeni, Atef; Rahmat-Samii, Yahya

    2015-01-01

    This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.

  19. Risk assessment theory, methods, and applications

    CERN Document Server

    Rausand, Marvin

    2011-01-01

    With its balanced coverage of theory and applications along with standards and regulations, Risk Assessment: Theory, Methods, and Applications serves as a comprehensive introduction to the topic. The book serves as a practical guide to current risk analysis and risk assessment, emphasizing the possibility of sudden, major accidents across various areas of practice from machinery and manufacturing processes to nuclear power plants and transportation systems. The author applies a uniform framework to the discussion of each method, setting forth clear objectives and descriptions, while also shedding light on applications, essential resources, and advantages and disadvantages. Following an introduction that provides an overview of risk assessment, the book is organized into two sections that outline key theory, methods, and applications. * Introduction to Risk Assessment defines key concepts and details the steps of a thorough risk assessment along with the necessary quantitative risk measures. Chapters outline...

  20. Application of nuclear gamma methods in mining

    International Nuclear Information System (INIS)

    Simon, L.; Bosak, J.

    1980-01-01

    A brief review is presented of basic physical characteristics of laboratory, field and operating gamma methods, of their classifications and principles. The measuring instrumentation used and the current state of applications of nuclear gamma methods in coal and ore mining and related branches are described in detail. Principles and practical recommendations are given for safety at work when handling gamma sources. (B.S.)

  1. Applicabilities of ship emission reduction methods

    Energy Technology Data Exchange (ETDEWEB)

    Guleryuz, Adem [ARGEMAN Research Group, Marine Division (Turkey)], email: ademg@argeman.org; Kilic, Alper [Istanbul Technical University, Maritime Faculty, Marine Engineering Department (Turkey)], email: enviromarineacademic@yahoo.com

    2011-07-01

    Ships, with their high consumption of fossil fuels to power their engines, are significant air polluters. Emission reduction methods therefore need to be implemented and the aim of this paper is to assess the advantages and disadvantages of each emissions reduction method. Benefits of the different methods are compared, with their disadvantages and requirements, to determine the applicability of such solutions. The methods studied herein are direct water injection, humid air motor, sea water scrubbing, diesel particulate filter, selected catalytic reduction, design of engine components, exhaust gas recirculation and engine replacement. Results of the study showed that the usefulness of each emissions reduction method depends on the particular case and that an evaluation should be carried out for each ship. This study pointed out that methods to reduce ship emissions are available but that their applicability depends on each case.

  2. Helium leak testing methods in nuclear applications

    International Nuclear Information System (INIS)

    Ahmad, Anis

    2004-01-01

    Helium mass-spectrometer leak test is the most sensitive leak test method. It gives very reliable and sensitive test results. In last few years application of helium leak testing has gained more importance due to increased public awareness of safety and environment pollution caused by number of growing chemical and other such industries. Helium leak testing is carried out and specified in most of the critical area applications like nuclear, space, chemical and petrochemical industries

  3. Analysis of mixed data methods & applications

    CERN Document Server

    de Leon, Alexander R

    2013-01-01

    A comprehensive source on mixed data analysis, Analysis of Mixed Data: Methods & Applications summarizes the fundamental developments in the field. Case studies are used extensively throughout the book to illustrate interesting applications from economics, medicine and health, marketing, and genetics. Carefully edited for smooth readability and seamless transitions between chaptersAll chapters follow a common structure, with an introduction and a concluding summary, and include illustrative examples from real-life case studies in developmental toxicolog

  4. Extending the applicability of multigrid methods

    International Nuclear Information System (INIS)

    Brannick, J; Brezina, M; Falgout, R; Manteuffel, T; McCormick, S; Ruge, J; Sheehan, B; Xu, J; Zikatanov, L

    2006-01-01

    Multigrid methods are ideal for solving the increasingly large-scale problems that arise in numerical simulations of physical phenomena because of their potential for computational costs and memory requirements that scale linearly with the degrees of freedom. Unfortunately, they have been historically limited by their applicability to elliptic-type problems and the need for special handling in their implementation. In this paper, we present an overview of several recent theoretical and algorithmic advances made by the TOPS multigrid partners and their collaborators in extending applicability of multigrid methods. specific examples that are presented include quantum chromodynamics, radiation transport, and electromagnetics

  5. Particle methods: An introduction with applications

    Directory of Open Access Journals (Sweden)

    Moral Piere Del

    2014-01-01

    Full Text Available Interacting particle methods are increasingly used to sample from complex high-dimensional distributions. They have found a wide range of applications in applied probability, Bayesian statistics and information engineering. Understanding rigorously these new Monte Carlo simulation tools leads to fascinating mathematics related to Feynman-Kac path integral theory and their interacting particle interpretations. In these lecture notes, we provide a pedagogical introduction to the stochastic modeling and the theoretical analysis of these particle algorithms. We also illustrate these methods through several applications including random walk confinements, particle absorption models, nonlinear filtering, stochastic optimization, combinatorial counting and directed polymer models.

  6. Engineering applications of heuristic multilevel optimization methods

    Science.gov (United States)

    Barthelemy, Jean-Francois M.

    1989-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  7. Preconditioning of iterative methods - theory and applications

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Blaheta, Radim; Neytcheva, M.; Pultarová, I.

    2015-01-01

    Roč. 22, č. 6 (2015), s. 901-902 ISSN 1070-5325 Institutional support: RVO:68145535 Keywords : preconditioning * iterative methods * applications Subject RIV: BA - General Mathematics Impact factor: 1.431, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/nla.2016/epdf

  8. Photogrammetric methods of measurement in industrial applications

    International Nuclear Information System (INIS)

    Godding, R.; Groene, A.; Heinrich, G.; Schneider, C.T.

    1993-01-01

    Methods for 3D measurement are required for very varied applications in the industrial field. This includes tasks of quality assurance and plant monitoring, among others. It should be possible to apply the process flexibly it should require as short interruptions of production as possible and should meet the required accuracies. These requirements can be met by photogrammetric methods of measurement. The article introduces these methods and shows their capabilities from various selected examples (eg: the replacement of large components in a pressurized water reactor, and aircraft measurements (orig./DG) [de

  9. Application of reliability methods in Ontario Hydro

    International Nuclear Information System (INIS)

    Jeppesen, R.; Ravishankar, T.J.

    1985-01-01

    Ontario Hydro have established a reliability program in support of its substantial nuclear program. Application of the reliability program to achieve both production and safety goals is described. The value of such a reliability program is evident in the record of Ontario Hydro's operating nuclear stations. The factors which have contributed to the success of the reliability program are identified as line management's commitment to reliability; selective and judicious application of reliability methods; establishing performance goals and monitoring the in-service performance; and collection, distribution, review and utilization of performance information to facilitate cost-effective achievement of goals and improvements. (orig.)

  10. Structural equation modeling methods and applications

    CERN Document Server

    Wang, Jichuan

    2012-01-01

    A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a

  11. Application of cybernetic methods in physics

    Energy Technology Data Exchange (ETDEWEB)

    Fradkov, Aleksandr L [Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St.-Petersburg (Russian Federation)

    2005-02-28

    Basic aspects of the subject and methodology for a new and rapidly developing area of research that has emerged at the intersection of physics and control theory (cybernetics) and emphasizes the application of cybernetic methods to the study of physical systems are reviewed. Speed-gradient and Hamiltonian solutions for energy control problems in conservative and dissipative systems are presented. Application examples such as the Kapitza pendulum, controlled overcoming of a potential barrier, and controlling coupled oscillators and molecular systems are presented. A speed-gradient approach to modeling the dynamics of physical systems is discussed. (reviews of topical problems)

  12. Application of cybernetic methods in physics

    International Nuclear Information System (INIS)

    Fradkov, Aleksandr L

    2005-01-01

    Basic aspects of the subject and methodology for a new and rapidly developing area of research that has emerged at the intersection of physics and control theory (cybernetics) and emphasizes the application of cybernetic methods to the study of physical systems are reviewed. Speed-gradient and Hamiltonian solutions for energy control problems in conservative and dissipative systems are presented. Application examples such as the Kapitza pendulum, controlled overcoming of a potential barrier, and controlling coupled oscillators and molecular systems are presented. A speed-gradient approach to modeling the dynamics of physical systems is discussed. (reviews of topical problems)

  13. Finite Element Methods and Their Applications

    CERN Document Server

    Chen, Zhangxin

    2005-01-01

    This book serves as a text for one- or two-semester courses for upper-level undergraduates and beginning graduate students and as a professional reference for people who want to solve partial differential equations (PDEs) using finite element methods. The author has attempted to introduce every concept in the simplest possible setting and maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Quite a lot of attention is given to discontinuous finite elements, characteristic finite elements, and to the applications in fluid and solid mechanics including applications to porous media flow, and applications to semiconductor modeling. An extensive set of exercises and references in each chapter are provided.

  14. Computational methods for industrial radiation measurement applications

    International Nuclear Information System (INIS)

    Gardner, R.P.; Guo, P.; Ao, Q.

    1996-01-01

    Computational methods have been used with considerable success to complement radiation measurements in solving a wide range of industrial problems. The almost exponential growth of computer capability and applications in the last few years leads to a open-quotes black boxclose quotes mentality for radiation measurement applications. If a black box is defined as any radiation measurement device that is capable of measuring the parameters of interest when a wide range of operating and sample conditions may occur, then the development of computational methods for industrial radiation measurement applications should now be focused on the black box approach and the deduction of properties of interest from the response with acceptable accuracy and reasonable efficiency. Nowadays, increasingly better understanding of radiation physical processes, more accurate and complete fundamental physical data, and more advanced modeling and software/hardware techniques have made it possible to make giant strides in that direction with new ideas implemented with computer software. The Center for Engineering Applications of Radioisotopes (CEAR) at North Carolina State University has been working on a variety of projects in the area of radiation analyzers and gauges for accomplishing this for quite some time, and they are discussed here with emphasis on current accomplishments

  15. Low temperature plasma technology methods and applications

    CERN Document Server

    Chu, Paul K

    2013-01-01

    Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induce

  16. Microautoradiographic methods and their applications in biology

    International Nuclear Information System (INIS)

    Benes, L.

    1978-01-01

    A survey of microautoradiographic methods and of their application in biology is given. The current state of biological microautoradiography is shown, focusing on the efficiency of techniques and on special problems proceeding in autoradiographic investigations in biology. Four more or less independent fields of autoradiography are considered. In describing autoradiographic techniques two methodological tasks are emphasized: The further development of the labelling technique in all metabolic studies and of instrumentation and automation of autoradiograph evaluation. (author)

  17. Keller-box method and its application

    CERN Document Server

    Prasad, Kerehalli V

    2014-01-01

    Most of the problems arising in science and engineering are nonlinear. They are inherently difficult to solve. Traditional analytical approximations are valid only for weakly nonlinear problems, and often break down for problems with strong nonlinearity. This book presents the current theoretical developments and applications of Keller-Box method to nonlinear problems. The first half of the bookaddresses basic concepts to understand the theoretical framework for the method. In the second half of the book, the authorsgive a number of examples of coupled nonlinear problems that have been solved

  18. Harmony Search Method: Theory and Applications

    Directory of Open Access Journals (Sweden)

    X. Z. Gao

    2015-01-01

    Full Text Available The Harmony Search (HS method is an emerging metaheuristic optimization algorithm, which has been employed to cope with numerous challenging tasks during the past decade. In this paper, the essential theory and applications of the HS algorithm are first described and reviewed. Several typical variants of the original HS are next briefly explained. As an example of case study, a modified HS method inspired by the idea of Pareto-dominance-based ranking is also presented. It is further applied to handle a practical wind generator optimal design problem.

  19. Application of Formal Methods in Software Engineering

    Directory of Open Access Journals (Sweden)

    Adriana Morales

    2011-12-01

    Full Text Available The purpose of this research work is to examine: (1 why are necessary the formal methods for software systems today, (2 high integrity systems through the methodology C-by-C –Correctness-by-Construction–, and (3 an affordable methodology to apply formal methods in software engineering. The research process included reviews of the literature through Internet, in publications and presentations in events. Among the Research results found that: (1 there is increasing the dependence that the nations have, the companies and people of software systems, (2 there is growing demand for software Engineering to increase social trust in the software systems, (3 exist methodologies, as C-by-C, that can provide that level of trust, (4 Formal Methods constitute a principle of computer science that can be applied software engineering to perform reliable process in software development, (5 software users have the responsibility to demand reliable software products, and (6 software engineers have the responsibility to develop reliable software products. Furthermore, it is concluded that: (1 it takes more research to identify and analyze other methodologies and tools that provide process to apply the Formal Software Engineering methods, (2 Formal Methods provide an unprecedented ability to increase the trust in the exactitude of the software products and (3 by development of new methodologies and tools is being achieved costs are not more a disadvantage for application of formal methods.

  20. Big data analytics methods and applications

    CERN Document Server

    Rao, BLS; Rao, SB

    2016-01-01

    This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.

  1. Nested partitions method, theory and applications

    CERN Document Server

    Shi, Leyuan

    2009-01-01

    There is increasing need to solve large-scale complex optimization problems in a wide variety of science and engineering applications, including designing telecommunication networks for multimedia transmission, planning and scheduling problems in manufacturing and military operations, or designing nanoscale devices and systems. Advances in technology and information systems have made such optimization problems more and more complicated in terms of size and uncertainty. Nested Partitions Method, Theory and Applications provides a cutting-edge research tool to use for large-scale, complex systems optimization. The Nested Partitions (NP) framework is an innovative mix of traditional optimization methodology and probabilistic assumptions. An important feature of the NP framework is that it combines many well-known optimization techniques, including dynamic programming, mixed integer programming, genetic algorithms and tabu search, while also integrating many problem-specific local search heuristics. The book uses...

  2. Restricted Kalman Filtering Theory, Methods, and Application

    CERN Document Server

    Pizzinga, Adrian

    2012-01-01

    In statistics, the Kalman filter is a mathematical method whose purpose is to use a series of measurements observed over time, containing random variations and other inaccuracies, and produce estimates that tend to be closer to the true unknown values than those that would be based on a single measurement alone. This Brief offers developments on Kalman filtering subject to general linear constraints. There are essentially three types of contributions: new proofs for results already established; new results within the subject; and applications in investment analysis and macroeconomics, where th

  3. Exergy method technical and ecological applications

    CERN Document Server

    Szargut, J

    2005-01-01

    The exergy method makes it possible to detect and quantify the possibilities of improving thermal and chemical processes and systems. The introduction of the concept ""thermo-ecological cost"" (cumulative consumption of non-renewable natural exergy resources) generated large application possibilities of exergy in ecology. This book contains a short presentation on the basic principles of exergy analysis and discusses new achievements in the field over the last 15 years. One of the most important issues considered by the distinguished author is the economy of non-renewable natural exergy.

  4. Intelligent numerical methods applications to fractional calculus

    CERN Document Server

    Anastassiou, George A

    2016-01-01

    In this monograph the authors present Newton-type, Newton-like and other numerical methods, which involve fractional derivatives and fractional integral operators, for the first time studied in the literature. All for the purpose to solve numerically equations whose associated functions can be also non-differentiable in the ordinary sense. That is among others extending the classical Newton method theory which requires usual differentiability of function. Chapters are self-contained and can be read independently and several advanced courses can be taught out of this book. An extensive list of references is given per chapter. The book’s results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also to be in all science and engineering libraries.

  5. Novel applications of fast neutron interrogation methods

    International Nuclear Information System (INIS)

    Gozani, Tsahi

    1994-01-01

    The development of non-intrusive inspection methods for contraband consisting primarily of carbon, nitrogen, oxygen, and hydrogen requires the use of fast neutrons. While most elements can be sufficiently well detected by the thermal neutron capture process, some important ones, e.g., carbon and in particular oxygen, cannot be detected by this process. Fortunately, fast neutrons, with energies above the threshold for inelastic scattering, stimulate relatively strong and specific gamma ray lines from these elements. The main lines are: 6.13 for O, 4.43 for C, and 5.11, 2.31 and 1.64 MeV for N. Accelerator-generated neutrons in the energy range of 7 to 15 MeV are being considered as interrogating radiations in a variety of non-intrusive inspection systems for contraband, from explosives to drugs and from coal to smuggled, dutiable goods. In some applications, mostly for inspection of small items such as luggage, the decision process involves a rudimentary imaging, akin to emission tomography, to obtain the localized concentration of various elements. This technique is called FNA - Fast Neutron Analysis. While this approach offers improvements over the TNA (Thermal Neutron Analysis), it is not applicable to large objects such as shipping containers and trucks. For these challenging applications, a collimated beam of neutrons is rastered along the height of the moving object. In addition, the neutrons are generated in very narrow nanosecond pulses. The point of their interaction inside the object is determined by the time of flight (TOF) method, that is measuring the time elapsed from the neutron generation to the time of detection of the stimulated gamma rays. This technique, called PFNA (Pulsed Fast Neutron Analysis), thus directly provides the elemental, and by inference, the chemical composition of the material at every volume element (voxel) of the object. The various neutron-based techniques are briefly described below. ((orig.))

  6. Application of Cocktail method in vegetation classification

    Directory of Open Access Journals (Sweden)

    Hamed Asadi

    2016-09-01

    Full Text Available This study intends to assess the application of Cocktail method in the classification of large vegetation databases. For this purpose, Buxus hyrcana dataset consisted of 442 relevés with 89 species were used and by the modified TWINSPAN. For running the Cocktail method, first primarily classification was done by modified TWINSPAN, and by performing phi analysis in the groups resulted five species were selected which had the highest fidelity value. Then sociological species groups were formed by examining co-occurrence of these 5 species with other species in the database. 21 plant communities belongs to 6 variant, 17 sub associations, 11 associations, 4 alliance, 1 order and 1 class were recognized by assigning 379 releves to the sociological species groups by using logical formulas. Also, 63 releves by the logical formula were not assigned to any sociological species groups, by FPFI index were assigned to the sociological species groups which had the most index value. According to 91% classification agreement with Brown-Blanquet classification and Cocktail classification, we suggest Cocktail method to vegetation scientists as an efficient alternative of Braun-Blanquet method to classify large vegetation databases.

  7. Partial differential equations methods, applications and theories

    CERN Document Server

    Hattori, Harumi

    2013-01-01

    This volume is an introductory level textbook for partial differential equations (PDE's) and suitable for a one-semester undergraduate level or two-semester graduate level course in PDE's or applied mathematics. Chapters One to Five are organized according to the equations and the basic PDE's are introduced in an easy to understand manner. They include the first-order equations and the three fundamental second-order equations, i.e. the heat, wave and Laplace equations. Through these equations we learn the types of problems, how we pose the problems, and the methods of solutions such as the separation of variables and the method of characteristics. The modeling aspects are explained as well. The methods introduced in earlier chapters are developed further in Chapters Six to Twelve. They include the Fourier series, the Fourier and the Laplace transforms, and the Green's functions. The equations in higher dimensions are also discussed in detail. This volume is application-oriented and rich in examples. Going thr...

  8. Application of radiotracer methods in streamflow measurements

    International Nuclear Information System (INIS)

    Dincer, T.

    1967-01-01

    An attempt is made to evaluate methods using radiotracers in streamflow measurements. The basic principles of the tracer method are explained and background information given. Radiotracers used in stream discharge measurements are discussed and measurements made by different research workers are described. Problems such as adsorption of the tracer and the mixing length are discussed and the potential use of the radioisotopes as tracer in the routine stream-gauging work is evaluated. It is concluded that, at the present stage of development, radiotracer methods do not seem to be ready for routine use in stream-gauging work, and can only be used in some special cases. For gamma-emitting radioisotopes there are problems related to safety, transport and injection which should be solved. Tritium, though a very attractive tracer in some respects, has the disadvantages of having a relatively long half-life and of disturbing the natural tritium levels in the region. Finally, an attempt is made to define the objectives of the research in the field of application of radioisotopes in hydrometry. (author)

  9. Complex networks principles, methods and applications

    CERN Document Server

    Latora, Vito; Russo, Giovanni

    2017-01-01

    Networks constitute the backbone of complex systems, from the human brain to computer communications, transport infrastructures to online social systems and metabolic reactions to financial markets. Characterising their structure improves our understanding of the physical, biological, economic and social phenomena that shape our world. Rigorous and thorough, this textbook presents a detailed overview of the new theory and methods of network science. Covering algorithms for graph exploration, node ranking and network generation, among the others, the book allows students to experiment with network models and real-world data sets, providing them with a deep understanding of the basics of network theory and its practical applications. Systems of growing complexity are examined in detail, challenging students to increase their level of skill. An engaging presentation of the important principles of network science makes this the perfect reference for researchers and undergraduate and graduate students in physics, ...

  10. Innovative Methods and Applications in Mucoadhesion Research

    DEFF Research Database (Denmark)

    Mackie, Alan; Goycoolea, Francisco M.; Menchicchi, Bianca

    2017-01-01

    The present review is aimed at elucidating relatively new aspects of mucoadhesion/mucus interaction and related phenomena that emerged from a Mucoadhesion workshop held in Munster on 2–3 September 2015 as a satellite event of the ICCC 13th—EUCHIS 12th. After a brief outline of the new issues......, the focus is on mucus description, purification, and mucus/mucin characterization, all steps that are pivotal to the understanding of mucus related phenomena and the choice of the correct mucosal model for in vitro and ex vivo experiments, alternative bio/mucomimetic materials are also presented....... Then a selection of preparative techniques and testing methods are described (at molecular as well as micro and macroscale) that may support the pharmaceutical development of mucus interactive systems and assist formulators in the scale-up and industrialization steps. Recent applications of mucoadhesive systems...

  11. Nuclear methods: applications to Earth sciences

    International Nuclear Information System (INIS)

    Segovia, N.

    1994-01-01

    The discovery of radioactivity phenomenon occurred almost 100 years ago, in 1896, and constituted the base for new perspectives in many disciplines, including the Earth sciences. The initial works in this field, during the first quarter of the Century, established that the series of radioactive decay of long lifetime Uranium 238, Uranium 235 and Thorium 232 present radioactive isotopes of several elements which are physically and chemically different. The chemical differentiation of the Earth during its evolution has concentrated in the crust the major part of the radioactive materials. The application of radioactive in balance which occur as a consequence of chemical and physical differences, has evolve quickly, and the utilization of natural radioactive isotopes can be detach in two major headings: geologic clocks and tracers. The applications cover a wide spectra of geological, oceanographical, volcanic, hydrological, paleoclimatic and archaeological problems. In this paper, a description of radioactive phenomenon is presented, as well as the chemical and physical properties of the natural radioactive elements, the measurement methods and, finally, some examples of the uses in chronology and as radioactive tracers will be presented, doing an emphasis of some results obtained in Mexico. (Author)

  12. Comparison of methods for intestinal histamine application

    DEFF Research Database (Denmark)

    Vind, S; Søondergaard, I; Poulsen, L K

    1991-01-01

    The study was conducted to investigate whether introduction of histamine in enterosoluble capsules produced the same amount of urinary histamine metabolites as that found after application of histamine through a duodeno-jejunal tube. Secondly, to examine whether a histamine-restrictive or a fast ...... conclude that oral administration of enterosoluble capsules is an easy and appropriate method for intestinal histamine challenge. Fast and histamine-restrictive diets are not necessary, but subjects should record unexpected responses in a food and symptom diary.......The study was conducted to investigate whether introduction of histamine in enterosoluble capsules produced the same amount of urinary histamine metabolites as that found after application of histamine through a duodeno-jejunal tube. Secondly, to examine whether a histamine-restrictive or a fast...... all other intervals did not differ significantly between the two challenge regimens. Fast (water only) and histamine-restrictive diet versus non-restrictive diet did not affect the urinary MIAA. MIAA was significantly higher overall during the first 24 h after challenge than in any other fraction. We...

  13. Environmental applications of manometric respirometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Roppola, K.

    2009-07-01

    decomposition rates was studied in order to evaluate the applicable peat types that can be used in landfill structures. Only minor (BOD/ThOD < 0.4%) biodegradation was observed with compaction peat samples, and the stable state, in which biodegradation stopped, was achieved during a two month period. The manometric respirometric method was also applied for the biodegradation studies in which the effect of the modification of soil properties on biodegradation rates of bio-oils was tested. Modified properties were the nutrient content and the pH of the soil. Fertiliser addition and pH adjustment increased both the BOD/ThOD% values of the model substances and the precision of the measurement. The manometric respirometric method was proved to be an advanced method for simulating biodegradation processes in soil and water media. (orig.)

  14. CSM research: Methods and application studies

    Science.gov (United States)

    Knight, Norman F., Jr.

    1989-01-01

    Computational mechanics is that discipline of applied science and engineering devoted to the study of physical phenomena by means of computational methods based on mathematical modeling and simulation, utilizing digital computers. The discipline combines theoretical and applied mechanics, approximation theory, numerical analysis, and computer science. Computational mechanics has had a major impact on engineering analysis and design. When applied to structural mechanics, the discipline is referred to herein as computational structural mechanics. Complex structures being considered by NASA for the 1990's include composite primary aircraft structures and the space station. These structures will be much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. NASA has initiated a research activity in structural analysis called Computational Structural Mechanics (CSM). The broad objective of the CSM activity is to develop advanced structural analysis technology that will exploit modern and emerging computers, such as those with vector and/or parallel processing capabilities. Here, the current research directions for the Methods and Application Studies Team of the Langley CSM activity are described.

  15. Nanoscale thermal transport: Theoretical method and application

    Science.gov (United States)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  16. Methods of geodiversity assessment and theirs application

    Science.gov (United States)

    Zwoliński, Zbigniew; Najwer, Alicja; Giardino, Marco

    2016-04-01

    The concept of geodiversity has rapidly gained the approval of scientists around the world (Wiedenbein 1993, Sharples 1993, Kiernan 1995, 1996, Dixon 1996, Eberhard 1997, Kostrzewski 1998, 2011, Gray 2004, 2008, 2013, Zwoliński 2004, Serrano, Ruiz- Flano 2007, Gordon et al. 2012). However, the problem recognition is still at an early stage, and in effect not explicitly understood and defined (Najwer, Zwoliński 2014). Nevertheless, despite widespread use of the concept, little progress has been made in its assessment and mapping. Less than the last decade can be observing investigation of methods for geodiversity assessment and its visualisation. Though, many have acknowledged the importance of geodiversity evaluation (Kozłowski 2004, Gray 2004, Reynard, Panizza 2005, Zouros 2007, Pereira et al. 2007, Hjort et al. 2015). Hitherto, only a few authors have undertaken that kind of methodological issues. Geodiversity maps are being created for a variety of purposes and therefore their methods are quite manifold. In the literature exists some examples of the geodiversity maps applications for the geotourism purpose, basing mainly on the geological diversity, in order to point the scale of the area's tourist attractiveness (Zwoliński 2010, Serrano and Gonzalez Trueba 2011, Zwoliński and Stachowiak 2012). In some studies, geodiversity maps were created and applied to investigate the spatial or genetic relationships with the richness of particular natural environmental components (Burnett et al. 1998, Silva 2004, Jačková, Romportl 2008, Hjort et al. 2012, 2015, Mazurek et al. 2015, Najwer et al. 2014). There are also a few examples of geodiversity assessment in order to geoconservation and efficient management and planning of the natural protected areas (Serrano and Gonzalez Trueba 2011, Pellitero et al. 2011, 2014, Jaskulska et al. 2013, Melelli 2014, Martinez-Grana et al. 2015). The most popular method of assessing the diversity of abiotic components of the natural

  17. Effects of application methods and species of wood on color ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... methods. Key words: Waterborne varnishes, application methods, wood materials, color change. ... rate in open air conditions (Anderson et al., 1991). .... for topcoat application and they were held for drying for 3 weeks. Finally ...

  18. Methods and applications of analytical perturbation theory

    International Nuclear Information System (INIS)

    Kirchgraber, U.; Stiefel, E.

    1978-01-01

    This monograph on perturbation theory is based on various courses and lectures held by the authors at the ETH, Zurich and at the University of Texas, Austin. Its principal intention is to inform application-minded mathematicians, physicists and engineers about recent developments in this field. The reader is not assumed to have mathematical knowledge beyond what is presented in standard courses on analysis and linear algebra. Chapter I treats the transformations of systems of differential equations and the integration of perturbed systems in a formal way. These tools are applied in Chapter II to celestial mechanics and to the theory of tops and gyroscopic motion. Chapter III is devoted to the discussion of Hamiltonian systems of differential equations and exposes the algebraic aspects of perturbation theory showing also the necessary modifications of the theory in case of singularities. The last chapter gives the mathematical justification for the methods developed in the previous chapters and investigates important questions such as error estimations for the solutions and asymptotic stability. Each chapter ends with useful comments and an extensive reference to the original literature. (HJ) [de

  19. Antimicrobial applications of nanotechnology: methods and literature

    Directory of Open Access Journals (Sweden)

    Seil JT

    2012-06-01

    Full Text Available Justin T Seil, Thomas J WebsterLaboratory for Nanomedicine Research, School of Engineering, Brown University, Providence, RI, USAAbstract: The need for novel antibiotics comes from the relatively high incidence of bacterial infection and the growing resistance of bacteria to conventional antibiotics. Consequently, new methods for reducing bacteria activity (and associated infections are badly needed. Nanotechnology, the use of materials with dimensions on the atomic or molecular scale, has become increasingly utilized for medical applications and is of great interest as an approach to killing or reducing the activity of numerous microorganisms. While some natural antibacterial materials, such as zinc and silver, possess greater antibacterial properties as particle size is reduced into the nanometer regime (due to the increased surface to volume ratio of a given mass of particles, the physical structure of a nanoparticle itself and the way in which it interacts with and penetrates into bacteria appears to also provide unique bactericidal mechanisms. A variety of techniques to evaluate bacteria viability, each with unique advantages and disadvantages, has been established and must be understood in order to determine the effectiveness of nanoparticles (diameter ≤100 nm as antimicrobial agents. In addition to addressing those techniques, a review of select literature and a summary of bacteriostatic and bactericidal mechanisms are covered in this manuscript.Keywords: nanomaterial, nanoparticle, nanotechnology, bacteria, antibacterial, biofilm

  20. Antimicrobial applications of nanotechnology: methods and literature.

    Science.gov (United States)

    Seil, Justin T; Webster, Thomas J

    2012-01-01

    The need for novel antibiotics comes from the relatively high incidence of bacterial infection and the growing resistance of bacteria to conventional antibiotics. Consequently, new methods for reducing bacteria activity (and associated infections) are badly needed. Nanotechnology, the use of materials with dimensions on the atomic or molecular scale, has become increasingly utilized for medical applications and is of great interest as an approach to killing or reducing the activity of numerous microorganisms. While some natural antibacterial materials, such as zinc and silver, possess greater antibacterial properties as particle size is reduced into the nanometer regime (due to the increased surface to volume ratio of a given mass of particles), the physical structure of a nanoparticle itself and the way in which it interacts with and penetrates into bacteria appears to also provide unique bactericidal mechanisms. A variety of techniques to evaluate bacteria viability, each with unique advantages and disadvantages, has been established and must be understood in order to determine the effectiveness of nanoparticles (diameter ≤ 100 nm) as antimicrobial agents. In addition to addressing those techniques, a review of select literature and a summary of bacteriostatic and bactericidal mechanisms are covered in this manuscript.

  1. Survey of Instant Messaging Applications Encryption Methods

    OpenAIRE

    Kabakuş, Abdullah; Kara, Resul

    2015-01-01

    Instant messaging applications has already taken the place of traditional Short Messaging Service (SMS) and Multimedia Messaging Service (MMS) due to their popularity and usage easement they provide. Users of instant messaging applications are able to send both text and audio messages, different types of attachments such as photos, videos, contact information to their contacts in real time. Because of instant messaging applications use internet instead of Short Message Service Technical Reali...

  2. Progress in spatial analysis methods and applications

    CERN Document Server

    Páez, Antonio; Buliung, Ron N; Dall'erba, Sandy

    2010-01-01

    This book brings together developments in spatial analysis techniques, including spatial statistics, econometrics, and spatial visualization, and applications to fields such as regional studies, transportation and land use, population and health.

  3. Stability by Liapunov's direct methods with applications

    CERN Document Server

    Salle, Joseph La

    1961-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  4. Radionuclide methods application in cardiac studies

    International Nuclear Information System (INIS)

    Kotina, E.D.; Ploskikh, V.A.; Babin, A.V.

    2013-01-01

    Radionuclide methods are one of the most modern methods of functional diagnostics of diseases of the cardio-vascular system that requires the use of mathematical methods of processing and analysis of data obtained during the investigation. Study is carried out by means of one-photon emission computed tomography (SPECT). Mathematical methods and software for SPECT data processing are developed. This software allows defining physiologically meaningful indicators for cardiac studies

  5. Augmented reality implementation methods in mainstream applications

    Directory of Open Access Journals (Sweden)

    David Procházka

    2011-01-01

    Full Text Available Augmented reality has became an useful tool in many areas from space exploration to military applications. Although used theoretical principles are well known for almost a decade, the augmented reality is almost exclusively used in high budget solutions with a special hardware. However, in last few years we could see rising popularity of many projects focused on deployment of the augmented reality on dif­ferent mobile devices. Our article is aimed on developers who consider development of an augmented reality application for the mainstream market. Such developers will be forced to keep the application price, therefore also the development price, at reasonable level. Usage of existing image processing software library could bring a significant cut-down of the development costs. In the theoretical part of the article is presented an overview of the augmented reality application structure. Further, an approach for selection appropriate library as well as the review of the existing software libraries focused in this area is described. The last part of the article out­lines our implementation of key parts of the augmented reality application using the OpenCV library.

  6. Application of machine learning methods in bioinformatics

    Science.gov (United States)

    Yang, Haoyu; An, Zheng; Zhou, Haotian; Hou, Yawen

    2018-05-01

    Faced with the development of bioinformatics, high-throughput genomic technology have enabled biology to enter the era of big data. [1] Bioinformatics is an interdisciplinary, including the acquisition, management, analysis, interpretation and application of biological information, etc. It derives from the Human Genome Project. The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets.[2]. This paper analyzes and compares various algorithms of machine learning and their applications in bioinformatics.

  7. [Application of Delphi method in traditional Chinese medicine clinical research].

    Science.gov (United States)

    Bi, Ying-fei; Mao, Jing-yuan

    2012-03-01

    In recent years, Delphi method has been widely applied in traditional Chinese medicine (TCM) clinical research. This article analyzed the present application situation of Delphi method in TCM clinical research, and discussed some problems presented in the choice of evaluation method, classification of observation indexes and selection of survey items. On the basis of present application of Delphi method, the author analyzed the method on questionnaire making, selection of experts, evaluation of observation indexes and selection of survey items. Furthermore, the author summarized the steps of application of Delphi method in TCM clinical research.

  8. Numerical methods for differential equations and applications

    International Nuclear Information System (INIS)

    Ixaru, L.G.

    1984-01-01

    This book is addressed to persons who, without being professionals in applied mathematics, are often faced with the problem of numerically solving differential equations. In each of the first three chapters a definite class of methods is discussed for the solution of the initial value problem for ordinary differential equations: multistep methods; one-step methods; and piecewise perturbation methods. The fourth chapter is mainly focussed on the boundary value problems for linear second-order equations, with a section devoted to the Schroedinger equation. In the fifth chapter the eigenvalue problem for the radial Schroedinger equation is solved in several ways, with computer programs included. (Auth.)

  9. Chlorinated Cyanurates: Method Interferences and Application Implications

    Science.gov (United States)

    Experiments were conducted to investigate method interferences, residual stability, regulated DBP formation, and a water chemistry model associated with the use of Dichlor & Trichlor in drinking water.

  10. Dynamical Systems Method and Applications Theoretical Developments and Numerical Examples

    CERN Document Server

    Ramm, Alexander G

    2012-01-01

    Demonstrates the application of DSM to solve a broad range of operator equations The dynamical systems method (DSM) is a powerful computational method for solving operator equations. With this book as their guide, readers will master the application of DSM to solve a variety of linear and nonlinear problems as well as ill-posed and well-posed problems. The authors offer a clear, step-by-step, systematic development of DSM that enables readers to grasp the method's underlying logic and its numerous applications. Dynamical Systems Method and Applications begins with a general introduction and

  11. Scenistic Methods for Training: Applications and Practice

    Science.gov (United States)

    Lyons, Paul R.

    2011-01-01

    Purpose: This paper aims to complement an earlier article (2010) in "Journal of European Industrial Training" in which the description and theory bases of scenistic methods were presented. This paper also offers a description of scenistic methods and information on theory bases. However, the main thrust of this paper is to describe, give suggested…

  12. Development and Application of Kinetic Spectrophotometric Method ...

    African Journals Online (AJOL)

    Purpose: To develop an improved kinetic-spectrophotometric procedure for the determination of metronidazole (MNZ) in pharmaceutical formulations. Methods: The method is based on oxidation reaction of MNZ by hydrogen peroxide in the presence of Fe(II) ions at pH 4.5 (acetate buffer). The reaction was monitored ...

  13. Development and Application of Kinetic Spectrophotometric Method ...

    African Journals Online (AJOL)

    ISSN: 1596-5996 (print); 1596-9827 (electronic) ... Methods: The method is based on oxidation reaction of MNZ by hydrogen peroxide ... optimum operating conditions for reagent concentrations and temperature were ... 1-yl) ethanol] is an amebicide, antiprotozoal and .... The dependence of reaction rate on concentration of.

  14. Advanced photon counting applications, methods, instrumentation

    CERN Document Server

    Kapusta, Peter; Erdmann, Rainer

    2015-01-01

    This volume focuses on Time-Correlated Single Photon Counting (TCSPC), a powerful tool allowing luminescence lifetime measurements to be made with high temporal resolution, even on single molecules. Combining spectrum and lifetime provides a "fingerprint" for identifying such molecules in the presence of a background. Used together with confocal detection, this permits single-molecule spectroscopy and microscopy in addition to ensemble measurements, opening up an enormous range of hot life science applications such as fluorescence lifetime imaging (FLIM) and measurement of Förster Resonant Energy Transfer (FRET) for the investigation of protein folding and interaction. Several technology-related chapters present both the basics and current state-of-the-art, in particular of TCSPC electronics, photon detectors and lasers. The remaining chapters cover a broad range of applications and methodologies for experiments and data analysis, including the life sciences, defect centers in diamonds, super-resolution micr...

  15. Advanced scientific computational methods and their applications to nuclear technologies. (3) Introduction of continuum simulation methods and their applications (3)

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kunugi, Tomoaki

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the third issue showing the introduction of continuum simulation methods and their applications. Spectral methods and multi-interface calculation methods in fluid dynamics are reviewed. (T. Tanaka)

  16. Application of geophysical methods for fracture characterization

    International Nuclear Information System (INIS)

    Lee, K.H.; Majer, E.L.; McEvilly, T.V.; California Univ., Berkeley, CA; Morrison, H.F.; California Univ., Berkeley, CA

    1990-01-01

    One of the most crucial needs in the design and implementation of an underground waste isolation facility is a reliable method for the detection and characterization of fractures in zones away from boreholes or subsurface workings. Geophysical methods may represent a solution to this problem. If fractures represent anomalies in the elastic properties or conductive properties of the rocks, then the seismic and electrical techniques may be useful in detecting and characterizing fracture properties. 7 refs., 3 figs

  17. Application of fuzzy methods in tunnelling

    Directory of Open Access Journals (Sweden)

    Ľudmila Tréfová

    2011-12-01

    Full Text Available Full-face tunnelling machines were used for the tunnel construction in Slovakia for boring of the exploratory galleries of highwaytunnels Branisko and Višňové-Dubná skala. A monitoring system of boring process parameters was installed on the tunnelling machinesand the acquired outcomes were processed by several theoretical approaches. Method IKONA was developed for the determination ofchanges in the rock mass strength characteristics in the line of exploratory gallery. Individual geological sections were evaluated bythe descriptive statistics and the TBM performance was evaluated by the fuzzy method. The paper informs on the procedure of the designof fuzzy models and their verification.

  18. Silver nanoparticles: Synthesis methods, bio-applications and properties.

    Science.gov (United States)

    Abbasi, Elham; Milani, Morteza; Fekri Aval, Sedigheh; Kouhi, Mohammad; Akbarzadeh, Abolfazl; Tayefi Nasrabadi, Hamid; Nikasa, Parisa; Joo, San Woo; Hanifehpour, Younes; Nejati-Koshki, Kazem; Samiei, Mohammad

    2016-01-01

    Silver nanoparticles size makes wide range of new applications in various fields of industry. Synthesis of noble metal nanoparticles for applications such as catalysis, electronics, optics, environmental and biotechnology is an area of constant interest. Two main methods for Silver nanoparticles are the physical and chemical methods. The problem with these methods is absorption of toxic substances onto them. Green synthesis approaches overcome this limitation. Silver nanoparticles size makes wide range of new applications in various fields of industry. This article summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations with respect to the biomedical applicability and regulatory requirements concerning silver nanoparticles.

  19. Application of numerical analysis methods to thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Gomez Ros, J. M.; Delgado, A.

    1989-01-01

    This report presents the application of numerical methods to thermoluminescence dosimetry (TLD), showing the advantages obtained over conventional evaluation systems. Different configurations of the analysis method are presented to operate in specific dosimetric applications of TLD, such as environmental monitoring and mailed dosimetry systems for quality assurance in radiotherapy facilities. (Author) 10 refs

  20. Industrial applications of neutron physics methods

    International Nuclear Information System (INIS)

    Gozani, T.

    1994-01-01

    Three areas where nuclear based techniques have significant are briefly described. These are: Nuclear material control and non-proliferation, on-line elemental analysis of coal and minerals, and non- detection of explosives and other contraband. The nuclear physics and the role of reactor physics methods are highlighted. (author). 5 refs., 10 figs., 5 tabs

  1. Molecular Combing of DNA: Methods and Applications

    DEFF Research Database (Denmark)

    Nazari, Zeniab Esmail; Gurevich, Leonid

    2013-01-01

    studies to nanoelectronics. While molecular combing has been applied in a variety of DNA-related studies, no comprehensive review has been published on different combing methods proposed so far. In this review, the underlying mechanisms of molecular combing of DNA are described followed by discussion...

  2. Application of Turchin's method of statistical regularization

    Science.gov (United States)

    Zelenyi, Mikhail; Poliakova, Mariia; Nozik, Alexander; Khudyakov, Alexey

    2018-04-01

    During analysis of experimental data, one usually needs to restore a signal after it has been convoluted with some kind of apparatus function. According to Hadamard's definition this problem is ill-posed and requires regularization to provide sensible results. In this article we describe an implementation of the Turchin's method of statistical regularization based on the Bayesian approach to the regularization strategy.

  3. Asymmetric synthesis II more methods and applications

    CERN Document Server

    Christmann, Mathias

    2012-01-01

    After the overwhelming success of 'Asymmetric Synthesis - The Essentials', narrating the colorful history of asymmetric synthesis, this is the second edition with latest subjects and authors. While the aim of the first edition was mainly to honor the achievements of the pioneers in asymmetric syntheses, the aim of this new edition was bringing the current developments, especially from younger colleagues, to the attention of students. The format of the book remained unchanged, i.e. short conceptual overviews by young leaders in their field including a short biography of the authors. The growing multidisciplinary research within chemistry is reflected in the selection of topics including metal catalysis, organocatalysis, physical organic chemistry, analytical chemistry, and its applications in total synthesis. The prospective reader of this book is a graduate or undergraduate student of advanced organic chemistry as well as the industrial chemist who wants to get a brief update on the current developments in th...

  4. Ensemble Machine Learning Methods and Applications

    CERN Document Server

    Ma, Yunqian

    2012-01-01

    It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face detection and are now being applied in areas as diverse as object trackingand bioinformatics.   Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including various contributions from researchers in leading industrial research labs. At once a solid theoretical study and a practical guide, the volume is a windfall for r...

  5. Application of Software Safety Analysis Methods

    International Nuclear Information System (INIS)

    Park, G. Y.; Hur, S.; Cheon, S. W.; Kim, D. H.; Lee, D. Y.; Kwon, K. C.; Lee, S. J.; Koo, Y. H.

    2009-01-01

    A fully digitalized reactor protection system, which is called the IDiPS-RPS, was developed through the KNICS project. The IDiPS-RPS has four redundant and separated channels. Each channel is mainly composed of a group of bistable processors which redundantly compare process variables with their corresponding setpoints and a group of coincidence processors that generate a final trip signal when a trip condition is satisfied. Each channel also contains a test processor called the ATIP and a display and command processor called the COM. All the functions were implemented in software. During the development of the safety software, various software safety analysis methods were applied, in parallel to the verification and validation (V and V) activities, along the software development life cycle. The software safety analysis methods employed were the software hazard and operability (Software HAZOP) study, the software fault tree analysis (Software FTA), and the software failure modes and effects analysis (Software FMEA)

  6. Rhenium-osmium geochemistry: method and applications

    International Nuclear Information System (INIS)

    Luck, J.M.

    1982-03-01

    Experimental methods for chemical separation and isotopic analysis of rhenium-osmium are described. Accurate determinations are obtained for a quantity ratio around 10 -6 -10 -7 g. Development as a geochemical tracer is examined. Study of rhenium-osmium in meteorites allows the determination of solar system chronology and age of the galaxy. Rhenium-osmium chronology in meteorites is improved and osmium isotopes are used as petrogenetic and geological tracers. Molybdenites are studied through 187 Re- 187 Os dating [fr

  7. Multivariate methods in nuclear waste remediation: Needs and applications

    International Nuclear Information System (INIS)

    Pulsipher, B.A.

    1992-05-01

    The United States Department of Energy (DOE) has developed a strategy for nuclear waste remediation and environmental restoration at several major sites across the country. Nuclear and hazardous wastes are found in underground storage tanks, containment drums, soils, and facilities. Due to the many possible contaminants and complexities of sampling and analysis, multivariate methods are directly applicable. However, effective application of multivariate methods will require greater ability to communicate methods and results to a non-statistician community. Moreover, more flexible multivariate methods may be required to accommodate inherent sampling and analysis limitations. This paper outlines multivariate applications in the context of select DOE environmental restoration activities and identifies several perceived needs

  8. Applications of the Monte Carlo method in radiation protection

    International Nuclear Information System (INIS)

    Kulkarni, R.N.; Prasad, M.A.

    1999-01-01

    This paper gives a brief introduction to the application of the Monte Carlo method in radiation protection. It may be noted that an exhaustive review has not been attempted. The special advantage of the Monte Carlo method has been first brought out. The fundamentals of the Monte Carlo method have next been explained in brief, with special reference to two applications in radiation protection. Some sample current applications have been reported in the end in brief as examples. They are, medical radiation physics, microdosimetry, calculations of thermoluminescence intensity and probabilistic safety analysis. The limitations of the Monte Carlo method have also been mentioned in passing. (author)

  9. Fuzzy multiple attribute decision making methods and applications

    CERN Document Server

    Chen, Shu-Jen

    1992-01-01

    This monograph is intended for an advanced undergraduate or graduate course as well as for researchers, who want a compilation of developments in this rapidly growing field of operations research. This is a sequel to our previous works: "Multiple Objective Decision Making--Methods and Applications: A state-of-the-Art Survey" (No.164 of the Lecture Notes); "Multiple Attribute Decision Making--Methods and Applications: A State-of-the-Art Survey" (No.186 of the Lecture Notes); and "Group Decision Making under Multiple Criteria--Methods and Applications" (No.281 of the Lecture Notes). In this monograph, the literature on methods of fuzzy Multiple Attribute Decision Making (MADM) has been reviewed thoroughly and critically, and classified systematically. This study provides readers with a capsule look into the existing methods, their characteristics, and applicability to the analysis of fuzzy MADM problems. The basic concepts and algorithms from the classical MADM methods have been used in the development of the f...

  10. Analytical chromatography. Methods, instrumentation and applications

    International Nuclear Information System (INIS)

    Yashin, Ya I; Yashin, A Ya

    2006-01-01

    The state-of-the-art and the prospects in the development of main methods of analytical chromatography, viz., gas, high performance liquid and ion chromatographic techniques, are characterised. Achievements of the past 10-15 years in the theory and general methodology of chromatography and also in the development of new sorbents, columns and chromatographic instruments are outlined. The use of chromatography in the environmental control, biology, medicine, pharmaceutics, and also for monitoring the quality of foodstuffs and products of chemical, petrochemical and gas industries, etc. is considered.

  11. Application of DCI to the lipid method

    International Nuclear Information System (INIS)

    Raffi, J.; Lesgards, G.; Pouliquen, I.; Giamarchi, P.; Fakirian, A.

    1996-01-01

    At the end of the sixties it was proposed that a cleavage point on the triglycerides which can produce alkanes and alkenes with one or two carbons less, aldehydes and free fatty acids. The first results of work on pork were extended to chicken and poultry meats. The methodology involved extraction of the lipid fraction followed by vacuum distillation and analysis by gas chromatography (GC). Other extraction and fractionation procedures have been investigated by ADMIT and BCR groups which are more appropriate for the routine examination of large numbers of samples. In the present study, the radio-induced volatile compounds were analysed with a DI200 chromatograph, used with a head-space system, also called the DCI system (Desorption, Concentration, Injection). The main advantage of the method is that it avoids the soxhlet extraction of the lipid fraction from the foodstuffs. Several products were studied; oils, poultry meat, avocado pear. It appears that the DCI is a good and fast method provided that the temperature of the oven is controlled, which is not the case with the commercial apparatus used. (author)

  12. Application of DCI to the lipid method

    Energy Technology Data Exchange (ETDEWEB)

    Raffi, J.; Lesgards, G.; Pouliquen, I.; Giamarchi, P.; Fakirian, A. [Laboratoire de Recherche sur la Qualite des Aliments, Marseille (France)

    1996-12-31

    At the end of the sixties it was proposed that a cleavage point on the triglycerides which can produce alkanes and alkenes with one or two carbons less, aldehydes and free fatty acids. The first results of work on pork were extended to chicken and poultry meats. The methodology involved extraction of the lipid fraction followed by vacuum distillation and analysis by gas chromatography (GC). Other extraction and fractionation procedures have been investigated by ADMIT and BCR groups which are more appropriate for the routine examination of large numbers of samples. In the present study, the radio-induced volatile compounds were analysed with a DI200 chromatograph, used with a head-space system, also called the DCI system (Desorption, Concentration, Injection). The main advantage of the method is that it avoids the soxhlet extraction of the lipid fraction from the foodstuffs. Several products were studied; oils, poultry meat, avocado pear. It appears that the DCI is a good and fast method provided that the temperature of the oven is controlled, which is not the case with the commercial apparatus used. (author).

  13. XRSW method, its application and development

    Energy Technology Data Exchange (ETDEWEB)

    Zheludeva, S I; Kovalchuk, M V [Russian Academy of Sciences, Institute of Crystallography, Moscow (Russian Federation)

    1996-09-01

    X-Ray Standing Waves (XRSW) may be obtained under dynamical diffraction in periodic structures or under total external reflection conditions (TR) is stratified medium. As the incident angle varies, XRSW nodes and antinodes move in the direction perpendicular to the reflecting planes, leading to drastic variation of photoelectron interaction of X-ray with matter and resulting in specific angular dependencies of secondary radiation yields (photoelectrons, fluorescence, internal photoeffect, photoluminescence, Compton and thermal diffuse scattering). The structural information - the position of investigated atoms in the direction of XRSW movement (coherent position), the distribution of atoms about this position (coherent fraction) - is obtained with the accuracy about several percents from XRSW period D. The objects under investigation are: semiconductor surface layers, heterostructure, multicomponent crystals, interfaces, adsorbed layers. Besides the development of XRSW method allow to obtain structure, geometrical and optical parameters of ultrathin films (crystalline and disordered, organic and inorganic) and nanostructures on their base.

  14. Proportional representation apportionment methods and their applications

    CERN Document Server

    Pukelsheim, Friedrich

    2017-01-01

    The book offers an in-depth study of the translation of vote counts into seat numbers in proportional representation systems  – an approach guided by practical needs. It also provides plenty of empirical instances illustrating the results. It analyzes in detail the 2014 elections to the European Parliament in the 28 member states, as well as the 2009 and 2013 elections to the German Bundestag. This second edition is a complete revision and expanded version of the first edition published in 2014, and many empirical election results that serve as examples have been updated. Further, a final chapter has been added assembling biographical sketches and authoritative quotes from individuals who pioneered the development of apportionment methodology. The mathematical exposition and the interrelations with political science and constitutional jurisprudence make this an apt resource for interdisciplinary courses and seminars on electoral systems and apportionment methods.

  15. Methods and applications of HPLC-AMS

    International Nuclear Information System (INIS)

    Buchholz, Bruce A.; Dueker, Stephen R.; Lin, Yumei; Clifford, Andrew J.; Vogel, John S.

    2000-01-01

    Pharmacokinetics of physiologic doses of nutrients, pesticides, and herbicides can easily be traced in humans using a 14 C-labeled compound. Basic kinetics can be monitored in blood or urine by measuring the elevation in the 14 C content above the control predose tissue and converting to equivalents of the parent compound. High performance liquid chromatography (HPLC) is an excellent method for the chemical separation of complex mixtures whose profiles afford estimation of biochemical pathways of metabolism. Compounds elute from the HPLC systems with characteristic retention times and can be collected in fractions that can then be graphitized for AMS measurement. Unknowns are tentatively identified by co-elution with known standards and chemical tests that reveal functional groupings. Metabolites are quantified with the 14 C signal. Thoroughly accounting for the carbon inventory in the LC solvents, ion-pairing agents, samples, and carriers adds some complexity to the analysis. In most cases the total carbon inventory is dominated by carrier. Baseline background and stability need to be carefully monitored. Limits of quantitation near 10 amol of 14 C per HPLC fraction are typically achieved. Baselines are maintained by limiting injected 14 C activity <0.17 Bq (4.5 pCi) on the HPLC column

  16. Formal Methods Applications in Air Transportation

    Science.gov (United States)

    Farley, Todd

    2009-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control system s aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Air traffic control modernization has long held the promise of a more efficient air transportation system. Part of NASA s current mission is to develop advanced automation and operational concepts that will expand the capacity of our national airspace system while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we ll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and the promise of formal methods going forward.

  17. Clustering Methods Application for Customer Segmentation to Manage Advertisement Campaign

    OpenAIRE

    Maciej Kutera; Mirosława Lasek

    2010-01-01

    Clustering methods are recently so advanced elaborated algorithms for large collection data analysis that they have been already included today to data mining methods. Clustering methods are nowadays larger and larger group of methods, very quickly evolving and having more and more various applications. In the article, our research concerning usefulness of clustering methods in customer segmentation to manage advertisement campaign is presented. We introduce results obtained by using four sel...

  18. Studies on the methods of inorganic nutrient application in coconut

    International Nuclear Information System (INIS)

    Dwivedi, R.S.; Ray, P.K.; Ninan, S.

    1981-01-01

    Using carrier free 32 P, tagged single superphosphate and 86 Rb, the efficiency of different methods of plant injection and soil placement techniques for fertilizer applications was examined. In the plant injection techniques the radioactivity was fed to the palms through growing roots tips, cut ends of roots, stem injection and leaf axils. The application of radioactivity through the cut ends of roots was most efficient since 32 P was detected in 10 m tall palms, four hours after application. In stem, leaf axil and growing roots tips injection the 32 P was detected after 8, 12 and 18 h. Out of four methods of soil application, the quickest recovery of 32 P in the palms was detected after 7 days of placement when applied by the hole method. The 32 P activity in the palms through circular trenches, strips and basin methods was recorded after 8, 8 and 11 days of application respectively. The accumulation of 86 Rb was significantly higher than 32 P. With plant injection technique the accumulation of activity was found to be significantly higher than with soil placement methods. The rate of radioactivity absorption was 10 to 60 time faster in the former technique as compared to that of the latter. The application of radioactivity through cut ends of roots and circular trench methods, were found to be better and may recommended for nutrient application in coconut. (orig.)

  19. Inverse operator theory method and its applications in nonlinear physics

    International Nuclear Information System (INIS)

    Fang Jinqing

    1993-01-01

    Inverse operator theory method, which has been developed by G. Adomian in recent years, and its applications in nonlinear physics are described systematically. The method can be an unified effective procedure for solution of nonlinear and/or stochastic continuous dynamical systems without usual restrictive assumption. It is realized by Mathematical Mechanization by us. It will have a profound on the modelling of problems of physics, mathematics, engineering, economics, biology, and so on. Some typical examples of the application are given and reviewed

  20. Bayesian non- and semi-parametric methods and applications

    CERN Document Server

    Rossi, Peter

    2014-01-01

    This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available, a natural desire to provide methods that relax these assumptions arises. Peter Rossi advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. The Bayesian approach can use either a large but fixed number

  1. A Modified Homogeneous Balance Method and Its Applications

    International Nuclear Information System (INIS)

    Liu Chunping

    2011-01-01

    A modified homogeneous balance method is proposed by improving some key steps in the homogeneous balance method. Bilinear equations of some nonlinear evolution equations are derived by using the modified homogeneous balance method. Generalized Boussinesq equation, KP equation, and mKdV equation are chosen as examples to illustrate our method. This approach is also applicable to a large variety of nonlinear evolution equations. (general)

  2. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    International Nuclear Information System (INIS)

    Hellebust, Taran Paulsen; Tanderup, Kari; Bergstrand, Eva Stabell; Knutsen, Bjoern Helge; Roeislien, Jo; Olsen, Dag Rune

    2007-01-01

    The purpose of this study is to investigate whether the method of applicator reconstruction and/or the applicator orientation influence the dose calculation to points around the applicator for brachytherapy of cervical cancer with CT-based treatment planning. A phantom, containing a fixed ring applicator set and six lead pellets representing dose points, was used. The phantom was CT scanned with the ring applicator at four different angles related to the image plane. In each scan the applicator was reconstructed by three methods: (1) direct reconstruction in each image (DR) (2) reconstruction in multiplanar reconstructed images (MPR) and (3) library plans, using pre-defined applicator geometry (LIB). The doses to the lead pellets were calculated. The relative standard deviation (SD) for all reconstruction methods was less than 3.7% in the dose points. The relative SD for the LIB method was significantly lower (p < 0.05) than for the DR and MPR methods for all but two points. All applicator orientations had similar dose calculation reproducibility. Using library plans for applicator reconstruction gives the most reproducible dose calculation. However, with restrictive guidelines for applicator reconstruction the uncertainties for all methods are low compared to other factors influencing the accuracy of brachytherapy

  3. A process for application of ATHEANA - a new HRA method

    International Nuclear Information System (INIS)

    Parry, G.W.; Bley, D.C.; Cooper, S.E.

    1996-01-01

    This paper describes the analytical process for the application of ATHEANA, a new approach to the performance of human reliability analysis as part of a PRA. This new method, unlike existing methods, is based upon an understanding of the reasons why people make errors, and was developed primarily to address the analysis of errors of commission

  4. Application of SBRA Method in Mechanics of Continetal Plates

    Directory of Open Access Journals (Sweden)

    Ivo WANDROL

    2012-06-01

    Full Text Available This paper shows the probabilistic SBRA Method application to the model of the behaviour of the lithosphere of the Earth. The method extends our initial work where we created the geomechanical model of the lithosphere. The basic idea was about the generation of thermoelastic waves due to thermal expansion of the rock mass and the ratcheting mechanisms.

  5. Application of Lyapunov's Second Method in the Stability Analysis of ...

    African Journals Online (AJOL)

    In this paper, Lyapunov's method for determining the stability of non-linear systems under dynamic states is presented. The paper highlights a practical application of the method to investigate the stability of crude oil/natural gas separation process. Mathematical state models for the separation process, used in the ...

  6. Mathematical methods and supercomputing in nuclear applications. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Kuesters, H.; Stein, E.; Werner, W.

    1993-04-01

    All papers of the two volumes are separately indexed in the data base. Main topics are: Progress in advanced numerical techniques, fluid mechanics, on-line systems, artificial intelligence applications, nodal methods reactor kinetics, reactor design, supercomputer architecture, probabilistic estimation of risk assessment, methods in transport theory, advances in Monte Carlo techniques, and man-machine interface. (orig.)

  7. Mathematical methods and supercomputing in nuclear applications. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Kuesters, H.; Stein, E.; Werner, W.

    1993-04-01

    All papers of the two volumes are separately indexed in the data base. Main topics are: Progress in advanced numerical techniques, fluid mechanics, on-line systems, artificial intelligence applications, nodal methods reactor kinetics, reactor design, supercomputer architecture, probabilistic estimation of risk assessment, methods in transport theory, advances in Monte Carlo techniques, and man-machine interface. (orig.)

  8. The thin layer activation method and its applications in industry

    International Nuclear Information System (INIS)

    1997-01-01

    The thin layer activation (TLA) method is one of the most effective and precise methods for the measurement and monitoring of corrosion (erosion) and wear in industry and is used for on-line remote measurement of wear and corrosion rate of central parts in machines or processing vessels under real operating conditions. This document is a comprehensive manual on TLA method in its applications for monitoring wear and corrosion in industry. It describes the theory and presents case studies on TLA method applications in industry. In addition, in annexes are given tables of nuclear data relating to TLA (decay characteristics, depth distribution of reaction products, activation data for charged-particle nuclear reactions), references from INIS database on TLA and a detailed production of the application of TLA for wear measurement of superhard turning tools

  9. The thin layer activation method and its applications in industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The thin layer activation (TLA) method is one of the most effective and precise methods for the measurement and monitoring of corrosion (erosion) and wear in industry and is used for on-line remote measurement of wear and corrosion rate of central parts in machines or processing vessels under real operating conditions. This document is a comprehensive manual on TLA method in its applications for monitoring wear and corrosion in industry. It describes the theory and presents case studies on TLA method applications in industry. In addition, in annexes are given tables of nuclear data relating to TLA (decay characteristics, depth distribution of reaction products, activation data for charged-particle nuclear reactions), references from INIS database on TLA and a detailed production of the application of TLA for wear measurement of superhard turning tools.

  10. Forensic linguistics: Applications of forensic linguistics methods to anonymous letters

    OpenAIRE

    NOVÁKOVÁ, Veronika

    2011-01-01

    The title of my bachelor work is ?Forensic linguistics: Applications of forensic linguistics methods to anonymous letters?. Forensic linguistics is young and not very known branch of applied linguistics. This bachelor work wants to introduce forensic linguistics and its method. The bachelor work has two parts ? theory and practice. The theoretical part informs about forensic linguistics in general. Its two basic aspects utilized in forensic science and respective methods. The practical part t...

  11. Advanced scientific computational methods and their applications of nuclear technologies. (1) Overview of scientific computational methods, introduction of continuum simulation methods and their applications (1)

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Okuda, Hiroshi

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the first issue showing their overview and introduction of continuum simulation methods. Finite element method as their applications is also reviewed. (T. Tanaka)

  12. Prospective Mathematics Teachers' Opinions about Mathematical Modeling Method and Applicability of This Method

    Science.gov (United States)

    Akgün, Levent

    2015-01-01

    The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…

  13. Advanced scientific computational methods and their applications to nuclear technologies. (4) Overview of scientific computational methods, introduction of continuum simulation methods and their applications (4)

    International Nuclear Information System (INIS)

    Sekimura, Naoto; Okita, Taira

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the fourth issue showing the overview of scientific computational methods with the introduction of continuum simulation methods and their applications. Simulation methods on physical radiation effects on materials are reviewed based on the process such as binary collision approximation, molecular dynamics, kinematic Monte Carlo method, reaction rate method and dislocation dynamics. (T. Tanaka)

  14. Application of Multi-Analyte Methods for Pesticide Formulations

    Energy Technology Data Exchange (ETDEWEB)

    Lantos, J.; Virtics, I. [Plant Protection & Soil Conservation Service of Szabolcs-Szatmár-Bereg County, Nyíregyháza (Hungary)

    2009-07-15

    The application of multi-analyte methods for pesticide formulations by GC analysis is discussed. HPLC was used to determine active ingredients. HPLC elution sequences were related to individual n-octanol/water partition coefficients. Real laboratory data are presented and evaluated with regard to validation requirements. The retention time data of pesticides on different HPLC columns under gradient and isocratic conditions are compared to illustrate the applicability of the methodologies. (author)

  15. Application of geo-information science methods in ecotourism exploitation

    Science.gov (United States)

    Dong, Suocheng; Hou, Xiaoli

    2004-11-01

    Application of geo-information science methods in ecotourism development was discussed in the article. Since 1990s, geo-information science methods, which take the 3S (Geographic Information System, Global Positioning System, and Remote Sensing) as core techniques, has played an important role in resources reconnaissance, data management, environment monitoring, and regional planning. Geo-information science methods can easily analyze and convert geographic spatial data. The application of 3S methods is helpful to sustainable development in tourism. Various assignments are involved in the development of ecotourism, such as reconnaissance of ecotourism resources, drawing of tourism maps, dealing with mass data, and also tourism information inquire, employee management, quality management of products. The utilization of geo-information methods in ecotourism can make the development more efficient by promoting the sustainable development of tourism and the protection of eco-environment.

  16. Investigations on application of multigrid method to MHD equilibrium analysis

    International Nuclear Information System (INIS)

    Ikuno, Soichiro

    2000-01-01

    The potentiality of application for Multi-grid method to MHD equilibrium analysis is investigated. The nonlinear eigenvalue problem often appears when the MHD equilibria are determined by solving the Grad-Shafranov equation numerically. After linearization of the equation, the problem is solved by use of the iterative method. Although the Red-Black SOR method or Gauss-Seidel method is often used for the solution of the linearized equation, it takes much CPU time to solve the problem. The Multi-grid method is compared with the SOR method for the Poisson Problem. The results of computations show that the CPU time required for the Multi-grid method is about 1000 times as small as that for the SOR method. (author)

  17. The application of mixed methods designs to trauma research.

    Science.gov (United States)

    Creswell, John W; Zhang, Wanqing

    2009-12-01

    Despite the use of quantitative and qualitative data in trauma research and therapy, mixed methods studies in this field have not been analyzed to help researchers designing investigations. This discussion begins by reviewing four core characteristics of mixed methods research in the social and human sciences. Combining these characteristics, the authors focus on four select mixed methods designs that are applicable in trauma research. These designs are defined and their essential elements noted. Applying these designs to trauma research, a search was conducted to locate mixed methods trauma studies. From this search, one sample study was selected, and its characteristics of mixed methods procedures noted. Finally, drawing on other mixed methods designs available, several follow-up mixed methods studies were described for this sample study, enabling trauma researchers to view design options for applying mixed methods research in trauma investigations.

  18. Development and application of advanced methods for electronic structure calculations

    DEFF Research Database (Denmark)

    Schmidt, Per Simmendefeldt

    . For this reason, part of this thesis relates to developing and applying a new method for constructing so-called norm-conserving PAW setups, that are applicable to GW calculations by using a genetic algorithm. The effect of applying the new setups significantly affects the absolute band positions, both for bulk......This thesis relates to improvements and applications of beyond-DFT methods for electronic structure calculations that are applied in computational material science. The improvements are of both technical and principal character. The well-known GW approximation is optimized for accurate calculations...... of electronic excitations in two-dimensional materials by exploiting exact limits of the screened Coulomb potential. This approach reduces the computational time by an order of magnitude, enabling large scale applications. The GW method is further improved by including so-called vertex corrections. This turns...

  19. Prony's method application for BWR instabilities characterization

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Rogelio, E-mail: rogelio.castillo@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Ramírez, J. Ramón, E-mail: ramon.ramirez@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Alonso, Gustavo, E-mail: gustavo.alonso@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico)

    2015-04-01

    Highlights: • Prony's method application for BWR instability events. • Several BWR instability benchmark are assessed using this method. • DR and frequency are obtained and a new parameter is proposed to eliminate false signals. • Adequate characterization of in-phase and out-of-phase events is obtained. • The Prony's method application is validated. - Abstract: Several methods have been developed for the analysis of reactor power signals during BWR power oscillations. Among them is the Prony's method, its application provides the DR and the frequency of oscillations. In this paper another characteristic of the method is proposed to determine the type of oscillations that can occur, in-phase or out-of-phase. Prony's method decomposes a given signal in all the frequencies that it contains, therefore the DR of the fundamental mode and the first harmonic are obtained. To determine the more dominant pole of the system a normalized amplitude W of the system is calculated, which depends on the amplitude and the damping coefficient. With this term, it can be analyzed which type of oscillations is present, if W of the fundamental mode frequency is the greater, the type of oscillations is in-phase, if W of the first harmonic frequency is the greater, the type of oscillations is out-of-phase. The method is applied to several stability benchmarks to assess its validity. Results show the applicability of the method as an alternative analysis method to determine the type of oscillations occurred.

  20. Prony's method application for BWR instabilities characterization

    International Nuclear Information System (INIS)

    Castillo, Rogelio; Ramírez, J. Ramón; Alonso, Gustavo; Ortiz-Villafuerte, Javier

    2015-01-01

    Highlights: • Prony's method application for BWR instability events. • Several BWR instability benchmark are assessed using this method. • DR and frequency are obtained and a new parameter is proposed to eliminate false signals. • Adequate characterization of in-phase and out-of-phase events is obtained. • The Prony's method application is validated. - Abstract: Several methods have been developed for the analysis of reactor power signals during BWR power oscillations. Among them is the Prony's method, its application provides the DR and the frequency of oscillations. In this paper another characteristic of the method is proposed to determine the type of oscillations that can occur, in-phase or out-of-phase. Prony's method decomposes a given signal in all the frequencies that it contains, therefore the DR of the fundamental mode and the first harmonic are obtained. To determine the more dominant pole of the system a normalized amplitude W of the system is calculated, which depends on the amplitude and the damping coefficient. With this term, it can be analyzed which type of oscillations is present, if W of the fundamental mode frequency is the greater, the type of oscillations is in-phase, if W of the first harmonic frequency is the greater, the type of oscillations is out-of-phase. The method is applied to several stability benchmarks to assess its validity. Results show the applicability of the method as an alternative analysis method to determine the type of oscillations occurred

  1. A reliability evaluation method for NPP safety DCS application software

    International Nuclear Information System (INIS)

    Li Yunjian; Zhang Lei; Liu Yuan

    2014-01-01

    In the field of nuclear power plant (NPP) digital i and c application, reliability evaluation for safety DCS application software is a key obstacle to be removed. In order to quantitatively evaluate reliability of NPP safety DCS application software, this paper propose a reliability evaluating method based on software development life cycle every stage's v and v defects density characteristics, by which the operating reliability level of the software can be predicted before its delivery, and helps to improve the reliability of NPP safety important software. (authors)

  2. Applications of the rotating orientation XRD method to oriented materials

    International Nuclear Information System (INIS)

    Guo Zhenqi; Li Fei; Jin Li; Bai Yu

    2009-01-01

    The rotating orientation x-ray diffraction (RO-XRD) method, based on conventional XRD instruments by a modification of the sample stage, was introduced to investigate the orientation-related issues of such materials. In this paper, we show its applications including the determination of single crystal orientation, assistance in crystal cutting and evaluation of crystal quality. The interpretation of scanning patterns by RO-XRD on polycrystals with large grains, bulk material with several grains and oriented thin film is also presented. These results will hopefully expand the applications of the RO-XRD method and also benefit the conventional XRD techniques. (fast track communication)

  3. 3rd Workshop on "Combinations of Intelligent Methods and Applications"

    CERN Document Server

    Palade, Vasile

    2013-01-01

    The combination of different intelligent methods is a very active research area in Artificial Intelligence (AI). The aim is to create integrated or hybrid methods that benefit from each of their components.  The 3rd Workshop on “Combinations of Intelligent Methods and Applications” (CIMA 2012) was intended to become a forum for exchanging experience and ideas among researchers and practitioners who are dealing with combining intelligent methods either based on first principles or in the context of specific applications. CIMA 2012 was held in conjunction with the 22nd European Conference on Artificial Intelligence (ECAI 2012).This volume includes revised versions of the papers presented at CIMA 2012.  .

  4. Quantum statistical Monte Carlo methods and applications to spin systems

    International Nuclear Information System (INIS)

    Suzuki, M.

    1986-01-01

    A short review is given concerning the quantum statistical Monte Carlo method based on the equivalence theorem that d-dimensional quantum systems are mapped onto (d+1)-dimensional classical systems. The convergence property of this approximate tansformation is discussed in detail. Some applications of this general appoach to quantum spin systems are reviewed. A new Monte Carlo method, ''thermo field Monte Carlo method,'' is presented, which is an extension of the projection Monte Carlo method at zero temperature to that at finite temperatures

  5. Application of Electrical Resistivity Method (ERM) in Groundwater Exploration

    Science.gov (United States)

    Izzaty Riwayat, Akhtar; Nazri, Mohd Ariff Ahmad; Hazreek Zainal Abidin, Mohd

    2018-04-01

    The geophysical method which dominant by geophysicists become one of most popular method applied by engineers in civil engineering fields. Electrical Resistivity Method (ERM) is one of geophysical tool that offer very attractive technique for subsurface profile characterization in larger area. Applicable alternative technique in groundwater exploration such as ERM which complement with existing conventional method may produce comprehensive and convincing output thus effective in terms of cost, time, data coverage and sustainable. ERM has been applied by various application in groundwater exploration. Over the years, conventional method such as excavation and test boring are the tools used to obtain information of earth layer especially during site investigation. There are several problems regarding the application of conventional technique as it only provides information at actual drilling point only. This review paper was carried out to expose the application of ERM in groundwater exploration. Results from ERM could be additional information to respective expert for their problem solving such as the information on groundwater pollution, leachate, underground and source of water supply.

  6. Minimal Residual Disease Assessment in Lymphoma: Methods and Applications.

    Science.gov (United States)

    Herrera, Alex F; Armand, Philippe

    2017-12-01

    Standard methods for disease response assessment in patients with lymphoma, including positron emission tomography and computed tomography scans, are imperfect. In other hematologic malignancies, particularly leukemias, the ability to detect minimal residual disease (MRD) is increasingly influencing treatment paradigms. However, in many subtypes of lymphoma, the application of MRD assessment techniques, like flow cytometry or polymerase chain reaction-based methods, has been challenging because of the absence of readily detected circulating disease or canonic chromosomal translocations. Newer MRD detection methods that use next-generation sequencing have yielded promising results in a number of lymphoma subtypes, fueling the hope that MRD detection may soon be applicable in clinical practice for most patients with lymphoma. MRD assessment can provide real-time information about tumor burden and response to therapy, noninvasive genomic profiling, and monitoring of clonal dynamics, allowing for many possible applications that could significantly affect the care of patients with lymphoma. Further validation of MRD assessment methods, including the incorporation of MRD assessment into clinical trials in patients with lymphoma, will be critical to determine how best to deploy MRD testing in routine practice and whether MRD assessment can ultimately bring us closer to the goal of personalized lymphoma care. In this review article, we describe the methods available for detecting MRD in patients with lymphoma and their relative advantages and disadvantages. We discuss preliminary results supporting the potential applications for MRD testing in the care of patients with lymphoma and strategies for including MRD assessment in lymphoma clinical trials.

  7. Formal methods for industrial critical systems a survey of applications

    CERN Document Server

    Margaria-Steffen, Tiziana

    2012-01-01

    "Today, formal methods are widely recognized as an essential step in the design process of industrial safety-critical systems. In its more general definition, the term formal methods encompasses all notations having a precise mathematical semantics, together with their associated analysis methods, that allow description and reasoning about the behavior of a system in a formal manner.Growing out of more than a decade of award-winning collaborative work within the European Research Consortium for Informatics and Mathematics, Formal Methods for Industrial Critical Systems: A Survey of Applications presents a number of mainstream formal methods currently used for designing industrial critical systems, with a focus on model checking. The purpose of the book is threefold: to reduce the effort required to learn formal methods, which has been a major drawback for their industrial dissemination; to help designers to adopt the formal methods which are most appropriate for their systems; and to offer a panel of state-of...

  8. Logic-based aggregation methods for ranking student applicants

    Directory of Open Access Journals (Sweden)

    Milošević Pavle

    2017-01-01

    Full Text Available In this paper, we present logic-based aggregation models used for ranking student applicants and we compare them with a number of existing aggregation methods, each more complex than the previous one. The proposed models aim to include depen- dencies in the data using Logical aggregation (LA. LA is a aggregation method based on interpolative Boolean algebra (IBA, a consistent multi-valued realization of Boolean algebra. This technique is used for a Boolean consistent aggregation of attributes that are logically dependent. The comparison is performed in the case of student applicants for master programs at the University of Belgrade. We have shown that LA has some advantages over other presented aggregation methods. The software realization of all applied aggregation methods is also provided. This paper may be of interest not only for student ranking, but also for similar problems of ranking people e.g. employees, team members, etc.

  9. Nanosilicon properties, synthesis, applications, methods of analysis and control

    CERN Document Server

    Ischenko, Anatoly A; Aslalnov, Leonid A

    2015-01-01

    Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control examines the latest developments on the physics and chemistry of nanosilicon. The book focuses on methods for producing nanosilicon, its electronic and optical properties, research methods to characterize its spectral and structural properties, and its possible applications. The first part of the book covers the basic properties of semiconductors, including causes of the size dependence of the properties, structural and electronic properties, and physical characteristics of the various forms of silicon. It presents theoretical and experimental research results as well as examples of porous silicon and quantum dots. The second part discusses the synthesis of nanosilicon, modification of the surface of nanoparticles, and properties of the resulting particles. The authors give special attention to the photoluminescence of silicon nanoparticles. The third part describes methods used for studying and controlling the structure and pro...

  10. Overview of INAA method and its application in Malaysia

    International Nuclear Information System (INIS)

    Yavar, A.R.; Sarmani, S.B.; Khalafi, H.; Abdul Khalik Wood; Khoo, K.S.

    2011-01-01

    Present work shows the development of nuclear technology in Malaysia and highlights its applications that have been developed by using the instrumental neutron activation analysis (INAA) method. In addition, present study exhibits a comprehensive review of INAA for calculation of neutron flux parameters and concentration of elements. The INAA is a powerful method to analyse the sample which identifies qualitative and quantitative of elements present in a sample. The INAA is a working instrument with advantages of experimental simplicity, high accuracy, excellent flexibility with respect to irradiation and counting conditions, and suitability for computerization. In INAA, sample is irradiated and measured directly. In practical, INAA is based on an absolute, relative and single-comparator standardisation method.The INAA has been developed since 1982 when the TRIGA Mark II reactor of Malaysia has commissioned. The absolute method was less utilised, the relative method has been used since 1982, and the k 0 -INAA method is derived from single-comparator standardization method has been developed since 1996 in Malaysian. The relative method, because of its advantages, such as high accuracy, easy for using, has the most application in Malaysia. Currently, local Universities and Malaysian Nuclear Agency (MNA) research reactor use INAA method in Malaysia. (Author)

  11. Overview of INAA Method and Its Application in Malaysia

    International Nuclear Information System (INIS)

    Yavar, A.R.; Sarmani, S.B.; Khalafi, H.; Wood, A.K.; Khoo, K.S.

    2015-01-01

    Present work shows the development of nuclear technology in Malaysia and highlights its applications that have been developed by using the instrumental neutron activation analysis (INAA) method. In addition, present study exhibits a comprehensive review of INAA for calculation of neutron flux parameters and concentration of elements. The INAA is a powerful method to analyse the sample which identifies qualitative and quantitative of elements present in a sample. The INAA is a working instrument with advantages of experimental simplicity, high accuracy, excellent flexibility with respect to irradiation and counting conditions, and suitability for computerization. In INAA, sample is irradiated and measured directly. In practical, INAA is based on an absolute, relative and single-comparator standardisation method. The INAA has been developed since 1982 when the TRIGA MARK II reactor of Malaysia has commissioned. The absolute method was less utilised, the relative method has been used since 1982, and the k_0-INAA method is derived from single-comparator standardization method has been developed since 1996 in Malaysia. The relative method, because of its advantages, such as high accuracy, easy for using, has the most application in Malaysia. Currently, local Universities and Malaysian Nuclear Agency (MNA) research reactor use INAA method in Malaysia. (author)

  12. Clustering Methods Application for Customer Segmentation to Manage Advertisement Campaign

    Directory of Open Access Journals (Sweden)

    Maciej Kutera

    2010-10-01

    Full Text Available Clustering methods are recently so advanced elaborated algorithms for large collection data analysis that they have been already included today to data mining methods. Clustering methods are nowadays larger and larger group of methods, very quickly evolving and having more and more various applications. In the article, our research concerning usefulness of clustering methods in customer segmentation to manage advertisement campaign is presented. We introduce results obtained by using four selected methods which have been chosen because their peculiarities suggested their applicability to our purposes. One of the analyzed method k-means clustering with random selected initial cluster seeds gave very good results in customer segmentation to manage advertisement campaign and these results were presented in details in the article. In contrast one of the methods (hierarchical average linkage was found useless in customer segmentation. Further investigations concerning benefits of clustering methods in customer segmentation to manage advertisement campaign is worth continuing, particularly that finding solutions in this field can give measurable profits for marketing activity.

  13. The J-Matrix Method Developments and Applications

    CERN Document Server

    Alhaidari, Abdulaziz D; Heller, Eric J; Abdelmonem, Mohamed S

    2008-01-01

    This volume aims to provide the fundamental knowledge to appreciate the advantages of the J-matrix method and to encourage its use and further development. The J-matrix method is an algebraic method of quantum scattering with substantial success in atomic and nuclear physics. The accuracy and convergence property of the method compares favourably with other successful scattering calculation methods. Despite its thirty-year long history new applications are being found for the J-matrix method. This book gives a brief account of the recent developments and some selected applications of the method in atomic and nuclear physics. New findings are reported in which experimental results are compared to theoretical calculations. Modifications, improvements and extensions of the method are discussed using the language of the J-matrix. The volume starts with a Foreword by the two co-founders of the method, E.J. Heller and H.A. Yamani and it contains contributions from 24 prominent international researchers.

  14. Numerical methods in image processing for applications in jewellery industry

    OpenAIRE

    Petrla, Martin

    2016-01-01

    Presented thesis deals with a problem from the field of image processing for application in multiple scanning of jewelery stones. The aim is to develop a method for preprocessing and subsequent mathematical registration of images in order to increase the effectivity and reliability of the output quality control. For these purposes the thesis summerizes mathematical definition of digital image as well as theoretical base of image registration. It proposes a method adjusting every single image ...

  15. Molecular methods for typing of Helicobacter pylori and their applications

    DEFF Research Database (Denmark)

    Colding, H; Hartzen, S H; Roshanisefat, H

    1999-01-01

    .g. the urease genes. Furthermore, reproducibility, discriminatory power, ease of performance and interpretation, cost and toxic procedures of each method are assessed. To date no direct comparison of all the molecular typing methods described has been performed in the same study with the same H. pylori strains....... However, PCR analysis of the urease gene directly on suspensions of H. pylori or gastric biopsy material seems to be useful for routine use and applicable in specific epidemiological situations....

  16. Monte Carlo methods and applications in nuclear physics

    International Nuclear Information System (INIS)

    Carlson, J.

    1990-01-01

    Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs

  17. Monte Carlo methods and applications in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.

    1990-01-01

    Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs.

  18. Methods for production of aluminium powders and their application fields

    Energy Technology Data Exchange (ETDEWEB)

    Gopienko, V.G.; Kiselev, V.P.; Zobnina, N.S. (Vsesoyuznyj Nauchno-Issledovatel' skij i Proektnyj Inst. Alyuminievoj, magnievoj i ehlektrodnoj promyshlennosti (USSR))

    1984-12-01

    Different types of powder products made of alluminium and its alloys (powder, fine powders, granules and pastes) as well as their basic physicochemical properties are briefly characterized. The principle methods for alluminium powder production are outlined: physicochemical methods, the melt spraying by compressed gas being the mostly developed among them, and physico-mechanical ones. Main application spheres for powder productions of aluminium and its alloys are reported in short.

  19. Methods for production of aluminium powders and their application fields

    International Nuclear Information System (INIS)

    Gopienko, V.G.; Kiselev, V.P.; Zobnina, N.S.

    1984-01-01

    Different types of powder products made of alluminium and its alloys (powder, fine powders, granules and pastes) as well as their basic physicochemical properties are briefly characterized. The principle methods for alluminium powder production are outlined: physicochemical methods, the melt spraying by compressed gas being the mostly developed among them, and physico-mechanical ones. Main application spheres for powder productions of aluminium and its alloys are reported in short

  20. The methods and applications of optimization of radiation protection

    International Nuclear Information System (INIS)

    Liu Hua

    2007-01-01

    Optimization is the most important principle in radiation protection. The present article briefs the concept and up-to-date progress of optimization of protection, introduces some methods used in current optimization analysis, and presents various applications of optimization of protection. The author emphasizes that optimization of protection is a forward-looking iterative process aimed at preventing exposures before they occur. (author)

  1. A modified sliding spectral method and its application to COSMIC ...

    Indian Academy of Sciences (India)

    A modified sliding spectral method and its application to COSMIC radio occultation data 1751. The window length with 300 samples is supposed to provide a reasonable resolution. In a spherically symmetric atmosphere, the refractive index n as a function of tangent radius r0 can be computed from the bending angle α as.

  2. Pseudo-harmonics method: an application to thermal reactors

    International Nuclear Information System (INIS)

    Silva, F.C. da; Rotenberg, S.; Thome Filho, Z.D.

    1985-10-01

    Several applications of the Pseudo-Harmonics method are presented, aiming to calculate the neutron flux and the perturbed eigenvalue of a nuclear reactor, like PWR, with three enrichment regions as Angra-1 reactor. In the reference reactor, perturbations of several types as global as local were simulated. The results were compared with those from the direct calculation. (E.G.) [pt

  3. Hybrid Particle-Continuum Numerical Methods for Aerospace Applications

    Science.gov (United States)

    2011-01-01

    Many applications of MEMS/NEMS devices, which include micro- turbines [3, 4], micro-sensors for chemical con- centrations or gas ow properties [5, 6, 7...Oran, E. S., and Kaplan , C. R., The Coupled Multiscale Multiphysics Method (CM3) for Rareed Gas Flows, AIAA 2010-823, 2010. [63] Holman, T. D

  4. 40 CFR 425.03 - Sulfide analytical methods and applicability.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sulfide analytical methods and applicability. 425.03 Section 425.03 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY General Provisions...

  5. Application of New Variational Homotopy Perturbation Method For ...

    African Journals Online (AJOL)

    This paper discusses the application of the New Variational Homotopy Perturbation Method (NVHPM) for solving integro-differential equations. The advantage of the new Scheme is that it does not require discretization, linearization or any restrictive assumption of any form be fore it is applied. Several test problems are ...

  6. Cattle slurry on grassland - application methods and nitrogen use efficiency

    NARCIS (Netherlands)

    Lalor, S.T.J.

    2014-01-01

    Cattle slurry represents a significant resource on grassland-based farming systems. The objective of this thesis was to investigate and devise cattle slurry application methods and strategies that can be implemented on grassland farms to improve the efficiency with which nitrogen (N) in

  7. APPLICATION OF CHEMICAL METHODS TO THE SOLID WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    C. P. Bulimaga

    2008-12-01

    Full Text Available The present article is a synthesis analysis of application of chemical methods for the development of technologies of hazardous waste management. Here are offered some technologies of neutralization of the waste containing hexacyanofferates, galvanic wastes and those with contain of vanadium, which are collected at Power Thermoelectric Plants.

  8. Application of laplace transform method in heavy ion reaction research

    International Nuclear Information System (INIS)

    Wang Jinchuan; Xi Hongfei; Guo Zhongyan; Zhan Wenlong; Zhu Yongtai; Zhou Jianqun; Liu Guanhua

    1993-01-01

    Laplace transform method (LTM) is applied to investigate the effects of different spectroscopy amplifiers parameters on identification of the light charged particles (LCP) emitted from 12 C(46,7 MeV/u) + 58 Ni reaction. The significance of application of LTM in heavy ion experimental nuclear physics is also discussed

  9. TRIZ method application for improving the special vehicles maintenance

    OpenAIRE

    Petrović Saša; Lozanović-Šajić Jasmina; Knežević Tijana; Pavlović Jovan; Ivanov Goran

    2014-01-01

    TRIZ methodology provides an opportunity for improving the classical engineering approach based on personal knowledge and experience. This paper presents the application of TRIZ methods for improving vehicle maintenance where special equipment is installed. A specific problem is the maintenance of the periscopes with heating system. Protective glass panels with heating system are rectangular glass elements. Their purpose is to perform mechanical protection ...

  10. Effects of application methods and species of wood on color ...

    African Journals Online (AJOL)

    In this study, the color effects of wood materials to coloring with different application methods (brush, roller sponge and spray gun) and waterborne varnishes were investigated according to ASTM-D 2244. For this purpose, the experimental samples of Scots pine (Pinus silvestris L.), oriental beech (Fagus orientalis L.) and ...

  11. What is the method in applying formal methods to PLC applications?

    NARCIS (Netherlands)

    Mader, Angelika H.; Engel, S.; Wupper, Hanno; Kowalewski, S.; Zaytoon, J.

    2000-01-01

    The question we investigate is how to obtain PLC applications with confidence in their proper functioning. Especially, we are interested in the contribution that formal methods can provide for their development. Our maxim is that the place of a particular formal method in the total picture of system

  12. Application of autoradiography methods for solving problems of microelectronics

    International Nuclear Information System (INIS)

    Frejer, K.; Trojtler, Kh.-Kh.; Birkgol'ts, V.

    1979-01-01

    Methods of contact autoradiography with halogen-silver emulsions and autoradiography, caused by the interaction of neutrons with solid track detectors, are successfully used for determination of lateral and longitudal distributions of matter in the basic semiconductor material as well as in the frameworks of its preparation. Possibilities for application and power parameters of some autoradiographic methods related to sensitivity of detection and local resolution are considered on the example of the basic material - silicon. In this case, special attention was paid on investigation of elements combibation, for example: boron/phosphorus as well as on the methods of correlation of solid track and halogen-silver autoradiogrammes [ru

  13. Application of the IPEBS method to dynamic contingency analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martins, A C.B. [FURNAS, Rio de Janeiro, RJ (Brazil); Pedroso, A S [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)

    1994-12-31

    Dynamic contingency analysis is certainly a demanding task in the context of dynamic performance evaluation. This paper presents the results of a test for checking the contingency screening capability of the IPEBS method. A brazilian 1100-bus, 112-gen system was used in the test; the ranking of the contingencies based on critical clearing times obtained with IPEBS, was compared with the ranking derived from detailed time-domain simulation. The results of this comparison encourages us to recommended the use of the method in industry applications, in a complementary basis to the current method of time domain simulation. (author) 5 refs., 1 fig., 2 tabs.

  14. Statistical disclosure control for microdata methods and applications in R

    CERN Document Server

    Templ, Matthias

    2017-01-01

    This book on statistical disclosure control presents the theory, applications and software implementation of the traditional approach to (micro)data anonymization, including data perturbation methods, disclosure risk, data utility, information loss and methods for simulating synthetic data. Introducing readers to the R packages sdcMicro and simPop, the book also features numerous examples and exercises with solutions, as well as case studies with real-world data, accompanied by the underlying R code to allow readers to reproduce all results. The demand for and volume of data from surveys, registers or other sources containing sensible information on persons or enterprises have increased significantly over the last several years. At the same time, privacy protection principles and regulations have imposed restrictions on the access and use of individual data. Proper and secure microdata dissemination calls for the application of statistical disclosure control methods to the data before release. This book is in...

  15. A new ore reserve estimation method, Yang Chizhong filtering and inferential measurement method, and its application

    International Nuclear Information System (INIS)

    Wu Jingqin.

    1989-01-01

    Yang Chizhong filtering and inferential measurement method is a new method used for variable statistics of ore deposits. In order to apply this theory to estimate the uranium ore reserves under the circumstances of regular or irregular prospecting grids, small ore bodies, less sampling points, and complex occurrence, the author has used this method to estimate the ore reserves in five ore bodies of two deposits and achieved satisfactory results. It is demonstrated that compared with the traditional block measurement method, this method is simple and clear in formula, convenient in application, rapid in calculation, accurate in results, less expensive, and high economic benefits. The procedure and experience in the application of this method and the preliminary evaluation of its results are mainly described

  16. Application Profile Matching Method for Employees Online Recruitment

    Science.gov (United States)

    Sunarti; Rangga, Rahmadian Y.; Marlim, Yulvia Nora

    2017-12-01

    Employees is one of the determinant factors of company’s success. Thus, reliable human resources are needed to support the survival of the company. This research takes case study at PT. Asuransi Bina Dana Arta, Tbk Pekanbaru Branch. Employee recruitment system at PT. Asuransi Bina Dana Arta, Tbk Pekanbaru Branch still uses manual system as seen in application letter files file so it needs long time to determine accepted and rejected the application. For that it needs to built a system or application that allows companies in determining employees who accepted or rejected easily. Pofile Matching Method is a process of competency assessment that is done by comparing the value of written, psychological and interview test between one applicationt with other. PT. Asuransi Bina Dana Arta, Tbk Pekanbaru branch set the percentage to calculate NCF (Core Factor Value) by 60% and NSF (Secondary Factor Value) by 40%, and set the percentage to calculate the total value of written test by 40%, the total value of psycho test by 30%, and the total value of interview 30%. The final result of this study is to determine the rank or ranking of each applicant based on the greater value which, the greater that score of final result of an application get, the greater the chance of the applicant occupy a position or vacancy. Online Recruitment application uses profile matching method can help employee selection process and employee acceptance decisions quickly. This system can be viewed by directors or owners anywhere because it is online and used for other company branch

  17. Applications and Preparation Methods of Copper Chromite Catalysts: A Review

    Directory of Open Access Journals (Sweden)

    Ram Prasad

    2011-11-01

    Full Text Available In this review article various applications and preparation methods of copper chromite catalysts have been discussed. While discussing it is concluded that copper chromite is a versatile catalyst which not only catalyses numerous processes of commercial importance and national program related to defence and space research but also finds applications in the most concerned problem worldwide i.e. environmental pollution control. Several other very useful applications of copper chromite catalysts are in production of clean energy, drugs and agro chemicals, etc. Various preparation methods about 15 have been discussed which depicts clear idea about the dependence of catalytic activity and selectivity on way of preparation of catalyst. In view of the globally increasing interest towards copper chromite catalysis, reexamination on the important applications of such catalysts and their useful preparation methods is thus the need of the time. This review paper encloses 369 references including a well-conceivable tabulation of the newer state of the art. Copyright © 2011 by BCREC UNDIP. All rights reserved.(Received: 19th March 2011, Revised: 03rd May 2011, Accepted: 23rd May 2011[How to Cite: R. Prasad, and P. Singh. (2011. Applications and Preparation Methods of Copper Chromite Catalysts: A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 63-113. doi:10.9767/bcrec.6.2.829.63-113][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.829.63-113 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/829 ] | View in 

  18. Solid state nuclear track detection principles, methods and applications

    CERN Document Server

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  19. Automatic Hypocenter Determination Method in JMA Catalog and its Application

    Science.gov (United States)

    Tamaribuchi, K.

    2017-12-01

    The number of detectable earthquakes around Japan has increased by developing the high-sensitivity seismic observation network. After the 2011 Tohoku-oki earthquake, the number of detectable earthquakes have dramatically increased due to its aftershocks and induced earthquakes. This enormous number of earthquakes caused inability of manually determination of all the hypocenters. The Japan Meteorological Agency (JMA), which produces the earthquake catalog in Japan, has developed a new automatic hypocenter determination method and started its operation from April 1, 2016. This method (named PF method; Phase combination Forward search method) can determine the hypocenters of earthquakes that occur simultaneously by searching for the optimal combination of P- and S-wave arrival times and the maximum amplitudes using a Bayesian estimation technique. In the 2016 Kumamoto earthquake sequence, we successfully detected about 70,000 aftershocks automatically during the period from April 14 to the end of May, and this method contributed to the real-time monitoring of the seismic activity. Furthermore, this method can be also applied to the Earthquake Early Warning (EEW). Application of this method for EEW is called the IPF method and has been used as the hypocenter determination method of the EEW system in JMA from December 2016. By developing this method further, it is possible to contribute to not only speeding up the catalog production, but also improving reliability of the early warning.

  20. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    DEFF Research Database (Denmark)

    Hellebust, Taran Paulsen; Tanderup, Kari; Bergstrand, Eva Stabell

    2007-01-01

    in multiplanar reconstructed images (MPR) and (3) library plans, using pre-defined applicator geometry (LIB). The doses to the lead pellets were calculated. The relative standard deviation (SD) for all reconstruction methods was less than 3.7% in the dose points. The relative SD for the LIB method...

  1. Application of the selected physical methods in biological research

    Directory of Open Access Journals (Sweden)

    Jaromír Tlačbaba

    2013-01-01

    Full Text Available This paper deals with the application of acoustic emission (AE, which is a part of the non-destructive methods, currently having an extensive application. This method is used for measuring the internal defects of materials. AE has a high potential in further research and development to extend the application of this method even in the field of process engineering. For that matter, it is the most elaborate acoustic emission monitoring in laboratory conditions with regard to external stimuli. The aim of the project is to apply the acoustic emission recording the activity of bees in different seasons. The mission is to apply a new perspective on the behavior of colonies by means of acoustic emission, which collects a sound propagation in the material. Vibration is one of the integral part of communication in the community. Sensing colonies with the support of this method is used for understanding of colonies biological behavior to stimuli clutches, colony development etc. Simulating conditions supported by acoustic emission monitoring system the illustrate colonies activity. Collected information will be used to represent a comprehensive view of the life cycle and behavior of honey bees (Apis mellifera. Use of information about the activities of bees gives a comprehensive perspective on using of acoustic emission in the field of biological research.

  2. Applicability of transfer tensor method for open quantum system dynamics.

    Science.gov (United States)

    Gelzinis, Andrius; Rybakovas, Edvardas; Valkunas, Leonas

    2017-12-21

    Accurate simulations of open quantum system dynamics is a long standing issue in the field of chemical physics. Exact methods exist, but are costly, while perturbative methods are limited in their applicability. Recently a new black-box type method, called transfer tensor method (TTM), was proposed [J. Cerrillo and J. Cao, Phys. Rev. Lett. 112, 110401 (2014)]. It allows one to accurately simulate long time dynamics with a numerical cost of solving a time-convolution master equation, provided many initial system evolution trajectories are obtained from some exact method beforehand. The possible time-savings thus strongly depend on the ratio of total versus initial evolution lengths. In this work, we investigate the parameter regimes where an application of TTM would be most beneficial in terms of computational time. We identify several promising parameter regimes. Although some of them correspond to cases when perturbative theories could be expected to perform well, we find that the accuracy of such approaches depends on system parameters in a more complex way than it is commonly thought. We propose that the TTM should be applied whenever system evolution is expected to be long and accuracy of perturbative methods cannot be ensured or in cases when the system under consideration does not correspond to any single perturbative regime.

  3. Application of blended learning in teaching statistical methods

    Directory of Open Access Journals (Sweden)

    Barbara Dębska

    2012-12-01

    Full Text Available The paper presents the application of a hybrid method (blended learning - linking traditional education with on-line education to teach selected problems of mathematical statistics. This includes the teaching of the application of mathematical statistics to evaluate laboratory experimental results. An on-line statistics course was developed to form an integral part of the module ‘methods of statistical evaluation of experimental results’. The course complies with the principles outlined in the Polish National Framework of Qualifications with respect to the scope of knowledge, skills and competencies that students should have acquired at course completion. The paper presents the structure of the course and the educational content provided through multimedia lessons made accessible on the Moodle platform. Following courses which used the traditional method of teaching and courses which used the hybrid method of teaching, students test results were compared and discussed to evaluate the effectiveness of the hybrid method of teaching when compared to the effectiveness of the traditional method of teaching.

  4. A new dynamic HRA method and its application

    International Nuclear Information System (INIS)

    Je, Moo Sung; Park, Chang Kyoo

    1995-01-01

    This paper presents a new dynamic HRA (Human Reliability Analysis) method and its application for quantifying the human error probabilities in implementing an accident management action. For comparisons of current HRA methods with the new method, the characteristics of THERP, HCR, and SLIM-MAUD, which are most frequently used methods in PSAs, are discussed. The action associated with the implementation of the cavity flooding during a station blackout sequence is considered for its application. This method is based on the concepts of the quantified correlation between the performance requirement and performance achievement. The MAAP 3.0B code and Latin Hypercube sampling technique are used to determine the uncertainty of the performance achievement parameter. Meanwhile, the value of the performance requirement parameter is obtained from interviews. Based on these stochastic distributions obtained, human error probabilities are calculated with respect to the various means and variances of the timings. It is shown that this method is very flexible in that it can be applied to any kind of the operator actions, including the actions associated with the implementation of accident management strategies. 1 fig., 3 tabs., 17 refs. (Author)

  5. Spectral/ hp element methods: Recent developments, applications, and perspectives

    Science.gov (United States)

    Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.

    2018-02-01

    The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.

  6. Application of thin layer activation method to industrial use

    International Nuclear Information System (INIS)

    Yamamoto, Masago; Hatakeyama, Noriko

    1996-01-01

    A thin layer activation method was reviewed for non-destructive, rapid, precise and real-time measurement of wear and corrosion. The review included wear measurement, the principle of the method, actual measurement, application, and laws and regulations. The method is to activate the material surface alone by accelerated ions like p, d and He ions produced by cyclotron, Van de Graaf apparatus or other accelerators and to utilize the yielded radioisotopes as a tracer, is widely used in the tribology field, and is more useful than the previous method with the reactor since it activated the whole material. Application of the method was reportedly resulted in saving the 80% cost and 90% time in the wear measurement of automobile parts such as engine and transmission. Actually, the activated material was combined into the part to be run and the radioactivity was to be measured externally or in the worn particles suitably collected. The activation thickness was generally in the range of 10-200 μm and the resultant radioactivity, 0.2-2 MBq. In most cases in Japan, the method would be under the law concerning prevention from radiation hazards due to radioisotopes, etc. (K.H.)

  7. Application of Canonical Effective Methods to Background-Independent Theories

    Science.gov (United States)

    Buyukcam, Umut

    Effective formalisms play an important role in analyzing phenomena above some given length scale when complete theories are not accessible. In diverse exotic but physically important cases, the usual path-integral techniques used in a standard Quantum Field Theory approach seldom serve as adequate tools. This thesis exposes a new effective method for quantum systems, called the Canonical Effective Method, which owns particularly wide applicability in backgroundindependent theories as in the case of gravitational phenomena. The central purpose of this work is to employ these techniques to obtain semi-classical dynamics from canonical quantum gravity theories. Application to non-associative quantum mechanics is developed and testable results are obtained. Types of non-associative algebras relevant for magnetic-monopole systems are discussed. Possible modifications of hypersurface deformation algebra and the emergence of effective space-times are presented. iii.

  8. Principles of Vibrational Spectroscopic Methods and their Application to Bioanalysis

    DEFF Research Database (Denmark)

    Moore, David S.; Jepsen, Peter Uhd; Volka, Karel

    2014-01-01

    imaging, fiber optic probes for in vivo and in vitro analysis, and methods to obtain depth profile information. The issue of fluorescence interference will be considered from the perspectives of excitation wavelength selection and data treatment. Methods to optimize signal to noise with minimized...... excitation laser irradiance to avoid sample damage are also discussed. This chapter then reviews applications of Raman spectroscopy to bioanalysis. Areas discussed include pathology, cytopathology, single-cell analysis, in vivo and in vitro tissue characterization, chemical composition of cell components...... as conformation of DNA and proteins), vibrations of inter- and intramolecular hydrogen bonds in solid-state materials, as well as picosecond dynamics in liquid solutions. This chapter reviews modern instrumentation and techniques for THz spectroscopy, with emphasis on applications in bioanalysis....

  9. Quantal density functional theory II. Approximation methods and applications

    International Nuclear Information System (INIS)

    Sahni, Viraht

    2010-01-01

    This book is on approximation methods and applications of Quantal Density Functional Theory (QDFT), a new local effective-potential-energy theory of electronic structure. What distinguishes the theory from traditional density functional theory is that the electron correlations due to the Pauli exclusion principle, Coulomb repulsion, and the correlation contribution to the kinetic energy -- the Correlation-Kinetic effects -- are separately and explicitly defined. As such it is possible to study each property of interest as a function of the different electron correlations. Approximations methods based on the incorporation of different electron correlations, as well as a many-body perturbation theory within the context of QDFT, are developed. The applications are to the few-electron inhomogeneous electron gas systems in atoms and molecules, as well as to the many-electron inhomogeneity at metallic surfaces. (orig.)

  10. Application of DNA-based methods in forensic entomology.

    Science.gov (United States)

    Wells, Jeffrey D; Stevens, Jamie R

    2008-01-01

    A forensic entomological investigation can benefit from a variety of widely practiced molecular genotyping methods. The most commonly used is DNA-based specimen identification. Other applications include the identification of insect gut contents and the characterization of the population genetic structure of a forensically important insect species. The proper application of these procedures demands that the analyst be technically expert. However, one must also be aware of the extensive list of standards and expectations that many legal systems have developed for forensic DNA analysis. We summarize the DNA techniques that are currently used in, or have been proposed for, forensic entomology and review established genetic analyses from other scientific fields that address questions similar to those in forensic entomology. We describe how accepted standards for forensic DNA practice and method validation are likely to apply to insect evidence used in a death or other forensic entomological investigation.

  11. Fuzzy multiple objective decision making methods and applications

    CERN Document Server

    Lai, Young-Jou

    1994-01-01

    In the last 25 years, the fuzzy set theory has been applied in many disciplines such as operations research, management science, control theory, artificial intelligence/expert system, etc. In this volume, methods and applications of crisp, fuzzy and possibilistic multiple objective decision making are first systematically and thoroughly reviewed and classified. This state-of-the-art survey provides readers with a capsule look into the existing methods, and their characteristics and applicability to analysis of fuzzy and possibilistic programming problems. To realize practical fuzzy modelling, it presents solutions for real-world problems including production/manufacturing, location, logistics, environment management, banking/finance, personnel, marketing, accounting, agriculture economics and data analysis. This book is a guided tour through the literature in the rapidly growing fields of operations research and decision making and includes the most up-to-date bibliographical listing of literature on the topi...

  12. Gastrin radioimmunoassay. Description and application of a novel method

    International Nuclear Information System (INIS)

    Nemeth, J.; Jakab, B.; Schweibert, I.; Szolcsanyi, J.; Oroszi, G.; Szilvassy, Z.

    2002-01-01

    Development and application of a novel gastrin radioimmunoassay (RIA) are described. 125 I-labeling of non-sulphated human gastrin-17 (nshG-17) was performed by the iodogen method and the mono-iodinated hormone, as RIA tracer, was separated by reversed-phase high performance liquid chromatography (HPLC). Serum gastrin levels were measured in response to intravenous application of isoproterenol, a non-selective beta and phenylephrine, a selective alpha-1 receptor agonist using a newly developed method specific for the C-terminal part of the hormone in rats. Isoproterenol at clinically relevant doses elicited a significant increase in serum gastrin concentration in a dose-dependent fashion, whereas phenylephrine was without effect. (author)

  13. Characterization of Developer Application Methods Used in Fluorescent Penetrant Inspection

    Science.gov (United States)

    Brasche, L. J. H.; Lopez, R.; Eisenmann, D.

    2006-03-01

    Fluorescent penetrant inspection (FPI) is the most widely used inspection method for aviation components seeing use for production as well as an inservice inspection applications. FPI is a multiple step process requiring attention to the process parameters for each step in order to enable a successful inspection. A multiyear program is underway to evaluate the most important factors affecting the performance of FPI, to determine whether existing industry specifications adequately address control of the process parameters, and to provide the needed engineering data to the public domain. The final step prior to the inspection is the application of developer with typical aviation inspections involving the use of dry powder (form d) usually applied using either a pressure wand or dust storm chamber. Results from several typical dust storm chambers and wand applications have shown less than optimal performance. Measurements of indication brightness and recording of the UVA image, and in some cases, formal probability of detection (POD) studies were used to assess the developer application methods. Key conclusions and initial recommendations are provided.

  14. Application of Stochastic Sensitivity Analysis to Integrated Force Method

    Directory of Open Access Journals (Sweden)

    X. F. Wei

    2012-01-01

    Full Text Available As a new formulation in structural analysis, Integrated Force Method has been successfully applied to many structures for civil, mechanical, and aerospace engineering due to the accurate estimate of forces in computation. Right now, it is being further extended to the probabilistic domain. For the assessment of uncertainty effect in system optimization and identification, the probabilistic sensitivity analysis of IFM was further investigated in this study. A set of stochastic sensitivity analysis formulation of Integrated Force Method was developed using the perturbation method. Numerical examples are presented to illustrate its application. Its efficiency and accuracy were also substantiated with direct Monte Carlo simulations and the reliability-based sensitivity method. The numerical algorithm was shown to be readily adaptable to the existing program since the models of stochastic finite element and stochastic design sensitivity are almost identical.

  15. Application of the taguchi method in change management

    Directory of Open Access Journals (Sweden)

    Kata Ivić

    2011-07-01

    Full Text Available Application of the Taguchi methods results in efficient optimization of performance, quality and price, fast and accurate gathering of technical information, design and production of highly reliable products and processes at low prices, development of flexible technologies for designing of a whole group of high quality associated products. All this significantly reduces the duration of research, development and delivery. The most frequent use of the Taguchi methods is to improve existing products and production processes and to reduce the need for experiments. The Taguchi methods is a system of quality engineering which puts more emphasis on reduction of production costs and giving advantage to efficient use of engineering strategies than on the use of advanced statistical methods.

  16. Application of distinct element method of toppling failure of slope

    International Nuclear Information System (INIS)

    Ishida, Tsuyoshi; Hibino, Satoshi; Kitahara, Yoshihiro; Ito, Hiroshi

    1984-01-01

    The authors have pointed out, in the latest report, that DEM (Distinct Element Method) seems to be a very helpful numerical method to examine the stability of fissured rock slopes, in which toppling failure would occur during earthquakes. In this report, the applicability of DEM for such rock slopes is examined through the following comparisons between theoretical results and DEM results, referring Voegele's works (1982): (1) Stability of one block on a slope. (2) Failure of a rock block column composed of 10 same size rectangular blocks. (3) Cable force required to make a slope stable. Through above 3 comparisons, it seems that DEM give the reasonable results. Considering that these problems may not be treated by the other numerical methods such as FEM and so on, so DEM seems to be a very useful method for fissured rock slope analysis. (author)

  17. Speaker Linking and Applications using Non-Parametric Hashing Methods

    Science.gov (United States)

    2016-09-08

    nonparametric estimate of a multivariate density function,” The Annals of Math- ematical Statistics , vol. 36, no. 3, pp. 1049–1051, 1965. [9] E. A. Patrick...Speaker Linking and Applications using Non-Parametric Hashing Methods† Douglas Sturim and William M. Campbell MIT Lincoln Laboratory, Lexington, MA...with many approaches [1, 2]. For this paper, we focus on using i-vectors [2], but the methods apply to any embedding. For the task of speaker QBE and

  18. Statistical methods for longitudinal data with agricultural applications

    DEFF Research Database (Denmark)

    Anantharama Ankinakatte, Smitha

    The PhD study focuses on modeling two kings of longitudinal data arising in agricultural applications: continuous time series data and discrete longitudinal data. Firstly, two statistical methods, neural networks and generalized additive models, are applied to predict masistis using multivariate...... algorithm. This was found to compare favourably with the algorithm implemented in the well-known Beagle software. Finally, an R package to apply APFA models developed as part of the PhD project is described...

  19. Applications of Monte Carlo method in Medical Physics

    International Nuclear Information System (INIS)

    Diez Rios, A.; Labajos, M.

    1989-01-01

    The basic ideas of Monte Carlo techniques are presented. Random numbers and their generation by congruential methods, which underlie Monte Carlo calculations are shown. Monte Carlo techniques to solve integrals are discussed. The evaluation of a simple monodimensional integral with a known answer, by means of two different Monte Carlo approaches are discussed. The basic principles to simualate on a computer photon histories reduce variance and the current applications in Medical Physics are commented. (Author)

  20. Cross-relaxation imaging:methods, challenges and applications

    International Nuclear Information System (INIS)

    Stikov, Nikola

    2010-01-01

    An overview of quantitative magnetization transfer (qMT) is given, with focus on cross relaxation imaging (CRI) as a fast method for quantifying the proportion of protons bound to complex macromolecules in tissue. The procedure for generating CRI maps is outlined, showing examples in the human brain and knee, and discussing the caveats and challenges in generating precise and accurate CRI maps. Finally, several applications of CRI for imaging tissue microstructure are presented.(Author)

  1. Development of medical application methods using radiation. Radionuclide therapy

    International Nuclear Information System (INIS)

    Choi, Chang Woon; Lim, S. M.; Kim, E.H.; Woo, K. S.; Chung, W. S.; Lim, S. J.; Choi, T. H.; Hong, S. W.; Chung, H. Y.; No, W. C.; Oh, B. H.; Hong, H. J.

    1999-04-01

    In this project, we studied following subjects: 1. development of monoclonal antibodies and radiopharmaceuticals 2. clinical applications of radionuclide therapy 3. radioimmunoguided surgery 4. prevention of restenosis with intracoronary radiation. The results can be applied for the following objectives: 1) radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial. 2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research. 3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology

  2. Handbook of Partial Least Squares Concepts, Methods and Applications

    CERN Document Server

    Vinzi, Vincenzo Esposito; Henseler, Jörg

    2010-01-01

    This handbook provides a comprehensive overview of Partial Least Squares (PLS) methods with specific reference to their use in marketing and with a discussion of the directions of current research and perspectives. It covers the broad area of PLS methods, from regression to structural equation modeling applications, software and interpretation of results. The handbook serves both as an introduction for those without prior knowledge of PLS and as a comprehensive reference for researchers and practitioners interested in the most recent advances in PLS methodology.

  3. Advanced FDTD methods parallelization, acceleration, and engineering applications

    CERN Document Server

    Yu, Wenhua

    2011-01-01

    The finite-difference time-domain (FDTD) method has revolutionized antenna design and electromagnetics engineering. Here's a cutting-edge book that focuses on the performance optimization and engineering applications of FDTD simulation systems. Covering the latest developments in this area, this unique resource offer you expert advice on the FDTD method, hardware platforms, and network systems. Moreover the book offers guidance in distinguishing between the many different electromagnetics software packages on the market today. You also find a complete chapter dedicated to large multi-scale pro

  4. Application of acoustic radiosity methods to noise propagation within buildings

    Science.gov (United States)

    Muehleisen, Ralph T.; Beamer, C. Walter

    2005-09-01

    The prediction of sound pressure levels in rooms from transmitted sound is a difficult problem. The sound energy in the source room incident on the common wall must be accurately predicted. In the receiving room, the propagation of sound from the planar wall source must also be accurately predicted. The radiosity method naturally computes the spatial distribution of sound energy incident on a wall and also naturally predicts the propagation of sound from a planar area source. In this paper, the application of the radiosity method to sound transmission problems is introduced and explained.

  5. Development of medical application methods using radiation. Radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Woon; Lim, S. M.; Kim, E.H.; Woo, K. S.; Chung, W. S.; Lim, S. J.; Choi, T. H.; Hong, S. W.; Chung, H. Y.; No, W. C. [Korea Atomic Energy Research Institute. Korea Cancer Center Hospital, Seoul, (Korea, Republic of); Oh, B. H. [Seoul National University. Hospital, Seoul (Korea, Republic of); Hong, H. J. [Antibody Engineering Research Unit, Taejon (Korea, Republic of)

    1999-04-01

    In this project, we studied following subjects: 1. development of monoclonal antibodies and radiopharmaceuticals 2. clinical applications of radionuclide therapy 3. radioimmunoguided surgery 4. prevention of restenosis with intracoronary radiation. The results can be applied for the following objectives: (1) radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial. (2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research. (3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology.

  6. Applications of the discrete element method in mechanical engineering

    International Nuclear Information System (INIS)

    Fleissner, Florian; Gaugele, Timo; Eberhard, Peter

    2007-01-01

    Compared to other fields of engineering, in mechanical engineering, the Discrete Element Method (DEM) is not yet a well known method. Nevertheless, there is a variety of simulation problems where the method has obvious advantages due to its meshless nature. For problems where several free bodies can collide and break after having been largely deformed, the DEM is the method of choice. Neighborhood search and collision detection between bodies as well as the separation of large solids into smaller particles are naturally incorporated in the method. The main DEM algorithm consists of a relatively simple loop that basically contains the three substeps contact detection, force computation and integration. However, there exists a large variety of different algorithms to choose the substeps to compose the optimal method for a given problem. In this contribution, we describe the dynamics of particle systems together with appropriate numerical integration schemes and give an overview over different types of particle interactions that can be composed to adapt the method to fit to a given simulation problem. Surface triangulations are used to model complicated, non-convex bodies in contact with particle systems. The capabilities of the method are finally demonstrated by means of application examples

  7. Application of an efficient Bayesian discretization method to biomedical data

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2011-07-01

    Full Text Available Abstract Background Several data mining methods require data that are discrete, and other methods often perform better with discrete data. We introduce an efficient Bayesian discretization (EBD method for optimal discretization of variables that runs efficiently on high-dimensional biomedical datasets. The EBD method consists of two components, namely, a Bayesian score to evaluate discretizations and a dynamic programming search procedure to efficiently search the space of possible discretizations. We compared the performance of EBD to Fayyad and Irani's (FI discretization method, which is commonly used for discretization. Results On 24 biomedical datasets obtained from high-throughput transcriptomic and proteomic studies, the classification performances of the C4.5 classifier and the naïve Bayes classifier were statistically significantly better when the predictor variables were discretized using EBD over FI. EBD was statistically significantly more stable to the variability of the datasets than FI. However, EBD was less robust, though not statistically significantly so, than FI and produced slightly more complex discretizations than FI. Conclusions On a range of biomedical datasets, a Bayesian discretization method (EBD yielded better classification performance and stability but was less robust than the widely used FI discretization method. The EBD discretization method is easy to implement, permits the incorporation of prior knowledge and belief, and is sufficiently fast for application to high-dimensional data.

  8. Mechanomyographic Parameter Extraction Methods: An Appraisal for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Morufu Olusola Ibitoye

    2014-12-01

    Full Text Available The research conducted in the last three decades has collectively demonstrated that the skeletal muscle performance can be alternatively assessed by mechanomyographic signal (MMG parameters. Indices of muscle performance, not limited to force, power, work, endurance and the related physiological processes underlying muscle activities during contraction have been evaluated in the light of the signal features. As a non-stationary signal that reflects several distinctive patterns of muscle actions, the illustrations obtained from the literature support the reliability of MMG in the analysis of muscles under voluntary and stimulus evoked contractions. An appraisal of the standard practice including the measurement theories of the methods used to extract parameters of the signal is vital to the application of the signal during experimental and clinical practices, especially in areas where electromyograms are contraindicated or have limited application. As we highlight the underpinning technical guidelines and domains where each method is well-suited, the limitations of the methods are also presented to position the state of the art in MMG parameters extraction, thus providing the theoretical framework for improvement on the current practices to widen the opportunity for new insights and discoveries. Since the signal modality has not been widely deployed due partly to the limited information extractable from the signals when compared with other classical techniques used to assess muscle performance, this survey is particularly relevant to the projected future of MMG applications in the realm of musculoskeletal assessments and in the real time detection of muscle activity.

  9. Methods for compressible multiphase flows and their applications

    Science.gov (United States)

    Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.

    2018-06-01

    This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.

  10. [Optimized application of nested PCR method for detection of malaria].

    Science.gov (United States)

    Yao-Guang, Z; Li, J; Zhen-Yu, W; Li, C

    2017-04-28

    Objective To optimize the application of the nested PCR method for the detection of malaria according to the working practice, so as to improve the efficiency of malaria detection. Methods Premixing solution of PCR, internal primers for further amplification and new designed primers that aimed at two Plasmodium ovale subspecies were employed to optimize the reaction system, reaction condition and specific primers of P . ovale on basis of routine nested PCR. Then the specificity and the sensitivity of the optimized method were analyzed. The positive blood samples and examination samples of malaria were detected by the routine nested PCR and the optimized method simultaneously, and the detection results were compared and analyzed. Results The optimized method showed good specificity, and its sensitivity could reach the pg to fg level. The two methods were used to detect the same positive malarial blood samples simultaneously, the results indicated that the PCR products of the two methods had no significant difference, but the non-specific amplification reduced obviously and the detection rates of P . ovale subspecies improved, as well as the total specificity also increased through the use of the optimized method. The actual detection results of 111 cases of malarial blood samples showed that the sensitivity and specificity of the routine nested PCR were 94.57% and 86.96%, respectively, and those of the optimized method were both 93.48%, and there was no statistically significant difference between the two methods in the sensitivity ( P > 0.05), but there was a statistically significant difference between the two methods in the specificity ( P PCR can improve the specificity without reducing the sensitivity on the basis of the routine nested PCR, it also can save the cost and increase the efficiency of malaria detection as less experiment links.

  11. Application of the maximum entropy method to profile analysis

    International Nuclear Information System (INIS)

    Armstrong, N.; Kalceff, W.; Cline, J.P.

    1999-01-01

    Full text: A maximum entropy (MaxEnt) method for analysing crystallite size- and strain-induced x-ray profile broadening is presented. This method treats the problems of determining the specimen profile, crystallite size distribution, and strain distribution in a general way by considering them as inverse problems. A common difficulty faced by many experimenters is their inability to determine a well-conditioned solution of the integral equation, which preserves the positivity of the profile or distribution. We show that the MaxEnt method overcomes this problem, while also enabling a priori information, in the form of a model, to be introduced into it. Additionally, we demonstrate that the method is fully quantitative, in that uncertainties in the solution profile or solution distribution can be determined and used in subsequent calculations, including mean particle sizes and rms strain. An outline of the MaxEnt method is presented for the specific problems of determining the specimen profile and crystallite or strain distributions for the correspondingly broadened profiles. This approach offers an alternative to standard methods such as those of Williamson-Hall and Warren-Averbach. An application of the MaxEnt method is demonstrated in the analysis of alumina size-broadened diffraction data (from NIST, Gaithersburg). It is used to determine the specimen profile and column-length distribution of the scattering domains. Finally, these results are compared with the corresponding Williamson-Hall and Warren-Averbach analyses. Copyright (1999) Australian X-ray Analytical Association Inc

  12. The application of statistical methods to assess economic assets

    Directory of Open Access Journals (Sweden)

    D. V. Dianov

    2017-01-01

    Full Text Available The article is devoted to consideration and evaluation of machinery, equipment and special equipment, methodological aspects of the use of standards for assessment of buildings and structures in current prices, the valuation of residential, specialized houses, office premises, assessment and reassessment of existing and inactive military assets, the application of statistical methods to obtain the relevant cost estimates.The objective of the scientific article is to consider possible application of statistical tools in the valuation of the assets, composing the core group of elements of national wealth – the fixed assets. Firstly, capital tangible assets constitute the basis of material base of a new value creation, products and non-financial services. The gain, accumulated of tangible assets of a capital nature is a part of the gross domestic product, and from its volume and specific weight in the composition of GDP we can judge the scope of reproductive processes in the country.Based on the methodological materials of the state statistics bodies of the Russian Federation, regulations of the theory of statistics, which describe the methods of statistical analysis such as the index, average values, regression, the methodical approach is structured in the application of statistical tools to obtain value estimates of property, plant and equipment with significant accumulated depreciation. Until now, the use of statistical methodology in the practice of economic assessment of assets is only fragmentary. This applies to both Federal Legislation (Federal law № 135 «On valuation activities in the Russian Federation» dated 16.07.1998 in edition 05.07.2016 and the methodological documents and regulations of the estimated activities, in particular, the valuation activities’ standards. A particular problem is the use of a digital database of Rosstat (Federal State Statistics Service, as to the specific fixed assets the comparison should be carried

  13. Application of optical non-invasive methods in skin physiology

    Science.gov (United States)

    Lademann, J.; Patzelt, A.; Darvin, M.; Richter, H.; Antoniou, C.; Sterry, W.; Koch, S.

    2008-05-01

    In the present paper the application of optical non-invasive methods in dermatology and cosmetology is discussed. Laser scanning microscopy (LSM) and optical coherent tomography (OCT) are the most promising methods for this application. Using these methods, the analysis of different skin parameters like dryness and oiliness of the skin, the barrier function and the structure of furrows and wrinkles are discussed. Additionally the homogeneity of distribution of topically applied creams, as well as their penetration into the skin were investigated. It is shown that these methods are highly valuable in dermatology for diagnostic and therapy control and for basic research, for instance in the field of structure analysis of hair follicles and sweat glands. The vertical images of the tissue produced by OCT can be easily compared with histological sections. Unfortunately, the resolution of the OCT technique is not high enough to carry out measurements on a cellular level, as is possible by LSM. LSM has the advantage that it can be used for the investigation of penetration and storage processes of topically applied substances, if these substances have fluorescent properties or if they are fluorescent-labelled.

  14. Acoustic methods for cavitation mapping in biomedical applications

    Science.gov (United States)

    Wan, M.; Xu, S.; Ding, T.; Hu, H.; Liu, R.; Bai, C.; Lu, S.

    2015-12-01

    In recent years, cavitation is increasingly utilized in a wide range of applications in biomedical field. Monitoring the spatial-temporal evolution of cavitation bubbles is of great significance for efficiency and safety in biomedical applications. In this paper, several acoustic methods for cavitation mapping proposed or modified on the basis of existing work will be presented. The proposed novel ultrasound line-by-line/plane-by-plane method can depict cavitation bubbles distribution with high spatial and temporal resolution and may be developed as a potential standard 2D/3D cavitation field mapping method. The modified ultrafast active cavitation mapping based upon plane wave transmission and reception as well as bubble wavelet and pulse inversion technique can apparently enhance the cavitation to tissue ratio in tissue and further assist in monitoring the cavitation mediated therapy with good spatial and temporal resolution. The methods presented in this paper will be a foundation to promote the research and development of cavitation imaging in non-transparent medium.

  15. Application of optical non-invasive methods in skin physiology

    International Nuclear Information System (INIS)

    Lademann, J; Patzelt, A; Darvin, M; Richter, H; Sterry, W; Antoniou, C; Koch, S

    2008-01-01

    In the present paper the application of optical non-invasive methods in dermatology and cosmetology is discussed. Laser scanning microscopy (LSM) and optical coherent tomography (OCT) are the most promising methods for this application. Using these methods, the analysis of different skin parameters like dryness and oiliness of the skin, the barrier function and the structure of furrows and wrinkles are discussed. Additionally the homogeneity of distribution of topically applied creams, as well as their penetration into the skin were investigated. It is shown that these methods are highly valuable in dermatology for diagnostic and therapy control and for basic research, for instance in the field of structure analysis of hair follicles and sweat glands. The vertical images of the tissue produced by OCT can be easily compared with histological sections. Unfortunately, the resolution of the OCT technique is not high enough to carry out measurements on a cellular level, as is possible by LSM. LSM has the advantage that it can be used for the investigation of penetration and storage processes of topically applied substances, if these substances have fluorescent properties or if they are fluorescent-labelled

  16. Applications of mixed-methods methodology in clinical pharmacy research.

    Science.gov (United States)

    Hadi, Muhammad Abdul; Closs, S José

    2016-06-01

    Introduction Mixed-methods methodology, as the name suggests refers to mixing of elements of both qualitative and quantitative methodologies in a single study. In the past decade, mixed-methods methodology has gained popularity among healthcare researchers as it promises to bring together the strengths of both qualitative and quantitative approaches. Methodology A number of mixed-methods designs are available in the literature and the four most commonly used designs in healthcare research are: the convergent parallel design, the embedded design, the exploratory design, and the explanatory design. Each has its own unique advantages, challenges and procedures and selection of a particular design should be guided by the research question. Guidance on designing, conducting and reporting mixed-methods research is available in the literature, so it is advisable to adhere to this to ensure methodological rigour. When to use it is best suited when the research questions require: triangulating findings from different methodologies to explain a single phenomenon; clarifying the results of one method using another method; informing the design of one method based on the findings of another method, development of a scale/questionnaire and answering different research questions within a single study. Two case studies have been presented to illustrate possible applications of mixed-methods methodology. Limitations Possessing the necessary knowledge and skills to undertake qualitative and quantitative data collection, analysis, interpretation and integration remains the biggest challenge for researchers conducting mixed-methods studies. Sequential study designs are often time consuming, being in two (or more) phases whereas concurrent study designs may require more than one data collector to collect both qualitative and quantitative data at the same time.

  17. Total System Performance Assessment-License Application Methods and Approach

    Energy Technology Data Exchange (ETDEWEB)

    J. McNeish

    2002-09-13

    ''Total System Performance Assessment-License Application (TSPA-LA) Methods and Approach'' provides the top-level method and approach for conducting the TSPA-LA model development and analyses. The method and approach is responsive to the criteria set forth in Total System Performance Assessment Integration (TSPAI) Key Technical Issue (KTI) agreements, the ''Yucca Mountain Review Plan'' (CNWRA 2002 [158449]), and 10 CFR Part 63. This introductory section provides an overview of the TSPA-LA, the projected TSPA-LA documentation structure, and the goals of the document. It also provides a brief discussion of the regulatory framework, the approach to risk management of the development and analysis of the model, and the overall organization of the document. The section closes with some important conventions that are utilized in this document.

  18. Delayless acceleration measurement method for motion control applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaeliviita, S.; Ovaska, S.J. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics

    1997-12-31

    Delayless and accurate sensing of angular acceleration can improve the performance of motion control in motor drives. Acceleration control is, however, seldom implemented in practical drive systems due to prohibitively high costs or unsatisfactory results of most acceleration measurement methods. In this paper we propose an efficient and accurate acceleration measurement method based on direct differentiation of the corresponding velocity signal. Polynomial predictive filtering is used to smooth the resulting noisy signal without delay. This type of prediction is justified by noticing that a low-degree polynomial can usually be fitted into the primary acceleration curve. No additional hardware is required to implement the procedure if the velocity signal is already available. The performance of the acceleration measurement method is evaluated by applying it to a demanding motion control application. (orig.) 12 refs.

  19. Total System Performance Assessment - License Application Methods and Approach

    International Nuclear Information System (INIS)

    McNeish, J.

    2003-01-01

    ''Total System Performance Assessment-License Application (TSPA-LA) Methods and Approach'' provides the top-level method and approach for conducting the TSPA-LA model development and analyses. The method and approach is responsive to the criteria set forth in Total System Performance Assessment Integration (TSPAI) Key Technical Issues (KTIs) identified in agreements with the U.S. Nuclear Regulatory Commission, the ''Yucca Mountain Review Plan'' (YMRP), ''Final Report'' (NRC 2003 [163274]), and the NRC final rule 10 CFR Part 63 (NRC 2002 [156605]). This introductory section provides an overview of the TSPA-LA, the projected TSPA-LA documentation structure, and the goals of the document. It also provides a brief discussion of the regulatory framework, the approach to risk management of the development and analysis of the model, and the overall organization of the document. The section closes with some important conventions that are used in this document

  20. Application of multi-block methods in cement production

    DEFF Research Database (Denmark)

    Svinning, K.; Høskuldsson, Agnar

    2008-01-01

    distribution and the two last blocks the superficial microstructure analysed by differential thermo gravimetric analysis. The multi-block method is used to identify the role of each part. The score vectors of each block can be analysed separately or together with score vectors of other blocks. Stepwise......Compressive strength at 1 day of Portland cement as a function of the microstructure of cement was statistically modelled by application of multi-block regression method. The observation X-matrix was partitioned into four blocks, the first block representing the mineralogy, the second particle size...... regression is used to find minimum number of variables of each block. The multi-block method proved useful in determining the modelling strength of each data block and finding minimum number of variables within each data block....

  1. Evolutionary Computation Methods and their applications in Statistics

    Directory of Open Access Journals (Sweden)

    Francesco Battaglia

    2013-05-01

    Full Text Available A brief discussion of the genesis of evolutionary computation methods, their relationship to artificial intelligence, and the contribution of genetics and Darwin’s theory of natural evolution is provided. Then, the main evolutionary computation methods are illustrated: evolution strategies, genetic algorithms, estimation of distribution algorithms, differential evolution, and a brief description of some evolutionary behavior methods such as ant colony and particle swarm optimization. We also discuss the role of the genetic algorithm for multivariate probability distribution random generation, rather than as a function optimizer. Finally, some relevant applications of genetic algorithm to statistical problems are reviewed: selection of variables in regression, time series model building, outlier identification, cluster analysis, design of experiments.

  2. Studies and applications of neutron radiography with film methods

    International Nuclear Information System (INIS)

    Ikeda, Yasushi

    1989-01-01

    Neutron radiography has been studied with film methods and applied to some industrial applications. The film methods include not only conventional silver-halide emulsion films, such as industrial, medical or soft X-ray ones, but also track-etch films and those for indirect methods. The characteristics of the film methods are analyzed and investigated with using various image converters, such as gadolinium metal foil and evaporation films, or some scintillation converters such as NE426. The sensitivities and MTFs for various sets of films and converters have been obtained, which gives a chart of the correlation between the appropriate exposure and resolving powers for them. From the chart, one can select some proper sets for the purpose and given conditions of neutron radiography facilities. The film methods have been applied to inspect very fine cracks in thick steel blocks and plates. It is also applied to observe nuclear fuel pellets or irradiated nuclear fuel pins. Furthermore, the film method has been used for neutron computed tomography. Very fine Eu-particles in TiO pellets, which diameters are nearly 300 micron, can be reconstructed by the neutron CT. The fine neutron CT will be useful for the inspection of Pu-particles in mixed oxide nuclear fuel pellets for future advance nuclear reactors. (author)

  3. Applicability of optical scanner method for fine root dynamics

    Science.gov (United States)

    Kume, Tomonori; Ohashi, Mizue; Makita, Naoki; Khoon Kho, Lip; Katayama, Ayumi; Matsumoto, Kazuho; Ikeno, Hidetoshi

    2016-04-01

    Fine root dynamics is one of the important components in forest carbon cycling, as ~60 % of tree photosynthetic production can be allocated to root growth and metabolic activities. Various techniques have been developed for monitoring fine root biomass, production, mortality in order to understand carbon pools and fluxes resulting from fine roots dynamics. The minirhizotron method is now a widely used technique, in which a transparent tube is inserted into the soil and researchers count an increase and decrease of roots along the tube using images taken by a minirhizotron camera or minirhizotron video camera inside the tube. This method allows us to observe root behavior directly without destruction, but has several weaknesses; e.g., the difficulty of scaling up the results to stand level because of the small observation windows. Also, most of the image analysis are performed manually, which may yield insufficient quantitative and objective data. Recently, scanner method has been proposed, which can produce much bigger-size images (A4-size) with lower cost than those of the minirhizotron methods. However, laborious and time-consuming image analysis still limits the applicability of this method. In this study, therefore, we aimed to develop a new protocol for scanner image analysis to extract root behavior in soil. We evaluated applicability of this method in two ways; 1) the impact of different observers including root-study professionals, semi- and non-professionals on the detected results of root dynamics such as abundance, growth, and decomposition, and 2) the impact of window size on the results using a random sampling basis exercise. We applied our new protocol to analyze temporal changes of root behavior from sequential scanner images derived from a Bornean tropical forests. The results detected by the six observers showed considerable concordance in temporal changes in the abundance and the growth of fine roots but less in the decomposition. We also examined

  4. Frontiers of biostatistical methods and applications in clinical oncology

    CERN Document Server

    Crowley, John

    2017-01-01

    This book presents the state of the art of biostatistical methods and their applications in clinical oncology. Many methodologies established today in biostatistics have been brought about through its applications to the design and analysis of oncology clinical studies. This field of oncology, now in the midst of evolution owing to rapid advances in biotechnologies and cancer genomics, is becoming one of the most promising disease fields in the shift toward personalized medicine. Modern developments of diagnosis and therapeutics of cancer have also been continuously fueled by recent progress in establishing the infrastructure for conducting more complex, large-scale clinical trials and observational studies. The field of cancer clinical studies therefore will continue to provide many new statistical challenges that warrant further progress in the methodology and practice of biostatistics. This book provides a systematic coverage of various stages of cancer clinical studies. Topics from modern cancer clinical ...

  5. Application of the kernel method to the inverse geosounding problem.

    Science.gov (United States)

    Hidalgo, Hugo; Sosa León, Sonia; Gómez-Treviño, Enrique

    2003-01-01

    Determining the layered structure of the earth demands the solution of a variety of inverse problems; in the case of electromagnetic soundings at low induction numbers, the problem is linear, for the measurements may be represented as a linear functional of the electrical conductivity distribution. In this paper, an application of the support vector (SV) regression technique to the inversion of electromagnetic data is presented. We take advantage of the regularizing properties of the SV learning algorithm and use it as a modeling technique with synthetic and field data. The SV method presents better recovery of synthetic models than Tikhonov's regularization. As the SV formulation is solved in the space of the data, which has a small dimension in this application, a smaller problem than that considered with Tikhonov's regularization is produced. For field data, the SV formulation develops models similar to those obtained via linear programming techniques, but with the added characteristic of robustness.

  6. Learning in Non-Stationary Environments Methods and Applications

    CERN Document Server

    Lughofer, Edwin

    2012-01-01

    Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences.   Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dyna...

  7. Construction of crystal structure prototype database: methods and applications

    International Nuclear Information System (INIS)

    Su, Chuanxun; Lv, Jian; Wang, Hui; Wang, Yanchao; Ma, Yanming; Li, Quan; Zhang, Lijun

    2017-01-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery. (paper)

  8. Multi-level decision making models, methods and applications

    CERN Document Server

    Zhang, Guangquan; Gao, Ya

    2015-01-01

    This monograph presents new developments in multi-level decision-making theory, technique and method in both modeling and solution issues. It especially presents how a decision support system can support managers in reaching a solution to a multi-level decision problem in practice. This monograph combines decision theories, methods, algorithms and applications effectively. It discusses in detail the models and solution algorithms of each issue of bi-level and tri-level decision-making, such as multi-leaders, multi-followers, multi-objectives, rule-set-based, and fuzzy parameters. Potential readers include organizational managers and practicing professionals, who can use the methods and software provided to solve their real decision problems; PhD students and researchers in the areas of bi-level and multi-level decision-making and decision support systems; students at an advanced undergraduate, master’s level in information systems, business administration, or the application of computer science.  

  9. Construction of crystal structure prototype database: methods and applications.

    Science.gov (United States)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  10. Rationalization of thermal injury quantification methods: application to skin burns.

    Science.gov (United States)

    Viglianti, Benjamin L; Dewhirst, Mark W; Abraham, John P; Gorman, John M; Sparrow, Eph M

    2014-08-01

    Classification of thermal injury is typically accomplished either through the use of an equivalent dosimetry method (equivalent minutes at 43 °C, CEM43 °C) or through a thermal-injury-damage metric (the Arrhenius method). For lower-temperature levels, the equivalent dosimetry approach is typically employed while higher-temperature applications are most often categorized by injury-damage calculations. The two methods derive from common thermodynamic/physical chemistry origins. To facilitate the development of the interrelationships between the two metrics, application is made to the case of skin burns. This thermal insult has been quantified by numerical simulation, and the extracted time-temperature results served for the evaluation of the respective characterizations. The simulations were performed for skin-surface exposure temperatures ranging from 60 to 90 °C, where each surface temperature was held constant for durations extending from 10 to 110 s. It was demonstrated that values of CEM43 at the basal layer of the skin were highly correlated with the depth of injury calculated from a thermal injury integral. Local values of CEM43 were connected to the local cell survival rate, and a correlating equation was developed relating CEM43 with the decrease in cell survival from 90% to 10%. Finally, it was shown that the cell survival/CEM43 relationship for the cases investigated here most closely aligns with isothermal exposure of tissue to temperatures of ~50 °C. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  11. Advances in product family and product platform design methods & applications

    CERN Document Server

    Jiao, Jianxin; Siddique, Zahed; Hölttä-Otto, Katja

    2014-01-01

    Advances in Product Family and Product Platform Design: Methods & Applications highlights recent advances that have been made to support product family and product platform design and successful applications in industry. This book provides not only motivation for product family and product platform design—the “why” and “when” of platforming—but also methods and tools to support the design and development of families of products based on shared platforms—the “what”, “how”, and “where” of platforming. It begins with an overview of recent product family design research to introduce readers to the breadth of the topic and progresses to more detailed topics and design theory to help designers, engineers, and project managers plan, architect, and implement platform-based product development strategies in their companies. This book also: Presents state-of-the-art methods and tools for product family and product platform design Adopts an integrated, systems view on product family and pro...

  12. Selected asymptotic methods with applications to electromagnetics and antennas

    CERN Document Server

    Fikioris, George; Bakas, Odysseas N

    2013-01-01

    This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include som

  13. New methods and applications in emission spectroscopy (1960)

    International Nuclear Information System (INIS)

    Baudin, G.

    1960-01-01

    Emission spectroscopy, are already well-established instrumental analytical technique, has in recent years known important developments. Two mains factors are responsible; firstly the demands of metallurgy for purer and purer materials or alloys which are increasingly complex and difficult to analyse by chemical means; secondly, progress in optics, especially in the production of gratings, and in electronics in the field of photomultiplier tubes. We will not here catalogue all the new applications and methods, but we will consider a few amongst the most representative outside the conventional field. (author) [fr

  14. Application of mathematical statistics methods to study fluorite deposits

    International Nuclear Information System (INIS)

    Chermeninov, V.B.

    1980-01-01

    Considered are the applicability of mathematical-statistical methods for the increase of reliability of sampling and geological tasks (study of regularities of ore formation). Compared is the reliability of core sampling (regarding the selective abrasion of fluorite) and neutron activation logging for fluorine. The core sampling data are characterized by higher dispersion than neutron activation logging results (mean value of variation coefficients are 75% and 56% respectively). However the hypothesis of the equality of average two sampling is confirmed; this fact testifies to the absence of considerable variability of ore bodies

  15. TRIZ method application for improving the special vehicles maintenance

    Directory of Open Access Journals (Sweden)

    Petrović Saša

    2014-01-01

    Full Text Available TRIZ methodology provides an opportunity for improving the classical engineering approach based on personal knowledge and experience. This paper presents the application of TRIZ methods for improving vehicle maintenance where special equipment is installed. A specific problem is the maintenance of the periscopes with heating system. Protective glass panels with heating system are rectangular glass elements. Their purpose is to perform mechanical protection of built-in prisms and provide heating of the prisms. Aging and long-term use leads to failure of these elements. The practice requires solutions in order to extend the lifetime of the system. New solution is evaluated by simulation and experiment.

  16. Application of AI methods to aircraft guidance and control

    Science.gov (United States)

    Hueschen, Richard M.; Mcmanus, John W.

    1988-01-01

    A research program for integrating artificial intelligence (AI) techniques with tools and methods used for aircraft flight control system design, development, and implementation is discussed. The application of the AI methods for the development and implementation of the logic software which operates with the control mode panel (CMP) of an aircraft is presented. The CMP is the pilot control panel for the automatic flight control system of a commercial-type research aircraft of Langley Research Center's Advanced Transport Operating Systems (ATOPS) program. A mouse-driven color-display emulation of the CMP, which was developed with AI methods and used to test the AI software logic implementation, is discussed. The operation of the CMP was enhanced with the addition of a display which was quickly developed with AI methods. The display advises the pilot of conditions not satisfied when a mode does not arm or engage. The implementation of the CMP software logic has shown that the time required to develop, implement, and modify software systems can be significantly reduced with the use of the AI methods.

  17. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Changyong Cao

    2015-01-01

    Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.

  18. Theoretical physics 7 quantum mechanics : methods and applications

    CERN Document Server

    Nolting, Wolfgang

    2017-01-01

    This textbook offers a clear and comprehensive introduction to methods and applications in quantum mechanics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, thus developing the understanding of quantized states further on. The first part of the book introduces the quantum theory of angular momentum and approximation methods. More complex themes are covered in the second part of the book, which describes multiple particle systems and scattering theory. Ideally suited to undergraduate students with some grounding in the basics of quantum mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets.  About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this seri...

  19. Modern methods of studying surfaces and their application to glasses

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Haehnert, M.

    1977-05-01

    In the works are demonstrated modern methods for study of solid surfaces and its use of glasses. Study of the interaction of ions, electrons and photons with the glass surface provides information about the composition of the surface and its structure on an atomic scale. A qualitative analysis of a surface can be made with the aid of the Auger electron spectroscopy (AES) and the electron spectroscopy for chemical analysis (ESCA) and with the ion scattering (ISS and RBS) and the secondary ion mass spectrometry (SIMS). The structure of a surface can be studied by means of ion scattering and low-energy electron diffraction (LEED) and the topography of a surface by means of scanning electron microscopy (SEM). The ellipsometry is generally confined to measuring the thickness of very thin layers. The application these methods to the glass surfaces is demonstrated on series of examples. (author)

  20. Application of Patterson-function direct methods to materials characterization.

    Science.gov (United States)

    Rius, Jordi

    2014-09-01

    The aim of this article is a general description of the so-called Patterson-function direct methods (PFDM), from their origin to their present state. It covers a 20-year period of methodological contributions to crystal structure solution, most of them published in Acta Crystallographica Section A. The common feature of these variants of direct methods is the introduction of the experimental intensities in the form of the Fourier coefficients of origin-free Patterson-type functions, which allows the active use of both strong and weak reflections. The different optimization algorithms are discussed and their performances compared. This review focuses not only on those PFDM applications related to powder diffraction data but also on some recent results obtained with electron diffraction tomography data.

  1. Application of Patterson-function direct methods to materials characterization

    Directory of Open Access Journals (Sweden)

    Jordi Rius

    2014-09-01

    Full Text Available The aim of this article is a general description of the so-called Patterson-function direct methods (PFDM, from their origin to their present state. It covers a 20-year period of methodological contributions to crystal structure solution, most of them published in Acta Crystallographica Section A. The common feature of these variants of direct methods is the introduction of the experimental intensities in the form of the Fourier coefficients of origin-free Patterson-type functions, which allows the active use of both strong and weak reflections. The different optimization algorithms are discussed and their performances compared. This review focuses not only on those PFDM applications related to powder diffraction data but also on some recent results obtained with electron diffraction tomography data.

  2. BEACON: An application of nodal methods for operational support

    International Nuclear Information System (INIS)

    Boyd, W.A.; Nguyen, T.Q.

    1992-01-01

    A practical application of nodal methods is on-line plant operational support. However, to enable plant personnel to take full advantage of a nodal model to support plant operations, (a) a core nodal model must always be up to date with the current core history and conditions, (b) the nodal methods must be fast enough to allow numerous core calculations to be performed in minutes to support engineering decisions, and (c) the system must be easily accessible to engineering personnel at the reactor, their offices, or any other location considered appropriate. A core operational support package developed by Westinghouse called BEACON (best estimate analysis of core operations - nuclear) has been installed at several plants. Results from these plants and numerous in-core flux maps analyzed have demonstrated the accuracy of the model and the effectiveness of the methodology

  3. Application of the Oslo method to high resolution gamma spectra

    Science.gov (United States)

    Simon, A.; Guttormsen, M.; Larsen, A. C.; Beausang, C. W.; Humby, P.

    2015-10-01

    Hauser-Feshbach statistical model is a widely used tool for calculation of the reaction cross section, in particular for astrophysical processes. The HF model requires as an input an optical potential, gamma-strength function (GSF) and level density (LD) to properly model the statistical properties of the nucleus. The Oslo method is a well established technique to extract GSFs and LDs from experimental data, typically used for gamma-spectra obtained with scintillation detectors. Here, the first application of the Oslo method to high-resolution data obtained using the Ge detectors of the STARLITER setup at TAMU is discussed. The GSFs and LDs extracted from (p,d) and (p,t) reactions on 152154 ,Sm targets will be presented.

  4. Advanced symbolic analysis for VLSI systems methods and applications

    CERN Document Server

    Shi, Guoyong; Tlelo Cuautle, Esteban

    2014-01-01

    This book provides comprehensive coverage of the recent advances in symbolic analysis techniques for design automation of nanometer VLSI systems. The presentation is organized in parts of fundamentals, basic implementation methods and applications for VLSI design. Topics emphasized include  statistical timing and crosstalk analysis, statistical and parallel analysis, performance bound analysis and behavioral modeling for analog integrated circuits . Among the recent advances, the Binary Decision Diagram (BDD) based approaches are studied in depth. The BDD-based hierarchical symbolic analysis approaches, have essentially broken the analog circuit size barrier. In particular, this book   • Provides an overview of classical symbolic analysis methods and a comprehensive presentation on the modern  BDD-based symbolic analysis techniques; • Describes detailed implementation strategies for BDD-based algorithms, including the principles of zero-suppression, variable ordering and canonical reduction; • Int...

  5. Uncertain multi-attribute decision making methods and applications

    CERN Document Server

    Xu, Zeshui

    2015-01-01

    This book introduces methods for uncertain multi-attribute decision making including uncertain multi-attribute group decision making and their applications to supply chain management, investment decision making, personnel assessment, redesigning products, maintenance services, military system efficiency evaluation. Multi-attribute decision making, also known as multi-objective decision making with finite alternatives, is an important component of modern decision science. The theory and methods of multi-attribute decision making have been extensively applied in engineering, economics, management and military contexts, such as venture capital project evaluation, facility location, bidding, development ranking of industrial sectors and so on. Over the last few decades, great attention has been paid to research on multi-attribute decision making in uncertain settings, due to the increasing complexity and uncertainty of supposedly objective aspects and the fuzziness of human thought. This book can be used as a ref...

  6. Time series analysis methods and applications for flight data

    CERN Document Server

    Zhang, Jianye

    2017-01-01

    This book focuses on different facets of flight data analysis, including the basic goals, methods, and implementation techniques. As mass flight data possesses the typical characteristics of time series, the time series analysis methods and their application for flight data have been illustrated from several aspects, such as data filtering, data extension, feature optimization, similarity search, trend monitoring, fault diagnosis, and parameter prediction, etc. An intelligent information-processing platform for flight data has been established to assist in aircraft condition monitoring, training evaluation and scientific maintenance. The book will serve as a reference resource for people working in aviation management and maintenance, as well as researchers and engineers in the fields of data analysis and data mining.

  7. Drug-Target Interactions: Prediction Methods and Applications.

    Science.gov (United States)

    Anusuya, Shanmugam; Kesherwani, Manish; Priya, K Vishnu; Vimala, Antonydhason; Shanmugam, Gnanendra; Velmurugan, Devadasan; Gromiha, M Michael

    2018-01-01

    Identifying the interactions between drugs and target proteins is a key step in drug discovery. This not only aids to understand the disease mechanism, but also helps to identify unexpected therapeutic activity or adverse side effects of drugs. Hence, drug-target interaction prediction becomes an essential tool in the field of drug repurposing. The availability of heterogeneous biological data on known drug-target interactions enabled many researchers to develop various computational methods to decipher unknown drug-target interactions. This review provides an overview on these computational methods for predicting drug-target interactions along with available webservers and databases for drug-target interactions. Further, the applicability of drug-target interactions in various diseases for identifying lead compounds has been outlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Application of fuzzy decision-making method in nuclear emergency

    International Nuclear Information System (INIS)

    Xu Zhixin; Xi Shuren; Qu Jingyuan

    2005-01-01

    Protective actions such as evacuation, sheltering and iodine administration can be taken to mitigate the radiological consequence in the event of an accidental release. In general, decision-making of countermeasures involves both quantitative and qualitative criteria. The conventional approaches to assessing these criteria tend to be less effective when dealing with those qualitative criteria that are imprecise or vague. In this regard, fuzzy set method is an alternative tool. It can cope with vague assessment in a better way. This paper presents the application of fussy methodology to decision-making of protective actions in nuclear emergencies. In this method linguistic terms and fuzzy triangular numbers are used to represent decision-maker's subjective assessment for different decision criteria considered and decision alternatives versus the decision criteria. Following the assessment performed by specialists, corresponding evaluations can be synthesized and ranked. Finally, the optimal strategy for implementing protective actions can be recommended. (authors)

  9. The application of advanced rotor (performance) methods for design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bussel, G.J.W. van [Delft Univ. of Technology, Inst. for Wind Energy, Delft (Netherlands)

    1997-08-01

    The calculation of loads and performance of wind turbine rotors has been a topic for research over the last century. The principles for the calculation of loads on rotor blades with a given specific geometry, as well as the development of optimal shaped rotor blades have been published in the decades that significant aircraft development took place. Nowadays advanced computer codes are used for specific problems regarding modern aircraft, and application to wind turbine rotors has also been performed occasionally. The engineers designing rotor blades for wind turbines still use methods based upon global principles developed in the beginning of the century. The question what to expect in terms of the type of methods to be applied in a design environment for the near future is addressed here. (EG) 14 refs.

  10. Application of Target Costing method in the Hospitality Industry

    Directory of Open Access Journals (Sweden)

    Andor Pajrok

    2014-12-01

    Full Text Available Traditional approaches to managing costs are based on the costs that are the result of existing capabilities and resources in the company. Adding to these costs a specified margin or profit, leads to the sales price. If the market is not ready to accept such a selling price, managers need to find opportunities for rationalization and cost reduction. Target cost management begins the process of managing the sales price and the planned profit that the market can accept, and only then is it possible to determine the cost of the product. In the planning phase of the product and the manufacturing process the approach is to finding a method to lower costs and to reduce them as much as possible. The aim this of study is to investigate the application of target (strategy cost accounting methods in the Hospitality Industry.

  11. Piezoelectric Materials Synthesized by the Hydrothermal Method and Their Applications

    Directory of Open Access Journals (Sweden)

    Takeshi Morita

    2010-12-01

    Full Text Available Synthesis by the hydrothermal method has various advantages, including low reaction temperature, three-dimensional substrate availability, and automatic polarization alignment during the process. In this review, powder synthesis, the fabrication of piezoelectric thin films, and their applications are introduced. A polycrystalline lead zirconate titanate (PZT thin film was applied to a micro ultrasonic motor, and an epitaxial lead titanate (PbTiO3 thin film was estimated as a ferroelectric data storage medium. Ferroelectric and piezoelectric properties were successfully obtained for epitaxial PbTiO3 films. As lead-free piezoelectric powders, KNbO3 and NaNbO3 powders were synthesized by the hydrothermal method and sintered together to form (K,NaNbO3 ceramics, from which reasonable piezoelectric performance was achieved.

  12. Statistical methods with applications to demography and life insurance

    CERN Document Server

    Khmaladze, Estáte V

    2013-01-01

    Suitable for statisticians, mathematicians, actuaries, and students interested in the problems of insurance and analysis of lifetimes, Statistical Methods with Applications to Demography and Life Insurance presents contemporary statistical techniques for analyzing life distributions and life insurance problems. It not only contains traditional material but also incorporates new problems and techniques not discussed in existing actuarial literature. The book mainly focuses on the analysis of an individual life and describes statistical methods based on empirical and related processes. Coverage ranges from analyzing the tails of distributions of lifetimes to modeling population dynamics with migrations. To help readers understand the technical points, the text covers topics such as the Stieltjes, Wiener, and Itô integrals. It also introduces other themes of interest in demography, including mixtures of distributions, analysis of longevity and extreme value theory, and the age structure of a population. In addi...

  13. On some methods in homogenization and their applications

    International Nuclear Information System (INIS)

    Allaire, Gregoire

    1993-01-01

    This report (which reproduces an 'Habilitation' thesis) is concerned with the homogenization theory which can be defined as the union of all mathematical techniques allowing to pass from a microscopic behavior to a macroscopic (or averaged, or effective) behavior of a physical phenomenon, modeled by one or several partial differential equations. Some new results are discussed, both from the point of view of methods, and from that of applications. The first chapter deals with viscous incompressible fluid flows in porous media, and, in particular, contains a derivation of Darcy and Brinkman's law. The second chapter is dedicated to the two-scale convergence method. The third chapter focus on the problem of optimal bounds for the effective properties of composite materials. Finally, in the fourth chapter the previous results are applied to the optimal design problem for elastic shapes. (author) [fr

  14. SECTIONING METHOD APPLICATION AT ELLIPSOMETRY OF INHOMOGENEOUS REFLECTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. N. Gorlyak

    2014-05-01

    Full Text Available The paper deals with investigation of application peculiarities of ellipsometry methods and UF spectrophotometry at mechanical and chemical processing of optical engineering surface elements made of quartz glass. Ellipsometer LEF–3M–1, spectrophotometer SF–26 and interferometer MII–4 are used as experiment tools; they obtain widely known technical characteristics. Polarization characteristics of reflected light beam were measured by ellipsometry method; spectrophotometry method was used for measuring radiation transmission factor in UF spectrum area; by interference method surface layer thickness at quartz glass etching was measured. A method for HF–sectioning of inhomogeneous surface layer of polished quartz glass is developed based on ellipsometry equation for reflection system «inhomogeneous layer – inhomogeneous padding». The method makes it possible to carry out the measuring and analysis of optical characteristics for inhomogeneous layers system on inhomogeneous padding and to reconstruct optical profile of surface layers at quartz glass chemical processing. For definition of refractive index change along the layer depth, approximation of experimental values for polarization characteristics of homogeneous layers system is used. Inhomogeneous surface layer of polished quartz glass consists of an area (with thickness up to 20 nm and layer refractive index less than refractive index for quartz glass and an area (with thickness up to 0,1 μm and layer refractive index larger than refractive index for quartz glass. Ellipsometry and photometry methods are used for definition of technological conditions and optical characteristics of inhomogeneous layers at quartz glass chemical processing for optical elements with minimum radiation losses in UF spectrum area.

  15. Application of Computational Methods in Planaria Research: A Current Update

    Directory of Open Access Journals (Sweden)

    Ghosh Shyamasree

    2017-07-01

    Full Text Available Planaria is a member of the Phylum Platyhelminthes including flatworms. Planarians possess the unique ability of regeneration from adult stem cells or neoblasts and finds importance as a model organism for regeneration and developmental studies. Although research is being actively carried out globally through conventional methods to understand the process of regeneration from neoblasts, biology of development, neurobiology and immunology of Planaria, there are many thought provoking questions related to stem cell plasticity, and uniqueness of regenerative potential in Planarians amongst other members of Phylum Platyhelminthes. The complexity of receptors and signalling mechanisms, immune system network, biology of repair, responses to injury are yet to be understood in Planaria. Genomic and transcriptomic studies have generated a vast repository of data, but their availability and analysis is a challenging task. Data mining, computational approaches of gene curation, bioinformatics tools for analysis of transcriptomic data, designing of databases, application of algorithms in deciphering changes of morphology by RNA interference (RNAi approaches, understanding regeneration experiments is a new venture in Planaria research that is helping researchers across the globe in understanding the biology. We highlight the applications of Hidden Markov models (HMMs in designing of computational tools and their applications in Planaria decoding their complex biology.

  16. Machine Learning-Empowered Biometric Methods for Biomedicine Applications

    Directory of Open Access Journals (Sweden)

    Qingxue Zhang

    2017-07-01

    Full Text Available Nowadays, pervasive computing technologies are paving a promising way for advanced smart health applications. However, a key impediment faced by wide deployment of these assistive smart devices, is the increasing privacy and security issue, such as how to protect access to sensitive patient data in the health record. Focusing on this challenge, biometrics are attracting intense attention in terms of effective user identification to enable confidential health applications. In this paper, we take special interest in two bio-potential-based biometric modalities, electrocardiogram (ECG and electroencephalogram (EEG, considering that they are both unique to individuals, and more reliable than token (identity card and knowledge-based (username/password methods. After extracting effective features in multiple domains from ECG/EEG signals, several advanced machine learning algorithms are introduced to perform the user identification task, including Neural Network, K-nearest Neighbor, Bagging, Random Forest and AdaBoost. Experimental results on two public ECG and EEG datasets show that ECG is a more robust biometric modality compared to EEG, leveraging a higher signal to noise ratio and also more distinguishable morphological patterns. Among different machine learning classifiers, the random forest greatly outperforms the others and owns an identification rate as high as 98%. This study is expected to demonstrate that properly selected biometric empowered by an effective machine learner owns a great potential, to enable confidential biomedicine applications in the era of smart digital health.

  17. Effects of Fungicides, Time of Application, and Application Method on Control of Sclerotinia Blight in Peanut

    Directory of Open Access Journals (Sweden)

    Jason E. Woodward

    2015-01-01

    Full Text Available Field studies were conducted from 2007 to 2010 to evaluate the response of peanut cultivars to different fungicides, application timings, and methods. Overall, fungicides reduced Sclerotinia blight incidence and increased pod yields when applied to susceptible and partially resistant cultivars. Disease suppression was greater when full fungicide rates were applied preventatively; however, yields between fungicide treated plots were similar. Lower levels of disease and higher yields were achieved with the partially resistant cultivar Tamrun OL07 compared to the susceptible cultivars Flavor Runner 458 and Tamrun OL 02. Despite possessing improved resistance Tamrun OL07 responded to all fungicide applications. While similar levels of disease control were achieved with broadcast or banded applications made during the day or at night, the yield response for the different application methods was inconsistent among years. A negative relationship (slope = −73.8; R2=0.73; P<0.01 was observed between final disease incidence ratings and yield data from studies where a fungicide response was observed. These studies suggest that both boscalid and fluazinam are effective at controlling Sclerotinia blight in peanuts. Alternative management strategies such as nighttime and banded applications could allow for lower fungicide rates to be used; however, additional studies are warranted.

  18. CRKSPH: A new meshfree hydrodynamics method with applications to astrophysics

    Science.gov (United States)

    Owen, John Michael; Raskin, Cody; Frontiere, Nicholas

    2018-01-01

    The study of astrophysical phenomena such as supernovae, accretion disks, galaxy formation, and large-scale structure formation requires computational modeling of, at a minimum, hydrodynamics and gravity. Developing numerical methods appropriate for these kinds of problems requires a number of properties: shock-capturing hydrodynamics benefits from rigorous conservation of invariants such as total energy, linear momentum, and mass; lack of obvious symmetries or a simplified spatial geometry to exploit necessitate 3D methods that ideally are Galilean invariant; the dynamic range of mass and spatial scales that need to be resolved can span many orders of magnitude, requiring methods that are highly adaptable in their space and time resolution. We have developed a new Lagrangian meshfree hydrodynamics method called Conservative Reproducing Kernel Smoothed Particle Hydrodynamics, or CRKSPH, in order to meet these goals. CRKSPH is a conservative generalization of the meshfree reproducing kernel method, combining the high-order accuracy of reproducing kernels with the explicit conservation of mass, linear momentum, and energy necessary to study shock-driven hydrodynamics in compressible fluids. CRKSPH's Lagrangian, particle-like nature makes it simple to combine with well-known N-body methods for modeling gravitation, similar to the older Smoothed Particle Hydrodynamics (SPH) method. Indeed, CRKSPH can be substituted for SPH in existing SPH codes due to these similarities. In comparison to SPH, CRKSPH is able to achieve substantially higher accuracy for a given number of points due to the explicitly consistent (and higher-order) interpolation theory of reproducing kernels, while maintaining the same conservation principles (and therefore applicability) as SPH. There are currently two coded implementations of CRKSPH available: one in the open-source research code Spheral, and the other in the high-performance cosmological code HACC. Using these codes we have applied

  19. Application of radiological imaging methods to radioactive waste characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tessaro, Ana Paula Gimenes; Souza, Daiane Cristini B. de; Vicente, Roberto, E-mail: aptessaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radiological imaging technologies are most frequently used for medical diagnostic purposes but are also useful in materials characterization and other non-medical applications in research and industry. The characterization of radioactive waste packages or waste samples can also benefit from these techniques. In this paper, the application of some imaging methods is examined for the physical characterization of radioactive wastes constituted by spent ion-exchange resins and activated charcoal beds stored at the Radioactive Waste Management Department of IPEN. These wastes are generated when the filter media of the water polishing system of the IEA-R1 Nuclear Research Reactor is no longer able to maintain the required water quality and are replaced. The IEA-R1 is a 5MW pool-type reactor, moderated and cooled by light water, and fission and activation products released from the reactor core must be continuously removed to prevent activity buildup in the water. The replacement of the sorbents is carried out by pumping from the filter tanks into several 200 L drums, each drum getting a variable amount of water. Considering that the results of radioanalytical methods to determine the concentrations of radionuclides are usually expressed on dry basis,the amount of water must be known to calculate the total activity of each package. At first sight this is a trivial problem that demanded, however some effort to be solved. The findings on this subject are reported in this paper. (author)

  20. Morphological Characterization of Nanofibers: Methods and Application in Practice

    Directory of Open Access Journals (Sweden)

    Jakub Širc

    2012-01-01

    Full Text Available Biomedical applications such as wound dressing for skin regeneration, stem cell transplantation, or drug delivery require special demands on the three-dimensional porous scaffolds. Besides the biocompatibility and mechanical properties, the morphology is the most important attribute of the scaffold. Specific surface area, volume, and size of the pores have considerable effect on cell adhesion, growth, and proliferation. In the case of incorporated biologically active substances, their release is also influenced by the internal structure of nanofibers. Although many scientific papers are focused on the preparation of nanofibers and evaluation of biological tests, the morphological characterization was described just briefly as service methods. The aim of this paper is to summarize the methods applicable for morphological characterization of nanofibers and supplement it by the results of our research. Needleless electrospinning technique was used to prepare nanofibers from polylactide, poly(ε-caprolactone, gelatin, and polyamide. Scanning electron microscopy was used to evaluate the fiber diameters and to reveal eventual artifacts in the nanofibrous structure. Nitrogen adsorption/desorption measurements were employed to measure the specific surface areas. Mercury porosimetry was used to determine total porosities and compare pore size distributions of the prepared samples.

  1. Application of nonlinear systems in nanomechanics and nanofluids analytical methods and applications

    CERN Document Server

    Ganji, Davood Domairry

    2015-01-01

    With Application of Nonlinear Systems in Nanomechanics and Nanofluids the reader gains a deep and practice-oriented understanding of nonlinear systems within areas of nanotechnology application as well as the necessary knowledge enabling the handling of such systems. The book helps readers understand relevant methods and techniques for solving nonlinear problems, and is an invaluable reference for researchers, professionals and PhD students interested in research areas and industries where nanofluidics and dynamic nano-mechanical systems are studied or applied. The book is useful in areas suc

  2. Application of FMEA method in railway signalling projects

    Directory of Open Access Journals (Sweden)

    Szmel Dariusz

    2017-06-01

    Full Text Available The article presents the FMEA method application, which is relevant in verification of design of two separated railway signalling systems. The efficiency of the method at the stage of the design was discussed. The method was identified as an important element of safety management process and as safety analysis method, which is included in the Safety Case and is applied for the sake of safety arguments and its assessment. Safety process management comprises several phases and appropriate actions, linked with each other in the way to create safety life cycle consistent with system life cycle. The safety case is a set of documents demonstrating that the product is compliant with defined safety requirements including analysis that indicates the correctness of the design and the correct reaction of the system to the failures, with appropriate and requested fail-safe reaction. It is necessary that railway signalling system should fulfil SIL4 requirement and remain safe in case of occurrence any kind of single failure of the equipment considered as possible.

  3. The application of geophysical methods to archaeological prospection

    Energy Technology Data Exchange (ETDEWEB)

    Linford, Neil [Geophysics Team, English Heritage, Fort Cumberland, Eastney, Portsmouth PO4 9LD (United Kingdom)

    2006-07-15

    The aim of this review is to combine the almost universal fascination we share for our past with the comparatively recent, in archaeological terms, application of geophysical prospection methods. For their success, each of these methods relies upon a physical contrast to exist between the buried archaeological feature and the properties of the surrounding subsoil. Understanding the archaeological origin of such physical contrasts, in terms of density, thermal conductivity, electrical resistance, magnetic or dielectric properties, remains fundamental to an appreciation of the discipline. This review provides a broad introduction to the subject area acknowledging the historical development of the discipline and discusses each of the major techniques in turn: earth resistance, magnetic and electromagnetic methods (including ground penetrating radar), together with an appreciation of more esoteric approaches, such as the use of micro-gravity survey to detect buried chambers and voids. The physical principles and field instrumentation involved for the acquisition of data with each method are considered and fully illustrated with case histories of results from the English Heritage archives.

  4. The application of geophysical methods to archaeological prospection

    International Nuclear Information System (INIS)

    Linford, Neil

    2006-01-01

    The aim of this review is to combine the almost universal fascination we share for our past with the comparatively recent, in archaeological terms, application of geophysical prospection methods. For their success, each of these methods relies upon a physical contrast to exist between the buried archaeological feature and the properties of the surrounding subsoil. Understanding the archaeological origin of such physical contrasts, in terms of density, thermal conductivity, electrical resistance, magnetic or dielectric properties, remains fundamental to an appreciation of the discipline. This review provides a broad introduction to the subject area acknowledging the historical development of the discipline and discusses each of the major techniques in turn: earth resistance, magnetic and electromagnetic methods (including ground penetrating radar), together with an appreciation of more esoteric approaches, such as the use of micro-gravity survey to detect buried chambers and voids. The physical principles and field instrumentation involved for the acquisition of data with each method are considered and fully illustrated with case histories of results from the English Heritage archives

  5. Application of WSP method in analysis of environmental samples

    International Nuclear Information System (INIS)

    Stacho, M.; Slugen, V.; Hinca, R.; Sojak, S.; Krnac, S.

    2014-01-01

    Detection of activity in natural samples is specific especially because of its low level and high background interferences. Reduction of background interferences could be reached using low background chamber. Measurement geometry in shape of Marinelli beaker is commonly used according to low level of activity in natural samples. The Peak Net Area (PNA) method is the world-wide accepted technique for analysis of gamma-ray spectra. It is based on the net area calculation of the full energy peak, therefore, it takes into account only a fraction of measured gamma-ray spectrum. On the other hand, the Whole Spectrum Processing (WSP) approach to the gamma analysis makes possible to use entire information being in the spectrum. This significantly raises efficiency and improves energy resolution of the analysis. A principal step for the WSP application is building up the suitable response operator. Problems are put in an appearance when suitable standard calibration sources are unavailable. It may be occurred in the case of large volume samples and/or in the analysis of high energy range. Combined experimental and mathematical calibration may be a suitable solution. Many different detectors have been used to register the gamma ray and its energy. HPGe detectors produce the highest resolution commonly available today. Therefore they are they the most often used detectors in natural samples activity analysis. Scintillation detectors analysed using PNA method could be also used in simple cases, but for complicated spectra are practically inapplicable. WSP approach improves resolution of scintillation detectors and expands their applicability. WSP method allowed significant improvement of the energetic resolution and separation of "1"3"7Cs 661 keV peak from "2"1"4Bi 609 keV peak. At the other hand the statistical fluctuations in the lower part of the spectrum highlighted by background subtraction causes that this part is still not reliably analyzable. (authors)

  6. Generalization of mixed multiscale finite element methods with applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C S [Texas A & M Univ., College Station, TX (United States)

    2016-08-01

    Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixed multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii

  7. Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models

    Science.gov (United States)

    Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.

    2017-12-01

    Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream

  8. Nonstationary Hydrological Frequency Analysis: Theoretical Methods and Application Challenges

    Science.gov (United States)

    Xiong, L.

    2014-12-01

    Because of its great implications in the design and operation of hydraulic structures under changing environments (either climate change or anthropogenic changes), nonstationary hydrological frequency analysis has become so important and essential. Two important achievements have been made in methods. Without adhering to the consistency assumption in the traditional hydrological frequency analysis, the time-varying probability distribution of any hydrological variable can be established by linking the distribution parameters to some covariates such as time or physical variables with the help of some powerful tools like the Generalized Additive Model of Location, Scale and Shape (GAMLSS). With the help of copulas, the multivariate nonstationary hydrological frequency analysis has also become feasible. However, applications of the nonstationary hydrological frequency formula to the design and operation of hydraulic structures for coping with the impacts of changing environments in practice is still faced with many challenges. First, the nonstationary hydrological frequency formulae with time as covariate could only be extrapolated for a very short time period beyond the latest observation time, because such kind of formulae is not physically constrained and the extrapolated outcomes could be unrealistic. There are two physically reasonable methods that can be used for changing environments, one is to directly link the quantiles or the distribution parameters to some measureable physical factors, and the other is to use the derived probability distributions based on hydrological processes. However, both methods are with a certain degree of uncertainty. For the design and operation of hydraulic structures under changing environments, it is recommended that design results of both stationary and nonstationary methods be presented together and compared with each other, to help us understand the potential risks of each method.

  9. Study on the scope of fault tree method applicability

    International Nuclear Information System (INIS)

    Ito, Taiju

    1980-03-01

    In fault tree analysis of the reliability of nuclear safety system, including reliability analysis of nuclear protection system, there seem to be some documents in which application of the fault tree method is unreasonable. In fault tree method, the addition rule and the multiplication rule are usually used. The addition rule and the multiplication rule must hold exactly or at least practically. The addition rule has no problem but the multiplication rule has occasionally some problem. For unreliability, mean unavailability and instantaneous unavailability of the elements, holding or not of the multiplication rule has been studied comprehensively. Between the unreliability of each element without maintenance, the multiplication rule holds. Between the instantaneous unavailability of each element, with maintenance or not, the multiplication rule also holds. Between the unreliability of each subsystem with maintenance, however, the multiplication rule does not hold, because the product value is larger than the value of unreliability for a parallel system consisting of the two subsystems with maintenance. Between the mean unavailability of each element without maintenance, the multiplication rule also does not hold, because the product value is smaller than the value of mean unavailability for a parallel system consisting of the two elements without maintenance. In these cases, therefore, the fault tree method may not be applied by rote for reliability analysis of the system. (author)

  10. APPLICATION OF QUALITY ECONOMY METHODS IN MANAGING INNOVATION CAPACITY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    V. V. Okrepilov

    2017-01-01

    Full Text Available Purpose: to reveal the possibilities of applying the methods of the quality economy to improve the management efficiency of the development of the region's innovative potential.Results: in the article topical questions of development of innovative potential of the region are considered - one of the important factors providing improvement of quality of life of the population and sustainable development of the territory. The content of the concept of "innovation potential of the region" is disclosed and its components are described. The purposes of development of innovative potential are considered. A comparative analysis of the methods of managing the development of potential in the market and planned economy is carried out. Particular attention is paid to the application of quality management methods to improve management effectiveness. In conclusion, the advantages and disadvantages of the economy of the macro-region "North-West" from the point of view of transition to an innovative development path, as well as scenarios for the development of the economy, are discussed.Conclusions and relevance: the use of quality economy tools to manage the development of innovative capacity will help to avoid mistakes and choose the right directions for development. In the era of globalization, improving quality is a prerequisite for successful competition in world markets. Therefore, the issues of innovation capacity assessment should be taken into account in the development of regional plans and programs, as well as socio-economic policy.

  11. Application of FISH method in evaluation of a radiation accident

    International Nuclear Information System (INIS)

    Wang Mingming; Zheng Siying; Duan Zhikai; Zhang Shuxian; Xu Honglan

    2004-01-01

    To study effects of long term radiation hazard and explore the possibility of the application of chromosome aberration and FISH method to dose retrospection and reconstruction, FISH method was used to detect biological destination of three accidental victims at 7.5 years after Xinzhou accident. In the meantime, conventional chromosomal aberration, G-banding, CB micronuclei and HPRT gene locus mutation assays were performed. In addition, the growth and development of Victim S, who suffered the radiation accident as a fetus, were examined. And comparison of dose estimations between chromosome aberration and FISH method of the victims was conducted. The results demonstrated that the biological dose estimated by translocation frequency is very close to the imitated dose by the physical way after the accident if enough cells are observed. It is suggested that FISH may be applied to dose retrospection and reconstruction. Obvious chromosomal aberrations still existed in the examined victims at 7.5 years after the accident and displayed good dose correlative dependence. The results also showed that the growth and development of S were basically normal after birth

  12. Application of heterogeneous method for the interpretation of exponential experiments

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.

    1977-01-01

    The present paper gives a brief review of a work which was executed mainly during 1967 and 1968 in the field of the application of heterogeneous methods for the interpretation of exponential experiments with ORGEL type lattices (lattices of natural uranium cluster elements with organic coolants moderated by heavy water). In the frame of this work a heterogeneous computer program, in (r,γ) geometry was written which is based on the NORDHEIM method using a uniform moderator, three energy groups and monopol and dipol sources. This code is especially adapted for regular square lattices in a cylindrical tank. Full use of lattice symmetry was made for reducing the numerical job of the theory. A further reduction was obtained by introducing a group averaged extrapolation distance at the external boundary. Channel parameters were evaluated by the PINOCCHIO code. Comparisons of calculated and measured thermal neutron flux showed good agreement. Equivalence of heterogeneous and homogeneous theory was found in cases of lattices comprising a minimum of 32, 24 and 16 fuel elements for respectively under-, well-, and over-moderated lattices. Heterogeneous calculations of high leakage lattices suffered the lack of good methods for the computation of axial and radial streaming parameters. Interpretation of buckling measurements in the subcritical facility EXPO requires already more accurate evaluation of the streaming effects than we made. The potential of heterogeneous theory in the field of exponential experiments is thought to be limited by the precision by which the streaming parameters can be calculated

  13. Application of autoradiographic methods for contaminant distribution studies in soils

    International Nuclear Information System (INIS)

    Povetko, O.G.; Higley, K.A.

    2000-01-01

    In order to determine physical location of contaminants in soil, solidified soil 'thin' sections, which preserve the undisturbed structural characteristics of the original soil, were prepared. This paper describes an application of different autoradiographic methods to identify the distribution of selected nuclides along key structural features of sample soils and sizes of 'hot particles' of contaminant. These autoradiographic methods included contact autoradiography using CR-39 (Homalite Plastics) plastic alpha track detectors and neutron-induced autoradiography that produced fission fragment tracks in Lexan (Thrust Industries, Inc.) plastic detectors. Intact soil samples containing weapons-grade plutonium from Rocky Flats Environmental Test Site and control samples from outside the site location were used in thin soil section preparation. Distribution of particles of actinides was observed and analyzed through the soil section depth profile from the surface to the 15-cm depth. The combination of two autoradiographic methods allowed to distinguish alpha- emitting particles of natural U, 239+240 Pu and non-fissile alpha-emitters. Locations of 990 alpha 'stars' caused by 239+240 Pu and 241 Am 'hot particles' were recorded, particles were sized, their size-frequency, depth and activity distributions were analyzed. Several large colloidal conglomerates of 239+240 Pu and 241 Am 'hot particles' were found in soil profile. Their alpha and fission fragment 'star' images were micro photographed. (author)

  14. Total System Performance Assessment - License Application Methods and Approach

    Energy Technology Data Exchange (ETDEWEB)

    J. McNeish

    2003-12-08

    ''Total System Performance Assessment-License Application (TSPA-LA) Methods and Approach'' provides the top-level method and approach for conducting the TSPA-LA model development and analyses. The method and approach is responsive to the criteria set forth in Total System Performance Assessment Integration (TSPAI) Key Technical Issues (KTIs) identified in agreements with the U.S. Nuclear Regulatory Commission, the ''Yucca Mountain Review Plan'' (YMRP), ''Final Report'' (NRC 2003 [163274]), and the NRC final rule 10 CFR Part 63 (NRC 2002 [156605]). This introductory section provides an overview of the TSPA-LA, the projected TSPA-LA documentation structure, and the goals of the document. It also provides a brief discussion of the regulatory framework, the approach to risk management of the development and analysis of the model, and the overall organization of the document. The section closes with some important conventions that are used in this document.

  15. Applications of radioactive methods in cement concrete testing

    International Nuclear Information System (INIS)

    Dinakaran, M.; Vijayaraghavan, S.R.

    1979-01-01

    Basic principles regarding the neutron moderation technique and the successful application of this technique for determining the moisture and cement content in hardened concrete are briefly discussed. Since fast neutrons are converted into slow thermal neutrons by elastic scattering in the presence of hydrogen nuclei, it is possible to determine the moisture content in hardened cement concrete using precalibrated relationships. Also since most of the hydrogenous matter in concrete pertains to non-fixed water and hydrated cement compounds, an analysis of slow neutron counts on a sample at different non-fixed moisture contents make the estimation of cement content possible using the mathematical relationship between cement content, degree of hydration and the equivalent moisture content. The method developed is quick, non-destructive, and repeatable at the same time giving better accuracy when compared to conventional chemical methods. Use was also made of gamma ray transmission method for determining the differential density at various depths in a cement concrete pavement making use of cores cut from the pavement. Further, development proposed for determination of density at different depths of pavement in situ is also discussed. (auth.)

  16. The Benefits of the ABC Method Application in Croatian Companies

    Directory of Open Access Journals (Sweden)

    Dubravka Pekanov-Starčević

    2013-07-01

    Full Text Available New business environment has changed the structure and behaviour of company costs. The changes are primarily reflected in the increasing share of overhead costs in the total costs. Given that competitiveness is reflected in the unit product cost, the exact determination of unit costs by cost drivers, primarily the precise allocation of overhead costs to cost drivers, have become crucial to the survival of companies in a turbulent market environment. The biggest problem in determining the exact product costs is incorrect allocation of overhead costs to cost drivers. In the 1980s, a new method of allocating overhead costs was developed – activity-based costing (ABC method. Advocates of this method claim that it allows a more accurate determination of product costs and identification and elimination of activities that do not add value to the company, thereby reducing costs and increasing profits, and ultimately creating and sustaining a competitive advantage. Using a sample of Croatian companies listed on the Zagreb Stock Exchange, we investigated to which extent they applied activity-based costing; its benefits to the cost management system, and which factors influenced the application of this methodology. This study provides a new insight into the development of cost management systems in Croatian companies.

  17. New methods and applications in emission spectroscopy (1960); Methodes et applications nouvelles en spectroscopie d'emission (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Baudin, G [Commissariat a l' Energie Atomique, Grenoble (France).Centre d' Etudes Nucleaires

    1960-07-01

    Emission spectroscopy, are already well-established instrumental analytical technique, has in recent years known important developments. Two mains factors are responsible; firstly the demands of metallurgy for purer and purer materials or alloys which are increasingly complex and difficult to analyse by chemical means; secondly, progress in optics, especially in the production of gratings, and in electronics in the field of photomultiplier tubes. We will not here catalogue all the new applications and methods, but we will consider a few amongst the most representative outside the conventional field. (author) [French] La spectroscopie d'emission, technique analytique instrumentale deja ancienne, a pris, depuis quelques annees, une extension notable. Deux facteurs principaux ont contribue a ce succes: d'une part, l'exigence de la metallurgie en materiaux de plus en plus pur ou en alliages de plus en plus complexes, difficiles a analyser chimiquement, d'autre part, les progres realises en optique, principalement dans la fabrication des reseaux, et en electronique dans le domaine des tubes photomultiplicateurs. Nous ne ferons pas ici le recensement de toutes les applications ou methodes nouvelles, mais nous en choisirons quelques unes des plus representatives hors du domaine classique. (auteur)

  18. Application of distinct element method to toppling failure of slopes

    International Nuclear Information System (INIS)

    Ishida, Tsuyoshi; Hibino, Satoshi; Kitahara, Yoshihiro; Asai, Yoshiyuki.

    1985-01-01

    Recently, the stability of slopes during earthquakes has become to be an important engineering problem, especially in case of the earthquake-proof design of nuclear power plants. But, for fissured rock slopes, some problems are remained unresolved, because they can not be treated as continua. The authors have been investigating toppling failure of slopes, from a point of view which regards a fissured rock mass as an assemblage of rigid blocks. DEM (Distinct Element Method) proposed by Cundall (1974) seems to be very helpful to such a investigation. So, in this paper, the applicability of DEM to toppling failure of slopes is examined through the comparison between DEM results and theoretical or experimental results using 3 simple models. (author)

  19. Flow Applications of the Least Squares Finite Element Method

    Science.gov (United States)

    Jiang, Bo-Nan

    1998-01-01

    The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.

  20. Singular perturbations introduction to system order reduction methods with applications

    CERN Document Server

    Shchepakina, Elena; Mortell, Michael P

    2014-01-01

    These lecture notes provide a fresh approach to investigating singularly perturbed systems using asymptotic and geometrical techniques. It gives many examples and step-by-step techniques, which will help beginners move to a more advanced level. Singularly perturbed systems appear naturally in the modelling of many processes that are characterized by slow and fast motions simultaneously, for example, in fluid dynamics and nonlinear mechanics. This book’s approach consists in separating out the slow motions of the system under investigation. The result is a reduced differential system of lesser order. However, it inherits the essential elements of the qualitative behaviour of the original system. Singular Perturbations differs from other literature on the subject due to its methods and wide range of applications. It is a valuable reference for specialists in the areas of applied mathematics, engineering, physics, biology, as well as advanced undergraduates for the earlier parts of the book, and graduate stude...

  1. Aggregative Learning Method and Its Application for Communication Quality Evaluation

    Science.gov (United States)

    Akhmetov, Dauren F.; Kotaki, Minoru

    2007-12-01

    In this paper, so-called Aggregative Learning Method (ALM) is proposed to improve and simplify the learning and classification abilities of different data processing systems. It provides a universal basis for design and analysis of mathematical models of wide class. A procedure was elaborated for time series model reconstruction and analysis for linear and nonlinear cases. Data approximation accuracy (during learning phase) and data classification quality (during recall phase) are estimated from introduced statistic parameters. The validity and efficiency of the proposed approach have been demonstrated through its application for monitoring of wireless communication quality, namely, for Fixed Wireless Access (FWA) system. Low memory and computation resources were shown to be needed for the procedure realization, especially for data classification (recall) stage. Characterized with high computational efficiency and simple decision making procedure, the derived approaches can be useful for simple and reliable real-time surveillance and control system design.

  2. Continuum-Kinetic Models and Numerical Methods for Multiphase Applications

    Science.gov (United States)

    Nault, Isaac Michael

    This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.

  3. Bayesian statistic methods and theri application in probabilistic simulation models

    Directory of Open Access Journals (Sweden)

    Sergio Iannazzo

    2007-03-01

    Full Text Available Bayesian statistic methods are facing a rapidly growing level of interest and acceptance in the field of health economics. The reasons of this success are probably to be found on the theoretical fundaments of the discipline that make these techniques more appealing to decision analysis. To this point should be added the modern IT progress that has developed different flexible and powerful statistical software framework. Among them probably one of the most noticeably is the BUGS language project and its standalone application for MS Windows WinBUGS. Scope of this paper is to introduce the subject and to show some interesting applications of WinBUGS in developing complex economical models based on Markov chains. The advantages of this approach reside on the elegance of the code produced and in its capability to easily develop probabilistic simulations. Moreover an example of the integration of bayesian inference models in a Markov model is shown. This last feature let the analyst conduce statistical analyses on the available sources of evidence and exploit them directly as inputs in the economic model.

  4. Advanced communication methods developed for nuclear data communication applications

    International Nuclear Information System (INIS)

    Tiwari, Akash; Tiwari, Railesha; Tiwari, S.S.; Panday, Lokesh; Suri, Nitin; Takle, Tarun Rao; Jain, Sanjeev; Gupta, Rishi; Sharma, Dipeeka; Takle, Rahul Rao; Gautam, Rajeev; Bhargava, Vishal; Arora, Himanshu; Agarwal, Ankur; Rupesh; Chawla, Mohit; Sethi, Amardeep Singh; Gupta, Mukesh; Gupta, Ankit; Verma, Neha; Sood, Nitin; Singh, Sunil; Agarwal, Chandresh

    2004-01-01

    We conducted various experiments and tested data communications methods that may be useful for various applications in nuclear industries. We explored the following areas. I. Scientific data communication among scientists within the laboratory and inter-laboratory data exchange. 2.Data from sensors from remote and wired sensors. 3.Data from multiple sensors with small zone. 4.Data from single or multiple sensors from distances above 100 m and less than 10 km. No any single data communication method was found to be the best solution for nuclear applications and multiple modes of communication were found to be advantageous than any single mode of data communication. Network of computers in the control room and in between laboratories connected with optical fiber or an isolated Ethernet coaxial LAN was found to be optimum. Information from multiple analog process sensors in smaller zones like reactor building and laboratories on 12C LAN and short-range wireless LAN were found to be advantageous. Within the laboratory sensor data network of 12C was found to be cost effective and wireless LAN was comparatively expansive. Within a room infrared optical LAN and FSK wireless LAN were found to be highly useful in making the sensors free from wires. Direct sensor interface on FSK wireless link were found to be fast accurate, cost effective over large distance data communication. Such links are the only way to communicate from sea boy and balloons hardware. 1-wire communication network of Dallas Semiconductor USA for weather station data communication Computer to computer communication using optical LAN links has been tried, temperature pressure, humidity, ionizing radiation, generator RPM and voltage and various other analog signals were also transported o FSK optical and wireless links. Multiple sensors needed a dedicated data acquisition system and wireless LAN for data telemetry. (author)

  5. Application of Finite Layer Method in Pavement Structural Analysis

    Directory of Open Access Journals (Sweden)

    Pengfei Liu

    2017-06-01

    Full Text Available The finite element (FE method has been widely used in predicting the structural responses of asphalt pavements. However, the three-dimensional (3D modeling in general-purpose FE software systems such as ABAQUS requires extensive computations and is relatively time-consuming. To address this issue, a specific computational code EasyFEM was developed based on the finite layer method (FLM for analyzing structural responses of asphalt pavements under a static load. Basically, it is a 3D FE code that requires only a one-dimensional (1D mesh by incorporating analytical methods and using Fourier series in the other two dimensions, which can significantly reduce the computational time and required resources due to the easy implementation of parallel computing technology. Moreover, a newly-developed Element Energy Projection (EEP method for super-convergent calculations was implemented in EasyFEM to improve the accuracy of solutions for strains and stresses over the whole pavement model. The accuracy of the program is verified by comparing it with results from BISAR and ABAQUS for a typical asphalt pavement structure. The results show that the predicted responses from ABAQUS and EasyFEM are in good agreement with each other. The EasyFEM with the EEP post-processing technique converges faster compared with the results derived from ordinary EasyFEM applications, which proves that the EEP technique can improve the accuracy of strains and stresses from EasyFEM. In summary, the EasyFEM has a potential to provide a flexible and robust platform for the numerical simulation of asphalt pavements and can easily be post-processed with the EEP technique to enhance its advantages.

  6. Application of PDF methods to compressible turbulent flows

    Science.gov (United States)

    Delarue, B. J.; Pope, S. B.

    1997-09-01

    A particle method applying the probability density function (PDF) approach to turbulent compressible flows is presented. The method is applied to several turbulent flows, including the compressible mixing layer, and good agreement is obtained with experimental data. The PDF equation is solved using a Lagrangian/Monte Carlo method. To accurately account for the effects of compressibility on the flow, the velocity PDF formulation is extended to include thermodynamic variables such as the pressure and the internal energy. The mean pressure, the determination of which has been the object of active research over the last few years, is obtained directly from the particle properties. It is therefore not necessary to link the PDF solver with a finite-volume type solver. The stochastic differential equations (SDE) which model the evolution of particle properties are based on existing second-order closures for compressible turbulence, limited in application to low turbulent Mach number flows. Tests are conducted in decaying isotropic turbulence to compare the performances of the PDF method with the Reynolds-stress closures from which it is derived, and in homogeneous shear flows, at which stage comparison with direct numerical simulation (DNS) data is conducted. The model is then applied to the plane compressible mixing layer, reproducing the well-known decrease in the spreading rate with increasing compressibility. It must be emphasized that the goal of this paper is not as much to assess the performance of models of compressibility effects, as it is to present an innovative and consistent PDF formulation designed for turbulent inhomogeneous compressible flows, with the aim of extending it further to deal with supersonic reacting flows.

  7. Results from the Application of Uncertainty Methods in the CSNI Uncertainty Methods Study (UMS)

    International Nuclear Information System (INIS)

    Glaeser, H.

    2008-01-01

    Within licensing procedures there is the incentive to replace the conservative requirements for code application by a - best estimate - concept supplemented by an uncertainty analysis to account for predictive uncertainties of code results. Methods have been developed to quantify these uncertainties. The Uncertainty Methods Study (UMS) Group, following a mandate from CSNI, has compared five methods for calculating the uncertainty in the predictions of advanced -best estimate- thermal-hydraulic codes. Most of the methods identify and combine input uncertainties. The major differences between the predictions of the methods came from the choice of uncertain parameters and the quantification of the input uncertainties, i.e. the wideness of the uncertainty ranges. Therefore, suitable experimental and analytical information has to be selected to specify these uncertainty ranges or distributions. After the closure of the Uncertainty Method Study (UMS) and after the report was issued comparison calculations of experiment LSTF-SB-CL-18 were performed by University of Pisa using different versions of the RELAP 5 code. It turned out that the version used by two of the participants calculated a 170 K higher peak clad temperature compared with other versions using the same input deck. This may contribute to the differences of the upper limit of the uncertainty ranges.

  8. Self-assembly from milli- to nanoscales: methods and applications

    International Nuclear Information System (INIS)

    Mastrangeli, M; Celis, J-P; Abbasi, S; Varel, C; Böhringer, K F; Van Hoof, C

    2009-01-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. (topical review)

  9. Hierarchical Matrices Method and Its Application in Electromagnetic Integral Equations

    Directory of Open Access Journals (Sweden)

    Han Guo

    2012-01-01

    Full Text Available Hierarchical (H- matrices method is a general mathematical framework providing a highly compact representation and efficient numerical arithmetic. When applied in integral-equation- (IE- based computational electromagnetics, H-matrices can be regarded as a fast algorithm; therefore, both the CPU time and memory requirement are reduced significantly. Its kernel independent feature also makes it suitable for any kind of integral equation. To solve H-matrices system, Krylov iteration methods can be employed with appropriate preconditioners, and direct solvers based on the hierarchical structure of H-matrices are also available along with high efficiency and accuracy, which is a unique advantage compared to other fast algorithms. In this paper, a novel sparse approximate inverse (SAI preconditioner in multilevel fashion is proposed to accelerate the convergence rate of Krylov iterations for solving H-matrices system in electromagnetic applications, and a group of parallel fast direct solvers are developed for dealing with multiple right-hand-side cases. Finally, numerical experiments are given to demonstrate the advantages of the proposed multilevel preconditioner compared to conventional “single level” preconditioners and the practicability of the fast direct solvers for arbitrary complex structures.

  10. POLARIZATION REMOTE SENSING PHYSICAL MECHANISM, KEY METHODS AND APPLICATION

    Directory of Open Access Journals (Sweden)

    B. Yang

    2017-09-01

    Full Text Available China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains,it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1 Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2 Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3 Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.

  11. Dependability validation by means of fault injection: method, implementation, application

    International Nuclear Information System (INIS)

    Arlat, Jean

    1990-01-01

    This dissertation presents theoretical and practical results concerning the use of fault injection as a means for testing fault tolerance in the framework of the experimental dependability validation of computer systems. The dissertation first presents the state-of-the-art of published work on fault injection, encompassing both hardware (fault simulation, physical fault Injection) and software (mutation testing) issues. Next, the major attributes of fault injection (faults and their activation, experimental readouts and measures, are characterized taking into account: i) the abstraction levels used to represent the system during the various phases of its development (analytical, empirical and physical models), and Il) the validation objectives (verification and evaluation). An evaluation method is subsequently proposed that combines the analytical modeling approaches (Monte Carlo Simulations, closed-form expressions. Markov chains) used for the representation of the fault occurrence process and the experimental fault Injection approaches (fault Simulation and physical injection); characterizing the error processing and fault treatment provided by the fault tolerance mechanisms. An experimental tool - MESSALINE - is then defined and presented. This tool enables physical faults to be Injected In an hardware and software prototype of the system to be validated. Finally, the application of MESSALINE for testing two fault-tolerant systems possessing very dissimilar features and the utilization of the experimental results obtained - both as design feedbacks and for dependability measures evaluation - are used to illustrate the relevance of the method. (author) [fr

  12. Adaptive two-regime method: Application to front propagation

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Martin, E-mail: martin.robinson@maths.ox.ac.uk; Erban, Radek, E-mail: erban@maths.ox.ac.uk [Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG (United Kingdom); Flegg, Mark, E-mail: mark.flegg@monash.edu [School of Mathematical Sciences, Faculty of Science, Monash University Wellington Road, Clayton, Victoria 3800 (Australia)

    2014-03-28

    The Adaptive Two-Regime Method (ATRM) is developed for hybrid (multiscale) stochastic simulation of reaction-diffusion problems. It efficiently couples detailed Brownian dynamics simulations with coarser lattice-based models. The ATRM is a generalization of the previously developed Two-Regime Method [Flegg et al., J. R. Soc., Interface 9, 859 (2012)] to multiscale problems which require a dynamic selection of regions where detailed Brownian dynamics simulation is used. Typical applications include a front propagation or spatio-temporal oscillations. In this paper, the ATRM is used for an in-depth study of front propagation in a stochastic reaction-diffusion system which has its mean-field model given in terms of the Fisher equation [R. Fisher, Ann. Eugen. 7, 355 (1937)]. It exhibits a travelling reaction front which is sensitive to stochastic fluctuations at the leading edge of the wavefront. Previous studies into stochastic effects on the Fisher wave propagation speed have focused on lattice-based models, but there has been limited progress using off-lattice (Brownian dynamics) models, which suffer due to their high computational cost, particularly at the high molecular numbers that are necessary to approach the Fisher mean-field model. By modelling only the wavefront itself with the off-lattice model, it is shown that the ATRM leads to the same Fisher wave results as purely off-lattice models, but at a fraction of the computational cost. The error analysis of the ATRM is also presented for a morphogen gradient model.

  13. Application of the microscopic method in cutaneous leishmania diagnosis

    Directory of Open Access Journals (Sweden)

    Mohammed Wael Daboul

    2011-10-01

    Full Text Available Introduction: Cutaneous leishmania is spreading fast. This study aims at developing the microscopic method to achieve a full detection of all positive cases of leishmania.Methods: 50 human cases have been studied by applying microscopic smears stained with Wright stain. Microscopic photos were taken for the presumed unfamiliar figures.Results: Mononuclear cells with tails are present at a rate of (98%. They are associated with Leishman Donovan (LD bodies in 50% of the cases. The polygonal figures and the spherical forms are present at the same rate (60% and are associated with LD bodies in 24% of the cases. The small promastigote like forms are seen at a rate of (76% and are associated with LD bodies in 26% of the cases. The giant promastigotes like forms are present in (80% of the cases and are associated with LD bodies in 28% of the cases. Candle flame forms are present in (40% of the cases and are associated with the LD bodies in 21% of the cases.Discussion: It is applicable to use those discovered figures in diagnosing cutaneous leishmania.

  14. Qualitative research in CKD: an overview of methods and applications.

    Science.gov (United States)

    Tong, Allison; Winkelmayer, Wolfgang C; Craig, Jonathan C

    2014-09-01

    There recently has been a paradigm shift in health care policies and research toward greater patient centeredness. A core tenet of patient-centered care is that patients' needs, values, and preferences are respected in clinical decision making. Qualitative research methods are designed to generate insights about patients' priorities, values, and beliefs. However, in the past 5 years (2008-2013), only 23 (0.4%) of the 6,043 original articles published in the top 5 nephrology journals (assessed by impact factor) were qualitative studies. Given this observation, it seems important to promote awareness and better understanding within the nephrology community about qualitative research and how the findings can contribute to improving the quality and outcomes of care for patients with chronic kidney disease. This article outlines examples of how qualitative research can generate insight into the values and preferences of patients with chronic kidney disease, provides an overview of qualitative health research methods, and discusses practical applications for research, practice, and policy. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  15. Application of GNSS Methods for Monitoring Offshore Platform Deformation

    Science.gov (United States)

    Myint, Khin Cho; Nasir Matori, Abd; Gohari, Adel

    2018-03-01

    Global Navigation Satellite System (GNSS) has become a powerful tool for high-precision deformation monitoring application. Monitoring of deformation and subsidence of offshore platform due to factors such as shallow gas phenomena. GNSS is the technical interoperability and compatibility between various satellite navigation systems such as modernized GPS, Galileo, reconstructed GLONASS to be used by civilian users. It has been known that excessive deformation affects platform structurally, causing loss of production and affects the efficiency of the machinery on board the platform. GNSS have been proven to be one of the most precise positioning methods where by users can get accuracy to the nearest centimeter of a given position from carrier phase measurement processing of GPS signals. This research is aimed at using GNSS technique, which is one of the most standard methods to monitor the deformation of offshore platforms. Therefore, station modeling, which accounts for the spatial correlated errors, and hence speeds up the ambiguity resolution process is employed. It was found that GNSS combines the high accuracy of the results monitoring the offshore platforms deformation with the possibility of survey.

  16. Single-molecule experiments in biological physics: methods and applications.

    Science.gov (United States)

    Ritort, F

    2006-08-16

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  17. Methods and applications in high flux neutron imaging

    International Nuclear Information System (INIS)

    Ballhausen, H.

    2007-01-01

    This treatise develops new methods for high flux neutron radiography and high flux neutron tomography and describes some of their applications in actual experiments. Instead of single images, time series can be acquired with short exposure times due to the available high intensity. To best use the increased amount of information, new estimators are proposed, which extract accurate results from the recorded ensembles, even if the individual piece of data is very noisy and in addition severely affected by systematic errors such as an influence of gamma background radiation. The spatial resolution of neutron radiographies, usually limited by beam divergence and inherent resolution of the scintillator, can be significantly increased by scanning the sample with a pinhole-micro-collimator. This technique circumvents any limitations in present detector design and, due to the available high intensity, could be successfully tested. Imaging with scattered neutrons as opposed to conventional total attenuation based imaging determines separately the absorption and scattering cross sections within the sample. For the first time even coherent angle dependent scattering could be visualized space-resolved. New applications of high flux neutron imaging are presented, such as materials engineering experiments on innovative metal joints, time-resolved tomography on multilayer stacks of fuel cells under operation, and others. A new implementation of an algorithm for the algebraic reconstruction of tomography data executes even in case of missing information, such as limited angle tomography, and returns quantitative reconstructions. The setup of the world-leading high flux radiography and tomography facility at the Institut Laue-Langevin is presented. A comprehensive appendix covers the physical and technical foundations of neutron imaging. (orig.)

  18. Single-molecule experiments in biological physics: methods and applications

    International Nuclear Information System (INIS)

    Ritort, F

    2006-01-01

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives. (topical review)

  19. 26 CFR 1.471-10 - Applicability of long-term contract methods.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Applicability of long-term contract methods. 1... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Inventories § 1.471-10 Applicability of long-term contract methods. See § 1.460-2 for rules providing for the application of the long-term contract methods to...

  20. Root Causes of Component Failures Program: Methods and applications

    International Nuclear Information System (INIS)

    Satterwhite, D.G.; Cadwallader, L.C.; Vesely, W.E.; Meale, B.M.

    1986-12-01

    This report contains information pertaining to definitions, methodologies, and applications of root cause analysis. Of specific interest, and highlighted throughout the discussion, are applications pertaining to current and future Nuclear Regulatory Commission (NRC) light water reactor safety programs. These applications are discussed in view of addressing specific program issues under NRC consideration and reflect current root cause analysis capabilities

  1. The application of nuclear-medicine methods in veterinary medicine

    International Nuclear Information System (INIS)

    Simpraga, M.; Kraljevic, P.; Dodig, D.

    1996-01-01

    X-radiography and ultrasound imaging are well established and widely used in veterinary practice, but it is not the same situation with radioisotope imaging. In veterinary practice the above mentioned methods of nuclear medicine are developed only in two countries in Europe. That is not doubt due, so bar, to the difficulties in obtaining satisfactory supply of radioisotopes and to the relatively high cost of scanning equipment. However, in collaboration with the Department of Radiation Protection and Nuclear Medicine of the Medical Faculty in Zagreb, Croatia, we have chance to develop the use of those methods in clinical veterinary practice in Zagreb. That is way in this paper an overview of the application of radioisotopes imaging in veterinary medicine is given. In small animals skeletal changes, lung perusions, brain lesions, space occupying lesions in the liver and its function and hearth function can be usefully searched by a gamma camera and its associated computer. In equine practice scintigraphy of bones, liver, hearth, pulmonary circulation and ventilation is described. The largest amount of radioactive material is used during gamma camera scanning of the skeletons of horses. In this cases the radiation dose 1-2 m from the animal is approximately 3 μSv/h. That is why the protection of personal involved in radioisotope scanning in veterinary medicine must be also regulated by low of radiation protection. Also, the animals should be confined to a controlled area for 2-3 days after scanning before being returned to their owners. After this period the area must be cleaned. (author)

  2. Unidirectional infiltration method to produce crown for dental prosthesis application

    International Nuclear Information System (INIS)

    Pontes, F.H.D.; Taguchi, S.P.; Machado, J.P.B.; Santos, C.

    2009-01-01

    Alumina ceramics have been used in dental prosthesis because it is inert, presents higher corrosion and shear resistance when compared to metals, excellent aesthetic, and mechanical resistance. In this work it was produced an infrastructure material for applications in dental crowns, obtained by glass infiltration in alumina preform. Various oxides, among that, rare-earth oxide produced by Xenotime, were melted at 1450 deg C and heat treatment at 700 deg C to obtain the glass (REglass). The alumina was pre-sintered at 1100 deg C cut and machined to predetermine format (unidirectional indirect infiltration) and finally conducted to infiltration test. The alumina was characterized by porosity (Hg-porosity and density) and microstructure (SEM). The glass wettability in alumina was determined as function of temperature, and the contact angle presented a low value (θ<90 deg), showing that glass can be infiltrated spontaneously in alumina. The infiltration test was conducted at glass melting temperature, during 30, 60, 180, 360 minutes. After infiltration, the samples were cut in longitudinal section, ground and polished, and analyzed by XRD (crystalline phases), SEM (microstructure) and EDS (composition).The REglass presents higher infiltration height when compared to current processes (direct infiltration), and homogeneous microstructure, showing that it is a promising method used by prosthetics and dentists. (author)

  3. Wavelength selection method with standard deviation: application to pulse oximetry.

    Science.gov (United States)

    Vazquez-Jaccaud, Camille; Paez, Gonzalo; Strojnik, Marija

    2011-07-01

    Near-infrared spectroscopy provides useful biological information after the radiation has penetrated through the tissue, within the therapeutic window. One of the significant shortcomings of the current applications of spectroscopic techniques to a live subject is that the subject may be uncooperative and the sample undergoes significant temporal variations, due to his health status that, from radiometric point of view, introduce measurement noise. We describe a novel wavelength selection method for monitoring, based on a standard deviation map, that allows low-noise sensitivity. It may be used with spectral transillumination, transmission, or reflection signals, including those corrupted by noise and unavoidable temporal effects. We apply it to the selection of two wavelengths for the case of pulse oximetry. Using spectroscopic data, we generate a map of standard deviation that we propose as a figure-of-merit in the presence of the noise introduced by the living subject. Even in the presence of diverse sources of noise, we identify four wavelength domains with standard deviation, minimally sensitive to temporal noise, and two wavelengths domains with low sensitivity to temporal noise.

  4. Applications to shielding design and others of monte carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Daiichiro [Mitsui Engineering and Shipbuiding Co., Ltd., Tokyo (Japan)

    2001-01-01

    One-dimensional or two-dimensional Sn computer code (ANISN, DOT3.5, etc.) and a point attenuation kernel integral code (QAD, etc.) have been used widely for shielding design. Application examples of monte carlo method which could follow precisely the three-dimensional configuration of shielding structure are shown as follow: (1) CASTER cask has a complex structure which consists of a large number of fuel baskets (stainless steel), neutron moderators (polyethylene rods), the body (cast iron), and cooling fin. The R-{theta} model of Sn code DOT3.5 cannot follow closely the complex form of polyethylene rods and fuel baskets. A monte carlo code MORSE is used to ascertain the calculation results of DOT3.5. The discrepancy between the calculation results of DOT3.5 and MORSE was in 10% for dose rate at distance of 1 m from the cask surface. (2) The dose rates of an iron cell at 10 cm above the floor are calculated by the code QAD and the MORSE. The reflected components of gamma ray caused by the auxiliary floor shield (lead) are analyzed by the MORSE. (3) A monte carlo code MCNP4A is used for skyshine evaluation of spent fuel carrier ship 'ROKUEIMARU'. The direct and skyshine components of gamma ray and neutron flux are estimated at each center of engine room and wheel house. The skyshine dose rate of neutron flux is 5-15 times larger than the gamma ray. (M. Suetake)

  5. Application of NDE methods to green ceramics: initial results

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Karplus, H.B.; Poeppel, R.B.; Ellingson, W.A.; Berger, H.; Robbins, C.; Fuller, E.

    1983-01-01

    The effectiveness of microradiography, ultrasonic methods, unclear magnetic resonance, and neutron radiography was assessed for the nondestructive evaluation of green (unfired) ceramics. The application of microradiography to ceramics is reviewed, and preliminary experiments with a commercial microradiography unit are described. Conventional ultrasonic techniques are difficult to apply to flaw detection green ceramics because of the high attenuation, fragility, and couplant-absorbing properties of these materials. However, velocity, attenuation, and spectral data were obtained with pressure-coupled transducers and provided useful informaion related to density variations and the presence of agglomerates. Nuclear magnetic resonance (NMR) imaging techniques and neutron radiography were considered for detection of anomalies in the distribution of porosity. With NMR, areas of high porosity might be detected after the samples are doped with water. In the case of neutron radiography, although imaging the binder distribution throughout the sample may not be feasible because of the low overall concentration of binder, regions of high binder concentration (thus high porosity) should be detectable

  6. Application of impedance spectroscopy method for analysis of benzanol fuels

    Directory of Open Access Journals (Sweden)

    Mamykin A. V.

    2015-06-01

    Full Text Available The authors have developed a method for express control of three component «gasoline-alcohol-water» fuel mixtures based on the spectral impedance investigation of benzanol mixture in the frequency range of 500 Hz — 10 kHz. A correlation dependence between the dielectric constant and the specific resistance of the fuel mixture on content of ethanol and water in the mixture has been found. On the basis of this dependence a calibration nomogram to quantify the gasoline and water-alcohol components content in the test benzanol fuel in the actual range of concentrations has been formed. The nomogram allows determining the water-alcohol and gasoline parts in the analyzed fuel with an error of no more than 1% vol., while the strength of water-alcohol solution is determined with an error of no more than 0.8% vol. The obtained nomogram can also give information about critical water content in the benzanol fuel to prevent its eventual phase separation. It is shown that the initial component composition of different gasoline brands has no significant effect on the electrical characteristics of the studied benzanol fuels, which makes the evaluation of alcohol and water content in the fuel sufficiently accurate. for practical applications.

  7. Unidirectional infiltration method to produce crown for dental prosthesis application

    Energy Technology Data Exchange (ETDEWEB)

    Pontes, F.H.D.; Taguchi, S.P. [Universidade de Sao Paulo (EEL/DEMAR/USP), Lorena, SP (Brazil). Escola de Engenharia; Borges Junior, L.A. [Centro Universitario de Volta Redonda, RJ (Brazil); Machado, J.P.B. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Santos, C. [ProtMat Materiais Avancados, Guaratingueta, SP (Brazil)

    2009-07-01

    Alumina ceramics have been used in dental prosthesis because it is inert, presents higher corrosion and shear resistance when compared to metals, excellent aesthetic, and mechanical resistance. In this work it was produced an infrastructure material for applications in dental crowns, obtained by glass infiltration in alumina preform. Various oxides, among that, rare-earth oxide produced by Xenotime, were melted at 1450 deg C and heat treatment at 700 deg C to obtain the glass (REglass). The alumina was pre-sintered at 1100 deg C cut and machined to predetermine format (unidirectional indirect infiltration) and finally conducted to infiltration test. The alumina was characterized by porosity (Hg-porosity and density) and microstructure (SEM). The glass wettability in alumina was determined as function of temperature, and the contact angle presented a low value (θ<90 deg), showing that glass can be infiltrated spontaneously in alumina. The infiltration test was conducted at glass melting temperature, during 30, 60, 180, 360 minutes. After infiltration, the samples were cut in longitudinal section, ground and polished, and analyzed by XRD (crystalline phases), SEM (microstructure) and EDS (composition).The REglass presents higher infiltration height when compared to current processes (direct infiltration), and homogeneous microstructure, showing that it is a promising method used by prosthetics and dentists. (author)

  8. IMPLEMENTING NDN USING SDN: A REVIEW ON METHODS AND APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Shiva Rowshanrad

    2016-11-01

    Full Text Available In recent years many claims about the limitations of todays’ network architecture, its lack of flexibility and ability to response to ongoing changes and increasing users demands. In this regard, new network architectures are proposed. Software Defined Networking (SDN is one of these new architectures which centralizes the control of network by separating control plane from data plane. This separation leads to intelligence, flexibility and easier control in computer networks. One of the advantages of this framework is the ability to implement and test new protocols and architectures in actual networks without any concern of interruption.Named Data Networking (NDN is another paradigm for future network architecture. With NDN the network becomes aware of the content that is providing, rather than just transferring it among end-points. NDN attracts researchers’ attention and known as the potential future of networking and internet. Providing NDN functionalities over SDN is an important requirement to enable the innovation and optimization of network resources. In this paper first we describe about SDN and NDN, and then we introduce methods for implementing NDN using SDN. We also point out the advantages and applications of implementing NDN over SDN.

  9. Application of the Method Risk Matrix to Radiotherapy. Main Principles

    International Nuclear Information System (INIS)

    2012-08-01

    The published fundamental principles of security, and basic international standards of security for ionizing radiation safety, contain requirements of protection for patients undergoing medical exposure. In accordance with these requirements and fulfilling its responsibility to provide for the application of these rules, the IAEA has been working intensively in the prevention of accidental exposures in radiotherapy, and this has resulted in a series of technical reports on the lessons learned from the research done in very serious events, and also in teaching materials shared for regional courses and accessible on the website for the protection of patients. The lessons learned are necessary but not sufficient, as we continue receiving information about new types of accidental exposures and not all may have been published. We need a more proactive approach, with a systematic, comprehensive and structured manner, to try to find out in advance what other errors may happen, to prevent or detect them early. Among these approaches are the method of the 'risk matrix', which by its relative simplicity can be applied to all radiotherapy service.

  10. Leveraging Transcultural Enrollments to Enhance Application of the Scientific Method

    Science.gov (United States)

    Loudin, M.

    2013-12-01

    Continued growth of transcultural academic programs presents an opportunity for all of the students involved to improve utilization of the scientific method. Our own business success depends on how effectively we apply the scientific method, and so it is unsurprising that our hiring programs focus on three broad areas of capability among applicants which are strongly related to the scientific method. These are 1) ability to continually learn up-to-date earth science concepts, 2) ability to effectively and succinctly communicate in the English language, both oral and written, and 3) ability to employ behaviors that are advantageous with respect to the various phases of the scientific method. This third area is often the most difficult to develop, because neither so-called Western nor Eastern cultures encourage a suite of behaviors that are ideally suited. Generally, the acceptance of candidates into academic programs, together with subsequent high performance evidenced by grades, is a highly valid measure of continuous learning capability. Certainly, students for whom English is not a native language face additional challenges, but succinct and effective communication is an art which requires practice and development, regardless of native language. The ability to communicate in English is crucial, since it is today's lingua franca for both science and commerce globally. Therefore, we strongly support the use of frequent English written assignments and oral presentations as an integral part of all scientific academic programs. There is no question but that this poses additional work for faculty; nevertheless it is a key ingredient to the optimal development of students. No one culture has a monopoly with respect to behaviors that promote effective leveraging of the scientific method. For instance, the growing complexity of experimental protocols argues for a high degree of interdependent effort, which is more often associated with so-called Eastern than Western

  11. High power ring methods and accelerator driven subcritical reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Tahar, Malek Haj [Univ. of Grenoble (France)

    2016-08-07

    High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the

  12. Application of geosites assessment method in geopark context

    Science.gov (United States)

    Martin, Simon; Perret, Amandine; Renau, Pierre; Cartier-Moulin, Olivier; Regolini-Bissig, Géraldine

    2014-05-01

    and wishes of all stakeholders. For instance, the local geoscientists are most interested in conservation and scientific interests whereas managers aim to develop and promote the tourist (and economic) dimension. The definition and application of the assessment method is the outcome of constant discussion with both local key players; it therefore reflects and moderates the - sometimes antagonistic - interests. All the discussions around geosites assessment can be considered as the prime mover at local scale of the geopark construction process. This example shows that geosites assessment can not be considered only as an academic operation, but also as an essential step to initiate a local dynamic and consensus that help to achieve some of the objectives of a geopark defined by EGN like local involvement, sustainable development, or cooperation with local communities.

  13. Methods and applications of radio frequency geophysics in glaciology

    Science.gov (United States)

    Holschuh, Nicholas

    Simple radar systems of the past were used primarily for radar depth sounding, the process of using reflection travel times and electromagnetic velocities to determine the ice thickness. Modern radioglaciology uses both the travel times and reflection amplitudes to make inferences about the englacial and subglacial environments; however, non-uniqueness in geophysical data, combined with the large number of physical parameters that control reflection amplitude, have led to significant uncertainties in this type of analysis. In this set of studies, I improve on data collection, processing, and assimilation methods, with a focus on radar reflection amplitudes and internal layers. The first two studies are devoted to radar survey methods, in which I examine the impact of reflector geometry on amplitude (2), and investigate an independent measure of radar attenuation using variable-offset data, in an effort to eliminate the effects of ice chemistry and temperature on reflection amplitudes (3). These studies emphasize the fact that radar data are a product of both the physical system and the imaging process, and caution glaciologists from over-interpreting processing artifacts common in radar data collected in areas of complex glacial flow. In the following two chapters, I go on to provide glaciological applications of processed radar data, interpreting the record of complex flow left behind in englacial reflector slopes (4), and applying improved boundary conditions to better predict the maximum extent of West Antarctic collapse (5). These studies use geometric information from the bed reflector and englacial reflectors to describe the flow regime present in Antarctica today. Chapter 4 examines how boundary conditions that are difficult to observe directly (the geothermal heat flux, as well as the frictional and deformation characteristics of the ice-sheet substrate) manifest through internal layer deformation. Chapter 5 focuses on Marie Byrd Land (MBL), where

  14. Application of improved AHP method to radiation protection optimization

    International Nuclear Information System (INIS)

    Wang Chuan; Zhang Jianguo; Yu Lei

    2014-01-01

    Aimed at the deficiency of traditional AHP method, a hierarchy model for optimum project selection of radiation protection was established with the improved AHP method. The result of comparison between the improved AHP method and the traditional AHP method shows that the improved AHP method can reduce personal judgment subjectivity, and its calculation process is compact and reasonable. The improved AHP method can provide scientific basis for radiation protection optimization. (authors)

  15. Tune measurement at GSI SIS-18. Methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rahul

    2014-05-15

    parameters,thus leaving out no ''free parameters''. Several important results were established in course of these experiments. Coherent tune shifts in dependence of intensity gave direct measurements of transverse machine impedances. The high resolution tune spectrum allowed identification of higher order head-tail modes. The relative spectral positions of these head-tail modes when compared with the analytical theory based on the ''square well airbag model'' gave a direct measurement of the incoherent tune spread in bunched beams. The measurements agreed well with the perturbative treatment applied in the theory only for space charge parameter in the range q{sub sc} method is demonstrated using temporal separation of each head-tail mode using chirp excitation. Other applications of the parallel tune measurement systems such as linear betatron coupling measurements or tune measurements during acceleration ramps are demonstrated. This work forms a basis for understanding beam dynamics at GSI SIS-18 for high beam currents.

  16. Potential National Security Applications of Nuclear Resonance Fluorescence Methods

    International Nuclear Information System (INIS)

    Warren, Glen A.; Peplowski, Patrick N.; Caggiano, Joseph A.

    2009-01-01

    The objective of this report is to document the initial investigation into the possible research issues related to the development of NRF-based national security applications. The report discusses several potential applications ranging from measuring uranium enrichment in UF6 canisters to characterization of gas samples. While these applications are varied, there are only a few research issues that need to be addressed to understand the limitation of NRF in solving these problems. These research issues range from source and detector development to measuring small samples. The next effort is to determine how best to answer the research issues, followed by a prioritization of those questions to ensure that the most important are addressed. These issues will be addressed through either analytical calculations, computer simulations, analysis of previous data or collection of new measurements. It will also be beneficial to conduct a thorough examination of a couple of the more promising applications in order to develop concrete examples of how NRF may be applied in specific situations. The goals are to develop an understanding of whether the application of NRF is limited by technology or physics in addressing national security applications, to gain a motivation to explore those possible applications, and to develop a research roadmap so that those possibilities may be made reality.

  17. The Presentation of Self in Letters of Application: A Mixed-Method Approach

    Science.gov (United States)

    Soroko, Emilia

    2012-01-01

    The application letter, as the first phase of employment-seeking, is an opportunity for a job applicant to make a favorable impression on a potential employer. In the current study, the author used a mixed-method approach to empirically explore strategies for self-presentation in job application letters and determine the methods used in the…

  18. Dirichlet and Related Distributions Theory, Methods and Applications

    CERN Document Server

    Ng, Kai Wang; Tang, Man-Lai

    2011-01-01

    The Dirichlet distribution appears in many areas of application, which include modelling of compositional data, Bayesian analysis, statistical genetics, and nonparametric inference. This book provides a comprehensive review of the Dirichlet distribution and two extended versions, the Grouped Dirichlet Distribution (GDD) and the Nested Dirichlet Distribution (NDD), arising from likelihood and Bayesian analysis of incomplete categorical data and survey data with non-response. The theoretical properties and applications are also reviewed in detail for other related distributions, such as the inve

  19. Application of the group-theoretical method to physical problems

    OpenAIRE

    Abd-el-malek, Mina B.

    1998-01-01

    The concept of the theory of continuous groups of transformations has attracted the attention of applied mathematicians and engineers to solve many physical problems in the engineering sciences. Three applications are presented in this paper. The first one is the problem of time-dependent vertical temperature distribution in a stagnant lake. Two cases have been considered for the forms of the water parameters, namely water density and thermal conductivity. The second application is the unstea...

  20. Theory of difference equations numerical methods and applications

    CERN Document Server

    Lakshmikantham, Vangipuram

    1988-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  1. Application of coarse-mesh methods to fluid dynamics equations

    International Nuclear Information System (INIS)

    Romstedt, P.; Werner, W.

    1977-01-01

    An Asymmetric Weighted Residual (ASWR) method for fluid dynamics equations is described. It leads to local operators with a 7-point Finite Difference (FD) structure, which is independent of the degree of the approximating polynomials. An 1-dimensional problem was solved by both this ASWR-method and a commonly used FD-method. The numerical results demonstrate that the ASWR-method combines high accuracy on a coarse computational mesh with short computing time per space point. The posibility of using fewer space points consequently brings about a considerable reduction in total running time for the ASWR-method as compared with conventional FD-methods. (orig.) [de

  2. Application of potential harmonic expansion method to BEC ...

    Indian Academy of Sciences (India)

    We adopt the potential harmonics expansion method for an ab initio solu- ... commonly adopted mean-field theories, our method is capable of handling ..... potentials in self-consistent mean-field calculation [7] gives wrong results as the.

  3. Application of finite-element-methods in food processing

    DEFF Research Database (Denmark)

    Risum, Jørgen

    2004-01-01

    Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....

  4. developed algorithm for the application of british method of concret

    African Journals Online (AJOL)

    t-iyke

    Most of the methods of concrete mix design developed over the years were geared towards manual approach. ... Key words: Concrete mix design; British method; Manual Approach; Algorithm. ..... Statistics for Science and Engineering.

  5. Lattice Boltzmann method fundamentals and engineering applications with computer codes

    CERN Document Server

    Mohamad, A A

    2014-01-01

    Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.

  6. 4th Workshop on Combinations of Intelligent Methods and Applications

    CERN Document Server

    Palade, Vasile; Prentzas, Jim

    2016-01-01

    This volume includes extended and revised versions of the papers presented at the 4th Workshop on “Combinations of Intelligent Methods and Applications” (CIMA 2014) which was intended to become a forum for exchanging experience and ideas among researchers and practitioners dealing with combinations of different intelligent methods in Artificial Intelligence. The aim is to create integrated or hybrid methods that benefit from each of their components. Some of the existing presented efforts combine soft computing methods (fuzzy logic, neural networks and genetic algorithms). Another stream of efforts integrates case-based reasoning or machine learning with soft-computing methods. Some of the combinations have been more widely explored, like neuro-symbolic methods, neuro-fuzzy methods and methods combining rule-based and case-based reasoning. CIMA 2014 was held in conjunction with the 26th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2014). .

  7. Application of nuclear-geophysical methods to reserves estimation

    International Nuclear Information System (INIS)

    Bessonova, T.B.; Karpenko, I.A.

    1980-01-01

    On the basis of the analysis of reports dealing with calculations of mineral reserves considered are shortcomings in using nuclear-geophysical methods and in assessment of the reliability of geophysical sampling. For increasing efficiency of nuclear-geophysical investigations while prospecting ore deposits, it is advisable to introduce them widely instead of traditional geological sampling methods. For this purpose it is necessary to increase sensitivity and accuracy of radioactivity logging methods, to provide determination of certain elements in ores by these methods

  8. Application of Rational Expansion Method for Differential-Difference Equation

    International Nuclear Information System (INIS)

    Wang Qi

    2011-01-01

    In this paper, we applied the rational formal expansion method to construct a series of soliton-like and period-form solutions for nonlinear differential-difference equations. Compared with most existing methods, the proposed method not only recovers some known solutions, but also finds some new and more general solutions. The efficiency of the method can be demonstrated on Toda Lattice and Ablowitz-Ladik Lattice. (general)

  9. An improved 4-step commutation method application for matrix converter

    DEFF Research Database (Denmark)

    Guo, Yu; Guo, Yougui; Deng, Wenlang

    2014-01-01

    A novel four-step commutation method is proposed for matrix converter cell, 3 phase inputs to 1 phase output in this paper, which is obtained on the analysis of published commutation methods for matrix converter. The first and fourth step can be shorter than the second or third one. The discussed...... method here is implemented by programming in VHDL language. Finally, the novel method in this paper is verified by experiments....

  10. Application of collocation meshless method to eigenvalue problem

    International Nuclear Information System (INIS)

    Saitoh, Ayumu; Matsui, Nobuyuki; Itoh, Taku; Kamitani, Atsushi; Nakamura, Hiroaki

    2012-01-01

    The numerical method for solving the nonlinear eigenvalue problem has been developed by using the collocation Element-Free Galerkin Method (EFGM) and its performance has been numerically investigated. The results of computations show that the approximate solution of the nonlinear eigenvalue problem can be obtained stably by using the developed method. Therefore, it can be concluded that the developed method is useful for solving the nonlinear eigenvalue problem. (author)

  11. Introducing Students to the Application of Statistics and Investigative Methods in Political Science

    Science.gov (United States)

    Wells, Dominic D.; Nemire, Nathan A.

    2017-01-01

    This exercise introduces students to the application of statistics and its investigative methods in political science. It helps students gain a better understanding and a greater appreciation of statistics through a real world application.

  12. Application of meshless EFG method in fluid flow problems

    Indian Academy of Sciences (India)

    Meshless method; element-free Galerkin method; steady state analysis; transient ... fluid flow problems using the meshless element-free Galerkin method. The unknown function of velocity u ( x ) is approximated by moving least square ...

  13. Some Remarks on Exp-Function Method and Its Applications

    International Nuclear Information System (INIS)

    Aslan Ismail; Marinakis Vangelis

    2011-01-01

    Recently, many important nonlinear partial differential equations arising in the applied physical and mathematical sciences have been tackled by a popular approach, the so-called Exp-function method. In this paper, we present some shortcomings of this method by analyzing the results of recently published papers. We also discuss the possible improvement of the effectiveness of the method. (general)

  14. 77 FR 8865 - Recent Postings of Broadly Applicable Alternative Test Methods

    Science.gov (United States)

    2012-02-15

    ... Applicable Alternative Test Methods AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This notice announces the broadly applicable alternative test method approval decisions... INFORMATION CONTACT: An electronic copy of each alternative test method approval document is available on the...

  15. A Comparison of Iterative 2D-3D Pose Estimation Methods for Real-Time Applications

    DEFF Research Database (Denmark)

    Grest, Daniel; Krüger, Volker; Petersen, Thomas

    2009-01-01

    This work compares iterative 2D-3D Pose Estimation methods for use in real-time applications. The compared methods are available for public as C++ code. One method is part of the openCV library, namely POSIT. Because POSIT is not applicable for planar 3Dpoint congurations, we include the planar P...

  16. Application of nonparametric statistic method for DNBR limit calculation

    International Nuclear Information System (INIS)

    Dong Bo; Kuang Bo; Zhu Xuenong

    2013-01-01

    Background: Nonparametric statistical method is a kind of statistical inference method not depending on a certain distribution; it calculates the tolerance limits under certain probability level and confidence through sampling methods. The DNBR margin is one important parameter of NPP design, which presents the safety level of NPP. Purpose and Methods: This paper uses nonparametric statistical method basing on Wilks formula and VIPER-01 subchannel analysis code to calculate the DNBR design limits (DL) of 300 MW NPP (Nuclear Power Plant) during the complete loss of flow accident, simultaneously compared with the DL of DNBR through means of ITDP to get certain DNBR margin. Results: The results indicate that this method can gain 2.96% DNBR margin more than that obtained by ITDP methodology. Conclusions: Because of the reduction of the conservation during analysis process, the nonparametric statistical method can provide greater DNBR margin and the increase of DNBR margin is benefited for the upgrading of core refuel scheme. (authors)

  17. Applications of nuclear methods in the automotive industry

    International Nuclear Information System (INIS)

    Schneider, E.W.; Yusuf, S.O.

    1996-01-01

    Over the years nuclear methods have proved to be a valuable asset to industry in general and to the automotive industry in particular. This paper summarizes some of the most important recent contributions of nuclear technology to the development of vehicles having high quality and long-term durability. Radiotracer methods are used to measure engine oil consumption and the wear rates of inaccessible components. Radiographic and tomographic methods are used to image fluids and structures in engines and accessory components. Tracers are used to understand combustion chemistry and quantify fluid flow. Gauging methods are used for inspection and process control. Nuclear analytical methods are used routinely for materials characterization and problem solving. Although nuclear methods are usually considered as the means of last resort, they can often be applied more easily and quickly than conventional methods when those in industrial engineering and R and D are aware of their unique capabilities. (author). 51 refs., 5 figs

  18. Continuum mechanics using Mathematica fundamentals, methods, and applications

    CERN Document Server

    Romano, Antonio

    2014-01-01

    This textbook's methodological approach familiarizes readers with the mathematical tools required to correctly define and solve problems in continuum mechanics. Covering essential principles and fundamental applications, this second edition of Continuum Mechanics using Mathematica® provides a solid basis for a deeper study of more challenging and specialized problems related to nonlinear elasticity, polar continua, mixtures, piezoelectricity, ferroelectricity, magneto-fluid mechanics, and state changes (see A. Romano, A. Marasco, Continuum Mechanics: Advanced Topics and Research Trends, Springer (Birkhäuser), 2010, ISBN 978-0-8176-4869-5). Key topics and features: * Concise presentation strikes a balance between fundamentals and applications * Requisite mathematical background carefully collected in two introductory chapters and one appendix * Recent developments highlighted through coverage of more significant applications to areas such as wave propagation, fluid mechanics, porous media, linear elasticity....

  19. Time series analysis time series analysis methods and applications

    CERN Document Server

    Rao, Tata Subba; Rao, C R

    2012-01-01

    The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments. The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. Comprehensively presents the various aspects of statistical methodology Discusses a wide variety of diverse applications and recent developments Contributors are internationally renowened experts in their respect...

  20. Application of an analytical method for solution of thermal hydraulic conservation equations

    Energy Technology Data Exchange (ETDEWEB)

    Fakory, M.R. [Simulation, Systems & Services Technologies Company (S3 Technologies), Columbia, MD (United States)

    1995-09-01

    An analytical method has been developed and applied for solution of two-phase flow conservation equations. The test results for application of the model for simulation of BWR transients are presented and compared with the results obtained from application of the explicit method for integration of conservation equations. The test results show that with application of the analytical method for integration of conservation equations, the Courant limitation associated with explicit Euler method of integration was eliminated. The results obtained from application of the analytical method (with large time steps) agreed well with the results obtained from application of explicit method of integration (with time steps smaller than the size imposed by Courant limitation). The results demonstrate that application of the analytical approach significantly improves the numerical stability and computational efficiency.

  1. Application of the photoelastic experimental hybrid method with new numerical method to the high stress distribution

    International Nuclear Information System (INIS)

    Hawong, Jai Sug; Lee, Dong Hun; Lee, Dong Ha; Tche, Konstantin

    2004-01-01

    In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method

  2. Application of modern SHM methods in electric power industry

    Energy Technology Data Exchange (ETDEWEB)

    Gasior, Pawel; Kaleta, Jerzy [Wroclaw Univ. of Technolgy (Poland); Przygoda, Aleksander [RAFAKO S.A., Raciborz (Poland)

    2012-07-01

    In this paper an application of up-to-date Structural Health Monitoring systems based mainly on optical fibre sensors for various applications in power plants is presented. Real working solutions and ideas of the SHM systems were applied to fluid power boilers, installations of environmental protection (the so called desulphurisation systems) and main frames of construction (130m high). The measured values were compared with the design ones, as well as with the calculated values. It enabled evaluation of the inhomogeneous loads distribution and increased safety of the construction during its repair and operation. (orig.)

  3. Principle of coincidence method and application in activity measurement

    International Nuclear Information System (INIS)

    Li Mou; Dai Yihua; Ni Jianzhong

    2008-01-01

    The basic principle of coincidence method was discussed. The basic principle was generalized by analysing the actual example, and the condition in theory of coincidence method was brought forward. The cause of variation of efficiency curve and the effect of dead-time in activity measurement were explained using the above principle and condition. This principle of coincidence method provides the foundation in theory for activity measurement. (authors)

  4. Application of Instrumented Charpy Method in Characterisation of Materials

    OpenAIRE

    Alar, Željko; Mandić, Davor; Dugorepec, Andrija; Sakoman, Matija

    2015-01-01

    Testing of absorbed impact energy according to the Charpy method is carried out to determine the behaviour of a material under the impact load. Instrumented Charpy method allows getting the force displacement curve through the entire test, That curve can be related to force-displacement curve which is obtained by the static tensile test. The purpose of this study was to compare the results of forces obtained by the static tensile test with the forces obtained by the instrumented Charpy method...

  5. Application of the Characteristic Basis Function Method Using CUDA

    Directory of Open Access Journals (Sweden)

    Juan Ignacio Pérez

    2014-01-01

    Full Text Available The characteristic basis function method (CBFM is a popular technique for efficiently solving the method of moments (MoM matrix equations. In this work, we address the adaptation of this method to a relatively new computing infrastructure provided by NVIDIA, the Compute Unified Device Architecture (CUDA, and take into account some of the limitations which appear when the geometry under analysis becomes too big to fit into the Graphics Processing Unit’s (GPU’s memory.

  6. Detection of irradiated food - methods and routine applications

    International Nuclear Information System (INIS)

    Schreiber, G.A.; Helle, N.; Boegl, K.W.

    1993-01-01

    Irradiation of food for the purposes of extension of shelf life, control of microbial load, reduction of pathogenic microorganisms and disinfection is regarded by many consumers with suspicion. One reason is the lack of methods within food-controlling laboratories which can detect irradiation treatment and which are applied to control correct labelling. This review describes the potential of various methods to reveal irradiation treatment. Special emphasis is given to the three most successful methods, thermoluminescence, electron spin resonance spectroscopy and detection of volatiles. The possibilities and limitations of applying the methods in routine control are discussed. (author)

  7. Assessment Methods of Groundwater Overdraft Area and Its Application

    Science.gov (United States)

    Dong, Yanan; Xing, Liting; Zhang, Xinhui; Cao, Qianqian; Lan, Xiaoxun

    2018-05-01

    Groundwater is an important source of water, and long-term large demand make groundwater over-exploited. Over-exploitation cause a lot of environmental and geological problems. This paper explores the concept of over-exploitation area, summarizes the natural and social attributes of over-exploitation area, as well as expounds its evaluation methods, including single factor evaluation, multi-factor system analysis and numerical method. At the same time, the different methods are compared and analyzed. And then taking Northern Weifang as an example, this paper introduces the practicality of appraisal method.

  8. Statistical methods of combining information: Applications to sensor data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Burr, T.

    1996-12-31

    This paper reviews some statistical approaches to combining information from multiple sources. Promising new approaches will be described, and potential applications to combining not-so-different data sources such as sensor data will be discussed. Experiences with one real data set are described.

  9. Membrane mimetic surface functionalization of nanoparticles: Methods and applications

    Science.gov (United States)

    Weingart, Jacob; Vabbilisetty, Pratima; Sun, Xue-Long

    2013-01-01

    Nanoparticles (NPs), due to their size-dependent physical and chemical properties, have shown remarkable potential for a wide range of applications over the past decades. Particularly, the biological compatibilities and functions of NPs have been extensively studied for expanding their potential in areas of biomedical application such as bioimaging, biosensing, and drug delivery. In doing so, surface functionalization of NPs by introducing synthetic ligands and/or natural biomolecules has become a critical component in regards to the overall performance of the NP system for its intended use. Among known examples of surface functionalization, the construction of an artificial cell membrane structure, based on phospholipids, has proven effective in enhancing biocompatibility and has become a viable alternative to more traditional modifications, such as direct polymer conjugation. Furthermore, certain bioactive molecules can be immobilized onto the surface of phospholipid platforms to generate displays more reminiscent of cellular surface components. Thus, NPs with membrane-mimetic displays have found use in a range of bioimaging, biosensing, and drug delivery applications. This review herein describes recent advances in the preparations and characterization of integrated functional NPs covered by artificial cell membrane structures and their use in various biomedical applications. PMID:23688632

  10. Irrigation methods for efficient water application: 40 years of South ...

    African Journals Online (AJOL)

    The purpose of an irrigation system is to apply the desired amount of water, at the correct application rate and uniformly to the whole field, at the right time, with the least amount of non-beneficial water consumption (losses), and as economically as possible. We know that irrigated agriculture plays a major role in the ...

  11. Rough sets selected methods and applications in management and engineering

    CERN Document Server

    Peters, Georg; Ślęzak, Dominik; Yao, Yiyu

    2012-01-01

    Introduced in the early 1980s, Rough Set Theory has become an important part of soft computing in the last 25 years. This book provides a practical, context-based analysis of rough set theory, with each chapter exploring a real-world application of Rough Sets.

  12. Computational Fluid Dynamics Methods and Their Applications in Medical Science

    Directory of Open Access Journals (Sweden)

    Kowalewski Wojciech

    2016-12-01

    Full Text Available As defined by the National Institutes of Health: “Biomedical engineering integrates physical, chemical, mathematical, and computational sciences and engineering principles to study biology, medicine, behavior, and health”. Many issues in this area are closely related to fluid dynamics. This paper provides an overview of the basic concepts concerning Computational Fluid Dynamics and its applications in medicine.

  13. 47 CFR 61.153 - Method of filing applications.

    Science.gov (United States)

    2010-10-01

    ... 61.153 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... application for special permission must be addressed to “Secretary, Federal Communication Commission... Secretary of the Commission in lieu of the U.S. Bank. The Form 159 should display the Electronic Audit Code...

  14. Food powders flowability characterization: theory, methods, and applications.

    Science.gov (United States)

    Juliano, Pablo; Barbosa-Cánovas, Gustavo V

    2010-01-01

    Characterization of food powders flowability is required for predicting powder flow from hoppers in small-scale systems such as vending machines or at the industrial scale from storage silos or bins dispensing into powder mixing systems or packaging machines. This review covers conventional and new methods used to measure flowability in food powders. The method developed by Jenike (1964) for determining hopper outlet diameter and hopper angle has become a standard for the design of bins and is regarded as a standard method to characterize flowability. Moreover, there are a number of shear cells that can be used to determine failure properties defined by Jenike's theory. Other classic methods (compression, angle of repose) and nonconventional methods (Hall flowmeter, Johanson Indicizer, Hosokawa powder tester, tensile strength tester, powder rheometer), used mainly for the characterization of food powder cohesiveness, are described. The effect of some factors preventing flow, such as water content, temperature, time consolidation, particle composition and size distribution, is summarized for the characterization of specific food powders with conventional and other methods. Whereas time-consuming standard methods established for hopper design provide flow properties, there is yet little comparative evidence demonstrating that other rapid methods may provide similar flow prediction.

  15. An irrational trial equation method and its applications

    Indian Academy of Sciences (India)

    equation method which is different from those direct methods. Liu's key idea is that exact solution to a differential equation can be given by solving an integration. For example, consider a differential equation of u. We always assume that its exact solution satisfies a solvable equation u = F(u). Therefore, our task is just to find.

  16. Vorticity determination in a hydraulic jump by application of method ...

    African Journals Online (AJOL)

    The method of characteristics for solving systems of partial differential equations coupled with jump conditions is used in analysing flow downstream of a hydraulic jump instead of the normal analytical approach adopted in Hornung [1]. It is shown that the method of characteristics together with the jump conditions can ...

  17. Statistical methods and their applications in constructional engineering

    International Nuclear Information System (INIS)

    1977-01-01

    An introduction into the basic terms of statistics is followed by a discussion of elements of the probability theory, customary discrete and continuous distributions, simulation methods, statistical supporting framework dynamics, and a cost-benefit analysis of the methods introduced. (RW) [de

  18. Experiment in Application of Methods of Programmed Instruction.

    Science.gov (United States)

    Fradkin, S. L.

    In a document translated from the Russian, an analysis is made of various forms and methods of programed learning. The primary developments in the introduction of programed learning methods are: creation of programed teaching aids; use of existing textbooks for programed lectures with feedback; and use of both teaching machines and machineless…

  19. Application of effective variance method for contamination monitor calibration

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Freitas, I.S.M. de.

    1990-01-01

    In this report, the calibration of a thin window Geiger-Muller type monitor for alpha superficial contamination is presented. The calibration curve is obtained by the method of the least-squares fitting with effective variance. The method and the approach for the calculation are briefly discussed. (author)

  20. Development and Application of Ligand-Exchange Reaction Method ...

    African Journals Online (AJOL)

    Purpose: This paper presents an improved kinetic-spectrophotometric procedure for determining clonazepam (CZP) in pharmaceutical formulations and human serum. Methods: The method is based on ligand-exchange reaction. The reaction was followed spectrophotometrically by measuring the rate of change of ...

  1. Application of potential harmonic expansion method to BEC

    Indian Academy of Sciences (India)

    We adopt the potential harmonics expansion method for an ab initio solution of the many-body system in a Bose condensate containing interacting bosons. Unlike commonly adopted mean-field theories, our method is capable of handling two-body correlation properly. We disregard three- and higher-body correlations.

  2. Hierarchical modelling for the environmental sciences statistical methods and applications

    CERN Document Server

    Clark, James S

    2006-01-01

    New statistical tools are changing the way in which scientists analyze and interpret data and models. Hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide a consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complicated, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences.

  3. Multi-spectral lifetime imaging: methods and applications

    NARCIS (Netherlands)

    Fereidouni, F.

    2013-01-01

    The aim of this PhD project is to further develop multispectral life time imaging hardware and analyses methods. The hardware system, Lambda-Tau, generates a considerable amount of data at high speed. To fully exploit the power of this new hardware, fast and reliable data analyses methods are

  4. Application of least-squares method to decay heat evaluation

    International Nuclear Information System (INIS)

    Schmittroth, F.; Schenter, R.E.

    1976-01-01

    Generalized least-squares methods are applied to decay-heat experiments and summation calculations to arrive at evaluated values and uncertainties for the fission-product decay-heat from the thermal fission of 235 U. Emphasis is placed on a proper treatment of both statistical and correlated uncertainties in the least-squares method

  5. DRIFT-ARID: Application of a method for environmental water ...

    African Journals Online (AJOL)

    Methods developed to determine the amount of water required (EWR) to sustain ecosystem services in non-perennial rivers need a different approach to those used in perennial rivers. Current EWR methods were mostly developed for use in perennial rivers. Non-perennial rivers differ from perennial ones in terms of ...

  6. Lattice Boltzmann methods for complex micro-flows: applicability and limitations for practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Suga, K, E-mail: suga@me.osakafu-u.ac.jp [Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan)

    2013-06-15

    The extensive evaluation studies of the lattice Boltzmann method for micro-scale flows ({mu}-flow LBM) by the author's group are summarized. For the two-dimensional test cases, force-driven Poiseuille flows, Couette flows, a combined nanochannel flow, and flows in a nanochannel with a square- or triangular cylinder are discussed. The three-dimensional (3D) test cases are nano-mesh flows and a flow between 3D bumpy walls. The reference data for the complex test flow geometries are from the molecular dynamics simulations of the Lennard-Jones fluid by the author's group. The focused flows are mainly in the slip and a part of the transitional flow regimes at Kn < 1. The evaluated schemes of the {mu}-flow LBMs are the lattice Bhatnagar-Gross-Krook and the multiple-relaxation time LBMs with several boundary conditions and discrete velocity models. The effects of the discrete velocity models, the wall boundary conditions, the near-wall correction models of the molecular mean free path and the regularization process are discussed to confirm the applicability and the limitations of the {mu}-flow LBMs for complex flow geometries. (invited review)

  7. Lattice Boltzmann methods for complex micro-flows: applicability and limitations for practical applications

    International Nuclear Information System (INIS)

    Suga, K

    2013-01-01

    The extensive evaluation studies of the lattice Boltzmann method for micro-scale flows (μ-flow LBM) by the author's group are summarized. For the two-dimensional test cases, force-driven Poiseuille flows, Couette flows, a combined nanochannel flow, and flows in a nanochannel with a square- or triangular cylinder are discussed. The three-dimensional (3D) test cases are nano-mesh flows and a flow between 3D bumpy walls. The reference data for the complex test flow geometries are from the molecular dynamics simulations of the Lennard-Jones fluid by the author's group. The focused flows are mainly in the slip and a part of the transitional flow regimes at Kn < 1. The evaluated schemes of the μ-flow LBMs are the lattice Bhatnagar–Gross–Krook and the multiple-relaxation time LBMs with several boundary conditions and discrete velocity models. The effects of the discrete velocity models, the wall boundary conditions, the near-wall correction models of the molecular mean free path and the regularization process are discussed to confirm the applicability and the limitations of the μ-flow LBMs for complex flow geometries. (invited review)

  8. Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    Mădălina Elena Grigore

    2017-11-01

    Full Text Available This study aims to provide an updated survey of the main thermoplastic polymers in order to obtain recyclable materials for various industrial and indoor applications. The synthesis approach significantly impacts the properties of such materials and these properties in turn have a significant impact on their applications. Due to the ideal properties of the thermoplastic polymers such as corrosion resistance, low density or user-friendly design, the production of plastics has increased markedly over the last 60 years, becoming more used than aluminum or other metals. Also, recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today.

  9. Ion-conducting ceramic apparatus, method, fabrication, and applications

    Science.gov (United States)

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2012-03-06

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  10. Applicability of DNA-based methods for food authentication

    OpenAIRE

    Mafra, Isabel; Amaral, J.S.; Costa, Joana; Soares, Sónia; Oliveira, M.B.P.P.

    2014-01-01

    Authenticity evaluation of foods encompasses many issues, including the entire or partial fraudulent substitution of higher commercial value constituents by others with lower value and the presence of undeclared ingredients. To address the referred food authenticity problems, several! Analytical methodologies have been developed at REQ.UIMTE during the last years. Due to its fastness, sensitivity and high specificity, the application of molecular biology techniques has proved to be an effe...

  11. Experiences with leak rate calculations methods for LBB application

    International Nuclear Information System (INIS)

    Grebner, H.; Kastner, W.; Hoefler, A.; Maussner, G.

    1997-01-01

    In this paper, three leak rate computer programs for the application of leak before break analysis are described and compared. The programs are compared to each other and to results of an HDR Reactor experiment and two real crack cases. The programs analyzed are PIPELEAK, FLORA, and PICEP. Generally, the different leak rate models are in agreement. To obtain reasonable agreement between measured and calculated leak rates, it was necessary to also use data from detailed crack investigations

  12. Experiences with leak rate calculations methods for LBB application

    Energy Technology Data Exchange (ETDEWEB)

    Grebner, H.; Kastner, W.; Hoefler, A.; Maussner, G. [and others

    1997-04-01

    In this paper, three leak rate computer programs for the application of leak before break analysis are described and compared. The programs are compared to each other and to results of an HDR Reactor experiment and two real crack cases. The programs analyzed are PIPELEAK, FLORA, and PICEP. Generally, the different leak rate models are in agreement. To obtain reasonable agreement between measured and calculated leak rates, it was necessary to also use data from detailed crack investigations.

  13. A Method for Evaluation of Microcomputers for Tactical Applications.

    Science.gov (United States)

    1980-06-01

    unusual to use the words "test equipment" in a paper about tactical applications, but it is absolutely necessary to examine this type of equipment...withstand temperature ranges of 32 to 100 degrees Farenheit to remain in contention. (2) Humidity: It has to be operable under relative hKumidity...logical operations. Active-High = The active state is the one state. Active-Low The active state is the zero state. Ada - High order level language

  14. Risk assessment of power systems models, methods, and applications

    CERN Document Server

    Li, Wenyuan

    2014-01-01

    Risk Assessment of Power Systems addresses the regulations and functions of risk assessment with regard to its relevance in system planning, maintenance, and asset management. Brimming with practical examples, this edition introduces the latest risk information on renewable resources, the smart grid, voltage stability assessment, and fuzzy risk evaluation. It is a comprehensive reference of a highly pertinent topic for engineers, managers, and upper-level students who seek examples of risk theory applications in the workplace.

  15. Quality of experience advanced concepts, applications and methods

    CERN Document Server

    Raake, Alexander

    2014-01-01

    This pioneering book develops definitions and concepts related to Quality of Experience in the context of multimedia- and telecommunications-related applications, systems and services, and applies these to various fields of communication and media technologies. The editors bring together numerous key-protagonists of the new discipline “Quality of Experience” and combine the state-of-the-art knowledge in one single volume. 

  16. Novel fabrication method of conductive polymer nanowires for sensor applications

    DEFF Research Database (Denmark)

    Christiansen, Nikolaj Ormstrup; Andersen, Karsten Brandt; Castillo, Jaime

    2013-01-01

    In this work we demonstrate a new, quiek and low cost fabrication of PEDOT:TsO nanowires using self-assembled peptide nanotubes as a masking material. The peptide nanotubes show a remarkably stability during reactive ion etching and can be dissolved in water afterwards. We have shown that the imp...... that the impedance of the nanowire is changing with backgating the wire, this gives promising possibility for application as a sensor....

  17. Application of titrimetric method in the determination of uranium

    International Nuclear Information System (INIS)

    Cantagallo, M.I.C.; Rodrigues, C.

    1985-01-01

    The analysis of nuclear materials are carried out by Davies-Gray titration. This procedure is evaluated by 'Safeguards Analytical Laboratory - IAEA' for application in safeguards materials. The purpose of this paper is in evaluating the precision and accuracy of the analysis carried out in laboratory by participation in 'IAEA' - Analytical Control Service Program'. The samples SR-50 and SR-60 are analysed and analytical results, the precision and accuracy are presented and discussed. (Author) [pt

  18. Comprehensive evaluation method in application of nuclear DCS product design

    International Nuclear Information System (INIS)

    Wang Weixin; Zhao Zhemin; Shi Yingbin

    2014-01-01

    In order to select the best design proposal in short time, the TOPSIS comprehensive evaluation method in the nuclear power plant DCS product design was introduced. It can intuitively show the different design proposals good or not good by data and shorten the time of the design proposal optimization. The design proposal selected by this method will be more reasonable and has good comprehensive performance indexes. The TOPSIS comprehensive evaluation method achieves good result in one of the nuclear power plant DCS cabinet design proposal optimization. (authors)

  19. Energy-dependent applications of the transfer matrix method

    International Nuclear Information System (INIS)

    Oeztunali, O.I.; Aronson, R.

    1975-01-01

    The transfer matrix method is applied to energy-dependent neutron transport problems for multiplying and nonmultiplying media in one-dimensional plane geometry. Experimental cross sections are used for total, elastic, and inelastic scattering and fission. Numerical solutions are presented for the problem of a unit point isotropic source in an infinite medium of water and for the problem of the critical 235 U slab with finite water reflectors. No iterations were necessary in this method. Numerical results obtained are consistent with physical considerations and compare favorably with the moments method results for the problem of the unit point isotropic source in an infinite water medium. (U.S.)

  20. Applicability of simplified human reliability analysis methods for severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Boring, R.; St Germain, S. [Idaho National Lab., Idaho Falls, Idaho (United States); Banaseanu, G.; Chatri, H.; Akl, Y. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2016-03-15

    Most contemporary human reliability analysis (HRA) methods were created to analyse design-basis accidents at nuclear power plants. As part of a comprehensive expansion of risk assessments at many plants internationally, HRAs will begin considering severe accident scenarios. Severe accidents, while extremely rare, constitute high consequence events that significantly challenge successful operations and recovery. Challenges during severe accidents include degraded and hazardous operating conditions at the plant, the shift in control from the main control room to the technical support center, the unavailability of plant instrumentation, and the need to use different types of operating procedures. Such shifts in operations may also test key assumptions in existing HRA methods. This paper discusses key differences between design basis and severe accidents, reviews efforts to date to create customized HRA methods suitable for severe accidents, and recommends practices for adapting existing HRA methods that are already being used for HRAs at the plants. (author)

  1. Application of unsupervised learning methods in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Koevesarki, Peter; Nuncio Quiroz, Adriana Elizabeth; Brock, Ian C. [Physikalisches Institut, Universitaet Bonn, Bonn (Germany)

    2011-07-01

    High energy physics is a home for a variety of multivariate techniques, mainly due to the fundamentally probabilistic behaviour of nature. These methods generally require training based on some theory, in order to discriminate a known signal from a background. Nevertheless, new physics can show itself in ways that previously no one thought about, and in these cases conventional methods give little or no help. A possible way to discriminate between known processes (like vector bosons or top-quark production) or look for new physics is using unsupervised machine learning to extract the features of the data. A technique was developed, based on the combination of neural networks and the method of principal curves, to find a parametrisation of the non-linear correlations of the data. The feasibility of the method is shown on ATLAS data.

  2. Discrete variational methods and their application to electronic structures

    International Nuclear Information System (INIS)

    Ellis, D.E.

    1987-01-01

    Some general concepts concerning Discrete Variational methods are developed and applied to problems of determination of eletronic spectra, charge densities and bonding of free molecules, surface-chemisorbed species and bulk solids. (M.W.O.) [pt

  3. APPLICATION OF BOUNDARY INTEGRAL EQUATION METHOD FOR THERMOELASTICITY PROBLEMS

    Directory of Open Access Journals (Sweden)

    Vorona Yu.V.

    2015-12-01

    Full Text Available Boundary Integral Equation Method is used for solving analytically the problems of coupled thermoelastic spherical wave propagation. The resulting mathematical expressions coincide with the solutions obtained in a conventional manner.

  4. Application of comprehensive geophysical prospecting method in groundwater exploration

    Science.gov (United States)

    Yang, Fan; Gao, Pengju; Li, Dong; Ma, Hanwen; Cheng, Guoliang

    2018-01-01

    In order to solve the problem of shortage of water resources in northern Shaanxi, we selected rectangular large loop source transient electromagnetic method with high water affinity, and radioactive α measurement method which can delineate the water storage structure, comprehensive geophysical prospecting methods to look for groundwater. Algorithm has established a forward model, and compared all-time apparent resistivity in late-time apparent resistivity is better than late. We can find out the exact location of the groundwater and thus improving wells rate by comparatively using these two kinds of geophysical prospecting method. Hydrogeology drilling confirmed water inflow of a single well can be up to 40 m 3/h, it can fully cover native Domestic and Agricultural water, and provide an important basis for groundwater exploration.

  5. Binary recursive partitioning: background, methods, and application to psychology.

    Science.gov (United States)

    Merkle, Edgar C; Shaffer, Victoria A

    2011-02-01

    Binary recursive partitioning (BRP) is a computationally intensive statistical method that can be used in situations where linear models are often used. Instead of imposing many assumptions to arrive at a tractable statistical model, BRP simply seeks to accurately predict a response variable based on values of predictor variables. The method outputs a decision tree depicting the predictor variables that were related to the response variable, along with the nature of the variables' relationships. No significance tests are involved, and the tree's 'goodness' is judged based on its predictive accuracy. In this paper, we describe BRP methods in a detailed manner and illustrate their use in psychological research. We also provide R code for carrying out the methods.

  6. Application of meshless EFG method in fluid flow problems

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    viewpoint of computer time but require less time in the preparation of data. ..... Krongauz Y, Organ D, Fleming M, Krysl P 1996 Meshless methods: an overview and ... Dolbow J, Belytschko T 1998 An introduction to programming the meshless ...

  7. COGORT METHOD AND OTS APPLICATIONS TO INSURANCE STATICTICS

    Directory of Open Access Journals (Sweden)

    Yu. F. Kasimov

    2014-01-01

    Full Text Available The paper considers the so-called cohort method of accounting aggregates insurance portfolios. In insurance statistics systematization and processing of aggregate data on the issued policies, premiums and insurance payments are often made with gross errors, because ones don't set the criteria written policies and related payments to the analyzed statistical universe. Besides, it is often not clearly specify the scheme of calculation of aggregate statistical associated with these policies. The study gives a detailed and rigorous presentation as a method of formation of different cohorts data for a specified period of assessment the aggregated characteristics and methods of calculation of interest to insurance of indicators (absolute and relative for these cohorts. The knowledge of these methods is necessary for a correct assessment of insurance premiums and reserves.

  8. Application of QMC methods to PDEs with random coefficients : a survey of analysis and implementation

    KAUST Repository

    Kuo, Frances; Dick, Josef; Le Gia, Thong; Nichols, James; Sloan, Ian; Graham, Ivan; Scheichl, Robert; Nuyens, Dirk; Schwab, Christoph

    2016-01-01

    have been written on this topic using a variety of methods. QMC methods are relatively new to this application area. I will consider different models for the randomness (uniform versus lognormal) and contrast different QMC algorithms (single-level

  9. Application of methods of discrete mathematics at modular synthesis of mechatronic devices

    OpenAIRE

    Nikiforov, S.; Nikiforov, B.; Mandarov, E.; Rabdanova, N.

    2010-01-01

    The article is devoted to application of methods of discrete mathematics (the theory of counts, the method of matrix code and others) and synthesis of executive mechanisms of mechatronic handling devices

  10. Applications of the infinite momentum method to quantum electrodynamics and bound state problem

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1973-01-01

    It is shown that the infinite momentum method is a valid and useful calculational alternative to standard perturbation theory methods. The most exciting future applications may be in bound state problems in quantum electrodynamics

  11. Application of econometric and ecology analysis methods in physics software

    Science.gov (United States)

    Han, Min Cheol; Hoff, Gabriela; Kim, Chan Hyeong; Kim, Sung Hun; Grazia Pia, Maria; Ronchieri, Elisabetta; Saracco, Paolo

    2017-10-01

    Some data analysis methods typically used in econometric studies and in ecology have been evaluated and applied in physics software environments. They concern the evolution of observables through objective identification of change points and trends, and measurements of inequality, diversity and evenness across a data set. Within each analysis area, various statistical tests and measures have been examined. This conference paper summarizes a brief overview of some of these methods.

  12. A Modified Cooling Method and Its Application in "Drosophila" Experiments

    Science.gov (United States)

    Qu, Wen-hui; Zhu, Tong-bo; Yang, Da-Xiang

    2015-01-01

    Chilling is a cost-effective and safe method of immobilising flies in "Drosophila" experiments. However, should condensation form on the plate, it would be fatal to the flies. Here we describe a modified cooling method using reusable commercial ice pack(s) (ca. 400 ml, 2-3 cm tall) rather than crushed ice. The ice pack is covered with a…

  13. Application of a Light-Front Coupled Cluster Method

    International Nuclear Information System (INIS)

    Chabysheva, S.S.; Hiller, J.R.

    2012-01-01

    As a test of the new light-front coupled-cluster method in a gauge theory, we apply it to the nonperturbative construction of the dressed-electron state in QED, for an arbitrary covariant gauge, and compute the electron's anomalous magnetic moment. The construction illustrates the spectator and Fock-sector independence of vertex and self-energy contributions and indicates resolution of the difficulties with uncanceled divergences that plague methods based on Fock-space truncation. (author)

  14. Stochastic rainfall synthesis for urban applications using different regionalization methods

    Science.gov (United States)

    Callau Poduje, A. C.; Leimbach, S.; Haberlandt, U.

    2017-12-01

    The proper design and efficient operation of urban drainage systems require long and continuous rainfall series in a high temporal resolution. Unfortunately, these time series are usually available in a few locations and it is therefore suitable to develop a stochastic precipitation model to generate rainfall in locations without observations. The model presented is based on an alternating renewal process and involves an external and an internal structure. The members of these structures are described by probability distributions which are site specific. Different regionalization methods based on site descriptors are presented which are used for estimating the distributions for locations without observations. Regional frequency analysis, multiple linear regressions and a vine-copula method are applied for this purpose. An area located in the north-west of Germany is used to compare the different methods and involves a total of 81 stations with 5 min rainfall records. The site descriptors include information available for the whole region: position, topography and hydrometeorologic characteristics which are estimated from long term observations. The methods are compared directly by cross validation of different rainfall statistics. Given that the model is stochastic the evaluation is performed based on ensembles of many long synthetic time series which are compared with observed ones. The performance is as well indirectly evaluated by setting up a fictional urban hydrological system to test the capability of the different methods regarding flooding and overflow characteristics. The results show a good representation of the seasonal variability and good performance in reproducing the sample statistics of the rainfall characteristics. The copula based method shows to be the most robust of the three methods. Advantages and disadvantages of the different methods are presented and discussed.

  15. Development and application of methods to characterize code uncertainty

    International Nuclear Information System (INIS)

    Wilson, G.E.; Burtt, J.D.; Case, G.S.; Einerson, J.J.; Hanson, R.G.

    1985-01-01

    The United States Nuclear Regulatory Commission sponsors both international and domestic studies to assess its safety analysis codes. The Commission staff intends to use the results of these studies to quantify the uncertainty of the codes with a statistically based analysis method. Development of the methodology is underway. The Idaho National Engineering Laboratory contributions to the early development effort, and testing of two candidate methods are the subjects of this paper

  16. Biclustering methods: biological relevance and application in gene expression analysis.

    Directory of Open Access Journals (Sweden)

    Ali Oghabian

    Full Text Available DNA microarray technologies are used extensively to profile the expression levels of thousands of genes under various conditions, yielding extremely large data-matrices. Thus, analyzing this information and extracting biologically relevant knowledge becomes a considerable challenge. A classical approach for tackling this challenge is to use clustering (also known as one-way clustering methods where genes (or respectively samples are grouped together based on the similarity of their expression profiles across the set of all samples (or respectively genes. An alternative approach is to develop biclustering methods to identify local patterns in the data. These methods extract subgroups of genes that are co-expressed across only a subset of samples and may feature important biological or medical implications. In this study we evaluate 13 biclustering and 2 clustering (k-means and hierarchical methods. We use several approaches to compare their performance on two real gene expression data sets. For this purpose we apply four evaluation measures in our analysis: (1 we examine how well the considered (biclustering methods differentiate various sample types; (2 we evaluate how well the groups of genes discovered by the (biclustering methods are annotated with similar Gene Ontology categories; (3 we evaluate the capability of the methods to differentiate genes that are known to be specific to the particular sample types we study and (4 we compare the running time of the algorithms. In the end, we conclude that as long as the samples are well defined and annotated, the contamination of the samples is limited, and the samples are well replicated, biclustering methods such as Plaid and SAMBA are useful for discovering relevant subsets of genes and samples.

  17. Application of the holistic methods in analysis of organic milk

    Directory of Open Access Journals (Sweden)

    Anka Popović-Vranješ

    2012-12-01

    Full Text Available Organic farming has advantages in terms of environmental protection, biodiversity, soil quality, animal welfare and pesticide residues. Unlike conventional production “organic chain” means that healthy soil leads to healthy animal feed, leading to healthy cows with normal milk, which eventually leads to healthy consumers. Since this must be scientifically proven, there is an increasing need for scientific methods that will reveal the benefits of organic food. For this purpose holistic methods such as biocrystallization and methods of rising picture are introduced. Biocrystallization shows that organic milk is systematically more “balanced” and that there is more “ordered structure” and better “integration and coordination.” Previous studies using biocrystallization method were performed on the raw milk produced in different conditions, differently treated milk (heat treatment and homogenization and on butter. Pictures of biocrystallization are firstly visually assessed and then by the computer analysis of texture images, which are used to estimate the density of images. Rising picture method which normally works in parallel with biocrystallization can differentiate samples of Demeter, and organic milk from conventional production and milk treated differently during processing. Organic milk in relation to conventional shows better result in terms of impact on the health of consumers when using both the conventional and holistic methods.

  18. Application of CFD methods in research of SCWR thermo-hydraulics

    International Nuclear Information System (INIS)

    Zeng Xiaokang; Li Yongliang; Yan Xiao; Xiao Zejun; Huang Yanping

    2013-01-01

    The CFD method has been an important tool in the research of SCWR thermo- hydraulics. Currently, the CFD methods uses commonly the subcritical turbulence models, which can not accurately simulate the gravity and thermal expansion acceleration effect, and CFD numerical method is not applicable when the heat flux is large. The paper summarizes the application status of the CFD methods in the research of SCWR thermo-hydraulics in RETH. (authors)

  19. Application of Exp-function method for (2 + 1)-dimensional nonlinear evolution equations

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Boz, Ahmet

    2009-01-01

    In this paper, the Exp-function method is used to construct solitary and soliton solutions of (2 + 1)-dimensional nonlinear evolution equations. (2 + 1)-dimensional breaking soliton (Calogero) equation, modified Zakharov-Kuznetsov and Konopelchenko-Dubrovsky equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations.

  20. A relaxation method with application in diagnostic radiology

    International Nuclear Information System (INIS)

    Herman, G.T.; Lent, A.H.

    1980-01-01

    Hildreth (1959) proposed an algorithm for optimizing positive definite quadratic forms subject to linear inequality constraints. Although Hildreth's original proof of the convergence of his procedure to a feasible vector optimizing the quadratic form was found to be not applicable to arbitrary inequality constraints sets, a general proof of convergence has recently been found. In this paper a way of substantially reducing the computer time and storage required by a Hildreth-type procedure when the inequality constraints have a special property is discussed. This property arises naturally in image reconstruction from projections. (Auth.)

  1. Application of Strategic Planning Process with Fleet Level Analysis Methods

    Science.gov (United States)

    Mavris, Dimitri N.; Pfaender, Holger; Jimenez, Hernando; Garcia, Elena; Feron, Eric; Bernardo, Jose

    2016-01-01

    The goal of this work is to quantify and characterize the potential system-wide reduction of fuel consumption and corresponding CO2 emissions, resulting from the introduction of N+2 aircraft technologies and concepts into the fleet. Although NASA goals for this timeframe are referenced against a large twin aisle aircraft we consider their application across all vehicle classes of the commercial aircraft fleet, from regional jets to very large aircraft. In this work the authors describe and discuss the formulation and implementation of the fleet assessment by addressing the main analytical components: forecasting, operations allocation, fleet retirement, fleet replacement, and environmental performance modeling.

  2. Time-of-flight cameras principles, methods and applications

    CERN Document Server

    Hansard, Miles; Choi, Ouk; Horaud, Radu

    2012-01-01

    Time-of-flight (TOF) cameras provide a depth value at each pixel, from which the 3D structure of the scene can be estimated. This new type of active sensor makes it possible to go beyond traditional 2D image processing, directly to depth-based and 3D scene processing. Many computer vision and graphics applications can benefit from TOF data, including 3D reconstruction, activity and gesture recognition, motion capture and face detection. It is already possible to use multiple TOF cameras, in order to increase the scene coverage, and to combine the depth data with images from several colour came

  3. Modelling and simulation of diffusive processes methods and applications

    CERN Document Server

    Basu, SK

    2014-01-01

    This book addresses the key issues in the modeling and simulation of diffusive processes from a wide spectrum of different applications across a broad range of disciplines. Features: discusses diffusion and molecular transport in living cells and suspended sediment in open channels; examines the modeling of peristaltic transport of nanofluids, and isotachophoretic separation of ionic samples in microfluidics; reviews thermal characterization of non-homogeneous media and scale-dependent porous dispersion resulting from velocity fluctuations; describes the modeling of nitrogen fate and transport

  4. Applicability of the Galerkin method to the approximate solution of the multigroup diffusion equation

    International Nuclear Information System (INIS)

    Obradovic, D.

    1970-04-01

    In the study of the nuclear reactors space-time behaviour the modal analysis is very often used though some basic mathematical problems connected with application of this methods are still unsolved. In this paper the modal analysis is identified as a set of the methods in the mathematical literature known as the Galerkin methods (or projection methods, or sometimes direct methods). Using the results of the mathematical investigations of these methods the applicability of the Galerkin type methods to the calculations of the eigenvalue and eigenvectors of the stationary and non-stationary diffusion operator, as well as for the solutions of the corresponding functional equations, is established (author)

  5. Deformation compatibility control for engineering structures methods and applications

    CERN Document Server

    Zhu, Hanhua; Chen, Mengchong; Deng, Jianliang

    2017-01-01

    This book presents essential methods of deformation compatibility control, and explicitly addresses the implied conditions on the methods’ deformation compatibility. Consequently, these conditions can be considered in engineering structure design, while the conditions on stable equilibrium can be taken into account in the design method. Thus, the designed deformation and the actual deformation of the respective structure are approximately identical, guaranteeing both the flexibility of the construction material in force transmission and the equilibrium of force in the structure. Though equilibrium theory in engineering structures has been extensively studied, there has been comparatively little research on compatibility. In the limited researches available, the topics are primarily the theories and assumptions on the deformation compatibility, while few systematic works focus on the mechanical theoretical principles and methods of deformation compatibility control. As such, the flexibility of the constructi...

  6. Advances in methods and applications of reliability and safety analysis

    International Nuclear Information System (INIS)

    Fieandt, J.; Hossi, H.; Laakso, K.; Lyytikaeinen, A.; Niemelae, I.; Pulkkinen, U.; Pulli, T.

    1986-01-01

    The know-how of the reliability and safety design and analysis techniques of Vtt has been established over several years in analyzing the reliability in the Finnish nuclear power plants Loviisa and Olkiluoto. This experience has been later on applied and developed to be used in the process industry, conventional power industry, automation and electronics. VTT develops and transfers methods and tools for reliability and safety analysis to the private and public sectors. The technology transfer takes place in joint development projects with potential users. Several computer-aided methods, such as RELVEC for reliability modelling and analysis, have been developed. The tool developed are today used by major Finnish companies in the fields of automation, nuclear power, shipbuilding and electronics. Development of computer-aided and other methods needed in analysis of operating experience, reliability or safety is further going on in a number of research and development projects

  7. Application of Instrumented Charpy Method in Characterisation of Materials

    Directory of Open Access Journals (Sweden)

    Željko Alar

    2015-07-01

    Full Text Available Testing of absorbed impact energy according to the Charpy method is carried out to determine the behaviour of a material under the impact load. Instrumented Charpy method allows getting the force displacement curve through the entire test, That curve can be related to force-displacement curve which is obtained by the static tensile test. The purpose of this study was to compare the results of forces obtained by the static tensile test with the forces obtained by the instrumented Charpy method. Experimental part of the work contains testing of the mechanical properties of S275J0 steel by the static tensile test and Impact test on instrumented Charpy pendulum.

  8. Contributions to hydrological tracer methods and their application

    International Nuclear Information System (INIS)

    1982-04-01

    The activities of the Institut fuer Radiohydrometrie of the GSF are mainly devoted to the field of environmental research studying the quality, use and protection from pollution of drinking water which has become scarce in many parts of the world. The knowledge and experience of a variety of scientific disciplines are combined to the common task of developing new tracer methods and selecting suitable hydrogeological methods to allow quantitative studies of the hydrological cycle, from rainfall to surface or sub-surface run-off. The tracers used in these studies are for the most part stable, natural radioisotopes occurring in the hydrological cycle, as well as fluorescent dyes or radionuclides for water labelling. The contributions collected in this volume are grouped according to the above outline of tasks and present a survey of current methods and measurements, illustrating their efficiency in solving hydrological problems. (orig./RW) [de

  9. Applications of the Trojan Horse method in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, Claudio, E-mail: spitaleri@lns.infn.it [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud-INFN, Catania (Italy)

    2015-02-24

    The study of the energy production in stars and related nucleosyntesis processes requires increasingly precise knowledge of the nuclear reaction cross section and reaction rates at interaction energy. In order to overcome the experimental difficulties, arising from small cross-sections involved in charge particle induced reactions at astrophysical energies, and from the presence of electron screening, it was necessary to introduce indirect methods. Trough these methods it is possible to measure cross sections at very small energies and retrieve information on electron screening effect when ultra-low energy direct measurements are available. The Trojan Horse Method (THM) represents the indirect technique to determine the bare nucleus astrophysical S-factor for reactions between charged particles at astrophysical energies. The basic theory of the THM is discussed in the case of non-resonant.

  10. A method of ECG template extraction for biometrics applications.

    Science.gov (United States)

    Zhou, Xiang; Lu, Yang; Chen, Meng; Bao, Shu-Di; Miao, Fen

    2014-01-01

    ECG has attracted widespread attention as one of the most important non-invasive physiological signals in healthcare-system related biometrics for its characteristics like ease-of-monitoring, individual uniqueness as well as important clinical value. This study proposes a method of dynamic threshold setting to extract the most stable ECG waveform as the template for the consequent ECG identification process. With the proposed method, the accuracy of ECG biometrics using the dynamic time wraping for difference measures has been significantly improved. Analysis results with the self-built electrocardiogram database show that the deployment of the proposed method was able to reduce the half total error rate of the ECG biometric system from 3.35% to 1.45%. Its average running time on the platform of android mobile terminal was around 0.06 seconds, and thus demonstrates acceptable real-time performance.

  11. Application of system reliability analytical method, GO-FLOW

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Fukuto, Junji; Mitomo, Nobuo; Miyazaki, Keiko; Matsukura, Hiroshi; Kobayashi, Michiyuki

    1999-01-01

    The Ship Research Institute proceed a developmental study on GO-FLOW method with various advancing functionalities for the system reliability analysis method occupying main parts of PSA (Probabilistic Safety Assessment). Here was attempted to intend to upgrade functionality of the GO-FLOW method, to develop an analytical function integrated with dynamic behavior analytical function, physical behavior and probable subject transfer, and to prepare a main accident sequence picking-out function. In 1997 fiscal year, in dynamic event-tree analytical system, an analytical function was developed by adding dependency between headings. In simulation analytical function of the accident sequence, main accident sequence of MRX for improved ship propulsion reactor became possible to be covered perfectly. And, input data for analysis was prepared with a function capable easily to set by an analysis operator. (G.K.)

  12. Task analysis methods applicable to control room design review (CDR)

    International Nuclear Information System (INIS)

    Moray, N.P.; Senders, J.W.; Rhodes, W.

    1985-06-01

    This report presents the results of a research study conducted in support of the human factors engineering program of the Atomic Energy Control Board in Canada. It contains five products which may be used by the Atomic Enegy Control Board in relation to Task Analysis of jobs in CANDU nuclear power plants: 1. a detailed method for preparing for a task analysis; 2. a Task Data Form for recording task analysis data; 3. a detailed method for carrying out task analyses; 4. a guide to assessing alternative methods for performing task analyses, if such are proposed by utilities or consultants; and 5. an annotated bibliography on task analysis. In addition, a short explanation of the origins, nature and uses of task analysis is provided, with some examples of its cost effectiveness. 35 refs

  13. Application of Conjugate Gradient methods to tidal simulation

    Science.gov (United States)

    Barragy, E.; Carey, G.F.; Walters, R.A.

    1993-01-01

    A harmonic decomposition technique is applied to the shallow water equations to yield a complex, nonsymmetric, nonlinear, Helmholtz type problem for the sea surface and an accompanying complex, nonlinear diagonal problem for the velocities. The equation for the sea surface is linearized using successive approximation and then discretized with linear, triangular finite elements. The study focuses on applying iterative methods to solve the resulting complex linear systems. The comparative evaluation includes both standard iterative methods for the real subsystems and complex versions of the well known Bi-Conjugate Gradient and Bi-Conjugate Gradient Squared methods. Several Incomplete LU type preconditioners are discussed, and the effects of node ordering, rejection strategy, domain geometry and Coriolis parameter (affecting asymmetry) are investigated. Implementation details for the complex case are discussed. Performance studies are presented and comparisons made with a frontal solver. ?? 1993.

  14. PRACTICAL METHODS OF BANKING MANAGEMENT – APPLICATION IN PRACTICE

    Directory of Open Access Journals (Sweden)

    Bodretskiy M.

    2018-03-01

    Full Text Available Introduction. The article presents the latest trends in the development of banking management in Ukraine. Purpose. The research is aimed at the study of practical methods of banking institutions management in Ukraine. Results. The results of the research, which prove the determination by most banks of such management methods based on the principles of minimizing operating costs of a banking institution, are proved. The main areas of such a minimization, most banks identified: the involvement of inexperienced staff, increase the level of automation of banking processes, increasing attention to non-price methods of attracting customers. A classification of non-price methods of attracting customers is made. The use of mathematical tools for determining the quality of management by a banking institution is proposed. The article states that in order to prevent the manifestations of crisis phenomena in a banking institution (predictors of which may be: the emergence of a negative spread, loss-making activity of the bank, etc. it is necessary to have an optimal, economically sound portfolio of practical management methods that can be practically useful for execution on operational and tactical level of managerial decisions of banking management. The article contains the results of the survey of specialists and scientists who took part in the scientific and practical conference “Anti-crisis management of economy and finances”, held in 2017. The main areas of work of the mentioned conference were: search of ways of overcoming of crisis phenomena in economy and finances of Ukraine; definition of strategic aspects of the development of the financial system of the state in the context of the growth of the negative consequences of the growth of tension in international and economic relations; definition of fiscal policy of Ukraine and the impact of its quality on the quality of the banking system in the conditions of stagnation of financial markets, etc

  15. Development of a Magnetic Attachment Method for Bionic Eye Applications.

    Science.gov (United States)

    Fox, Kate; Meffin, Hamish; Burns, Owen; Abbott, Carla J; Allen, Penelope J; Opie, Nicholas L; McGowan, Ceara; Yeoh, Jonathan; Ahnood, Arman; Luu, Chi D; Cicione, Rosemary; Saunders, Alexia L; McPhedran, Michelle; Cardamone, Lisa; Villalobos, Joel; Garrett, David J; Nayagam, David A X; Apollo, Nicholas V; Ganesan, Kumaravelu; Shivdasani, Mohit N; Stacey, Alastair; Escudie, Mathilde; Lichter, Samantha; Shepherd, Robert K; Prawer, Steven

    2016-03-01

    Successful visual prostheses require stable, long-term attachment. Epiretinal prostheses, in particular, require attachment methods to fix the prosthesis onto the retina. The most common method is fixation with a retinal tack; however, tacks cause retinal trauma, and surgical proficiency is important to ensure optimal placement of the prosthesis near the macula. Accordingly, alternate attachment methods are required. In this study, we detail a novel method of magnetic attachment for an epiretinal prosthesis using two prostheses components positioned on opposing sides of the retina. The magnetic attachment technique was piloted in a feline animal model (chronic, nonrecovery implantation). We also detail a new method to reliably control the magnet coupling force using heat. It was found that the force exerted upon the tissue that separates the two components could be minimized as the measured force is proportionately smaller at the working distance. We thus detail, for the first time, a surgical method using customized magnets to position and affix an epiretinal prosthesis on the retina. The position of the epiretinal prosthesis is reliable, and its location on the retina is accurately controlled by the placement of a secondary magnet in the suprachoroidal location. The electrode position above the retina is less than 50 microns at the center of the device, although there were pressure points seen at the two edges due to curvature misalignment. The degree of retinal compression found in this study was unacceptably high; nevertheless, the normal structure of the retina remained intact under the electrodes. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. New numerical method to study phase transitions and its applications

    International Nuclear Information System (INIS)

    Lee, Jooyoung; Kosterlitz, J.M.

    1991-11-01

    We present a powerful method of identifying the nature of transitions by numerical simulation of finite systems. By studying the finite size scaling properties of free energy barrier between competing states, we can identify unambiguously a weak first order transition even when accessible system sizes are L/ξ < 0.05 as in the five state Potts model in two dimensions. When studying a continuous phase transition we obtain quite accurate estimates of critical exponents by treating it as a field driven first order transition. The method has been successfully applied to various systems

  17. Application of Influence Function Method to the Fretting Wear Problems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Yeol; Tian, Li Si; Bae, Joon Woo; Chai, Young Suck [Yeungnam University, Gyongsan (Korea, Republic of)

    2006-07-01

    Numerical analysis by influence function method (IFM) is demonstrated in this study in order to investigate the fretting wear problems on the secondary side of the steam generator, caused by flow induced vibration. Two-dimensional numerical contact model in terms of Cauchy integral equation is developed. The distributions of normal pressures, shear stresses and displacement fields are derived between two contact bodies which have similar elastic properties. The work rate model is adopted to find the wear amounts between two materials. The results are compared with the solutions by finite element analyses, which show the utilization of the present method to the fretting wear problems.

  18. Application of Influence Function Method to the Fretting Wear Problems

    International Nuclear Information System (INIS)

    Lee, Choon Yeol; Tian, Li Si; Bae, Joon Woo; Chai, Young Suck

    2006-01-01

    Numerical analysis by influence function method (IFM) is demonstrated in this study in order to investigate the fretting wear problems on the secondary side of the steam generator, caused by flow induced vibration. Two-dimensional numerical contact model in terms of Cauchy integral equation is developed. The distributions of normal pressures, shear stresses and displacement fields are derived between two contact bodies which have similar elastic properties. The work rate model is adopted to find the wear amounts between two materials. The results are compared with the solutions by finite element analyses, which show the utilization of the present method to the fretting wear problems

  19. Microencapsulation: concepts, mechanisms, methods and some applications in food technology

    Directory of Open Access Journals (Sweden)

    Pablo Teixeira da Silva

    2014-07-01

    Full Text Available Microencapsulation is a process in which active substances are coated by extremely small capsules. It is a new technology that has been used in the cosmetics industry as well as in the pharmaceutical, agrochemical and food industries, being used in flavors, acids, oils, vitamins, microorganisms, among others. The success of this technology is due to the correct choice of the wall material, the core release form and the encapsulation method. Therefore, in this review, some relevant microencapsulation aspects, such as the capsule, wall material, core release forms, encapsulation methods and their use in food technology will be briefly discussed.

  20. Biological dosimetry methods and their application in the Czech Army

    International Nuclear Information System (INIS)

    Zarybnicka, Lenka; Sinkorova, Zuzana; Pejchal, Jaroslav; Vilasova, Zdena

    2009-01-01

    Biodosimetric methods estimate the absorbed dose based on the irradiated body's individual response. Cytological, cytogenetic, and molecular methods are employed, each having its assets and shortcomings. The diagnosis of acute radiation sickness and the medical care of irradiated and/or contaminated individuals in the Czech Army are based on 5 basic indicators: dosimetric data, radiation history, type and intensity of prodromal signs, laboratory tests, and radiation dermatitis. Based on those indicators the affected individuals and categorized on-site into evacuation priority classes. The need for a rapid absorbed dose determination in the field environment is also associated with the requirement of a minimal laboratory and personnel background.

  1. PCR IN TRAUMATOLOGY AND ORTHOPAEDICS: METHOD DESCRIPTION AND APPLICABILITY

    Directory of Open Access Journals (Sweden)

    E. M. Polyakova

    2014-01-01

    Full Text Available Review brief presents description of polymerase chain reaction method (PCR and its most common variants. Three PCR-based lines of research, carried out in the traumatology and orthopaedics, include identifying a causative agents of the implant-associated infection after orthopaedic surgery; detection of antibiotic resistance genes and biofilm forming genes. It was shown that PCR can be used as additional method for detection of genetic disorders, significant for traumatology and orthopaedics, and for investigation of cartilage and bone regeneration.

  2. APPLICATIONS OF BOREHOLE-ACOUSTIC METHODS IN ROCK MECHANICS.

    Science.gov (United States)

    Paillet, Frederick L.

    1985-01-01

    Acoustic-logging methods using a considerable range of wavelengths and frequencies have proven very useful in the in situ characterization of deeply buried crystalline rocks. Seismic velocities are useful in investigating the moduli of unfractured rock, and in producing a continuous record of rock quality for comparison with discontinuous intervals of core. The considerable range of frequencies makes the investigation of scale effects possible in both fractured and unfractured rock. Several specific methods for the characterization of in situ permeability have been developed and verified in the field.

  3. Kinesin and Dynein Mechanics: Measurement Methods and Research Applications.

    Science.gov (United States)

    Abraham, Zachary; Hawley, Emma; Hayosh, Daniel; Webster-Wood, Victoria A; Akkus, Ozan

    2018-02-01

    Motor proteins play critical roles in the normal function of cells and proper development of organisms. Among motor proteins, failings in the normal function of two types of proteins, kinesin and dynein, have been shown to lead many pathologies, including neurodegenerative diseases and cancers. As such, it is critical to researchers to understand the underlying mechanics and behaviors of these proteins, not only to shed light on how failures may lead to disease, but also to guide research toward novel treatment and nano-engineering solutions. To this end, many experimental techniques have been developed to measure the force and motility capabilities of these proteins. This review will (a) discuss such techniques, specifically microscopy, atomic force microscopy (AFM), optical trapping, and magnetic tweezers, and (b) the resulting nanomechanical properties of motor protein functions such as stalling force, velocity, and dependence on adenosine triphosophate (ATP) concentrations will be comparatively discussed. Additionally, this review will highlight the clinical importance of these proteins. Furthermore, as the understanding of the structure and function of motor proteins improves, novel applications are emerging in the field. Specifically, researchers have begun to modify the structure of existing proteins, thereby engineering novel elements to alter and improve native motor protein function, or even allow the motor proteins to perform entirely new tasks as parts of nanomachines. Kinesin and dynein are vital elements for the proper function of cells. While many exciting experiments have shed light on their function, mechanics, and applications, additional research is needed to completely understand their behavior.

  4. Libraries of Synthetic TALE-Activated Promoters: Methods and Applications.

    Science.gov (United States)

    Schreiber, T; Tissier, A

    2016-01-01

    The discovery of proteins with programmable DNA-binding specificities triggered a whole array of applications in synthetic biology, including genome editing, regulation of transcription, and epigenetic modifications. Among those, transcription activator-like effectors (TALEs) due to their natural function as transcription regulators, are especially well-suited for the development of orthogonal systems for the control of gene expression. We describe here the construction and testing of libraries of synthetic TALE-activated promoters which are under the control of a single TALE with a given DNA-binding specificity. These libraries consist of a fixed DNA-binding element for the TALE, a TATA box, and variable sequences of 19 bases upstream and 43 bases downstream of the DNA-binding element. These libraries were cloned using a Golden Gate cloning strategy making them usable as standard parts in a modular cloning system. The broad range of promoter activities detected and the versatility of these promoter libraries make them valuable tools for applications in the fine-tuning of expression in metabolic engineering projects or in the design and implementation of regulatory circuits. © 2016 Elsevier Inc. All rights reserved.

  5. Pavement Management Systems Application with Geographic Information System Method

    Directory of Open Access Journals (Sweden)

    Nihat MOROVA

    2016-04-01

    Full Text Available In this study, performance models were developed. Software in Visual Basic programming language was used for the developed model. Using the software, both the present condition of the pavement can be examined and future performance based on expected traffic values can be predicted. So, the software can be used at both network and project level. Cost and benefit values taken from the literature were used in determining the cost-benefit ratio. Using the genetic algorithm approach, a computer program in Visual Basic programming language was written. Using the model developed, a five-year maintenance and rehabilitation program can be planned for a given database considering budget restraints. The developed models were merged by writing Geographic Information System (GIS software in order to show the effectiveness of models and adopt the models into a GIS. For this purpose, a case study of GIS was exposed. The control of the overall system can be applied in addition to the application of the model at network level. The developed software allows data to be transferred to the database, analyses and different scenario applications for showing GIS results.

  6. Application of quasiexactly solvable potential method to the N-body ...

    Indian Academy of Sciences (India)

    physics pp. 985–996. Application of quasiexactly solvable potential method to the N-body ... Application of QES method to N-particle quantum model interacting via an ... Now, if we choose the centre of mass R as the origin of the coordinates,.

  7. Recent astrophysical applications of the Trojan Horse Method to nuclear astrophysics

    International Nuclear Information System (INIS)

    Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.; Fu, C.; Tribble, R.; Banu, A.; Al-Abdullah, T.; Goldberg, V.; Mukhamedzhanov, A.; Tabacaru, G.; Trache, L.

    2008-01-01

    The Trojan Horse Method (THM) is an unique indirect technique allowing to measure astrophysical rearrangement reactions down to astrophysical relevant energies. The basic principle and a review of the recent applications of the Trojan Horse Method are presented. The applications aiming to the extraction of the bare astrophysical S b (E) for some two-body processes are discussed

  8. The spherical harmonics method, II (application to problems with plane and spherical symmetry)

    Energy Technology Data Exchange (ETDEWEB)

    Mark, C

    1958-12-15

    The application of the spherical harmonic method to problems with plane or spherical symmetry is discussed in detail. The numerical results of some applications already made are included to indicate the degree of convergence obtained. Formulae for dealing with distributions of isotropic sources are developed. Tables useful in applying the method are given in Section 11. (author)

  9. The applicability of micro-filters produced by nuclear methods in the food industry

    International Nuclear Information System (INIS)

    Szabo, S.A.; Ember, G.

    1982-01-01

    Problems of the applicability in the food industry of micro-filters produced by nuclear methods are dealt with. Production methods of the polymeric micro-filters, their main characteristics as well as their most important application fields (breweries, dairies, alcoholic- and soft-drink plants, wine industry) are briefly reviewed. (author)

  10. Application of statistical methods at copper wire manufacturing

    Directory of Open Access Journals (Sweden)

    Z. Hajduová

    2009-01-01

    Full Text Available Six Sigma is a method of management that strives for near perfection. The Six Sigma methodology uses data and rigorous statistical analysis to identify defects in a process or product, reduce variability and achieve as close to zero defects as possible. The paper presents the basic information on this methodology.

  11. Application of few-body methods to statistical mechanics

    International Nuclear Information System (INIS)

    Bolle, D.

    1981-01-01

    This paper reviews some of the methods to study the thermodynamic properties of a macroscopic system in terms of the scattering processes between the constituent particles in the system. In particular, we discuss the time delay approach to the virial expansion and the use of the arrangement channel quantum mechanics formulation in kinetic theory. (orig.)

  12. Application of NDE methods to green ceramics: initial results

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Karplus, H.B.; Poeppel, R.B.; Ellingson, W.A.; Berger, H.; Robbins, C.; Fuller, E.

    1984-03-01

    This paper describes a preliminary investigation to assess the effectiveness of microradiography, ultrasonic methods, nuclear magnetic resonance, and neutron radiography for the nondestructive evaluation of green (unfired), ceramics. Objective is to obtain useful information on defects, cracking, delaminations, agglomerates, inclusions, regions of high porosity, and anisotropy

  13. Application of quantitative and qualitative methods for determination ...

    African Journals Online (AJOL)

    This article covers the issues of integration of qualitative and quantitative methods applied when justifying management decision-making in companies implementing lean manufacturing. The authors defined goals and subgoals and justified the evaluation criteria which lead to the increased company value if achieved.

  14. Fuzzy Clustering Methods and their Application to Fuzzy Modeling

    DEFF Research Database (Denmark)

    Kroszynski, Uri; Zhou, Jianjun

    1999-01-01

    Fuzzy modeling techniques based upon the analysis of measured input/output data sets result in a set of rules that allow to predict system outputs from given inputs. Fuzzy clustering methods for system modeling and identification result in relatively small rule-bases, allowing fast, yet accurate....... An illustrative synthetic example is analyzed, and prediction accuracy measures are compared between the different variants...

  15. Application of multiphase flow methods to horizontal underbalanced drilling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S. P.; Gregory, G. A.; Munro, N.; Muqeem, M.

    1998-12-31

    Ways in which multiphase flow pressure loss calculations can be used in the design and optimization of underbalanced drilling operations are demonstrated. Existing pressure loss calculation methods are evaluated using detailed field measurements for three oil wells and one gas well drilled underbalanced with coiled tubing. 10 refs., 3 tabs., 17 figs.

  16. Application of Taguchi method for cutting force optimization in rock ...

    Indian Academy of Sciences (India)

    Mechanical properties Uniaxial compressive strength. Sawing characteristics .... texture, coarse-grained, grains between 0.08 mm and 4.80 mm, and the coarsest ..... piezoelectric ceramic of Bi0.5Na0.5TiO3 using the Taguchi method. Powder ...

  17. Trojan Horse Method: recent applications in nuclear astrophysics

    International Nuclear Information System (INIS)

    Spitaleri, C.; Cherubini, S.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Pizzone, R.G.; Romano, S.; Sergi, M.L.; Tumino, A.

    2010-01-01

    The Trojan Horse Method (THM) is a powerful indirect technique to extract the bare nucleus cross section (or equivalently the bare nucleus astrophysical factor) for astrophysically relevant reactions. The theory has been discussed in many works in relation to the different types of reactions studied. Here we present the methodology to select the quasi free mechanism in order to extract this important parameter.

  18. Trojan Horse Method: recent applications in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C.; Cherubini, S.; La Cognata, M.; Lamia, L. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Mukhamedzhanov, A. [Cyclotron Institute, Texas A and M University, College Station, Texas (United States); Pizzone, R.G.; Romano, S.; Sergi, M.L. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Tumino, A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Universita degli Studi di Enna ' Kore' , Enna (Italy)

    2010-03-01

    The Trojan Horse Method (THM) is a powerful indirect technique to extract the bare nucleus cross section (or equivalently the bare nucleus astrophysical factor) for astrophysically relevant reactions. The theory has been discussed in many works in relation to the different types of reactions studied. Here we present the methodology to select the quasi free mechanism in order to extract this important parameter.

  19. On convergence of homotopy analysis method and its application to ...

    African Journals Online (AJOL)

    In this paper, we have used the homotopy analysis method (HAM) to obtain approximate solution of fractional integro-differential equations (FIDEs). Convergence of HAM is considered for this kind of equations. Also some examples are given to illustrate the high efficiency and precision of HAM. Keywords: Fractional ...

  20. Kernel Methods for Machine Learning with Life Science Applications

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie

    Kernel methods refer to a family of widely used nonlinear algorithms for machine learning tasks like classification, regression, and feature extraction. By exploiting the so-called kernel trick straightforward extensions of classical linear algorithms are enabled as long as the data only appear a...

  1. Application of the trial equation method for solving some nonlinear ...

    Indian Academy of Sciences (India)

    Therefore, our aim is just to find the function F. Liu has obtained a number of exact solutions to many nonlinear differential equations when F(u) is a polynomial or a rational function. ... In this study, we apply the trial equation method to seek exact solutions of the ... twice and setting the integration constant to zero, we have.

  2. Applications of the Maximum Entropy Method in superspace

    Czech Academy of Sciences Publication Activity Database

    van Smaalen, S.; Palatinus, Lukáš

    2004-01-01

    Roč. 305, - (2004), s. 57-62 ISSN 0015-0193 Grant - others:DFG and FCI(DE) XX Institutional research plan: CEZ:AV0Z1010914 Keywords : Maximum Entropy Method * modulated structures * charge density Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.517, year: 2004

  3. Remark on application of the Banach metric method to cosmology

    International Nuclear Information System (INIS)

    Szydlowski, M.; Heller, M.

    1982-01-01

    If the cosmological equations can be reduced to the form of a dynamic system, the space of all their solutions is a Banach space. The influence of different parameters on the dynamics of the world models can be easily studied by means of the Banach metric. The method is tested for the Friedman cosmological models perturbed by the bulk viscosity. (author)

  4. Approximating methods for intractable probabilistic models: Applications in neuroscience

    DEFF Research Database (Denmark)

    Højen-Sørensen, Pedro

    2002-01-01

    This thesis investigates various methods for carrying out approximate inference in intractable probabilistic models. By capturing the relationships between random variables, the framework of graphical models hints at which sets of random variables pose a problem to the inferential step. The appro...

  5. The Application of Time-Frequency Methods to HUMS

    Science.gov (United States)

    Pryor, Anna H.; Mosher, Marianne; Lewicki, David G.; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper reports the study of four time-frequency transforms applied to vibration signals and presents a new metric for comparing them for fault detection. The four methods to be described and compared are the Short Time Frequency Transform (STFT), the Choi-Williams Distribution (WV-CW), the Continuous Wavelet Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels, are analyzed using these methods. The new metric for automatic fault detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the methods on this data set. Analysis with the CWT detects mechanical problems with the test rig not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic fault detection and to develop methods of setting the threshold for the metric.

  6. Ab initio calculations of mechanical properties: Methods and applications

    Czech Academy of Sciences Publication Activity Database

    Pokluda, J.; Černý, Miroslav; Šob, Mojmír; Umeno, Y.

    2015-01-01

    Roč. 73, AUG (2015), s. 127-158 ISSN 0079-6425 R&D Projects: GA ČR(CZ) GAP108/12/0311 Institutional support: RVO:68081723 Keywords : Ab initio methods * Elastic moduli * Intrinsic hardness * Stability analysis * Theoretical strength * Intrinsic brittleness/ductility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.083, year: 2015

  7. Application of Bayesian Methods for Detecting Fraudulent Behavior on Tests

    Science.gov (United States)

    Sinharay, Sandip

    2018-01-01

    Producers and consumers of test scores are increasingly concerned about fraudulent behavior before and during the test. There exist several statistical or psychometric methods for detecting fraudulent behavior on tests. This paper provides a review of the Bayesian approaches among them. Four hitherto-unpublished real data examples are provided to…

  8. Applications of meshless methods for damage computations with finite strains

    International Nuclear Information System (INIS)

    Pan Xiaofei; Yuan Huang

    2009-01-01

    Material defects such as cavities have great effects on the damage process in ductile materials. Computations based on finite element methods (FEMs) often suffer from instability due to material failure as well as large distortions. To improve computational efficiency and robustness the element-free Galerkin (EFG) method is applied in the micro-mechanical constitute damage model proposed by Gurson and modified by Tvergaard and Needleman (the GTN damage model). The EFG algorithm is implemented in the general purpose finite element code ABAQUS via the user interface UEL. With the help of the EFG method, damage processes in uniaxial tension specimens and notched specimens are analyzed and verified with experimental data. Computational results reveal that the damage which takes place in the interior of specimens will extend to the exterior and cause fracture of specimens; the damage is a fast procedure relative to the whole tensing process. The EFG method provides more stable and robust numerical solution in comparing with the FEM analysis

  9. Application of the simplex method of linear programming model to ...

    African Journals Online (AJOL)

    This work discussed how the simplex method of linear programming could be used to maximize the profit of any business firm using Saclux Paint Company as a case study. It equally elucidated the effect variation in the optimal result obtained from linear programming model, will have on any given firm. It was demonstrated ...

  10. Applications of γ-ray image method to astronomy

    International Nuclear Information System (INIS)

    Wuensche, C.A.; Braga, J.; Jayanthi, U.B.; Villela, T.

    1990-01-01

    The use of codified mask technique in a gamma ray telescope is presented. The image reconstruction method is described showing the mask operation. The signal/noise relation for redundant uniform arrangements which constitute the mask, is discussed. The MASCO telescope is described in detail showing the main characteristics of project. (M.C.K.)

  11. Heuristic Methods of Integer Programming and Its Applications in Economics

    Directory of Open Access Journals (Sweden)

    Dominika Crnjac Milić

    2010-12-01

    Full Text Available A short overview of the results related to integer programming is described in the introductory part of this paper. Furthermore, there is a list of literature related to this field. The main part of the paper analyses the Heuristic method which yields a very fast result without the use of significant mathematical tools.

  12. The effect of different fluoride application methods on the remineralization of initial carious lesions.

    Science.gov (United States)

    Byeon, Seon Mi; Lee, Min Ho; Bae, Tae Sung

    2016-05-01

    The purpose of this study was to assess the effect of single and combined applications of fluoride on the amount of fluoride release, and the remineralization and physical properties of enamel. Each of four fluoride varnish and gel products (Fluor Protector, FP, Ivoclar Vivadent; Tooth Mousse Plus, TM, GC; 60 Second Gel, A, Germiphene; CavityShield, CS, 3M ESPE) and two fluoride solutions (2% sodium fluoride, N; 8% tin(ii) fluoride, S) were applied on bovine teeth using single and combined methods (10 per group), and then the amount of fluoride release was measured for 4 wk. The electron probe microanalysis and the Vickers microhardness measurements were conducted to assess the effect of fluoride application on the surface properties of bovine teeth. The amount of fluoride release was higher in combined applications than in single application (p < 0.05). Microhardness values were higher after combined applications of N with FP, TM, and CS than single application of them, and these values were also higher after combined applications of S than single application of A (p < 0.05). Ca and P values were higher in combined applications of N with TM and CS than single application of them (p < 0.05). They were also increased after combined applications of the S with A than after single application (p < 0.05). Combined applications of fluoride could be used as a basis to design more effective methods of fluoride application to provide enhanced remineralization.

  13. Recent developments and applications of multi-configuration Hartree-Fock methods. NRCC proceedings No. 10

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, M. (ed.)

    1981-02-01

    Twenty-seven papers are included in four sessions titled: generalized Fock operator methods, annihilation of single excitations methods, second-order MCSCF methods, and applications of MCHF methods. Separate abstracts were prepared for eight papers; one of the remaining had been previously abstracted. (DLC)

  14. Evaluation of Propiconazole Application Methods for Control of Oak Wilt in Texas Live Oaks

    Science.gov (United States)

    A. Dan Wilson; D.G. Lester

    1996-01-01

    Four fungicide application methods using the microencapsulated (blue) 14.3% EC formulation of propiconazole (Alamo), including a low-concentration high volume method, two high-concentration low volume microinjection methods, and a low-concentration intermediate volume soil drench method, were tested for effectiveness in controlling oak wilt in a mature natural stand of...

  15. Recent developments and applications of multi-configuration Hartree-Fock methods. NRCC proceedings No. 10

    International Nuclear Information System (INIS)

    Dupuis, M.

    1981-02-01

    Twenty-seven papers are included in four sessions titled: generalized Fock operator methods, annihilation of single excitations methods, second-order MCSCF methods, and applications of MCHF methods. Separate abstracts were prepared for eight papers; one of the remaining had been previously abstracted

  16. Analysis of Formal Methods for Specification of E-Commerce Applications

    Directory of Open Access Journals (Sweden)

    Sadiq Ali Khan

    2016-01-01

    Full Text Available E-commerce based application characteristics portray elevated dynamics while incorporating decentralized nature. Extreme emphasis influencing structural design plus implementation, positions such applications highly appreciated. Significant research articles reveal that, applying formal methods addressing challenges incumbent with E-commerce based applications, contribute towards reliability and robustness obliging the system. Anticipating and designing sturdy e-process and concurrent implementation, allows application behavior extra strength against errors, frauds and hacking, minimizing program faults during application operations. Programmers find extreme difficulty guaranteeing correct processing under all circumstances, however, not impossible. Concealed flaws and errors, triggered only under unexpected and unanticipated scenarios, pilot subtle mistakes and appalling failures. Code authors utilize various formal methods for reducing these flaws. Mentioning prominent methods would include, ASM (Abstract State Machines, B-Method, z-Language, UML (Unified Modelling Language etc. This paper primarily focuses different formal methods applied while deliberating specification and verification techniques for cost effective.

  17. Statistical methods and applications from a historical perspective selected issues

    CERN Document Server

    Mignani, Stefania

    2014-01-01

    The book showcases a selection of peer-reviewed papers, the preliminary versions of which were presented at a conference held 11-13 June 2011 in Bologna and organized jointly by the Italian Statistical Society (SIS), the National Institute of Statistics (ISTAT) and the Bank of Italy. The theme of the conference was "Statistics in the 150 years of the Unification of Italy." The celebration of the anniversary of Italian unification provided the opportunity to examine and discuss the methodological aspects and applications from a historical perspective and both from a national and international point of view. The critical discussion on the issues of the past has made it possible to focus on recent advances, considering the studies of socio-economic and demographic changes in European countries.

  18. Bogoliubov-de Gennes method and its applications

    CERN Document Server

    Zhu, Jian-Xin

    2016-01-01

    The purpose of this book is to provide an elementary yet systematic description of the Bogoliubov-de Gennes (BdG) equations, their unique symmetry properties and their relation to Green’s function theory. Specifically, it introduces readers to the supercell technique for the solutions of the BdG equations, as well as other related techniques for more rapidly solving the equations in practical applications. The BdG equations are derived from a microscopic model Hamiltonian with an effective pairing interaction and fully capture the local electronic structure through self-consistent solutions via exact diagonalization. This approach has been successfully generalized to study many aspects of conventional and unconventional superconductors with inhomogeneities – including defects, disorder or the presence of a magnetic field – and becomes an even more attractive choice when the first-principles information of a typical superconductor is incorporated via the construction of a low-energy tight-binding model. ...

  19. Time Delay Systems Methods, Applications and New Trends

    CERN Document Server

    Vyhlídal, Tomáš; Niculescu, Silviu-Iulian; Pepe, Pierdomenico

    2012-01-01

    This volume is concerned with the control and dynamics of time delay systems; a research field with at least six-decade long history that has been very active especially in the past two decades. In parallel to the new challenges emerging from engineering, physics, mathematics, and economics, the volume covers several new directions including topology induced stability, large-scale interconnected systems, roles of networks in stability, and new trends in predictor-based control and consensus dynamics. The associated applications/problems are described by highly complex models, and require solving inverse problems as well as the development of new theories, mathematical tools, numerically-tractable algorithms for real-time control. The volume, which is targeted to present these developments in this rapidly evolving field, captures a careful selection of the most recent papers contributed by experts and collected under five parts: (i) Methodology: From Retarded to Neutral Continuous Delay Models, (ii) Systems, S...

  20. Micellar enhanced spectrofluorimetric methods: application to the determination of pyrene

    Energy Technology Data Exchange (ETDEWEB)

    Singh, H.; Hinze, W.L.

    1982-01-01

    The effects of cationic hexadecyltrimethylammonium chloride (CTAC), nonionic polyoxyethylene(9.5)p-1,1,3,3-tetramethylbutylphenol, Triton X-100 (TX-100), and anionic sodium dodecylsulfate (NaLS) surfactant micelles upon the spectrofluorimetric determination of pyrene is described. It was found that the intensity of the pyrene fluorescence is enhanced from 3 to 16 times in the presence of the micellar systems. Possible reasons for this micellar induced enhanced fluorescence are discussed. The spectral parameters, fluorescence lifetimes, quantum yields, lower detection limits, and analytical figures of merit for pyrene in CTAC, NaLS, TX-100, ethanol, and water are compared. The detection limit of pyrene in the presence of micelles (approx. 1.0 x 10/sup -10/ M) is about an order of magnitude lower than that possible in alcohol alone. A brief discussion on the predicted general applicability of this new technique in fluorimetric analysis is also given. 4 figures, 2 tables.

  1. Single molecule force spectroscopy: methods and applications in biology

    International Nuclear Information System (INIS)

    Shen Yi; Hu Jun

    2012-01-01

    Single molecule measurements have transformed our view of biomolecules. Owing to the ability of monitoring the activity of individual molecules, we now see them as uniquely structured, fluctuating molecules that stochastically transition between frequently many substrates, as two molecules do not follow precisely the same trajectory. Indeed, it is this discovery of critical yet short-lived substrates that were often missed in ensemble measurements that has perhaps contributed most to the better understanding of biomolecular functioning resulting from single molecule experiments. In this paper, we give a review on the three major techniques of single molecule force spectroscopy, and their applications especially in biology. The single molecular study of biotin-streptavidin interactions is introduced as a successful example. The problems and prospects of the single molecule force spectroscopy are discussed, too. (authors)

  2. Application of risk-based inspection methods for cryogenic equipment

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Risk-based Inspection (RBI) is widely applied across the world as part of Pressure Equipment Integrity Management, especially in the oil and gas industry, to generally reduce costs compared with time-based approaches and assist in assigning resources to the most critical equipment. One of the challenges in RBI is to apply it for low temperature and cryogenic applications, as there are usually no degradation mechanisms by which to determine a suitable probability of failure in the overall risk assessment. However, the assumptions used for other degradation mechanisms can be adopted to determine, qualitatively and semi-quantitatively, a consequence of failure within the risk assessment. This can assist in providing a consistent basis for the assumptions used in ensuring adequate process safety barriers and determining suitable sizing of relief devices. This presentation will discuss risk-based inspection in the context of cryogenic safety, as well as present some of the considerations for the risk assessme...

  3. Application of statistical method for FBR plant transient computation

    International Nuclear Information System (INIS)

    Kikuchi, Norihiro; Mochizuki, Hiroyasu

    2014-01-01

    Highlights: • A statistical method with a large trial number up to 10,000 is applied to the plant system analysis. • A turbine trip test conducted at the “Monju” reactor is selected as a plant transient. • A reduction method of trial numbers is discussed. • The result with reduced trial number can express the base regions of the computed distribution. -- Abstract: It is obvious that design tolerances, errors included in operation, and statistical errors in empirical correlations effect on the transient behavior. The purpose of the present study is to apply above mentioned statistical errors to a plant system computation in order to evaluate the statistical distribution contained in the transient evolution. A selected computation case is the turbine trip test conducted at 40% electric power of the prototype fast reactor “Monju”. All of the heat transport systems of “Monju” are modeled with the NETFLOW++ system code which has been validated using the plant transient tests of the experimental fast reactor Joyo, and “Monju”. The effects of parameters on upper plenum temperature are confirmed by sensitivity analyses, and dominant parameters are chosen. The statistical errors are applied to each computation deck by using a pseudorandom number and the Monte-Carlo method. The dSFMT (Double precision SIMD-oriented Fast Mersenne Twister) that is developed version of Mersenne Twister (MT), is adopted as the pseudorandom number generator. In the present study, uniform random numbers are generated by dSFMT, and these random numbers are transformed to the normal distribution by the Box–Muller method. Ten thousands of different computations are performed at once. In every computation case, the steady calculation is performed for 12,000 s, and transient calculation is performed for 4000 s. In the purpose of the present statistical computation, it is important that the base regions of distribution functions should be calculated precisely. A large number of

  4. The application of probability methods for safeguards purposes

    International Nuclear Information System (INIS)

    Rumyantsev, A.N.

    1976-01-01

    The authors consider possible ways of applying probability methods to solve problems involved in accounting for nuclear materials. The increase in the flow of nuclear materials subject to IAEA safeguards makes it necessary to increase the accuracy of determination of the actual quantities of nuclear materials at all stages of their processing and use. It is proposed that the IAEA's automated system of accounting for nuclear materials, based on accounting information for each material balance zone and the results of random experimental checks performed by IAEA inspectors, be supplemented with mathematical models of the flow of nuclear materials in each balance zone based on the data supplied for each facility in the balance zone when it was placed under safeguards. The statistical error in determining the material balance and the material unaccounted for can be considerably reduced in this way even if the experimental control methods are retained. (author)

  5. An introduction to computer simulation methods applications to physical systems

    CERN Document Server

    Gould, Harvey; Christian, Wolfgang

    2007-01-01

    Now in its third edition, this book teaches physical concepts using computer simulations. The text incorporates object-oriented programming techniques and encourages readers to develop good programming habits in the context of doing physics. Designed for readers at all levels , An Introduction to Computer Simulation Methods uses Java, currently the most popular programming language. Introduction, Tools for Doing Simulations, Simulating Particle Motion, Oscillatory Systems, Few-Body Problems: The Motion of the Planets, The Chaotic Motion of Dynamical Systems, Random Processes, The Dynamics of Many Particle Systems, Normal Modes and Waves, Electrodynamics, Numerical and Monte Carlo Methods, Percolation, Fractals and Kinetic Growth Models, Complex Systems, Monte Carlo Simulations of Thermal Systems, Quantum Systems, Visualization and Rigid Body Dynamics, Seeing in Special and General Relativity, Epilogue: The Unity of Physics For all readers interested in developing programming habits in the context of doing phy...

  6. Quantum control with NMR methods: Application to quantum simulations

    International Nuclear Information System (INIS)

    Negrevergne, Camille

    2002-01-01

    Manipulating information according to quantum laws allows improvements in the efficiency of the way we treat certain problems. Liquid state Nuclear Magnetic Resonance methods allow us to initialize, manipulate and read the quantum state of a system of coupled spins. These methods have been used to realize an experimental small Quantum Information Processor (QIP) able to process information through around hundred elementary operations. One of the main themes of this work was to design, optimize and validate reliable RF-pulse sequences used to 'program' the QIP. Such techniques have been used to run a quantum simulation algorithm for anionic systems. Some experimental results have been obtained on the determination of Eigen energies and correlation function for a toy problem consisting of fermions on a lattice, showing an experimental proof of principle for such quantum simulations. (author) [fr

  7. The finite element method and applications in engineering using ANSYS

    CERN Document Server

    Madenci, Erdogan

    2015-01-01

    This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS®, a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS® commands and ANSYS® screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: • An introduction to FEM • Fundamentals and analysis capabilities of ANSYS® • Fundamentals of discretization and approximation functions • Modeling techniq...

  8. Model-independent determination of dissociation energies: method and applications

    International Nuclear Information System (INIS)

    Vogel, Manuel; Hansen, Klavs; Herlert, Alexander; Schweikhard, Lutz

    2003-01-01

    A number of methods are available for the purpose of extracting dissociation energies of polyatomic particles. Many of these techniques relate the rate of disintegration at a known excitation energy to the value of the dissociation energy. However, such a determination is susceptible to systematic uncertainties, mainly due to the unknown thermal properties of the particles and the potential existence of 'dark' channels, such as radiative cooling. These problems can be avoided with a recently developed procedure, which applies energy-dependent reactions of the decay products as an uncalibrated thermometer. Thus, it allows a direct measurement of dissociation energies, without any assumption on properties of the system or on details of the disintegration process. The experiments have been performed in a Penning trap, where both rate constants and branching ratios have been measured. The dissociation energies determined with different versions of the method yield identical values, within a small uncertainty

  9. Decision tree methods: applications for classification and prediction.

    Science.gov (United States)

    Song, Yan-Yan; Lu, Ying

    2015-04-25

    Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.

  10. Application to ion exchange study of an interferometry method

    International Nuclear Information System (INIS)

    Platzer, R.

    1960-01-01

    The numerous experiments carried out on ion exchange between clay suspensions and solutions have so far been done by studying the equilibrium between the two phases; by this method it is very difficult to obtain the kinetic properties of the exchange reactions. At method consisting of observation with an interferential microscope using polarised white light shows up the variations in concentration which take place during the ion exchange between an ionic solution and a montmorillonite slab as well as between an ionic solution and a grain of organic ion exchanger. By analysing the results it will be possible to compare the exchange constants of organic ion exchangers with those of mineral ion exchangers. (author) [fr

  11. Application of NUREG-1150 methods and results to accident management

    International Nuclear Information System (INIS)

    Dingman, S.; Sype, T.; Camp, A.; Maloney, K.

    1991-01-01

    The use of NUREG-1150 and similar probabilistic risk assessments in the Nuclear Regulatory Commission (NRC) and industry risk management programs is discussed. Risk management is more comprehensive than the commonly used term accident management. Accident management includes strategies to prevent vessel breach, mitigate radionuclide releases from the reactor coolant system, and mitigate radionuclide releases to the environment. Risk management also addresses prevention of accident initiators, prevention of core damage, and implementation of effective emergency response procedures. The methods and results produced in NUREG-1150 provide a framework within which current risk management strategies can be evaluated, and future risk management programs can be developed and assessed. Examples of the use of the NUREG-1150 framework for identifying and evaluating risk management options are presented. All phases of risk management are discussed, with particular attention given to the early phases of accidents. Plans and methods for evaluating accident management strategies that have been identified in the NRC accident management program are discussed

  12. Application of NUREG-1150 methods and results to accident management

    International Nuclear Information System (INIS)

    Dingman, S.; Sype, T.; Camp, A.; Maloney, K.

    1990-01-01

    The use of NUREG-1150 and similar Probabilistic Risk Assessments in NRC and industry risk management programs is discussed. ''Risk management'' is more comprehensive than the commonly used term ''accident management.'' Accident management includes strategies to prevent vessel breach, mitigate radionuclide releases from the reactor coolant system, and mitigate radionuclide releases to the environment. Risk management also addresses prevention of accident initiators, prevention of core damage, and implementation of effective emergency response procedures. The methods and results produced in NUREG-1150 provide a framework within which current risk management strategies can be evaluated, and future risk management programs can be developed and assessed. Examples of the use of the NUREG-1150 framework for identifying and evaluating risk management options are presented. All phases of risk management are discussed, with particular attention given to the early phases of accidents. Plans and methods for evaluating accident management strategies that have been identified in the NRC accident management program are discussed. 2 refs., 3 figs

  13. Application of Density Estimation Methods to Datasets from a Glider

    Science.gov (United States)

    2014-09-30

    humpback and sperm whales as well as different dolphin species. OBJECTIVES The objective of this research is to extend existing methods for cetacean...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...estimation from single sensor datasets. Required steps for a cue counting approach, where a cue has been defined as a clicking event (Küsel et al., 2011), to

  14. [Application of Finite Element Method in Thoracolumbar Spine Traumatology].

    Science.gov (United States)

    Zhang, Min; Qiu, Yong-gui; Shao, Yu; Gu, Xiao-feng; Zeng, Ming-wei

    2015-04-01

    The finite element method (FEM) is a mathematical technique using modern computer technology for stress analysis, and has been gradually used in simulating human body structures in the biomechanical field, especially more widely used in the research of thoracolumbar spine traumatology. This paper reviews the establishment of the thoracolumbar spine FEM, the verification of the FEM, and the thoracolumbar spine FEM research status in different fields, and discusses its prospects and values in forensic thoracolumbar traumatology.

  15. [Methods and Applications of Psychological Stress State Assessment].

    Science.gov (United States)

    Li, Xin; Yang, Yadan; Hou, Yongjie; Chen, Zetao

    2015-08-01

    In this paper, the response of individual's physiological system under psychological stress state is discussed, and the theoretical support for psychological stress assessment research is provided. The two methods, i.e., the psychological stress assessment of questionnaire and physiological parameter assessment used for current psychological stress assessment are summarized. Then, the future trend of development of psychological stress assessment research is pointed out. We hope that this work could do and provide further support and help to psychological stress assessment studies.

  16. Application of neuro-fuzzy methods to gamma spectroscopy

    Science.gov (United States)

    Grelle, Austin L.

    Nuclear non-proliferation activities are an essential part of national security activities both domestic and abroad. The safety of the public in densely populated environments such as urban areas or large events can be compromised if devices using special nuclear materials are present. Therefore, the prompt and accurate detection of these materials is an important topic of research, in which the identification of normal conditions is also of importance. With gamma-ray spectroscopy, these conditions are identified as the radiation background, which though being affected by a multitude of factors is ever present. Therefore, in nuclear non-proliferation activities the accurate identification of background is important. With this in mind, a method has been developed to utilize aggregate background data to predict the background of a location through the use of an Artificial Neural Network (ANN). After being trained on background data, the ANN is presented with nearby relevant gamma-ray spectroscopy data---as identified by a Fuzzy Inference System - to create a predicted background spectra to compare to a measured spectra. If a significant deviation exists between the predicted and measured data, the method alerts the user such that a more thorough investigation can take place. Research herein focused on data from an urban setting in which the number of false positives was observed to be 28 out of a total of 987, representing 2.94% error. The method therefore currently shows a high rate of false positives given the current configuration, however there are promising steps that can be taken to further minimize this error. With this in mind, the method stands as a potentially significant tool in urban nuclear nonproliferation activities.

  17. An SEU rate prediction method for microprocessors of space applications

    International Nuclear Information System (INIS)

    Gao Jie; Li Qiang

    2012-01-01

    In this article,the relationship between static SEU (Single Event Upset) rate and dynamic SEU rate in microprocessors for satellites is studied by using process duty cycle concept and fault injection technique. The results are compared to in-orbit flight monitoring data. The results show that dynamic SEU rate by using process duty cycle can estimate in-orbit SEU rate of microprocessor reasonable; and the fault injection technique is a workable method to estimate SEU rate. (authors)

  18. Application of the bifurcation method to the modified Boussinesq equation

    Directory of Open Access Journals (Sweden)

    Shaoyong Li

    2014-08-01

    Firstly, we give a property of the solutions of the equation, that is, if $1+u(x, t$ is a solution, so is $1-u(x, t$. Secondly, by using the bifurcation method of dynamical systems we obtain some explicit expressions of solutions for the equation, which include kink-shaped solutions, blow-up solutions, periodic blow-up solutions and solitary wave solutions. Some previous results are extended.

  19. Application of RI-counting method for posttraumatic CSF rhinorrhea

    International Nuclear Information System (INIS)

    Itoh, Takahiko; Terai, Yoshinori; Fujimoto, Shunichiro; Kawauchi, Masamitsu.

    1987-01-01

    Numerous techniques and procedures have been reported for the evaluation of CSF fistulas. Especially metrizamide CT cisternography and radioisotope (RI) cisternography have been reported to be reliable for localizing the site of CSF leakage, however, it has been difficult to diagnose the existence and the site of CSF leakages in some cases. RI-counting method, measuring RI-count of intranasal cotton pledgets after the intrathecal injection of RI ( 111 In-DTPA) is thought to be the most reliable method for detecting the presence of CSF leakage in these cases. We used six cotton pledgets which were inserted into upper, middle, and lower meatuses on both side. Because the site of pledgets with ghest RI-count has anatomical relationship to the opening of the paranasal sinus, we can surmise the leakage of dural defect and CSF leakage. RI counting method was applied to two patients in whom it was difficult to diagnose the presence of CSF leakage with other procedures. The patients were free in position for four hours after the intrathecal injection of RI, and in the prone position for 30 minutes before RI-counting of intranasal cotton pledgets. After measuring the RI-counts of six pledgets, the counts were compared with each other. The cotton pledget inserted into left middle meatus showed the highest count in both cases. From this result and finding of conventional skull tomography we speculated the site of CSF leakage to be frontal sinus or ethmoid sinus. Operation demonstrated the opening of dura into the frontal sinus in one case, and ethmoid sinus in another case. As mentioned above, RI-counting method has the advantages of detecting the existence and the site of CSF leakage. (author)

  20. Application of heavy-light methods to B meson physics

    International Nuclear Information System (INIS)

    Eichten, E.; Hockney, G.; Thacker, H.B.

    1989-01-01

    The heavy-light method is applied to the study of the B meson spectrum, the pseudoscalar decay constant f B , the mixing (B) parameter, and exclusive semileptonic B meson decays. Preliminary results are discussed for f B and the B parameter at β = 5.7 and κ = 0.165 on a 12 3 x 24 lattice and at β = 5.9 and κ = 0.158 on a 16 3 x 32 lattice. 9 refs., 2 figs., 2 tabs

  1. INTEGRATED APPLICATION OF OPTICAL DIAGNOSTIC METHODS IN ULCERATIVE COLITIS

    Directory of Open Access Journals (Sweden)

    E. V. Velikanov

    2013-01-01

    Full Text Available Abstract. Our results suggest that the combined use of optical coherent tomography (OCT and fluorescence diagnosis helps to refine the nature and boundaries of the pathological process in the tissue of the colon in ulcerative colitis. Studies have shown that an integrated optical diagnostics allows us to differentiate lesions respectively to histology and to decide on the need for biopsy and venue. This method is most appropriate in cases difficult for diagnosis. 

  2. Application of subset simulation methods to dynamic fault tree analysis

    International Nuclear Information System (INIS)

    Liu Mengyun; Liu Jingquan; She Ding

    2015-01-01

    Although fault tree analysis has been implemented in the nuclear safety field over the past few decades, it was recently criticized for the inability to model the time-dependent behaviors. Several methods are proposed to overcome this disadvantage, and dynamic fault tree (DFT) has become one of the research highlights. By introducing additional dynamic gates, DFT is able to describe the dynamic behaviors like the replacement of spare components or the priority of failure events. Using Monte Carlo simulation (MCS) approach to solve DFT has obtained rising attention, because it can model the authentic behaviors of systems and avoid the limitations in the analytical method. In this paper, it provides an overview and MCS information for DFT analysis, including the sampling of basic events and the propagation rule for logic gates. When calculating rare-event probability, large amount of simulations in standard MCS are required. To improve the weakness, subset simulation (SS) approach is applied. Using the concept of conditional probability and Markov Chain Monte Carlo (MCMC) technique, the SS method is able to accelerate the efficiency of exploring the failure region. Two cases are tested to illustrate the performance of SS approach, and the numerical results suggest that it gives high efficiency when calculating complicated systems with small failure probabilities. (author)

  3. Income Inequality Decomposition, Russia 1992-2002: Method and Application

    Directory of Open Access Journals (Sweden)

    Wim Jansen

    2013-11-01

    Full Text Available Decomposition methods for income inequality measures, such as the Gini index and the members of the Generalised Entropy family, are widely applied. Most methods decompose income inequality into a between (explained and a within (unexplained part, according to two or more population subgroups or income sources. In this article, we use a regression analysis for a lognormal distribution of personal income, modelling both the mean and the variance, decomposing the variance as a measure of income inequality, and apply the method to survey data from Russia spanning the first decade of market transition (1992-2002. For the first years of the transition, only a small part of the income inequality could be explained. Thereafter, between 1996 and 1999, a larger part (up to 40% could be explained, and ‘winner’ and ‘loser’ categories of the transition could be spotted. Moving to the upper end of the income distribution, the self-employed won from the transition. The unemployed were among the losers.

  4. [Application of ordinary Kriging method in entomologic ecology].

    Science.gov (United States)

    Zhang, Runjie; Zhou, Qiang; Chen, Cuixian; Wang, Shousong

    2003-01-01

    Geostatistics is a statistic method based on regional variables and using the tool of variogram to analyze the spatial structure and the patterns of organism. In simulating the variogram within a great range, though optimal simulation cannot be obtained, the simulation method of a dialogue between human and computer can be used to optimize the parameters of the spherical models. In this paper, the method mentioned above and the weighted polynomial regression were utilized to simulate the one-step spherical model, the two-step spherical model and linear function model, and the available nearby samples were used to draw on the ordinary Kriging procedure, which provided a best linear unbiased estimate of the constraint of the unbiased estimation. The sum of square deviation between the estimating and measuring values of varying theory models were figured out, and the relative graphs were shown. It was showed that the simulation based on the two-step spherical model was the best simulation, and the one-step spherical model was better than the linear function model.

  5. Application of the Least Squares Method in Axisymmetric Biharmonic Problems

    Directory of Open Access Journals (Sweden)

    Vasyl Chekurin

    2016-01-01

    Full Text Available An approach for solving of the axisymmetric biharmonic boundary value problems for semi-infinite cylindrical domain was developed in the paper. On the lateral surface of the domain homogeneous Neumann boundary conditions are prescribed. On the remaining part of the domain’s boundary four different biharmonic boundary pieces of data are considered. To solve the formulated biharmonic problems the method of least squares on the boundary combined with the method of homogeneous solutions was used. That enabled reducing the problems to infinite systems of linear algebraic equations which can be solved with the use of reduction method. Convergence of the solution obtained with developed approach was studied numerically on some characteristic examples. The developed approach can be used particularly to solve axisymmetric elasticity problems for cylindrical bodies, the heights of which are equal to or exceed their diameters, when on their lateral surface normal and tangential tractions are prescribed and on the cylinder’s end faces various types of boundary conditions in stresses in displacements or mixed ones are given.

  6. A method of background noise cancellation for SQUID applications

    International Nuclear Information System (INIS)

    He, D F; Yoshizawa, M

    2003-01-01

    When superconducting quantum inference devices (SQUIDs) operate in low-cost shielding or unshielded environments, the environmental background noise should be reduced to increase the signal-to-noise ratio. In this paper we present a background noise cancellation method based on a spectral subtraction algorithm. We first measure the background noise and estimate the noise spectrum using fast Fourier transform (FFT), then we subtract the spectrum of background noise from that of the observed noisy signal and the signal can be reconstructed by inverse FFT of the subtracted spectrum. With this method, the background noise, especially stationary inferences, can be suppressed well and the signal-to-noise ratio can be increased. Using high-T C radio-frequency SQUID gradiometer and magnetometer, we have measured the magnetic field produced by a watch, which was placed 35 cm under a SQUID. After noise cancellation, the signal-to-noise ratio could be greatly increased. We also used this method to eliminate the vibration noise of a cryocooler SQUID

  7. Ted Madden's Network Methods: Applications to the Earth's Schumann Resonances

    Science.gov (United States)

    Williams, E. R.; Yu, H.

    2014-12-01

    Ted Madden made clever use of electrical circuit concepts throughout his long career in geophysical research: induced polarization, DC resistivity, magnetotellurics, Schumann resonances, the transport properties of rocks and even elasticity and the brittle failure of stressed rocks. The general methods on network analogies were presented in a terse monograph (Madden, 1972) which came to be called "The Grey Peril" by his students, named more for the challenge of deciphering the material as for the color of its cover. This talk will focus on Ted's first major use of the transmission line analogy in treating the Earth's Schumann resonances. This approach in Madden and Thompson (1965) provided a greatly simplified two-dimensional treatment of an electromagnetic problem with a notable three-dimensional structure. This skillful treatment that included the role of the Earth's magnetic field also led to predictions that the Schumann resonance energy would leak into space, predictions that have been verified nearly 50 years later in satellite observations. An extension of the network analogy by Nelson (1967) using Green's function methods provides a means to treat the inverse problem for the background Schumann resonances for the global lightning activity. The development of Madden's methods will be discussed along with concrete results based on them for the monitoring of global lightning.

  8. Emerging research methods and their application to road safety.

    Science.gov (United States)

    Tarko, Andrew; Boyle, Linda Ng; Montella, Alfonso

    2013-12-01

    The study of road safety has seen great strides over the past few decades with advances in analytical methods and research tools that allow researchers to provide insights into the complex interactions of the driver, vehicle, and roadway. Data collection methods range from traditional traffic and roadway sensors to instrumented vehicles and driving simulators, capable of providing detailed data on both the normal driving conditions and the circumstances surrounding a safety critical event. In September 2011, the Third International Conference on Road Safety and Simulation was held in Indianapolis, Indiana, USA, which was hosted by the Purdue University Center for Road Safety and sponsored by the Transportation Research Board and its three committees: ANB20 Safety Data, Analysis and Evaluation, AND30 Simulation and Measurement of Vehicle and Operator Performance, and ABJ95 Visualization in Transportation. The conference brought together two hundred researchers from all over the world demonstrating some of the latest research methods to quantify crash causality and associations, and model road safety. This special issue is a collection of 14 papers that were presented at the conference and then peer-reviewed through this journal. These papers showcase the types of analytical tools needed to examine various crash types, the use of naturalistic and on-road data to validate the use of surrogate measures of safety, and the value of driving simulators to examine high-risk situations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Evaluation of incompressible hydrodynamic mass methods in reactor applications

    International Nuclear Information System (INIS)

    Takeuchi, K.

    1981-01-01

    The hydrodynamic (or virtual) mass approach is evaluated by comparison of structural responses computed by the hydrodynamic mass method with those computed by MULTIFLEX code for a fluid/structure interaction problem with fluid compression effects taken into account. A sample problem used in that evaluation is a simplified 1-D PWR model which is first subjected to a LOCA type transient. The time history of structural displacement computed with the hydrodynamic mass approach is compared with MULTIFLEX results. The frequencies of structural oscillation of these two computations agree. The amplitudes disagree by more than 50%, which is attributed to the effect of fluid compressibility. For the seismic study, sinusoidal forces are applied to the floor at the vessel support. The system responses are expressed by the response functions or the maximum values of the barrel/vessel relative displacements as the applied frequency is varied. The response functions are computed by the hydrodynamic mass method and by MULTIFLEX for evaluation of the virtual mass method. For the pump pulsation study, sinusoidal pressure oscillations are applied at the pump outlet and the response functions are computed as above. 12 refs

  10. Comparative study of different application methods of 14C-Fosthiazate in tomato plants

    International Nuclear Information System (INIS)

    Nitesh Sharma; Surendra Kumar

    2011-01-01

    A comparative study of different application methods of nematicide 14 C-Fosthiazate was done for the uptake in tomato plants in two varieties Pusa Ruby and Pusa Early Dwarf. The application methods used for the research purpose are seed treatment, soil supplication and drip application in presence and absence of surfactant (Tween-80).It as found that percent absorption was the highest in the drip irrigation method in presence of surfactant. The percent uptake of 14 C-Fosthiazate in two varieties of tomato plants was found to be higher in Pusa Early Dwarf in all the treatment methods. (author)

  11. Comparison of different surface quantitative analysis methods. Application to corium

    International Nuclear Information System (INIS)

    Guilbaud, N.; Blin, D.; Perodeaud, Ph.; Dugne, O.; Gueneau, Ch.

    2000-01-01

    In case of a severe hypothetical accident in a pressurized water reactor, the reactor assembly melts partially or completely. The material formed, called corium, flows out and spreads at the bottom of the reactor. To limit and control the consequences of such an accident, the specifications of the O-U-Zr basic system must be known accurately. To achieve this goal, the corium mix was melted by electron bombardment at very high temperature (3000 K) followed by quenching of the ingot in the Isabel 1 evaporator. Metallographic analyses were then required to validate the thermodynamic databases set by the Thermo-Calc software. The study consists in defining an overall surface quantitative analysis method that is fast and reliable, in order to determine the overall corium composition. The analyzed ingot originated in a [U+Fe+Y+UO 2 +ZrO 2 ) mix, with a total mass of 2253.7 grams. Several successive heating with average power were performed before a very brief plateau at very high temperature, so that the ingot was formed progressively and without any evaporation liable to modify its initial composition. The central zone of the ingot was then analyzed by qualitative and quantitative global surface methods, to yield the volume composition of the analyzed zone. Corium sample analysis happens to be very complex because of the variety and number of elements present, and also because of the presence of oxygen in a heavy element like the uranium based matrix. Three different global quantitative surface analysis methods were used: global EDS analysis (Energy Dispersive Spectrometry), with SEM, global WDS analysis (Wavelength Dispersive Spectrometry) with EPMA, and coupling of image analysis with EDS or WDS point spectroscopic analyses. The difficulties encountered during the study arose from sample preparation (corium is very sensitive to oxidation), and the choice of acquisition parameters of the images and analyses. The corium sample studied consisted of two zones displaying

  12. Oxcarbazepine: validation and application of an analytical method

    Directory of Open Access Journals (Sweden)

    Paula Cristina Rezende Enéas

    2010-06-01

    Full Text Available Oxcarbazepine (OXC is an important anticonvulsant and mood stabilizing drug. A pharmacopoeial monograph for OXC is not yet available and therefore the development and validation of a new analytical method for quantification of this drug is essential. In the present study, a UV spectrophotometric method for the determination of OXC was developed. The various parameters, such as linearity, precision, accuracy and specificity, were studied according to International Conference on Harmonization Guidelines. Batches of 150 mg OXC capsules were prepared and analyzed using the validated UV method. The formulations were also evaluated for parameters including drug-excipient compatibility, flowability, uniformity of weight, disintegration time, assay, uniformity of content and the amount of drug dissolved during the first hour.Oxcarbazepina (OXC é um fármaco anticonvulsivante e estabilizante do humor. O desenvolvimento e validação de método analítico para quantificação da OXC são de fundamental importância devido à ausência de monografias farmacopéicas oficiais para esse fármaco. Nesse trabalho, um método espectrofotométrico UV para determinação da OXC foi desenvolvido. O método proposto foi validado seguindo os parâmetros de linearidade, precisão, exatidão e especificidade de acordo com as normas da Conferência Internacional de Harmonização. Cápsulas de OXC 150 mg foram preparadas e analisadas utilizando-se o método analítico validado. As formulações foram avaliadas com relação à compatibilidade fármaco-excipientes, fluidez, determinação de peso, tempo de desintegração, doseamento, uniformidade de conteúdo e quantidade do fármaco dissolvido após 60 minutos.

  13. Applications of Symmetry Methods to the Theory of Plasma Physics

    Directory of Open Access Journals (Sweden)

    Giampaolo Cicogna

    2006-02-01

    Full Text Available The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-invariant solutions, and the symmetry classification of a nonlinear PDE.

  14. Application of Fuzzy Comprehensive Evaluation Method in Trust Quantification

    Directory of Open Access Journals (Sweden)

    Shunan Ma

    2011-10-01

    Full Text Available Trust can play an important role for the sharing of resources and information in open network environments. Trust quantification is thus an important issue in dynamic trust management. By considering the fuzziness and uncertainty of trust, in this paper, we propose a fuzzy comprehensive evaluation method to quantify trust along with a trust quantification algorithm. Simulation results show that the trust quantification algorithm that we propose can effectively quantify trust and the quantified value of an entity's trust is consistent with the behavior of the entity.

  15. Application of image processing methods to industrial radiography

    International Nuclear Information System (INIS)

    Goutte, R.; Odet, C.; Tuncer, T.; Bodson, F.; Varcin, E.

    1985-01-01

    This study was carried out with the financial support of the Commission of the European Communities as part of the CECA research program comprising of IRSID, INSA de Lyon and the Framatome and Creusot Loire companies. Its purpose was to evaluate the possibility of using digital enhancement of radiographic images to improve defect visibility in industrial radiography, thereby providing assistance in defect detection and a method for automatic analysis of radiographs. This paper provides full results obtained from work on digital processing of radiographs showing real and artificial defects. Furthermore, work on simulated automatic defect detection is also presented. 2 refs

  16. Introduction to the geophysical methods applicable to coal

    CSIR Research Space (South Africa)

    Fourie, S

    2015-01-01

    Full Text Available 2, it is the differences in the magnetic susceptibility of rocks that are exploited by the magnetic method. Units and terminology The internationally accepted unit for the magnetic field strength or intensity is the Tesla (named after Nikola Tesla..., the famous Serbian-American engineer and inventor). The Tesla is too large a unit for practical purposes and the nanotesla (nT, one billionth of a Tesla) is used in geophysical magnetic exploration. The name gamma (γ) was previously used instead...

  17. Examples of Applications of Vortex Methods to Wind Energy

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The current chapter presents wind-energy simulations obtained with the vortex code OmniVor (described in Chap. 44 ) and compared to BEM, CFD and measurements. The chapter begins by comparing rotor loads obtained with vortex methods, BEM and actuator-line simulations of wind turbines under uniform...... and yawed inflows. The second section compares wakes and flow fields obtained by actuator-disk simulations and a free-wake vortex code that uses vortex segments and vortex particles. The third section compares different implementations of viscous diffusion models and investigate their effects...

  18. Evaluation of harmonic detection methods for active power filter applications

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Blaabjerg, Frede; Hansen, Steffan

    2005-01-01

    In the attempt to minimize the harmonic disturbances created by the non-linear loads the choice of the active power filters comes out to improve the filtering efficiency and to solve many issues existing with classical passive filters. One of the key points for a proper implementation of an active...... theories. Then, the work here proposes a simulation setup that decouples the harmonic reference generator from the active filter model and its controller. In this way the selected methods can be equally analyzed and compared with respect to their performance, which helps anticipating possible...

  19. DFRFT: A Classified Review of Recent Methods with Its Application

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar Singh

    2013-01-01

    Full Text Available In the literature, there are various algorithms available for computing the discrete fractional Fourier transform (DFRFT. In this paper, all the existing methods are reviewed, classified into four categories, and subsequently compared to find out the best alternative from the view point of minimal computational error, computational complexity, transform features, and additional features like security. Subsequently, the correlation theorem of FRFT has been utilized to remove significantly the Doppler shift caused due to motion of receiver in the DSB-SC AM signal. Finally, the role of DFRFT has been investigated in the area of steganography.

  20. Spectral/hp element methods: Recent developments, applications, and perspectives

    DEFF Research Database (Denmark)

    Xu, Hui; Cantwell, Chris; Monteserin, Carlos

    2018-01-01

    regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral...... is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain...

  1. Internal dosimetry hazard and risk assessments: methods and applications

    International Nuclear Information System (INIS)

    Roberts, G.A.

    2006-01-01

    Routine internal dose exposures are typically (in the UK nuclear industry) less than external dose exposures: however, the costs of internal dosimetry monitoring programmes can be significantly greater than those for external dosimetry. For this reason decisions on when to apply routine monitoring programmes, and the nature of these programmes, can be more critical than for external dosimetry programmes. This paper describes various methods for performing hazard and risk assessments which are being developed by RWE NUKEM Limited Approved Dosimetry Services to provide an indication when routine internal dosimetry monitoring should be considered. (author)

  2. Application of the Asymptotic Taylor Expansion Method to Bistable Potentials

    Directory of Open Access Journals (Sweden)

    Okan Ozer

    2013-01-01

    Full Text Available A recent method called asymptotic Taylor expansion (ATEM is applied to determine the analytical expression for eigenfunctions and numerical results for eigenvalues of the Schrödinger equation for the bistable potentials. Optimal truncation of the Taylor series gives a best possible analytical expression for eigenfunctions and numerical results for eigenvalues. It is shown that the results are obtained by a simple algorithm constructed for a computer system using symbolic or numerical calculation. It is observed that ATEM produces excellent results consistent with the existing literature.

  3. Modeling intraindividual variability with repeated measures data methods and applications

    CERN Document Server

    Hershberger, Scott L

    2013-01-01

    This book examines how individuals behave across time and to what degree that behavior changes, fluctuates, or remains stable.It features the most current methods on modeling repeated measures data as reported by a distinguished group of experts in the field. The goal is to make the latest techniques used to assess intraindividual variability accessible to a wide range of researchers. Each chapter is written in a ""user-friendly"" style such that even the ""novice"" data analyst can easily apply the techniques.Each chapter features:a minimum discussion of mathematical detail;an empirical examp

  4. Application of noise analysis methods in nuclear reactor diagnostics

    International Nuclear Information System (INIS)

    Dach, K.

    1985-01-01

    By statistical evaluation of the fluctuation component of signals from selected detectors, noise diagnostics detects conditions of equipment which might later result in failure. The objective of early diagnostics is to detect the failed integrity of primary circuit components, failed detectors or anomalies of the thermohydraulic process. The commonest method of experimental data analysis is spectral analysis in the frequency range 0 to 50 Hz. Recently, expert diagnostic systems have been built based on artificial intelligence systems. Czechoslovakia participates in the experimental research of noise diagnostics in the context of the development of diagnostic assemblies for WWER-440 reactors. (M.D.)

  5. Elastic scattering of positronium: Application of the confined variational method

    KAUST Repository

    Zhang, Junyi

    2012-08-01

    We demonstrate for the first time that the phase shift in elastic positronium-atom scattering can be precisely determined by the confined variational method, in spite of the fact that the Hamiltonian includes an unphysical confining potential acting on the center of mass of the positron and one of the atomic electrons. As an example, we study the S-wave elastic scattering for the positronium-hydrogen scattering system, where the existing 4% discrepancy between the Kohn variational calculation and the R-matrix calculation is resolved. © Copyright EPLA, 2012.

  6. Application of smart phone on interactive teaching methods in ophthalmology

    Directory of Open Access Journals (Sweden)

    Xiao-Li Ma

    2016-06-01

    Full Text Available Smart phones as a symbol of the mobile Internet appears in college classroom, which is not only a challenge, but also a great opportunities of education information. This paper applied smart phones as the carrier of the "Internet" into ophthalmology classroom. Smart phones has a lot of features, such as rich teaching resources, diverse learning methods, flexible learning time, collating and recording capabilities and the timely, comprehensive and accurate teaching feedback so on, and could be used in case teaching and interactive teaching. The implementation of smart phones into ophthalmology classroom could inspire the learning enthusiasm of the students, enhance the quality of teaching, eventually improve teaching effects.

  7. Application of cine MRI-tagging method to aortic dessection

    International Nuclear Information System (INIS)

    Yoshioka, Kunihiro; Takahashi, Tsuneo; Kamata, Hiroyuki; Kikuchi, Kenichi; Yamaguchi, Kojiro.

    1992-01-01

    For the evaluation of aortic dissection, ECG-gated SE or cine MR imaging has been usually performed. However, detection of slow flow in the false lumen and differentiation between mural thrombus and slow flow are sometimes difficult. Because paradoxical enhancement due to slow blood flow simulates thrombus. We performed cine MR imaging with persaturation tagging, which clearly showed differentiation between thrombus and paradoxical enhancement. We concluded that cine MR imaging with tagging method was useful to evaluate the slow flow and thrombus in the false lumen. (author)

  8. Elastic scattering of positronium: Application of the confined variational method

    KAUST Repository

    Zhang, Junyi; Yan, Zong-Chao; Schwingenschlö gl, Udo

    2012-01-01

    We demonstrate for the first time that the phase shift in elastic positronium-atom scattering can be precisely determined by the confined variational method, in spite of the fact that the Hamiltonian includes an unphysical confining potential acting on the center of mass of the positron and one of the atomic electrons. As an example, we study the S-wave elastic scattering for the positronium-hydrogen scattering system, where the existing 4% discrepancy between the Kohn variational calculation and the R-matrix calculation is resolved. © Copyright EPLA, 2012.

  9. [Application of iodine metabolism analysis methods in thyroid diseases].

    Science.gov (United States)

    Han, Jian-hua; Qiu, Ling

    2013-08-01

    The main physiological role of iodine in the body is to synthesize thyroid hormone. Both iodine deficiency and iodine excess can lead to severe thyroid diseases. While its role in thyroid diseases has increasingly been recognized, few relevant platforms and techniques for iodine detection have been available in China. This paper summarizes the advantages and disadvantages of currently iodine detection methods including direct titration, arsenic cerium catalytic spectrophotometry, chromatography with pulsed amperometry, colorimetry based on automatic biochemistry, inductively coupled plasma mass spectrometry, so as to optimize the iodine nutrition for patients with thyroid diseases.

  10. Dimensioning Method for Conversational Video Applications in Wireless Convergent Networks

    Directory of Open Access Journals (Sweden)

    Raquel Perez Leal

    2007-12-01

    Full Text Available New convergent services are becoming possible, thanks to the expansion of IP networks based on the availability of innovative advanced coding formats such as H.264, which reduce network bandwidth requirements providing good video quality, and the rapid growth in the supply of dual-mode WiFi cellular terminals. This paper provides, first, a comprehensive subject overview as several technologies are involved, such as medium access protocol in IEEE802.11, H.264 advanced video coding standards, and conversational application characterization and recommendations. Second, the paper presents a new and simple dimensioning model of conversational video over wireless LAN. WLAN is addressed under the optimal network throughput and the perspective of video quality. The maximum number of simultaneous users resulting from throughput is limited by the collisions taking place in the shared medium with the statistical contention protocol. The video quality is conditioned by the packet loss in the contention protocol. Both approaches are analyzed within the scope of the advanced video codecs used in conversational video over IP, to conclude that conversational video dimensioning based on network throughput is not enough to ensure a satisfactory user experience, and video quality has to be taken also into account. Finally, the proposed model has been applied to a real-office scenario.

  11. Common themes, methods, and applications in multiscale science

    Energy Technology Data Exchange (ETDEWEB)

    Baker, G.A. Jr.

    1997-10-01

    In 1993, under the leadership of Richard Slansky, the T-Division Director, an initiative was started to facilitate cross communications and interactions between a large number of different workers who were, from their own perspectives and with regard to their own challenges, in fact working on very difficult problems which involved multiple size and time scales. The realization of this common element had the potential for valuable mutual interaction. His initiative led initially to a competency development initiative and subsequently to a broadening recognition of the importance of multiscale science and a broadening application of it to problems and concerns inherent in significant fields of endeavor at the Los Alamos National Laboratory. One of the aspects of this effort was a series of meetings which emphasizes cross communication between the workers. It was realized early on that this cross communication would be fare more effective, considering the difficult technical nature and that the range of the material was well outside the area of specialization of individual members of the group, if notes were taken, written up, and disseminated. This report represents the collection of these notes.

  12. Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions.

    Science.gov (United States)

    Hussey, N E; MacNeil, M A; Olin, J A; McMeans, B C; Kinney, M J; Chapman, D D; Fisk, A T

    2012-04-01

    Stable-isotope analysis (SIA) can act as a powerful ecological tracer with which to examine diet, trophic position and movement, as well as more complex questions pertaining to community dynamics and feeding strategies or behaviour among aquatic organisms. With major advances in the understanding of the methodological approaches and assumptions of SIA through dedicated experimental work in the broader literature coupled with the inherent difficulty of studying typically large, highly mobile marine predators, SIA is increasingly being used to investigate the ecology of elasmobranchs (sharks, skates and rays). Here, the current state of SIA in elasmobranchs is reviewed, focusing on available tissues for analysis, methodological issues relating to the effects of lipid extraction and urea, the experimental dynamics of isotopic incorporation, diet-tissue discrimination factors, estimating trophic position, diet and mixing models and individual specialization and niche-width analyses. These areas are discussed in terms of assumptions made when applying SIA to the study of elasmobranch ecology and the requirement that investigators standardize analytical approaches. Recommendations are made for future SIA experimental work that would improve understanding of stable-isotope dynamics and advance their application in the study of sharks, skates and rays. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  13. Clinical application of DSA and evaluation of its methods

    International Nuclear Information System (INIS)

    Ouyang, Yong; Ma, Heping; Gu, Shubing; Zhou, Qunhui; Zhang, Shulan; Liu, Pengzni; Zhang, Junyi.

    1990-01-01

    A total of 160 patients of two hospitals received 192 DSA examinations with different contrast administrations, and techniques of performing DSA were analyzed, compared, and evaluated with reference to the literature. It was concluded that (1) the peripheral injection of contrast material for IVDSA via cannula is simpler than that via a short catheter, but the incidences of contrast extravasation in both cases are higher than with central injection. (2) Both the lower part of the superior vena cava and the right atrial cavity are safe sites for central injection. With central injection for IVDSA, the arterial iodine concentration is approximately double that of peripheral injection, and consistent high quality examinations of the intracranial vessels may be obtained. However, neither peripheral nor central injections can visualize the small vessels clearly. (3) IVDSA may be substituted for conventional angiography only in examinations of the aorta and its main branches. (4) IADSA is becoming a superior angiographic technique and its clinical application is increasing. In addition, means of avoiding contrast extravasation during IVDSA and the main points of selecting the optimal technique for DSA are described in this paper. (author)

  14. Dimensioning Method for Conversational Video Applications in Wireless Convergent Networks

    Directory of Open Access Journals (Sweden)

    Alonso JoséI

    2008-01-01

    Full Text Available Abstract New convergent services are becoming possible, thanks to the expansion of IP networks based on the availability of innovative advanced coding formats such as H.264, which reduce network bandwidth requirements providing good video quality, and the rapid growth in the supply of dual-mode WiFi cellular terminals. This paper provides, first, a comprehensive subject overview as several technologies are involved, such as medium access protocol in IEEE802.11, H.264 advanced video coding standards, and conversational application characterization and recommendations. Second, the paper presents a new and simple dimensioning model of conversational video over wireless LAN. WLAN is addressed under the optimal network throughput and the perspective of video quality. The maximum number of simultaneous users resulting from throughput is limited by the collisions taking place in the shared medium with the statistical contention protocol. The video quality is conditioned by the packet loss in the contention protocol. Both approaches are analyzed within the scope of the advanced video codecs used in conversational video over IP, to conclude that conversational video dimensioning based on network throughput is not enough to ensure a satisfactory user experience, and video quality has to be taken also into account. Finally, the proposed model has been applied to a real-office scenario.

  15. Perfect Form: Variational Principles, Methods, and Applications in Elementary Physics

    International Nuclear Information System (INIS)

    Isenberg, C

    1997-01-01

    This short book is concerned with the physical applications of variational principles of the calculus. It is intended for undergraduate students who have taken some introductory lectures on the subject and have been exposed to Lagrangian and Hamiltonian mechanics. Throughout the book the author emphasizes the historical background to the subject and provides numerous problems, mainly from the fields of mechanics and optics. Some of these problems are provided with an answer, while others, regretfully, are not. It would have been an added help to the undergraduate reader if complete solutions could have been provided in an appendix. The introductory chapter is concerned with Fermat's Principle and image formation. This is followed by the derivation of the Euler - Lagrange equation. The third chapter returns to the subject of optical paths without making the link with a mechanical variational principle - that comes later. Chapters on the subjects of minimum potential energy, least action and Hamilton's principle follow. This volume provides an 'easy read' for a student keen to learn more about the subject. It is well illustrated and will make a useful addition to all undergraduate physics libraries. (book review)

  16. Band excitation method applicable to scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  17. Application of the maximum entropy method to dynamical fermion simulations

    Science.gov (United States)

    Clowser, Jonathan

    This thesis presents results for spectral functions extracted from imaginary-time correlation functions obtained from Monte Carlo simulations using the Maximum Entropy Method (MEM). The advantages this method are (i) no a priori assumptions or parametrisations of the spectral function are needed, (ii) a unique solution exists and (iii) the statistical significance of the resulting image can be quantitatively analysed. The Gross Neveu model in d = 3 spacetime dimensions (GNM3) is a particularly interesting model to study with the MEM because at T = 0 it has a broken phase with a rich spectrum of mesonic bound states and a symmetric phase where there are resonances. Results for the elementary fermion, the Goldstone boson (pion), the sigma, the massive pseudoscalar meson and the symmetric phase resonances are presented. UKQCD Nf = 2 dynamical QCD data is also studied with MEM. Results are compared to those found from the quenched approximation, where the effects of quark loops in the QCD vacuum are neglected, to search for sea-quark effects in the extracted spectral functions. Information has been extract from the difficult axial spatial and scalar as well as the pseudoscalar, vector and axial temporal channels. An estimate for the non-singlet scalar mass in the chiral limit is given which is in agreement with the experimental value of Mao = 985 MeV.

  18. Mixed Generalized Multiscale Finite Element Methods and Applications

    KAUST Repository

    Chung, Eric T.

    2015-03-03

    In this paper, we present a mixed generalized multiscale finite element method (GMsFEM) for solving flow in heterogeneous media. Our approach constructs multiscale basis functions following a GMsFEM framework and couples these basis functions using a mixed finite element method, which allows us to obtain a mass conservative velocity field. To construct multiscale basis functions for each coarse edge, we design a snapshot space that consists of fine-scale velocity fields supported in a union of two coarse regions that share the common interface. The snapshot vectors have zero Neumann boundary conditions on the outer boundaries, and we prescribe their values on the common interface. We describe several spectral decompositions in the snapshot space motivated by the analysis. In the paper, we also study oversampling approaches that enhance the accuracy of mixed GMsFEM. A main idea of oversampling techniques is to introduce a small dimensional snapshot space. We present numerical results for two-phase flow and transport, without updating basis functions in time. Our numerical results show that one can achieve good accuracy with a few basis functions per coarse edge if one selects appropriate offline spaces. © 2015 Society for Industrial and Applied Mathematics.

  19. Application of forwardchaining method to diagnosis of onion plant diseases

    Science.gov (United States)

    Sitanggang, Delima; Siregar, Saut D.; Situmeang, Suryani M. F.; Indra, Evta; Sagala, Ayu R.; Sihombing, Oloan; Nababan, Marlince; Pasaribu, Hendra; Damanik, Rudolf R.; Turnip, Mardi; Saragih, Rijois I. E.

    2018-04-01

    Red Onion is a tuber plant that is widely used by the people of Indonesia, both as herbs and herbal medicines. Onion farmers have limitations in identifying diseases that attack their crops.This disease can cause crop failure against the onion.This design begins with the creation of a knowledge base up to input-output design with forward chaining method. The results of this design can assist farmers in identifying their plant diseases. Based on diagnostic results of several methods that have been done testing can diagnose diseases contained in onion plants. With symptoms data that has been determined by the expert with the value of each symptom is different. As for the symptoms that have been determined that the leaves contain patches with a value of 0.3, White leaf spots value 0.4, Leaf spots form a purple zone if it is severe 0.5, Leaf tip of 0.2, Tubers rot 0.4. Based on the above diagnostic results then get the value of diagnosis 67% forward chaining with trotol disease type, Purple spotting.

  20. Versatile Polymer-Free Graphene Transfer Method and Applications.

    Science.gov (United States)

    Zhang, Guohui; Güell, Aleix G; Kirkman, Paul M; Lazenby, Robert A; Miller, Thomas S; Unwin, Patrick R

    2016-03-01

    A new method for transferring chemical vapor deposition (CVD)-grown monolayer graphene to a variety of substrates is described. The method makes use of an organic/aqueous biphasic configuration, avoiding the use of any polymeric materials that can cause severe contamination problems. The graphene-coated copper foil sample (on which graphene was grown) sits at the interface between hexane and an aqueous etching solution of ammonium persulfate to remove the copper. With the aid of an Si/SiO2 substrate, the graphene layer is then transferred to a second hexane/water interface to remove etching products. From this new location, CVD graphene is readily transferred to arbitrary substrates, including three-dimensional architectures as represented by atomic force microscopy (AFM) tips and transmission electron microscopy (TEM) grids. Graphene produces a conformal layer on AFM tips, to the very end, allowing easy production of tips for conductive AFM imaging. Graphene transferred to copper TEM grids provides large-area, highly electron-transparent substrates for TEM imaging. These substrates can also be used as working electrodes for electrochemistry and high-resolution wetting studies. By using scanning electrochemical cell microscopy, it is possible to make electrochemical and wetting measurements at either a freestanding graphene film or a copper-supported graphene area and readily determine any differences in behavior.