WorldWideScience

Sample records for p53-mediated bax activation

  1. Driving p53 Response to Bax Activation Greatly Enhances Sensitivity to Taxol by Inducing Massive Apoptosis

    Directory of Open Access Journals (Sweden)

    Paola De Feudis

    2000-05-01

    Full Text Available The proapoptotic gene bax is one of the downstream effectors of p53. The p53 binding site in the bax promoter is less responsive to p53 than the one in the growth arrest mediating gene p21. We introduced the bax gene under the control of 13 copies of a strong p53 responsive element into two ovarian cancer cell lines. The clones expressing bax under the control of p53 obtained from the wild-type (wt p53-expressing cell line A2780 were much more sensitive (500- to 1000-fold to the anticancer agent taxol than the parent cell line, with a higher percentage of cells undergoing apoptosis after drug treatment that was clearly p53-dependent and bax-mediated. Xenografts established in nude mice from one selected clone (A2780/C3 were more responsive to taxol than the parental line and the apoptotic response of A2780/C3 tumors was also increased after treatment. Introduction of the same plasmid into the p53 null SKOV3 cell line did not alter the sensitivity to taxol or the induction of apoptosis. In conclusion, driving the p53 response (after taxol treatment by activating the bax gene rather than the p21 gene results in induction of massive apoptosis, in vitro and in vivo, and greatly enhances sensitivity to the drug.

  2. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression

    International Nuclear Information System (INIS)

    Yu, Zhendong; Wang, Hao; Zhang, Libin; Tang, Aifa; Zhai, Qinna; Wen, Jianxiang; Yao, Li; Li, Pengfei

    2009-01-01

    CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrug system.

  3. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhendong, E-mail: zdyu@hotmail.com [Department of Clinical laboratory, Peking University Shenzhen Hospital, Guangdong (China); Wang, Hao [Department of pathology, The Chinese University of Hong Kong, Hong Kong (China); Zhang, Libin; Tang, Aifa; Zhai, Qinna; Wen, Jianxiang; Yao, Li [Department of Clinical laboratory, Peking University Shenzhen Hospital, Guangdong (China); Li, Pengfei, E-mail: lipengfei@cuhk.edu.hk [Department of pathology, The Chinese University of Hong Kong, Hong Kong (China)

    2009-09-04

    CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrug system.

  4. Differential induction of p53-mediated apoptosis in medulloblastomas and gliomas correlates with their ability to induce bax

    International Nuclear Information System (INIS)

    Shu, H.-K.G.; Furman, Felix; Dee, Suzanne; Israel, Mark A.

    1997-01-01

    Purpose/Objective: Medulloblastoma cell lines readily undergo a p53-mediated apoptosis following exposure to ionizing radiation, while glioma cell lines do not undergo significant levels of apoptosis following irradiation. This study attempts to define some of the molecular events that characterize the differential ability medulloblastomas and gliomas to undergo radiation-induced apoptosis. Materials and Methods: The medulloblastoma cell lines D283 and D341 and the glioma cell lines U87, U343 and U563 were used in this study. All five cell lines were confirmed to have a wild type p53 by their ability to induce p21 protein levels and to undergo a cell-cycle arrest in G1 following treatment with ionizing radiation. Also, 3 clonal derivatives of D283 were used. Two of the clones were derived following transfection with an expression plasmid containing a dominant negative mutant p53 (Arg175 --> His) expressed from the CMV promoter (D283/53.6 and D283/53.7), while the remaining clone was derived following transfection with that same expression plasmid without mutant p53 (D283/vec). All irradiation experiments were performed on Phillips RT-250 X-ray unit using 250 Kvp X-rays. In each case, 5 Gy of ionizing radiation was given at a dose rate of 250 cGy/minute. Apoptosis was quantitated by staining fixed cells with propidium iodide and determining the percentage of cells with subdiploid DNA content by flow cytometry. Northern blot analysis was performed using standard methods. Results: The D283 and D341 cell lines exhibited a significant induction of apoptosis when assayed 2 days following treatment with radiation while the U87, U343 and U563 cell lines displayed only minimal induction of apoptosis when assayed following treatment at that time. RNA was prepared from the different cell lines that were unirradiated, 6 hours or 24 hours post-irradiation. Northern blots were made of the total RNAs and probed for bax, bcl-2 and bcl-x mRNA. This analysis detected no significant

  5. p53-Dependent radiation-induced apoptosis in vivo: relationship to Bcl-2 and Bax expression

    International Nuclear Information System (INIS)

    Hasegawa, Masatoshi; Suzuki, Yoshiyuki; Furuta, Masaya; Yamakawa, Michitaka; Maebayashi, Katsuya; Hayakawa, Kayoko; Saito, Yoshihiro; Mitsuhashi, Norio; Niibe, Hideo

    1997-01-01

    Purpose: A close correlation between p53 protein expression and radiation-induced apoptosis has already been reported, however, Bcl-2 and Bax expression and the ratio of Bcl-2 to Bax have been also suggested to play an important role in the regulation of apoptotic cell death. In this study, we investigated the relationship between p53-dependent radiation-induced apoptosis and expression of Bcl-2 and Bax by using human tumors transplanted into nude mice. Materials and Methods: Three human tumors (an ependymoblastoma, a glioblastoma, and a small cell lung cancer) were subcutaneously transplanted into nude mice and irradiated with single doses of 1, 2, 5, or 10 Gy. The tumors were excised 1, 3, 6, 12, 24, and 48 hours after irradiation, fixed in 10% formalin for 24 hours, and embedded in paraffin. Slides were stained with hematoxylin and eosin for morphologic examination. Immunohistochemical studies were performed with mouse monoclonal antibodies to demonstrate p53, p21 (WAF-1), Bcl-2, and Bax expression. TdT-mediated dUTP-biotin nick-end labeling (TUNEL) and electron microscopic studies were performed to identify apoptosis, and PCR-SSCP analysis was used to evaluate p53 gene mutation. Results: All of the tumors showed only a few cells undergoing apoptosis before irradiation. Beginning several hours after irradiation, only the ependymoblastoma showed a large increase in the number of cells undergoing apoptosis, peaking at 6 hours after irradiation, and there was a clear dose-effect relationship. In contrast, the other tumors showed much less change following irradiation, and the dose-effect relationship was not as clear as in the ependymoblastoma. Immunohistochemically, the non-irradiated ependymoblastoma was negative for p53, p21, Bcl-2, and Bax. Following irradiation, however, many of the tumor cells became positive for p53 and p21, and a few cells became positive for bcl-2. In contrast, the glioblastoma and the small cell lung cancer were positive for p53 and Bcl-2

  6. Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway

    International Nuclear Information System (INIS)

    Zhang, Hongling; Huang, Yong; Du, Qian; Luo, Xiaomao; Zhang, Liang; Zhao, Xiaomin; Tong, Dewen

    2015-01-01

    Highlights: • PPV reduces PK-15 cells viability by inducing apoptosis. • PPV infection induces apoptosis through mitochondria-mediated pathway. • PPV infection activates p53 to regulate the mitochondria apoptotic signaling. - Abstract: Porcine parvovirus (PPV) infection has been reported to induce the cytopathic effects (CPE) in some special host cells and contribute the occurrence of porcine parvovirus disease, but the molecular mechanisms underlying PPV-induced CPE are not clear. In this study, we investigated the morphological and molecular changes of porcine kidney cell line (PK-15 cells) infected with PPV. The results showed that PPV infection inhibited the viability of PK-15 cells in a time and concentration dependent manner. PPV infection induced typical apoptotic features including chromatin condensation, apoptotic body formation, nuclear fragmentation, and Annexin V-binding activity. Further studies showed that Bax was increased and translocated to mitochondria, whereas Bcl-2 was decreased in PPV-infected cells, which caused mitochondrial outer-membrane permeabilization, resulting in the release of mitochondrial cytochrome c, followed by caspase-9 and caspase-3 activation. However, the expression of Fas and Fas ligand (FasL) did not appear significant changes in the process of PPV-induced apoptosis. Moreover, PPV infection activated p53 signaling, which was involved in the activation of apoptotic signaling induced by PPV infection via regulation of Bax and Bcl-2. Taken together, our results demonstrated that PPV infection induced apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated apoptosis pathway. This study may contribute to shed light on the molecular pathogenesis of PPV infection

  7. Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongling; Huang, Yong; Du, Qian; Luo, Xiaomao; Zhang, Liang; Zhao, Xiaomin; Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn

    2015-01-09

    Highlights: • PPV reduces PK-15 cells viability by inducing apoptosis. • PPV infection induces apoptosis through mitochondria-mediated pathway. • PPV infection activates p53 to regulate the mitochondria apoptotic signaling. - Abstract: Porcine parvovirus (PPV) infection has been reported to induce the cytopathic effects (CPE) in some special host cells and contribute the occurrence of porcine parvovirus disease, but the molecular mechanisms underlying PPV-induced CPE are not clear. In this study, we investigated the morphological and molecular changes of porcine kidney cell line (PK-15 cells) infected with PPV. The results showed that PPV infection inhibited the viability of PK-15 cells in a time and concentration dependent manner. PPV infection induced typical apoptotic features including chromatin condensation, apoptotic body formation, nuclear fragmentation, and Annexin V-binding activity. Further studies showed that Bax was increased and translocated to mitochondria, whereas Bcl-2 was decreased in PPV-infected cells, which caused mitochondrial outer-membrane permeabilization, resulting in the release of mitochondrial cytochrome c, followed by caspase-9 and caspase-3 activation. However, the expression of Fas and Fas ligand (FasL) did not appear significant changes in the process of PPV-induced apoptosis. Moreover, PPV infection activated p53 signaling, which was involved in the activation of apoptotic signaling induced by PPV infection via regulation of Bax and Bcl-2. Taken together, our results demonstrated that PPV infection induced apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated apoptosis pathway. This study may contribute to shed light on the molecular pathogenesis of PPV infection.

  8. Apoptosis, proliferation, Bax, Bcl-2 and p53 status prior to and after preoperative radiochemotherapy for locally advanced rectal cancer

    International Nuclear Information System (INIS)

    Tannapfel, Andrea; Nuesslein, Siegfried; Fietkau, Rainer; Katalinic, Alexander; Koeckerling, Ferdinand; Wittekind, Christian

    1998-01-01

    Purpose: To investigate the relationship between apoptotic cell death, proliferative activity, and the expression of apoptosis regulating proteins in rectal cancer prior to and after radiochemotherapy. Materials and Methods: In 32 patients dispositioned to receive preoperative radiochemotherapy for locally advanced rectal carcinoma, pretherapy biopsies and the final resected specimen after radiochemotherapy were available for analyses. Apoptotic cells were identified and quantified using in situ end labeling (ISEL) technique. The expression of the bax protein was assessed immunohistochemically. Additionally, double immunostaining was performed for apoptotic cells and bax expression. The proliferative activity was determined by immunohistochemical assessment of the Ki67 (MIB-1) and the proliferating cell nuclear antigen (PCNA). p53- and bcl-2 expression was analyzed immunohistochemically. A clinical-to-pathologic downstaging after radiochemotherapy was achieved in 25 of 32 patients (78%). During follow-up, tumor recurrence was observed in six cases. In one case, no residual tumor was detected after radiochemotherapy. Results: After radiochemotherapy, the apoptotic index increased significantly in almost every case examined. In contrast, the proliferative activity was significantly decreased in resected specimens as compared to biopsies. Bax immunostaining was detected in 12/31 (39%) biopsies and in 26/31 (84%) resected specimens. In the resected specimen, significantly more apoptotic cells that were bax-positive were found than in biopsies. Bcl-2 immunostaining occurred in 15/31 biopsies and 12/31 resected specimens, respectively. Tumors that were immunohistochemically negative for p53 (20/31 [65%]) generally exhibited a higher apoptotic index and a high expression level of bax than p53-positive tumors (11/31 [35%]). However, we did not find any correlation between the (pre- and post-therapeutic) rate of apoptosis or the level of bax expression and the degree of

  9. Rescue of p53 function by small-molecule RITA in cervical carcinoma by blocking E6-mediated degradation.

    Science.gov (United States)

    Zhao, Carolyn Ying; Szekely, Laszlo; Bao, Wenjie; Selivanova, Galina

    2010-04-15

    Proteasomal degradation of p53 by human papilloma virus (HPV) E6 oncoprotein plays a pivotal role in the survival of cervical carcinoma cells. Abrogation of HPV-E6-dependent p53 destruction can therefore be a good strategy to combat cervical carcinomas. Here, we show that a small-molecule reactivation of p53 and induction of tumor cell apoptosis (RITA) is able to induce the accumulation of p53 and rescue its tumor suppressor function in cells containing high-risk HPV16 and HPV18 by inhibiting HPV-E6-mediated proteasomal degradation. RITA blocks p53 ubiquitination by preventing p53 interaction with E6-associated protein, required for HPV-E6-mediated degradation. RITA activates the transcription of proapoptotic p53 targets Noxa, PUMA, and BAX, and repressed the expression of pro-proliferative factors CyclinB1, CDC2, and CDC25C, resulting in p53-dependent apoptosis and cell cycle arrest. Importantly, RITA showed substantial suppression of cervical carcinoma xenografts in vivo. These results provide a proof of principle for the treatment of cervical cancer in a p53-dependent manner by using small molecules that target p53. (c)2010 AACR.

  10. Borax-induced apoptosis in HepG2 cells involves p53, Bcl-2, and Bax.

    Science.gov (United States)

    Wei, Y; Yuan, F J; Zhou, W B; Wu, L; Chen, L; Wang, J J; Zhang, Y S

    2016-06-21

    Borax, a boron compound and a salt of boric acid, is known to inhibit the growth of tumor cells. HepG2 cells have been shown to be clearly susceptible to the anti-proliferative effects of borax. However, the specific mechanisms regulating this effect are poorly understood. This study aimed to investigate the pathways underlying the growth inhibition induced by borax in HepG2 cells. The effects of borax on HepG2 cell viability were characterized using MTT. Apoptosis was also verified by annexin V/propidium iodide staining. JC-1 dye and western blotting techniques were used to measure mitochondrial membrane potential and p53, Bax, and Bcl-2 protein expression, respectively. Relevant mRNA levels were measured by qRT-PCR. Borax inhibited the proliferation of HepG2 cells in a time- and dose-dependent manner in vitro. The apoptotic process triggered by borax involved the upregulation of p53 and Bax and the downregulation of Bcl-2, which was confirmed by a change in the mitochondrial membrane potential. These results elucidate a borax-induced apoptotic pathway in HepG2 cells that involves the upregulation of p53 and Bax and the downregulation of Bcl-2.

  11. Prognostic value of TP53 transcriptional activity on p21 and bax in patients with esophageal squamous cell carcinomas treated by definitive chemoradiotherapy

    International Nuclear Information System (INIS)

    Michel, Pierre; Magois, Karine; Robert, Valerie; Chiron, Anne; Lepessot, Florence; Bodenant, Corinne; Roque, Isabelle; Seng, Sok H.; Frebourg, Thierry; Paillot, Bernard

    2002-01-01

    Purpose: The aim of this study was to evaluate biologic factors on survival and clinical response after definitive concomitant chemoradiotherapy (CRT) in patients with esophageal squamous cell carcinoma (ESCC). Methods and Materials: TP53 protein hyperexpression (immunochemistry [IHC]) and functional assay (FA) of TP53, measuring the ability of TP53 to transactivate p21 and bax reporter systems, were performed in patients with ESCC treated by CRT. The impact of parameters studied on survival and clinical response to CRT was assessed. Results: Thirty-eight patients with ESCC were included. TP53 alterations were detected in 84.2% of cases with FA. All TP53 mutations abolished the transactivation of p21 and bax reporter systems. After CRT, complete response rate was 55.3%. The median survival of the population was 17.5 months. Serum albumin (p=0.002), weight loss <10% (p=0.005), and response to treatment (p<0.001) were significantly linked with survival. TP53 alteration in FA was not significantly predictive of response to CRT (p=0.132) nor survival (p=0.154). Conclusions: Our results suggest that wild-type TP53 in ESCC could be associated with good response to definitive CRT. However, the small rate of ESCC with wild-type TP53 suggests that systematic determination of TP53 status is not appropriate for the management of the ESCC population

  12. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses.

    Science.gov (United States)

    Ou, Yang; Wang, Shang-Jui; Li, Dawei; Chu, Bo; Gu, Wei

    2016-11-01

    Although p53-mediated cell-cycle arrest, senescence, and apoptosis remain critical barriers to cancer development, the emerging role of p53 in cell metabolism, oxidative responses, and ferroptotic cell death has been a topic of great interest. Nevertheless, it is unclear how p53 orchestrates its activities in multiple metabolic pathways into tumor suppressive effects. Here, we identified the SAT1 (spermidine/spermine N 1 -acetyltransferase 1) gene as a transcription target of p53. SAT1 is a rate-limiting enzyme in polyamine catabolism critically involved in the conversion of spermidine and spermine back to putrescine. Surprisingly, we found that activation of SAT1 expression induces lipid peroxidation and sensitizes cells to undergo ferroptosis upon reactive oxygen species (ROS)-induced stress, which also leads to suppression of tumor growth in xenograft tumor models. Notably, SAT1 expression is down-regulated in human tumors, and CRISPR-cas9-mediated knockout of SAT1 expression partially abrogates p53-mediated ferroptosis. Moreover, SAT1 induction is correlated with the expression levels of arachidonate 15-lipoxygenase (ALOX15), and SAT1-induced ferroptosis is significantly abrogated in the presence of PD146176, a specific inhibitor of ALOX15. Thus, our findings uncover a metabolic target of p53 involved in ferroptotic cell death and provide insight into the regulation of polyamine metabolism and ferroptosis-mediated tumor suppression.

  13. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death

    DEFF Research Database (Denmark)

    Fortin, A; Cregan, S P; MacLaurin, J G

    2001-01-01

    p53 is a transcriptional activator which has been implicated as a key regulator of neuronal cell death after acute injury. We have shown previously that p53-mediated neuronal cell death involves a Bax-dependent activation of caspase 3; however, the transcriptional targets involved in the regulati...

  14. Andrographolide induces vascular smooth muscle cell apoptosis through a SHP-1-PP2A-p38MAPK-p53 cascade.

    Science.gov (United States)

    Chen, Yu-Ying; Hsieh, Cheng-Ying; Jayakumar, Thanasekaran; Lin, Kuan-Hung; Chou, Duen-Suey; Lu, Wan-Jung; Hsu, Ming-Jen; Sheu, Joen-Rong

    2014-07-10

    The abnormal growth of vascular smooth muscle cells (VSMCs) is considered a critical pathogenic process in inflammatory vascular diseases. We have previously demonstrated that protein phosphatase 2 A (PP2A)-mediated NF-κB dephosphorylation contributes to the anti-inflammatory properties of andrographolide, a novel NF-κB inhibitor. In this study, we investigated whether andrographolide causes apoptosis, and characterized its apoptotic mechanisms in rat VSMCs. Andrographolide activated the p38 mitogen-activated protein kinase (p38MAPK), leading to p53 phosphorylation. Phosphorylated p53 subsequently transactivated the expression of Bax, a pro-apoptotic protein. Transfection with pp2a small interfering RNA (siRNA) suppressed andrographolide-induced p38MAPK activation, p53 phosphorylation, and caspase 3 activation. Andrographolide also activated the Src homology 1 domain-containing protein tyrosine phosphatase (SHP-1), and induced PP2A dephosphorylation, both of which were inhibited by the SHP-1 inhibitor sodium stibogluconate (SSG) or shp-1 siRNA. SSG or shp-1 siRNA prevented andrographolide-induced apoptosis. These results suggest that andrographolide activates the PP2A-p38MAPK-p53-Bax cascade, causing mitochondrial dysfunction and VSMC death through an SHP-1-dependent mechanism.

  15. β-Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation.

    Science.gov (United States)

    Rajavel, Tamilselvam; Packiyaraj, Pandian; Suryanarayanan, Venkatesan; Singh, Sanjeev Kumar; Ruckmani, Kandasamy; Pandima Devi, Kasi

    2018-02-01

    β-Sitosterol (BS), a major bioactive constituent present in plants and vegetables has shown potent anticancer effect against many human cancer cells, but the underlying mechanism remain elusive on NSCLC cancers. We found that BS significantly inhibited the growth of A549 cells without harming normal human lung and PBMC cells. Further, BS treatment triggered apoptosis via ROS mediated mitochondrial dysregulation as evidenced by caspase-3 & 9 activation, Annexin-V/PI positive cells, PARP inactivation, loss of MMP, Bcl-2-Bax ratio alteration and cytochrome c release. Moreover, generation of ROS species and subsequent DNA stand break were found upon BS treatment which was reversed by addition of ROS scavenger (NAC). Indeed BS treatment increased p53 expression and its phosphorylation at Ser15, while silencing the p53 expression by pifithrin-α, BS induced apoptosis was reduced in A549 cells. Furthermore, BS induced apoptosis was also observed in NCI-H460 cells (p53 wild) but not in the NCI-H23 cells (p53 mutant). Down-regulation of Trx/Trx1 reductase contributed to the BS induced ROS accumulation and mitochondrial mediated apoptotic cell death in A549 and NCI-H460 cells. Taken together, our findings provide evidence for the novel anti-cancer mechanism of BS which could be developed as a promising chemotherapeutic drug against NSCLC cancers.

  16. MG132 plus apoptosis antigen-1 (APO-1) antibody cooperate to restore p53 activity inducing autophagy and p53-dependent apoptosis in HPV16 E6-expressing keratinocytes.

    Science.gov (United States)

    Lagunas-Martínez, Alfredo; García-Villa, Enrique; Arellano-Gaytán, Magaly; Contreras-Ochoa, Carla O; Dimas-González, Jisela; López-Arellano, María E; Madrid-Marina, Vicente; Gariglio, Patricio

    2017-01-01

    The E6 oncoprotein can interfere with the ability of infected cells to undergo programmed cell death through the proteolytic degradation of proapoptotic proteins such as p53, employing the proteasome pathway. Therefore, inactivation of the proteasome through MG132 should restore the activity of several proapoptotic proteins. We investigated whether in HPV16 E6-expressing keratinocytes (KE6 cells), the restoration of p53 levels mediated by MG132 and/or activation of the CD95 pathway through apoptosis antigen-1 (APO-1) antibody are responsible for the induction of apoptosis. We found that KE6 cells underwent apoptosis mainly after incubation for 24 h with MG132 alone or APO-1 plus MG132. Both treatments activated the extrinsic and intrinsic apoptosis pathways. Autophagy was also activated, principally by APO-1 plus MG132. Inhibition of E6-mediated p53 proteasomal degradation by MG132 resulted in the elevation of p53 protein levels and its phosphorylation in Ser46 and Ser20; the p53 protein was localized mainly at nucleus after treatment with MG132 or APO-1 plus MG132. In addition, induction of its transcriptional target genes such as p21, Bax and TP53INP was observed 3 and 6 h after treatment. Also, LC3 mRNA was induced after 3 and 6 h, which correlates with lipidation of LC3B protein and induction of autophagy. Finally, using pifithrin alpha we observed a decrease in apoptosis induced by MG132, and by APO-1 plus MG132, suggesting that restoration of APO-1 sensitivity occurs in part through an increase in both the levels and the activity of p53. The use of small molecules to inhibit the proteasome pathway might permit the activation of cell death, providing new opportunities for CC treatment.

  17. Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity.

    Science.gov (United States)

    Kim, Ji-Young; Lee, Kyu-Sun; Seol, Jin-Ee; Yu, Kweon; Chakravarti, Debabrata; Seo, Sang-Beom

    2012-01-01

    The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iβ inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iβ interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iβ blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iβ induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iβ.

  18. Mycotoxin zearalenone induces AIF- and ROS-mediated cell death through p53- and MAPK-dependent signaling pathways in RAW264.7 macrophages.

    Science.gov (United States)

    Yu, Ji-Yeon; Zheng, Zhong-Hua; Son, Young-Ok; Shi, Xianglin; Jang, Young-Oh; Lee, Jeong-Chae

    2011-12-01

    Zearalenone (ZEN) is commonly found in many food commodities and is known to cause reproductive disorders and genotoxic effects. However, the mode of ZEN-induced cell death of macrophages and the mechanisms by which ZEN causes cytotoxicity remain unclear. The present study shows that ZEN treatment reduces viability of RAW264.7 cells in a dose-dependent manner. ZEN causes predominantly necrotic and late apoptotic cell death. ZEN treatment also results in the loss of mitochondrial membrane potential (MMP), mitochondrial changes in Bcl-2 and Bax proteins, and cytoplasmic release of cytochrome c and apoptosis-inducing factor (AIF). Pre-treatment of the cells with either z-VAD-fmk or z-IETD-fmk does not attenuate ZEN-mediated cell death, whereas catalase suppresses the ZEN-induced decrease in viability in RAW264.7 cells. Treating the cells with c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), or p53 inhibitor prevented ZEN-mediated changes, such as MMP loss, cellular reactive oxygen species (ROS) increase, and cell death. JNK or p38 MAPK inhibitor inhibited mitochondrial alterations of Bcl-2 and Bax proteins with attendant decreases in cellular ROS levels. Knockdown of AIF via siRNA transfection also diminished ZEN-induced cell death. Further, adenosine triphosphate was markedly depleted in the ZEN-exposed cells. Collectively, these results suggest that ZEN induces cytotoxicity in RAW264.7 cells via AIF- and ROS-mediated signaling, in which the activations of p53 and JNK/p38 play a key role. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p53 and p21/WAF1 proteins in skin of mice

    International Nuclear Information System (INIS)

    Saxena, Neha; Ansari, Kausar M.; Kumar, Rahul; Dhawan, Alok; Dwivedi, Premendra D.; Das, Mukul

    2009-01-01

    Patulin (PAT), a mycotoxin found in apples, grapes, oranges, pear and peaches, is a potent genotoxic compound. WHO has highlighted the need for the study of cutaneous toxicity of PAT as manual labour is employed during pre and post harvest stages, thereby causing direct exposure to skin. In the present study cutaneous toxicity of PAT was evaluated following topical application to Swiss Albino mice. Dermal exposure of PAT, to mice for 4 h resulted in a dose (40-160 μg/animal) and time (up to 6 h) dependent enhancement of ornithine decarboxylase (ODC), a marker enzyme of cell proliferation. The ODC activity was found to be normal after 12 and 24 h treatment of patulin. Topical application of PAT (160 μg/100 μl acetone) for 24-72 h caused (a) DNA damage in skin cells showing significant increase (34-63%) in olive tail moment, a parameter of Comet assay (b) significant G 1 and S-phase arrest along with induction of apoptosis (2.8-10 folds) as shown by annexin V and PI staining assay through flow cytometer. Moreover PAT leads to over expression of p 21/WAF1 (3.6-3.9 fold), pro apoptotic protein Bax (1.3-2.6) and tumor suppressor wild type p 53 (2.8-3.9 fold) protein. It was also shown that PAT induced apoptosis was mediated through mitochondrial intrinsic pathway as revealed through the release of cytochrome C protein in cytosol leading to enhancement of caspase-3 activity in skin cells of mice. These results suggest that PAT has a potential to induce DNA damage leading to p 53 mediated cell cycle arrest along with intrinsic pathway mediated apoptosis that may also be correlated with enhanced polyamine production as evident by induction of ODC activity, which may have dermal toxicological implications

  20. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro.

    Directory of Open Access Journals (Sweden)

    Fuqiang Xing

    Full Text Available Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant. Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis.

  1. Butein activates p53 in hepatocellular carcinoma cells via blocking MDM2-mediated ubiquitination

    Directory of Open Access Journals (Sweden)

    Zhou Y

    2018-04-01

    Full Text Available Yuanfeng Zhou,1,2 Kuifeng Wang,2 Ni Zhou,2 Tingting Huang,2 Jiansheng Zhu,2 Jicheng Li1 1Institute of Cell Biology, Zhejiang University, Hangzhou, People’s Republic of China; 2Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, People’s Republic of China Introduction: In this study, we aimed to investigate the effect of butein on p53 in hepatocellular carcinoma (HCC cells and the related molecular mechanisms by which p53 was activated. Methods: MTS assay and clonogenic survival assay were used to examine the antitumor activity of butein in vitro. Reporter gene assay was adopted to evaluate p53 transcriptional activity. Flow cytometry and western blotting were performed to study apoptosis induction and protein expression respectively. Xenograft model was applied to determine the in vivo efficacy and the expression of p53 in tumor tissue was detected by immunohistochemistry. Results: HCC cell proliferation and clonogenic survival were significantly inhibited after butein treatment. With the activation of cleaved-PARP and capsase-3, butein induced apoptosis in HCC cells in a dose-dependent manner. The transcriptional activity of p53 was substantially promoted by butein, and the expression of p53-targeted gene was increased accordingly. Mechanism studies demonstrated that the interaction between MDM2 and p53 was blocked by butein and MDM2-mediated p53 ubiquitination was substantially decreased. Short-hairpin RNA experiment results showed that the sensitivity of HCC cells to butein was substantially impaired after p53 was knocked down and butein-induced apoptosis was dramatically decreased. In vivo experiments validated substantial antitumor efficacy of butein against HepG2 xenograft growth, and the expression of p53 in butein-treated tumor tissue was significantly increased. Conclusion: Butein demonstrated potent antitumor activities in HCC by activating p53, and butein or its analogs had

  2. RITA can induce cell death in p53-defective cells independently of p53 function via activation of JNK/SAPK and p38.

    Science.gov (United States)

    Weilbacher, A; Gutekunst, M; Oren, M; Aulitzky, W E; van der Kuip, H

    2014-07-10

    Significant advances have been made in the development of small molecules blocking the p53/MDM2 interaction. The Mdm2 inhibitor Nutlin-3 is restricted to tumors carrying wtp53. In contrast, RITA, a compound that binds p53, has recently been shown also to restore transcriptional functions of mtp53. As more than 50% of solid tumors carry p53 mutations, RITA promises to be a more effective therapeutic strategy than Nutlin-3. We investigated effects of RITA on apoptosis, cell cycle and induction of 45 p53 target genes in a panel of 14 cell lines from different tumor entities with different p53 status as well as primary lymphocytes and fibroblasts. Nine cell strains expressed wtp53, four harbored mtp53, and three were characterized by the loss of p53 protein. A significant induction of cell death upon RITA was observed in 7 of 16 cell lines. The nonmalignant cells in our panel were substantially less sensitive. We found that in contrast to Nultin-3, RITA is capable to induce cell death not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells. Importantly, whereas p53 has a central role for RITA-mediated effects in wtp53 cells, neither p53 nor p63 or p73 were essential for the RITA response in mtp53 or p53-null cells in our panel demonstrating that besides the known p53-dependent action of RITA in wtp53 cells, RITA can induce cell death also independently of p53 in cells harboring defective p53. We identified an important role of both p38 and JNK/SAPK for sensitivity to RITA in these cells leading to a typical caspase- and BAX/BAK-dependent mitochondrial apoptosis. In conclusion, our data demonstrate that RITA can induce apoptosis through p38 and JNK/SAPK not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells, making RITA an interesting tumor-selective drug.

  3. Acetylation Is Crucial for p53-Mediated Ferroptosis and Tumor Suppression

    Directory of Open Access Journals (Sweden)

    Shang-Jui Wang

    2016-10-01

    Full Text Available Although previous studies indicate that loss of p53-mediated cell cycle arrest, apoptosis, and senescence does not completely abrogate its tumor suppression function, it is unclear how the remaining activities of p53 are regulated. Here, we have identified an acetylation site at lysine K98 in mouse p53 (or K101 for human p53. Whereas the loss of K98 acetylation (p53K98R alone has very modest effects on p53-mediated transactivation, simultaneous mutations at all four acetylation sites (p534KR: K98R+ 3KR[K117R+K161R+K162R] completely abolish its ability to regulate metabolic targets, such as TIGAR and SLC7A11. Notably, in contrast to p533KR, p534KR is severely defective in suppressing tumor growth in mouse xenograft models. Moreover, p534KR is still capable of inducing the p53-Mdm2 feedback loop, but p53-dependent ferroptotic responses are markedly abrogated. Together, these data indicate the critical role of p53 acetylation in ferroptotic responses and its remaining tumor suppression activity.

  4. CLCA2 as a p53-Inducible Senescence Mediator

    Directory of Open Access Journals (Sweden)

    Chizu Tanikawa

    2012-02-01

    Full Text Available p53 is a tumor suppressor gene that is frequently mutated in multiple cancer tissues. Activated p53 protein regulates its downstream genes and subsequently inhibits malignant transformation by inducing cell cycle arrest, apoptosis, DNA repair, and senescence. However, genes involved in the p53-mediated senescence pathway are not yet fully elucidated. Through the screening of two genome-wide expression profile data sets, one for cells in which exogenous p53 was introduced and the other for senescent fibroblasts, we have identified chloride channel accessory 2 (CLCA2 as a p53-inducible senescence-associated gene. CLCA2 was remarkably induced by replicative senescence as well as oxidative stress in a p53-dependent manner. We also found that ectopically expressed CLCA2 induced cellular senescence, and the down-regulation of CLCA2 by small interfering RNA caused inhibition of oxidative stress-induced senescence. Interestingly, the reduced expression of CLCA2 was frequently observed in various kinds of cancers including prostate cancer, whereas its expression was not affected in precancerous prostatic intraepithelial neoplasia. Thus, our findings suggest a crucial role of p53/CLCA2-mediated senescence induction as a barrier for malignant transformation.

  5. Piracetam ameliorated oxygen and glucose deprivation-induced injury in rat cortical neurons via inhibition of oxidative stress, excitatory amino acids release and P53/Bax.

    Science.gov (United States)

    He, Zhi; Hu, Min; Zha, Yun-hong; Li, Zi-cheng; Zhao, Bo; Yu, Ling-ling; Yu, Min; Qian, Ying

    2014-05-01

    Our previous work has demonstrated that piracetam inhibited the decrease in amino acid content induced by chronic hypoperfusion, ameliorated the dysfunction of learning and memory in a hypoperfusion rat model, down-regulated P53, and BAX protein, facilitated the synaptic plasticity, and may be helpful in the treatment of vascular dementia. To explore the precise mechanism, the present study further evaluated effects of piracetam on Oxygen and glucose deprivation (OGD)-induced neuronal damage in rat primary cortical cells. The addition of piracetam to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and lactate dehydrogenase release experiments. Piracetam also lowered the levels of malondialdehyde, nitrogen monoxidum, and xanthine oxidase which was increased in the OGD cells, and enhanced the activities of superoxide dismutase and glutathione peroxidase, which were decreased in the OGD cells. We also demonstrated that piracetam could decrease glutamate and aspartate release when cortical cells were subjected to OGD. Furthermore, Western blot study demonstrated that piracetam attenuated the increased expression of P53 and BAX protein in OGD cells. These observations demonstrated that piracetam reduced OGD-induced neuronal damage by inhibiting the oxidative stress and decreasing excitatory amino acids release and lowering P53/Bax protein expression in OGD cells.

  6. p18(Hamlet) mediates different p53-dependent responses to DNA-damage inducing agents.

    Science.gov (United States)

    Lafarga, Vanesa; Cuadrado, Ana; Nebreda, Angel R

    2007-10-01

    Cells organize appropriate responses to environmental cues by activating specific signaling networks. Two proteins that play key roles in coordinating stress responses are the kinase p38alpha (MAPK14) and the transcription factor p53 (TP53). Depending on the nature and the extent of the stress-induced damage, cells may respond by arresting the cell cycle or by undergoing cell death, and these responses are usually associated with the phosphorylation of particular substrates by p38alpha as well as the activation of specific target genes by p53. We recently characterized a new p38alpha substrate, named p18(Hamlet) (ZNHIT1), which mediates p53-dependent responses to different genotoxic stresses. Thus, cisplatin or UV light induce stabilization of the p18(Hamlet) protein, which then enhances the ability of p53 to bind to and activate the promoters of pro-apoptotic genes such as NOXA and PUMA leading to apoptosis induction. In a similar way, we report here that p18(Hamlet) can also mediate the cell cycle arrest induced in response to gamma-irradiation, by participating in the p53-dependent upregulation of the cell cycle inhibitor p21(Cip1) (CDKN1A).

  7. Concurrent acetylation of FoxO1/3a and p53 due to sirtuins inhibition elicit Bim/PUMA mediated mitochondrial dysfunction and apoptosis in berberine-treated HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Shatrunajay [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi ‐110062 (India); Sharma, Ankita [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Pandey, Vivek Kumar [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Academy of Scientific and Innovative Research (India); Raisuddin, Sheikh [Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi ‐110062 (India); Kakkar, Poonam, E-mail: kakkarp59@gmail.com [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Academy of Scientific and Innovative Research (India)

    2016-01-15

    Post-translational modifications i.e. phosphorylation and acetylation are pivotal requirements for proper functioning of eukaryotic proteins. The current study aimed to decode the impact of acetylation/deacetylation of non-histone targets i.e. FoxO1/3a and p53 of sirtuins (NAD{sup +} dependent enzymes with lysine deacetylase activity) in berberine treated human hepatoma cells. Berberine (100 μM) inhibited sirtuins significantly (P < 0.05) at transcriptional level as well as at translational level. Combination of nicotinamide (sirtuin inhibitor) with berberine potentiated sirtuins inhibition and increased the expression of FoxO1/3a and phosphorylation of p53 tumor suppressor protein. As sirtuins deacetylate non-histone targets including FoxO1/3a and p53, berberine increased the acetylation load of FoxO1/3a and p53 proteins. Acetylated FoxO and p53 proteins transcriptionally activate BH3-only proteins Bim and PUMA (3.89 and 3.87 fold respectively, P<0.001), which are known as direct activator of pro-apoptotic Bcl-2 family protein Bax that culminated into mitochondria mediated activation of apoptotic cascade. Bim/PUMA knock-down showed no changes in sirtuins' expression while cytotoxicity induced by berberine and nicotinamide was curtailed up to 28.3% (P < 0.001) and it restored pro/anti apoptotic protein ratio in HepG2 cells. Sirtuins inhibition was accompanied by decline in NAD{sup +}/NADH ratio, ATP generation, enhanced ROS production and decreased mitochondrial membrane potential. TEM analysis confirmed mitochondrial deterioration and cell damage. SRT-1720 (1–10 μM), a SIRT-1 activator, when pre-treated with berberine (25 μM), reversed sirtuins expression comparable to control and significantly restored the cell viability (P < 0.05). Thus, our findings suggest that berberine mediated sirtuins inhibition resulting into FoxO1/3a and p53 acetylation followed by BH3-only protein Bim/PUMA activation may in part be responsible for mitochondria-mediated

  8. BAX and tumor suppressor TRP53 are important in regulating mutagenesis in spermatogenic cells in mice.

    Science.gov (United States)

    Xu, Guogang; Vogel, Kristine S; McMahan, C Alex; Herbert, Damon C; Walter, Christi A

    2010-12-01

    During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis.

  9. RITA (Reactivating p53 and Inducing Tumor Apoptosis) is efficient against TP53abnormal myeloma cells independently of the p53 pathway.

    Science.gov (United States)

    Surget, Sylvanie; Descamps, Géraldine; Brosseau, Carole; Normant, Vincent; Maïga, Sophie; Gomez-Bougie, Patricia; Gouy-Colin, Nadège; Godon, Catherine; Béné, Marie C; Moreau, Philippe; Le Gouill, Steven; Amiot, Martine; Pellat-Deceunynck, Catherine

    2014-06-14

    The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53(mutated) cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a 17p deletion, who are resistant to current therapies.

  10. Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation

    Directory of Open Access Journals (Sweden)

    Yoon TH

    2012-03-01

    Full Text Available Ki-Chun Yoo1, Chang-Hwan Yoon1, Dongwook Kwon2, Kyung-Hwan Hyun1, Soo Jung Woo1, Rae-Kwon Kim1, Eun-Jung Lim1, Yongjoon Suh1, Min-Jung Kim1, Tae Hyun Yoon2, Su-Jae Lee11Laboratory of Molecular Biochemistry, 2Laboratory of Nanoscale Characterization and Environmental Chemistry, Department of Chemistry, Hanyang University, Seoul, Republic of KoreaBackground: Titanium dioxide (TiO2 has been widely used in many areas, including biomedicine, cosmetics, and environmental engineering. Recently, it has become evident that some TiO2 particles have a considerable cytotoxic effect in normal human cells. However, the molecular basis for the cytotoxicity of TiO2 has yet to be defined.Methods and results: In this study, we demonstrated that combined treatment with TiO2 nanoparticles sized less than 100 nm and ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-dependent upregulation of Fas and conformational activation of Bax in normal human cells. Treatment with P25 TiO2 nanoparticles with a hydrodynamic size distribution centered around 70 nm (TiO2P25–70 together with ultraviolet A irradiation-induced caspase-dependent apoptotic cell death, accompanied by transcriptional upregulation of the death receptor, Fas, and conformational activation of Bax. In line with these results, knockdown of either Fas or Bax with specific siRNA significantly inhibited TiO2-induced apoptotic cell death. Moreover, inhibition of reactive oxygen species with an antioxidant, N-acetyl-L-cysteine, clearly suppressed upregulation of Fas, conformational activation of Bax, and subsequent apoptotic cell death in response to combination treatment using TiO2P25–70 and ultraviolet A irradiation.Conclusion: These results indicate that sub-100 nm sized TiO2 treatment under ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-mediated upregulation of the death receptor, Fas, and activation of the preapoptotic protein

  11. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ginkel, Paul R. van; Yan, Michael B. [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Bhattacharya, Saswati [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Department of Pediatrics, University of Wisconsin, Madison, WI 53792 (United States); Polans, Arthur S., E-mail: aspolans@wisc.edu [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Kenealey, Jason D. [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602 (United States)

    2015-11-01

    Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cells to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death. - Highlights: • Natural products having low toxicity increase cytoplasmic calcium in cancer cells. • A G-protein/IP{sub 3} pathway mediates the release of calcium from the ER. • The elevation of intracellular calcium modulates p53 activity. • p53 and other Ca{sup 2+}-dependent pro-apoptotic pathways inhibit cancer cell growth.

  12. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells

    International Nuclear Information System (INIS)

    Ginkel, Paul R. van; Yan, Michael B.; Bhattacharya, Saswati; Polans, Arthur S.; Kenealey, Jason D.

    2015-01-01

    Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cells to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death. - Highlights: • Natural products having low toxicity increase cytoplasmic calcium in cancer cells. • A G-protein/IP 3 pathway mediates the release of calcium from the ER. • The elevation of intracellular calcium modulates p53 activity. • p53 and other Ca 2+ -dependent pro-apoptotic pathways inhibit cancer cell growth.

  13. Paracrine Apoptotic Effect of p53 Mediated by Tumor Suppressor Par-4

    Directory of Open Access Journals (Sweden)

    Ravshan Burikhanov

    2014-01-01

    Full Text Available The guardian of the genome, p53, is often mutated in cancer and may contribute to therapeutic resistance. Given that p53 is intact and functional in normal tissues, we harnessed its potential to inhibit the growth of p53-deficient cancer cells. Specific activation of p53 in normal fibroblasts selectively induced apoptosis in p53-deficient cancer cells. This paracrine effect was mediated by p53-dependent secretion of the tumor suppressor Par-4. Accordingly, the activation of p53 in normal mice, but not p53−/− or Par-4−/− mice, caused systemic elevation of Par-4, which induced apoptosis of p53-deficient tumor cells. Mechanistically, p53 induced Par-4 secretion by suppressing the expression of its binding partner, UACA, which sequesters Par-4. Thus, normal cells can be empowered by p53 activation to induce Par-4 secretion for the inhibition of therapy-resistant tumors.

  14. Dopaminergic Neuron-Specific Deletion of p53 Gene Attenuates Methamphetamine Neurotoxicity.

    Science.gov (United States)

    Lu, Tao; Kim, Paul P; Greig, Nigel H; Luo, Yu

    2017-08-01

    p53 plays an essential role in the regulation of cell death in dopaminergic (DA) neurons and its activation has been implicated in the neurotoxic effects of methamphetamine (MA). However, how p53 mediates MA neurotoxicity remains largely unknown. In this study, we examined the effect of DA-specific p53 gene deletion in DAT-p53KO mice. Whereas in vivo MA binge exposure reduced locomotor activity in wild-type (WT) mice, this was significantly attenuated in DAT-p53KO mice and associated with significant differences in the levels of the p53 target genes BAX and p21 between WT and DAT-p53KO. Notably, DA-specific deletion of p53 provided protection of substantia nigra pars reticulata (SNpr) tyrosine hydroxylase (TH) positive fibers following binge MA, with DAT-p53KO mice having less decline of TH protein levels in striatum versus WT mice. Whereas DAT-p53KO mice demonstrated a consistently higher density of TH fibers in striatum compared to WT mice at 10 days after MA exposure, DA neuron counts within the substantia nigra pars compacta (SNpc) were similar. Finally, supportive of these results, administration of a p53-specific inhibitor (PFT-α) provided a similarly protective effect on MA binge-induced behavioral deficits. Neither DA specific p53 deletion nor p53 pharmacological inhibition affected hyperthermia induced by MA binge. These findings demonstrate a specific contribution of p53 activation in behavioral deficits and DA neuronal terminal loss by MA binge exposure.

  15. Perturbation of Ribosome Biogenesis Drives Cells into Senescence through 5S RNP-Mediated p53 Activation

    Directory of Open Access Journals (Sweden)

    Kazuho Nishimura

    2015-03-01

    Full Text Available The 5S ribonucleoprotein particle (RNP complex, consisting of RPL11, RPL5, and 5S rRNA, is implicated in p53 regulation under ribotoxic stress. Here, we show that the 5S RNP contributes to p53 activation and promotes cellular senescence in response to oncogenic or replicative stress. Oncogenic stress accelerates rRNA transcription and replicative stress delays rRNA processing, resulting in RPL11 and RPL5 accumulation in the ribosome-free fraction, where they bind MDM2. Experimental upregulation of rRNA transcription or downregulation of rRNA processing, mimicking the nucleolus under oncogenic or replicative stress, respectively, also induces RPL11-mediated p53 activation and cellular senescence. We demonstrate that exogenous expression of certain rRNA-processing factors rescues the processing defect, attenuates p53 accumulation, and increases replicative lifespan. To summarize, the nucleolar-5S RNP-p53 pathway functions as a senescence inducer in response to oncogenic and replicative stresses.

  16. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    Science.gov (United States)

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.

  17. Suberoyl bis-hydroxamic acid induces p53-dependent apoptosis of MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-gang ZHUANG; Fei FEI; Ying CHEN; Wei JIN

    2008-01-01

    Aim: To study the effects of suberoyl bis-hydroxamic acid (SBHA), an inhibitor of histone deacetylases, on the apoptosis of MCF-7 breast cancer cells. Meth-ods: Apoptosis in MCF-7 cells induced by SBHA was demonstrated by flow cytometric analysis, morphological observation, and DNA ladder. Mitochondrial membrane potential (△ψm) was measured using the fluorescent probe JC-1. The expressions of p53, p21, Bax, and PUMA were determined using RT-PCR or Western blotting analysis after the MCF-7 cells were treated with SBHA or p53 siRNA. Results: SBHA induced apoptosis in MCF-7 cells. The expressions of p53, p21, Bax, and PUMA were induced, and △ψm collapsed after treatment with SBHA. p53 siRNA abrogated the SBHA-induced apoptosis and the expressions of p53, p21, Bax, and PUMA. Conclusion: The activation of the p53 pathway is involved in SBHA-induced apoptosis in MCF-7 cells.

  18. Perturbation of ribosome biogenesis drives cells into senescence through 5S RNP-mediated p53 activation.

    Science.gov (United States)

    Nishimura, Kazuho; Kumazawa, Takuya; Kuroda, Takao; Katagiri, Naohiro; Tsuchiya, Mai; Goto, Natsuka; Furumai, Ryohei; Murayama, Akiko; Yanagisawa, Junn; Kimura, Keiji

    2015-03-03

    The 5S ribonucleoprotein particle (RNP) complex, consisting of RPL11, RPL5, and 5S rRNA, is implicated in p53 regulation under ribotoxic stress. Here, we show that the 5S RNP contributes to p53 activation and promotes cellular senescence in response to oncogenic or replicative stress. Oncogenic stress accelerates rRNA transcription and replicative stress delays rRNA processing, resulting in RPL11 and RPL5 accumulation in the ribosome-free fraction, where they bind MDM2. Experimental upregulation of rRNA transcription or downregulation of rRNA processing, mimicking the nucleolus under oncogenic or replicative stress, respectively, also induces RPL11-mediated p53 activation and cellular senescence. We demonstrate that exogenous expression of certain rRNA-processing factors rescues the processing defect, attenuates p53 accumulation, and increases replicative lifespan. To summarize, the nucleolar-5S RNP-p53 pathway functions as a senescence inducer in response to oncogenic and replicative stresses. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. NGF-mediated transcriptional targets of p53 in PC12 neuronal differentiation

    Directory of Open Access Journals (Sweden)

    Labhart Paul

    2007-05-01

    Full Text Available Abstract Background p53 is recognized as a critical regulator of the cell cycle and apoptosis. Mounting evidence also suggests a role for p53 in differentiation of cells including neuronal precursors. We studied the transcriptional role of p53 during nerve growth factor-induced differentiation of the PC12 line into neuron-like cells. We hypothesized that p53 contributed to PC12 differentiation through the regulation of gene targets distinct from its known transcriptional targets for apoptosis or DNA repair. Results Using a genome-wide chromatin immunoprecipitation cloning technique, we identified and validated 14 novel p53-regulated genes following NGF treatment. The data show p53 protein was transcriptionally activated and contributed to NGF-mediated neurite outgrowth during differentiation of PC12 cells. Furthermore, we describe stimulus-specific regulation of a subset of these target genes by p53. The most salient differentiation-relevant target genes included wnt7b involved in dendritic extension and the tfcp2l4/grhl3 grainyhead homolog implicated in ectodermal development. Additional targets included brk, sdk2, sesn3, txnl2, dusp5, pon3, lect1, pkcbpb15 and other genes. Conclusion Within the PC12 neuronal context, putative p53-occupied genomic loci spanned the entire Rattus norvegicus genome upon NGF treatment. We conclude that receptor-mediated p53 transcriptional activity is involved in PC12 differentiation and may suggest a contributory role for p53 in neuronal development.

  20. The effects of combining ionizing radiation and adenovirus-mediated p53 gene transfer in human nasopharyngeal carcinoma cell lines

    International Nuclear Information System (INIS)

    Liu Feifei; Li Jianhua; Lax, Stuart; Klamut, Henry

    1997-01-01

    Purpose/Objective: We have previously demonstrated that the introduction of human recombinant wild-type p53 carried by the adenoviral vector (Ad5CMV-p53) into two human nasopharyngeal carcinoma (NPC) cell lines (CNE-1 and CNE-2Z) resulted in significant cytotoxicity. In the current work, we wanted to evaluate the results of this strategy when combined with ionizing radiation (XRT). Materials and Methods: CNE-1, CNE-2Z, and a normal human nasopharyngeal fibroblast strain KS1, were infected with iso-effective doses of 2, 6 and 6 pfu/cell of Ad5CMV-p53 respectively. XRT was administered 24 hours post-infection, to coincide with the time of maximal recombinant p53 expression. Western blot analyses were conducted for p53, p21 WAF1/CIP1 , bax and bcl-2. Cell viability was evaluated using both the MTT and clonogenic assays. Presence of apoptosis was determined by using DNA agarose gel electrophoresis. Results: We observed that the combination of Ad5CMV-p53 + XRT (2, 4, and 6 Gy) resulted in an approximately 1-log greater level of cytotoxicity compared to that observed with XRT alone for both NPC cell lines. The MTT assay indicated sparing of the KS1 cells when subjected to the identical treatments. XRT alone stimulated minimal p53 expression; Ad5CMV-p53 alone induced significant recombinant p53 expression, which was not further enhanced by the addition of XRT. Similar observations were made for p21 WAF1/CIP1 expression. No changes were observed for bax and bcl-2 expression with any of these treatments. Apoptosis was induced following 4 Gy of XRT alone, but was observed earlier, at 2 Gy when combined with Ad5CMV-p53. Conclusion: Additional cytotoxicity was observed for the NPC cell lines when XRT was combined with Ad5CMV-p53 infection, with concurrent sparing of normal cells (KS1). This cytotoxicity also appeared to be mediated through the induction of the apoptotic pathway. These results support our previous observation of the potential application of this strategy in the

  1. Antiproliferative and Apoptotic Effect of Dendrosomal Curcumin Nanoformulation in P53 Mutant and Wide-Type Cancer Cell Lines.

    Science.gov (United States)

    Montazeri, Maryam; Pilehvar-Soltanahmadi, Younes; Mohaghegh, Mina; Panahi, Alireza; Khodi, Samaneh; Zarghami, Nosratollah; Sadeghizadeh, Majid

    2017-01-01

    The aim of this paper is to investigate the effect of dendrosomal curcumin (DNC) on the expression of p53 in both p53 mutant cell lines SKBR3/SW480 and p53 wild-type MCF7/HCT116 in both RNA and protein levels. Curcumin, derived from Curcumin longa, is recently considered in cancer related researches for its cell growth inhibition properties. p53 is a common tumor-suppressor gene involved in cancers and its mutation not only inhibits tumor suppressor activity but also promotes oncogenic activity. Here, p53 mutant/Wild-type cells were employed to study the toxicity of DNC using MTT assay, Flow cytometry and Annexin-V, Real-time PCR and Western blot were used to analyze p53, BAX, Bcl-2, p21 and Noxa changes after treatment. During the time, DNC increased the SubG1 cells and decreased G1, S and G2/M cells, early apoptosis also indicated the inhibition of cell growth in early phase. Real-Time PCR assay showed an increased mRNA of BAX, Noxa and p21 during the time with decreased Bcl-2. The expression of p53 mutant decreased in SKBR3/SW480, and the expression of p53 wild-type increased in MCF7/HCT116. Consequently, p53 plays an important role in mediating the survival by DNC, which can prevent tumor cell growth by modulating the expression of genes involved in apoptosis and proliferation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio

    Directory of Open Access Journals (Sweden)

    Azimahtol Hawariah LP

    2007-04-01

    Full Text Available Abstract Background Zerumbone is a cytotoxic component isolated from Zingiber zerumbet Smith, a herbal plant which is also known as lempoyang. This new anticancer bioactive compound from Z. zerumbet was investigated for its activity and mechanism in human liver cancer cell lines. Results Zerumbone significantly showed an antiproliferative activity upon HepG2 cells with an IC50 of 3.45 ± 0.026 μg/ml. Zerumbone was also found to inhibit the proliferation of non-malignant Chang Liver and MDBK cell lines. However the IC50 obtained was higher compared to the IC50 for HepG2 cells (> 10 μg/ml. The extent of DNA fragmentation was evaluated by the Tdt-mediated dUTP nick end labelling assay which showed that, zerumbone significantly increased apoptosis in HepG2 cells in a time-course manner. In detail, the apoptotic process triggered by zerumbone involved the up-regulation of pro-apoptotic Bax protein and the suppression of anti-apoptotic Bcl-2 protein expression. The changes that occurred in the levels of this antagonistic proteins Bax/Bcl-2, was independent of p53 since zerumbone did not affect the levels of p53 although this protein exists in a functional form. Western blotting analysis for Bax protein was further confirmed qualitatively with an immunoassay that showed the distribution of Bax protein in zerumbone-treated cells. Conclusion Therefore, zerumbone was found to induce the apoptotic process in HepG2 cells through the up and down regulation of Bax/Bcl-2 protein independently of functional p53 activity.

  3. RUNX Family Participates in the Regulation of p53-Dependent DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Toshinori Ozaki

    2013-01-01

    Full Text Available A proper DNA damage response (DDR, which monitors and maintains the genomic integrity, has been considered to be a critical barrier against genetic alterations to prevent tumor initiation and progression. The representative tumor suppressor p53 plays an important role in the regulation of DNA damage response. When cells receive DNA damage, p53 is quickly activated and induces cell cycle arrest and/or apoptotic cell death through transactivating its target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death such as p21WAF1, BAX, and PUMA. Accumulating evidence strongly suggests that DNA damage-mediated activation as well as induction of p53 is regulated by posttranslational modifications and also by protein-protein interaction. Loss of p53 activity confers growth advantage and ensures survival in cancer cells by inhibiting apoptotic response required for tumor suppression. RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor and is closely involved in a variety of cellular processes including development, differentiation, and/or tumorigenesis. In this review, we describe a background of p53 and a functional collaboration between p53 and RUNX family in response to DNA damage.

  4. Gene expression and apoptosis induction in p53-heterozygous irradiated mice

    International Nuclear Information System (INIS)

    Di Masi, Alessandra; Antoccia, Antonio; Dimauro, Ivan; Argentino-Storino, Alberta; Mosiello, Alberto; Mango, Ruggiero; Novelli, Giuseppe; Tanzarella, Caterina

    2006-01-01

    The role of the p53-genetic background in the expression of genes involved in either cell cycle checkpoint activation or apoptosis was evaluated in p53+/+ and p53+/- mouse strains at both basal levels and after DNA-induced damage. The spleen, colon, kidneys, lungs and liver of both strains were harvested from untreated animals and from mice exposed to 7.5 Gy of X-rays and sacrificed after 5 h. No significant differences were observed in the basal levels of p53 protein, CDKN1A and bax mRNA and spontaneous apoptosis, neither among the different organs within the same strain, nor between the same organ in the p53+/+ and p53+/- strains. After X-ray exposure, p53-dependent regulation was strikingly tissue-specific. In wild-type irradiated mice, p53 protein level increased after radiation treatment in all the organs analysed, whereas both CDKN1A and bax genes transcription increased in the spleen, colon and lungs, as assessed by means of quantitative RT-PCR. In p53+/- irradiated mice, on the contrary, a significant p53 induction was detected only in the spleen, while CDKN1A and bax genes levels increased in the spleen, colon and lungs, revealing the existence of different mechanisms of gene regulation in different organs. Apoptosis induction was observed in the spleen and colon of both strains, even if to lower extent in p53+/- mice compared to p53+/+ animals. In conclusion, in the spleen and colon, target gene transcription and apoptosis may be related to p53 genotype after DNA damage-induction. Moreover, our findings highlight the selectivity of p53 in transactivation following DNA damage in vivo, resulting in tissue-specific responses

  5. Gene expression and apoptosis induction in p53-heterozygous irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Di Masi, Alessandra [Department of Biology, University of Rome ' Roma Tre' , Viale G. Marconi, 446, 00146 Rome (Italy); Antoccia, Antonio [Department of Biology, University of Rome ' Roma Tre' , Viale G. Marconi, 446, 00146 Rome (Italy); Dimauro, Ivan [Department of Biology, University of Rome ' Roma Tre' , Viale G. Marconi, 446, 00146 Rome (Italy); Argentino-Storino, Alberta [Research Toxicology Centre S.p.A., Via Tito Speri, 18, 00040 Pomezia (RM) (Italy); Mosiello, Alberto [Research Toxicology Centre S.p.A., Via Tito Speri, 18, 00040 Pomezia (RM) (Italy); Mango, Ruggiero [Centre of Excellence for Genomic Risk Assessment in Multifactorial and Complex Diseases, School of Medicine, University of Rome ' Tor Vergata' , Rome (Italy); Novelli, Giuseppe [Centre of Excellence for Genomic Risk Assessment in Multifactorial and Complex Diseases, School of Medicine, University of Rome ' Tor Vergata' , Rome (Italy); Tanzarella, Caterina [Department of Biology, University of Rome ' Roma Tre' , Viale G. Marconi, 446, 00146 Rome (Italy)]. E-mail: tanzarel@uniroma3.it

    2006-02-22

    The role of the p53-genetic background in the expression of genes involved in either cell cycle checkpoint activation or apoptosis was evaluated in p53+/+ and p53+/- mouse strains at both basal levels and after DNA-induced damage. The spleen, colon, kidneys, lungs and liver of both strains were harvested from untreated animals and from mice exposed to 7.5 Gy of X-rays and sacrificed after 5 h. No significant differences were observed in the basal levels of p53 protein, CDKN1A and bax mRNA and spontaneous apoptosis, neither among the different organs within the same strain, nor between the same organ in the p53+/+ and p53+/- strains. After X-ray exposure, p53-dependent regulation was strikingly tissue-specific. In wild-type irradiated mice, p53 protein level increased after radiation treatment in all the organs analysed, whereas both CDKN1A and bax genes transcription increased in the spleen, colon and lungs, as assessed by means of quantitative RT-PCR. In p53+/- irradiated mice, on the contrary, a significant p53 induction was detected only in the spleen, while CDKN1A and bax genes levels increased in the spleen, colon and lungs, revealing the existence of different mechanisms of gene regulation in different organs. Apoptosis induction was observed in the spleen and colon of both strains, even if to lower extent in p53+/- mice compared to p53+/+ animals. In conclusion, in the spleen and colon, target gene transcription and apoptosis may be related to p53 genotype after DNA damage-induction. Moreover, our findings highlight the selectivity of p53 in transactivation following DNA damage in vivo, resulting in tissue-specific responses.

  6. Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Liz J. Valente

    2016-03-01

    Full Text Available Nutlin3a is a small-molecule antagonist of MDM2 that promotes non-genotoxic activation of p53 through p53 protein stabilization and transactivation of p53 target genes. Nutlin3a is the forerunner of a class of cancer therapeutics that have reached clinical trials. Using transgenic and gene-targeted mouse models lacking the critical p53 target genes, p21, Puma, and Noxa, we found that only loss of PUMA conferred profound protection against Nutlin3a-induced killing in both non-transformed lymphoid cells and Eμ-Myc lymphomas in vitro and in vivo. CRISPR/Cas9-mediated targeting of the PUMA gene rendered human hematopoietic cancer cell lines markedly resistant to Nutlin3a-induced cell death. These results demonstrate that PUMA-mediated apoptosis, but not p21-mediated cell-cycle arrest or senescence, is a critical determinant of the therapeutic response to non-genotoxic p53 activation by Nutlin3a. Importantly, in human cancer, PUMA expression may predict patient responses to treatment with MDM2 antagonists.

  7. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    International Nuclear Information System (INIS)

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-01-01

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence

  8. Disruption of focal adhesion kinase and p53 interaction with small molecule compound R2 reactivated p53 and blocked tumor growth

    International Nuclear Information System (INIS)

    Golubovskaya, Vita M; Ho, Baotran; Zheng, Min; Magis, Andrew; Ostrov, David; Morrison, Carl; Cance, William G

    2013-01-01

    Focal Adhesion Kinase (FAK) is a 125 kDa non-receptor kinase that plays a major role in cancer cell survival and metastasis. We performed computer modeling of the p53 peptide containing the site of interaction with FAK, predicted the peptide structure and docked it into the three-dimensional structure of the N-terminal domain of FAK involved in the complex with p53. We screened small molecule compounds that targeted the site of the FAK-p53 interaction and identified compounds (called Roslins, or R compounds) docked in silico to this site. By different assays in isogenic HCT116p53 + / + and HCT116 p53 - / - cells we identified a small molecule compound called Roslin 2 (R2) that bound FAK, disrupted the binding of FAK and p53 and decreased cancer cell viability and clonogenicity in a p53-dependent manner. In addition, dual-luciferase assays demonstrated that the R2 compound increased p53 transcriptional activity that was inhibited by FAK using p21, Mdm-2, and Bax-promoter targets. R2 also caused increased expression of p53 targets: p21, Mdm-2 and Bax proteins. Furthermore, R2 significantly decreased tumor growth, disrupted the complex of FAK and p53, and up-regulated p21 in HCT116 p53 + / + but not in HCT116 p53 - / - xenografts in vivo. In addition, R2 sensitized HCT116p53 + / + cells to doxorubicin and 5-fluorouracil. Thus, disruption of the FAK and p53 interaction with a novel small molecule reactivated p53 in cancer cells in vitro and in vivo and can be effectively used for development of FAK-p53 targeted cancer therapy approaches

  9. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis.

    Science.gov (United States)

    Fong, Chii Shyang; Mazo, Gregory; Das, Tuhin; Goodman, Joshua; Kim, Minhee; O'Rourke, Brian P; Izquierdo, Denisse; Tsou, Meng-Fu Bryan

    2016-07-02

    Mitosis occurs efficiently, but when it is disturbed or delayed, p53-dependent cell death or senescence is often triggered after mitotic exit. To characterize this process, we conducted CRISPR-mediated loss-of-function screens using a cell-based assay in which mitosis is consistently disturbed by centrosome loss. We identified 53BP1 and USP28 as essential components acting upstream of p53, evoking p21-dependent cell cycle arrest in response not only to centrosome loss, but also to other distinct defects causing prolonged mitosis. Intriguingly, 53BP1 mediates p53 activation independently of its DNA repair activity, but requiring its interacting protein USP28 that can directly deubiquitinate p53 in vitro and ectopically stabilize p53 in vivo. Moreover, 53BP1 can transduce prolonged mitosis to cell cycle arrest independently of the spindle assembly checkpoint (SAC), suggesting that while SAC protects mitotic accuracy by slowing down mitosis, 53BP1 and USP28 function in parallel to select against disturbed or delayed mitosis, promoting mitotic efficiency.

  10. Immunohistochemical expression of p53, BCL-2, BAX and VEGFR1 proteins in nephroblastomas A expressão imuno-histoquímica das proteínas p53, BCL-2, BAX e VEGFR1 em nefroblastomas

    Directory of Open Access Journals (Sweden)

    Ana Paula Percicote

    2013-02-01

    Full Text Available INTRODUCTION: Nephroblastoma or Wilms' tumor is the most frequent renal cancer in children. Although its prognosis is favorable for most patients, it may relapse or have a fatal outcome. The characterization of risk groups by applying immunohistochemical biomarkers aims to adapt the treatment to its corresponding group as well as to reduce relapses and fatal outcome. p53, B-cell lymphoma 2 (BCL-2, BCL-2 associated protein X (BAX and vascular endothelial growth factor receptor 1 (VEGFR1 are among the most widely studied biomarkers, which are related to the apoptotic pathway, DNA repair and neovascularization. OBJECTIVE: The objective of this study is to assess the immunohistochemical expression of p53, BCL-2, BAX and VEGFR1 in samples of human nephroblastoma and to correlate them with clinicopathological prognostic factors. MATERIAL AND METHODS: Twenty-nine surgical specimens of nephroblastoma diagnosed from 1994 to 2007 were selected from the Anatomopathological Service of two hospitals in Curitiba. The immunohistochemical analysis of tissue microarrays was performed through immunoperoxidase staining and the yielded results were compared with clinicopathological prognostic factors. RESULTS: The major immunohistochemical expression of VEGFR1 in blastema and epithelium presented positive association with the risk group. Hence this may be related to higher vascular neoplastic invasion apparently caused by the endothelial growth factor, which maximizes the chances of metastasis and ultimately changes tumor staging, risk group and clinical evolution. CONCLUSIONS: The immunohistochemical expression of VEGFR1 substantiated a directly proportional association with the nephroblastoma risk group.INTRODUÇÃO: O nefroblastoma, ou tumor de Wilms, é a neoplasia renal mais frequente na infância. Embora o prognóstico seja favorável para a maioria dos pacientes, muitos evoluem para recidiva ou óbito. A caracterização de grupos de risco por meio de

  11. BAX channel activity mediates lysosomal disruption linked to Parkinson disease.

    Science.gov (United States)

    Bové, Jordi; Martínez-Vicente, Marta; Dehay, Benjamin; Perier, Celine; Recasens, Ariadna; Bombrun, Agnes; Antonsson, Bruno; Vila, Miquel

    2014-05-01

    Lysosomal disruption is increasingly regarded as a major pathogenic event in Parkinson disease (PD). A reduced number of intraneuronal lysosomes, decreased levels of lysosomal-associated proteins and accumulation of undegraded autophagosomes (AP) are observed in PD-derived samples, including fibroblasts, induced pluripotent stem cell-derived dopaminergic neurons, and post-mortem brain tissue. Mechanistic studies in toxic and genetic rodent PD models attribute PD-related lysosomal breakdown to abnormal lysosomal membrane permeabilization (LMP). However, the molecular mechanisms underlying PD-linked LMP and subsequent lysosomal defects remain virtually unknown, thereby precluding their potential therapeutic targeting. Here we show that the pro-apoptotic protein BAX (BCL2-associated X protein), which permeabilizes mitochondrial membranes in PD models and is activated in PD patients, translocates and internalizes into lysosomal membranes early following treatment with the parkinsonian neurotoxin MPTP, both in vitro and in vivo, within a time-frame correlating with LMP, lysosomal disruption, and autophagosome accumulation and preceding mitochondrial permeabilization and dopaminergic neurodegeneration. Supporting a direct permeabilizing effect of BAX on lysosomal membranes, recombinant BAX is able to induce LMP in purified mouse brain lysosomes and the latter can be prevented by pharmacological blockade of BAX channel activity. Furthermore, pharmacological BAX channel inhibition is able to prevent LMP, restore lysosomal levels, reverse AP accumulation, and attenuate mitochondrial permeabilization and overall nigrostriatal degeneration caused by MPTP, both in vitro and in vivo. Overall, our results reveal that PD-linked lysosomal impairment relies on BAX-induced LMP, and point to small molecules able to block BAX channel activity as potentially beneficial to attenuate both lysosomal defects and neurodegeneration occurring in PD.

  12. Inability of p53-reactivating compounds Nutlin-3 and RITA to overcome p53 resistance in tumor cells deficient in p53Ser46 phosphorylation.

    Science.gov (United States)

    Ma, Teng; Yamada, Shumpei; Ichwan, Solachuddin J A; Iseki, Sachiko; Ohtani, Kiyoshi; Otsu, Megumi; Ikeda, Masa-Aki

    2012-01-20

    The p53 tumor suppressor protein plays key roles in protecting cells from tumorigenesis. Phosphorylation of p53 at Ser46 (p53Ser46) is considered to be a crucial modification regulating p53-mediated apoptosis. Because the activity of p53 is impaired in most human cancers, restoration of wild-type p53 (wt-p53) function by its gene transfer or by p53-reactivating small molecules has been extensively investigated. The p53-reactivating compounds Nutlin-3 and RITA activate p53 in the absence of genotoxic stress by antagonizing the action of its negative regulator Mdm2. Although controversial, Nutlin-3 was shown to induce p53-mediated apoptosis in a manner independent of p53 phosphorylation. Recently, RITA was shown to induce apoptosis by promoting p53Ser46 phosphorylation. Here we examined whether Nutlin-3 or RITA can overcome resistance to p53-mediated apoptosis in p53-resistant tumor cell lines lacking the ability to phosphorylate p53Ser46. We show that Nutlin-3 did not rescue the apoptotic defect of a Ser46 phosphorylation-defective p53 mutant in p53-sensitive tumor cells, and that RITA neither restored p53Ser46 phosphorylation nor induced apoptosis in p53Ser46 phosphorylation-deficient cells retaining wt-p53. Furthermore, treatment with Nutlin-3 or RITA together with adenoviral p53 gene transfer also failed to induce apoptosis in p53Ser46 phosphorylation-deficient cells either expressing or lacking wt-p53. These results indicate that neither Nutlin-3 nor RITA in able to induce p53-mediated apoptosis in the absence of p53Ser46 phosphorylation. Thus, the dysregulation of this phosphorylation in tumor cells may be a critical factor that limits the efficacy of these p53-based cancer therapies. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Phosphorylation and nuclear accumulation are distinct events contributing to the activation of p53

    International Nuclear Information System (INIS)

    O'Hagan, Heather M.; Ljungman, Mats

    2004-01-01

    It has been recently shown that ionizing radiation (IR) and the mRNA synthesis inhibitor 5,6-dichloro-1-b-D-ribofuranosylbenzimidazole (DRB) act in synergy to induce p53-mediated transactivation of reporter plasmids in human cells [Oncogene 19 (2000) 3829]. We have extended these studies and show that ionizing radiation and DRB also act in synergy to induce ATM-mediated phosphorylation of the ser15 site of p53 and enhance the expression of endogenous p21 protein. Examination of the localization of p53 revealed that while DRB did not induce phosphorylation of the ser15 site of p53 but efficiently accumulated p53 in the nucleus, ionizing radiation induced phosphorylation of the ser15 site of p53 without prolonged nuclear accumulation. Importantly, the combination of DRB and IR resulted in a strong accumulation of phosphorylated p53 in the nucleus that was more persistent then p53 accumulation after IR alone. Furthermore, the nuclear export inhibitor leptomycin B showed a similar synergy with IR as did DRB regarding ser15 phosphorylation of p53 and p21 induction. These results suggest that the synergistic activation of the p53 response by the combination treatment is due to the activation of two distinct pathways where DRB causes the prolonged nuclear accumulation of p53 while ionizing radiation activates p53 by ATM-mediated phosphorylation

  14. The ethanol extract of Scutellaria baicalensis and the active compounds induce cell cycle arrest and apoptosis including upregulation of p53 and Bax in human lung cancer cells

    International Nuclear Information System (INIS)

    Gao Jiayu; Morgan, Winston A.; Sanchez-Medina, Alberto; Corcoran, Olivia

    2011-01-01

    Despite a lack of scientific authentication, Scutellaria baicalensis is clinically used in Chinese medicine as a traditional adjuvant to chemotherapy of lung cancer. In this study, cytotoxicity assays demonstrated that crude ethanolic extracts of S. baicalensis were selectively toxic to human lung cancer cell lines A549, SK-LU-1 and SK-MES-1 compared with normal human lung fibroblasts. The active compounds baicalin, baicalein and wogonin did not exhibit such selectivity. Following exposure to the crude extracts, cellular protein expression in the cancer cell lines was assessed using 2D gel electrophoresis coupled with MALDI-TOF-MS/Protein Fingerprinting. The altered protein expression indicated that cell growth arrest and apoptosis were potential mechanisms of cytotoxicity. These observations were supported by PI staining cell cycle analysis using flow cytometry and Annexin-V apoptotic analysis by fluorescence microscopy of cancer cells treated with the crude extract and pure active compounds. Moreover, specific immunoblotting identification showed the decreased expression of cyclin A results in the S phase arrest of A549 whereas the G 0 /G 1 phase arrest in SK-MES-1 cells results from the decreased expression of cyclin D1. Following treatment, increased expression in the cancer cells of key proteins related to the enhancement of apoptosis was observed for p53 and Bax. These results provide further insight into the molecular mechanisms underlying the clinical use of this herb as an adjuvant to lung cancer therapy. - Research highlights: → Scutellaria baicalensis is a clinical adjuvant to lung cancer chemotherapy in China. → Scutellaria ethanol extracts selectively toxic to A549, SK-LU-1 and SK-MES-1. → Baicalin, baicalein and wogonin were toxic to all lung cancer cell lines. → Proteomics identified increased p53 and BAX in response to Scutellaria extracts.

  15. Apoptosis by [Pt(O,O'-acac)(γ-acac)(DMS)] requires PKC-δ mediated p53 activation in malignant pleural mesothelioma.

    Science.gov (United States)

    Muscella, Antonella; Vetrugno, Carla; Cossa, Luca Giulio; Antonaci, Giovanna; Barca, Amilcare; De Pascali, Sandra Angelica; Fanizzi, Francesco Paolo; Marsigliante, Santo

    2017-01-01

    Mesothelioma cancer cells have epithelioid or sarcomatoid morphology. The worst prognosis is associated with sarcomatoid phenotype and resistance to therapy is affected by cells heterogeneity. We recently showed that in ZL55 mesothelioma cell line of epithelioid origin [Pt(O,O'-acac)(γ-acac)(DMS)] (Ptac2S) has an antiproliferative effect in vitro and in vivo. Aim of this work was to extend the study on the effects of Ptac2S on ZL34 cell line, representative of sarcomatoid mesothelioma. ZL34 cells were used to assay the antitumor activity of Ptac2S in a mouse xenograft model in vivo. Then, both ZL34 and ZL55 cells were used in order to assess the involvement of p53 protein in (a) the processes underlying the sensitivity to chemotherapy and (b) the activation of various transduction proteins involved in apoptosis/survival processes. Ptac2S increases ZL34 cell death in vivo compared with cisplatin and, in vitro, Ptac2S was more efficacious than cisplatin in inducing apoptosis. In Ptac2S-treated ZL34 and ZL55 cells, p53 regulated gene products of apoptotic BAX and anti-apoptotic Bcl-2 proteins via transcriptional activation. Ptac2S activated PKC-δ and PKC-ε; their inhibition by PKC-siRNA decreased the apoptotic death of cells. PKC-δ was responsible for JNK1/2 activation that has a role in p53 activation. In addition, PKC-ε activation provoked phosphorylation of p38MAPK, concurring to apoptosis. In ZL34 cells, Ptac2S also activated PKC-α thus provoking ERK1/2 activation; inhibition of PKC-α, or ERK1/2, increased Ptac2S cytotoxicity. Results confirm that Ptac2S is a promising therapeutic agent for malignant mesothelioma, giving a substantial starting point for its further validation.

  16. SIAH1-induced p34SEI-1 polyubiquitination/degradation mediates p53 preferential vitamin C cytotoxicity.

    Science.gov (United States)

    Lee, Soonduck; Kim, Jinsun; Jung, Samil; Li, Chengping; Yang, Young; Kim, Keun Il; Lim, Jong-Seok; Kim, Yonghwan; Cheon, Choong-Il; Lee, Myeong-Sok

    2015-03-01

    Vitamin C is considered as an important anticancer therapeutic agent although this view is debatable. In this study, we introduce a physiological mechanism demonstrating how vitamin C exerts anticancer activity that induces cell cycle arrest and apoptosis. Our previous and current data reveal that p53 tumor suppressor is the prerequisite factor for stronger anticancer effects of vitamin C. In addition, vitamin C-mediated cancer cell cytotoxicity appears to be achieved at least partly through the downregulation of the p34SEI-1 oncoprotein. Our previous study showed that p34SEI-1 increases the survival of various types of cancer cells by inhibiting their apoptosis. Present data suggest that vitamin C treatment decreases the p34SEI-1 expression at the protein level and therefore alleviates its anti-apoptotic activity. Of note, SIAH1, E3 ubiquitin ligase, appears to be responsible for the p34SEI-1 polyubiquitination and its subsequent degradation, which is dependent on p53. In summary, vitamin C increases cancer cell death by inducing SIAH1-mediated polyubiquitination/degradation of the p34SEI-1 oncoprotein in a p53-dependent manner.

  17. A Single Nucleotide Polymorphism in the Bax Gene Promoter Affects Transcription and Influences Retinal Ganglion Cell Death

    Directory of Open Access Journals (Sweden)

    Sheila J Semaan

    2010-03-01

    Full Text Available Pro-apoptotic Bax is essential for RGC (retinal ganglion cell death. Gene dosage experiments in mice, yielding a single wild-type Bax allele, indicated that genetic background was able to influence the cell death phenotype. DBA/2J Bax+/− mice exhibited complete resistance to nerve damage after 2 weeks (similar to Bax −/− mice, but 129B6 Bax+/− mice exhibited significant cell loss (similar to wild-type mice. The different cell death phenotype was associated with the level of Bax expression, where 129B6 neurons had twice the level of endogenous Bax mRNA and protein as DBA/2J neurons. Sequence analysis of the Bax promoters between these strains revealed a single nucleotide polymorphism (T129B6 to CDBA/2J at position −515. A 1.5- to 2.5-fold increase in transcriptional activity was observed from the 129B6 promoter in transient transfection assays in a variety of cell types, including RGC5 cells derived from rat RGCs. Since this polymorphism occurred in a p53 half-site, we investigated the requirement of p53 for the differential transcriptional activity. Differential transcriptional activity from either 129B6 or DBA/2J Bax promoters were unaffected in p53−/− cells, and addition of exogenous p53 had no further effect on this difference, thus a role for p53 was excluded. Competitive electrophoretic mobility-shift assays identified two DNA-protein complexes that interacted with the polymorphic region. Those forming Complex 1 bound with higher affinity to the 129B6 polymorphic site, suggesting that these proteins probably comprised a transcriptional activator complex. These studies implicated quantitative expression of the Bax gene as playing a possible role in neuronal susceptibility to damaging stimuli.

  18. Cr(VI) induces mitochondrial-mediated and caspase-dependent apoptosis through reactive oxygen species-mediated p53 activation in JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Son, Young-Ok; Hitron, J. Andrew; Wang Xin; Chang Qingshan; Pan Jingju; Zhang Zhuo; Liu Jiankang; Wang Shuxia; Lee, Jeong-Chae; Shi Xianglin

    2010-01-01

    Cr(VI) compounds are known to cause serious toxic and carcinogenic effects. Cr(VI) exposure can lead to a severe damage to the skin, but the mechanisms involved in the Cr(VI)-mediated toxicity in the skin are unclear. The present study examined whether Cr(VI) induces cell death by apoptosis or necrosis using mouse skin epidermal cell line, JB6 Cl41 cells. We also investigated the cellular mechanisms of Cr(VI)-induced cell death. This study showed that Cr(VI) induced apoptotic cell death in a dose-dependent manner, as demonstrated by the appearance of cell shrinkage, the migration of cells into the sub-G1 phase, the increase of Annexin V positively stained cells, and the formation of nuclear DNA ladders. Cr(VI) treatment resulted in the increases of mitochondrial membrane depolarization and caspases activation. Electron spin resonance (ESR) and fluorescence analysis revealed that Cr(VI) increased intracellular levels of reactive oxygen species (ROS) such as hydrogen peroxide and superoxide anion radical in dose-dependent manner. Blockage of p53 by si-RNA transfection suppressed mitochondrial changes of Bcl-2 family composition, mitochondrial membrane depolarization, caspase activation and PARP cleavage, leading to the inhibition of Cr(VI)-induced apoptosis. Further, catalase treatment prevented p53 phosphorylation stimulated by Cr(VI) with the concomitant inhibition of caspase activation. These results suggest that Cr(VI) induced a mitochondrial-mediated and caspase-dependent apoptosis in skin epidermal cells through activation of p53, which are mainly mediated by reactive oxidants generated by the chemical.

  19. p53-Mediated Molecular Control of Autophagy in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Maria Mrakovcic

    2018-03-01

    Full Text Available Autophagy is an indispensable mechanism of the eukaryotic cell, facilitating the removal and renewal of cellular components and thereby balancing the cell’s energy consumption and homeostasis. Deregulation of autophagy is now regarded as one of the characteristic key features contributing to the development of tumors. In recent years, the suppression of autophagy in combination with chemotherapeutic treatment has been approached as a novel therapy in cancer treatment. However, depending on the type of cancer and context, interference with the autophagic machinery can either promote or disrupt tumorigenesis. Therefore, disclosure of the major signaling pathways that regulate autophagy and control tumorigenesis is crucial. To date, several tumor suppressor proteins and oncogenes have emerged as eminent regulators of autophagy whose depletion or mutation favor tumor formation. The mammalian cell “janitor” p53 belongs to one of these tumor suppressors that are most commonly mutated in human tumors. Experimental evidence over the last decade convincingly reports that p53 can act as either an activator or an inhibitor of autophagy depending on its subcellular localization and its mode of action. This finding gains particular significance as p53 deficiency or mutant variants of p53 that accumulate in the cytoplasm of tumor cells enable activation of autophagy. Accordingly, we recently identified p53 as a molecular hub that regulates autophagy and apoptosis in histone deacetylase inhibitor-treated uterine sarcoma cells. In light of this novel experimental evidence, in this review, we focus on p53 signaling as a mediator of the autophagic pathway in tumor cells.

  20. BAK overexpression mediates p53-independent apoptosis inducing effects on human gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2004-07-01

    Full Text Available Abstract Background BAK (Bcl-2 homologous antagonist/killer is a novel pro-apoptotic gene of the Bcl-2 family. It has been reported that gastric tumors have reduced BAK levels when compared with the normal mucosa. Moreover, mutations of the BAK gene have been identified in human gastrointestinal cancers, suggesting that a perturbation of BAK-mediated apoptosis may contribute to the pathogenesis of gastric cancer. In this study, we explored the therapeutic effects of gene transfer mediated elevations in BAK expression on human gastric cancer cells in vitro. Methods Eukaryotic expression vector for the BAK gene was constructed and transferred into gastric cancer cell lines, MKN-45 (wild-type p53 and MKN-28 (mutant-type p53. RT-PCR and Western Blotting detected cellular BAK gene expression. Cell growth activities were detected by MTT colorimetry and flow cytometry, while apoptosis was assayed by electronic microscopy and TUNEL. Western Blotting and colorimetry investigated cellular caspase-3 activities. Results BAK gene transfer could result in significant BAK overexpression, decreased in vitro growth, cell cycle G0/G1 arrest, and induced apoptosis in gastric cancer cells. In transferred cells, inactive caspase-3 precursor was cleaved into the active subunits p20 and p17, during BAK overexpression-induced apoptosis. In addition, this process occurred equally well in p53 wild-type (MKN-45, or in p53 mutant-type (MKN-28 gastric cancer cells. Conclusions The data presented suggests that overexpression of the BAK gene can lead to apoptosis of gastric cancer cells in vitro, which does not appear to be dependent on p53 status. The action mechanism of BAK mediated apoptosis correlates with activation of caspase-3. This could be served as a potential strategy for further development of gastric cancer therapies.

  1. BAK overexpression mediates p53-independent apoptosis inducing effects on human gastric cancer cells

    International Nuclear Information System (INIS)

    Tong, Qiang-Song; Zheng, Li-Duan; Wang, Liang; Liu, Jun; Qian, Wei

    2004-01-01

    BAK (Bcl-2 homologous antagonist/killer) is a novel pro-apoptotic gene of the Bcl-2 family. It has been reported that gastric tumors have reduced BAK levels when compared with the normal mucosa. Moreover, mutations of the BAK gene have been identified in human gastrointestinal cancers, suggesting that a perturbation of BAK-mediated apoptosis may contribute to the pathogenesis of gastric cancer. In this study, we explored the therapeutic effects of gene transfer mediated elevations in BAK expression on human gastric cancer cells in vitro. Eukaryotic expression vector for the BAK gene was constructed and transferred into gastric cancer cell lines, MKN-45 (wild-type p53) and MKN-28 (mutant-type p53). RT-PCR and Western Blotting detected cellular BAK gene expression. Cell growth activities were detected by MTT colorimetry and flow cytometry, while apoptosis was assayed by electronic microscopy and TUNEL. Western Blotting and colorimetry investigated cellular caspase-3 activities. BAK gene transfer could result in significant BAK overexpression, decreased in vitro growth, cell cycle G 0 /G 1 arrest, and induced apoptosis in gastric cancer cells. In transferred cells, inactive caspase-3 precursor was cleaved into the active subunits p20 and p17, during BAK overexpression-induced apoptosis. In addition, this process occurred equally well in p53 wild-type (MKN-45), or in p53 mutant-type (MKN-28) gastric cancer cells. The data presented suggests that overexpression of the BAK gene can lead to apoptosis of gastric cancer cells in vitro, which does not appear to be dependent on p53 status. The action mechanism of BAK mediated apoptosis correlates with activation of caspase-3. This could be served as a potential strategy for further development of gastric cancer therapies

  2. Aspalathin Reverts Doxorubicin-Induced Cardiotoxicity through Increased Autophagy and Decreased Expression of p53/mTOR/p62 Signaling

    Directory of Open Access Journals (Sweden)

    Rabia Johnson

    2017-09-01

    Full Text Available Doxorubicin (Dox is an effective chemotherapeutic agent used in the treatment of various cancers. Its clinical use is often limited due to its potentially fatal cardiotoxic side effect. Increasing evidence indicates that tumour protein p53 (p53, adenosine monophosphate-activated protein kinase (AMPK, nucleoporin p62 (p62, and the mammalian target of rapamycin (mTOR are critical mediators of Dox-induced apoptosis, and subsequent dysregulation of autophagy. Aspalathin, a polyphenolic dihydrochalcone C-glucoside has been shown to activate AMPK while decreasing the expression of p53. However, the role that aspalathin could play in the inhibition of Dox-induced cardiotoxicity through increased autophagy flux remained unexplored. H9c2 cardiomyocytes and Caov-3 ovarian cancer cells were cultured in Dulbecco’s Modified Eagle’s medium and treated with or without Dox for five days. Thereafter, cells exposed to 0.2 µM Dox were co-treated with either 20 µM Dexrazozane (Dexra or 0.2 µM aspalathin (ASP daily for 5 days. Results obtained showed that ASP mediates its cytoprotective effect in a p53-dependent manner, by increasing the Bcl-2/Bax ratio and decreasing apoptosis. The latter effect was diminished through ASP-induced activation of autophagy-related genes (Atgs with an associated decrease in p62 through induction of AMPK and Fox01. Furthermore, we showed that ASP was able to potentiate this effect without decreasing the anti-cancer efficacy of Dox, as could be observed in Caov-3 ovarian cancer cells. Taken together, the data presented in this study provides a credible mechanism by which ASP co-treatment could protect the myocardium from Dox-induced cardiotoxicity.

  3. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis.

    Science.gov (United States)

    Zhu, Xue; Wang, Ke; Zhang, Kai; Zhang, Ting; Yin, Yongxiang; Xu, Fei

    2016-11-22

    Due to the aggressive clinical behavior, poor outcome, and lack of effective specific targeted therapies, triple-negative breast cancer (TNBC) has currently been recognized as one of the most malignant types of tumors. In the present study, we investigated the cytotoxic effect of ziyuglycoside I, one of the major components extracted from Chinese anti-tumor herbal Radix Sanguisorbae , on the TNBC cell line MDA-MB-231. The underlying molecular mechanism of the cytotoxic effect ziyuglycoside I on MDA-MB-231 cells was investigated with cell viability assay, flow cytometric analysis and Western blot. Compared to normal mammary gland Hs 578Bst cells, treatment of ziyuglycoside I resulted in a significant growth inhibitory effect on MDA-MB-231 cells. Ziyuglycoside I induced the G2/M phase arrest and apoptosis of MDA-MB-231 cells in a dose-dependent manner. These effects were found to be partially mediated through the up-regulation of p53 and p21 WAF1 , elevated Bax/Bcl-2 ratio, and the activation of both intrinsic (mitochondrial-initiated) and extrinsic (Fas/FasL-initiated) apoptotic pathways. Furthermore, the p53 specific siRNA attenuated these effects. Our study suggested that ziyuglycoside I-triggered MDA-MB-231 cell cycle arrest and apoptosis were probably mediated by p53. This suggests that ziyuglycoside I might be a potential drug candidate for treating TNBC.

  4. Glaucarubinone sensitizes KB cells to paclitaxel by inhibiting ABC transporters via ROS-dependent and p53-mediated activation of apoptotic signaling pathways.

    Science.gov (United States)

    Karthikeyan, Subburayan; Hoti, Sugeerappa Laxmanappa; Nazeer, Yasin; Hegde, Harsha Vasudev

    2016-07-05

    Multidrug resistance (MDR) is considered to be the major contributor to failure of chemotherapy in oral squamous cell carcinoma (SCC). This study was aimed to explore the effects and mechanisms of glaucarubinone (GLU), one of the major quassinoids from Simarouba glauca DC, in potentiating cytotoxicity of paclitaxel (PTX), an anticancer drug in KB cells. Our data showed that the administration of GLU pre-treatment significantly enhanced PTX anti-proliferative effect in ABCB1 over-expressing KB cells. The Rh 123 drug efflux studies revealed that there was a significant transport function inhibition by GLU-PTX treatment. Interestingly, it was also found that this enhanced anticancer efficacy of GLU was associated with PTX-induced cell arrest in the G2/M phase of cell cycle. Further, the combined treatment of GLU-PTX had significant decrease in the expression levels of P-gp, MRPs, and BCRP in resistant KB cells at both mRNA and protein levels. Furthermore, the combination treatments showed significant reactive oxygen species (ROS) production, chromatin condensation and reduced mitochondrial membrane potential in resistant KB cells. The results from DNA fragmentation analysis also demonstrated the GLU induced apoptosis in KB cells and its synergy with PTX. Importantly, GLU and/or PTX triggered apoptosis through the activation of pro-apoptotic proteins such as p53, Bax, and caspase-9. Our findings demonstrated for the first time that GLU causes cell death in human oral cancer cells via the ROS-dependent suppression of MDR transporters and p53-mediated activation of the intrinsic mitochondrial pathway of apoptosis. Additionally, the present study also focussed on investigation of the protective effect of GLU and combination drugs in human normal blood lymphocytes. Normal blood lymphocytes assay indicated that GLU is able to induce selective toxicity in cancer cells and in silico molecular docking studies support the choice of GLU as ABC inhibitor to enhance PTX efficacy

  5. Cdk5 phosphorylates non-genotoxically overexpressed p53 following inhibition of PP2A to induce cell cycle arrest/apoptosis and inhibits tumor progression

    Directory of Open Access Journals (Sweden)

    Kumari Ratna

    2010-07-01

    Full Text Available Abstract Background p53 is the most studied tumor suppressor and its overexpression may or may not cause cell death depending upon the genetic background of the cells. p53 is degraded by human papillomavirus (HPV E6 protein in cervical carcinoma. Several stress activated kinases are known to phosphorylate p53 and, among them cyclin dependent kinase 5 (Cdk5 is one of the kinase studied in neuronal cell system. Recently, the involvement of Cdk5 in phosphorylating p53 has been shown in certain cancer types. Phosphorylation at specific serine residues in p53 is essential for it to cause cell growth inhibition. Activation of p53 under non stress conditions is poorly understood. Therefore, the activation of p53 and detection of upstream kinases that phosphorylate non-genotoxically overexpressed p53 will be of therapeutic importance for cancer treatment. Results To determine the non-genotoxic effect of p53; Tet-On system was utilized and p53 inducible HPV-positive HeLa cells were developed. p53 overexpression in HPV-positive cells did not induce cell cycle arrest or apoptosis. However, we demonstrate that overexpressed p53 can be activated to upregulate p21 and Bax which causes G2 arrest and apoptosis, by inhibiting protein phosphatase 2A. Additionally, we report that the upstream kinase cyclin dependent kinase 5 interacts with p53 to phosphorylate it at Serine20 and Serine46 residues thereby promoting its recruitment on p21 and bax promoters. Upregulation and translocation of Bax causes apoptosis through intrinsic mitochondrial pathway. Interestingly, overexpressed activated p53 specifically inhibits cell-growth and causes regression in vivo tumor growth as well. Conclusion Present study details the mechanism of activation of p53 and puts forth the possibility of p53 gene therapy to work in HPV positive cervical carcinoma.

  6. HMGB1-mediated DNA bending: Distinct roles in increasing p53 binding to DNA and the transactivation of p53-responsive gene promoters.

    Science.gov (United States)

    Štros, Michal; Kučírek, Martin; Sani, Soodabeh Abbasi; Polanská, Eva

    2018-03-01

    HMGB1 is a chromatin-associated protein that has been implicated in many important biological processes such as transcription, recombination, DNA repair, and genome stability. These functions include the enhancement of binding of a number of transcription factors, including the tumor suppressor protein p53, to their specific DNA-binding sites. HMGB1 is composed of two highly conserved HMG boxes, linked to an intrinsically disordered acidic C-terminal tail. Previous reports have suggested that the ability of HMGB1 to bend DNA may explain the in vitro HMGB1-mediated increase in sequence-specific DNA binding by p53. The aim of this study was to reinvestigate the importance of HMGB1-induced DNA bending in relationship to the ability of the protein to promote the specific binding of p53 to short DNA duplexes in vitro, and to transactivate two major p53-regulated human genes: Mdm2 and p21/WAF1. Using a number of HMGB1 mutants, we report that the HMGB1-mediated increase in sequence-specific p53 binding to DNA duplexes in vitro depends very little on HMGB1-mediated DNA bending. The presence of the acidic C-terminal tail of HMGB1 and/or the oxidation of the protein can reduce the HMGB1-mediated p53 binding. Interestingly, the induction of transactivation of p53-responsive gene promoters by HMGB1 requires both the ability of the protein to bend DNA and the acidic C-terminal tail, and is promoter-specific. We propose that the efficient transactivation of p53-responsive gene promoters by HMGB1 depends on complex events, rather than solely on the promotion of p53 binding to its DNA cognate sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Translational Control Protein 80 Stimulates IRES-Mediated Translation of p53 mRNA in Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    Marie-Jo Halaby

    2015-01-01

    Full Text Available Synthesis of the p53 tumor suppressor increases following DNA damage. This increase and subsequent activation of p53 are essential for the protection of normal cells against tumorigenesis. We previously discovered an internal ribosome entry site (IRES that is located at the 5′-untranslated region (UTR of p53 mRNA and found that the IRES activity increases following DNA damage. However, the mechanism underlying IRES-mediated p53 translation in response to DNA damage is still poorly understood. In this study, we discovered that translational control protein 80 (TCP80 has increased binding to the p53 mRNA in vivo following DNA damage. Overexpression of TCP80 also leads to increased p53 IRES activity in response to DNA damage. TCP80 has increased association with RNA helicase A (RHA following DNA damage and overexpression of TCP80, along with RHA, leads to enhanced expression of p53. Moreover, we found that MCF-7 breast cancer cells with decreased expression of TCP80 and RHA exhibit defective p53 induction following DNA damage and diminished expression of its downstream target PUMA, a proapoptotic protein. Taken together, our discovery of the function of TCP80 and RHA in regulating p53 IRES and p53 induction following DNA damage provides a better understanding of the mechanisms that regulate IRES-mediated p53 translation in response to genotoxic stress.

  8. Genomic alterations during p53-dependent apoptosis induced by γ-irradiation of Molt-4 leukemia cells.

    Directory of Open Access Journals (Sweden)

    Rouba Hage-Sleiman

    Full Text Available Molt-4 leukemia cells undergo p53-dependent apoptosis accompanied by accumulation of de novo ceramide after 14 hours of γ-irradiation. In order to identify the potential mediators involved in ceramide accumulation and the cell death response, differentially expressed genes were identified by Affymetrix Microarray Analysis. Molt-4-LXSN cells, expressing wild type p53, and p53-deficient Molt-4-E6 cells were irradiated and harvested at 3 and 8 hours post-irradiation. Human genome U133 plus 2.0 array containing >47,000 transcripts was used for gene expression profiling. From over 10,000 probes, 281 and 12 probes were differentially expressed in Molt-4-LXSN and Molt-4-E6 cells, respectively. Data analysis revealed 63 (upregulated and 20 (downregulated genes (>2 fold in Molt-4-LXSN at 3 hours and 140 (upregulated and 21 (downregulated at 8 hours post-irradiation. In Molt-4-E6 cells, 5 (upregulated genes each were found at 3 hours and 8 hours, respectively. In Molt-4-LXSN cells, a significant fraction of the genes with altered expression at 3 hours were found to be involved in apoptosis signaling pathway (BCL2L11, p53 pathway (PMAIP1, CDKN1A and FAS and oxidative stress response (FDXR, CROT and JUN. Similarly, at 8 hours the genes with altered expression were involved in the apoptosis signaling pathway (BAX, BIK and JUN, p53 pathway (BAX, CDKN1A and FAS, oxidative stress response (FDXR and CROT and p53 pathway feedback loops 2 (MDM2 and CDKN1A. A global molecular and biological interaction map analysis showed an association of these altered genes with apoptosis, senescence, DNA damage, oxidative stress, cell cycle arrest and caspase activation. In a targeted study, activation of apoptosis correlated with changes in gene expression of some of the above genes and revealed sequential activation of both intrinsic and extrinsic apoptotic pathways that precede ceramide accumulation and subsequent execution of apoptosis. One or more of these altered genes

  9. p53 mutations promote proteasomal activity.

    Science.gov (United States)

    Oren, Moshe; Kotler, Eran

    2016-07-27

    p53 mutations occur very frequently in human cancer. Besides abrogating the tumour suppressive functions of wild-type p53, many of those mutations also acquire oncogenic gain-of-function activities. Augmentation of proteasome activity is now reported as a common gain-of-function mechanism shared by different p53 mutants, which promotes cancer resistance to proteasome inhibitors.

  10. Loss of anti-Bax function in Gerstmann-Sträussler-Scheinker syndrome-associated prion protein mutants.

    Directory of Open Access Journals (Sweden)

    Julie Jodoin

    2009-08-01

    Full Text Available Previously, we have shown the loss of anti-Bax function in Creutzfeldt Jakob disease (CJD-associated prion protein (PrP mutants that are unable to generate cytosolic PrP (CyPrP. To determine if the anti-Bax function of PrP modulates the manifestation of prion diseases, we further investigated the anti-Bax function of eight familial Gerstmann-Sträussler-Scheinker Syndrome (GSS-associated PrP mutants. These PrP mutants contained their respective methionine ((M or valine ((V at codon 129. All of the mutants lost their ability to prevent Bax-mediated chromatin condensation or DNA fragmentation in primary human neurons. In the breast carcinoma MCF-7 cells, the F198S(V, D202N(V, P102L(V and Q217R(V retained, whereas the P102L(M, P105L(V, Y145stop(M and Q212P(M PrP mutants lost their ability to inhibit Bax-mediated condensed chromatin. The inhibition of Bax-mediated condensed chromatin depended on the ability of the mutants to generate cytosolic PrP. However, except for the P102L(V, none of the mutants significantly inhibited Bax-mediated caspase activation. These results show that the cytosolic PrP generated from the GSS mutants is not as efficient as wild type PrP in inhibiting Bax-mediated cell death. Furthermore, these results indicate that the anti-Bax function is also disrupted in GSS-associated PrP mutants and is not associated with the difference between CJD and GSS.

  11. Chk1 inhibition activates p53 through p38 MAPK in tetraploid cancer cells.

    Science.gov (United States)

    Vitale, Ilio; Senovilla, Laura; Galluzzi, Lorenzo; Criollo, Alfredo; Vivet, Sonia; Castedo, Maria; Kroemer, Guido

    2008-07-01

    We have previously shown that tetraploid cancer cells succumb through a p53-dependent apoptotic pathway when checkpoint kinase 1 (Chk1) is depleted by small interfering RNAs (siRNAs) or inhibited with 7-hydroxystaurosporine (UCN-01). Here, we demonstrate that Chk1 inhibition results in the activating phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Depletion of p38 MAPK by transfection with a siRNA targeting the alpha isoform of p38 MAPK (p38alpha MAPK) abolishes the phosphorylation of p53 on serines 15 and 46 that is induced by Chk1 knockdown. The siRNA-mediated downregulation and pharmacological inhibition of p38alpha MAPK (with SB 203580) also reduces cell death induced by Chk1 knockdown or UCN-01. These results underscore the role of p38 MAPK as a pro-apoptotic kinase in the p53-dependant pathway for the therapeutic elimination of polyploidy cells.

  12. The effects of combining ionizing radiation and adenoviral p53 therapy in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Li Jianhua; Lax, Stuart A.; Kim, John; Klamut, Henry; Liu Feifei

    1999-01-01

    Purpose: Nasopharyngeal carcinoma (NPC) is a malignant disease of the head/neck region, with a 5-year survival level of approximately 65%. To explore gene therapy as a novel approach which might improve outcome, we have shown previously that introduction of human recombinant wild-type p53 mediated by the adenoviral vector (Ad5CMV-p53) was cytotoxic in two human nasopharyngeal carcinoma (NPC) cell lines (CNE-1 and CNE-2Z). The current work was designed to determine whether this strategy, combined with ionizing radiation (XRT), was more effective than either treatment alone. Methods and Materials: CNE-1, CNE-2Z, and a normal human nasopharyngeal fibroblast strain, KS1, were infected with 2- and 6-plaque-forming units (pfu)/cell of Ad5CMV-p53, respectively. These doses were iso-effective for β-galactosidase activity in the CNE-1 and CNE-2Z cells. XRT was administered 24 h post-infection, and Western blot analyses were conducted for p53, p21 WAF1/CIP1 , bax, and bcl-2 2 days after XRT. Cell survival was assessed using a clonogenic assay. Presence of DNA ladders reflecting apoptosis was detected using DNA agarose gel electrophoresis, and cell cycle was analyzed using flow cytometry. Results: The combination of Ad5CMV-p53 plus XRT (2, 4, and 6 Gy) resulted in an approximately 1-log greater level of cytotoxicity compared to that observed with XRT alone for both NPC cell lines. The two modalities appear to be interacting in a synergistic manner in cancer cells, but not in KS1 fibroblasts. XRT alone stimulated minimal p53 expression in control cells; Ad5CMV-p53 alone induced significant recombinant p53 expression, which was not further enhanced by the addition of XRT. Similar observations were made for p21 WAF1/CIP1 expression. No changes were observed for bax or bcl-2 expression with any of these treatments. Apoptosis was induced following 4 Gy of XRT alone, but was observed after only 2 Gy when combined with Ad5CMV-p53. Cell cycle analysis indicated that Ad5CMV-p53

  13. Probucol Attenuates Cyclophosphamide-induced Oxidative Apoptosis, p53 and Bax Signal Expression in Rat Cardiac Tissues

    Directory of Open Access Journals (Sweden)

    Yousif A. Asiri

    2010-01-01

    Full Text Available Cyclophosphamide (CP is a widely used drug in cancer chemotherapy and immunosuppression, which could cause toxicity of the normal cells due to its toxic metabolites. Probucol, a cholesterol-lowering drug, acts as potential inhibitor of DNA damage and shows to protect against doxorubicin-induced cardiomyopathy by enhancing the endogenous antioxidant system including glutathione peroxidase, catalase and superoxide dismutase. This study examined the possible protective effects of probucol, a lipid-lowering compound with strong antioxidant properties, against CPinduced cardiotoxicity. This objective could be achieved through studying the gene expression-based on the possible protective effects of probucol against CP-induced cardiac failure in rats. Adult male Wistar albino rats were assigned into four treatment groups: Animals in the first (control and second (probucol groups were injected intraperitoneally with corn oil and probucol (61 mg/kg/day, respectively, for two weeks. Animals in the third (CP and fourth (probucol plus CP groups were injected with the same doses of corn oil and probucol (61 mg/kg/day, respectively, for one week before and one week after a single dose of CP (200 mg/kg, I.P.. The p53, Bax, Bcl2 and oxidative genes signal expression were measured by real time PCR. CP-induced cardiotoxicity was clearly observed by a significant increase in serum creatine phosphokinase isoenzyme (CK-MB (117%, lactate dehydrogenase (LDH (64%, free (69% and esterified cholesterol (42% and triglyceride (69% compared to control group. In cardiac tissues, CP significantly increases the mRNA expression levels of apoptotic genes, p53 with two-fold and Bax with 1.6-fold, and decreases the anti-apoptotic gene Bcl2 with 0.5-fold. Moreover, CP caused downregulation of antioxidant genes, glutathione peroxidase, catalase, and superoxide dismutase and increased the lipid peroxidation and decreased adenosine triphosphate (ATP (40% and ATP/ADP (44% in cardiac

  14. Evaluation of bax, bcl-2, p21 and p53 genes expression variations on cerebellum of BALB/c mice before and after birth under mobile phone radiation exposure.

    Science.gov (United States)

    Ghatei, Najmeh; Nabavi, Ariane Sadr; Toosi, Mohammad Hossein Bahreyni; Azimian, Hosein; Homayoun, Mansour; Targhi, Reza Ghasemnezhad; Haghir, Hossein

    2017-09-01

    The increasing rate of over using cell phones has been considerable in youths and pregnant women. We examined the effect of mobile phones radiation on genes expression variation on cerebellum of BALB/c mice before and after of the birth. In this study, a mobile phone jammer, which is an instrument to prevent receiving signals between cellular phones and base transceiver stations (two frequencies 900 and 1800 MHz) for exposure was used and twelve pregnant mice (BALB/c) divided into two groups (n=6), first group irradiated in pregnancy period (19th day), the second group did not irradiate in pregnancy period. After childbirth, offspring were classified into four groups (n=4): Group1: control, Group 2: B1 (Irradiated after birth), Group 3: B2 (Irradiated in pregnancy period and after birth), Group 4: B3 (Irradiated in pregnancy period). When maturity was completed (8-10 weeks old), mice were dissected and cerebellum was isolated. The expression level of bax , bcl-2, p21 and p53 genes examined by real-time reverse transcription polymerase chain reaction (Real-Time RT- PCR). The data showed that mobile phone radio waves were ineffective on the expression level of bcl-2 and p53 genes) P >0.05(. Also gene expression level of bax decreased and gene expression level of p21 increased comparing to the control group ( P mobile phone radiations did not induce apoptosis in cells of the cerebellum and the injured cells can be repaired by cell cycle arrest.

  15. Chk2 regulates transcription-independent p53-mediated apoptosis in response to DNA damage

    International Nuclear Information System (INIS)

    Chen Chen; Shimizu, Shigeomi; Tsujimoto, Yoshihide; Motoyama, Noboru

    2005-01-01

    The tumor suppressor protein p53 plays a central role in the induction of apoptosis in response to genotoxic stress. The protein kinase Chk2 is an important regulator of p53 function in mammalian cells exposed to ionizing radiation (IR). Cells derived from Chk2-deficient mice are resistant to the induction of apoptosis by IR, and this resistance has been thought to be a result of the defective transcriptional activation of p53 target genes. It was recently shown, however, that p53 itself and histone H1.2 translocate to mitochondria and thereby induces apoptosis in a transcription-independent manner in response to IR. We have now examined whether Chk2 also regulates the transcription-independent induction of apoptosis by p53 and histone H1.2. The reduced ability of IR to induce p53 stabilization in Chk2-deficient thymocytes was associated with a marked impairment of p53 and histone H1 translocation to mitochondria. These results suggest that Chk2 regulates the transcription-independent mechanism of p53-mediated apoptosis by inducing stabilization of p53 in response to IR

  16. Exposure to chronic hyperglycemic conditions results in Ras-related C3 botulinum toxin substrate 1 (Rac1)-mediated activation of p53 and ATM kinase in pancreatic β-cells.

    Science.gov (United States)

    Sidarala, Vaibhav; Kowluru, Anjaneyulu

    2017-05-01

    Chronic hyperglycemia (HG) promotes pancreatic islet dysfunction which leads to the onset of T2DM. This study is aimed at defining regulatory roles of Rac1, a small G-protein, in the activation of p53 and ATM kinase in pancreatic β-cells, under the duress of HG conditions. We report significant stimulatory effects of HG (20 mM; 24 h) on p53 activation in INS-1 832/13 cells, normal rodent and human islets. Pharmacological inhibition of Rac1 (EHT1864 or NSC23766) significantly suppressed HG-induced p53 activation in INS-1 832/13 cells and rat islets, suggesting novel roles for this small G-protein in the activation of p53. Inhibition of Rac1 geranylgeranylation with simvastatin or GGTI-2147, significantly attenuated HG-induced p53 activation, suggesting requisite roles for this signaling step in HG-mediated effects on β-cells. HG-induced p53 activation was also suppressed by SB203580, a known inhibitor of p38MAPK. Additionally, we observed increased activation of ATM kinase under HG conditions, which was blocked in presence of EHT1864. Furthermore, pharmacological inhibition of ATM kinase (KU55933) reduced activation of ATM kinase, but not p53, suggesting that HG-mediated activation of p53 and ATM could represent independent pro-apoptotic events. In conclusion, these data indicate that sustained activation of Rac1-p38MAPK signaling axis leads to activation of p53 leading to β-cell dysfunction under the duress of chronic hyperglycemic conditions.

  17. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.

    Science.gov (United States)

    Huang, Shi-Wei; Chang, Shu-Hao; Mu, Szu-Wei; Jiang, Hsin-Yi; Wang, Sin-Ting; Kao, Jun-Kai; Huang, Jau-Ling; Wu, Chun-Ying; Chen, Yi-Ju; Shieh, Jeng-Jer

    2016-03-01

    The tumor suppressor p53 controls DNA repair, cell cycle, apoptosis, autophagy and numerous other cellular processes. Imiquimod (IMQ), a synthetic toll-like receptor (TLR) 7 ligand for the treatment of superficial basal cell carcinoma (BCC), eliminates cancer cells by activating cell-mediated immunity and directly inducing apoptosis and autophagy in cancer cells. To evaluate the role of p53 in IMQ-induced cell death in skin cancer cells. The expression, phosphorylation and subcellular localization of p53 were detected by real-time PCR, luciferase reporter assay, cycloheximide chase analysis, immunoblotting and immunocytochemistry. Using BCC/KMC1 cell line as a model, the upstream signaling of p53 activation was dissected by over-expression of TLR7/8, the addition of ROS scavenger, ATM/ATR inhibitors and pan-caspase inhibitor. The role of p53 in IMQ-induced apoptosis and autophagy was assessed by genetically silencing p53 and evaluated by a DNA content assay, immunoblotting, LC3 puncta detection and acridine orange staining. IMQ induced p53 mRNA expression and protein accumulation, increased Ser15 phosphorylation, promoted nuclear translocation and up-regulated its target genes in skin cancer cells in a TLR7/8-independent manner. In BCC/KMC1 cells, the induction of p53 by IMQ was achieved through increased ROS production to stimulate the ATM/ATR-Chk1/Chk2 axis but was not mediated by inducing DNA damage. The pharmacological inhibition of ATM/ATR significantly suppressed IMQ-induced p53 activation and apoptosis. Silencing of p53 significantly decreased the IMQ-induced caspase cascade activation and apoptosis but enhanced autophagy. Mutant p53 skin cancer cell lines were more resistant to IMQ-induced apoptosis than wildtype p53 skin cancer cell lines. IMQ induced ROS production to stimulate ATM/ATR pathways and contributed to p53-dependent apoptosis in a skin basal cell carcinoma cell line BCC/KMC1. Copyright © 2015 Japanese Society for Investigative Dermatology

  18. Oxcarbazepine causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.

    Science.gov (United States)

    Song, Y; Zhong, M; Cai, F-C

    2018-01-01

    Anti-epileptic drugs (AEDs) are the main methods for treatment of neonatal seizures; however, a few AEDs may cause developing brain damage of neonate. This study aims to investigate effects of oxcarbazepine (OXC) on developing brain damage of neonatal rats. Both of neonatal and adult rats were divided into 6 groups, including Control, OXC 187.5 mg/kg, OXC 281.25 mg/kg, OXC 375 mg/kg group, LEV and PHT group. Body weight and brain weight were evaluated. Hematoxylin and eosin (HE) and Nissl staining were used to observe neurocyte morphology and Nissl bodies, respectively. Apoptosis was examined using TUNEL assay, and caspase 8 activity was evaluated using spectrophotometer method. Cytochrome C-release was evaluated using flow cytometry. Western blot was used to examine Bax and Bcl-2 expression. OXC 375 mg/kg treatment significantly decreased brain weight compared to Control group in neonatal rats (P5 rats) (pOxcarbazepine at a concentration of 281.25 mg/kg or more causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.

  19. Chemotherapy-Induced Apoptosis in a Transgenic Model of Neuroblastoma Proceeds Through p53 Induction

    Directory of Open Access Journals (Sweden)

    Louis Chesler

    2008-11-01

    Full Text Available Chemoresistance in neuroblastoma is a significant issue complicating treatment of this common pediatric solid tumor. MYCN-amplified neuroblastomas are infrequently mutated at p53 and are chemosensitive at diagnosis but acquire p53 mutations and chemoresistance with relapse. Paradoxically, Myc-driven transformation is thought to require apoptotic blockade. We used the TH-MYCN transgenic murine model to examine the role of p53-driven apoptosis on neuroblastoma tumorigenesis and the response to chemotherapy. Tumors formed with high penetrance and low latency in p53-haploinsufficient TH-MYCN mice. Cyclophosphamide (CPM induced a complete remission in p53 wild type TH-MYCN tumors, mirroring the sensitivity of childhood neuroblastoma to this agent. Treated tumors showed a prominent proliferation block, induction of p53 protein, and massive apoptosis proceeding through induction of the Bcl-2 homology domain-3-only proteins PUMA and Bim, leading to the activation of Bax and cleavage of caspase-3 and -9. Apoptosis induced by CPM was reduced in p53-haploinsufficient tumors. Treatment of MYCN-expressing human neuroblastoma cell lines with CPM induced apoptosis that was suppressible by siRNA to p53. Taken together, the results indicate that the p53 pathway plays a significant role in opposing MYCN-driven oncogenesis in a mouse model of neuroblastoma and that basal inactivation of the pathway is achieved in progressing tumors. This, in part, explains the striking sensitivity of such tumors to chemotoxic agents that induce p53-dependent apoptosis and is consistent with clinical observations that therapy-associated mutations in p53 are a likely contributor to the biology of tumors at relapse and secondarily mediate resistance to therapy.

  20. p53-Induced Apoptosis Occurs in the Absence of p14ARF in Malignant Pleural Mesothelioma

    Directory of Open Access Journals (Sweden)

    Sally Hopkins-Donaldson

    2006-07-01

    Full Text Available Malignant pleural mesotheliomas (MPMs are usually wild type for the p53 gene but contain homozygous deletions in the INK4A locus that encodes p14ARF, an inhibitor of p53-MDM2 interaction. Previous findings suggest that lack of p14ARF expression and the presence of SV40 large T antigen (L-Tag result in p53 inactivation in MPM. We did not detect SV40 L-Tag mRNA in either MPM cell lines or primary cultures, treatment of p14ARF-deficient cells with cisplatin (CDDP increased both total and phosphorylated p53 and enhanced p53 DNA-binding activity. On incubation with CDDP, levels of positively regulated p53 transcriptional targets p21WAF, PIG3, MDM2, Bax, PUMA increased in p14ARF-deficient cells, whereas negatively regulated survivin decreased. Significantly, p53-induced apoptosis was activated by CDDP in p14ARF-deficient cells, treatment with p53-specific siRNA rendered them more CDDP-resistant. p53 was also activated by: 1 inhibition of MDM2 (using nutlin-3; 2 transient overexpression of p14ARF; and 3 targeting of survivin using antisense oligonucleotides. However, it is noteworthy that only survivin downregulation sensitized cells to CDDP-induced apoptosis. These results suggest that p53 is functional in the absence of p14ARF in MPM and that targeting of the downstream apoptosis inhibitor survivin can sensitize to CDDP-induced apoptosis.

  1. Pre-irradiation at a low dose-rate blunted p53 response

    International Nuclear Information System (INIS)

    Takahashi, Akihisa

    2002-01-01

    We investigated whether chronic irradiation at a low dose-rate interferes with the p53-centered signal transduction pathyway induced by radiation in human cultured cells and C57BL/6N mice. In in vitro experiments, we found that a challenge with X-ray irradiation immediately after chronic irradiation resulted in lower levels of p53 than those observed after the challenge alone in glioblastoma cells (A-172). In addition, the levels of p53-centered apoptosis and its related proteins after the challenge were strongly correlated with the above-mentioned phenomena in squamous cell carcinoma cells (SAS/neo). In in vivo experiments, the accumulation of p53 and Bax, and the induction of apoptosis were observed dose-dependently in mouse spleen at 12 h after a challenge with X-rays (3.0 Gy). However, we found significant suppression of p53 and Bax accumulation and the induction of apoptosis 12 h after challenge irradiation at 3.0 Gy with a high doses-rate following chronic pre-irradiation (1.5 Gy, 0.001 Gy/min). These findings suggest that chronic pre-irradiation suppressed the p53 function through radiation-induced signaling and/or p53 stability. (author)

  2. CD40-mediated apoptosis in murine B-lymphoma lines containing mutated p53

    DEFF Research Database (Denmark)

    Hollmann, Annette C; Gong, Qiaoke; Owens, Trevor

    2002-01-01

    Crosslinking CD40 induces normal B-cells to proliferate and differentiate but causes many tumor cell lines to undergo apoptosis. As p53 is required for many apoptotic pathways, we analyzed the effects of CD40 ligation and their correlation with p53 function in four murine B-lymphoma lines. A20...... of detectable p21 mRNA in A20 and M12 cells. P21 mRNA was increased to detectable levels in M12 cells upon CD40 ligation; however, blocking this effect with the p53 inhibitor pifithrin had no effect on CD40-mediated apoptosis. Sequencing showed that p53 in A20 and M12 cells contained point mutations leading...... to amino acid substitutions in DNA binding regions, but was unmutated in WEHI231 and WEHI 279. These results suggest that CD40-mediated apoptosis can occur in the absence of functional p53....

  3. Epstein-Barr virus nuclear antigen 3C stabilizes Gemin3 to block p53-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Qiliang Cai

    2011-12-01

    Full Text Available The Epstein-Barr nuclear antigen 3C (EBNA3C, one of the essential latent antigens for Epstein-Barr virus (EBV-induced immortalization of primary human B lymphocytes in vitro, has been implicated in regulating cell proliferation and anti-apoptosis via interaction with several cellular and viral factors. Gemin3 (also named DDX20 or DP103 is a member of DEAD RNA helicase family which exhibits diverse cellular functions including DNA transcription, recombination and repair, and RNA metabolism. Gemin3 was initially identified as a binding partner to EBNA2 and EBNA3C. However, the mechanism by which EBNA3C regulates Gemin3 function remains unclear. Here, we report that EBNA3C directly interacts with Gemin3 through its C-terminal domains. This interaction results in increased stability of Gemin3 and its accumulation in both B lymphoma cells and EBV transformed lymphoblastoid cell lines (LCLs. Moreover, EBNA3C promotes formation of a complex with p53 and Gemin3 which blocks the DNA-binding affinity of p53. Small hairpin RNA based knockdown of Gemin3 in B lymphoma or LCL cells remarkably attenuates the ability of EBNA3C to inhibit the transcription activity of p53 on its downstream genes p21 and Bax, as well as apoptosis. These findings provide the first evidence that Gemin3 may be a common target of oncogenic viruses for driving cell proliferation and anti-apoptotic activities.

  4. Occupational health hazards of trichloroethylene among workers in relation to altered mRNA expression of cell cycle regulating genes (p53, p21, bax and bcl-2 and PPARA

    Directory of Open Access Journals (Sweden)

    Meenu Varshney

    2015-01-01

    Full Text Available Trichloroethylene (TCE is widely used as a metal degreaser in industrial processes. The present study reports on the effects of TCE exposure on workers employed in the lock industries. To ensure exposure of the workers to TCE, its toxic metabolites, trichloroacetic acid (TCA, dichloroacetic acid (DCA and trichloroethanol (TCEOH were detected in the plasma of the subjects through solid phase microextraction-gas chromatography-electron capture detection. TCA, DCA and TCEOH were detected in the range of 0.004–2.494 μg/mL, 0.01–3.612 μg/mL and 0.002–0.617 μg/mL, respectively. Quantitative reverse transcription polymerase chain reaction analysis revealed up-regulated expression of p53 (2.4-fold; p < 0.05, p21 (2-fold; p < 0.01, bax (2.9-fold; p < 0.01 mRNAs and down-regulated expression of bcl-2 (67%; p < 0.05 mRNAs, indicating DNA damaging potential of these metabolites. No effects were observed on the levels of p16 and c-myc mRNAs. Further, as TCA and DCA, the ligand of peroxisome proliferator activated receptor alpha (PPARA, are involved in the process of hepatocarcinogenesis in rodents, we examined expression of PPARA mRNA and let-7c miRNA in the workers. No statistically significant differences in expression of PPARA mRNA and let-7c miRNA in patients were observed as compared to values in controls. Dehydroepiandosterone sulfate (DHEAS is a reported endogenous ligand of PPARA so its competitive role was also studied. We observed decreased levels of DHEAS hormone in the subjects. Hence, its involvement in mediation of the observed changes in the levels of various mRNAs analyzed in this study appears unlikely.

  5. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    International Nuclear Information System (INIS)

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-01-01

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca 2+ was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca 2+ ]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway, which may

  6. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruizhao, E-mail: liruizhao1979@126.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Li, E-mail: Zhanglichangde@163.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Southern Medical University, Guangzhou, Guangdong (China); Shi, Wei, E-mail: shiwei.gd@139.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Bin, E-mail: zhangbinyes@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liang, Xinling, E-mail: xinlingliang@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liu, Shuangxin, E-mail: mplsxi@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Wang, Wenjian, E-mail: wwjph@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China)

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  7. Functional Significance of Mutant p53 in Breast Cancer

    National Research Council Canada - National Science Library

    O'Lear, Renee

    2001-01-01

    ... in those cells with irreparable damage. In human tumors, many hot-spot mutations are found within the DNA-binding domain of p53, rendering it incapable of sequence-specific transactivation of target genes such as p21, bax, and mdm2...

  8. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    Science.gov (United States)

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  9. Terpenoids from Zingiber officinale (Ginger induce apoptosis in endometrial cancer cells through the activation of p53.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Novel strategies are necessary to improve chemotherapy response in advanced and recurrent endometrial cancer. Here, we demonstrate that terpenoids present in the Steam Distilled Extract of Ginger (SDGE are potent inhibitors of proliferation of endometrial cancer cells. SDGE, isolated from six different batches of ginger rhizomes, consistently inhibited proliferation of the endometrial cancer cell lines Ishikawa and ECC-1 at IC(50 of 1.25 µg/ml. SDGE also enhanced the anti-proliferative effect of radiation and cisplatin. Decreased proliferation of Ishikawa and ECC-1 cells was a direct result of SDGE-induced apoptosis as demonstrated by FITC-Annexin V staining and expression of cleaved caspase 3. GC/MS analysis identified a total of 22 different terpenoid compounds in SDGE, with the isomers neral and geranial constituting 30-40%. Citral, a mixture of neral and geranial inhibited the proliferation of Ishikawa and ECC-1 cells at an IC(50 10 µM (2.3 µg/ml. Phenolic compounds such as gingerol and shogaol were not detected in SDGE and 6-gingerol was a weaker inhibitor of the proliferation of the endometrial cancer cells. SDGE was more effective in inducing cancer cell death than citral, suggesting that other terpenes present in SDGE were also contributing to endometrial cancer cell death. SDGE treatment resulted in a rapid and strong increase in intracellular calcium and a 20-40% decrease in the mitochondrial membrane potential. Ser-15 of p53 was phosphorylated after 15 min treatment of the cancer cells with SDGE. This increase in p53 was associated with 90% decrease in Bcl2 whereas no effect was observed on Bax. Inhibitor of p53, pifithrin-α, attenuated the anti-cancer effects of SDGE and apoptosis was also not observed in the p53(neg SKOV-3 cells. Our studies demonstrate that terpenoids from SDGE mediate apoptosis by activating p53 and should be therefore be investigated as agents for the treatment of endometrial cancer.

  10. Functional Significance of Mutant p53 in Breast Cancer

    National Research Council Canada - National Science Library

    O'Lear, Rene

    2002-01-01

    ... in those cells with irreparable damage. In human tumors, many hot-spot mutations are found within the DNA-binding domain of p53, rendering it incapable of sequence-specific transactivation of target genes such as p2l, bax, and mdm2...

  11. P53 Is Involved in a Three-Dimensional Architecture-Mediated Decrease in Chemosensitivity in Colon Cancer.

    Science.gov (United States)

    He, Jianming; Liang, Xi; Luo, Fen; Chen, Xuedan; Xu, Xueqing; Wang, Fengchao; Zhang, Zhenping

    2016-01-01

    Three-dimensional (3D) culture models represent a better approximation of solid tumor tissue architecture, especially cell adhesion, in vivo than two-dimensional (2D) cultures do. Here, we explored the role of architecture in chemosensitivity to platinum in colon cancer. Under the 3D culture condition, colon cancer cells formed multicellular spheroids, consisting of layers of cells. 3D cultures displayed significantly decreased sensitivity to platinum compared with 2D cultures. Platinum increased p53 in a dose-dependent and time-dependent manner. There was no detectable difference in basal p53 levels between 3D cultures and 2D cultures but cisplatin induced less p53 in both HCT116 3D cultures and LoVo 3D cultures. It was not due to cisplatin concentration because cisplatin induced similar γ-H2AX in 3D vs 2D. Knockdown of p53 significantly decreased sensitivity to platinum in 3D cultures. Knockdown of p53 decreased cleaved caspase 3 and apoptosis induced by cisplatin. These findings indicate that 3D architecture confers decreased chemosensitivity to platinum and p53 is involved in the mechanism. Knockdown of p53 decreased cisplatin's induction of c-Jun N-terminal kinase 1/2 (JNK1/2) activation, whereas inhibition of JNK1/2 activation increased chemosensitivity. Inhibition of p38 activation decreased cisplatin's induction of p53, but no difference in p38 activation by cisplatin was observed between 2D cultures and 3D cultures. Taken together, our results suggest that p53 is involved in a 3D architecture-mediated decrease in chemosensitivity to platinum in colon cancer. Mitogen-activated protein kinases (JNK1/2 and p38) do not play a dominant role in the mechanism.

  12. NF-kappaB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope.

    Science.gov (United States)

    Perfettini, Jean-Luc; Roumier, Thomas; Castedo, Maria; Larochette, Nathanael; Boya, Patricia; Raynal, Brigitte; Lazar, Vladimir; Ciccosanti, Fabiola; Nardacci, Roberta; Penninger, Josef; Piacentini, Mauro; Kroemer, Guido

    2004-03-01

    The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-kappaB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor kappaB (NF-kappaB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p53 abolished apoptosis and AP1 activation. Signs of NF-kappaB and p53 activation were also detected in lymph node biopsies from HIV-1-infected individuals. Microarrays revealed that most (85%) of the transcriptional effects of HIV-1 Env were blocked by the p53 inhibitor pifithrin-alpha. Macroarrays led to the identification of several Env-elicited, p53-dependent proapoptotic transcripts, in particular Puma, a proapoptotic "BH3-only" protein from the Bcl-2 family known to activate Bax/Bak. Down modulation of Puma by antisense oligonucleotides, as well as RNA interference of Bax and Bak, prevented Env-induced apoptosis. HIV-1-infected primary lymphoblasts up-regulated Puma in vitro. Moreover, circulating CD4+ lymphocytes from untreated, HIV-1-infected donors contained enhanced amounts of Puma protein, and these elevated Puma levels dropped upon antiretroviral therapy. Altogether, these data indicate that NF-kappaB and p53 cooperate as the dominant proapoptotic transcription factors participating in HIV-1 infection.

  13. P53 activation, a key event of the cellular response to gamma irradiation; L'activation de la proteine p53, un evenement determinant de la reponse cellulaire aux radiations ionisantes

    Energy Technology Data Exchange (ETDEWEB)

    Drane, P.; Alvarez, S.; Meiller, A.; May, E. [CEA Fontenay-aux-Roses, Dept. de Radiobiologie et de Radiopathologie, Lab. de Cancerogenese Moleculaire, CNRS, UMR 217, 92 (France)

    2002-03-01

    The tumor suppressor gene p53 encodes a protein whose major function is to protect organisms from proliferation of potentially tumorigenic cells. In normal conditions (unstressed cells), the p53 protein is inert and maintained at low level through its association with the Mdm2 oncogene, causing its translocation from the nucleus into the cytoplasm and its degradation through ubiquitin/proteasome pathway. In response to damaged DNA or to a variety of stresses, p53 accumulates in the nucleus and is activated as a transcriptional trans-activator. Posttranslational modifications of p53 including multi-site phosphorylation and acetylation are the major mechanism of p53 regulation. After exposure to ionising radiation, p53 activation implicates ATM, ATR, Chk2 and Chk1 kinases that phosphorylate the N-terminal domain on Ser15 (ATM and/or ATR), and Ser20 (Chk2 and/or Chk1), causing the dissociation of the p53/Mdm2 complex and thereby the stabilisation of p53. The process initiated by {gamma}-irradiation exposure involves also increased interaction of the p53 N-terminal domain with CBP/p300 and P/CAF leading to acetylation of the distant C-terminal domain at Lys 320, 373 and 382. In addition, the ATM-mediated dephosphorylation of Ser376 creates a fixation site for 14-3-3 protein. Taken together, phosphorylation, acetylation and association with co factors induce the stimulation of p53 transcriptional activity resulting in the expression of a set of genes involved, notably, in cell cycle arrest and apoptosis. This stress-induced p53 pathways lead to one of two outcomes: growth arrest or apoptosis and consequently protects the organism from the genotoxic effects of ionising radiation. (author)

  14. Experimental research on treating hepatic carcinoma by arterial injection of liposome mediated p53 genes

    Energy Technology Data Exchange (ETDEWEB)

    Guangyu, Zhu; Qin, Lu; Gaojun, Teng; Jinhe, Guo; Hui, Yu; Gang, Deng; Shicheng, He; Wen, Fang; Guozhao, Li; Xiaoying, Wei [Zhongda Hospital, Southeast Univ., Nanjing (China)

    2007-02-15

    Objective: To investigate the transfection and expression of p53 genes mediated by liposome and its feasibility in treatment of liver cancer by transcatheter arterial injection on rabbit VX2 hepatocarcinoma model. Methods: pCMV-myc-p53 plasmids, LipofectAMINE and p53-LipofectAMINE complex were infused into tumor's feeding artery of rabbit VX2 hepatocarcinoma model, respectively, and then protein of cancer tissue was extracted, followed by measuring gene transfection and expression by western blot and immunohistochemistry, p53-LipofectAMlNE complex in different doses were infused into tumor's feeding artery of rabbit VX2 hepatocarcinoma model with the gene transfection and expression detected by the same way. Results: Liposome-mediated p53 gene injected through catheter could be successfully transfected and expressed in the cancer tissue of rabbit VX2 hepatocarcinoma model, with transfection efficiency higher than the gene delivery alone. The efficiency and the gene dose has dose-effect relationship. Conclusions: Treatment of liver cancer by transcatheter arterial injection of p53 genes mediated by liposome is a feasible and effective method, with wide prospect of application. (authors)

  15. Experimental research on treating hepatic carcinoma by arterial injection of liposome mediated p53 genes

    International Nuclear Information System (INIS)

    Zhu Guangyu; Lu Qin; Teng Gaojun; Guo Jinhe; Yu Hui; Deng Gang; He Shicheng; Fang Wen; Li Guozhao; Wei Xiaoying

    2007-01-01

    Objective: To investigate the transfection and expression of p53 genes mediated by liposome and its feasibility in treatment of liver cancer by transcatheter arterial injection on rabbit VX2 hepatocarcinoma model. Methods: pCMV-myc-p53 plasmids, LipofectAMINE and p53-LipofectAMINE complex were infused into tumor's feeding artery of rabbit VX2 hepatocarcinoma model, respectively, and then protein of cancer tissue was extracted, followed by measuring gene transfection and expression by western blot and immunohistochemistry, p53-LipofectAMlNE complex in different doses were infused into tumor's feeding artery of rabbit VX2 hepatocarcinoma model with the gene transfection and expression detected by the same way. Results: Liposome-mediated p53 gene injected through catheter could be successfully transfected and expressed in the cancer tissue of rabbit VX2 hepatocarcinoma model, with transfection efficiency higher than the gene delivery alone. The efficiency and the gene dose has dose-effect relationship. Conclusions: Treatment of liver cancer by transcatheter arterial injection of p53 genes mediated by liposome is a feasible and effective method, with wide prospect of application. (authors)

  16. The nucleolar SUMO-specific protease SMT3IP1/SENP3 attenuates Mdm2-mediated p53 ubiquitination and degradation

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Tamotsu, E-mail: nishida@gene.mie-u.ac.jp [Department of Human Functional Genomics, Life Science Research Center, Mie University, 1577 Kurima-machiya, Tsu 514-8507 (Japan); Yamada, Yoshiji [Department of Human Functional Genomics, Life Science Research Center, Mie University, 1577 Kurima-machiya, Tsu 514-8507 (Japan)

    2011-03-11

    Research highlights: {yields} SMT3IP1 interacts with p53 and Mdm2, and desumoylates both proteins. {yields} SMT3IP1 competes with p53 for binding to the central acidic domain of Mdm2. {yields} SMT3IP1 binding to Mdm2 inhibits Mdm2-mediated p53 ubiquitination and degradation. {yields} We postulate that SMT3IP1 acts as a new regulator of the p53-Mdm2 pathway. -- Abstract: SUMO (small ubiquitin-like modifier) modification plays multiple roles in several cellular processes. Sumoylation is reversibly regulated by SUMO-specific proteases. SUMO-specific proteases have recently been implicated in cell proliferation and early embryogenesis, but the underlying mechanisms remain unknown. Here, we show that a nucleolar SUMO-specific protease, SMT3IP1/SENP3, controls the p53-Mdm2 pathway. We found that SMT3IP1 interacts with p53 and Mdm2, and desumoylates both proteins. Overexpression of SMT3IP1 in cells resulted in the accumulation of Mdm2 in the nucleolus and increased stability of the p53 protein. In addition, SMT3IP1 bound to the acidic domain of Mdm2, which also mediates the p53 interaction, and competed with p53 for binding. Increasing expression of SMT3IP1 suppressed Mdm2-mediated p53 ubiquitination and subsequent proteasomal degradation. Interestingly, the desumoylation activity of SMT3IP1 was not necessary for p53 stabilization. These results suggest that SMT3IP1 is a new regulator of the p53-Mdm2 pathway.

  17. The nucleolar SUMO-specific protease SMT3IP1/SENP3 attenuates Mdm2-mediated p53 ubiquitination and degradation

    International Nuclear Information System (INIS)

    Nishida, Tamotsu; Yamada, Yoshiji

    2011-01-01

    Research highlights: → SMT3IP1 interacts with p53 and Mdm2, and desumoylates both proteins. → SMT3IP1 competes with p53 for binding to the central acidic domain of Mdm2. → SMT3IP1 binding to Mdm2 inhibits Mdm2-mediated p53 ubiquitination and degradation. → We postulate that SMT3IP1 acts as a new regulator of the p53-Mdm2 pathway. -- Abstract: SUMO (small ubiquitin-like modifier) modification plays multiple roles in several cellular processes. Sumoylation is reversibly regulated by SUMO-specific proteases. SUMO-specific proteases have recently been implicated in cell proliferation and early embryogenesis, but the underlying mechanisms remain unknown. Here, we show that a nucleolar SUMO-specific protease, SMT3IP1/SENP3, controls the p53-Mdm2 pathway. We found that SMT3IP1 interacts with p53 and Mdm2, and desumoylates both proteins. Overexpression of SMT3IP1 in cells resulted in the accumulation of Mdm2 in the nucleolus and increased stability of the p53 protein. In addition, SMT3IP1 bound to the acidic domain of Mdm2, which also mediates the p53 interaction, and competed with p53 for binding. Increasing expression of SMT3IP1 suppressed Mdm2-mediated p53 ubiquitination and subsequent proteasomal degradation. Interestingly, the desumoylation activity of SMT3IP1 was not necessary for p53 stabilization. These results suggest that SMT3IP1 is a new regulator of the p53-Mdm2 pathway.

  18. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53.

    Science.gov (United States)

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena; Spiotto, Michael T

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways.

  19. Regulation of autophagy by cytoplasmic p53.

    Science.gov (United States)

    Tasdemir, Ezgi; Maiuri, M Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2008-06-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53(-/-) cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.

  20. Complex Biological Systems Analysis of Cell Cycling Models in Carcinogenesis: I. The essential roles of modifications in the c-Myc, TP53/p53, p27 and hTERT modules in Cancer Initiation and Progression

    CERN Document Server

    Prisecaru, V I

    2004-01-01

    A new approach to the integration of results from a modular, complex biological systems analysis of nonlinear dynamics in cell cycling network transformations that are leading to carcinogenesis is proposed. Carcinogenesis is a complex process that involves dynamically inter-connected biomolecules in the intercellular, membrane, cytosolic, nuclear and nucleolar compartments that form numerous inter-related pathways referred to as networks. One such network module contains the cell cyclins whose functions are essential to cell cycling and division. Cyclins are proteins that also link to several critical pro-apoptotic and other cell cycling/division components, such as: c-Myc, p27, the tumor suppressor gene TP53 and its product-- the p53 protein with key roles in controlling DNA repair, inducing apoptosis and activating p21 (which can depress cell cyclins if activated), mdm2(with its biosynthesis activated by p53 and also, in its turn, inhibiting p53), p21, the Thomsen-Friedenreich antigen(T- antigen),Rb,Bax, Ba...

  1. 1800 MHz mobile phone irradiation induced oxidative and nitrosative stress leads to p53 dependent Bax mediated testicular apoptosis in mice, Mus musculus.

    Science.gov (United States)

    Shahin, Saba; Singh, Surya P; Chaturvedi, Chandra M

    2018-09-01

    Present study was carried out to investigate the effect of long-term mobile phone radiation exposure in different operative modes (Dialing, Receiving, and Stand-by) on immature male mice. Three-week old male mice were exposed to mobile phone (1800 MHz) radiation for 3 hr/day for 120 days in different operative modes. To check the changes/alteration in testicular histoarchitecture and serum testosterone level, HE staining and ELISA was performed respectively. Further, we have checked the redox status (ROS, NO, MDA level, and antioxidant enzymes: SOD, CAT, and GPx) by biochemical estimation, alteration in the expression of pro-apoptotic proteins (p53 and Bax), active executioner caspase-3, full length/uncleaved PARP-1 (DNA repair enzyme), anti-apoptotic proteins (Bcl-2 and Bcl-x L ) in testes by immunofluorescence and cytosolic cytochrome-c by Western blot. Decreased seminiferous tubule diameter, sperm count, and viability along with increased germ cells apoptosis and decreased serum testosterone level, was observed in the testes of all the mobile phone exposed mice compared with control. We also observed that, mobile phone radiation exposure in all the three different operative modes alters the testicular redox status via increasing ROS, NO, and MDA level, and decreasing antioxidant enzymes levels leading to enhanced apoptosis of testicular cells by increasing the expression of pro-apoptotic and apoptotic proteins along with decreasing the expression of anti-apoptotic protein. On the basis of results, it is conclude that long-term mobile phone radiation exposure induced oxidative stress leads to apoptosis of testicular cells and thus impairs testicular function. © 2018 Wiley Periodicals, Inc.

  2. Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells.

    Science.gov (United States)

    Choudhury, Sreetama; Ghosh, Sayan; Mukherjee, Sudeshna; Gupta, Payal; Bhattacharya, Saurav; Adhikary, Arghya; Chattopadhyay, Sreya

    2016-12-01

    Molecular mechanisms involved in arsenic-induced toxicity are complex and elusive. Liver is one of the most favored organs for arsenic toxicity as methylation of arsenic occurs mostly in the liver. In this study, we have selected a range of environmentally relevant doses of arsenic to examine the basis of arsenic toxicity and the role of pomegranate fruit extract (PFE) in combating it. Male Swiss albino mice exposed to different doses of arsenic presented marked hepatic injury as evident from histological and electron microscopic studies. Increased activities of enzymes alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and alkaline phosphatase corroborated extensive liver damage. It was further noted that arsenic exposure initiated reactive oxygen species (ROS)-dependent apoptosis in the hepatocytes involving loss of mitochondrial membrane potential. Arsenic significantly increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB), coupled with increase in phosphorylated Iκ-B, possibly as adaptive cellular survival strategies. Arsenic-induced oxidative DNA damage to liver cells culminated in p53 activation and increased expression of p53 targets like miR-34a and Bax. Pomegranate polyphenols are known to possess remarkable antioxidant properties and are capable of protecting normal cells from various stimuli-induced oxidative stress and toxicities. We explored the protective role of PFE in ameliorating arsenic-induced hepatic damage. PFE was shown to reduce ROS generation in hepatocytes, thereby reducing arsenic-induced Nrf2 activation. PFE also inhibited arsenic-induced NF-κB-inflammatory pathway. Data revealed that PFE reversed arsenic-induced hepatotoxicity and apoptosis by modulating the ROS/Nrf2/p53-miR-34a axis. For the first time, we have mapped the possible signaling pathways associated with arsenic-induced hepatotoxicity and its rescue by pomegranate polyphenols. Copyright

  3. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression.

    Science.gov (United States)

    Yue, Xuetian; Zhang, Cen; Zhao, Yuhan; Liu, Juan; Lin, Alan W; Tan, Victor M; Drake, Justin M; Liu, Lianxin; Boateng, Michael N; Li, Jun; Feng, Zhaohui; Hu, Wenwei

    2017-08-15

    Tumor suppressor p53 is frequently mutated in human cancer. Mutant p53 often promotes tumor progression through gain-of-function (GOF) mechanisms. However, the mechanisms underlying mutant p53 GOF are not well understood. In this study, we found that mutant p53 activates small GTPase Rac1 as a critical mechanism for mutant p53 GOF to promote tumor progression. Mechanistically, mutant p53 interacts with Rac1 and inhibits its interaction with SUMO-specific protease 1 (SENP1), which in turn inhibits SENP1-mediated de-SUMOylation of Rac1 to activate Rac1. Targeting Rac1 signaling by RNAi, expression of the dominant-negative Rac1 (Rac1 DN), or the specific Rac1 inhibitor NSC23766 greatly inhibits mutant p53 GOF in promoting tumor growth and metastasis. Furthermore, mutant p53 expression is associated with enhanced Rac1 activity in clinical tumor samples. These results uncover a new mechanism for Rac1 activation in tumors and, most importantly, reveal that activation of Rac1 is an unidentified and critical mechanism for mutant p53 GOF in tumorigenesis, which could be targeted for therapy in tumors containing mutant p53. © 2017 Yue et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Ribosomal stress induces L11- and p53-dependent apoptosis in mouse pluripotent stem cells.

    Science.gov (United States)

    Morgado-Palacin, Lucia; Llanos, Susana; Serrano, Manuel

    2012-02-01

    Ribosome biogenesis is the most demanding energetic process in proliferating cells and it is emerging as a critical sensor of cellular homeostasis. Upon disturbance of ribosome biogenesis, specific free ribosomal proteins, most notably L11, bind and inhibit Mdm2, resulting in activation of the tumor suppressor p53. This pathway has been characterized in somatic and cancer cells, but its function in embryonic pluripotent cells has remained unexplored. Here, we show that treatment with low doses of Actinomycin D or depletion of ribosomal protein L37, two well-established inducers of ribosomal stress, activate p53 in an L11-dependent manner in mouse embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). Activation of p53 results in transcriptional induction of p53 targets, including p21, Mdm2, Pidd, Puma, Noxa and Bax. Finally, ribosomal stress elicits L11- and p53-dependent apoptosis in ESCs/iPSCs. These results extend to pluripotent cells the functionality of the ribosomal stress pathway and we speculate that this could be a relevant cellular checkpoint during early embryogenesis.

  5. Low-level overexpression of p53 promotes warfarin-induced calcification of porcine aortic valve interstitial cells by activating Slug gene transcription.

    Science.gov (United States)

    Gao, Li; Ji, Yue; Lu, Yan; Qiu, Ming; Shen, Yejiao; Wang, Yaqing; Kong, Xiangqing; Shao, Yongfeng; Sheng, Yanhui; Sun, Wei

    2018-03-09

    The most frequently used oral anti-coagulant warfarin has been implicated in inducing calcification of aortic valve interstitial cells (AVICs), whereas the mechanism is not fully understood. The low-level activation of p53 is found to be involved in osteogenic transdifferentiation and calcification of AVICs. Whether p53 participates in warfarin-induced AVIC calcification remains unknown. In this study, we investigated the role of low-level p53 overexpression in warfarin-induced porcine AVIC (pAVIC) calcification. Immunostaining, quantitative PCR, and Western blotting revealed that p53 was expressed in human and pAVICs and that p53 expression was slightly increased in calcific human aortic valves compared with non-calcific valves. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining indicated that apoptosis slightly increased in calcific aortic valves than in non-calcific valves. Warfarin treatment led to a low-level increase of p53 mRNA and protein in both pAVICs and mouse aortic valves. Low-level overexpression of p53 in pAVICs via an adenovirus vector did not affect pAVIC apoptosis but promoted warfarin-induced calcium deposition and expression of osteogenic markers. shRNA-mediated p53 knockdown attenuated the pAVIC calcium deposition and osteogenic marker expression. Moreover, ChIP and luciferase assays showed that p53 was recruited to the slug promoter and activated slug expression in calcific pAVICs. Of note, overexpression of Slug increased osteogenic marker Runx2 expression, but not pAVIC calcium deposition, and Slug knockdown attenuated pAVIC calcification and p53-mediated pAVIC calcium deposition and expression of osteogenic markers. In conclusion, we found that p53 plays an important role in warfarin induced pAVIC calcification, and increased slug transcription by p53 is required for p53-mediated pAVIC calcification. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Actinomycin D synergistically enhances the cytotoxicity of CDDP on KB cells by activating P53 via decreasing P53-MDM2 complex.

    Science.gov (United States)

    Wang, Lin; Pang, Xiao-Cong; Yu, Zi-Ru; Yang, Sheng-Qian; Liu, Ai-Lin; Wang, Jin-Hua; Du, Guan-Hua

    2017-06-01

    The aim of this study is to investigate the synergism of low dose of actinomycin D (LDActD) to the cytotoxicity of cisplatin (CDDP) on KB cells. The role of P53 reactivation by LDActD in the synergism and its mechanism were further studied. Cell viability was determined by MTT assay. Apoptosis was determined by AnnexinV-FITC/PI staining. Mitochondrial membrane potential (MMP) was detected by JC-1 staining. Expression of proteins was detected by Western blotting (WB) and/or immunofluorescence (IF). Molecular docking of actinomycin D (ACTD) to Mouse double minute 2 homolog (MDM2) and Mouse double minute 2 homolog X (MDMX). MDMX was analyzed by Discovery Studio. The content of P53-MDM2 complex was detected by ELISA assay. The cytotoxicity of CDDP was increased by the combination of LDActD in kinds of cancer cells. Molecular docking showed strong interaction between ACTD and MDM2/MDMX. Meanwhile, LDActD significantly decreased P53-MDM2 complex. Significant increase of the apoptotic activity by the combination therapy in KB cells is P53 upregulated modulator of apoptosis (PUMA) dependent. In addition to the decrease in MMP, LDActD increased P53 regulated protein and decreased BCL-XL in KB cells. LDActD efficiently enhanced the cytotoxicity of CDDP in cancer cells and induced P53-PUMA-dependent and mitochondria-mediated apoptosis in KB cells. The reactivation of P53 was probably achieved by disturbing the interaction of P53 and MDM2/MDMX.

  7. Restoration of mp53 to wtp53 by chemical chaperones restores p53-dependent apoptosis after radiotherapy

    International Nuclear Information System (INIS)

    Ohnishi, T.; Asakawa, I.; Tamamoto, T.; Takahashi, A.; Ohnishi, K.

    2003-01-01

    The mutations of many kinds of cancer related genes have been investigated for the predictive assay against cancer therapy by the application of molecular biology. A tumor suppressor gene product of wtp53 plays important roles in cancer suppression through the induction of cell growth arrest, DNA repair or apoptosis. The p53 exerts its function by induction of downstream genes and/or interaction to various proteins. Mutations in the p53 gene (mp53) cause conformational alterations in the p53 protein, the majority of which can no longer induce expression of the downstream genes. The genetic status of p53 gene has been focused as the most important candidate among them for cancer therapy. The gene therapy of p53 has been already applied. We reported that the transfection of mp53 gene increased the radio-, thermo- and chemo-resistance, and depressed apoptosis introduced with them through bax-induction and proteolysis of PARP and caspase-3. From these results, we propose that the gene therapy of wtp53 to p53-deleted cancer cells may be very useful for cancer therapy by the combination with radiotherapy. Even in the case of mp53 cancer cells, we succeeded the restoration of mp53 to wtp53 by glycerol or C-terminal peptide of p53 as chemical chaperones. These experimental progresses might support effective cancer therapy against individual patients bearing with different p53 gene status by the use of the most suitable treatment to them in the near future

  8. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3

    International Nuclear Information System (INIS)

    Hu, Duanmin; Su, Cunjin; Jiang, Min; Shen, Yating; Shi, Aiming; Zhao, Fenglun; Chen, Ruidong; Shen, Zhu; Bao, Junjie; Tang, Wen

    2016-01-01

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs, siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.

  9. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Duanmin [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Su, Cunjin [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Jiang, Min [Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shen, Yating [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shi, Aiming; Zhao, Fenglun [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Chen, Ruidong [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shen, Zhu [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Bao, Junjie, E-mail: baojjsdfey@sina.com [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Tang, Wen, E-mail: sztangwen@163.com [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China)

    2016-03-04

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs, siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.

  10. RITA inhibits multiple myeloma cell growth through induction of p53-mediated caspase-dependent apoptosis and synergistically enhances nutlin-induced cytotoxic responses.

    Science.gov (United States)

    Saha, Manujendra N; Jiang, Hua; Mukai, Asuka; Chang, Hong

    2010-11-01

    Mutations or deletions of p53 are relatively rare in multiple myeloma (MM), at least in newly diagnosed patients. Thus, restoration of p53 tumor suppressor function in MM by blocking the inhibitory role of murine double minute 2 (MDM2) is a promising and applicable therapeutic strategy. RITA and nutlin are two new classes of small molecule MDM2 inhibitors that prevent the p53-MDM2 interaction. Earlier reports showed p53-dependent activity of RITA in solid tumors as well as in leukemias. We and others recently described nutlin-induced apoptosis in MM cells, but it remains unclear whether RITA exerts antimyeloma activity. Here, we found that RITA activates the p53 pathway and induces apoptosis in MM cell lines and primary MM samples, preferentially killing myeloma cells. The activation of p53 induced by RITA was mediated through modulation of multiple apoptotic regulatory proteins, including upregulation of a proapoptotic protein (NOXA), downregulation of an antiapoptotic protein, Mcl-1, and activation of caspases through extrinsic pathways. Moreover, a number of key p53-mediated apoptotic target genes were identified by gene expression profiling and further validated by quantitative real-time PCR. Importantly, the combination of RITA with nutlin displayed a strong synergism on growth inhibition with the combination index ranging from 0.56 to 0.82 in MM cells. Our data support further clinical evaluation of RITA as a potential novel therapeutic intervention in MM. ©2010 AACR.

  11. The critical role of catalase in prooxidant and antioxidant function of p53

    Science.gov (United States)

    Kang, M Y; Kim, H-B; Piao, C; Lee, K H; Hyun, J W; Chang, I-Y; You, H J

    2013-01-01

    The tumor suppressor p53 is an important regulator of intracellular reactive oxygen species (ROS) levels, although downstream mediators of p53 remain to be elucidated. Here, we show that p53 and its downstream targets, p53-inducible ribonucleotide reductase (p53R2) and p53-inducible gene 3 (PIG3), physically and functionally interact with catalase for efficient regulation of intracellular ROS, depending on stress intensity. Under physiological conditions, the antioxidant functions of p53 are mediated by p53R2, which maintains increased catalase activity and thereby protects against endogenous ROS. After genotoxic stress, high levels of p53 and PIG3 cooperate to inhibit catalase activity, leading to a shift in the oxidant/antioxidant balance toward an oxidative status, which could augment apoptotic cell death. These results highlight the essential role of catalase in p53-mediated ROS regulation and suggest that the p53/p53R2–catalase and p53/PIG3–catalase pathways are critically involved in intracellular ROS regulation under physiological conditions and during the response to DNA damage, respectively. PMID:22918438

  12. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier.

    Science.gov (United States)

    Garcia, Patrick Vianna; Seiva, Fábio Rodrigues Ferreira; Carniato, Amanda Pocol; de Mello Júnior, Wilson; Duran, Nelson; Macedo, Alda Maria; de Oliveira, Alexandre Gabarra; Romih, Rok; Nunes, Iseu da Silva; Nunes, Odilon da Silva; Fávaro, Wagner José

    2016-07-07

    The new modalities for treating patients with non-muscle invasive bladder cancer (NMIBC) for whom BCG (Bacillus Calmette-Guerin) has failed or is contraindicated are recently increasing due to the development of new drugs. Although agents like mitomycin C and BCG are routinely used, there is a need for more potent and/or less-toxic agents. In this scenario, a new perspective is represented by P-MAPA (Protein Aggregate Magnesium-Ammonium Phospholinoleate-Palmitoleate Anhydride), developed by Farmabrasilis (non-profit research network). This study detailed and characterized the mechanisms of action of P-MAPA based on activation of mediators of Toll-like Receptors (TLRs) 2 and 4 signaling pathways and p53 in regulating angiogenesis and apoptosis in an animal model of NMIBC, as well as, compared these mechanisms with BCG treatment. Our results demonstrated the activation of the immune system by BCG (MyD88-dependent pathway) resulted in increased inflammatory cytokines. However, P-MAPA intravesical immunotherapy led to distinct activation of TLRs 2 and 4-mediated innate immune system, resulting in increased interferons signaling pathway (TRIF-dependent pathway), which was more effective in the NMIBC treatment. Interferon signaling pathway activation induced by P-MAPA led to increase of iNOS protein levels, resulting in apoptosis and histopathological recovery. Additionally, P-MAPA immunotherapy increased wild-type p53 protein levels. The increased wild-type p53 protein levels were fundamental to NO-induced apoptosis and the up-regulation of BAX. Furthermore, interferon signaling pathway induction and increased p53 protein levels by P-MAPA led to important antitumor effects, not only suppressing abnormal cell proliferation, but also by preventing continuous expansion of tumor mass through suppression of angiogenesis, which was characterized by decreased VEGF and increased endostatin protein levels. Thus, P-MAPA immunotherapy could be considered an important therapeutic

  13. p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Cappadone, C., E-mail: concettina.cappadone@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Stefanelli, C. [Department for Life Quality Studies, University of Bologna, Rimini Campus, Rimini (Italy); Malucelli, E. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Zini, M. [Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna (Italy); Onofrillo, C. [Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna (Italy); Locatelli, A.; Rambaldi, M.; Sargenti, A. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Merolle, L. [ELETTRA–Sincrotrone Trieste S.C.p.A., Trieste (Italy); Farruggia, G. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); National Institute of Biostructures and Biosystems, Roma (Italy); Graziadio, A. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Montanaro, L. [Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna (Italy); Iotti, S. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); National Institute of Biostructures and Biosystems, Roma (Italy)

    2015-11-13

    Osteosarcoma (OS) is the most common primary malignant tumor of bone, occurring most frequently in children and adolescents. The mechanism of formation and development of OS have been studied for a long time. Tumor suppressor pathway governed by p53 gene are known to be involved in the pathogenesis of osteosarcoma. Moreover, loss of wild-type p53 activity is thought to be a major predictor of failure to respond to chemotherapy in various human cancers. In previous studies, we described the activity of a new indole derivative, NSC743420, belonging to the tubulin inhibitors family, capable to induce apoptosis and arrest of the cell cycle in the G2/M phase of various cancer cell lines. However, this molecule has never been tested on OS cell line. Here we address the activity of NSC743420 by examine whether differences in the p53 status could influence its effects on cell proliferation and death of OS cells. In particular, we compared the effect of the tested molecule on p53-wild type and p53-silenced U2OS cells, and on SaOS2 cell line, which is null for p53. Our results demonstrated that NSC743420 reduces OS cell proliferation by p53-dependent and p53-independent mechanisms. In particular, the molecule induces proliferative arrest that culminate to apoptosis in SaOS2 p53-null cells, while it brings a cytostatic and differentiating effect in U2OS cells, characterized by the cell cycle arrest in G0/G1 phase and increased alkaline phosphatase activity. - Highlights: • The indole derivative NSC743420 induces antitumor effects on osteosarcoma cells. • p53 status could drive the activity of antitumor agents on osteosarcoma cells. • NSC743420 induces cytostatic and differentiating effects on U2OS cells. • NSC743420 causes apoptosis on p53-null SaOS2 cells.

  14. p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells

    International Nuclear Information System (INIS)

    Cappadone, C.; Stefanelli, C.; Malucelli, E.; Zini, M.; Onofrillo, C.; Locatelli, A.; Rambaldi, M.; Sargenti, A.; Merolle, L.; Farruggia, G.; Graziadio, A.; Montanaro, L.; Iotti, S.

    2015-01-01

    Osteosarcoma (OS) is the most common primary malignant tumor of bone, occurring most frequently in children and adolescents. The mechanism of formation and development of OS have been studied for a long time. Tumor suppressor pathway governed by p53 gene are known to be involved in the pathogenesis of osteosarcoma. Moreover, loss of wild-type p53 activity is thought to be a major predictor of failure to respond to chemotherapy in various human cancers. In previous studies, we described the activity of a new indole derivative, NSC743420, belonging to the tubulin inhibitors family, capable to induce apoptosis and arrest of the cell cycle in the G2/M phase of various cancer cell lines. However, this molecule has never been tested on OS cell line. Here we address the activity of NSC743420 by examine whether differences in the p53 status could influence its effects on cell proliferation and death of OS cells. In particular, we compared the effect of the tested molecule on p53-wild type and p53-silenced U2OS cells, and on SaOS2 cell line, which is null for p53. Our results demonstrated that NSC743420 reduces OS cell proliferation by p53-dependent and p53-independent mechanisms. In particular, the molecule induces proliferative arrest that culminate to apoptosis in SaOS2 p53-null cells, while it brings a cytostatic and differentiating effect in U2OS cells, characterized by the cell cycle arrest in G0/G1 phase and increased alkaline phosphatase activity. - Highlights: • The indole derivative NSC743420 induces antitumor effects on osteosarcoma cells. • p53 status could drive the activity of antitumor agents on osteosarcoma cells. • NSC743420 induces cytostatic and differentiating effects on U2OS cells. • NSC743420 causes apoptosis on p53-null SaOS2 cells.

  15. Peran p53 Sebagai Jalur Kritis pada Mekanisme Kontrol Siklus Sel Sebagai Pencegah Terjadinya Kanker Mulut

    Directory of Open Access Journals (Sweden)

    Herlia Nur Istindiah

    2015-09-01

    Full Text Available In cell cycle control, p53 acts as an emergency brake, where its important checkpoint function is to maintain the genome integrity by preventing the formation and proliferation of mutant cells. P53 activity is increased by DNA damage occurs caused by agents (such as radioation, UV light or drugs or oncogenes. Mdm2 protein can inhibit the p53 activation, but oncogenes can inhibit Mdm2 or activate p53. If DNA damage occurs, then p53 prevents the cells from replicating their DNA by arresting the cell cycle, so that the cells can repair the damage. Alternatively, p53 instructs the cells to undergo apoptosis by inducing bax gene expression, so that irregular cell growth, and cancer can be avoided. Cancer, including oral cancer, oftenthuolved cells with altered p53. Exogenous factors, such as tobacco and alcohol, presumably plays a role in triggering p53 mutations. Several techniques, such as immunohistochemistry and PCR can be used to investigation their etiology and development of oral cancer. The results hopefully be applied clinically in early detection, prevention and prediction of cancer. This paper discusses the role on p53 in preventing the occurrence and proliferation of mutated cells that lead to cancer, including oral cancer.

  16. OTUD5 regulates p53 stability by deubiquitinating p53.

    Directory of Open Access Journals (Sweden)

    Judong Luo

    Full Text Available The p53 tumour suppressor protein is a transcription factor that prevents oncogenic progression by activating the expression of apoptosis and cell-cycle arrest genes in stressed cells. The stability of p53 is tightly regulated by ubiquitin-dependent degradation, driven mainly by its negative regulators ubiquitin ligase MDM2.In this study, we have identified OTUD5 as a DUB that interacts with and deubiquitinates p53. OTUD5 forms a direct complex with p53 and controls level of ubiquitination. The function of OTUD5 is required to allow the rapid activation of p53-dependent transcription and a p53-dependent apoptosis in response to DNA damage stress.As a novel deubiquitinating enzyme for p53, OTUD5 is required for the stabilization and the activation of a p53 response.

  17. Gelsolin negatively regulates the activity of tumor suppressor p53 through their physical interaction in hepatocarcinoma HepG2 cells

    International Nuclear Information System (INIS)

    An, Joo-Hee; Kim, Jung-Woong; Jang, Sang-Min; Kim, Chul-Hong; Kang, Eun-Jin; Choi, Kyung-Hee

    2011-01-01

    Highlights: → The actin binding protein Gelsolin (GSN) interacts with transcription factor p53. → GSN interacts with transactivation- and DNA binding domains of p53. → GSN represses transactivity of p53 via inhibition of nuclear translocation of p53. → GSN inhibits the p53-mediated apoptosis in hepatocarcinoma HepG2 cells. -- Abstract: As a transcription factor, p53 modulates several cellular responses including cell-cycle control, apoptosis, and differentiation. In this study, we have shown that an actin regulatory protein, gelsolin (GSN), can physically interact with p53. The nuclear localization of p53 is inhibited by GSN overexpression in hepatocarcinoma HepG2 cells. Additionally, we demonstrate that GSN negatively regulates p53-dependent transcriptional activity of a reporter construct, driven by the p21-promoter. Furthermore, p53-mediated apoptosis was repressed in GSN-transfected HepG2 cells. Taken together, these results suggest that GSN binds to p53 and this interaction leads to the inhibition of p53-induced apoptosis by anchoring of p53 in the cytoplasm in HepG2 cells.

  18. Residues in the alternative reading frame tumor suppressor that influence its stability and p53-independent activities

    International Nuclear Information System (INIS)

    Tommaso, Anne di; Hagen, Jussara; Tompkins, Van; Muniz, Viviane; Dudakovic, Amel; Kitzis, Alain; Ladeveze, Veronique; Quelle, Dawn E.

    2009-01-01

    The Alternative Reading Frame (ARF) protein suppresses tumorigenesis through p53-dependent and p53-independent pathways. Most of ARF's anti-proliferative activity is conferred by sequences in its first exon. Previous work showed specific amino acid changes occurred in that region during primate evolution, so we programmed those changes into human p14ARF to assay their functional impact. Two human p14ARF residues (Ala 14 and Thr 31 ) were found to destabilize the protein while two others (Val 24 and Ala 41 ) promoted more efficient p53 stabilization and activation. Despite those effects, all modified p14ARF forms displayed robust p53-dependent anti-proliferative activity demonstrating there are no significant biological differences in p53-mediated growth suppression associated with simian versus human p14ARF residues. In contrast, p53-independent p14ARF function was considerably altered by several residue changes. Val 24 was required for p53-independent growth suppression whereas multiple residues (Val 24 , Thr 31 , Ala 41 and His 60 ) enabled p14ARF to block or reverse the inherent chromosomal instability of p53-null MEFs. Together, these data pinpoint specific residues outside of established p14ARF functional domains that influence its expression and signaling activities. Most intriguingly, this work reveals a novel and direct role for p14ARF in the p53-independent maintenance of genomic stability.

  19. Ets-2 and p53 mediate cAMP-induced MMP-2 expression, activity and trophoblast invasion

    Directory of Open Access Journals (Sweden)

    Goldman Shlomit

    2009-11-01

    Full Text Available Abstract Background We have previously shown that Matrix metalloproteinase (MMP -2 is a key-enzyme in early trophoblast invasion and that Protein Kinase A (PKA increases MMP-2 expression and trophoblast invasion. The aim of this study was to examine MMP -2 regulation by PKA in invasive trophoblasts: JAR choriocarcinoma cell-line and 6-8 w first trimester trophoblasts. Methods The effect of Forskolin (PKA on MMP-2 expression was assessed by Northern Blot and RT-PCR. Possible transcription factors binding to consensus MMP-2 promoter sequences in response to Forskolin, were detected by EMSA binding assay and their expression assessed by western blot analysis. Antisense transfection of relevant transcription factors was performed and the inhibitory effect assessed on MMP-2 expression (RT-PCR, secretion (zymography and trophoblast invasiveness (transwell migration assay. Results We found that Forskolin increased MMP-2 mRNA in JAR cells within 24 hours, and induced binding to p53, Ets, C/EBP and AP-2. Transcription factors Ets-2, phospho- p53, C/EBP epsilon, C/EBP lambda and AP-2 alpha bound to their respective binding sequences in response to Forskolin and the expressions of these transcription factors were all elevated in Forskolin- treated cells. Inhibition of Ets-2 and p53 reduced MMP-2 expression, secretion and invasiveness of Forskolin treated cells. Conclusion MMP-2 is regulated by PKA through several binding sites and transcription factors including Ets-2, p53, C/EBP, C/EBP lambda and AP-2 alpha. Ets-2 and p53 mediate cAMP- induced trophoblast invasiveness, through regulation of MMP-2.

  20. Infection with E1B-mutant adenovirus stabilizes p53 but blocks p53 acetylation and activity through E1A

    DEFF Research Database (Denmark)

    Savelyeva, I.; Dobbelstein, M.

    2011-01-01

    to the suppression of p21 transcription. Depending on the E1A conserved region 3, E1B-defective adenovirus impaired the ability of the transcription factor Sp1 to bind the p21 promoter. Moreover, the amino terminal region of E1A, binding the acetyl transferases p300 and CREB-binding protein, blocked p53 K382...... accumulation of p53, without obvious defects in p53 localization, phosphorylation, conformation and oligomerization. Nonetheless, p53 completely failed to induce its target genes in this scenario, for example, p21/CDKN1A, Mdm2 and PUMA. Two regions of the E1A gene products independently contributed...... acetylation in infected cells. Mutating either of these E1A regions, in addition to E1B, partially restored p21 mRNA levels. Our findings argue that adenovirus attenuates p53-mediated p21 induction, through at least two E1B-independent mechanisms. Other virus species and cancer cells may employ analogous...

  1. Ser46 phosphorylation and prolyl-isomerase Pin1-mediated isomerization of p53 are key events in p53-dependent apoptosis induced by mutant huntingtin.

    Science.gov (United States)

    Grison, Alice; Mantovani, Fiamma; Comel, Anna; Agostoni, Elena; Gustincich, Stefano; Persichetti, Francesca; Del Sal, Giannino

    2011-11-01

    Huntington disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for huntingtin protein. Several mechanisms have been proposed by which mutant huntingtin (mHtt) may trigger striatal neurodegeneration, including mitochondrial dysfunction, oxidative stress, and apoptosis. Furthermore, mHtt induces DNA damage and activates a stress response. In this context, p53 plays a crucial role in mediating mHtt toxic effects. Here we have dissected the pathway of p53 activation by mHtt in human neuronal cells and in HD mice, with the aim of highlighting critical nodes that may be pharmacologically manipulated for therapeutic intervention. We demonstrate that expression of mHtt causes increased phosphorylation of p53 on Ser46, leading to its interaction with phosphorylation-dependent prolyl isomerase Pin1 and consequent dissociation from the apoptosis inhibitor iASPP, thereby inducing the expression of apoptotic target genes. Inhibition of Ser46 phosphorylation by targeting homeodomain-interacting protein kinase 2 (HIPK2), PKCδ, or ataxia telangiectasia mutated kinase, as well as inhibition of the prolyl isomerase Pin1, prevents mHtt-dependent apoptosis of neuronal cells. These results provide a rationale for the use of small-molecule inhibitors of stress-responsive protein kinases and Pin1 as a potential therapeutic strategy for HD treatment.

  2. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Wei-Ru Huang

    Full Text Available Avian reovirus (ARV protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128 of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication.

  3. Circumvention and reactivation of the p53 oncogene checkpoint in mouse colon tumors.

    Science.gov (United States)

    Aizu, Wataru; Belinsky, Glenn S; Flynn, Christopher; Noonan, Emily J; Boes, Colleen C; Godman, Cassandra A; Doshi, Bindi; Nambiar, Prashant R; Rosenberg, Daniel W; Giardina, Charles

    2006-10-16

    The p53 tumor suppressor protein is sequence-normal in azoxymethane (AOM)-induced mouse colon tumors, making them a good model for human colon cancers that retain a wild type p53 gene. Cellular localization and co-immunoprecipitation experiments using a cell line derived from an AOM-induced colon tumor (AJ02-NM(0) cells) pointed to constitutively expressed Mdm2 as being an important negative regulator of p53 in these cells. Although the Mdm2 inhibitory protein p19/ARF was expressed in AJ02-NM(0) cells, its level of expression was not sufficient for p53 activation. We tested the response of AJ02-NM(0) cells to the recently developed Mdm2 inhibitor, Nutlin-3. Nutlin-3 was found to activate p53 DNA binding in AJ02-NM(0) cells, to a level comparable to doxorubicin and 5-fluorouracil (5-FU). In addition, Nutlin-3 increased expression of the p53 target genes Bax and PERP to a greater extent than doxorubicin or 5-FU, and triggered a G2/M phase arrest in these cells, compared to a G1 arrest triggered by doxorubicin and 5-FU. The differences in the cellular response may be related to differences in the kinetics of p53 activation and/or its post-translational modification status. In an ex vivo experiment, Nutlin-3 was found to activate p53 target gene expression and apoptosis in AOM-induced tumor tissue, but not in normal adjacent mucosa. Our data indicate that Mdm2 inhibitors may be an effective means of selectively targeting colon cancers that retain a sequence-normal p53 gene while sparing normal tissue and that the AOM model is an appropriate model for the preclinical development of these drugs.

  4. The p53-mediated cytotoxicity of photodynamic therapy of cancer: Recent advances

    International Nuclear Information System (INIS)

    Zawacka-Pankau, Joanna; Krachulec, Justyna; Grulkowski, Ireneusz; Bielawski, Krzysztof P.; Selivanova, Galina

    2008-01-01

    Photodynamic therapy (PDT) is a promising modality for the treatment of both pre-malignant and malignant lesions. The mechanism of action converges mainly on the generation of reactive oxygen species which damage cancer cells directly as well as indirectly acting on tumor vasculature. The exact mechanism of PDT action is not fully understood, which is a formidable barrier to its successful clinical application. Elucidation of the mechanisms of cancer cell elimination by PDT might help in establishing highly specific, non-genotoxic anti-cancer treatment of tomorrow. One of the candidate PDT targets is the well-known tumor suppressor p53 protein recognized as the guardian of the genome. Together with its family members, p73 and p63 proteins, p53 is involved in apoptosis induction upon stress stimuli. The wild-type and mutant p53-targeting chemotherapeutics are currently extensively investigated as a promising strategy for highly specific anti-cancer therapy. In photodynamic therapy porphyrinogenic sensitizers are the most widely used compounds due to their potent biophysical and biochemical properties. Recent data suggest that the p53 tumor suppressor protein might play a significant role in porphyrin-PDT-mediated cell death by direct interaction with the drug which leads to its accumulation and induction of p53-dependent cell death both in the dark and upon irradiation. In this review we describe the available evidence on the role of p53 in PDT

  5. Overexpression of p53 activated by small activating RNA suppresses the growth of human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Ge Q

    2016-01-01

    Full Text Available Qiangqiang Ge,1,* Chenghe Wang,2,* Yajun Ruan,1,* Zhong Chen,1 Jihong Liu,1 Zhangqun Ye1 1Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 2Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Previous research has reported that a particular double-stranded RNA, named dsP53-285, has the capacity to induce expression of the tumor suppressor gene TP53 in chimpanzee cells by targeting its promoter. Usually, it is the wild-type p53 protein, rather than mutants, which exhibits potent cancer-inhibiting effects. In addition, nonhuman primates, such as chimpanzees, share almost identical genome sequences with humans. This prompted us to speculate whether dsP53-285 can trigger wild-type p53 protein expression in human prostate cancer (PCa cells and consequently suppress cell growth. The human PCa cell lines LNCaP and DU145 were transfected with dsP53-285 for 72 hours. Compared with the dsControl and mock transfection groups, expression of both p53 messenger RNA and p53 protein was significantly enhanced after dsP53-285 transfection, and this enhancement was followed by upregulation of p21, which indirectly indicated that dsP53-285 induced wild-type p53 expression. Moreover, overexpression of wild-type p53 mediated by dsP53-285 downregulated the expression of Cyclin D1 and cyclin-dependent kinase 4/6, thereby inducing PCa cell cycle arrest in G0/G1 phase and then inhibiting cell proliferation and clonogenicity. More importantly, dsP53-285 suppressed PCa cells mainly by modulating wild-type p53 expression. In conclusion, our study provides evidence that dsP53-285 can significantly stimulate wild-type p53 expression in the human PCa cell lines LNCaP and DU145 and can exert potent antitumor effects. Keywords: p53, small activating RNA, prostate

  6. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier

    International Nuclear Information System (INIS)

    Garcia, Patrick Vianna; Seiva, Fábio Rodrigues Ferreira; Carniato, Amanda Pocol; Mello Júnior, Wilson de; Duran, Nelson; Macedo, Alda Maria; Oliveira, Alexandre Gabarra de; Romih, Rok; Nunes, Iseu da Silva; Nunes, Odilon da Silva; Fávaro, Wagner José

    2016-01-01

    The new modalities for treating patients with non-muscle invasive bladder cancer (NMIBC) for whom BCG (Bacillus Calmette-Guerin) has failed or is contraindicated are recently increasing due to the development of new drugs. Although agents like mitomycin C and BCG are routinely used, there is a need for more potent and/or less-toxic agents. In this scenario, a new perspective is represented by P-MAPA (Protein Aggregate Magnesium-Ammonium Phospholinoleate-Palmitoleate Anhydride), developed by Farmabrasilis (non-profit research network). This study detailed and characterized the mechanisms of action of P-MAPA based on activation of mediators of Toll-like Receptors (TLRs) 2 and 4 signaling pathways and p53 in regulating angiogenesis and apoptosis in an animal model of NMIBC, as well as, compared these mechanisms with BCG treatment. Our results demonstrated the activation of the immune system by BCG (MyD88-dependent pathway) resulted in increased inflammatory cytokines. However, P-MAPA intravesical immunotherapy led to distinct activation of TLRs 2 and 4-mediated innate immune system, resulting in increased interferons signaling pathway (TRIF-dependent pathway), which was more effective in the NMIBC treatment. Interferon signaling pathway activation induced by P-MAPA led to increase of iNOS protein levels, resulting in apoptosis and histopathological recovery. Additionally, P-MAPA immunotherapy increased wild-type p53 protein levels. The increased wild-type p53 protein levels were fundamental to NO-induced apoptosis and the up-regulation of BAX. Furthermore, interferon signaling pathway induction and increased p53 protein levels by P-MAPA led to important antitumor effects, not only suppressing abnormal cell proliferation, but also by preventing continuous expansion of tumor mass through suppression of angiogenesis, which was characterized by decreased VEGF and increased endostatin protein levels. Thus, P-MAPA immunotherapy could be considered an important therapeutic

  7. p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb immobilization

    Science.gov (United States)

    Fox, Daniel K.; Ebert, Scott M.; Bongers, Kale S.; Dyle, Michael C.; Bullard, Steven A.; Dierdorff, Jason M.; Kunkel, Steven D.

    2014-01-01

    Immobilization causes skeletal muscle atrophy via complex signaling pathways that are not well understood. To better understand these pathways, we investigated the roles of p53 and ATF4, two transcription factors that mediate adaptations to a variety of cellular stresses. Using mouse models, we demonstrate that 3 days of muscle immobilization induces muscle atrophy and increases expression of p53 and ATF4. Furthermore, muscle fibers lacking p53 or ATF4 are partially resistant to immobilization-induced muscle atrophy, and forced expression of p53 or ATF4 induces muscle fiber atrophy in the absence of immobilization. Importantly, however, p53 and ATF4 do not require each other to promote atrophy, and coexpression of p53 and ATF4 induces more atrophy than either transcription factor alone. Moreover, muscle fibers lacking both p53 and ATF4 are more resistant to immobilization-induced atrophy than fibers lacking only p53 or ATF4. Interestingly, the independent and additive nature of the p53 and ATF4 pathways allows for combinatorial control of at least one downstream effector, p21. Using genome-wide mRNA expression arrays, we identified p21 mRNA as a skeletal muscle transcript that is highly induced in immobilized muscle via the combined actions of p53 and ATF4. Additionally, in mouse muscle, p21 induces atrophy in a manner that does not require immobilization, p53 or ATF4, and p21 is required for atrophy induced by immobilization, p53, and ATF4. Collectively, these results identify p53 and ATF4 as essential and complementary mediators of immobilization-induced muscle atrophy and discover p21 as a critical downstream effector of the p53 and ATF4 pathways. PMID:24895282

  8. Pattern of MAP kinases p44/42 and JNK activation by non-lethal doses of tributyltin in human natural killer cells

    Energy Technology Data Exchange (ETDEWEB)

    Aluoch, Aloice O. [Tennessee State University, Department of Biological Sciences, Nashville, TN (United States); Odman-Ghazi, Sabah O.; Whalen, Margaret M. [Tennessee State University, Department of Chemistry, Nashville, TN (United States)

    2007-04-15

    Tributyltin (TBT) has been shown to disrupt the ability of natural killer (NK) cells to destroy tumor targets in vitro even at exposures of 25 nM for 24 h, but cell viability was not significantly impacted. Thus, evaluation of intracellular molecular events that regulate cell viability in TBT exposed NK cells are of interest. It has been suggested that activation of the mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), may promote apoptosis while activation of the MAPK p44/42 may be crucial in mediating anti-apoptotic stimuli. However, it is well established that increases in pro-apoptotic BCL-2 family members, such as Bax, results in cell death. We have set out to study the effects of a range of TBT concentrations on the MAPKs, JNK and p44/42. Additionally, we examined the effects of TBT on the levels of pro-apoptotic proteins Bax and p53 as well as anti-apoptotic protein Bcl-2. The results show that 300-25 nM TBT activated JNK within 10 min. MAPK p44/42 was also activated by 300-50 nM TBT within 10 min. These data show that while 300-200 nM TBT activates p44/42 significantly more than JNK, the pattern of 100-25 nM TBT activation of these MAPKs may be similar. TBT exposure alters neither pro-apoptotic proteins Bax and p53 nor anti-apoptotic protein Bcl-2 levels at any exposure studied. The results suggest that exposure to TBT activated the anti-apoptotic regulatory p44/42 pathway to a greater extent than the pro-apoptotic JNK pathway, which may explain to some extent how NK cell viability is maintained. (orig.)

  9. Tumor Suppressor p53 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1.

    Science.gov (United States)

    Wang, Qianli; Lingel, Amy; Geiser, Vicki; Kwapnoski, Zachary; Zhang, Luwen

    2017-10-15

    Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers. IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and

  10. Enzastaurin inhibits ABCB1-mediated drug efflux independently of effects on protein kinase C signalling and the cellular p53 status.

    Science.gov (United States)

    Michaelis, Martin; Rothweiler, Florian; Löschmann, Nadine; Sharifi, Mohsen; Ghafourian, Taravat; Cinatl, Jindrich

    2015-07-10

    The PKCβ inhibitor enzastaurin was tested in parental neuroblastoma and rhabdomyosarcoma cell lines, their vincristine-resistant sub-lines, primary neuroblastoma cells, ABCB1-transduced, ABCG2-transduced, and p53-depleted cells. Enzastaurin IC50s ranged from 3.3 to 9.5 μM in cell lines and primary cells independently of the ABCB1, ABCG2, or p53 status. Enzastaurin 0.3125 μM interfered with ABCB1-mediated drug transport. PKCα and PKCβ may phosphorylate and activate ABCB1 under the control of p53. However, enzastaurin exerted similar effects on ABCB1 in the presence or absence of functional p53. Also, enzastaurin inhibited PKC signalling only in concentrations ≥ 1.25 μM. The investigated cell lines did not express PKCβ. PKCα depletion reduced PKC signalling but did not affect ABCB1 activity. Intracellular levels of the fluorescent ABCB1 substrate rhodamine 123 rapidly decreased after wash-out of extracellular enzastaurin, and enzastaurin induced ABCB1 ATPase activity resembling the ABCB1 substrate verapamil. Computational docking experiments detected a direct interaction of enzastaurin and ABCB1. These data suggest that enzastaurin directly interferes with ABCB1 function. Enzastaurin further inhibited ABCG2-mediated drug transport but by a different mechanism since it reduced ABCG2 ATPase activity. These findings are important for the further development of therapies combining enzastaurin with ABC transporter substrates.

  11. Influence of p53 and bcl-2 on chemosensitivity in benign and malignant prostatic cell lines.

    Science.gov (United States)

    Serafin, Antonio M; Bohm, Lothar

    2005-01-01

    The administration of cancer chemotherapeutic agents results in an increase in the apoptotic cells in the tumor: therefore, it has been assumed that anticancer drugs exhibit their cytotoxic effects via apoptotic signaling pathways. Characteristics that confer sensitivity to drug-induced apoptosis are, a functional p53 protein and expression of the apoptosis-promoting protein, bax. The role of p53 and bax/bcl-2 in drug-induced apoptosis was assessed in six prostate cell lines, 1532T, 1535T, 1542T, 1542N, BPH-1 and LNCaP using TD(50) concentrations of etoposide, vinblastine and estramustine. Cell death was monitored morphologically by fluorescent microscopy, and by flow cytometry (Annexin-V assay). Apoptotic morphology was rather low and ranged from 0.1% to 12.1%, 3.0% to 6.0% and 0.1% to 8.5% for etoposide, estramustine and vinblastine, respectively. Annexin-V binding and flow cytometry indicated apoptotic propensities of 0% to 4%, 0% to 3% and 0% to 5%, respectively. The percentage of cells responding to drug-induced apoptosis was, on average, higher in the tumor cell lines than in the normal cell lines, but showed no correlation with p53 status. The percentage of cells showing necrosis, assessed by Annexin binding and Propidium Iodide permeability in aqueous medium, tended to be much higher, and was found to be at the level of 5% to 30%. Immunoblotting demonstrated that bax and bcl-2 proteins were expressed at a basal level in all cell lines, but did not increase after exposure to TD(50) doses of the three drugs. The ratio of bax and bcl-2, measured by laser scanning densitometry, was not altered by the drug-induced DNA damage. The results suggest that apoptosis is not a major mechanism of drug-induced cell death in prostate cell lines and appears to be independent of p53 status and bax/bcl-2 expression.

  12. Sequence specific DNA binding by P53 is enhanced by ionizing radiation and is mediated via DNA-PK activity

    International Nuclear Information System (INIS)

    Kachnic, L.A.; Wunsch, H.; Mekeel, K.L.; De Frank, J.S.; Powell, S.N.

    1996-01-01

    Purpose: P53 is known to be involved in the cellular response to DNA damage. It mediates many of its effects by acting as a transcription factor via sequence-specific DNA binding. The half-life of p53 is prolonged following DNA damage, and this results in elevated levels of p53 for a period of 2-8 hours. The increase in p53 is often relatively small, but this produces significant stimulation of a downstream gene such as p21(WAF1/cip1). We investigated post-translational modification of p53 following ionizing radiation damage. Materials and Methods: The response of normal Balb-C mouse fibroblasts (FC) to ionizing radiation (IR, 8 Gy) was measured at 0,3,6,9 and 24 hours, by the levels of p53, p21, flow cytometry and the electrophoretic mobility shift assay (EMSA). EMSA utilized a 26 bp consensus sequence end-labeled oligonucleotide to measure sequence-specific p53 binding. P53 specificity was confirmed by an enhanced mobility shift (retardation) when using p53 antibody. Comparison was made with scid fibroblasts (FS) and FC cells transfected with a plasmid (CX3) containing mutant p53 (alanine-143) or infected with a retrovirus containing the E6 protein of human papilloma virus type 16. Results: The response of p53 to DNA damage shows a 3-fold increase at 3-6 hours, and was not significantly different between FC and FS. FC-CX3 showed detectable basal levels of p53, and a 2-fold further induction of p53 after IR. FC-E6 showed no detectable levels of p53 before or after IR. No induction of p21 or G1/S arrest was seen in FC-CX3 or FC-E6, as has been observed previously. The induction of p21 in FS cells was attenuated and delayed: a 2-3-fold increase seen maximally at 9 hours, compared with a 5-fold increase seen maximally at 3-6 hours in FC cells. The accumulation of cells at the G1/S junction after IR showed the same kinetics as p21 induction: the peak of cells in G1 occurs at 3-6 hours in FC, but not until 9-24 hours in FS. The response is reminiscent of that seen in

  13. Platelet-derived growth factor (PDGF)-signaling mediates radiation-induced apoptosis in human prostate cancer cells with loss of p53 function

    International Nuclear Information System (INIS)

    Kim, Harold E.; Han, Sue J.; Kasza, Thomas; Han, Richard; Choi, Hyeong-Seon; Palmer, Kenneth C.; Kim, Hyeong-Reh C.

    1997-01-01

    Platelet-derived growth factor (PDGF) signals a diversity of cellular responses in vitro, including cell proliferation, survival, transformation, and chemotaxis. PDGF functions as a 'competence factor' to induce a set of early response genes expressed in G 1 including p21 WAF1/CIP1 , a functional mediator of the tumor suppressor gene p53 in G 1 /S checkpoint. For PDGF-stimulated cells to progress beyond G 1 and transit the cell cycle completely, progression factors in serum such as insulin and IGF-1 are required. We have recently shown a novel role of PDGF in inducing apoptosis in growth-arrested murine fibroblasts. The PDGF-induced apoptosis is rescued by insulin, suggesting that G 1 /S checkpoint is a critical determinant for PDGF-induced apoptosis. Because recent studies suggest that radiation-induced signal transduction pathways interact with growth factor-mediated signaling pathways, we have investigated whether activation of the PDGF-signaling facilitates the radiation-induced apoptosis in the absence of functional p53. For this study we have used the 125-IL cell line, a mutant p53-containing, highly metastatic, and hormone-unresponsive human prostate carcinoma cell line. PDGF signaling is constitutively activated by transfection with a p28 v-sis expression vector, which was previously shown to activate PDGF α- and β- receptors. Although the basal level of p21 WAF1/CIP1 expression and radiation-induced apoptosis were not detectable in control 125-IL cells as would be predicted in mutant p53-containing cells, activation of PDGF-signaling induced expression of p21 WAF1/CIP1 and radiation-induced apoptosis. Our study suggests that the level of 'competence' growth factors including PDGF may be one of the critical determinants for radiation-induced apoptosis, especially in cells with loss of p53 function at the site of radiotherapy in vivo

  14. Characterization and Molecular Mechanism of Peptide-Conjugated Gold Nanoparticle Inhibiting p53-HDM2 Interaction in Retinoblastoma

    Directory of Open Access Journals (Sweden)

    Sushma Kalmodia

    2017-12-01

    Full Text Available Inhibition of the interaction between p53 and HDM2 is an effective therapeutic strategy in cancers that harbor a wild-type p53 protein such as retinoblastoma (RB. Nanoparticle-based delivery of therapeutic molecules has been shown to be advantageous in localized delivery, including to the eye, by overcoming ocular barriers. In this study, we utilized biocompatible gold nanoparticles (GNPs to deliver anti-HDM2 peptide to RB cells. Characterization studies suggested that GNP-HDM2 was stable in biologically relevant solvents and had optimal cellular internalization capability, the primary requirement of any therapeutic molecule. GNP-HDM2 treatment in RB cells in vitro suggested that they function by arresting RB cells at the G2M phase of the cell cycle and initiating apoptosis. Analysis of molecular changes in GNP-HDM2-treated cells by qRT-PCR and western blotting revealed that the p53 protein was upregulated; however, transactivation of its downstream targets was minimal, except for the PUMA-BCl2 and Bax axis. Global gene expression and in silico bioinformatic analysis of GNP-HDM2-treated cells suggested that upregulation of p53 might presumptively mediate apoptosis through the induction of p53-inducible miRNAs.

  15. Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhihong; Zhang, Yuxia [Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 (United States); Wang, Li, E-mail: l.wang@hsc.utah.edu [Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 (United States)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mdm2 enhances HNF4{alpha} activation of the ApoCIII promoter via interaction with HNF4{alpha}. Black-Right-Pointing-Pointer p53 antagonizes the effect of Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer SHP strengthens p53 inhibition but abolishes Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer Mdm2 alters the enrichment of HNF4{alpha}, p53 and SHP to the ApoCIII promoter. -- Abstract: We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4{alpha}. A direct association of Mdm2 protein with the HNF4{alpha} protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4{alpha} activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4{alpha} to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.

  16. Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition

    International Nuclear Information System (INIS)

    Yang, Zhihong; Zhang, Yuxia; Wang, Li

    2012-01-01

    Highlights: ► Mdm2 enhances HNF4α activation of the ApoCIII promoter via interaction with HNF4α. ► p53 antagonizes the effect of Mdm2 activation of the ApoCIII promoter. ► SHP strengthens p53 inhibition but abolishes Mdm2 activation of the ApoCIII promoter. ► Mdm2 alters the enrichment of HNF4α, p53 and SHP to the ApoCIII promoter. -- Abstract: We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4α. A direct association of Mdm2 protein with the HNF4α protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4α activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4α to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.

  17. Transactivation domain of p53 regulates DNA repair and integrity in human iPS cells.

    Science.gov (United States)

    Kannappan, Ramaswamy; Mattapally, Saidulu; Wagle, Pooja A; Zhang, Jianyi

    2018-05-18

    The role of p53 transactivation domain (p53-TAD), a multifunctional and dynamic domain, on DNA repair and retaining DNA integrity in human iPS cells has never been studied. p53-TAD was knocked out in iPS cells using CRISPR/Cas9 and was confirmed by DNA sequencing. p53-TAD KO cells were characterized by: accelerated proliferation, decreased population doubling time, and unaltered Bcl2, BBC3, IGF1R, Bax and altered Mdm2, p21, and PIDD transcripts expression. In p53-TAD KO cells p53 regulated DNA repair proteins XPA, DNA polH and DDB2 expression were found to be reduced compared to p53-WT cells. Exposure to low dose of doxorubicin (Doxo) induced similar DNA damage and DNA damage response (DDR) measured by RAD50 and MRE11 expression, Checkpoint kinase 2 activation and γH2A.X recruitment at DNA strand breaks in both the cell groups indicating silencing p53-TAD do not affect DDR mechanism upstream of p53. Following removal of Doxo p53-WT hiPS cells underwent DNA repair, corrected their damaged DNA and restored DNA integrity. Conversely, p53-TAD KO hiPS cells did not undergo complete DNA repair and failed to restore DNA integrity. More importantly continuous culture of p53-TAD KO hiPS cells underwent G2/M cell cycle arrest and expressed cellular senescent marker p16 INK4a . Our data clearly shows that silencing transactivation domain of p53 did not affect DDR but affected the DNA repair process implying the crucial role of p53 transactivation domain in maintaining DNA integrity. Therefore, activating p53-TAD domain using small molecules may promote DNA repair and integrity of cells and prevent senescence.

  18. Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53.

    Directory of Open Access Journals (Sweden)

    Kristina Kirschner

    2015-03-01

    Full Text Available The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage and chronically activated (in senescent or pro-apoptotic conditions p53. Compared to the classical 'acute' p53 binding profile, 'chronic' p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory 'p53 hubs' where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the 'lipogenic phenotype', a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.

  19. Regulation of Metabolic Activity by p53

    Directory of Open Access Journals (Sweden)

    Jessica Flöter

    2017-05-01

    Full Text Available Metabolic reprogramming in cancer cells is controlled by the activation of multiple oncogenic signalling pathways in order to promote macromolecule biosynthesis during rapid proliferation. Cancer cells also need to adapt their metabolism to survive and multiply under the metabolically compromised conditions provided by the tumour microenvironment. The tumour suppressor p53 interacts with the metabolic network at multiple nodes, mostly to reduce anabolic metabolism and promote preservation of cellular energy under conditions of nutrient restriction. Inactivation of this tumour suppressor by deletion or mutation is a frequent event in human cancer. While loss of p53 function lifts an important barrier to cancer development by deleting cell cycle and apoptosis checkpoints, it also removes a crucial regulatory mechanism and can render cancer cells highly sensitive to metabolic perturbation. In this review, we will summarise the major concepts of metabolic regulation by p53 and explore how this knowledge can be used to selectively target p53 deficient cancer cells in the context of the tumour microenvironment.

  20. Use of a temperature-sensitive p53 mutant to evaluate mechanisms of 5-fluorodeoxyuridine-mediated radiosensitization

    International Nuclear Information System (INIS)

    Naida, J.D.; Davis, M.A.; Lawrence, T.S.

    1996-01-01

    Purpose/Objective: Evidence exists that fluorodeoxyuridine (FdUrd)-mediated radiosensitization occurs in HT29 human colon carcinoma cells (which are p53 mutant) when these cells progress past the G 1 /S boundary in the presence of the drug. It has been demonstrated that wild type p53 levels increase following fluoropyrimidine treatment and that G 1 arrest is associated with increased p53 levels. We hypothesized that the restoration of wild type p53 function might restore G 1 /S arrest after FdUrd treatment, and that this would prevent FdUrd-mediated radiosensitization. Similarly, we hypothesized that cells containing wild type p53 would not be radiosensitized by FdUrd. Materials and Methods: Two clones of HT29 human colon cancer cells (ts29-A and ts29-G) containing murine temperature-sensitive p53 were constructed using electroporation and Geneticin selection. Incubation of these cells at the permissive temperature of 32 deg. C produces wild type p53 function and at the non permissive temperature of 38 deg. C causes mutant p53 function. A G418 resistant control cell line was also constructed (HT29neo). Cells were incubated at either 32 deg. C or 38 deg. C for 24 hours prior to irradiation and with FdUrd (100 nM) or medium only during the last 14 hours of the temperature shift. To assess progression into S phase, single-parameter (propidium iodide (PI)) and two-parameter (PI and bromodeoxyuridine) flow cytometry were performed at the end of drug exposure. A standard clonogenic assay was used. Results: We found that when ts29-A and ts29-G cells were incubated at the non-permissive (inactive p53 conformation) temperature, they progressed into S phase following exposure to FdUrd and were radiosensitized (enhancement ratio 1.5) to a degree similar to that seen in parental HT29 cells. Cells incubated at the permissive (wild-type p53 conformation) temperature demonstrated G 1 arrest, S phase depletion, and G2 arrest. In addition, FdUrd-mediated radiosensitization was

  1. MiR-192-Mediated Positive Feedback Loop Controls the Robustness of Stress-Induced p53 Oscillations in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Richard Moore

    2015-12-01

    Full Text Available The p53 tumor suppressor protein plays a critical role in cellular stress and cancer prevention. A number of post-transcriptional regulators, termed microRNAs, are closely connected with the p53-mediated cellular networks. While the molecular interactions among p53 and microRNAs have emerged, a systems-level understanding of the regulatory mechanism and the role of microRNAs-forming feedback loops with the p53 core remains elusive. Here we have identified from literature that there exist three classes of microRNA-mediated feedback loops revolving around p53, all with the nature of positive feedback coincidentally. To explore the relationship between the cellular performance of p53 with the microRNA feedback pathways, we developed a mathematical model of the core p53-MDM2 module coupled with three microRNA-mediated positive feedback loops involving miR-192, miR-34a, and miR-29a. Simulations and bifurcation analysis in relationship to extrinsic noise reproduce the oscillatory behavior of p53 under DNA damage in single cells, and notably show that specific microRNA abrogation can disrupt the wild-type cellular phenotype when the ubiquitous cell-to-cell variability is taken into account. To assess these in silico results we conducted microRNA-perturbation experiments in MCF7 breast cancer cells. Time-lapse microscopy of cell-population behavior in response to DNA double-strand breaks, together with image classification of single-cell phenotypes across a population, confirmed that the cellular p53 oscillations are compromised after miR-192 perturbations, matching well with the model predictions. Our study via modeling in combination with quantitative experiments provides new evidence on the role of microRNA-mediated positive feedback loops in conferring robustness to the system performance of stress-induced response of p53.

  2. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A.

    Science.gov (United States)

    Siu, Woen Ping; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan; Boelsterli, Urs A

    2008-03-15

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (>500 microM) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 microM) fully inhibited diclofenac-induced cell injury, suggesting that mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca2+ chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca2+-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.

  3. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A

    International Nuclear Information System (INIS)

    Siu, W.P.; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan; Boelsterli, Urs A.

    2008-01-01

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (> 500 μM) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 μM) fully inhibited diclofenac-induced cell injury, suggesting that mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca 2+ chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca 2+ -Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury

  4. N-methylpurine DNA glycosylase inhibits p53-mediated cell cycle arrest and coordinates with p53 to determine sensitivity to alkylating agents.

    Science.gov (United States)

    Song, Shanshan; Xing, Guichun; Yuan, Lin; Wang, Jian; Wang, Shan; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang

    2012-08-01

    Alkylating agents induce genome-wide base damage, which is repaired mainly by N-methylpurine DNA glycosylase (MPG). An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks. However, the determinant of drug sensitivity or insensitivity still remains unclear. Here, we report that the p53 status coordinates with MPG to play a pivotal role in such process. MPG expression is positive in breast, lung and colon cancers (38.7%, 43.4% and 25.3%, respectively) but negative in all adjacent normal tissues. MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells. The overexpression of MPG reduced, whereas depletion of MPG increased, the expression levels of pro-arrest gene downstream of p53 including p21, 14-3-3σ and Gadd45 but not proapoptotic ones. The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53. Upon DNA alkylation stress, in p53 wild-type tumor cells, p53 dissociated from MPG and induced cell growth arrest. Then, AP sites were repaired efficiently, which led to insensitivity to alkylating agents. By contrast, in p53-mutated cells, the AP sites were repaired with low efficacy. To our knowledge, this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53, and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy.

  5. Phosphorylation of Tip60 by GSK-3 determines the induction of PUMA and apoptosis by p53

    Science.gov (United States)

    Charvet, Céline; Wissler, Manuela; Brauns-Schubert, Prisca; Wang, Shang-Jui; Tang, Yi; Sigloch, Florian C.; Mellert, Hestia; Brandenburg, Martin; Lindner, Silke E.; Breit, Bernhard; Green, Douglas R.; McMahon, Steven B.; Borner, Christoph; Gu, Wei; Maurer, Ulrich

    2011-01-01

    Summary Activation of p53 by DNA damage results in either cell cycle arrest, allowing DNA repair and cell survival, or induction of apoptosis. As these opposite outcomes are both mediated by p53 stabilization, additional mechanisms to determine this decision must exist. Here we show that glycogen synthase kinase-3 (GSK-3) is required for the p53-mediated induction of the pro-apoptotic BH3 only-protein PUMA, an essential mediator of p53-induced apoptosis. Inhibition of GSK-3 protected from cell death induced by DNA damage and promoted increased long-term cell survival. We demonstrate that GSK-3 phosphorylates serine 86 of the p53-acetyltransferase Tip60. A Tip60S86A mutant was less active to induce p53 K120 acetylation, Histone 4 acetylation and expression of PUMA. Our data suggest that GSK-3 mediated Tip60S86-phosphorylation provides a link between PI3K signaling and the choice for or against apoptosis induction by p53. PMID:21658600

  6. Increased Arf/p53 activity in stem cells, aging and cancer.

    Science.gov (United States)

    Carrasco-Garcia, Estefania; Moreno, Manuel; Moreno-Cugnon, Leire; Matheu, Ander

    2017-04-01

    Arf/p53 pathway protects the cells against DNA damage induced by acute stress. This characteristic is the responsible for its tumor suppressor activity. Moreover, it regulates the chronic type of stress associated with aging. This is the basis of its anti-aging activity. Indeed, increased gene dosage of Arf/p53 displays elongated longevity and delayed aging. At a cellular level, it has been recently shown that increased dosage of Arf/p53 delays age-associated stem cell exhaustion and the subsequent decline in tissue homeostasis and regeneration. However, p53 can also promote aging if constitutively activated. In this context, p53 reduces tissue regeneration, which correlates with premature exhaustion of stem cells. We discuss here the current evidence linking the Arf/p53 pathway to the processes of aging and cancer through stem cell regulation. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Abrogation of Wip1 expression by RITA-activated p53 potentiates apoptosis induction via activation of ATM and inhibition of HdmX

    Science.gov (United States)

    Spinnler, C; Hedström, E; Li, H; de Lange, J; Nikulenkov, F; Teunisse, A F A S; Verlaan-de Vries, M; Grinkevich, V; Jochemsen, A G; Selivanova, G

    2011-01-01

    Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 – HdmX and Wip1, leading to efficient elimination of tumour cells. PMID:21546907

  8. Abrogation of Wip1 expression by RITA-activated p53 potentiates apoptosis induction via activation of ATM and inhibition of HdmX.

    Science.gov (United States)

    Spinnler, C; Hedström, E; Li, H; de Lange, J; Nikulenkov, F; Teunisse, A F A S; Verlaan-de Vries, M; Grinkevich, V; Jochemsen, A G; Selivanova, G

    2011-11-01

    Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 - HdmX and Wip1, leading to efficient elimination of tumour cells.

  9. Estrogen receptor positive breast tumors resist chemotherapy by the overexpression of P53 in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Fatma Ashour

    2018-06-01

    Full Text Available Background and Objectives: Breast cancer (BC is classified according to estrogen receptor (ER status into ER+ and ER− tumors. ER+ tumors have a worse response to chemotherapy compared to ER− tumors. BCL-2, TP53, BAX and NF-ΚB are involved in drug resistance in the ER+ tumors. Recently it was shown that Cancer Stem Cells (CSCs play an important role in drug resistance. In this study we tested the hypothesis that CSCs of the ER+ tumors resist drug through the overexpression of BCL-2, TP53, BAX and NF-ΚB. Methods: CSCs were isolated by anoikis resistance assay from MCF7 (ER+ and MDA-MB-231 (ER− cell lines. Isolated CSCs were treated with doxorubicin (DOX and the mRNA expression levels of BCL-2, TP53, BAX and NFKB were investigated by quantitative real time PCR (qPCR with and without treatment. Results: BCL-2, BAX and NF-ΚB showed decreased expression in MCF7 bulk cancer cells after DOX treatment whereas only BCL-2 and BAX showed decreased expression in MDA-MB-231 bulk cancer cells. Interestingly TP53 was the only gene showed a considerable increase in its expression in CSCs of the ER+ MCF7 cell line compared to bulk cancer cells. Moreover, TP53 was the only gene showing exceptionally higher level of expression in MCF7-CSCs compared to MDA-MB-231-CSCs. Conclusion: Our results suggest that CSCs in the ER+ cells escape the effect of DOX treatment by the elevation of p53 expression. Keywords: Breast cancer, Cancer Stem Cells, Drug resistance, Estrogen receptors

  10. Exposure to cigarette smoke increases apoptosis in the rat gastric mucosa through a reactive oxygen species-mediated and p53-independent pathway.

    Science.gov (United States)

    Wang, H; Ma, L; Li, Y; Cho, C H

    2000-04-01

    Cigarette smoking is a major risk factor for gastric cancer and peptic ulcer. The aim of our study was to investigate the relationship between exposure to cigarette smoke and apoptosis in the rat gastric mucosa and the mechanism involved. Rats were exposed to different concentrations of cigarette smoke (0, 2, and 4%) once daily for a different number of 1 h periods (1, 3, 6, and 9 d). Apoptosis was identified by the terminal deoxy-transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) method and caspase-3 activity. The mucosal xanthine oxidase (XO) activity and p53 level were also measured. The results showed that exposure to cigarette smoke produced a time- and concentration-dependent increase in apoptosis in the rat gastric mucosa that was accompanied by an increase in XO activity. The increased apoptosis and XO activity could be detected after even a single exposure. In contrast, the level of p53 was elevated only in the later stage of cigarette smoke exposure. The apoptotic effect could be blocked by pretreatment with an XO inhibitor (allopurinol, 20 mg/kg intraperitoneally) or a hydroxyl free radical scavenger (DMSO, 0.2%, 1 ml/kg intravenously). However, neither of these treatments had any effect on the p53 level of the mucosa. In summary, we conclude that exposure to cigarette smoke can increase apoptosis in the rat gastric mucosa through a reactive oxygen species- (ROS) mediated and a p53-independent pathway.

  11. Induction of p53-mediated apoptosis in splenocytes and thymocytes of C57BL/6 mice exposed to perfluorooctane sulfonate (PFOS)

    International Nuclear Information System (INIS)

    Dong, Guang-Hui; Wang, Jing; Zhang, Ying-Hua; Liu, Miao-Miao; Wang, Da; Zheng, Li; Jin, Yi-He

    2012-01-01

    Perfluorooctane sulfonate (PFOS) is a persistent environmental contaminant found in human and wildlife tissues. It has been reported that PFOS can cause atrophy of the immune organs and apoptosis of immunocytes in rodents. However, the mechanism behind such cause is still unclear. To understand the model of cell death and its mechanism on lymphoid cells in vivo, we conducted a dose/response experiment in which 4 groups of male adult C57BL/6 mice (12 mice per group) were dosed daily by oral gavage with PFOS at 0, 0.0167, 0.0833, or 0.8333 mg/kg/day, yielding targeted Total Administered Dose (TAD) of 0, 1, 5, or 50 mg PFOS/kg, respectively, over 60 days. The results showed that spleen and thymus weight were significantly reduced in the highest PFOS-dose-group (TAD 50 mg PFOS/kg) compared to the control group, whereas liver weight was significantly increased. We analyzed the cell death via apoptosis with an annexin-V/propidium iodide assay by flow cytometry, and observed that both the percentage of apoptosis and the expression of the pro-apoptotic proteins p53 in splenocytes and thymocytes increased in a dose-related manner after PFOS treatment. We also observed that PFOS induced p53-dependent apoptosis through the cooperation between the Bcl-xl down regulation without changing the Bcl-2 and Bax expression. The down regulation of Bcl-xl was strongly indicating mitochondrial involvement in apoptosis. It is confirmed by the release of cytochrome c and activation of caspase-3. All of these findings establish an important role of p53 and mitochondrial function in PFOS induced toxic environment in the host. -- Highlights: ► PFOS immunotoxicity is caused by induction of apoptosis via the p53 activation. ► PFOS exposure can induce down regulation of Bcl-xl. ► Mitochondria are involved in PFOS-induced apoptosis. ► PFOS exposure can cause the release of cytochrome c and activation of caspase-3.

  12. Induction of p53-mediated apoptosis in splenocytes and thymocytes of C57BL/6 mice exposed to perfluorooctane sulfonate (PFOS)

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guang-Hui, E-mail: ghdong@mail.cmu.edu.cn [School of Public Health, China Medical University, Shenyang 110001 (China); Wang, Jing [Department of Biostatistics, School of Public Health, Saint Louis University, Saint Louis, MO 63104 (United States); Zhang, Ying-Hua; Liu, Miao-Miao; Wang, Da [School of Public Health, China Medical University, Shenyang 110001 (China); Zheng, Li [Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110001 (China); Jin, Yi-He [School of Public Health, China Medical University, Shenyang 110001 (China); School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian 116024 (China)

    2012-10-15

    Perfluorooctane sulfonate (PFOS) is a persistent environmental contaminant found in human and wildlife tissues. It has been reported that PFOS can cause atrophy of the immune organs and apoptosis of immunocytes in rodents. However, the mechanism behind such cause is still unclear. To understand the model of cell death and its mechanism on lymphoid cells in vivo, we conducted a dose/response experiment in which 4 groups of male adult C57BL/6 mice (12 mice per group) were dosed daily by oral gavage with PFOS at 0, 0.0167, 0.0833, or 0.8333 mg/kg/day, yielding targeted Total Administered Dose (TAD) of 0, 1, 5, or 50 mg PFOS/kg, respectively, over 60 days. The results showed that spleen and thymus weight were significantly reduced in the highest PFOS-dose-group (TAD 50 mg PFOS/kg) compared to the control group, whereas liver weight was significantly increased. We analyzed the cell death via apoptosis with an annexin-V/propidium iodide assay by flow cytometry, and observed that both the percentage of apoptosis and the expression of the pro-apoptotic proteins p53 in splenocytes and thymocytes increased in a dose-related manner after PFOS treatment. We also observed that PFOS induced p53-dependent apoptosis through the cooperation between the Bcl-xl down regulation without changing the Bcl-2 and Bax expression. The down regulation of Bcl-xl was strongly indicating mitochondrial involvement in apoptosis. It is confirmed by the release of cytochrome c and activation of caspase-3. All of these findings establish an important role of p53 and mitochondrial function in PFOS induced toxic environment in the host. -- Highlights: ► PFOS immunotoxicity is caused by induction of apoptosis via the p53 activation. ► PFOS exposure can induce down regulation of Bcl-xl. ► Mitochondria are involved in PFOS-induced apoptosis. ► PFOS exposure can cause the release of cytochrome c and activation of caspase-3.

  13. The natural triterpene maslinic acid induces apoptosis in HT29 colon cancer cells by a JNK-p53-dependent mechanism

    International Nuclear Information System (INIS)

    Reyes-Zurita, Fernando J; Pachón-Peña, Gisela; Lizárraga, Daneida; Rufino-Palomares, Eva E; Cascante, Marta; Lupiáñez, José A

    2011-01-01

    Maslinic acid, a pentacyclic triterpene found in the protective wax-like coating of the leaves and fruit of Olea europaea L., is a promising agent for the prevention of colon cancer. We have shown elsewhere that maslinic acid inhibits cell proliferation to a significant extent and activates mitochondrial apoptosis in colon cancer cells. In our latest work we have investigated further this compound's apoptotic molecular mechanism. We used HT29 adenocarcinoma cells. Changes genotoxicity were analyzed by single-cell gel electrophoresis (comet assay). The cell cycle was determined by flow cytometry. Finally, changes in protein expression were examined by western blotting. Student's t-test was used for statistical comparison. HT29 cells treated with maslinic acid showed significant increases in genotoxicity and cell-cycle arrest during the G0/G1 phase after 72 hours' treatment and an apoptotic sub-G0/G1 peak after 96 hours. Nevertheless, the molecular mechanism for this cytotoxic effect of maslinic acid has never been properly explored. We show here that the anti-tumoral activity of maslinic acid might proceed via p53-mediated apoptosis by acting upon the main signaling components that lead to an increase in p53 activity and the induction of the rest of the factors that participate in the apoptotic pathway. We found that in HT29 cells maslinic acid activated the expression of c-Jun NH2-terminal kinase (JNK), thus inducing p53. Treatment of tumor cells with maslinic acid also resulted in an increase in the expression of Bid and Bax, repression of Bcl-2, release of cytochrome-c and an increase in the expression of caspases -9, -3, and -7. Moreover, maslinic acid produced belated caspase-8 activity, thus amplifying the initial mitochondrial apoptotic signaling. All these results suggest that maslinic acid induces apoptosis in human HT29 colon-cancer cells through the JNK-Bid-mediated mitochondrial apoptotic pathway via the activation of p53. Thus we propose

  14. Substrate Stiffness Influences Doxorubicin-Induced p53 Activation via ROCK2 Expression

    Directory of Open Access Journals (Sweden)

    Takahiro Ebata

    2017-01-01

    Full Text Available The physical properties of the extracellular matrix (ECM, such as stiffness, are involved in the determination of the characteristics of cancer cells, including chemotherapy sensitivity. Resistance to chemotherapy is often linked to dysfunction of tumor suppressor p53; however, it remains elusive whether the ECM microenvironment interferes with p53 activation in cancer cells. Here, we show that, in MCF-7 breast cancer cells, extracellular stiffness influences p53 activation induced by the antitumor drug doxorubicin. Cell growth inhibition by doxorubicin was increased in response to ECM rigidity in a p53-dependent manner. The expression of Rho-associated coiled coil-containing protein kinase (ROCK 2, which induces the activation of myosin II, was significantly higher when cells were cultured on stiffer ECM substrates. Knockdown of ROCK2 expression or pharmacological inhibition of ROCK decreased doxorubicin-induced p53 activation. Our results suggest that a soft ECM causes downregulation of ROCK2 expression, which drives resistance to chemotherapy by repressing p53 activation.

  15. Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage

    Science.gov (United States)

    Logan, Ian R.; McNeill, Hesta V.; Cook, Susan; Lu, Xiaohong; Meek, David W.; Fuller-Pace, Frances V.; Lunec, John; Robson, Craig N.

    2009-01-01

    Here we define an important role for heat shock factor 1 (HSF1) in the cellular response to genotoxic agents. We demonstrate for the first time that HSF1 can complex with nuclear p53 and that both proteins are co-operatively recruited to p53-responsive genes such as p21. Analysis of natural and synthetic cis elements demonstrates that HSF1 can enhance p53-mediated transcription, whilst depletion of HSF1 reduces the expression of p53-responsive transcripts. We find that HSF1 is required for optimal p21 expression and p53-mediated cell-cycle arrest in response to genotoxins while loss of HSF1 attenuates apoptosis in response to these agents. To explain these novel properties of HSF1 we show that HSF1 can complex with DNA damage kinases ATR and Chk1 to effect p53 phosphorylation in response to DNA damage. Our data reveal HSF1 as a key transcriptional regulator in response to genotoxic compounds widely used in the clinical setting, and suggest that HSF1 will contribute to the efficacy of these agents. PMID:19295133

  16. SCO2 induces p53-mediated apoptosis by Thr845 phosphorylation of ASK-1 and dissociation of the ASK-1-Trx complex.

    Science.gov (United States)

    Madan, Esha; Gogna, Rajan; Kuppusamy, Periannan; Bhatt, Madan; Mahdi, Abbas Ali; Pati, Uttam

    2013-04-01

    p53 prevents cancer via cell cycle arrest, apoptosis, and the maintenance of genome stability. p53 also regulates energy-generating metabolic pathways such as oxidative phosphorylation (OXPHOS) and glycolysis via transcriptional regulation of SCO2 and TIGAR. SCO2, a cytochrome c oxidase assembly factor, is a metallochaperone which is involved in the biogenesis of cytochrome c oxidase subunit II. Here we have shown that SCO2 functions as an apoptotic protein in tumor xenografts, thus providing an alternative pathway for p53-mediated apoptosis. SCO2 increases the generation of reactive oxygen species (ROS) and induces dissociation of the protein complex between apoptosis signal-regulating kinase 1 (ASK-1) (mitogen-activated protein kinase kinase kinase [MAPKKK]) and its cellular inhibitor, the redox-active protein thioredoxin (Trx). Furthermore, SCO2 induces phosphorylation of ASK-1 at the Thr(845) residue, resulting in the activation of the ASK-1 kinase pathway. The phosphorylation of ASK-1 induces the activation of mitogen-activated protein kinase kinases 4 and 7 (MAP2K4/7) and MAP2K3/6, which switches the c-Jun N-terminal protein kinase (JNK)/p38-dependent apoptotic cascades in cancer cells. Exogenous addition of the SCO2 gene to hypoxic cancer cells and hypoxic tumors induces apoptosis and causes significant regression of tumor xenografts. We have thus discovered a novel apoptotic function of SCO2, which activates the ASK-1 kinase pathway in switching "on" an alternate mode of p53-mediated apoptosis. We propose that SCO2 might possess a novel tumor suppressor function via the ROS-ASK-1 kinase pathway and thus could be an important candidate for anticancer gene therapy.

  17. The miR-1000-p53 pathway regulates apoptosis and virus infection in shrimp.

    Science.gov (United States)

    Gong, Yi; Ju, Chenyu; Zhang, Xiaobo

    2015-10-01

    The p53 protein plays an important role in apoptosis which is involved in the immunity of animals. However, effects of the miRNA-mediated regulation of p53 expression on apoptosis and virus infection are not extensively investigated. To address this issue, the miRNA-mediated p53-dependent apoptotic pathway was explored in this study. The results indicated that p53 could regulate the apoptotic activity of Marsupenaeus japonicas shrimp and influence the infection of white spot syndrome virus (WSSV). The further data presented that miR-1000 could target the 3'-untranslated region (3'UTR) of p53 gene. The results of in vivo experiments showed that the miR-1000 overexpression led to significant decreases of shrimp apoptotic activity and the capacity of WSSV infection, while the miR-1000 silencing resulted in significant increases of apoptotic activity and virus infection, indicating that miR-1000 took great effects on apoptosis and virus infection by targeting p53. Therefore, our study revealed a novel mechanism that the miR-1000-p53 pathway regulated apoptosis and virus infection in shrimp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. UVC-induced apoptosis in Dubca cells is independent of JNK activation and p53Ser-15 phosphorylation

    International Nuclear Information System (INIS)

    Chathoth, Shahanas; Thayyullathil, Faisal; Hago, Abdulkader; Shahin, Allen; Patel, Mahendra; Galadari, Sehamuddin

    2009-01-01

    Ultraviolet C (UVC) irradiation in mammalian cell lines activates a complex signaling network that leads to apoptosis. By using Dubca cells as a model system, we report the presence of a UVC-induced apoptotic pathway that is independent of c-Jun N-terminal kinases (JNKs) activation and p53 phosphorylation at Ser 15 . Irradiation of Dubca cells with UVC results in a rapid JNK activation and phosphorylation of its downstream target c-Jun, as well as, phosphorylation of activating transcription factor 2 (ATF2). Pre-treatment with JNK inhibitor, SP600125, inhibited UVC-induced c-Jun phosphorylation without preventing UVC-induced apoptosis. Similarly, inhibition of UVC-induced p53 phosphorylation did not prevent Dubca cell apoptosis, suggesting that p53 Ser-15 phosphorylation is not associated with UVC-induced apoptosis signaling. The pan-caspase inhibitor z-VAD-fmk inhibited UVC-induced PARP cleavage, DNA fragmentation, and ultimately apoptosis of Dubca cells. Altogether, our study clearly indicates that UVC-induced apoptosis is independent of JNK and p53 activation in Dubca cells, rather, it is mediated through a caspase dependent pathway. Our findings are not in line with the ascribed critical role for JNKs activation, and downstream phosphorylation of targets such as c-Jun and ATF2 in UVC-induced apoptosis.

  19. Involvement of p38 MAPK- and JNK-modulated expression of Bcl-2 and Bax in Naja nigricollis CMS-9-induced apoptosis of human leukemia K562 cells.

    Science.gov (United States)

    Chen, Ying-Jung; Liu, Wen-Hsin; Kao, Pei-Hsiu; Wang, Jeh-Jeng; Chang, Long-Sen

    2010-06-15

    CMS-9, a phospholipase A(2) (PLA(2)) isolated from Naja nigricollis venom, induced apoptosis of human leukemia K562 cells, characterized by mitochondrial depolarization, modulation of Bcl-2 family members, cytochrome c release and activation of caspases 9 and 3. Moreover, an increase in intracellular Ca2+ concentration and the production of reactive oxygen species (ROS) was noted. Pretreatment with BAPTA-AM (Ca2+ chelator) and N-acetylcysteine (NAC, ROS scavenger) proved that Ca2+ was an upstream event in inducing ROS generation. Upon exposure to CMS-9, activation of p38 MAPK and JNK was observed in K562 cells. BAPTA-AM or NAC abrogated CMS-9-elicited p38 MAPK and JNK activation, and rescued viability of CMS-9-treated K562 cells. SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor) suppressed CMS-9-induced dissipation of mitochondrial membrane potential, Bcl-2 down-regulation, Bax up-regulation and increased mitochondrial translocation of Bax. Inactivation of PLA(2) activity reduced drastically the cytotoxicity of CMS-9, and a combination of lysophosphatidylcholine and stearic acid mimicked the cytotoxic effects of CMS-9. Taken together, our data suggest that CMS-9-induced apoptosis of K562 cells is catalytic activity-dependent and is mediated through mitochondria-mediated death pathway triggered by Ca2+/ROS-evoked p38 MAPK and JNK activation. 2010 Elsevier Ltd. All rights reserved.

  20. A comparison of the effects of tributyltin chloride and triphenyltin chloride on cell proliferation, proapoptotic p53, Bax, and antiapoptotic Bcl-2 protein levels in human breast cancer MCF-7 cell line.

    Science.gov (United States)

    Fickova, Maria; Macho, Ladislav; Brtko, Julius

    2015-06-01

    In recent years it was disclosed, that numerous organotin(IV) derivatives have remarkable cytotoxicity against several types of cancer cells. The property to inhibit cell growth makes these compounds promising for antitumor therapy, as the clinical effectiveness of cisplatin is limited by drug resistance and significant side effects. Tributyltin and triphenyltin are known as endocrine disruptors. Moreover, the compounds exert their toxicity in mammals predominantly through nuclear receptor signaling. Here we present the effects of tributyltin chloride (TBT-Cl) and triphenyltin chloride (TPT-Cl) on cell proliferation, expression of proapoptotic p53, Bax, and antiapoptotic Bcl-2 proteins in human breast cancer MCF-7 cell line. Dose and time dependent (24, 48 and 72 h) cell expositions have demonstrated TBT-Cl as more effective in inhibiting MCF-7 cell proliferation than TPT-Cl. Short time treatment with TBT-Cl displayed marked stimulation of p53 protein expression when compared to TPT-Cl. Both organotin compounds displayed similar mild enhancement of Bax protein expression. The 24h exposition of TPT-Cl induced substantial diminution of Bcl-2 protein expression in comparison with both, untreated cells and TBT-Cl treated cells. Our observations indicate that TBT-Cl and TPT-Cl have different antiproliferative potency and distinct impact on expression of apoptosis marker proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Contribution to the investigation of the p53 in vivo and in vitro trans-activation activity

    International Nuclear Information System (INIS)

    Meiller, A.

    2004-03-01

    Among the body's defence mechanisms, the programmed cellular death or apoptosis is an important safeguard way which allows the body to get rid of the injured cells before they acquire steady genetic modifications leading to an anarchistic multiplication. As p53 tumor suppressor gene plays a predominant role within this process, this research report first presents the p53 protein, its structure, its activities as a transcription factor, its modifications and the implications on its functional activities, its biological activities, and describes the p53 intracellular rate regulation and the use of this protein in radiology, particularly in 'in vivo' investigations on irradiated mice. It also presents the p53 family. Then, the author reports experimental investigations on possible other genes which could be trans-activated by p53. A gene is identified as a new target gene. She also demonstrates a new p53 activation path induced by another member of the p53 family, the p73 alpha protein

  2. Novel small molecule induces p53-dependent apoptosis in human colon cancer cells

    International Nuclear Information System (INIS)

    Park, Sang Eun; Min, Yong Ki; Ha, Jae Du; Kim, Bum Tae; Lee, Woo Ghil

    2007-01-01

    Using high-throughput screening with small-molecule libraries, we identified a compound, KCG165 [(2-(3-(2-(pyrrolidin-1-yl)ethoxy)-1,10b-dihydro-[1,2,4]triazolo[1,5-c] quinazolin-5(6H)-one)], which strongly activated p53-mediated transcriptional activity. KCG165-induced phosphorylations of p53 at Ser 6 , Ser 15 , and Ser 20 , which are all key residues involved in the activation and stabilization of p53. Consistent with these findings, KCG165 increased level of p53 protein and led to the accumulation of transcriptionally active p53 in the nucleus with the increased occupancy of p53 in the endogenous promoter region of its downstream target gene, p21 WAF1/CIP . Notably, KCG165-induced p53-dependent apoptosis in cancer cells. Furthermore, we suggested topoisomerase II as the molecular target of KCG165. Together, these results indicate that KCG165 may have potential applications as an antitumor agent

  3. The cyclin-dependent kinase inhibitor 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole induces nongenotoxic, DNA replication-independent apoptosis of normal and leukemic cells, regardless of their p53 status

    International Nuclear Information System (INIS)

    Turinetto, Valentina; Porcedda, Paola; Orlando, Luca; De Marchi, Mario; Amoroso, Antonio; Giachino, Claudia

    2009-01-01

    Current chemotherapy of human cancers focuses on the DNA damage pathway to induce a p53-mediated cellular response leading to either G1 arrest or apoptosis. However, genotoxic treatments may induce mutations and translocations that result in secondary malignancies or recurrent disease. In addition, about 50% of human cancers are associated with mutations in the p53 gene. Nongenotoxic activation of apoptosis by targeting specific molecular pathways thus provides an attractive therapeutic approach. Normal and leukemic cells were evaluated for their sensitivity to 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) through cell viability and caspase activation tests. The apoptotic pathway induced by DRB was analysed by immunfluorescence and immunoblot analysis. H2AX phosphorylation and cell cycle analysis were performed to study the dependance of apoptosis on DNA damage and DNA replication, respectively. To investigate the role of p53 in DRB-induced apoptosis, specific p53 inhibitors were used. Statistical analysis on cell survival was performed with the test of independence. Here we report that DRB, an inhibitor of the transcriptional cyclin-dependent kinases (CDKs) 7 and 9, triggers DNA replication-independent apoptosis in normal and leukemic human cells regardless of their p53 status and without inducing DNA damage. Our data indicate that (i) in p53-competent cells, apoptosis induced by DRB relies on a cytosolic accumulation of p53 and subsequent Bax activation, (ii) in the absence of p53, it may rely on p73, and (iii) it is independent of ATM and NBS1 proteins. Notably, even apoptosis-resistant leukemic cells such as Raji were sensitive to DRB. Our results indicate that DRB represents a potentially useful cancer chemotherapeutic strategy that employs both the p53-dependent and -independent apoptotic pathways without inducing genotoxic stress, thereby decreasing the risk of secondary malignancies

  4. Indirect induction of endothelial cell injury by PU- or PTFE-mediated activation of monocytes.

    Science.gov (United States)

    Liu, Xin; Xue, Yang; Sun, Jiao

    2010-01-01

    Polyurethanes (PUs) and polytetrafluoroethylene (PTFE) are widely used for making cardiovascular devices, but thrombus formation on the surfaces of these devices is inevitable. Since endothelial injury can lead to thrombosis, most of the studies on PUs or PTFE focused on their damage to endothelial cells. However, few studies have attempted to clarify whether the use of foreign objects as biomaterials can cause endothelial injury by activating the innate immune system. In this study, we aimed to investigate the roles of PU- or PTFE-stimulated immune cells in endothelial-cell injury. First, monocytes (THP-1 cells) were stimulated with PU or PTFE for 24 h and, subsequently, human umbilical vein endothelial cells (HUVECs) were treated with the supernatants of the stimulated cells for 24 h. We measured the generation of intracellular reactive oxygen species (ROS) from THP-1 cells treated with PU and PTFE for 24 h, meanwhile hydrogen dioxide (H(2)O(2)), tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the supernatants were also detected. Then, we assessed the apoptosis rate of the HUVECs and determined the expression of NO, inducible nitric oxide synthase (iNOS), and apoptosis-related proteins (p53, Bax, Bcl-2) in the HUVECs. The results showed that large amounts of ROS and low levels of pro-inflammatory cytokines (TNF-α and IL-1β) were produced by the stimulated THP-1 cells. After culturing with the supernatants of the PU- or PTFE-stimulated THP-1 cells, the apoptosis rate, NO production and expression of iNOS, p53 and Bax in the HUVECs were up-regulated, while Bcl-2 expression was down-regulated. In conclusion, the release of ROS by PU- or PTFE-treated THP-1 cells may induce iNOS expression and cause apoptosis in HUVECs via the p53, Bax and Bcl-2 proteins. These data provide the interesting finding that endothelial injury in the process of biomaterial-induced thrombosis can be initiated through the release of soluble mediators by monocytes.

  5. Exploring a minimal two-component p53 model

    International Nuclear Information System (INIS)

    Sun, Tingzhe; Zhu, Feng; Shen, Pingping; Yuan, Ruoshi; Xu, Wei

    2010-01-01

    The tumor suppressor p53 coordinates many attributes of cellular processes via interlocked feedback loops. To understand the biological implications of feedback loops in a p53 system, a two-component model which encompasses essential feedback loops was constructed and further explored. Diverse bifurcation properties, such as bistability and oscillation, emerge by manipulating the feedback strength. The p53-mediated MDM2 induction dictates the bifurcation patterns. We first identified irradiation dichotomy in p53 models and further proposed that bistability and oscillation can behave in a coordinated manner. Further sensitivity analysis revealed that p53 basal production and MDM2-mediated p53 degradation, which are central to cellular control, are most sensitive processes. Also, we identified that the much more significant variations in amplitude of p53 pulses observed in experiments can be derived from overall amplitude parameter sensitivity. The combined approach with bifurcation analysis, stochastic simulation and sampling-based sensitivity analysis not only gives crucial insights into the dynamics of the p53 system, but also creates a fertile ground for understanding the regulatory patterns of other biological networks

  6. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chun-Yu [Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Shen, Chao-Yu [School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan (China); School of Medicine, Chung Shan Medical University, Taichung, Taiwan (China); Kang, Chao-Kai [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, (China); Sher, Yuh-Pyng [Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan (China); Sheu, Wayne H.-H. [Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan (China); School of Medicine, National Yang Ming University, Taipei, Taiwan (China); School of Medicine, National Defense Medical Center, Taipei, Taiwan (China); Chang, Chia-Che, E-mail: chia_che@dragon.nchu.edu.tw [Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Lee, Tsung-Han, E-mail: thlee@email.nchu.edu.tw [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, (China); Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Department of Biological Science and Technology, China Medical University, Taichung, Taiwan (China)

    2014-09-15

    Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased the contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 μM significantly attenuated the oxLDL-induced cytotoxicity. We determined that oxLDL triggered the phosphorylation of ERK and, in turn, the activation of p53 and other apoptosis-related events, including calcium accumulation, destabilization of the mitochondrial permeability and disruption of the balance between pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins. The malfunctions induced by oxLDL were effectively blocked by taurine. Thus, our results suggested that taurine exhibits potential therapeutic activity by preventing oxLDL-induced nephrotoxicity. The inhibition of oxLDL-induced epithelial apoptosis by taurine was at least partially due to its anti-oxidant activity and its ability to modulate the ERK and p53 apoptotic pathways. - Highlights: • Oxidized LDL induced cytotoxicity and apoptosis in HK-2 cells. • Pretreatment with taurine attenuated oxLDL-induced nephrotoxicity. • Taurine protected against renal damages through inhibition of ROS generation. • Taurine prevented apoptosis through modulation of the p53 phosphorylation.

  7. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways

    International Nuclear Information System (INIS)

    Chang, Chun-Yu; Shen, Chao-Yu; Kang, Chao-Kai; Sher, Yuh-Pyng; Sheu, Wayne H.-H.; Chang, Chia-Che; Lee, Tsung-Han

    2014-01-01

    Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased the contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 μM significantly attenuated the oxLDL-induced cytotoxicity. We determined that oxLDL triggered the phosphorylation of ERK and, in turn, the activation of p53 and other apoptosis-related events, including calcium accumulation, destabilization of the mitochondrial permeability and disruption of the balance between pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins. The malfunctions induced by oxLDL were effectively blocked by taurine. Thus, our results suggested that taurine exhibits potential therapeutic activity by preventing oxLDL-induced nephrotoxicity. The inhibition of oxLDL-induced epithelial apoptosis by taurine was at least partially due to its anti-oxidant activity and its ability to modulate the ERK and p53 apoptotic pathways. - Highlights: • Oxidized LDL induced cytotoxicity and apoptosis in HK-2 cells. • Pretreatment with taurine attenuated oxLDL-induced nephrotoxicity. • Taurine protected against renal damages through inhibition of ROS generation. • Taurine prevented apoptosis through modulation of the p53 phosphorylation

  8. GTPBP4 Promotes Gastric Cancer Progression via Regulating P53 Activity

    Directory of Open Access Journals (Sweden)

    Li Li

    2018-01-01

    Full Text Available Background/Aims: gastric cancer is a serious health concern with high morbidity and mortality. Therefore, it is urgent to find novel targets for gastric cancer diagnosis and treatment. Methods: qRT-PCR and immunohistochemistry assays were used to detect GTPBP4 expression in gastric cancer tissues, and gastric cancer and gastric epithelial cells. Lentivirus infection was used to construct GTPBP4 stable knockdown cells. Annexin V/PI apoptosis, CCK8, EdU incorporation and cell clone formation analysis were performed to evaluate the effects of GTPBP4 on gastric cancer cell proliferation and apoptosis. Further RNA-based high-throughput sequencing and co-IP assays were constructed to explore the related mechanisms contributing to GTPBP4-mediated effects. Results: GTPBP4 expression was significantly increased in gastric cancer tissues compared with that in adjacent normal tissues, and positively correlated with gastric cancer stages. Meanwhile, GTPBP4 level was markedly upregulated in gastric cancer cells than in gastric epithelial cells. Additionaly, stable knockdown of GTPBP4 inhibited cell proliferation and promoted cell apoptosis. Mechanistically, p53 and its related signaling were significantly activated in GTPBP4 stable knockdown cells. And GTPBP4 interacted with p53 in gastric cancer cells. Conclusions: our results provide insights into mechanistic regulation and linkage of the GTPBP4-p53 in gastric cancer, and also a valuable potential target for gastric cancer.

  9. p53 is important for the anti-proliferative effect of ibuprofen in colon carcinoma cells

    International Nuclear Information System (INIS)

    Janssen, Astrid; Schiffmann, Susanne; Birod, Kerstin; Maier, Thorsten J.; Wobst, Ivonne; Geisslinger, Gerd; Groesch, Sabine

    2008-01-01

    S-ibuprofen which inhibits the cyclooxygenase-1/-2 and R-ibuprofen which shows no COX-inhibition at therapeutic concentrations have anti-carcinogenic effects in human colon cancer cells; however, the molecular mechanisms for these effects are still unknown. Using HCT-116 colon carcinoma cell lines, expressing either the wild-type form of p53 (HCT-116 p53 wt ) or being p(HCT-116 p53 -/- ), we demonstrated that both induction of a cell cycle block and apoptosis after S- and R-ibuprofen treatment is in part dependent on p53. Also in the in vivo nude mice model HCT-116 p53 -/- xenografts were less sensitive for S- and R-ibuprofen treatment than HCT-116 p53 wt cells. Furthermore, results indicate that induction of apoptosis in HCT-116 p53 wt cells after ibuprofen treatment is in part dependent on a signalling pathway including the neutrophin receptor p75 NTR , p53 and Bax

  10. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    Science.gov (United States)

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  11. Stabilization and activation of p53 are regulated independently by different phosphorylation events

    Science.gov (United States)

    Chernov, Mikhail V.; Ramana, Chilakamarti V.; Adler, Victor V.; Stark, George R.

    1998-01-01

    Treatment of mouse or human cells with the protein kinase C (PKC) inhibitors H7 or bisindolylmaleimide I induced an increase in the lifetime of p53, leading to its accumulation. In inhibitor-treated cells, p53 translocated to the nuclei and bound to DNA but was not competent to induce transcription. However, transactivation could be induced by subsequent DNA damage. Phorbol ester, a potent activator of PKC, significantly inhibited the accumulation of p53 after DNA damage. Therefore, constitutive PKC-dependent phosphorylation of p53 itself, or of a protein that interacts with p53, is required for the rapid degradation of p53 in untreated cells. Furthermore, an increase in the lifetime of p53 is not accompanied necessarily by its activation. Treatment with the PKC inhibitors decreased the overall level of p53 phosphorylation but led to the appearance of a phosphopeptide not seen in tryptic digests of p53 from untreated cells. Therefore, the lifetime and activities of p53 are likely to be regulated by distinct alterations of the phosphorylation pattern of p53, probably caused by the actions of different kinases. PMID:9482877

  12. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage.

    Science.gov (United States)

    Solozobova, Valeriya; Rolletschek, Alexandra; Blattner, Christine

    2009-06-17

    P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. In embryonic stem cells where (anti-proliferative) p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  13. Cholesterol Perturbation in Mice Results in p53 Degradation and Axonal Pathology through p38 MAPK and Mdm2 Activation.

    Directory of Open Access Journals (Sweden)

    Qingyu Qin

    Full Text Available Perturbation of lipid metabolism, especially of cholesterol homeostasis, can be catastrophic to mammalian brain, as it has the highest level of cholesterol in the body. This notion is best illustrated by the severe progressive neurodegeneration in Niemann-Pick Type C (NPC disease, one of the lysosomal storage diseases, caused by mutations in the NPC1 or NPC2 gene. In this study, we found that growth cone collapse induced by genetic or pharmacological disruption of cholesterol egress from late endosomes/lysosomes was directly related to a decrease in axonal and growth cone levels of the phosphorylated form of the tumor suppressor factor p53. Cholesterol perturbation-induced growth cone collapse and decrease in phosphorylated p53 were reduced by inhibition of p38 mitogen-activated protein kinase (MAPK and murine double minute (Mdm2 E3 ligase. Growth cone collapse induced by genetic (npc1-/- or pharmacological modification of cholesterol metabolism was Rho kinase (ROCK-dependent and associated with increased RhoA protein synthesis; both processes were significantly reduced by P38 MAPK or Mdm2 inhibition. Finally, in vivo ROCK inhibition significantly increased phosphorylated p53 levels and neurofilaments in axons, and axonal bundle size in npc1-/- mice. These results indicate that NPC-related and cholesterol perturbation-induced axonal pathology is associated with an abnormal signaling pathway consisting in p38 MAPK activation leading to Mdm2-mediated p53 degradation, followed by ROCK activation. These results also suggest new targets for pharmacological treatment of NPC disease and other diseases associated with disruption of cholesterol metabolism.

  14. Human neuroblastoma cells with acquired resistance to the p53 activator RITA retain functional p53 and sensitivity to other p53 activating agents.

    Science.gov (United States)

    Michaelis, M; Rothweiler, F; Agha, B; Barth, S; Voges, Y; Löschmann, N; von Deimling, A; Breitling, R; Doerr, H Wilhelm; Rödel, F; Speidel, D; Cinatl, J

    2012-04-05

    Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3, also disrupts the p53/Mdm2 interaction. All of the 11 UKF-NB-3 sub-lines adapted to RITA that we established retained functional wild-type p53 although RITA induced a substantial p53 response. Moreover, all RITA-adapted cell lines remained sensitive to nutlin-3, whereas only five out of 10 nutlin-3-adapted cell lines retained their sensitivity to RITA. In addition, repeated adaptation of the RITA-adapted sub-line UKF-NB-3(r)RITA(10 μM) to nutlin-3 resulted in p53 mutations. The RITA-adapted UKF-NB-3 sub-lines displayed no or less pronounced resistance to vincristine, cisplatin, and irradiation than nutlin-3-adapted UKF-NB-3 sub-lines. Furthermore, adaptation to RITA was associated with fewer changes at the expression level of antiapoptotic factors than observed with adaptation to nutlin-3. Transcriptomic analyses indicated the RITA-adapted sub-lines to be more similar at the gene expression level to the parental UKF-NB-3 cells than nutlin-3-adapted UKF-NB-3 sub-lines, which correlates with the observed chemotherapy and irradiation sensitivity phenotypes. In conclusion, RITA-adapted cells retain functional p53, remain sensitive to nutlin-3, and display a less pronounced resistance phenotype than nutlin-3-adapted cells.

  15. Mutations in TGFbeta-RII and BAX mediate tumor progression in the later stages of colorectal cancer with microsatellite instability

    International Nuclear Information System (INIS)

    Yashiro, Masakazu; Hirakawa, Kosei; Boland, C Richard

    2010-01-01

    Microsatellite instability (MSI) occurs in 15% of colorectal cancers (CRC). The genetic targets for mutation in the MSI phenotype include somatic mutations in the transforming growth factor beta receptor typeII (TGFbetaRII), BAX, hMSH3 and hMSH6. It is not clear how mutations of these genes mediate tumor progression in the MSI pathway, and the temporal sequence of these mutations remains uncertain. In this study, early stage CRCs were examined for frameshift mutations in these target genes, and compared with late stage tumors and CRC cell lines. We investigated 6 CRC cell lines and 71 sporadic CRCs, including 61 early stage cancers and 10 late stage cancers. Mutations of repetitive mononucleotide tracts in the coding regions of TGFbetaRII, BAX, hMSH3, hMSH6, IGFIIR and Fas antigen were identified by direct sequencing. Thirteen (18.3%) of 71 CRC, including 9/61 (14.7%) early stage cancers and 4/10 (40%) late stage cancers, were identified as MSI and analyzed for frameshift mutations. No mutation in the target genes was observed in any of the 9 early stage MSI CRCs. In contrast, frameshift mutations of TGFbetaRII, BAX, hMSH3 and hMSH6 were present in 3/4 late stage MSI tumors. There is a statistical association (p = 0.014) between mutation in any one gene and tumor stage. TGFbetaRII, BAX, hMSH3 and hMSH6 mutations are relatively late events in the genesis of MSI CRCs. The frameshift mutations in these target genes might mediate progression from early to late stage cancer, rather than mediating the adenoma to carcinoma transition

  16. The depletion of ATM inhibits colon cancer proliferation and migration via B56γ2-mediated Chk1/p53/CD44 cascades.

    Science.gov (United States)

    Liu, Rui; Tang, Jiajia; Ding, Chaodong; Liang, Weicheng; Zhang, Li; Chen, Tianke; Xiong, Yan; Dai, Xiaowei; Li, Wenfeng; Xu, Yunsheng; Hu, Jin; Lu, Liting; Liao, Wanqin; Lu, Xincheng

    2017-04-01

    Ataxia-telangiectasia mutated (ATM) protein kinase is a major guardian of genomic stability, and its well-established function in cancer is tumor suppression. Here, we report an oncogenic role of ATM. Using two isogenic sets of human colon cancer cell lines that differed only in their ATM status, we demonstrated that ATM deficiency significantly inhibits cancer cell proliferation, migration, and invasion. The tumor-suppressive function of ATM depletion is not modulated by the compensatory activation of ATR, but it is associated with B56γ2-mediated Chk1/p53/CD44 signaling pathways. Under normal growth conditions, the depletion of ATM prevents B56γ2 ubiquitination and degradation, which activates PP2A-mediated Chk1/p53/p21 signaling pathways, leading to senescence and cell cycle arrest. CD44 was validated as a novel ATM target based on its ability to rescue cell migration and invasion defects in ATM-depleted cells. The activation of p53 induced by ATM depletion suppresses CD44 transcription, thus resulting in epithelial-mesenchymal transition (EMT) and cell migration suppression. Our study suggests that ATM has tumorigenic potential in post-formed colon neoplasia, and it supports ATM as an appealing target for improving cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage

    Directory of Open Access Journals (Sweden)

    Rolletschek Alexandra

    2009-06-01

    Full Text Available Abstract Background P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. Results In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. Conclusion In embryonic stem cells where (anti-proliferative p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  18. SV40 large T-p53 complex: evidence for the presence of two immunologically distinct forms of p53

    International Nuclear Information System (INIS)

    Milner, J.; Gamble, J.

    1985-01-01

    The transforming protein of SV40 is the large T antigen. Large T binds a cellular protein, p53, which is potentially oncogenic by virtue of its functional involvement in the control of cell proliferation. This raises the possibility that p53 may mediate, in part, the transforming function of SV40 large T. Two immunologically distinct forms of p53 have been identified in normal cells: the forms are cell-cycle dependent, one being restricted to nondividing cells (p53-Go) and the second to dividing cells (p53-G divided by). The authors have now dissociated and probed the multimeric complex of SV40 large T-p53 for the presence of immunologically distinct forms of p53. Here they present evidence for the presence of p53-Go and p53-G divided by complexed with SV40 large T

  19. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress

    International Nuclear Information System (INIS)

    Pauklin, Siim; Kristjuhan, Arnold; Maimets, Toivo; Jaks, Viljar

    2005-01-01

    Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, β-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53

  20. p53 Acetylation: Regulation and Consequences

    International Nuclear Information System (INIS)

    Reed, Sara M.; Quelle, Dawn E.

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer

  1. p53 Acetylation: Regulation and Consequences

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Sara M. [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Quelle, Dawn E., E-mail: dawn-quelle@uiowa.edu [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States)

    2014-12-23

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  2. miR-34 and p53: New Insights into a Complex Functional Relationship.

    Directory of Open Access Journals (Sweden)

    Francisco Navarro

    Full Text Available miR-34, a tumor suppressor miRNA family transcriptionally activated by p53, is considered a critical mediator of p53 function. However, knockout of the mouse miR-34 family has little or no effect on the p53 response. The relative contribution of different miR-34 family members to p53 function or how much p53 relies on miR-34 in human cells is unclear. Here we show that miR-34a has a complex effect on the p53 response in human cells. In HCT116 cells miR-34a overexpression enhances p53 transcriptional activity, but the closely related family members, miR-34b and miR-34c, even when over-expressed, have little effect. Both TP53 itself and MDM4, a strong p53 transactivation inhibitor, are direct targets of miR-34a. The genes regulated by miR-34a also include four other post-translational inhibitors of p53. miR-34a overexpression leads to variable effects on p53 levels in p53-sufficient human cancer cell lines. In HCT116, miR-34a overexpression increases p53 protein levels and stability. About a quarter of all mRNAs that participate in the human p53 network bind to biotinylated miR-34a, suggesting that many are direct miR-34a targets. However, only about a fifth of the mRNAs that bind to miR-34a also bind to miR-34b or miR-34c. Two human cell lines knocked out for miR-34a have unimpaired p53-mediated responses to genotoxic stress, like mouse cells. The complex positive and negative effects of miR-34 on the p53 network suggest that rather than simply promoting the p53 response, miR-34a might act at a systems level to stabilize the robustness of the p53 response to genotoxic stress.

  3. TRIM65 negatively regulates p53 through ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China); Ma, Chengyuan [Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021 (China); Zhou, Tong [Department of Endocrinology, The First Hospital of Jilin University, Changchun 130021 (China); Liu, Ying [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China); Sun, Luyao [Department of Infectious Diseases, The First Hospital of Jilin University, Changchun 130021 (China); Yu, Zhenxiang, E-mail: zhenxiangyu2015@gmail.com [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China)

    2016-04-22

    Tripartite-motif protein family member 65 (TRIM65) is an important protein involved in white matter lesion. However, the role of TRIM65 in human cancer remains less understood. Through the Cancer Genome Atlas (TCGA) gene alteration database, we found that TRIM65 is upregulated in a significant portion of non-small cell lung carcinoma (NSCLC) patients. Our cell growth assay revealed that TRIM65 overexpression promotes cell proliferation, while knockdown of TRIM65 displays opposite effect. Mechanistically, TRIM65 binds to p53, one of the most critical tumor suppressors, and serves as an E3 ligase toward p53. Consequently, TRIM65 inactivates p53 through facilitating p53 poly-ubiquitination and proteasome-mediated degradation. Notably, chemotherapeutic reagent cisplatin induction of p53 is markedly attenuated in response to ectopic expression of TRIM65. Cell growth inhibition by TRIM65 knockdown is more significant in p53 positive H460 than p53 negative H1299 cells, and knockdown of p53 in H460 cells also shows compromised cell growth inhibition by TRIM65 knockdown, indicating that p53 is required, at least in part, for TRIM65 function. Our findings demonstrate TRIM65 as a potential oncogenic protein, highly likely through p53 inactivation, and provide insight into development of novel approaches targeting TRIM65 for NSCLC treatment, and also overcoming chemotherapy resistance. - Highlights: • TRIM65 expression is elevated in NSCLC. • TRIM65 inactivates p53 through mediating p53 ubiquitination and degradation. • TRIM65 attenuates the response of NSCLC cells to cisplatin.

  4. 3-MCPD 1-Palmitate Induced Tubular Cell Apoptosis In Vivo via JNK/p53 Pathways

    Science.gov (United States)

    Liu, Man; Huang, Guoren; Wang, Thomas T.Y.; Sun, Xiangjun; Yu, Liangli (Lucy)

    2016-01-01

    Fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD esters) are a group of processing induced food contaminants with nephrotoxicity but the molecular mechanism(s) remains unclear. This study investigated whether and how the JNK/p53 pathway may play a role in the nephrotoxic effect of 3-MCPD esters using 3-MCPD 1-palmitate (MPE) as a probe compound in Sprague Dawley rats. Microarray analysis of the kidney from the Sprague Dawley rats treated with MPE, using Gene Ontology categories and KEGG pathways, revealed that MPE altered mRNA expressions of the genes involved in the mitogen-activated protein kinase (JNK and ERK), p53, and apoptotic signal transduction pathways. The changes in the mRNA expressions were confirmed by qRT-PCR and Western blot analyses and were consistent with the induction of tubular cell apoptosis as determined by histopathological, TUNEL, and immunohistochemistry analyses in the kidneys of the Sprague Dawley rats. Additionally, p53 knockout attenuated the apoptosis, and the apoptosis-related protein bax expression and cleaved caspase-3 activation induced by MPE in the p53 knockout C57BL/6 mice, whereas JNK inhibitor SP600125 but not ERK inhibitor U0126 inhibited MPE-induced apoptosis, supporting the conclusion that JNK/p53 might play a critical role in the tubular cell apoptosis induced by MPE and other 3-MCPD fatty acid esters. PMID:27008853

  5. Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway.

    Science.gov (United States)

    Deng, Lin; Adachi, Tetsuya; Kitayama, Kikumi; Bungyoku, Yasuaki; Kitazawa, Sohei; Ishido, Satoshi; Shoji, Ikuo; Hotta, Hak

    2008-11-01

    We previously reported that cells harboring the hepatitis C virus (HCV) RNA replicon as well as those expressing HCV NS3/4A exhibited increased sensitivity to suboptimal doses of apoptotic stimuli to undergo mitochondrion-mediated apoptosis (Y. Nomura-Takigawa, et al., J. Gen. Virol. 87:1935-1945, 2006). Little is known, however, about whether or not HCV infection induces apoptosis of the virus-infected cells. In this study, by using the chimeric J6/JFH1 strain of HCV genotype 2a, we demonstrated that HCV infection induced cell death in Huh7.5 cells. The cell death was associated with activation of caspase 3, nuclear translocation of activated caspase 3, and cleavage of DNA repair enzyme poly(ADP-ribose) polymerase, which is known to be an important substrate for activated caspase 3. These results suggest that HCV-induced cell death is, in fact, apoptosis. Moreover, HCV infection activated Bax, a proapoptotic member of the Bcl-2 family, as revealed by its conformational change and its increased accumulation on mitochondrial membranes. Concomitantly, HCV infection induced disruption of mitochondrial transmembrane potential, followed by mitochondrial swelling and release of cytochrome c from mitochondria. HCV infection also caused oxidative stress via increased production of mitochondrial superoxide. On the other hand, HCV infection did not mediate increased expression of glucose-regulated protein 78 (GRP78) or GRP94, which are known as endoplasmic reticulum (ER) stress-induced proteins; this result suggests that ER stress is not primarily involved in HCV-induced apoptosis in our experimental system. Taken together, our present results suggest that HCV infection induces apoptosis of the host cell through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway(s).

  6. Caspase Activation and Aberrant Cell Growth in a p53+/+ Cell Line from a Li-Fraumeni Syndrome Family

    Directory of Open Access Journals (Sweden)

    Zaki A. Sherif

    2015-01-01

    Full Text Available Wild-type p53 is well known to induce cell cycle arrest and apoptosis to block aberrant cell growth. However, p53’s unique role in apoptosis and cell proliferation in Li-Fraumeni Syndrome (LFS has not been well elucidated. The aim of this study is to characterize the activity of wild-type p53 protein in LFS family dominated by a germline negative mutant p53. As expected, etoposide-treated wild-type p53-containing cell lines, LFS 2852 and control Jurkat, showed a greater rate of caspase- and annexin V-induced apoptotic cell death compared to the p53-mutant LFS 2673 cell line although mitochondrial and nuclear assays could not detect apoptosis in these organelles. The most intriguing part of the observation was the abnormal proliferation rate of the wild-type p53-containing cell line, which grew twice as fast as 2673 and Jurkat cells. This is important because apoptosis inducers acting through the mitochondrial death pathway are emerging as promising drugs against tumors where the role of p53 is not only to target gene regulation but also to block cell proliferation. This study casts a long shadow on the possible dysregulation of p53 mediators that enable cell proliferation. The deregulation of proliferation pathways represents an important anticancer therapeutic strategy for patients with the LFS phenotype.

  7. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    Science.gov (United States)

    Leszczynska, Katarzyna B.; Foskolou, Iosifina P.; Abraham, Aswin G.; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N.; O’Neill, Eric E.; Buffa, Francesca M.; Hammond, Ester M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage–induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain–containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors. PMID:25961455

  8. Expression of p53 Target Genes in the Early Phase of Long-Term Potentiation in the Rat Hippocampal CA1 Area

    Directory of Open Access Journals (Sweden)

    Vladimir O. Pustylnyak

    2015-01-01

    Full Text Available Gene expression plays an important role in the mechanisms of long-term potentiation (LTP, which is a widely accepted experimental model of synaptic plasticity. We have studied the expression of at least 50 genes that are transcriptionally regulated by p53, as well as other genes that are related to p53-dependent processes, in the early phase of LTP. Within 30 min after Schaffer collaterals (SC tetanization, increases in the mRNA and protein levels of Bax, which are upregulated by p53, and a decrease in the mRNA and protein levels of Bcl2, which are downregulated by p53, were observed. The inhibition of Mdm2 by nutlin-3 increased the basal p53 protein level and rescued its tetanization-induced depletion, which suggested the involvement of Mdm2 in the control over p53 during LTP. Furthermore, nutlin-3 caused an increase in the basal expression of Bax and a decrease in the basal expression of Bcl2, whereas tetanization-induced changes in their expression were occluded. These results support the hypothesis that p53 may be involved in transcriptional regulation during the early phase of LTP. We hope that the presented data may aid in the understanding of the contribution of p53 and related genes in the processes that are associated with synaptic plasticity.

  9. Ectopic AP4 expression induces cellular senescence via activation of p53 in long-term confluent retinal pigment epithelial cells.

    Science.gov (United States)

    Wang, Yiping; Wong, Matthew Man-Kin; Zhang, Xiaojian; Chiu, Sung-Kay

    2015-11-15

    When cells are grown to confluence, cell-cell contact inhibition occurs and drives the cells to enter reversible quiescence rather than senescence. Confluent retinal pigment epithelial (RPE) cells exhibiting contact inhibition was used as a model in this study to examine the role of overexpression of transcription factor AP4, a highly expressed transcription factor in many types of cancer, in these cells during long-term culture. We generated stable inducible RPE cell clones expressing AP4 or AP4 without the DNA binding domain (DN-AP4) and observed that, when cultured for 24 days, RPE cells with a high level of AP4 exhibit a large, flattened morphology and even cease proliferating; these changes were not observed in DN-AP4-expressing cells or non-induced cells. In addition, AP4-expressing cells exhibited senescence-associated β-galactosidase activity and the senescence-associated secretory phenotype. We demonstrated that the induced cellular senescence was mediated by enhanced p53 expression and that AP4 regulates the p53 gene by binding directly to two of the three E-boxes present on the promoter of the p53 gene. Moreover, we showed that serum is essential for AP4 in inducing p53-associated cellular senescence. Collectively, we showed that overexpression of AP4 mediates cellular senescence involving in activation of p53 in long-term post-confluent RPE cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Estrogen-Related Receptor Alpha Confers Methotrexate Resistance via Attenuation of Reactive Oxygen Species Production and P53 Mediated Apoptosis in Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2014-01-01

    Full Text Available Osteosarcoma (OS is a malignant tumor mainly occurring in children and adolescents. Methotrexate (MTX, a chemotherapy agent, is widely used in treating OS. However, treatment failures are common due to acquired chemoresistance, for which the underlying molecular mechanisms are still unclear. In this study, we report that overexpression of estrogen-related receptor alpha (ERRα, an orphan nuclear receptor, promoted cell survival and blocked MTX-induced cell death in U2OS cells. We showed that MTX induced ROS production in MTX-sensitive U2OS cells while ERRα effectively blocked the ROS production and ROS associated cell apoptosis. Our further studies demonstrated that ERRα suppressed ROS induction of tumor suppressor P53 and its target genes NOXA and XAF1 which are mediators of P53-dependent apoptosis. In conclusion, this study demonstrated that ERRα plays an important role in the development of MTX resistance through blocking MTX-induced ROS production and attenuating the activation of p53 mediated apoptosis signaling pathway, and points to ERRα as a novel target for improving osteosarcoma therapy.

  11. Interaction of caveolin-1 with Ku70 inhibits Bax-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Huafei Zou

    Full Text Available Caveolin-1, the structural protein component of caveolae, acts as a scaffolding protein that functionally regulates signaling molecules. We show that knockdown of caveolin-1 protein expression enhances chemotherapeutic drug-induced apoptosis and inhibits long-term survival of colon cancer cells. In vitro studies demonstrate that caveolin-1 is a novel Ku70-binding protein, as shown by the binding of the scaffolding domain of caveolin-1 (amino acids 82-101 to the caveolin-binding domain (CBD of Ku70 (amino acids 471-478. Cell culture data show that caveolin-1 binds Ku70 after treatment with chemotherapeutic drugs. Mechanistically, we found that binding of caveolin-1 to Ku70 inhibits the chemotherapeutic drug-induced release of Bax from Ku70, activation of Bax, translocation of Bax to mitochondria and apoptosis. Potentiation of apoptosis by knockdown of caveolin-1 protein expression is greatly reduced in the absence of Bax expression. Finally, we found that overexpression of wild type Ku70, but not a mutant form of Ku70 that cannot bind to caveolin-1 (Ku70 Φ→A, limits the chemotherapeutic drug-induced Ku70/Bax dissociation and apoptosis. Thus, caveolin-1 acts as an anti-apoptotic protein in colon cancer cells by binding to Ku70 and inhibiting Bax-dependent cell death.

  12. Survivin inhibits anti-growth effect of p53 activated by aurora B

    International Nuclear Information System (INIS)

    Jung, Ji-Eun; Kim, Tae-Kyung; Lee, Joong-Seob; Oh, Se-Yeong; Kwak, Sungwook; Jin, Xun; Sohn, Jin-Young; Song, Min-Keun; Sohn, Young-Woo; Lee, Soo-Yeon; Pian, Xumin; Lee, Jang-Bo; Chung, Yong Gu; Choi, Young Ki; You, Seungkwon; Kim, Hyunggee

    2005-01-01

    Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated β-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53 -/- mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53 -/- astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53

  13. Knockdown of p53 suppresses Nanog expression in embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Abdelalim, Essam Mohamed, E-mail: emohamed@qf.org.qa [Qatar Biomedical Research Institute, Qatar Foundation, Doha 5825 (Qatar); Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia (Egypt); Tooyama, Ikuo [Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan)

    2014-01-10

    Highlights: •We investigate the role of p53 in ESCs in the absence of DNA damage. •p53 knockdown suppresses ESC proliferation. •p53 knockdown downregulates Nanog expression. •p53 is essential for mouse ESC self-renewal. -- Abstract: Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21 and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.

  14. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    Science.gov (United States)

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-06

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  15. Human neuroblastoma cells with acquired resistance to the p53 activator RITA retain functional p53 and sensitivity to other p53 activating agents

    NARCIS (Netherlands)

    Michaelis, M.; Rothweiler, F.; Agha, B.; Barth, S.; Voges, Y.; Loeschmann, N.; von Deimling, A.; Breitling, R.; Doerr, H. Wilhelm; Roedel, F.; Speidel, D.; Cinatl, J.; Cinatl Jr., J.; Stephanou, A.

    Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3,

  16. The novel fusion proteins, GnRH-p53 and GnRHIII-p53, expression and their anti-tumor effect.

    Directory of Open Access Journals (Sweden)

    Peiyuan Jia

    Full Text Available p53, one of the most well studied tumor suppressor factor, is responsible to a variety of damage owing to the induction of apoptosis and cell cycle arrest in the tumor cells. More than 50% of human tumors contain mutation or deletion of p53. Gonadotrophin-releasing hormone (GnRH, as the ligand of Gonadotrophin-releasing hormone receptor (GnRH-R, was used to deliver p53 into tumor cells. The p53 fusion proteins GnRH-p53 and GnRH iii-p53 were expressed and their targeted anti-tumor effects were determined. GnRH mediates its fusion proteins transformation into cancer cells. The intracellular delivery of p53 fusion proteins exerted the inhibition of the growth of H1299 cells in vitro and the reduction of tumor volume in vivo. Their anti-tumor effect was functioned by the apoptosis and cell cycle arrest induced by p53. Hence, the fusion protein could be a novel protein drug for anti-tumor therapy.

  17. Cancer-selective death of human breast cancer cells by leelamine is mediated by bax and bak activation.

    Science.gov (United States)

    Sehrawat, Anuradha; Kim, Su-Hyeong; Hahm, Eun-Ryeong; Arlotti, Julie A; Eiseman, Julie; Shiva, Sruti S; Rigatti, Lora H; Singh, Shivendra V

    2017-02-01

    The present study is the first to report inhibition of breast cancer cell growth in vitro and in vivo and suppression of self-renewal of breast cancer stem cells (bCSC) by a pine bark component (leelamine). Except for a few recent publications in melanoma, anticancer pharmacology of this interesting phytochemical is largely elusive. Leelamine (LLM) dose-dependently inhibited viability of MDA-MB-231 (triple-negative), MCF-7 (estrogen receptor-positive), and SUM159 (triple-negative) human breast cancer cells in association with apoptotic cell death induction. To the contrary, a normal mammary epithelial cell line derived from fibrocystic breast disease and spontaneously immortalized (MCF-10A) was fully resistant to LLM-mediated cell growth inhibition and apoptosis induction. LLM also inhibited self-renewal of breast cancer stem cells. Apoptosis induction by LLM in breast cancer cells was accompanied by a modest increase in reactive oxygen species production, which was not due to inhibition of mitochondrial electron transport chain complexes. Nevertheless, ectopic expression of manganese superoxide dismutase conferred partial protection against LLM-induced cell death but only at a lower yet pharmacologically relevant concentration. Exposure of breast cancer cells to LLM resulted in (a) induction and/or activation of multidomain proapoptotic proteins Bax and Bak, (b) caspase-9 activation, and (c) cytosolic release of cytochrome c. Bax and Bak deficiency in immortalized fibroblasts conferred significant protection against cell death by LLM. Intraperitoneal administration of LLM (7.5 mg/kg; 5 times/wk) suppressed the growth of orthotopic SUM159 xenografts in mice without any toxicity. In conclusion, the present study provides critical preclinical data to warrant further investigation of LLM. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. HEXIM1, a New Player in the p53 Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lew, Qiao Jing; Chu, Kai Ling; Chia, Yi Ling; Cheong, Nge [Expression Engineering Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01, Singapore 138668 (Singapore); Chao, Sheng-Hao, E-mail: jimmy_chao@bti.a-star.edu.sg [Expression Engineering Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01, Singapore 138668 (Singapore); Department of Microbiology, National University of Singapore, Singapore 117597 (Singapore)

    2013-07-04

    Hexamethylene bisacetamide-inducible protein 1 (HEXIM1) is best known as the inhibitor of positive transcription elongation factor b (P-TEFb), which controls transcription elongation of RNA polymerase II and Tat transactivation of human immunodeficiency virus. Besides P-TEFb, several proteins have been identified as HEXIM1 binding proteins. It is noteworthy that more than half of the HEXIM1 binding partners are involved in cancers. P53 and two key regulators of the p53 pathway, nucleophosmin (NPM) and human double minute-2 protein (HDM2), are among the factors identified. This review will focus on the functional importance of the interactions between HEXIM1 and p53/NPM/HDM2. NPM and the cytoplasmic mutant of NPM, NPMc+, were found to regulate P-TEFb activity and RNA polymerase II transcription through the interaction with HEXIM1. Importantly, more than one-third of acute myeloid leukemia (AML) patients carry NPMc+, suggesting the involvement of HEXIM1 in tumorigenesis of AML. HDM2 was found to ubiquitinate HEXIM1. The HDM2-mediated ubiquitination of HEXIM1 did not lead to protein degradation of HEXIM1 but enhanced its inhibitory activity on P-TEFb. Recently, HEXIM1 was identified as a novel positive regulator of p53. HEXIM1 prevented p53 ubiquitination by competing with HDM2 in binding to p53. Taken together, the new evidence suggests a role of HEXIM1 in regulating the p53 pathway and tumorigenesis.

  19. Minocycline Protects Against NLRP3 Inflammasome-Induced Inflammation and P53-Associated Apoptosis in Early Brain Injury After Subarachnoid Hemorrhage.

    Science.gov (United States)

    Li, Jianru; Chen, Jingsen; Mo, Hangbo; Chen, Jingyin; Qian, Cong; Yan, Feng; Gu, Chi; Hu, Qiang; Wang, Lin; Chen, Gao

    2016-05-01

    Minocycline has beneficial effects in early brain injury (EBI) following subarachnoid hemorrhage (SAH); however, the molecular mechanisms underlying these effects have not been clearly identified. This study was undertaken to determine the influence of minocycline on inflammation and neural apoptosis and the possible mechanisms of these effects in early brain injury following subarachnoid hemorrhage. SAH was induced by the filament perforation model of SAH in male Sprague-Dawley rats. Minocycline or vehicle was given via an intraperitoneal injection 1 h after SAH induction. Minocycline treatment markedly attenuated brain edema secondary to blood-brain barrier (BBB) dysfunction by inhibiting NLRP3 inflammasome activation, which controls the maturation and release of pro-inflammatory cytokines, especially interleukin-1β (IL-1β). Minocycline treatment also markedly reduced the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-positive cells. To further identify the potential mechanisms, we demonstrated that minocycline increased Bcl2 expression and reduced the protein expression of P53, Bax, and cleaved caspase-3. In addition, minocycline reduced the cortical levels of reactive oxygen species (ROS), which are closely related to both NLRP3 inflammasome and P53 expression. Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury following SAH. Minocycline's anti-inflammatory and anti-apoptotic effect may involve the reduction of ROS. Minocycline treatment may exhibit important clinical potentials in the management of SAH.

  20. Xylopine Induces Oxidative Stress and Causes G2/M Phase Arrest, Triggering Caspase-Mediated Apoptosis by p53-Independent Pathway in HCT116 Cells

    Directory of Open Access Journals (Sweden)

    Luciano de Souza Santos

    2017-01-01

    Full Text Available Xylopine is an aporphine alkaloid that has cytotoxic activity to cancer cells. In this study, the underlying mechanism of xylopine cytotoxicity was assessed in human colon carcinoma HCT116 cells. Xylopine displayed potent cytotoxicity in different cancer cell lines in monolayer cultures and in a 3D model of cancer multicellular spheroids formed from HCT116 cells. Typical morphology of apoptosis, cell cycle arrest in the G2/M phase, increased internucleosomal DNA fragmentation, loss of the mitochondrial transmembrane potential, and increased phosphatidylserine externalization and caspase-3 activation were observed in xylopine-treated HCT116 cells. Moreover, pretreatment with a caspase-3 inhibitor (Z-DEVD-FMK, but not with a p53 inhibitor (cyclic pifithrin-α, reduced xylopine-induced apoptosis, indicating induction of caspase-mediated apoptosis by the p53-independent pathway. Treatment with xylopine also caused an increase in the production of reactive oxygen/nitrogen species (ROS/RNS, including hydrogen peroxide and nitric oxide, but not superoxide anion, and reduced glutathione levels were decreased in xylopine-treated HCT116 cells. Application of the antioxidant N-acetylcysteine reduced the ROS levels and xylopine-induced apoptosis, indicating activation of ROS-mediated apoptosis pathway. In conclusion, xylopine has potent cytotoxicity to different cancer cell lines and is able to induce oxidative stress and G2/M phase arrest, triggering caspase-mediated apoptosis by the p53-independent pathway in HCT116 cells.

  1. Metformin and Resveratrol Inhibited High Glucose-Induced Metabolic Memory of Endothelial Senescence through SIRT1/p300/p53/p21 Pathway.

    Science.gov (United States)

    Zhang, Erli; Guo, Qianyun; Gao, Haiyang; Xu, Ruixia; Teng, Siyong; Wu, Yongjian

    2015-01-01

    Endothelial senescence plays crucial roles in diabetic vascular complication. Recent evidence indicated that transient hyperglycaemia could potentiate persistent diabetic vascular complications, a phenomenon known as "metabolic memory." Although SIRT1 has been demonstrated to mediate high glucose-induced endothelial senescence, whether and how "metabolic memory" would affect endothelial senescence through SIRT1 signaling remains largely unknown. In this study, we investigated the involvement of SIRT1 axis as well as the protective effects of resveratrol (RSV) and metformin (MET), two potent SIRT1 activators, during the occurrence of "metabolic memory" of cellular senescence (senescent "memory"). Human umbilical vascular endothelial cells (HUVECs) were cultured in either normal glucose (NG)/high glucose (HG) media for 6 days, or 3 days of HG followed by 3 days of NG (HN), with or without RSV or MET treatment. It was shown that HN incubation triggered persistent downregulation of deacetylase SIRT1 and upregulation of acetyltransferase p300, leading to sustained hyperacetylation (at K382) and activation of p53, and subsequent p53/p21-mediated senescent "memory." In contrast, senescent "memory" was abrogated by overexpression of SIRT1 or knockdown of p300. Interestingly, we found that SIRT1 and p300 could regulate each other in response to HN stimulation, suggesting that a delicate balance between acetyltransferases and deacetylases may be particularly important for sustained acetylation and activation of non-histone proteins (such as p53), and eventually the occurrence of "metabolic memory." Furthermore, we found that RSV or MET treatment prevented senescent "memory" by modulating SIRT1/p300/p53/p21 pathway. Notably, early and continuous treatment of MET, but not RSV, was particularly important for preventing senescent "memory." In conclusion, short-term high glucose stimulation could induce sustained endothelial senescence via SIRT1/p300/p53/p21 pathway. RVS or MET

  2. Transcription of five p53- and Stat-3-Inducible genes after ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Grace, M.B. [Uniformed Services University (USUHS), Armed Forces Radiobiology Research Institute, Building 42, RM 3321, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: grace@afrri.usuhs.mil; Blakely, W.F. [Uniformed Services University (USUHS), Armed Forces Radiobiology Research Institute, Building 42, RM 3321, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)

    2007-07-15

    Ionizing radiation (IR) produces temporal- and dose-dependent changes in multiple gene mRNA targets that are potential biomarkers of radiation dose. We confirmed IR-induced changes in expression of gadd45a, ddb-2, and cdkn1a downstream transcripts of p53 by quantitative reverse transcription-polymerase chain reaction (QRT-PCR) assay in total RNA samples from the whole blood of radiotherapy patients undergoing total-body irradiation [Amundson, S.A., Grace, M.B., McLeland, C.B., Epperly, M.W., Yeager, A., Zhan, Q., Greenberger, J.S., Fornace Jr., A.J., 2004. Human in vivo radiation-induced biomarkers: gene expression changes in radiotherapy patients. Cancer Res. 64, 6368-6371.]. We now confirm dose-dependent up-regulation of bax in addition to these p53-dependent transcripts, and bcl-2, a downstream transcript of Stat-3, in ex vivo irradiated blood samples from healthy unrelated volunteers. Together these biomarkers represent pathways involved in growth arrest, DNA damage, and apoptosis. The objectives of this study were to (1) investigate the relationship between baseline mRNA expression levels, and (2) define expression patterns in response to IR in a large cohort (n=20). Whole-blood samples were irradiated ex vivo to measure gene expression in samples from (i) three healthy donors over a broad dose range (0, 0.25, 0.50, 0.75, 1, 2, and 3 Gy), and (ii) 20 healthy donors at two doses, 0.25 and 2.5 Gy. Expression level variance ({sigma}{sub 2}) of baseline values (0 Gy) showed negligible inter-individual variation with all values {<=}1.0. {sigma}{sub 2}values=0.50bax, 0.25 bcl-2, 0.73 gadd45a, 0.66 cdkn1a, and 1.0 ddb-2. Meaningful IR dose-responses were observed for bax, gadd45a, and ddb-2 profiles and the ratio of bax:bcl-2 mRNA expression over a broad dose range. QRT-PCR studies were extended in the lower dose range (0, 0.1, 0.5, 0.75, and 1 Gy). Results showed that bax:bcl-2 ratio initially favors bax expression at doses of <1Gy, with IR-induced dose responses

  3. Human T-Cell Leukemia Virus I Tax Protein Sensitizes p53-Mutant Cells to DNA Damage

    Science.gov (United States)

    Mihaylova, Valia T.; Green, Allison M.; Khurgel, Moshe; Semmes, Oliver J.; Kupfer, Gary M.

    2018-01-01

    Mutations in p53 are a common cause of resistance of cancers to standard chemotherapy and, thus, treatment failure. Reports have shown that Tax, a human T-cell leukemia virus type I encoded protein that has been associated with genomic instability and perturbation of transcription and cell cycle, sensitizes HeLa cells to UV treatment. The extent to which Tax can sensitize cells and the mechanism by which it exerts its effect are unknown. In this study, we show that Tax sensitizes p53-mutant cells to a broad range of DNA-damaging agents, including mitomycin C, a bifunctional alkylator, etoposide, a topoisomerase II drug, and UV light, but not ionizing radiation, a double-strand break agent, or vinblastine, a tubulin poison. Tax caused hypersensitivity in all p53-deleted cell lines and several, but not all, mutant-expressed p53–containing cell lines, while unexpectedly being protective in p53 wild-type (wt) cells. The effect observed in p53-deleted lines could be reversed for this by transfection of wt p53. We also show that Tax activates a p53-independent proapoptotic program through decreased expression of the retinoblastoma protein and subsequent increased E2F1 expression. The expression of several proapoptotic proteins was also induced by Tax, including Puma and Noxa, culminating in a substantial increase in Bax dimerization. Our results show that Tax can sensitize p53-mutant cells to DNA damage while protecting p53 wt cells, a side benefit that might result in reduced toxicity in normal cells. Such studies hold the promise of a novel adjunctive therapy that could make cancer chemotherapy more effective. PMID:18559532

  4. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway

    Science.gov (United States)

    Drosten, Matthias; Sum, Eleanor Y. M.; Lechuga, Carmen G.; Simón-Carrasco, Lucía; Jacob, Harrys K. C.; García-Medina, Raquel; Huang, Sidong; Beijersbergen, Roderick L.; Bernards, Rene; Barbacid, Mariano

    2014-01-01

    The Ras family of small GTPases constitutes a central node in the transmission of mitogenic stimuli to the cell cycle machinery. The ultimate receptor of these mitogenic signals is the retinoblastoma (Rb) family of pocket proteins, whose inactivation is a required step to license cell proliferation. However, little is known regarding the molecular events that connect Ras signaling with the cell cycle. Here, we provide genetic evidence to illustrate that the p53/p21 Cdk-interacting protein 1 (Cip1)/Rb axis is an essential component of the Ras signaling pathway. Indeed, knockdown of p53, p21Cip1, or Rb restores proliferative properties in cells arrested by ablation of the three Ras loci, H-, N- and K-Ras. Ras signaling selectively inactivates p53-mediated induction of p21Cip1 expression by inhibiting acetylation of specific lysine residues in the p53 DNA binding domain. Proliferation of cells lacking both Ras proteins and p53 can be prevented by reexpression of the human p53 ortholog, provided that it retains an active DNA binding domain and an intact lysine residue at position 164. These results unveil a previously unidentified role for p53 in preventing cell proliferation under unfavorable mitogenic conditions. Moreover, we provide evidence that cells lacking Ras and p53 proteins owe their proliferative properties to the unexpected retroactivation of the Raf/Mek/Erk cascade by a Ras-independent mechanism. PMID:25288756

  5. Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2

    Science.gov (United States)

    Rao, Feng; Cha, Jiyoung; Xu, Jing; Xu, Risheng; Vandiver, M. Scott; Tyagi, Richa; Tokhunts, Robert; Koldobskiy, Michael A.; Fu, Chenglai; Barrow, Roxanne; Wu, Mingxuan; Fiedler, Dorothea; Barrow, James C.; Snyder, Solomon H.

    2014-01-01

    The apoptotic actions of p53 require its phosphorylation by a family of phosphoinositide-3-kinase-related-kinases (PIKKs), which include DNA-PKcs and ATM. These kinases are stabilized by the TTT (Tel2, Tti1, Tti2) co-chaperone family, whose actions are mediated by CK2 phosphorylation. The inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (IP7), are generated by a family of inositol hexakisphosphate kinases (IP6Ks) of which IP6K2 has been implicated in p53-associated cell death. In the present study we report a novel apoptotic signaling cascade linking CK2, TTT, the PIKKs, and p53. We demonstrate that IP7, formed by IP6K2, binds CK2 to enhance its phosphorylation of the TTT complex thereby stabilizing DNA-PKcs and ATM. This process stimulates p53 phosphorylation at serine-15 to activate the cell death program in human cancer cells and in murine B cells. PMID:24657168

  6. Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer

    Directory of Open Access Journals (Sweden)

    Villiard Éric

    2007-09-01

    Full Text Available Abstract Background Urodele amphibians like the axolotl are unique among vertebrates in their ability to regenerate and their resistance to develop cancers. It is unknown whether these traits are linked at the molecular level. Results Blocking p53 signaling in axolotls using the p53 inhibitor, pifithrin-α, inhibited limb regeneration and the expression of p53 target genes such as Mdm2 and Gadd45, suggesting a link between tumor suppression and regeneration. To understand this relationship we cloned the p53 gene from axolotl. When comparing its sequence with p53 from other organisms, and more specifically human we observed multiple amino acids changes found in human tumors. Phylogenetic analysis of p53 protein sequences from various species is in general agreement with standard vertebrate phylogeny; however, both mice-like rodents and teleost fishes are fast evolving. This leads to long branch attraction resulting in an artefactual basal emergence of these groups in the phylogenetic tree. It is tempting to assume a correlation between certain life style traits (e.g. lifespan and the evolutionary rate of the corresponding p53 sequences. Functional assays of the axolotl p53 in human or axolotl cells using p53 promoter reporters demonstrated a temperature sensitivity (ts, which was further confirmed by performing colony assays at 37°C. In addition, axolotl p53 was capable of efficient transactivation at the Hmd2 promoter but has moderate activity at the p21 promoter. Endogenous axolotl p53 was activated following UV irradiation (100 j/m2 or treatment with an alkylating agent as measured using serine 15 phosphorylation and the expression of the endogenous p53 target Gadd45. Conclusion Urodele p53 may play a role in regeneration and has evolved to contain multiple amino acid changes predicted to render the human protein defective in tumor suppression. Some of these mutations were probably selected to maintain p53 activity at low temperature. However

  7. Fluoxetine protects against IL-1β-induced neuronal apoptosis via downregulation of p53.

    Science.gov (United States)

    Shan, Han; Bian, Yaqi; Shu, Zhaoma; Zhang, Linxia; Zhu, Jialei; Ding, Jianhua; Lu, Ming; Xiao, Ming; Hu, Gang

    2016-08-01

    Fluoxetine, a selective serotonin reuptake inhibitor, exerts neuroprotective effects in a variety of neurological diseases including stroke, but the underlying mechanism remains obscure. In the present study, we addressed the molecular events in fluoxetine against ischemia/reperfusion-induced acute neuronal injury and inflammation-induced neuronal apoptosis. We showed that treatment of fluoxetine (40 mg/kg, i.p.) with twice injections at 1 h and 12 h after transient middle cerebral artery occlusion (tMCAO) respectively alleviated neurological deficits and neuronal apoptosis in a mouse ischemic stroke model, accompanied by inhibiting interleukin-1β (IL-1β), Bax and p53 expression and upregulating anti-apoptotic protein Bcl-2 level. We next mimicked neuroinflammation in ischemic stroke with IL-1β in primary cultured cortical neurons and found that pretreatment with fluoxetine (1 μM) prevented IL-1β-induced neuronal apoptosis and upregulation of p53 expression. Furthermore, we demonstrated that p53 overexpression in N2a cell line abolished the anti-apoptotic effect of fluoxetine, indicating that p53 downregulation is required for the protective role of fluoxetine in IL-1β-induced neuronal apoptosis. Fluoxetine downregulating p53 expression could be mimicked by SB203580, a specific inhibitor of p38, but blocked by anisomycin, a p38 activator. Collectively, our findings have revealed that fluoxetine protects against IL-1β-induced neuronal apoptosis via p38-p53 dependent pathway, which give us an insight into the potential of fluoxetine in terms of opening up novel therapeutic avenues for neurological diseases including stroke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Kaempferol induces ATM/p53-mediated death receptor and mitochondrial apoptosis in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Chiu-Fang; Yang, Jai-Sing; Tsai, Fuu-Jen; Chiang, Ni-Na; Lu, Chi-Cheng; Huang, Yu-Syuan; Chen, Chun; Chen, Fu-An

    2016-05-01

    Kaempferol is a member of the flavonoid compounds found in vegetables and fruits. It is shown to exhibit biological impact and anticancer activity, but no report exists on the angiogenic effect of kaempferol and induction of cell apoptosis in vitro. In this study, we investigated the role of kaempferol on anti-angiogenic property and the apoptotic mechanism of human umbilical vein endothelial cells (HUVECs). Our results demonstrated that kaempferol decreased HUVEC viability in a time- and concentration-dependent manner. Kaempferol also induced morphological changes and sub-G1 phase cell population (apoptotic cells). Kaempferol triggered apoptosis of HUVECs as detecting by DNA fragmentation, comet assay and immunofluorescent staining for activated caspase-3. The caspase signals, including caspase-8, -9 and -3, were time-dependently activated in HUVECs after kaempferol exposure. Furthermore, pre-treatment with a specific inhibitor of caspase-8 (Z-IETD-FMK) significantly reduced the activity of caspase-8, -9 and -3, indicating that extrinsic pathway is a major signaling pathway in kaempferol-treated HUVECs. Importantly, kaempferol promoted reactive oxygen species (ROS) evaluated using flow cytometric assay in HUVECs. We further investigated the upstream extrinsic pathway and showed that kaempferol stimulated death receptor signals [Fas/CD95, death receptor 4 (DR4) and DR5] through increasing the levels of phosphorylated p53 and phosphorylated ATM pathways in HUVECs, which can be individually confirmed by N-acetylcysteine (NAC), ATM specific inhibitor (caffeine) and p53 siRNA. Based on these results, kaempferol-induced HUVEC apoptosis was involved in an ROS-mediated p53/ATM/death receptor signaling. Kaempferol might possess therapeutic effects on cancer treatment in anti-vascular targeting.

  9. Role of Bax in resveratrol-induced apoptosis of colorectal carcinoma cells

    International Nuclear Information System (INIS)

    Mahyar-Roemer, Mojgan; Köhler, Hans; Roemer, Klaus

    2002-01-01

    The natural plant polyphenol resveratrol present in some foods including grapes, wine, and peanuts, has been implicated in the inhibition, delay, and reversion of cellular events associated with heart diseases and tumorigenesis. Recent work has suggested that the cancer chemoprotective effect of the compound is primarily linked to its ability to induce cell division cycle arrest and apoptosis, the latter possibly through the activation of pro-apoptotic proteins such as Bax. The expression, subcellular localization, and importance of Bax for resveratrol-provoked apoptosis were assessed in human HCT116 colon carcinoma cells and derivatives with both bax alleles inactivated. Low to moderate concentrations of resveratrol induced co-localization of cellular Bax protein with mitochondria, collapse of the mitochondrial membrane potential, activation of caspases 3 and 9, and finally, apoptosis. In the absence of Bax, membrane potential collapse was delayed, and apoptosis was reduced but not absent. Resveratrol inhibited the formation of colonies by both HCT116 and HCT116 bax -/- cells. Resveratrol at physiological doses can induce a Bax-mediated and a Bax-independent mitochondrial apoptosis. Both can limit the ability of the cells to form colonies

  10. BAX/BAK–Independent Mitoptosis during Cell Death Induced by Proteasome Inhibition?

    OpenAIRE

    Lomonosova, Elena; Ryerse, Jan; Chinnadurai, G.

    2009-01-01

    Proteasome inhibitors induce rapid death of cancer cells. We show that in epithelial cancer cells, such death is associated with dramatic and simultaneous up-regulation of several BH3-only proteins, including BIK, BIM, MCL-1S, NOXA, and PUMA, as well as p53. Elevated levels of these proteins seem to be the result of direct inhibition of their proteasomal degradation, induction of transcription, and active translation. Subsequent cell death is independent of BAX, and probably BAK, and proceeds...

  11. Andrographolide induces degradation of mutant p53 via activation of Hsp70.

    Science.gov (United States)

    Sato, Hirofumi; Hiraki, Masatsugu; Namba, Takushi; Egawa, Noriyuki; Baba, Koichi; Tanaka, Tomokazu; Noshiro, Hirokazu

    2018-05-22

    The tumor suppressor gene p53 encodes a transcription factor that regulates various cellular functions, including DNA repair, apoptosis and cell cycle progression. Approximately half of all human cancers carry mutations in p53 that lead to loss of tumor suppressor function or gain of functions that promote the cancer phenotype. Thus, targeting mutant p53 as an anticancer therapy has attracted considerable attention. In the current study, a small-molecule screen identified andrographlide (ANDRO) as a mutant p53 suppressor. The effects of ANDRO, a small molecule isolated from the Chinese herb Andrographis paniculata, on tumor cells carrying wild-type or mutant p53 were examined. ANDRO suppressed expression of mutant p53, induced expression of the cyclin-dependent kinase inhibitor p21 and pro-apoptotic proteins genes, and inhibited the growth of cancer cells harboring mutant p53. ANDRO also induced expression of the heat-shock protein (Hsp70) and increased binding between Hsp70 and mutant p53 protein, thus promoting proteasomal degradation of p53. These results provide novel insights into the mechanisms regulating the function of mutant p53 and suggest that activation of Hsp70 may be a new strategy for the treatment of cancers harboring mutant p53.

  12. An adaptive molecular timer in p53-meidated cell fate decision

    Science.gov (United States)

    Zhang, Xiao-Peng; Wang, Ping; Liu, Feng; Wang, Wei

    The tumor suppressor p53 decides cellular outcomes in the DNA damage response. It is intriguing to explore the link between p53 dynamics and cell fates. We developed a theoretical model of p53 signaling network to clarify the mechanism of cell fate decision mediated by its dynamics. We found that the interplay between p53-Mdm2 negative feedback loop and p53-PTEN-Mdm2 positive feedback loop shapes p53 dynamics. Depending on the intensity of DNA damage, p53 shows three modes of dynamics: persistent pulses, two-phase dynamics with pulses followed by sustained high levels and straightforward high levels. Especially, p53 shows two-phase dynamics upon moderated damage and the required number of p53 pulses before apoptosis induction decreases with increasing DNA damage. Our results suggested there exists an adaptive molecular timer that determines whether and when the apoptosis switch should be triggered. We clarified the mechanism behind the switching of p53 dynamical modes by bifurcation analysis. Moreover, we reproduced the experimental results that drug additions alter p53 pulses to sustained p53 activation and leads to senescence. Our work may advance the understanding the significance of p53 dynamics in tumor suppression. This work was supported by National Natural Science Foundation of China (Nos. 11175084, 11204126 and 31361163003).

  13. Abrogation of Gli3 expression suppresses the growth of colon cancer cells via activation of p53

    International Nuclear Information System (INIS)

    Kang, Han Na; Oh, Sang Cheul; Kim, Jun Suk; Yoo, Young A.

    2012-01-01

    p53, the major human tumor suppressor, appears to be related to sonic hedgehog (Shh)–Gli-mediated tumorigenesis. However, the role of p53 in tumor progression by the Shh–Gli signaling pathway is poorly understood. Herein we investigated the critical regulation of Gli3–p53 in tumorigenesis of colon cancer cells and the molecular mechanisms underlying these effects. RT-PCR analysis indicated that the mRNA level of Shh and Gli3 in colon tumor tissues was significantly higher than corresponding normal tissues (P < 0.001). The inhibition of Gli3 by treatment with Gli3 siRNA resulted in a clear decrease in cell proliferation and enhanced the level of expression of p53 proteins compared to treatment with control siRNA. The half-life of p53 was dramatically increased by treatment with Gli3 siRNA. In addition, treatment with MG132 blocked MDM2-mediated p53 ubiquitination and degradation, and led to accumulation of p53 in Gli3 siRNA-overexpressing cells. Importantly, ectopic expression of p53 siRNA reduced the ability of Gli3 siRNA to suppress proliferation of those cells compared with the cells treated with Gli3 siRNA alone. Moreover, Gli3 siRNA sensitized colon cancer cells to treatment with anti-cancer agents (5-FU and bevacizumab). Taken together, our studies demonstrate that loss of Gli3 signaling leads to disruption of the MDM2–p53 interaction and strongly potentiate p53-dependent cell growth inhibition in colon cancer cells, indicating a basis for the rational use of Gli3 antagonists as a novel treatment option for colon cancer.

  14. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells.

    Science.gov (United States)

    Min, Kyoung-Jin; Nam, Ju-Ock; Kwon, Taeg Kyu

    2017-08-02

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  15. A systematic review of p53 regulation of oxidative stress in skeletal muscle.

    Science.gov (United States)

    Beyfuss, Kaitlyn; Hood, David A

    2018-12-01

    transcription factor 4; ATM: ATM serine/threonine kinase; Bax: BCL2 associated X, apoptosis regulator; Bcl-2: B cell Leukemia/Lymphoma 2 apoptosis regulator; Bhlhe40: basic helix-loop-helix family member e40; BH3: Borane; Bim: bcl-2 interacting mediator of cell death; Bok: Bcl-2 related ovarian killer; COX-IV: cytochrome c oxidase IV; cGMP: Cyclic guanosine monophosphate; c-myc: proto-oncogene protein; Cpt1b: carnitine palmitoyltransferase 1B; Dr5: death receptor 5; eNOS: endothelial nitric oxide synthase; ERK: extracellular regulated MAP kinase; Fas: Fas Cell surface death receptor; FDXR: Ferredoxin Reductase; FOXO3a: forkhead box O3; Gadd45a: growth arrest and DNA damage-inducible 45 alpha; GLS2: glutaminase 2; GLUT 1 and 4: glucose transporter 1(endothelial) and 4 (skeletal muscle); GSH: Glutathione; Hes1: hes family bHLH transcription factor 1; Hey1: hes related family bHLH transcription factor with YRPW motif 1; HIFI-α: hypoxia-inducible factor 1, α-subunit; HK2: Hexokinase 2; HSP70: Heat Shock Protein 70; H 2 O 2 : Hydrogen Peroxide; Id2: inhibitor of DNA-binding 2; IGF-1-BP3: Insulin-like growth factor binding protein 3; IL-1β: Interleukin 1 beta; iNOS: inducible nitric oxide synthase; IRS-1: Insulin receptor substrate 1; JNK: c-Jun N-terminal kinases; LY-83583: 6-anilino-5,8-quinolinedione; inhibitor of soluble guanylate cyclase and of cGMP production; Mdm 2/ 4: Mouse double minute 2 homolog (mouse) Mdm4 (humans); mtDNA: mitochondrial DNA; MURF1: Muscle RING-finger protein-1; MyoD: Myogenic differentiation 1; MyoG: myogenin; Nanog: Nanog homeobox; NF-kB: Nuclear factor-κB; NO: nitric oxide; NoxA: phorbol-12-myristate-13-acetate-induced protein 1 (Pmaip1); NRF-1: nuclear respiratory factor 1; Nrf2: Nuclear factor erythroid 2-related factor 2; P21: Cdkn1a cyclin-dependent kinase inhibitor 1A (P21); P38 MAPK: mitogen-activated protein kinases; p53R2: p53 inducible ribonucleotide reductase gene; P66Shc: src homology 2 domain-containing transforming protein C1; PERP: p

  16. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hao, E-mail: hao.hu1@uqconnect.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Yu, Ting, E-mail: t.yu2@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Arpiainen, Satu, E-mail: Satu.Juhila@orion.fi [Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu (Finland); Lang, Matti A., E-mail: m.lang@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Hakkola, Jukka, E-mail: Jukka.hakkola@oulu.fi [Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu (Finland); Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia)

    2015-11-15

    Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3 kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5′-Luc constructs – down to − 160 bp from the TSS – showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from − 160 to − 74 bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene – a well-known p53 activator – increased the expression of the p53 responsive positive control and the CYP2A6-5′-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5′-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. - Highlights: • CYP2A6 is an immediate target gene of p53. • Six putative p53REs located on 3 kb proximate CYP2A6 promoter region. • The region − 160 bp from TSS is highly homologous with the p53 consensus sequence. • P53 specifically bind to the p53RE on the − 160 bp region. • HNF4

  17. The pharmacodynamics of the p53-Mdm2 targeting drug Nutlin: the role of gene-switching noise.

    Directory of Open Access Journals (Sweden)

    Krzysztof Puszynski

    2014-12-01

    Full Text Available In this work we investigate, by means of a computational stochastic model, how tumor cells with wild-type p53 gene respond to the drug Nutlin, an agent that interferes with the Mdm2-mediated p53 regulation. In particular, we show how the stochastic gene-switching controlled by p53 can explain experimental dose-response curves, i.e., the observed inter-cell variability of the cell viability under Nutlin action. The proposed model describes in some detail the regulation network of p53, including the negative feedback loop mediated by Mdm2 and the positive loop mediated by PTEN, as well as the reversible inhibition of Mdm2 caused by Nutlin binding. The fate of the individual cell is assumed to be decided by the rising of nuclear-phosphorylated p53 over a certain threshold. We also performed in silico experiments to evaluate the dose-response curve after a single drug dose delivered in mice, or after its fractionated administration. Our results suggest that dose-splitting may be ineffective at low doses and effective at high doses. This complex behavior can be due to the interplay among the existence of a threshold on the p53 level for its cell activity, the nonlinearity of the relationship between the bolus dose and the peak of active p53, and the relatively fast elimination of the drug.

  18. Ensemble-based computational approach discriminates functional activity of p53 cancer and rescue mutants.

    Directory of Open Access Journals (Sweden)

    Özlem Demir

    2011-10-01

    Full Text Available The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain ("cancer mutants". Activity can be restored by second-site suppressor mutations ("rescue mutants". This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD, without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC metric was strongly correlated (r(2 = 0.77 with reported values of experimentally measured ΔΔG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i p53 cancer mutants were more flexible than wild-type protein, (ii second-site rescue mutations decreased the flexibility of cancer mutants, and (iii negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants.

  19. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Weiwei Guo

    Full Text Available Heat shock protein 90 (HSP90 inhibitors are potential drugs for cancer therapy. The inhibition of HSP90 on cancer cell growth largely through degrading client proteins, like Akt and p53, therefore, triggering cancer cell apoptosis. Here, we show that the HSP90 inhibitor 17-AAG can induce the expression of GRP75, a member of heat shock protein 70 (HSP70 family, which, in turn, attenuates the anti-growth effect of HSP90 inhibition on cancer cells. Additionally, 17-AAG enhanced binding of GRP75 and p53, resulting in the retention of p53 in the cytoplasm. Blocking GRP75 with its inhibitor MKT-077 potentiated the anti-tumor effects of 17-AAG by disrupting the formation of GRP75-p53 complexes, thereby facilitating translocation of p53 into the nuclei and leading to the induction of apoptosis-related genes. Finally, dual inhibition of HSP90 and GRP75 was found to significantly inhibit tumor growth in a liver cancer xenograft model. In conclusion, the GRP75 inhibitor MKT-077 enhances 17-AAG-induced apoptosis in HCCs and increases p53-mediated inhibition of tumor growth in vivo. Dual targeting of GRP75 and HSP90 may be a useful strategy for the treatment of HCCs.

  20. Cytotoxic effects of replication-competent adenoviruses on human esophageal carcinoma are enhanced by forced p53 expression

    International Nuclear Information System (INIS)

    Yang, Shan; Kawamura, Kiyoko; Okamoto, Shinya; Yamauchi, Suguru; Shingyoji, Masato; Sekine, Ikuo; Kobayashi, Hiroshi; Tada, Yuji; Tatsumi, Koichiro; Hiroshima, Kenzo; Shimada, Hideaki; Tagawa, Masatoshi

    2015-01-01

    Improvement of transduction and augmentation of cytotoxicity are crucial for adenoviruses (Ad)-mediated gene therapy for cancer. Down-regulated expression of type 5 Ad (Ad5) receptors on human tumors hampered Ad-mediated transduction. Furthermore, a role of the p53 pathways in cytotoxicity mediated by replication-competent Ad remained uncharacterized. We constructed replication-competent Ad5 of which the E1 region genes were activated by a transcriptional regulatory region of the midkine or the survivin gene, which is expressed preferentially in human tumors. We also prepared replication-competent Ad5 which were regulated by the same region but had a fiber-knob region derived from serotype 35 (AdF35). We examined the cytotoxicity of these Ad and a possible combinatory use of the replication-competent AdF35 and Ad5 expressing the wild-type p53 gene (Ad5/p53) in esophageal carcinoma cells. Expression levels of molecules involved in cell death, anti-tumor effects in vivo and production of viral progenies were also investigated. Replication-competent AdF35 in general achieved greater cytotoxic effects to esophageal carcinoma cells than the corresponding replication-competent Ad5. Infection with the AdF35 induced cleavages of caspases and increased sub-G1 fractions, but did not activate the autophagy pathway. Transduction with Ad5/p53 in combination with the replication-competent AdF35 further enhanced the cytotoxicity in a synergistic manner. We also demonstrated the combinatory effects in an animal model. Transduction with Ad5/p53 however suppressed production of replication-competent AdF35 progenies, but the combination augmented Ad5/p53-mediated p53 expression levels and the downstream pathways. Combination of replication-competent AdF35 and Ad5/p53 achieved synergistic cytotoxicity due to enhanced p53-mediated apoptotic pathways. The online version of this article (doi:10.1186/s12885-015-1482-8) contains supplementary material, which is available to authorized

  1. The MDM2-inhibitor Nutlin-3 synergizes with cisplatin to induce p53 dependent tumor cell apoptosis in non-small cell lung cancer

    Science.gov (United States)

    Deben, Christophe; Wouters, An; de Beeck, Ken Op; van Den Bossche, Jolien; Jacobs, Julie; Zwaenepoel, Karen; Peeters, Marc; Van Meerbeeck, Jan; Lardon, Filip; Rolfo, Christian; Deschoolmeester, Vanessa; Pauwels, Patrick

    2015-01-01

    The p53/MDM2 interaction has been a well-studied target for new drug design leading to the development of the small molecule inhibitor Nutlin-3. Our objectives were to combine Nutlin-3 with cisplatin (CDDP), a well-known activator of the p53 pathway, in a series of non-small cell lung cancer cell lines in order to increase the cytotoxic response to CDDP. We report that sequential treatment (CDDP followed by Nutlin-3), but not simultaneous treatment, resulted in strong synergism. Combination treatment induced p53's transcriptional activity, resulting in increased mRNA and protein levels of MDM2, p21, PUMA and BAX. In addition we report the induction of a strong p53 dependent apoptotic response and induction of G2/M cell cycle arrest. The strongest synergistic effect was observed at low doses of both CDDP and Nutlin-3, which could result in fewer (off-target) side effects while maintaining a strong cytotoxic effect. Our results indicate a promising preclinical potential, emphasizing the importance of the applied treatment scheme and the presence of wild type p53 for the combination of CDDP and Nutlin-3. PMID:26125230

  2. Pre-irradiation at a low dose-rate blunted p53 response

    International Nuclear Information System (INIS)

    Takahashi, A.; Ohnishi, K.; Asakawa, I.; Tamamoto, T.; Yasumoto, J.; Yuki, K.; Ohnishi, T.; Tachibana, A.

    2003-01-01

    Full text: We have studied whether the p53-centered signal transduction pathway induced by acute radiation is interfered with chronic pre-irradiation at a low dose-rate in human cultured cells and whole body of mice. In squamous cell carcinoma cells, we found that a challenge irradiation with X-ray immediately after chronic irradiation resulted in lower levels of p53 than those observed after the challenge irradiation alone. In addition, the induction of p53-centered apoptosis and the accumulation of its related proteins after the challenge irradiation were strongly correlated with the above-mentioned phenomena. In mouse spleen, the induction of apoptosis and the accumulation of p53 and Bax were observed dose-dependently at 12 h after a challenge irradiation. In contrast, we found significant suppression of them induced by challenge irradiation at a high dose-rate when mice were pre-irradiated with chronic irradiation at a low dose-rate. These findings suggest that chronic pre-irradiation suppressed the p53 function through radiation-induced p53-dependent signal transduction processes. There are numerous papers about p53 functions in apoptosis, radiosensitivity, genomic instability and cancer incidence in cultured cells or animals. According to our data and other findings, since p53 can prevent carcinogenesis, pre-irradiation at a low dose-rate might enhance the predisposition to cancer. Therefore, it is possible that different maximal permissible dose equivalents for the public populations are appropriate. Furthermore, concerning health of human beings, studies of the adaptive responses to radiation are quite important, because the radiation response strongly depends on experience of prior exposure to radiation

  3. The role of p53 in lung macrophages following exposure to a panel of manufactured nanomaterials

    DEFF Research Database (Denmark)

    Belade, Esther; Chrusciel, Sandra; Armand, Lucie

    2015-01-01

    is a key transcription factor implicated in cellular defence and reparative responses to various stress factors. Additionally, p53 has been implicated in cellular responses following exposure to some MNMs. Here, the role of the MNM mediated p53 induction and activation and its downstream effects following...... exposure to five well-characterised materials [namely two types of TiO2, two carbon black (CB), and one single-walled carbon nanotube (SWCNT)] were investigated. MNM internalisation, cellular viability, p53 protein induction and activation, oxidative stress, inflammation and apoptosis were measured...... in murine cell line and primary pulmonary macrophage models. It was observed that p53 was implicated in the biological responses to MNMs, with oxidative stress associated with p53 activation (only following exposure to the SWCNT). We demonstrate that p53 acted as an antioxidant and anti...

  4. A novel p53 mutational hotspot in skin tumors from UV-irradiated Xpc mutant mice alters transactivation functions.

    Science.gov (United States)

    Inga, Alberto; Nahari, Dorit; Velasco-Miguel, Susana; Friedberg, Errol C; Resnick, Michael A

    2002-08-22

    A mutation in codon 122 of the mouse p53 gene resulting in a T to L amino acid substitution (T122-->L) is frequently associated with skin cancer in UV-irradiated mice that are both homozygous mutant for the nucleotide excision repair (NER) gene Xpc (Xpc(-/-)) and hemizygous mutant for the p53 gene. We investigated the functional consequences of the mouse T122-->L mutation when expressed either in mammalian cells or in the yeast Saccharomyces cerevisiae. Similar to a non-functional allele, high expression of the T122-->L allele in p53(-/-) mouse embryo fibroblasts and human Saos-2 cells failed to suppress growth. However, the T122-->L mutant p53 showed wild-type transactivation levels with Bax and MDM2 promoters when expressed in either cell type and retained transactivation of the p21 and the c-Fos promoters in one cell line. Using a recently developed rheostatable p53 induction system in yeast we assessed the T122-->L transactivation capacity at low levels of protein expression using 12 different p53 response elements (REs). Compared to wild-type p53 the T122-->L protein manifested an unusual transactivation pattern comprising reduced and enhanced activity with specific REs. The high incidence of the T122-->L mutant allele in the Xpc(-/-) background suggests that both genetic and epigenetic conditions may facilitate the emergence of particular functional p53 mutations. Furthermore, the approach that we have taken also provides for the dissection of functions that may be retained in many p53 tumor alleles.

  5. The influence of sleep deprivation on expression of apoptosis regulatory proteins p53, bcl-2 and bax following rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide

    Directory of Open Access Journals (Sweden)

    Juliana Noguti

    2013-01-01

    Full Text Available Background: The aim of this study was to evaluate whether paradoxical sleep deprivation could affects the mechanisms and pathways essentials for cancer cells in tongue cancer induced by 4-nitroquinole 1-oxide in Wistar rats. Materials and Methods: For this purpose, the animals were distributed into 4 groups of 5 animals each treated with 50 ppm 4 nitroquinoline 1 oxide (4 NQO solution through their drinking water for 4 and 12 weeks. The animals were submitted to paradoxical sleep deprivation (PSD for 72 h using the modified multiple platform method, which consisted of placing 5 mice in a cage (41 × 34 × 16 cm containing 10 circular platforms (3.5 cm in diameter with water 1 cm below the upper surface. The investigations were conducted using immunohistochemistry of p53, Bax and Bcl-2 proteins related to apoptosis and its pathways. Statistical analysis was performed by Kruskal-Wallis non-parametric test followed by the Dunn′s test using SPSS software pack (version 1.0. P value < 0.05 was considered for statistic significance. Results: Although no histopathological abnormalities were induced in the epithelium after 4 weeks of carcinogen exposure in all groups, in 12 weeks were observed pre-neoplasic lesions. Data analysis revealed statistically significant differences ( P < 0.05 in 4 weeks group for p53 and for bcl-2 and for all immunomarkers after 12 weeks of 4NQO administration. Conclusion: Our results reveal that sleep deprivation exerted alterations in proteins associated with proliferation and apoptosis in carcinogenesis.

  6. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien-Ju [Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan (China); Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan (China); Chen, Ta-Liang [Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan (China); Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan (China); Tseng, Yuan-Yun [Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Wu, Gong-Jhe [Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (China); Hsieh, Ming-Hui [Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan (China); Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan (China); Lin, Yung-Wei [Brain Disease Research Center, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan (China); Chen, Ruei-Ming, E-mail: rmchen@tmu.edu.tw [Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan (China); Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan (China); Brain Disease Research Center, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan (China); Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan (China)

    2016-08-01

    Honokiol, an active constituent extracted from the bark of Magnolia officinalis, possesses anticancer effects. Apoptosis is classified as type I programmed cell death, while autophagy is type II programmed cell death. We previously proved that honokiol induces cell cycle arrest and apoptosis of U87 MG glioma cells. Subsequently in this study, we evaluated the effect of honokiol on autophagy of glioma cells and examined the molecular mechanisms. Administration of honokiol to mice with an intracranial glioma increased expressions of cleaved caspase 3 and light chain 3 (LC3)-II. Exposure of U87 MG cells to honokiol also induced autophagy in concentration- and time-dependent manners. Results from the addition of 3-methyladenine, an autophagy inhibitor, and rapamycin, an autophagy inducer confirmed that honokiol-induced autophagy contributed to cell death. Honokiol decreased protein levels of PI3K, phosphorylated (p)-Akt, and p-mammalian target of rapamycin (mTOR) in vitro and in vivo. Pretreatment with a p53 inhibitor or transfection with p53 small interfering (si)RNA suppressed honokiol-induced autophagy by reversing downregulation of p-Akt and p-mTOR expressions. In addition, honokiol caused generation of reactive oxygen species (ROS), which was suppressed by the antioxidant, vitamin C. Vitamin C also inhibited honokiol-induced autophagic and apoptotic cell death. Concurrently, honokiol-induced alterations in levels of p-p53, p53, p-Akt, and p-mTOR were attenuated following vitamin C administration. Taken together, our data indicated that honokiol induced ROS-mediated autophagic cell death through regulating the p53/PI3K/Akt/mTOR signaling pathway. - Highlights: • Exposure of mice with intracranial gliomas to honokiol induces cell apoptosis and autophagy. • Honokiol triggers autophagy of human glioma cells via the PISK/AKT/mTOR signaling pathway. • P53 induces autophagy via regulating the AKT/mTOR pathway in honokiol-treated glioma cells. • ROS participates

  7. Biologic effect of exogenous wild p53 combined with irradiation on human melanoma cell lines with different p53 status

    International Nuclear Information System (INIS)

    Min Fengling; Zhang Hong; Li Wenjian; Liu Bing; Zhou Qingming; Duan Xin; Gao Qingxiang

    2007-01-01

    Objective: To investigate the effect of low dose irradiation on gene transfer efficiency and the effect of adenoviral-mediated exogenous P53 overexpression on apoptosis and radiosensitivity of radioresistant human melanoma cell lines A375(wild type p53)and WM983a(mutant type p53). Methods: Control vector, a replication deficient recombinant adenoviral vector containing a CMV promoter and green fluorescent protein (AdCMV-GFP), was used to transfect A375 cells and WM983a cells preirradiated with or without 1 Gy X-ray. The transduction efficiency of GFP gene was determined with fluorescence microscope directly. These two types of cells irradiated by 1 Gy X-ray were transfected with a replication deficient recombinant adenoviral vector carrying human wild p53 (AdCMV-p53), and mRNA level was detected by RT-PCR. The cell cycle delay and the expression of exogenous P53 were detected using flow cytometry (FCM) at different times after transfection. Tunel technique was used to detect cell apoptosis. The radiosensivity of A375 and WM983a cells after p53 transduction was analyzed by colony formation. Results: It is found that 1 Gy irradiation increased the gene transfection efficiency of A375 and WM983a cells. The expression of exogenous P53 was found to range from 60% to 80% among transfected cells during the first three days after transduction and then declined continuously down to the control level on day 10. G 1 cell cycle arrest was also observed after p53 gene transduction. WM983a cells transfected with p53 showed higher sensitivity to X-ray-induced cell killing than A375 cells. Conclusions: It is indicated that low dose of ionizing radiation can improve gene transfection efficiency of A375 and WM983a cells mediated by adenovirus vector. Althrough the overexpresion of exogenous p53 may not inhibit cell growth and induce apoptosis of melanoma cell line A375 and WM983a irt vitro, the two cell lines are much more sensitive to cell death induced by irradiation. It is

  8. Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.

    Directory of Open Access Journals (Sweden)

    Simon Leuchs

    Full Text Available Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs and live pigs carrying a latent TP53(R167H mutant allele, orthologous to oncogenic human mutant TP53(R175H and mouse Trp53(R172H, that can be activated by Cre recombination. MSCs carrying the latent TP53(R167H mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53(R167H allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53(R167H mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal.

  9. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells

    Directory of Open Access Journals (Sweden)

    Kyoung-jin Min

    2017-08-01

    Full Text Available Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose polymerase (PARP, which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5 expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  10. A p53-independent role for the MDM2 antagonist Nutlin-3 in DNA damage response initiation

    Directory of Open Access Journals (Sweden)

    Kumar Sonia

    2011-02-01

    Full Text Available Abstract Background The mammalian DNA-damage response (DDR has evolved to protect genome stability and maximize cell survival following DNA-damage. One of the key regulators of the DDR is p53, itself tightly regulated by MDM2. Following double-strand DNA breaks (DSBs, mediators including ATM are recruited to the site of DNA-damage. Subsequent phosphorylation of p53 by ATM and ATM-induced CHK2 results in p53 stabilization, ultimately intensifying transcription of p53-responsive genes involved in DNA repair, cell-cycle checkpoint control and apoptosis. Methods In the current study, we investigated the stabilization and activation of p53 and associated DDR proteins in response to treatment of human colorectal cancer cells (HCT116p53+/+ with the MDM2 antagonist, Nutlin-3. Results Using immunoblotting, Nutlin-3 was observed to stabilize p53, and activate p53 target proteins. Unexpectedly, Nutlin-3 also mediated phosphorylation of p53 at key DNA-damage-specific serine residues (Ser15, 20 and 37. Furthermore, Nutlin-3 induced activation of CHK2 and ATM - proteins required for DNA-damage-dependent phosphorylation and activation of p53, and the phosphorylation of BRCA1 and H2AX - proteins known to be activated specifically in response to DNA damage. Indeed, using immunofluorescent labeling, Nutlin-3 was seen to induce formation of γH2AX foci, an early hallmark of the DDR. Moreover, Nutlin-3 induced phosphorylation of key DDR proteins, initiated cell cycle arrest and led to formation of γH2AX foci in cells lacking p53, whilst γH2AX foci were also noted in MDM2-deficient cells. Conclusion To our knowledge, this is the first solid evidence showing a secondary role for Nutlin-3 as a DDR triggering agent, independent of p53 status, and unrelated to its role as an MDM2 antagonist.

  11. Tumor protein 53-induced nuclear protein 1 (TP53INP1 enhances p53 function and represses tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jeyran eShahbazi

    2013-05-01

    Full Text Available Tumor protein 53-induced nuclear protein 1 (TP53INP1 is a stress-induced p53 target gene whose expression is modulated by transcription factors such as p53, p73 and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. When associated with homeodomain-interacting protein kinase-2 (HIPK2, TP53INP1 phosphorylates p53 protein at Serine 46, enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53 target genes such as p21, PIG-3 and MDM2, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis; while TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment.

  12. Effect of p53 activation on cell growth, thymidine kinase-1 activity, and 3'-deoxy-3'fluorothymidine uptake

    International Nuclear Information System (INIS)

    Schwartz, Jeffrey L.; Tamura, Yasuko; Jordan, Robert; Grierson, John R.; Krohn, Kenneth A.

    2004-01-01

    The use of thymidine (TdR) and thymidine analogs such as 3'-deoxy-3'-fluorothymidine (FLT) as positron emission tomography (PET)-based tracers of tumor proliferation rate is based on the hypothesis that measurement of uptake of these nucleosides, a function primarily of thymidine kinase-1 (TK 1 ) activity, provides an accurate measure of cell proliferation in tumors. Tumor growth is influenced by many factors including the oxygen concentration within tumors and whether tumor cells have been exposed to cytotoxic therapies. The p53 gene plays an important role in regulating growth under both of these conditions. The goal of this study was to investigate the influence of p53 activation on cell growth, TK 1 activity, and FLT uptake. To accomplish this, TK 1 activity, S phase fraction, and the uptake of FLT were determined in plateau-phase and exponentially growing cultures of an isogenic pair of human tumor cell lines in which p53 expression was normal or inactivated by human papilloma virus type 16 E6 expression. Ionizing radiation exposure was used to stimulate p53 activity and to induce alterations in cell cycle progression. We found that exposure of cells to ionizing radiation induced dose-dependent changes in cell cycle progression in both cell lines. The relationship between S phase percentage, TK 1 activity, and FLT uptake were essentially unchanged in the p53-normal cell line. In contrast, TK 1 activity and FLT uptake remained high in the p53-deficient variant even when S phase percentage was low due to a p53-dependent G2 arrest. We conclude that a functional p53 response is required to maintain the normal relationship between TK1 activity and S phase percentage following radiation exposure

  13. MAGE-A inhibits apoptosis in proliferating myeloma cells through repression of Bax and maintenance of survivin.

    Science.gov (United States)

    Nardiello, Tricia; Jungbluth, Achim A; Mei, Anna; Diliberto, Maurizio; Huang, Xiangao; Dabrowski, Ania; Andrade, Valéria C C; Wasserstrum, Rebecca; Ely, Scott; Niesvizky, Ruben; Pearse, Roger; Coleman, Morton; Jayabalan, David S; Bhardwaj, Nina; Old, Lloyd J; Chen-Kiang, Selina; Cho, Hearn Jay

    2011-07-01

    The type I Melanoma Antigen GEnes (MAGEs) are commonly expressed in cancers, fueling speculation that they may be therapeutic targets with oncogenic potential. They form complexes with RING domain proteins that have E3 ubiquitin ligase activity and promote p53 degradation. MAGE-A3 was detected in tumor specimens from patients with multiple myeloma and its expression correlated with higher frequencies of Ki-67(+) malignant cells. In this report, we examine the mechanistic role of MAGE-A in promoting survival of proliferating multiple myeloma cells. The impact of MAGE-A3 expression on survival and proliferation in vivo was examined by immunohistochemical analysis in an independent set of tumor specimens segregated into two groups: newly diagnosed, untreated patients and patients who had relapsed after chemotherapy. The mechanisms of MAGE-A3 activity were investigated in vitro by silencing its expression by short hairpin RNA interference in myeloma cell lines and primary cells and assessing the resultant effects on proliferation and apoptosis. MAGE-A3 was detected in a significantly higher percentage of relapsed patients compared with newly diagnosed, establishing a novel correlation with progression of disease. Silencing of MAGE-A showed that it was dispensable for cell cycling, but was required for survival of proliferating myeloma cells. Loss of MAGE-A led to apoptosis mediated by p53-dependent activation of proapoptotic Bax expression and by reduction of survivin expression through both p53-dependent and -independent mechanisms. These data support a role for MAGE-A in the pathogenesis and progression of multiple myeloma by inhibiting apoptosis in proliferating myeloma cells through two novel mechanisms.

  14. Downregulation of B-myb promotes senescence via the ROS-mediated p53/p21 pathway, in vascular endothelial cells.

    Science.gov (United States)

    Zhou, Zhihui; Yin, Yanlin; Chang, Qun; Sun, Guanqun; Lin, Jiahui; Dai, Yalei

    2017-04-01

    To reveal whether B-myb is involved in preventing senescence of vascular endothelial cells, and if so, to identify possible mechanisms for it. C57/BL6 male mice and primary human aortic endothelial cells (HAECs) were used. Bleomycin was applied to induce stress-related premature senescence. B-myb knockdown was achieved using an siRNA technique and cell senescence was assessed using the senescence-associated β-galactosidase (SA-β-gal) assay. Intracellular reactive oxygen species (ROS) production was analysed using an ROS assay kit and cell proliferation was evaluated using KFluor488 EdU kit. Capillary tube network formation was determined by Matrigel assay. Expressions of mRNA and protein levels were detected by real-time PCR and western blotting. B-myb expression significantly decreased, while p53 and p21 expressions increased in the aortas of aged mice. This expression pattern was also found in replicative senescent HAECs and senescent HAECs induced by bleomycin. B-myb knockdown resulted in upregulation of p22 phox , ROS accumulation and cell senescence of HAECs. Downregulation of B-myb significantly inhibited cell proliferation and capillary tube network formation and activated the p53/p21 signalling pathway. Blocking ROS production or inhibiting p53 activation remarkably attenuated SA-β-gal activity and delayed cell senescence induced by B-myb-silencing. Downregulation of B-myb induced senescence by upregulation of p22 phox and activation of the ROS/p53/p21 pathway, in our vascular endothelial cells, suggesting that B-myb may be a novel candidate for regulating cell senescence to protect against endothelial senescence-related cardiovascular diseases. © 2016 John Wiley & Sons Ltd.

  15. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice

    Science.gov (United States)

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-01-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/- Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas WT cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53. PMID:19047147

  16. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice.

    Science.gov (United States)

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-12-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here, we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/-Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas wild-type cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53.

  17. The p53-reactivating small-molecule RITA enhances cisplatin-induced cytotoxicity and apoptosis in head and neck cancer.

    Science.gov (United States)

    Roh, Jong-Lyel; Ko, Jung Ho; Moon, Soo Jin; Ryu, Chang Hwan; Choi, Jun Young; Koch, Wayne M

    2012-12-01

    We evaluated whether the restoration of p53 function by the p53-reactivating small molecule RITA (reactivation of p53 and induction of tumor cell apoptosis enhances cisplatin-induced cytotoxicity and apoptosis in head-and-neck cancer (HNC). RITA induced prominent accumulation and reactivation of p53 in a wild-type TP53-bearing HNC cell line. RITA showed maximal growth suppression in tumor cells showing MDM2-dependent p53 degradation. RITA promoted apoptosis in association with upregulation of p21, BAX, and cleaved caspase-3; notably, the apoptotic response was blocked by pifithrin-α, demonstrating its p53 dependence. With increasing concentrations, RITA strongly induced apoptosis rather than G2-phase arrest. In combination therapy, RITA enhanced cisplatin-induced growth inhibition and apoptosis of HNC cells invitro and in vivo. Our data suggest that the restoration of p53 tumor-suppressive function by RITA enhances the cytotoxicity and apoptosis of cisplatin, an action that may offer an attractive strategy for treating HNC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. p53-independent structure-activity relationships of 3-ring mesogenic compounds' activity as cytotoxic effects against human non-small cell lung cancer lines.

    Science.gov (United States)

    Fukushi, Saori; Yoshino, Hironori; Yoshizawa, Atsushi; Kashiwakura, Ikuo

    2016-07-25

    We recently demonstrated the cytotoxicity of liquid crystal precursors (hereafter referred to as "mesogenic compounds") in the human non-small cell lung cancer (NSCLC) cell line A549 which carry wild-type p53. p53 mutations are observed in 50 % of NSCLC and contribute to their resistance to chemotherapy. To develop more effective and cancer-specific agents, in this study, we investigated the structure-activity relationships of mesogenic compounds with cytotoxic effects against multiple NSCLC cells. The pharmacological effects of mesogenic compounds were examined in human NSCLC cells (A549, LU99, EBC-1, and H1299) and normal WI-38 human fibroblast. Analyses of the cell cycle, cell-death induction, and capsases expression were performed. The 3-ring compounds possessing terminal alkyl and hydroxyl groups (compounds C1-C5) showed cytotoxicity in NSCLC cells regardless of the p53 status. The compounds C1 and C3, which possess a pyrimidine at the center of the core, induced G2/M arrest, while the compounds without a pyrimidine (C2, C4, and C5) caused G1 arrest; all compounds produced caspase-mediated cell death. These events occurred in a p53-independent manner. Furthermore, it was suggested that compounds induced cell death through p53-independent DNA damage-signaling pathway. Compounds C2, C4, and C5 did not show strong cytotoxicity in WI-38 cells, whereas C1 and C3 did. However, the cytotoxicity of compound C1 against WI-38 cells was improved by modulating the terminal alkyl chain lengths of the compound. We showed the p53-indepdent structure-activity relationships of mesogenic compounds related to the cytotoxic effects. These structure-activity relationships will be helpful in the development of more effective and cancer-specific agents.

  19. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    NARCIS (Netherlands)

    Leszczynska, K.B.; Foskolou, I.P.; Abraham, A.G.; Anbalagan, S.; Tellier, C.; Haider, S.; Span, P.N.; O'Neill, E.E.; Buffa, F.M.; Hammond, E.M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent

  20. Dendrobium chrysanthum ethanolic extract induces apoptosis via p53 up-regulation in HeLa cells and inhibits tumor progression in mice.

    Science.gov (United States)

    Prasad, Ritika; Rana, Nishant Kumar; Koch, Biplob

    2017-06-01

    Background Dendrobium is one of the diverse genus of orchid plants. It possesses a number of pharmacological activities and has long been used in traditional system of medicine. The goal of this study was to investigate the apoptosis inducing property of the ethanolic extract from the leaves of Dendrobium chrysanthum, a species of Dendrobium whose anticancer role has not been ascertained yet. Methods To evaluate the anticancer activity of the ethanolic extract of D. chrysanthum in vitro in HeLa (human cervical cancer) cells, cytotoxic activity, generation of reactive oxygen species (ROS), induction of apoptosis and effect on cell cycle were determined. The in vivo study was carried out in Dalton's lymphoma (DL) bearing mice to assess the tumor growth delay. Results Our study demonstrated that the ethanolic extract showed dose-dependent cytotoxicity against HeLa cells. The extract exhibited dose-dependent increase in ROS production as well as apoptotic cell death which was further confirmed through presence of DNA fragmentation. Cell cycle analysis by flow cytometry suggests that the ethanolic extract perturbed cell cycle progression and leads to the delay of the cells in S phase. Further, the real-time PCR studies also showed up-regulation of apoptotic genes p53 and Bax. The in vivo antitumor activity exhibited significant increase in the life span of DL bearing mice as compared to control with significant decrease in abdominal size along with reduced tumor ascites. Conclusions These observations demonstrate the anticancer potential of the D. chrysanthum ethanolic extract mediated through p53-dependent apoptosis.

  1. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    Science.gov (United States)

    Hirsch, Matthew L; Fagan, B Matthew; Dumitru, Raluca; Bower, Jacquelyn J; Yadav, Swati; Porteus, Matthew H; Pevny, Larysa H; Samulski, R Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  2. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Matthew L Hirsch

    Full Text Available Human embryonic stem cells (hESCs are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  3. Enhanced p53 gene transfer to human ovarian cancer cells using the cationic nonviral vector, DDC.

    Science.gov (United States)

    Kim, Chong-Kook; Choi, Eun-Jeong; Choi, Sung-Hee; Park, Jeong-Sook; Haider, Khawaja Hasnain; Ahn, Woong Shick

    2003-08-01

    Previously we have formulated a new cationic liposome, DDC, composed of dioleoyltrimethylamino propane (DOTAP), 1,2-dioeoyl-3-phosphophatidylethanolamine (DOPE), and cholesterol (Chol), and it efficiently delivered plasmid DNA into ovarian cancer cells. Mutations in the p53 tumor suppressor gene are the most common molecular genetic abnormalities to be described in ovarian cancer. However, there has been so far no report of nonviral vector-mediated p53 gene deliveries in ovarian cancer. In this study, wild-type p53 DNA was transfected into the ovarian cancer cells, using the DDC as a nonviral vector and the expression and activity of p53 gene were evaluated both in vitro and in vivo. DDC liposomes were prepared by mixing DOTAP:DOPE:Chol in a 1:0.7:0.3 molar ratio using the extrusion method. Plasmid DNA (pp53-EGFP) and DDC complexes were transfected into ovarian carcinoma cells (OVCAR-3 cells) and gene expression was determined by reverse transcription-polymerase chain reaction and Western blot analysis. The cellular growth inhibition and apoptosis of DDC-mediated p53 transfection were assessed by trypan blue exclusion assay and annexin-V staining, respectively. The OVCAR-3 cells treated with DDC/pp53-EGFP complexes were inoculated into female balb/c nude mice and tumor growth was observed. The transfection of liposome-complexed p53 gene resulted in a high level of wild-type p53 mRNA and protein expressions in OVCAR-3 cells. In vitro cell growth assay showed growth inhibition of cancer cells transfected with DDC/pp53-EGFP complexes compared with the control cells. The reestablishment of wild-type p53 function in ovarian cancer cells restored the apoptotic pathway. Following the inoculation of DDC/pp53-EGFP complexes, the volumes of tumors in nude mice were significantly reduced more than 60% compared to the control group. The DDC-mediated p53 DNA delivery may have the potential for clinical application as nonviral vector-mediated ovarian cancer therapy due to its

  4. Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway.

    Science.gov (United States)

    Llanos, Susana; Serrano, Manuel

    2010-10-01

    Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 by a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely, UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 constitutes a mechanistic link between DNA damage and the ribosomal stress pathway, and is a relevant contributing signaling pathway for the activation of p53 in response to DNA damage.

  5. Zoledronic acid produces combinatory anti-tumor effects with cisplatin on mesothelioma by increasing p53 expression levels.

    Directory of Open Access Journals (Sweden)

    Shinya Okamoto

    Full Text Available We examined anti-tumor effects of zoledronic acid (ZOL, one of the bisphosphonates agents clinically used for preventing loss of bone mass, on human mesothelioma cells bearing the wild-type p53 gene. ZOL-treated cells showed activation of caspase-3/7, -8 and -9, and increased sub-G1 phase fractions. A combinatory use of ZOL and cisplatin (CDDP, one of the first-line anti-cancer agents for mesothelioma, synergistically or additively produced the cytotoxicity on mesothelioma cells. Moreover, the combination achieved greater anti-tumor effects on mesothelioma developed in the pleural cavity than administration of either ZOL or CDDP alone. ZOL-treated cells as well as CDDP-treated cells induced p53 phosphorylation at Ser 15, a marker of p53 activation, and up-regulated p53 protein expression levels. Down-regulation of p53 levels with siRNA however did not influence the ZOL-mediated cytotoxicity but negated the combinatory effects by ZOL and CDDP. In addition, ZOL treatments augmented cytotoxicity of adenoviruses expressing the p53 gene on mesothelioma. These data demonstrated that ZOL-mediated augmentation of p53, which was not linked with ZOL-induced cytotoxicity, played a role in the combinatory effects with a p53 up-regulating agent, and suggests a possible clinical use of ZOL to mesothelioma with anti-cancer agents.

  6. Interleukin 6 downregulates p53 expression and activity by stimulating ribosome biogenesis: a new pathway connecting inflammation to cancer

    Science.gov (United States)

    Brighenti, E; Calabrese, C; Liguori, G; Giannone, F A; Trerè, D; Montanaro, L; Derenzini, M

    2014-01-01

    Chronic inflammation is an established risk factor for the onset of cancer, and the inflammatory cytokine IL-6 has a role in tumorigenesis by enhancing proliferation and hindering apoptosis. As factors stimulating proliferation also downregulate p53 expression by enhancing ribosome biogenesis, we hypothesized that IL-6 may cause similar changes in inflamed tissues, thus activating a mechanism that favors neoplastic transformation. Here, we showed that IL-6 downregulated the expression and activity of p53 in transformed and untransformed human cell lines. This was the consequence of IL-6-dependent stimulation of c-MYC mRNA translation, which was responsible for the upregulation of rRNA transcription. The enhanced rRNA transcription stimulated the MDM2-mediated proteasomal degradation of p53, by reducing the availability of ribosome proteins for MDM2 binding. The p53 downregulation induced the acquisition of cellular phenotypic changes characteristic of epithelial–mesenchymal transition, such as a reduced level of E-cadherin expression, increased cell invasiveness and a decreased response to cytotoxic stresses. We found that these changes also occurred in colon epithelial cells of patients with ulcerative colitis, a very representative example of chronic inflammation at high risk for tumor development. Histochemical and immunohistochemical analysis of colon biopsy samples showed an upregulation of ribosome biogenesis, a reduced expression of p53, together with a focal reduction or absence of E-cadherin expression in chronic colitis in comparison with normal mucosa samples. These changes disappeared after treatment with anti-inflammatory drugs. Taken together, the present results highlight a new mechanism that may link chronic inflammation to cancer, based on p53 downregulation, which is activated by the enhancement of rRNA transcription upon IL-6 exposure. PMID:24531714

  7. FATS is a transcriptional target of p53 and associated with antitumor activity

    Directory of Open Access Journals (Sweden)

    Zhang Xifeng

    2010-09-01

    Full Text Available Abstract Frequent mutations of p53 in human cancers exemplify its crucial role as a tumor suppressor transcription factor, and p21, a transcriptional target of p53, plays a central role in surveillance of cell-cycle checkpoints. Our previous study has shown that FATS stabilize p21 to preserve genome integrity. In this study we identified a novel transcript variant of FATS (GenBank: GQ499374 through screening a cDNA library from mouse testis, which uncovered the promoter region of mouse FATS. Mouse FATS was highly expressed in testis. The p53-responsive elements existed in proximal region of both mouse and human FATS promoters. Functional study indicated that the transcription of FATS gene was activated by p53, whereas such effect was abolished by site-directed mutagenesis in the p53-RE of FATS promoter. Furthermore, the expression of FATS increased upon DNA damage in a p53-dependent manner. FATS expression was silent or downregulated in human cancers, and overexpression of FATS suppressed tumorigenicity in vivo independently of p53. Our results reveal FATS as a p53-regulated gene to monitor genomic stability.

  8. The p53-dependent radioadaptive response

    Science.gov (United States)

    Ohnishi, Takeo

    We already reported that conditioning exposures at low doses, or at low dose-rates, lowered radiation-induced p53-dependent apoptosis in cultured cells in vitro and in the spleens of mice in vivo. In this study, the aim was to characterize the p53-dependent radioadaptive response at the molecular level. We used wild-type (wt) p53 and mutated (m) p53 containing cells derived from the human lung cancer H1299 cell line, which is p53-null. Cellular radiation sensitivities were determined with a colony-forming assay. The accumulation of p53, Hdm2, and iNOS was analyzed with Western blotting. The quantification of chromosomal aberrations was estimated by scoring dicentrics per cell. In wtp53 cells, it was demonstrated that the lack of p53 accumulation was coupled with the activation of Hdm2 after low dose irradiation (0.02 Gy). Although NO radicals were only minimally induced in wtp53 cells irradiated with a challenging irradiation (6 Gy) alone, NO radicals were seen to increase about 2-4 fold after challenging irradiation following a priming irradiation (0.02 Gy). Under similar irradiation conditions with a priming and challenging irradiation in wtp53 cells, induction of radioresistance and a depression of chromosomal aberrations were observed only in the absence of Pifithrin-α (a p53 inhibitor), RITA or Nutlin-3 (p53-Hdm2 interaction inhibitors), aminoguanidine (an iNOS inhibitor) and c-PTIO (an NO radical scavenger). On the other hand, in p53 dysfunctional cells, a radioadaptive response was not observed in the presence or absence of those inhibitors. Moreover, radioresistance developed when wtp53 cells were treated with ISDN (an NO generating agent) alone. These findings suggest that NO radicals are an initiator of the radioadaptive response acting through the activation of Hdm2 and the depression of p53 accumulations.

  9. A point mutation of human p53, which was not detected as a mutation by a yeast functional assay, led to apoptosis but not p21Waf1/Cip1/Sdi1 expression in response to ionizing radiation in a human osteosarcoma cell line, Saos-2

    International Nuclear Information System (INIS)

    Okaichi, Kumio; Wang Lihong; Sasaki, Ji-ichiro; Saya, Hideyuki; Tada, Mitsuhiro; Okumura, Yutaka

    1999-01-01

    Purpose: The 123A point mutation of p53 showed increased radiosensitivity, whereas other mutations (143A, 175H, and 273H) were not affected. To determine the reason for increased radiosensitivity of the 123A mutation, the response of the transformant of 123A mutation to ionizing radiation (IR) was examined and compared to those of transformants with the wild type p53 or other point mutations (143A, 175H, and 273H). Methods and Materials: Stable transformants with a mutant or wild type p53 made by introducing cDNA into the human osteosarcoma cell line, Saos-2, which lacks an endogenous p53 were used. The transcriptional activity of mutant p53 was examined using a yeast functional assay. The transformants were examined for the accumulation of p53, the induction of p21 Waf1/Cip1/Sdi1 (hereafter referred to as p21), and the other response of p53-responsive genes (MDM2, Bax, and Bcl-2) by Western blotting. Apoptosis was analyzed by detection of DNA fragmentation. Results: The 123A point mutation of p53 was detected as a wild type in the yeast functional assay. The 123A mutant accumulated p53 in response to IR. The 123A mutant did not induce p21, but normally responded to MDM2, Bax, and Bcl-2. The 123A mutant entered apoptosis earlier than the wild type p53 transformant, and induced Fas at earlier in response to IR. Conclusion: The 123A mutant led to apoptosis, but not p21 expression in response to IR. The occurrence of apoptosis, but not induction of p21, corresponded to the radiosensitivity in the transformant. The early occurrence of apoptosis in 123A transformants may depend on the early induction of Fas

  10. Skeletal Muscle Fibre-Specific Knockout of p53 Does Not Reduce Mitochondrial Content or Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Ben Stocks

    2017-12-01

    Full Text Available Tumour protein 53 (p53 has been implicated in the regulation of mitochondrial biogenesis in skeletal muscle, with whole-body p53 knockout mice displaying impairments in basal mitochondrial content, respiratory capacity, and enzyme activity. This study aimed to determine the effect of skeletal muscle-specific loss of p53 on mitochondrial content and enzyme activity. Mitochondrial protein content, enzyme activity and mRNA profiles were assessed in skeletal muscle of 8-week-old male muscle fibre-specific p53 knockout mice (p53 mKO and floxed littermate controls (WT under basal conditions. p53 mKO and WT mice displayed similar content of electron transport chain proteins I-V and citrate synthase enzyme activity in skeletal muscle. In addition, the content of proteins regulating mitochondrial morphology (MFN2, mitofillin, OPA1, DRP1, FIS1, fatty acid metabolism (β-HAD, ACADM, ACADL, ACADVL, carbohydrate metabolism (HKII, PDH, energy sensing (AMPKα2, AMPKβ2, and gene transcription (NRF1, PGC-1α, and TFAM were comparable in p53 mKO and WT mice (p > 0.05. Furthermore, p53 mKO mice exhibited normal mRNA profiles of targeted mitochondrial, metabolic and transcriptional proteins (p > 0.05. Thus, it appears that p53 expression in skeletal muscle fibres is not required to develop or maintain mitochondrial protein content or enzyme function in skeletal muscle under basal conditions.

  11. Divergent evolution of human p53 binding sites: cell cycle versus apoptosis.

    Directory of Open Access Journals (Sweden)

    Monica M Horvath

    2007-07-01

    Full Text Available The p53 tumor suppressor is a sequence-specific pleiotropic transcription factor that coordinates cellular responses to DNA damage and stress, initiating cell-cycle arrest or triggering apoptosis. Although the human p53 binding site sequence (or response element [RE] is well characterized, some genes have consensus-poor REs that are nevertheless both necessary and sufficient for transactivation by p53. Identification of new functional gene regulatory elements under these conditions is problematic, and evolutionary conservation is often employed. We evaluated the comparative genomics approach for assessing evolutionary conservation of putative binding sites by examining conservation of 83 experimentally validated human p53 REs against mouse, rat, rabbit, and dog genomes and detected pronounced conservation differences among p53 REs and p53-regulated pathways. Bona fide NRF2 (nuclear factor [erythroid-derived 2]-like 2 nuclear factor and NFkappaB (nuclear factor of kappa light chain gene enhancer in B cells binding sites, which direct oxidative stress and innate immunity responses, were used as controls, and both exhibited high interspecific conservation. Surprisingly, the average p53 RE was not significantly more conserved than background genomic sequence, and p53 REs in apoptosis genes as a group showed very little conservation. The common bioinformatics practice of filtering RE predictions by 80% rodent sequence identity would not only give a false positive rate of approximately 19%, but miss up to 57% of true p53 REs. Examination of interspecific DNA base substitutions as a function of position in the p53 consensus sequence reveals an unexpected excess of diversity in apoptosis-regulating REs versus cell-cycle controlling REs (rodent comparisons: p < 1.0 e-12. While some p53 REs show relatively high levels of conservation, REs in many genes such as BAX, FAS, PCNA, CASP6, SIVA1, and P53AIP1 show little if any homology to rodent sequences. This

  12. Increases in apoptosis, caspase activity and expression of p53 and bax, and the transition between two types of mitochondrion-rich cells, in the gills of the climbing perch, Anabas testudineus, during a progressive acclimation from freshwater to seawater

    Science.gov (United States)

    Ching, Biyun; Chen, Xiu L.; Yong, Jing H. A.; Wilson, Jonathan M.; Hiong, Kum C.; Sim, Eugene W. L.; Wong, Wai P.; Lam, Siew H.; Chew, Shit F.; Ip, Yuen K.

    2013-01-01

    This study aimed to test the hypothesis that branchial osmoregulatory acclimation involved increased apoptosis and replacement of mitochdonrion-rich cells (MRCs) in the climbing perch, Anabas testudineus, during a progressive acclimation from freshwater to seawater. A significant increase in branchial caspase-3/-7 activity was observed on day 4 (salinity 20), and an extensive TUNEL-positive apoptosis was detected on day 5 (salinity 25), indicating salinity-induced apoptosis had occurred. This was further supported by an up-regulation of branchial mRNA expression of p53, a key regulator of cell cycle arrest and apoptosis, between day 2 (salinity 10) and day 6 (seawater), and an increase in branchial p53 protein abundance on day 6. Seawater acclimation apparently activated both the extrinsic and intrinsic pathways, as reflected by significant increases in branchial caspase-8 and caspase-9 activities. The involvement of the intrinsic pathway was confirmed by the significant increase in branchial mRNA expression of bax between day 4 (salinity 20) and day 6 (seawater). Western blotting results revealed the presence of a freshwater Na+/K+-ATPase (Nka) α-isoform, Nka α1a, and a seawater isoform, Nka α1b, the protein abundance of which decreased and increased, respectively, during seawater acclimation. Immunofluorescence microscopy revealed the presence of two types of MRCs distinctly different in sizes, and confirmed that the reduction in Nka α1a expression, and the prominent increases in expression of Nka α1b, Na+:K+:2Cl− cotransporter 1, and cystic fibrosis transmembrane conductance regulator Cl− channel coincided with the salinity-induced apoptotic event. Since modulation of existing MRCs alone could not have led to extensive salinity-induced apoptosis, it is probable that some, if not all, freshwater-type MRCs could have been removed through increased apoptosis and subsequently replaced by seawater-type MRCs in the gills of A. testudineus during seawater

  13. Differential immunotoxic effects of ethanol on murine EL-4 lymphoma and normal lymphocytes is mediated through increased ROS production and activation of p38MAPK.

    Science.gov (United States)

    Premachandran, Sudha; Khan, Nazir M; Thakur, Vikas S; Shukla, Jyoti; Poduval, T B

    2012-08-01

    Ethanol has been used to achieve thymic depletion in myasthenia gravis patients. Ethanol (95%) has also been used widely in the therapy of many tumors including hepatocellular carcinoma. In light of these findings, we delineated the differential immunotoxic behavior and mechanism of lower concentration of ethanol towards murine EL-4 lymphoma and its normal counterpart lymphocytes. EL-4 lymphoma and normal lymphocytes were cultured with ethanol (0%-5%) for 6 h and cytotoxicity was measured by various methods. EL-4 cells treated with ethanol showed concentration-dependent loss of viability at 2%-5% ethanol concentration and exhibit proliferative arrest at preG1 stage. Acridine-orange and ethidium-bromide staining indicated that ethanol induced death in EL-4 cells, by induction of both apoptosis and necrosis which was further supported by findings of DNA-fragmentation and trypan blue dye exclusion test. However, treatment of lymphocytes with similar concentration of ethanol did not show any death-associated parameters. Furthermore, ethanol induced significantly higher ROS generation in EL-4 cells as compared to lymphocytes and caused PARP cleavage and activation of apoptotic proteins like p53 and Bax, in EL-4 cells and not in normal lymphocytes. In addition, ethanol exposure to EL-4 cells led to phosphorylation of p38MAPK, and upregulation of death receptor Fas (CD95). Taken together, these results suggest that ethanol upto a concentration of 5% caused no significant immunotoxicity towards normal lymphocytes and induced cell death in EL-4 cells via phosphorylation of p38MAPK and regulation of p53 leading to further activation of both extrinsic (Fas) and intrinsic (Bax) apoptotic markers.

  14. Morus alba Leaf Lectin (MLL) Sensitizes MCF-7 Cells to Anoikis by Inhibiting Fibronectin Mediated Integrin-FAK Signaling through Ras and Activation of P38 MAPK

    Science.gov (United States)

    Saranya, Jayaram; Shilpa, Ganesan; Raghu, Kozhiparambil G.; Priya, Sulochana

    2017-01-01

    Lectins are a unique class of carbohydrate binding proteins/glycoproteins, and many of them possess anticancer properties. They can induce cell cycle arrest and apoptosis, inhibit protein synthesis, telomerase activity and angiogenesis in cancer cells. In the present study, we have demonstrated the effect of Morus alba leaf lectin (MLL) on anoikis induction in MCF-7 cells. Anoikis induction in cancer cells has a significant role in preventing early stage metastasis. MLL treatment in monolayers of MCF-7 cells caused significant detachment of cells in a time and concentration dependent manner. The detached cells failed to re-adhere and grew even to culture plates coated with different matrix proteins. DNA fragmentation, membrane integrity studies, annexin V staining, caspase 9 activation and upregulation of Bax/Bad confirmed that the detached cells underwent apoptosis. Upregulation of matrix metalloproteinase 9 (MMP-9) caused a decrease in fibronectin (FN) production which facilitated the cells to detach by blocking the FN mediated downstream signaling. On treatment with MLL, we have observed downregulation of integrin expression, decreased phosphorylation of focal adhesion kinase (FAK), loss in FAK-integrin interaction and active Ras. MLL treatment downregulated the levels of phosphorylated Akt and PI3K. Also, we have studied the effect of MLL on two stress activated protein kinases p38 MAPK and JNK. p38 MAPK activation was found to be elevated, but there was no change in the level of JNK. Thus our study substantiated the possible antimetastatic effect of MLL by inducing anoikis in MCF-7 cells by activation of caspase 9 and proapoptotic Bax/Bad by blockage of FN mediated integrin/FAK signaling and partly by activation of p38 MAPK. PMID:28223935

  15. Mathematical Modeling of E6-p53 interactions in Cervical Cancer

    Science.gov (United States)

    Khattak, Faryal; Haseeb, Muhammad; Fazal, Sahar; Bhatti, A I; Ullah, Mukhtar

    2017-04-01

    Background: Cervical cancer is the third most common cancer in women throughout the world. The human papillomavirus (HPV) E6 viral protein plays an essential role in proteasomal degradation of the cancer suppressant protein p53. As a result, p53 negative regulation and apoptosis relevant activities are abrogated, facilitating development of cervical cancer. Methods: A mathematical model of E6-p53 interactions was developed using mathematical laws. In-silico simulations were carried out on CellDesigner and as a test case the small molecule drug RITA was considered for its ability to rescue the functions of tumor suppressor p53 by inhibiting E6 mediated proteasomal degradation. Results: Using a computational model we scrutinized how p53 responds to RITA, and chemical reactions of this small molecule drug were incorporated to perceive the full effects. The evolved strategy allowed the p53 response and rescue of its tumor suppressor function to be delineated, RITA being found to block p53 interactions with E6 associated proteins. Conclusion: We could develop a model of E6-p53 interactions with incorporation of actions of the small molecule drug RITA. Suppression of E6 associated proteins by RITA induces accumulation of tumor suppressant p53. Using CellDesigner to encode the model ensured that it can be easily modified and extended as more data become available. This strategy should play an effective role in the development of therapies against cancer. Creative Commons Attribution License

  16. Radiation-induced phosphorylation of P53 protects radioresistant Spodoptera frugiperda 9 cells by suppressing microRNA-31-Bim-Bax mediated apoptosis

    International Nuclear Information System (INIS)

    Kumar, Ashish; Chandna, Sudhir

    2016-01-01

    In this study, we demonstrate the role of microRNA-31 (miR-31) in the regulation of radiation-induced apoptosis in model radioresistant insect cell line Sf9 (derived from the ovaries of insect Spodoptera frugiperda) which carries well-conserved apoptotic response. We also investigated the miR-31 expression regulation by p53 homologue in these cells. Our initial in silico analysis confirmed perfect conservation of mature miR-31 across various insect orders, hence we designed biotinylated probes from Bombyx mori sequence for successful detection of miR-31 in Sf9 cells

  17. Characterisation of the p53-mediated cellular responses evoked in primary mouse cells following exposure to ultraviolet radiation.

    Directory of Open Access Journals (Sweden)

    Gillian D McFeat

    Full Text Available Exposure to ultraviolet (UV light can cause significant damage to mammalian cells and, although the spectrum of damage produced varies with the wavelength of UV, all parts of the UV spectrum are recognised as being detrimental to human health. Characterising the cellular response to different wavelengths of UV therefore remains an important aim so that risks and their moderation can be evaluated, in particular in relation to the initiation of skin cancer. The p53 tumour suppressor protein is central to the cellular response that protects the genome from damage by external agents such as UV, thus reducing the risk of tumorigenesis. In response to a variety of DNA damaging agents including UV light, wild-type p53 plays a role in mediating cell-cycle arrest, facilitating apoptosis and stimulating repair processes, all of which prevent the propagation of potentially mutagenic defects. In this study we examined the induction of p53 protein and its influence on the survival of primary mouse fibroblasts exposed to different wavelengths of UV light. UVC was found to elevate p53 protein and its sequence specific DNA binding capacity. Unexpectedly, UVA treatment failed to induce p53 protein accumulation or sequence specific DNA binding. Despite this, UVA exposure of wild-type cells induced a p53 dependent G1 cell cycle arrest followed by a wave of p53 dependent apoptosis, peaking 12 hours post-insult. Thus, it is demonstrated that the elements of the p53 cellular response evoked by exposure to UV radiation are wavelength dependent. Furthermore, the interrelationship between various endpoints is complex and not easily predictable. This has important implications not only for understanding the mode of action of p53 but also for the use of molecular endpoints in quantifying exposure to different wavelengths of UV in the context of human health protection.

  18. p53-independent early and late apoptosis is mediated by ceramide after exposure of tumor cells to photon or carbon ion irradiation

    International Nuclear Information System (INIS)

    Alphonse, Gersende; Maalouf, Mira; Battiston-Montagne, Priscillia; Ardail, Dominique; Beuve, Michaël; Rousson, Robert; Taucher-Scholz, Gisela; Fournier, Claudia; Rodriguez-Lafrasse, Claire

    2013-01-01

    To determine whether ceramide is responsible for the induction of p53-independent early or late apoptosis in response to high- and low-Linear-Energy-Transfer (LET) irradiation. Four cell lines displaying different radiosensitivities and p53-protein status were irradiated with photons or 33.4 or 184 keV/μm carbon ions. The kinetics of ceramide production was quantified by fluorescent microscopy or High-Performance-Liquid-Chromatogaphy and the sequence of events leading to apoptosis by flow cytometry. Regardless of the p53-status, both low and high-LET irradiation induced an early ceramide production in radiosensitive cells and late in the radioresistant. This production strongly correlated with the level of early apoptosis in radiosensitive cells and delayed apoptosis in the radioresistant ones, regardless of radiation quality, tumor type, radiosensitivity, or p53-status. Inhibition of caspase activity or ceramide production showed that, for both types of radiation, ceramide is essential for the initiation of early apoptosis in radiosensitive cells and late apoptosis following mitotic catastrophe in radioresistant cells. Ceramide is a determining factor in the onset of early and late apoptosis after low and high-LET irradiation and is the mediator of the p53-independent-apoptotic pathway. We propose that ceramide is the molecular bridge between mitotic catastrophe and the commitment phase of delayed apoptosis in response to irradiation

  19. DNA double strand break repair is enhanced by P53 following induction by DNA damage and is dependent on the C-terminal domain of P53

    International Nuclear Information System (INIS)

    Wei Tang; Powell, Simon N.

    1996-01-01

    Purpose: The tumor suppressor gene p53 can mediate cell cycle arrest or apoptosis in response to DNA damage. Accumulating evidence suggests that it may also directly or indirectly influence the DNA repair machinery. In the present study, we investigated whether p53, induced by DNA damage, could enhance the rejoining of double-strand DNA breaks. Materials and Methods: DNA double-strand breaks (dsb) were made by restriction enzyme digestion of a plasmid, between a promoter and a 'reporter' gene: luciferase (LUC) or chloramphenicol acetyl-transferase (CAT). Linear or circular plasmid DNA (LUC or CAT) was co-transfected with circular β-Gal plasmid (to normalize for uptake) into mouse embryonic fibroblasts genetically matched to be (+/+) or (-/-) for p53. Their ability to rejoin linearized plasmid was measured by the luciferase or CAT activity detected in rescued plasmids. The activity detected in cells transfected with linear plasmid was scored relative to the activity detected in cells transfected with circular plasmid. Results: Ionizing radiation (IR, 2 Gy) enhanced the dsb repair activity in wild type p53 cells; however, p53 null cells lose this effect, indicating that the enhancement of dsb repair was p53-dependent. REF cells with dominant-negative mutant p53 showed a similar induction compared with the parental REF cells with wild-type p53. This ala-143 mutant p53 prevents cell cycle arrest and transactivation of p21 WAF1/cip1) following IR, indicating that the p53-dependent enhancement of DNA repair is distinct from transactivation. Immortalized murine embryonic fibroblasts, 10(1)VasK1 cells, which express p53 cDNA encoding a temperature-sensitive mutant in the DNA sequence specific binding domain (ala135 to val135) with an alternatively spliced C-terminal domain (ASp53: amino-acids 360-381) and, 10(1)Val5 cells, which express the normal spliced p53 (NSp53) with the same temperature-sensitive mutant were compared. It was found that 10(1)VasK1 cells showed no DNA

  20. Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma.

    Science.gov (United States)

    Saha, Manujendra N; Jiang, Hua; Yang, Yijun; Zhu, Xiaoyun; Wang, Xiaoming; Schimmer, Aaron D; Qiu, Lugui; Chang, Hong

    2012-01-01

    The low frequency of p53 alterations e.g., mutations/deletions (∼10%) in multiple myeloma (MM) makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK) signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP) analysis showed that activated c-Jun binds to the activator protein-1 (AP-1) binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA) against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with JNK

  1. Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma.

    Directory of Open Access Journals (Sweden)

    Manujendra N Saha

    Full Text Available The low frequency of p53 alterations e.g., mutations/deletions (∼10% in multiple myeloma (MM makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP analysis showed that activated c-Jun binds to the activator protein-1 (AP-1 binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with

  2. The p53-reactivating small molecule RITA induces senescence in head and neck cancer cells.

    Science.gov (United States)

    Chuang, Hui-Ching; Yang, Liang Peng; Fitzgerald, Alison L; Osman, Abdullah; Woo, Sang Hyeok; Myers, Jeffrey N; Skinner, Heath D

    2014-01-01

    TP53 is the most commonly mutated gene in head and neck cancer (HNSCC), with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis), a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1) inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC.

  3. Cellular response to DNA damage. Link between p53 and DNA-PK

    International Nuclear Information System (INIS)

    Salles-Passador, I.; Fotedar, R.; Fotedar, A.

    1999-01-01

    Cells which lack DNA-activated protein kinase (DNA-PK) are very susceptible to ionizing radiation and display an inability to repair double-strand DNA breaks. DNA-PK is a member of a protein kinase family that includes ATR and ATM which have strong homology in their carboxy-terminal kinase domain with Pl-3 kinase. ATM has been proposed to act upstream of p53 in cellular response to ionizing radiation. DNA-PK may similarly interact with p53 in cellular growth control and in mediation of the response to ionizing radiation. (author)

  4. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer.

    Directory of Open Access Journals (Sweden)

    Laxmidhar Das

    Full Text Available Inhibition of carcinogenesis may be a consequence of attenuation of oxidative stress via activation of antioxidant defence system, restoration and stabilization of tumour suppressor proteins along with modulation of inflammatory mediators. Previously we have delineated significant role of curcumin during its long term effect in regulation of glycolytic pathway and angiogenesis, which in turn results in prevention of cancer via modulation of stress activated genes. Present study was designed to investigate long term effect of curcumin in regulation of Nrf2 mediated phase-II antioxidant enzymes, tumour suppressor p53 and inflammation under oxidative tumour microenvironment in liver of T-cell lymphoma bearing mice. Inhibition of Nrf2 signalling observed during lymphoma progression, resulted in down regulation of phase II antioxidant enzymes, p53 as well as activation of inflammatory signals. Curcumin potentiated significant increase in Nrf2 activation. It restored activity of phase-II antioxidant enzymes like GST, GR, NQO1, and tumour suppressor p53 level. In addition, curcumin modulated inflammation via upregulation of TGF-β and reciprocal regulation of iNOS and COX2. The study suggests that during long term effect, curcumin leads to prevention of cancer by inducing phase-II antioxidant enzymes via activation of Nrf2 signalling, restoration of tumour suppressor p53 and modulation of inflammatory mediators like iNOS and COX2 in liver of lymphoma bearing mice.

  5. WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zeilstra, Jurrit; Joosten, Sander P.J. [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands); Wensveen, Felix M. [Department of Experimental Immunology, Academic Medical Center, Amsterdam (Netherlands); Dessing, Mark C.; Schuetze, Denise M. [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands); Eldering, Eric [Department of Experimental Immunology, Academic Medical Center, Amsterdam (Netherlands); Spaargaren, Marcel [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands); Pals, Steven T., E-mail: s.t.pals@amc.uva.nl [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands)

    2011-03-04

    Research highlights: {yields} Intestinal adenomas initiated by aberrant activation of the WNT pathway displayed an increased sensitivity to apoptosis. {yields} Expression profiling of apoptosis-related genes in Apc{sup Min/+} mice revealed the differential expression of pro-apoptotic Bok and Bax. {yields} APC-mutant adenomatous crypts in FAP patients showed strongly increased BAX immunoreactivity. {yields} Blocking of {beta}-catenin/TCF-4-mediated signaling in colon cancer cells reduced the expression of BOK and BAX. -- Abstract: In a majority of cases, colorectal cancer is initiated by aberrant activation of the WNT signaling pathway. Mutation of the genes encoding the WNT signaling components adenomatous polyposis coli or {beta}-catenin causes constitutively active {beta}-catenin/TCF-mediated transcription, driving the transformation of intestinal crypts to cancer precursor lesions, called dysplastic aberrant crypt foci. Deregulated apoptosis is a hallmark of adenomatous colon tissue. However, the contribution of WNT signaling to this process is not fully understood. We addressed this role by analyzing the rate of epithelial apoptosis in aberrant crypts and adenomas of the Apc{sup Min/+} mouse model. In comparison with normal crypts and adenomas, aberrant crypts displayed a dramatically increased rate of apoptotic cell death. Expression profiling of apoptosis-related genes along the crypt-villus axis and in Apc mutant adenomas revealed increased expression of two pro-apoptotic Bcl-2 family members in intestinal adenomas, Bok and Bax. Analysis of the colon of familial adenomatous polyposis (FAP) patients along the crypt-to-surface axis, and of dysplastic crypts, corroborated this expression pattern. Disruption of {beta}-catenin/TCF-4-mediated signaling in the colorectal cancer cell line Ls174T significantly decreased BOK and BAX expression, confirming WNT-dependent regulation in intestinal epithelial cells. Our results suggest a feedback mechanism by which

  6. WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer

    International Nuclear Information System (INIS)

    Zeilstra, Jurrit; Joosten, Sander P.J.; Wensveen, Felix M.; Dessing, Mark C.; Schuetze, Denise M.; Eldering, Eric; Spaargaren, Marcel; Pals, Steven T.

    2011-01-01

    Research highlights: → Intestinal adenomas initiated by aberrant activation of the WNT pathway displayed an increased sensitivity to apoptosis. → Expression profiling of apoptosis-related genes in Apc Min/+ mice revealed the differential expression of pro-apoptotic Bok and Bax. → APC-mutant adenomatous crypts in FAP patients showed strongly increased BAX immunoreactivity. → Blocking of β-catenin/TCF-4-mediated signaling in colon cancer cells reduced the expression of BOK and BAX. -- Abstract: In a majority of cases, colorectal cancer is initiated by aberrant activation of the WNT signaling pathway. Mutation of the genes encoding the WNT signaling components adenomatous polyposis coli or β-catenin causes constitutively active β-catenin/TCF-mediated transcription, driving the transformation of intestinal crypts to cancer precursor lesions, called dysplastic aberrant crypt foci. Deregulated apoptosis is a hallmark of adenomatous colon tissue. However, the contribution of WNT signaling to this process is not fully understood. We addressed this role by analyzing the rate of epithelial apoptosis in aberrant crypts and adenomas of the Apc Min/+ mouse model. In comparison with normal crypts and adenomas, aberrant crypts displayed a dramatically increased rate of apoptotic cell death. Expression profiling of apoptosis-related genes along the crypt-villus axis and in Apc mutant adenomas revealed increased expression of two pro-apoptotic Bcl-2 family members in intestinal adenomas, Bok and Bax. Analysis of the colon of familial adenomatous polyposis (FAP) patients along the crypt-to-surface axis, and of dysplastic crypts, corroborated this expression pattern. Disruption of β-catenin/TCF-4-mediated signaling in the colorectal cancer cell line Ls174T significantly decreased BOK and BAX expression, confirming WNT-dependent regulation in intestinal epithelial cells. Our results suggest a feedback mechanism by which uncontrolled epithelial cell proliferation in the

  7. Editor's Highlight: Hydroxyurea Exposure Activates the P53 Signaling Pathway in Murine Organogenesis-Stage Embryos.

    Science.gov (United States)

    El Husseini, Nazem; Schlisser, Ava E; Hales, Barbara F

    2016-08-01

    Hydroxyurea, an anticancer agent and potent teratogen, induces oxidative stress and activates a DNA damage response pathway in the gestation day (GD) 9 mouse embryo. To delineate the stress response pathways activated by this drug, we investigated the effect of hydroxyurea exposure on the transcriptome of GD 9 embryos. Timed pregnant CD-1 mice were treated with saline or hydroxyurea (400 mg/kg or 600 mg/kg) on GD 9; embryonic gene and protein expression were examined 3 h later. Microarray analysis revealed that the expression of 1346 probe sets changed significantly in embryos exposed to hydroxyurea compared with controls; the P53 signaling pathway was highly affected. In addition, P53 related family members, P63 and P73, were predicted to be activated and had common and unique downstream targets. Western blot analysis revealed that active phospho-P53 was significantly increased in drug-exposed embryos; confocal microscopy showed that the translocation of phospho-P53 to the nucleus was widespread in the embryo. Furthermore, qRT-PCR showed that the expression of P53-regulated genes (Cdkn1A, Fas, and Trp53inp1) was significantly upregulated in hydroxyurea-exposed embryos; the concentration of the redox sensitive P53INP1 protein was also increased in a hydroxyurea dose-dependent fashion. Thus, hydroxyurea elicits a significant effect on the transcriptome of the organogenesis stage murine embryo, activating several key developmental signaling pathways related to DNA damage and oxidative stress. We propose that the P53 pathway plays a central role in the embryonic stress response and the developmental outcome after teratogen exposure. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Expression of Bcl-2 and Bax in extrahepatic biliary tract carcinoma and dysplasia

    Science.gov (United States)

    Li, Sheng-Mian; Yao, Shu-Kun; Yamamura, Nobuyoshi; Nakamura, Toshitsugu

    2003-01-01

    AIM: To compare the difference of expression of Bcl-2 and Bax in extrahepatic biliary tract carcinoma and dysplasia, and to analyze the role of Bcl-2 and Bax proteins in the progression from dysplasia to carcinoma and to evaluate the correlation of Bcl-2/Bax protein expression with the biological behaviors. METHODS: Expressions of Bcl-2 and Bax were examined immunohistochemically in 27 cases of extrahepatic biliary tract carcinomas (bile duct carcinoma: n = 21, carcinoma of ampulla of Vater: n = 6), and 10 cases of atypical dysplasia. Five cases of normal biliary epithelial tissues were used as controls. A semiquantitative scoring system was used to assess the Bcl-2 and Bax reactivity. RESULTS: The expression of Bcl-2 was observed in 10 out of 27 (37.0%) invasive carcinomas, 1 out of 10 dysplasias, none out of 5 normal epithelial tissues. Bax expression rate was 74.1% (20/27) in invasive carcinoma, 30% (3/10) in dysplasia, and 40% (2/5) in normal biliary epithelium. Bcl-2 and Bax activities were more intense in carcinoma than in dysplasia, with no significant difference in Bcl-2 expression (P = 0.110), and significant difference in Bax expression (P = 0.038). Level of Bax expression was higher in invasive carcinoma than in dysplasia and normal tissue (P = 0.012). Bcl-2 expression was correlated to Bax expression (P = 0.0059). However, Bcl-2/Bax expression had no correlation with histological subtype, grade of differentiation, or level of invasion. CONCLUSION: Increased Bcl-2/Bax expression from dysplasia to invasive tumors supports the view that this is the usual route for the development of extrahepatic biliary tract carcinoma. Bcl-2/Bax may be involved, at least in part, in the apoptotic activity in extrahepatic biliary carcinoma. PMID:14606101

  9. Pharmacological activation of tumor suppressor, wild-type p53 as a promising strategy to fight cancer

    Directory of Open Access Journals (Sweden)

    Alicja Sznarkowska

    2010-08-01

    Full Text Available A powerful tumor suppressor – p53 protein is a transcription factor which plays a critical role in eliciting cellular responses to a variety of stress signals, including DNA damage, hypoxia and aberrant proliferative signals, such as oncogene activation. Since its discovery thirty one years ago, p53 has been connected to tumorigenesis as it accumulates in the transformed tumor cells. Cellular stress induces stabilization of p53 and promotes, depending on the stress level, cell cycle arrest or apoptosis in the irreversibly damaged cells. The p53 protein is found inactive in more than 50�0of human tumors either by enhanced proteasomal degradation or due to the inactivating point mutations in its gene. Numerous data indicate that low molecular weight compounds, identified by molecular modeling or in the functional, cell-based assays, efficiently activate non-mutated p53 in cancer cells which in consequence leads to their elimination due to p53-dependent apoptosis. In this work we describe the structure and cellular function of p53 as well as the latest discoveries on the compounds with high anti-tumor activities aiming at reactivation of the tumor suppressor function of p53.

  10. Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation.

    Directory of Open Access Journals (Sweden)

    Mikael S Lindström

    Full Text Available BACKGROUND: Disruption of the nucleolus often leads to activation of the p53 tumor suppressor pathway through inhibition of MDM2 that is mediated by a limited set of ribosomal proteins including RPL11 and RPL5. The effects of ribosomal protein loss in cultured mammalian cells have not been thoroughly investigated. Here we characterize the cellular stress response caused by depletion of ribosomal protein S9 (RPS9. METHODOLOGY/PRINCIPAL FINDINGS: Depletion of RPS9 impaired production of 18S ribosomal RNA and induced p53 activity. It promoted p53-dependent morphological differentiation of U343MGa Cl2:6 glioma cells as evidenced by intensified expression of glial fibrillary acidic protein and profound changes in cell shape. U2OS osteosarcoma cells displayed a limited senescence response with increased expression of DNA damage response markers, whereas HeLa cervical carcinoma cells underwent cell death by apoptosis. Knockdown of RPL11 impaired p53-dependent phenotypes in the different RPS9 depleted cell cultures. Importantly, knockdown of RPS9 or RPL11 also markedly inhibited cell proliferation through p53-independent mechanisms. RPL11 binding to MDM2 was retained despite decreased levels of RPL11 protein following nucleolar stress. In these settings, RPL11 was critical for maintaining p53 protein stability but was not strictly required for p53 protein synthesis. CONCLUSIONS: p53 plays an important role in the initial restriction of cell proliferation that occurs in response to decreased level of RPS9. Our results do not exclude the possibility that other nucleolar stress sensing molecules act upstream or in parallel to RPL11 to activate p53. Inhibiting the expression of certain ribosomal proteins, such as RPS9, could be one efficient way to reinitiate differentiation processes or to induce senescence or apoptosis in rapidly proliferating tumor cells.

  11. Stabilization and activation of p53 are regulated independently by different phosphorylation events

    OpenAIRE

    Chernov, Mikhail V.; Ramana, Chilakamarti V.; Adler, Victor V.; Stark, George R.

    1998-01-01

    Treatment of mouse or human cells with the protein kinase C (PKC) inhibitors H7 or bisindolylmaleimide I induced an increase in the lifetime of p53, leading to its accumulation. In inhibitor-treated cells, p53 translocated to the nuclei and bound to DNA but was not competent to induce transcription. However, transactivation could be induced by subsequent DNA damage. Phorbol ester, a potent activator of PKC, significantly inhibited the accumulation of p53 after DNA damage. Therefore, constitut...

  12. The role of hypoxia, p53, and apoptosis in human cervical carcinoma pathogenesis

    International Nuclear Information System (INIS)

    Kim, Charlotte Y.; Tsai, Mitchell H.; Osmanian, Cynthia; Calkins, Dennise P.; Graeber, Thomas G.; Greenspan, David L.; Kennedy, Andrew S.; Rinker, Lillian H.; Varia, Mahesh A.; DiPaolo, Joseph A.; Peehl, Donna M.; Raleigh, James A.; Giaccia, Amato J.

    1997-01-01

    Objective: Low oxygen tension in the tumor microenvironment may have an important role during tumor growth, and is of particular prognostic significance in human cervical carcinoma. Because some human papillomavirus (HPV) infections are associated with cervical neoplasia, the relationship between hypoxia and apoptosis in primary cervical epithelial cells containing HPV16 E6 and E7, intact HPV 16 genome, and HPV positive cervical carcinoma cell lines, was examined. In addition, the relationship between hypoxia and apoptosis in spontaneous human cervical carcinomas was determined in situ. Materials and Methods: Primary normal human cervical epithelial cells were infected with retroviral vectors containing HPV16 E6 and E7 or transfected with a plasmid containing the whole HPV 16 genome. Clones were selected in neomycin containing medium. Exponentially growing cells were incubated under aerobic conditions (20% O 2 ), anaerobic conditions (0.02% O 2 ), or irradiated with 6 Gy. Analysis of apoptotic cells was performed by staining with Hoechst dye and propidium iodide and viewing with a fluorescent microscope. To determine the level of expression of the apoptotic modulators p53 and Bax, immunoblots were performed on whole cell extracts from treated cells. A clinical tumor hypoxia study was conducted at the University of North Carolina utilizing pimonidazole, a 2-nitroimidazole compound which binds irreversibly to cellular macromolecules under low oxygen conditions. Nine patients were enrolled with biopsy proven squamous cell carcinoma of the cervix and no prior treatment. Biopsies of the gross tumor were obtained after pimonidazole infusion. Contiguous histological sections were analyzed for hypoxia using a immunohistochemical technique and for apoptosis using TUNEL. Results: In vitro, hypoxia uncoupled p53 from E6 mediated degradation, and stimulated both p53 induction and apoptosis in primary cervical epithelial cells infected with the HPV E6 and E7 genes. In contrast

  13. Mitochondrial ceramide-rich macrodomains functionalize Bax upon irradiation.

    Directory of Open Access Journals (Sweden)

    Hyunmi Lee

    Full Text Available Evidence indicates that Bax functions as a "lipidic" pore to regulate mitochondrial outer membrane permeabilization (MOMP, the apoptosis commitment step, through unknown membrane elements. Here we show mitochondrial ceramide elevation facilitates MOMP-mediated cytochrome c release in HeLa cells by generating a previously-unrecognized mitochondrial ceramide-rich macrodomain (MCRM, which we visualize and isolate, into which Bax integrates.MCRMs, virtually non-existent in resting cells, form upon irradiation coupled to ceramide synthase-mediated ceramide elevation, optimizing Bax insertion/oligomerization and MOMP. MCRMs are detected by confocal microscopy in intact HeLa cells and isolated biophysically as a light membrane fraction from HeLa cell lysates. Inhibiting ceramide generation using a well-defined natural ceramide synthase inhibitor, Fumonisin B1, prevented radiation-induced Bax insertion, oligomerization and MOMP. MCRM deconstruction using purified mouse hepatic mitochondria revealed ceramide alone is non-apoptogenic. Rather Bax integrates into MCRMs, oligomerizing therein, conferring 1-2 log enhanced cytochrome c release. Consistent with this mechanism, MCRM Bax isolates as high molecular weight "pore-forming" oligomers, while non-MCRM membrane contains exclusively MOMP-incompatible monomeric Bax.Our recent studies in the C. elegans germline indicate that mitochondrial ceramide generation is obligate for radiation-induced apoptosis, although a mechanism for ceramide action was not delineated. Here we demonstrate that ceramide, generated in the mitochondrial outer membrane of mammalian cells upon irradiation, forms a platform into which Bax inserts, oligomerizes and functionalizes as a pore. We posit conceptualization of ceramide as a membrane-based stress calibrator, driving membrane macrodomain organization, which in mitochondria regulates intensity of Bax-induced MOMP, and is pharmacologically tractable in vitro and in vivo.

  14. Quiescence does not affect p53 and stress response by irradiation in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jiawen [Molecular Radiobiology Laboratory, Division of Cellular and Molecular Research (Singapore); Itahana, Koji, E-mail: koji.itahana@duke-nus.edu.sg [Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School (Singapore); Baskar, Rajamanickam, E-mail: r.baskar@nccs.com.sg [Molecular Radiobiology Laboratory, Division of Cellular and Molecular Research (Singapore); Department of Radiation Oncology, National Cancer Centre (Singapore)

    2015-02-27

    Cells in many organs exist in both proliferating and quiescent states. Proliferating cells are more radio-sensitive, DNA damage pathways including p53 pathway are activated to undergo either G{sub 1}/S or G{sub 2}/M arrest to avoid entering S and M phase with DNA damage. On the other hand, quiescent cells are already arrested in G{sub 0}, therefore there may be fundamental difference of irradiation response between proliferating and quiescent cells, and this difference may affect their radiosensitivity. To understand these differences, proliferating and quiescent human normal lung fibroblasts were exposed to 0.10–1 Gy of γ-radiation. The response of key proteins involved in the cell cycle, cell death, and metabolism as well as histone H2AX phosphorylation were examined. Interestingly, p53 and p53 phosphorylation (Ser-15), as well as the cyclin-dependent kinase inhibitors p21 and p27, were induced similarly in both proliferating and quiescent cells after irradiation. Furthermore, the p53 protein half-life, and expression of cyclin A, cyclin E, proliferating cell nuclear antigen (PCNA), Bax, or cytochrome c expression as well as histone H2AX phosphorylation were comparable after irradiation in both phases of cells. The effect of radioprotection by a glycogen synthase kinase 3β inhibitor on p53 pathway was also similar between proliferating and quiescent cells. Our results showed that quiescence does not affect irradiation response of key proteins involved in stress and DNA damage at least in normal fibroblasts, providing a better understanding of the radiation response in quiescent cells, which is crucial for tissue repair and regeneration. - Highlights: • p53 response by irradiation was similar between proliferating and quiescent cells. • Quiescent cells showed similar profiles of cell cycle proteins after irradiation. • Radioprotection of GSK-3β inhibitor caused similar effects between these cells. • Quiescence did not affect p53 response despite its

  15. Quiescence does not affect p53 and stress response by irradiation in human lung fibroblasts

    International Nuclear Information System (INIS)

    Dai, Jiawen; Itahana, Koji; Baskar, Rajamanickam

    2015-01-01

    Cells in many organs exist in both proliferating and quiescent states. Proliferating cells are more radio-sensitive, DNA damage pathways including p53 pathway are activated to undergo either G 1 /S or G 2 /M arrest to avoid entering S and M phase with DNA damage. On the other hand, quiescent cells are already arrested in G 0 , therefore there may be fundamental difference of irradiation response between proliferating and quiescent cells, and this difference may affect their radiosensitivity. To understand these differences, proliferating and quiescent human normal lung fibroblasts were exposed to 0.10–1 Gy of γ-radiation. The response of key proteins involved in the cell cycle, cell death, and metabolism as well as histone H2AX phosphorylation were examined. Interestingly, p53 and p53 phosphorylation (Ser-15), as well as the cyclin-dependent kinase inhibitors p21 and p27, were induced similarly in both proliferating and quiescent cells after irradiation. Furthermore, the p53 protein half-life, and expression of cyclin A, cyclin E, proliferating cell nuclear antigen (PCNA), Bax, or cytochrome c expression as well as histone H2AX phosphorylation were comparable after irradiation in both phases of cells. The effect of radioprotection by a glycogen synthase kinase 3β inhibitor on p53 pathway was also similar between proliferating and quiescent cells. Our results showed that quiescence does not affect irradiation response of key proteins involved in stress and DNA damage at least in normal fibroblasts, providing a better understanding of the radiation response in quiescent cells, which is crucial for tissue repair and regeneration. - Highlights: • p53 response by irradiation was similar between proliferating and quiescent cells. • Quiescent cells showed similar profiles of cell cycle proteins after irradiation. • Radioprotection of GSK-3β inhibitor caused similar effects between these cells. • Quiescence did not affect p53 response despite its known role in

  16. ERK mediated upregulation of death receptor 5 overcomes the lack of p53 functionality in the diaminothiazole DAT1 induced apoptosis in colon cancer models: efficiency of DAT1 in Ras-Raf mutated cells.

    Science.gov (United States)

    Thamkachy, Reshma; Kumar, Rohith; Rajasekharan, K N; Sengupta, Suparna

    2016-03-08

    p53 is a tumour suppressor protein that plays a key role in many steps of apoptosis, and malfunctioning of this transcription factor leads to tumorigenesis. Prognosis of many tumours also depends upon the p53 status. Most of the clinically used anticancer compounds activate p53 dependent pathway of apoptosis and hence require p53 for their mechanism of action. Further, Ras/Raf/MEK/ERK axis is an important signaling pathway activated in many cancers. Dependence of diaminothiazoles, compounds that have gained importance recently due to their anticancer and anti angiogenic activities, were tested in cancer models with varying p53 or Ras/Raf mutational status. In this study we have used p53 mutated and knock out colon cancer cells and xenograft tumours to study the role of p53 in apoptosis mediated by diaminothiazoles. Colon cancer cell lines with varying mutational status for Ras or Raf were also used. We have also examined the toxicity and in vivo efficacy of a lead diaminothiazole 4-Amino-5-benzoyl-2-(4-methoxy phenylamino)thiazole (DAT1) in colon cancer xenografts. We have found that DAT1 is active in both in vitro and in vivo models with nonfunctional p53. Earlier studies have shown that extrinsic pathway plays major role in DAT1 mediated apoptosis. In this study, we have found that DAT1 is causing p53 independent upregulation of the death receptor 5 by activating the Ras/Raf/MEK/ERK signaling pathway both in wild type and p53 suppressed colon cancer cells. These findings are also confirmed by the in vivo results. Further, DAT1 is more efficient to induce apoptosis in colon cancer cells with mutated Ras or Raf. Minimal toxicity in both acute and subacute studies along with the in vitro and in vivo efficacy of DAT1 in cancers with both wild type and nonfunctional p53 place it as a highly beneficial candidate for cancer chemotherapy. Besides, efficiency in cancer cells with mutations in the Ras oncoprotein or its downstream kinase Raf raise interest in

  17. Targeting the p53 Pathway in Ewing Sarcoma

    Science.gov (United States)

    Neilsen, Paul M.; Pishas, Kathleen I.; Callen, David F.; Thomas, David M.

    2011-01-01

    The p53 tumour suppressor plays a pivotal role in the prevention of oncogenic transformation. Cancers frequently evade the potent antitumour surveillance mechanisms of p53 through mutation of the TP53 gene, with approximately 50% of all human malignancies expressing dysfunctional, mutated p53 proteins. Interestingly, genetic lesions in the TP53 gene are only observed in 10% of Ewing Sarcomas, with the majority of these sarcomas expressing a functional wild-type p53. In addition, the p53 downstream signaling pathways and DNA-damage cell cycle checkpoints remain functionally intact in these sarcomas. This paper summarizes recent insights into the functional capabilities and regulation of p53 in Ewing Sarcoma, with a particular focus on the cross-talk between p53 and the EWS-FLI1 gene rearrangement frequently associated with this disease. The development of several activators of p53 is discussed, with recent evidence demonstrating the potential of small molecule p53 activators as a promising systemic therapeutic approach for the treatment of Ewing Sarcomas with wild-type p53. PMID:21197471

  18. Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Christian M. Simon

    2017-12-01

    Full Text Available The hallmark of spinal muscular atrophy (SMA, an inherited disease caused by ubiquitous deficiency in the SMN protein, is the selective degeneration of subsets of spinal motor neurons. Here, we show that cell-autonomous activation of p53 occurs in vulnerable but not resistant motor neurons of SMA mice at pre-symptomatic stages. Moreover, pharmacological or genetic inhibition of p53 prevents motor neuron death, demonstrating that induction of p53 signaling drives neurodegeneration. At late disease stages, however, nuclear accumulation of p53 extends to resistant motor neurons and spinal interneurons but is not associated with cell death. Importantly, we identify phosphorylation of serine 18 as a specific post-translational modification of p53 that exclusively marks vulnerable SMA motor neurons and provide evidence that amino-terminal phosphorylation of p53 is required for the neurodegenerative process. Our findings indicate that distinct events induced by SMN deficiency converge on p53 to trigger selective death of vulnerable SMA motor neurons.

  19. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation.

    Science.gov (United States)

    De Smet, Frederik; Saiz Rubio, Mirian; Hompes, Daphne; Naus, Evelyne; De Baets, Greet; Langenberg, Tobias; Hipp, Mark S; Houben, Bert; Claes, Filip; Charbonneau, Sarah; Delgado Blanco, Javier; Plaisance, Stephane; Ramkissoon, Shakti; Ramkissoon, Lori; Simons, Colinda; van den Brandt, Piet; Weijenberg, Matty; Van England, Manon; Lambrechts, Sandrina; Amant, Frederic; D'Hoore, André; Ligon, Keith L; Sagaert, Xavier; Schymkowitz, Joost; Rousseau, Frederic

    2017-05-01

    Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great

  20. The human T-cell leukemia virus type-1 p30II protein activates p53 and induces the TIGAR and suppresses oncogene-induced oxidative stress during viral carcinogenesis.

    Science.gov (United States)

    Romeo, Megan; Hutchison, Tetiana; Malu, Aditi; White, Averi; Kim, Janice; Gardner, Rachel; Smith, Katie; Nelson, Katherine; Bergeson, Rachel; McKee, Ryan; Harrod, Carolyn; Ratner, Lee; Lüscher, Bernhard; Martinez, Ernest; Harrod, Robert

    2018-05-01

    In normal cells, aberrant oncogene expression leads to the accumulation of cytotoxic metabolites, including reactive oxygen species (ROS), which can cause oxidative DNA-damage and apoptosis as an intrinsic barrier against neoplastic disease. The c-Myc oncoprotein is overexpressed in many lymphoid cancers due to c-myc gene amplification and/or 8q24 chromosomal translocations. Intriguingly, p53 is a downstream target of c-Myc and hematological malignancies, such as adult T-cell leukemia/lymphoma (ATL), frequently contain wildtype p53 and c-Myc overexpression. We therefore hypothesized that p53-regulated pro-survival signals may thwart the cell's metabolic anticancer defenses to support oncogene-activation in lymphoid cancers. Here we show that the Tp53-induced glycolysis and apoptosis regulator (TIGAR) promotes c-myc oncogene-activation by the human T-cell leukemia virus type-1 (HTLV-1) latency-maintenance factor p30 II , associated with c-Myc deregulation in ATL clinical isolates. TIGAR prevents the intracellular accumulation of c-Myc-induced ROS and inhibits oncogene-induced cellular senescence in ATL, acute lymphoblastic leukemia, and multiple myeloma cells with elevated c-Myc expression. Our results allude to a pivotal role for p53-regulated antioxidant signals as mediators of c-Myc oncogenic functions in viral and non-viral lymphoid tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. The Contribution of Transactivation Subdomains 1 and 2 to p53-Induced Gene Expression Is Heterogeneous But Not Subdomain-Specific

    Directory of Open Access Journals (Sweden)

    Jennifer M. Smith

    2007-12-01

    Full Text Available Two adjacent regions within the transactivation domain of p53 are sufficient to support sequence-specific transactivation when fused to a heterologous DNA binding domain. It has been hypothesized that these two subdomains of p53 may contribute to the expression of distinct p53-responsive genes. Here we have used oligonucleotide microarrays to identify transcripts induced by variants of p53 with point mutations within subdomains 1, 2, or 1 and 2 (QS1, QS2, QS1/QS2, respectively. The expression of 254 transcripts was increased in response to wild-type p53 expression but most of these transcripts were poorly induced by these variants of p53. Strikingly, a number of known p53regulated transcripts including TNFRSF10B, BAX, BTG2, POLH were increased to wild-type levels by p53QS1 and p53QS2 but not p53QS1/QS2, indicating that either sub domain 1 or 2 is sufficient for p53-dependent expression of a small subset of p53-responsive genes. Unexpectedly, there was no evidence for p53QS1- or p53QS2-specific gene expression. Taken together, we found heterogeneity in the requirement for transactivation subdomains 1 and 2 of p53 without any subdomain-specific contribution to p53-induced gene expression.

  2. Effect of p53 activation on cell growth, thymidine kinase-1 activity, and 3'-deoxy-3'fluorothymidine uptake

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Jeffrey L. E-mail: jschwart@u.washington.edu; Tamura, Yasuko; Jordan, Robert; Grierson, John R.; Krohn, Kenneth A

    2004-05-01

    The use of thymidine (TdR) and thymidine analogs such as 3'-deoxy-3'-fluorothymidine (FLT) as positron emission tomography (PET)-based tracers of tumor proliferation rate is based on the hypothesis that measurement of uptake of these nucleosides, a function primarily of thymidine kinase-1 (TK{sub 1}) activity, provides an accurate measure of cell proliferation in tumors. Tumor growth is influenced by many factors including the oxygen concentration within tumors and whether tumor cells have been exposed to cytotoxic therapies. The p53 gene plays an important role in regulating growth under both of these conditions. The goal of this study was to investigate the influence of p53 activation on cell growth, TK{sub 1} activity, and FLT uptake. To accomplish this, TK{sub 1} activity, S phase fraction, and the uptake of FLT were determined in plateau-phase and exponentially growing cultures of an isogenic pair of human tumor cell lines in which p53 expression was normal or inactivated by human papilloma virus type 16 E6 expression. Ionizing radiation exposure was used to stimulate p53 activity and to induce alterations in cell cycle progression. We found that exposure of cells to ionizing radiation induced dose-dependent changes in cell cycle progression in both cell lines. The relationship between S phase percentage, TK{sub 1} activity, and FLT uptake were essentially unchanged in the p53-normal cell line. In contrast, TK{sub 1} activity and FLT uptake remained high in the p53-deficient variant even when S phase percentage was low due to a p53-dependent G2 arrest. We conclude that a functional p53 response is required to maintain the normal relationship between TK1 activity and S phase percentage following radiation exposure.

  3. The p53-reactivating small molecule RITA induces senescence in head and neck cancer cells.

    Directory of Open Access Journals (Sweden)

    Hui-Ching Chuang

    Full Text Available TP53 is the most commonly mutated gene in head and neck cancer (HNSCC, with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis, a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1 inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC.

  4. Coordination between p21 and DDB2 in the cellular response to UV radiation.

    Directory of Open Access Journals (Sweden)

    Hao Li

    Full Text Available The tumor suppressor p53 guides the cellular response to DNA damage mainly by regulating expression of target genes. The cyclin-dependent kinase inhibitor p21, which is induced by p53, can both arrest the cell cycle and inhibit apoptosis. Interestingly, p53-inducible DDB2 (damaged-DNA binding protein 2 promotes apoptosis by mediating p21 degradation after ultraviolet (UV-induced DNA damage. Here, we developed an integrated model of the p53 network to explore how the UV-irradiated cell makes a decision between survival and death and how the activities of p21 and DDB2 are modulated. By numerical simulations, we found that p53 is activated progressively and the promoter selectivity of p53 depends on its concentration. For minor DNA damage, p53 settles at an intermediate level. p21 is induced by p53 to arrest the cell cycle via inhibiting E2F1 activity, allowing for DNA repair. The proapoptotic genes are expressed at low levels. For severe DNA damage, p53 undergoes a two-phase behavior and accumulates to high levels in the second phase. Consequently, those proapoptotic proteins accumulate remarkably. Bax activates the release of cytochrome c, while DDB2 promotes the degradation of p21, which leads to activation of E2F1 and induction of Apaf-1. Finally, the caspase cascade is activated to trigger apoptosis. We revealed that the downregulation of p21 is necessary for apoptosis induction and PTEN promotes apoptosis by amplifying p53 activation. This work demonstrates that how the dynamics of the p53 network can be finely regulated through feed-forward and feedback loops within the network and emphasizes the importance of p21 regulation in the DNA damage response.

  5. CP-31398 prevents the growth of p53-mutated colorectal cancer cells in vitro and in vivo.

    Science.gov (United States)

    He, Xingxing; Kong, Xinjuan; Yan, Junwei; Yan, Jingjun; Zhang, Yunan; Wu, Qian; Chang, Ying; Shang, Haitao; Dou, Qian; Song, Yuhu; Liu, Fang

    2015-03-01

    Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Small molecule CP-31398 was shown to restore mutant p53 tumor suppressor functions in cancer cells. Here, we determined the effects of CP-31398 on the growth of p53-mutated colorectal cancer (CRC) cells in vitro and in vivo. CRC cells which carry p53 mutation in codon 273 were treated with CP-31398 and the control, and the effects of CP-31398 on cell cycle, cell apoptosis, and proliferation were determined. The expression of p53-responsive downstream genes was evaluated by quantitative reverse transcriptase PCR (RT-PCR) and Western blot. CP-31398 was administrated into xenograft tumors created by the inoculation of HT-29 cells, and then the effect of CP-31398 on the growth of xenograft tumors was examined. CP-31398 induced p53 downstream target molecules in cultured HT-29 cells, which resulted in the inhibition of CRC cell growth assessed by the determination of cell cycle, apoptosis, and cell proliferation. In xenograft tumors, CP-31398 modulated the expression of Bax, Bcl-2, caspase 3, cyclin D, and Mdm2 and then blocked the growth of xenograft tumors. CP-31398 would be developed as a therapeutic candidate for p53-mutated CRC due to the restoration of mutant p53 tumor suppressor functions.

  6. Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis

    Science.gov (United States)

    Zhang, Cen; Liu, Juan; Zhao, Yuhan; Yue, Xuetian; Zhu, Yu; Wang, Xiaolong; Wu, Hao; Blanco, Felix; Li, Shaohua; Bhanot, Gyan; Haffty, Bruce G; Hu, Wenwei; Feng, Zhaohui

    2016-01-01

    Glutaminase (GLS) isoenzymes GLS1 and GLS2 are key enzymes for glutamine metabolism. Interestingly, GLS1 and GLS2 display contrasting functions in tumorigenesis with elusive mechanism; GLS1 promotes tumorigenesis, whereas GLS2 exhibits a tumor-suppressive function. In this study, we found that GLS2 but not GLS1 binds to small GTPase Rac1 and inhibits its interaction with Rac1 activators guanine-nucleotide exchange factors, which in turn inhibits Rac1 to suppress cancer metastasis. This function of GLS2 is independent of GLS2 glutaminase activity. Furthermore, decreased GLS2 expression is associated with enhanced metastasis in human cancer. As a p53 target, GLS2 mediates p53’s function in metastasis suppression through inhibiting Rac1. In summary, our results reveal that GLS2 is a novel negative regulator of Rac1, and uncover a novel function and mechanism whereby GLS2 suppresses metastasis. Our results also elucidate a novel mechanism that contributes to the contrasting functions of GLS1 and GLS2 in tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.10727.001 PMID:26751560

  7. Differential Effects of Ethanol on c-Jun N-Terminal Kinase, 14-3-3 Proteins, and Bax in Postnatal Day 4 and Postnatal Day 7 Rat Cerebellum

    Science.gov (United States)

    Heaton, Marieta Barrow; Paiva, Michael; Kubovic, Stacey; Kotler, Alexandra; Rogozinski, Jonathan; Swanson, Eric; Madorsky, Vladimir; Posados, Michelle

    2011-01-01

    These studies investigated ethanol effects on upstream cellular elements and interactions which contribute to Bax-related apoptosis in neonatal rat cerebellum at ages of peak ethanol sensitivity (postnatal day 4 [P4]), compared to later ages of relative resistance (P7). Analyses were made of basal levels of the pro-apoptotic c-jun N-termimal kinase (JNK), Bax, and the 14-3-3 anchoring proteins, as well as the responsiveness of these substances to ethanol at P4 versus P7. Dimerization of Bax with 14-3-3 was also investigated at the two ages following ethanol treatment, a process which sequesters Bax in the cytosol, thus inhibiting its mitochondrial translocation and disruption of the mitochondrial membrane potential. Cultured cerebellar granule cells were used to examine the protective potential of JNK inhibition on ethanol-mediated cell death. Basal levels of JNK were significantly higher at P4 than P7, but no differences in the other proteins were found. Activated JNK, and cytosolic and mitochondrially-translocated Bax were increased in P4 but not P7 animals following ethanol exposure, while protective 14-3-3 proteins were increased only at P7. Ethanol treatment resulted in decreases in Bax:14-3-3 heterodimers at P4, but not at P7. Inhibition of JNK activity in vitro provided partial protection against ethanol neurotoxicity. Thus, differential temporal vulnerability to ethanol in this CNS region correlates with differences in both levels of apoptosis-related substances (e.g., JNK), and differential cellular responsiveness, favoring apoptosis at the most sensitive age and survival at the resistant age. The upstream elements contributing to this vulnerability can be targets for future therapeutic strategies. PMID:22169498

  8. Conditional inactivation of PDCD2 induces p53 activation and cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Celine J. Granier

    2014-08-01

    Full Text Available PDCD2 (programmed cell death domain 2 is a highly conserved, zinc finger MYND domain-containing protein essential for normal development in the fly, zebrafish and mouse. The molecular functions and cellular activities of PDCD2 remain unclear. In order to better understand the functions of PDCD2 in mammalian development, we have examined PDCD2 activity in mouse blastocyst embryos, as well as in mouse embryonic stem cells (ESCs and embryonic fibroblasts (MEFs. We have studied mice bearing a targeted PDCD2 locus functioning as a null allele through a splicing gene trap, or as a conditional knockout, by deletion of exon2 containing the MYND domain. Tamoxifen-induced knockout of PDCD2 in MEFs, as well as in ESCs, leads to defects in progression from the G1 to the S phase of cell cycle, associated with increased levels of p53 protein and p53 target genes. G1 prolongation in ESCs was not associated with induction of differentiation. Loss of entry into S phase of the cell cycle and marked induction of nuclear p53 were also observed in PDCD2 knockout blastocysts. These results demonstrate a unique role for PDCD2 in regulating the cell cycle and p53 activation during early embryonic development of the mouse.

  9. A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system.

    Science.gov (United States)

    Zhang, Shenshen; Nie, Shaoping; Huang, Danfei; Feng, Yanling; Xie, Mingyong

    2014-02-19

    Ganoderma is a precious health-care edible medicinal fungus in China. A novel Ganoderma atrum polysaccharide (PSG-1) is the main bioactive component. We investigated the antitumor effect and molecular mechanisms of PSG-1. It exhibited no significant effect on cell proliferation directly. In contrast, administration of PSG-1 markedly suppressed tumor growth in CT26 tumor-bearing mice. It was observed that PSG-1 caused apoptosis in CT26 cells. Apoptosis was associated with loss of mitochondrial membrane potential, enhancement of mitochondrial cytochrome c release and intracellular ROS production, elevation of p53 and Bax expression, downregulation of Bcl-2, and the activation of caspase-9 and -3. Moreover, PSG-1 enhanced immune organ index and promoted lymphocyte proliferation as well as cytokine levels in serum. Taken together, our data indicate that PSG-1 has potential antitumor activity in vivo by inducing apoptosis via mitochondria-mediated apoptotic pathway and enhances host immune system function. Therefore, PSG-1 could be a safe and effective antitumor, bioactive agent or functional food.

  10. Apoptosis and Bax expression are increased by coal dust in the polycyclic aromatic hydrocarbon-exposed lung

    Energy Technology Data Exchange (ETDEWEB)

    Ghanem, M.M.; Battelli, L.A.; Mercer, R.R.; Scabilloni, J.F.; Kashon, M.L.; Ma, J.Y.C.; Nath, J.; Hubbs, A.F.

    2006-09-15

    Miners inhaling respirable coal dust (CD) frequently develop coal workers' pneumoconiosis. Many coal miners are also exposed to polycyclic aromatic hydrocarbon (PAH) components of diesel engine exhaust and cigarette smoke, which may contribute to lung disease in these workers. Recently, apoptosis was reported to play a critical role in the development of another pneumoconiosis of miners, silicosis. In addition, CID was reported to suppress cytochrome P450 1A1 (CYP1A1) induction by PAHs. We exposed rats intratracheally to 0.0, 2.5, 10.0, 20.0, or 40.0 mg/rat CD and, 11 days later, to intraperitoneal P-naphthoflavone (BNF), a PAH. In another group of rats exposed to CD and BNF, caspase activity was inhibited by injection of the pan-caspase inhibitor Q-VD-OPH (quinoline-Val-Asp (OMe)-CH{sub 2}-OPH). In rats exposed to BNF, CD exposure increased alveolar expression of the proapoptotic mediator Bax but decreased CYP1A1 induction relative to BNF exposure alone. Pan-caspase inhibition decreased CD-associated Bax expression and apoptosis but did not restore CYP1A1 activity. Further, CD-induced lung inflammation and alveolar epithelial cell hypertrophy and hyperplasia were not suppressed by caspase inhibition. It is concluded that combined BNF and CD exposure increased Bax expression and apoptosis in the lung, but Bax and apoptosis were not the major determinants of early lung injury in this model.

  11. Hexavalent chromium-induced apoptosis of granulosa cells involves selective sub-cellular translocation of Bcl-2 members, ERK1/2 and p53

    International Nuclear Information System (INIS)

    Banu, Sakhila K.; Stanley, Jone A.; Lee, JeHoon; Stephen, Sam D.; Arosh, Joe A.; Hoyer, Patricia B.; Burghardt, Robert C.

    2011-01-01

    Hexavalent chromium (CrVI) has been widely used in industries throughout the world. Increased usage of CrVI and atmospheric emission of CrVI from catalytic converters of automobiles, and its improper disposal causes various health hazards including female infertility. Recently we have reported that lactational exposure to CrVI induced a delay/arrest in follicular development at the secondary follicular stage. In order to investigate the underlying mechanism, primary cultures of rat granulosa cells were treated with 10 μM potassium dichromate (CrVI) for 12 and 24 h, with or without vitamin C pre-treatment for 24 h. The effects of CrVI on intrinsic apoptotic pathway(s) were investigated. Our data indicated that CrVI: (i) induced DNA fragmentation and increased apoptosis, (ii) increased cytochrome c release from the mitochondria to cytosol, (iii) downregulated anti-apoptotic Bcl-2, Bcl-XL, HSP70 and HSP90; upregulated pro-apoptotic BAX and BAD, (iv) altered translocation of Bcl-2, Bcl-XL, BAX, BAD, HSP70 and HSP90 to the mitochondria, (v) upregulated p-ERK and p-JNK, and selectively translocated p-ERK to the mitochondria and nucleus, (vi) activated caspase-3 and PARP, and (vii) increased phosphorylation of p53 at ser-6, ser-9, ser-15, ser-20, ser-37, ser-46 and ser-392, increased p53 transcriptional activation, and downregulated MDM-2. Vitamin C pre-treatment mitigated CrVI effects on apoptosis and related pathways. Our study, for the first time provides a clear insight into the effect of CrVI on multiple pathways that lead to apoptosis of granulosa cells which could be mitigated by vitamin C.

  12. DRAGO (KIAA0247), a new DNA damage-responsive, p53-inducible gene that cooperates with p53 as oncosuppressor. [Corrected].

    Science.gov (United States)

    Polato, Federica; Rusconi, Paolo; Zangrossi, Stefano; Morelli, Federica; Boeri, Mattia; Musi, Alberto; Marchini, Sergio; Castiglioni, Vittoria; Scanziani, Eugenio; Torri, Valter; Broggini, Massimo

    2014-04-01

    p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53(-/-) and 107 p53(+/-) mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan-Meier curves and the Mantel-Haenszel test. All statistical tests were two-sided. We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO(-/-) mice are viable without macroscopic alterations. However, in p53(-/-) or p53(+/-) mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53(-/-) or p53(+/-) mice bearing wild-type DRAGO alleles (p53(-/-), DRAGO(-/-) mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53(+/-), DRAGO(-/-) mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO(+/+) counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional-through p53 (and p73) and methylation-dependent control-and post-transcriptional levels by miRNAs. DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions.

  13. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    Science.gov (United States)

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus lacking the dsRNA binding protein E3L can also induce this effect, indicating that dsRNA formed during viral infection is likely the trigger for down-regulation of p53. The mechanism of down-regulation of p53 by dsRNA relies on translation inhibition mediated by the PKR and RNase L pathways. In the absence of p53, the replication of both EMCV and HPIV3 was retarded, whereas, conversely, VSV replication was enhanced. Cell cycle analysis indicated that wild-type (WT) but not p53 knockout (KO) fibroblasts undergo an early-G1 arrest following dsRNA treatment. Moreover, in WT cells the onset of dsRNA-induced apoptosis begins after p53 levels are down-regulated, whereas p53 KO cells, which lack the early-G1 arrest, rapidly undergo apoptosis. Hence, our data suggest that the down-regulation of p53 facilitates apoptosis, thereby limiting viral replication. PMID:16103161

  14. Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy

    DEFF Research Database (Denmark)

    Kranz, Dominique; Dobbelstein, Matthias

    2006-01-01

    Mutations in the tumor suppressor gene TP53 represent the most frequent genetic difference between tumor cells and normal cells. Here, we have attempted to turn this difference into an advantage for normal cells during therapy. Using the Mdm2 antagonist nutlin-3, we first activated p53 in U2OS an...... a killer to a protector of cells, with the potential to reduce unwanted side effects of chemotherapy....

  15. Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53.

    Science.gov (United States)

    Loging, W T; Reisman, D

    1999-11-01

    The wild-type p53 protein is a DNA-binding transcription factor that activates genes such as p21, MDM2, GADD45, and Bax that are required for the regulation of cell cycle progression or apoptosis in response to DNA damage. Mutant forms of p53, which are transforming oncogenes and are expressed at high levels in tumor cells, generally have a reduced binding affinity for the consensus DNA sequence. Interestingly, some p53 mutants that are no longer effective at binding to the consensus DNA sequence and transactivating promoters containing this target site have acquired the ability to transform cells in culture, in part through their ability to transactivate promoters of a number of genes that are not targets of the wild-type protein. Certain p53 mutants are therefore considered to be gain-of-function mutants and appear to be promoting proliferation or transforming cells through their ability to alter the expression of novel sets of genes. Our goal is to identify genes that have altered expression in the presence of a specific mutant p53 (Arg to Trp mutation at codon 248) protein. Through examining differential gene expression in cells devoid of p53 expression and in cells that express high levels of mutant p53 protein, we have identified three ribosomal protein genes that have elevated expression in response to mutant p53. Consistent with these findings, the overexpression of a number of ribosomal protein genes in human tumors and evidence for their contribution to oncogenic transformation have been reported previously, although the mechanism leading to this overexpression has remained elusive. We show results that indicate that expression of these specific ribosomal protein genes is increased in the presence of the R248W p53 mutant, which provides a mechanism for their overexpression in human tumors.

  16. Role of the SUMO-interacting motif in HIPK2 targeting to the PML nuclear bodies and regulation of p53

    International Nuclear Information System (INIS)

    Sung, Ki Sa; Lee, Yun-Ah; Kim, Eui Tae; Lee, Seung-Rock; Ahn, Jin-Hyun; Choi, Cheol Yong

    2011-01-01

    Homeodomain-interacting protein kinase 2 (HIPK2) is a key regulator of various transcription factors including p53 and CtBP in the DNA damage signaling pathway. PML-nuclear body (NB) is required for HIPK2-mediated p53 phosphorylation at Ser46 and induction of apoptosis. Although PML-NB targeting of HIPK2 has been shown, much is not clear about the molecular mechanism of HIPK2 recruitment to PML-NBs. Here we show that HIPK2 colocalizes specifically with PML-I and PML-IV. Mutational analysis showed that HIPK2 recruitment to PML-IV-NBs is mediated by the SUMO-interaction motifs (SIMs) of both PML-IV and HIPK2. Wild-type HIPK2 associated with SUMO-conjugated PML-IV at a higher affinity than with un-conjugated PML-IV, while the association of a HIPK2 SIM mutant with SUMO-modified PML-IV was impaired. In colony formation assays, HIPK2 strongly suppressed cell proliferation, but HIPK2 SIM mutants did not. In addition, activation and phosphorylation of p53 at the Ser46 residue were impaired by HIPK2 SIM mutants. These results suggest that SIM-mediated HIPK2 targeting to PML-NBs is crucial for HIPK2-mediated p53 activation and induction of apoptosis.

  17. Inhibitor of apoptosis-stimulating protein of p53 (iASPP is required for neuronal survival after axonal injury.

    Directory of Open Access Journals (Sweden)

    Ariel M Wilson

    Full Text Available The transcription factor p53 mediates the apoptosis of post-mitotic neurons exposed to a wide range of stress stimuli. The apoptotic activity of p53 is tightly regulated by the apoptosis-stimulating proteins of p53 (ASPP family members: ASPP1, ASPP2 and iASPP. We previously showed that the pro-apoptotic members ASPP1 and ASPP2 contribute to p53-dependent death of retinal ganglion cells (RGCs. However, the role of the p53 inhibitor iASPP in the central nervous system (CNS remains to be elucidated. To address this, we asked whether iASPP contributes to the survival of RGCs in an in vivo model of acute optic nerve damage. We demonstrate that iASPP is expressed by injured RGCs and that iASPP phosphorylation at serine residues, which increase iASPP affinity towards p53, is significantly reduced following axotomy. We show that short interference RNA (siRNA-induced iASPP knockdown exacerbates RGC death, whereas adeno-associated virus (AAV-mediated iASPP expression promotes RGC survival. Importantly, our data also demonstrate that increasing iASPP expression in RGCs downregulates p53 activity and blocks the expression of pro-apoptotic targets PUMA and Fas/CD95. This study demonstrates a novel role for iASPP in the survival of RGCs, and provides further evidence of the importance of the ASPP family in the regulation of neuronal loss after axonal injury.

  18. p53 downregulates the Fanconi anaemia DNA repair pathway.

    Science.gov (United States)

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-04-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53(Δ31), a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53(Δ31/Δ31) fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53(Δ31/Δ31) fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop.

  19. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage

    Science.gov (United States)

    Maya, Ruth; Balass, Moshe; Kim, Seong-Tae; Shkedy, Dganit; Leal, Juan-Fernando Martinez; Shifman, Ohad; Moas, Miri; Buschmann, Thomas; Ronai, Ze'ev; Shiloh, Yosef; Kastan, Michael B.; Katzir, Ephraim; Oren, Moshe

    2001-01-01

    The p53 tumor suppressor protein, a key regulator of cellular responses to genotoxic stress, is stabilized and activated after DNA damage. The rapid activation of p53 by ionizing radiation and radiomimetic agents is largely dependent on the ATM kinase. p53 is phosphorylated by ATM shortly after DNA damage, resulting in enhanced stability and activity of p53. The Mdm2 oncoprotein is a pivotal negative regulator of p53. In response to ionizing radiation and radiomimetic drugs, Mdm2 undergoes rapid ATM-dependent phosphorylation prior to p53 accumulation. This results in a decrease in its reactivity with the 2A10 monoclonal antibody. Phage display analysis identified a consensus 2A10 recognition sequence, possessing the core motif DYS. Unexpectedly, this motif appears twice within the human Mdm2 molecule, at positions corresponding to residues 258–260 and 393–395. Both putative 2A10 epitopes are highly conserved and encompass potential phosphorylation sites. Serine 395, residing within the carboxy-terminal 2A10 epitope, is the major target on Mdm2 for phosphorylation by ATM in vitro. Mutational analysis supports the conclusion that Mdm2 undergoes ATM-dependent phosphorylation on serine 395 in vivo in response to DNA damage. The data further suggests that phosphorylated Mdm2 may be less capable of promoting the nucleo-cytoplasmic shuttling of p53 and its subsequent degradation, thereby enabling p53 accumulation. Our findings imply that activation of p53 by DNA damage is achieved, in part, through attenuation of the p53-inhibitory potential of Mdm2. PMID:11331603

  20. Punica granatum L. Fruit Aqueous Extract Suppresses Reactive Oxygen Species-Mediated p53/p65/miR-145 Expressions followed by Elevated Levels of irs-1 in Alloxan-Diabetic Rats.

    Science.gov (United States)

    Gharib, Ehsan; Montasser Kouhsari, Shideh; Izad, Maryam

    2018-01-01

    Reactive oxygen species (ROS) is an apoptosis inducer in pancreatic β-cells that stimulates p53/p65 mediated microRNA (miR)-145 expression. Punica granatum L. (pomegranate) is an antioxidant fruit that attenuates ROS generation. This study examines the effects of pomegranate fruit aqueous extract (PGE) on the levels of ROS, p53, p65, miR-145, and its target insulin receptor substrate 1 (irs-1) mRNA in Alloxan-diabetic male Wistar rats. In this experimental study, diabetic rats received different doses of PGE. The effects of the PGE polyphenols were examined through a long-term PGE treatment period model, followed by an evaluation of the plasma and tissue contents of free fatty acids (FFAs), triglycerides (TG), and glycogen compared with diabetic controls (DC) and normal controls (NC). We used real-time polymerase chain reaction (PCR) to investigate the modulation of p53, p65, miR-145, and irs-1 expression levels. There was a noticeable reduction in fasting blood glucose (FBG) and ROS generation compared to DC. We observed marked decreases in p53, p65, miR-145 expression levels followed by an elevated level of irs-1, which contributed to improvement in insulin sensitivity. PGE administration downregulated miR-145 levels in Alloxan-diabetic Wistar rats by suppression of ROS-mediated p53 and p65 overexpression. Copyright© by Royan Institute. All rights reserved.

  1. p53 specific (auto)immunity in mice

    NARCIS (Netherlands)

    Lauwen, Marjolein Monique

    2008-01-01

    Self-tolerance to p53 is a major potential limitation for the activation of the endogenous T-cell repertoire. So far, p53 specific CD8+ and CD4+ T-cell immunity has been described in cancer patients and healthy individuals. However, the restrictions of tolerance on the recruitment of p53 specific T

  2. A surrogate p53 reporter in Drosophila reveals the interaction of eIF4E and p53

    International Nuclear Information System (INIS)

    Corujo, G.; Campagno, R.; Rivera Pomar, R.; Ferrero, P.; Lu, W.J.

    2011-01-01

    eIF4E promotes translation upon binding the mRNA 5'cap and it is required for cell proliferation. p53 is a proapoptotic protein which is activated in response to DNA damage. There is evidence that suggests that eIF4E and p53 are connected in a mechanism that regulates their function. We propose a model for that such a mechanism to explain the equilibrium between apoptosis and cell proliferation. Our data shows a correlation between the overexpression of eIF4E and the suppression of apoptosis triggered by the overexpression of p53 in Drosophila imaginal discs. We also studied a reporter transgene which expresses GFP in response to p53 activation by gamma radiation. We could confirm that this p53 surrogate works in imaginal discs as well as in embryos. This provided us a tool to quantify the effect on the GFP signal by overexpression of eIF4E to confirm how these two proteins could interact in vivo. Our results suggest that p53 and eIF4E are indeed in an equilibrium that decides if a cell shall proliferate or die. (authors)

  3. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation

    Directory of Open Access Journals (Sweden)

    Po-Sheng Yang

    2015-01-01

    Full Text Available Antrodia camphorata (A. camphorata is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO rats. A selective occlusion of the middle cerebral artery (MCA with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day alone or combined with aspirin (5 mg/kg/day. To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS, haem oxygenase-1 (HO-1, and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P<0.001, iNOS (P<0.001, and Bax (P<0.01 in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day. Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P<0.01. Moreover, treatment of A. camphorata significantly (P<0.05 reduced fenton reaction-induced hydroxyl radical (OH• formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH• signals.

  4. A Novel In Vitro CypD-Mediated p53 Aggregation Assay Suggests a Model for Mitochondrial Permeability Transition by Chaperone Systems.

    Science.gov (United States)

    Lebedev, Ivan; Nemajerova, Alice; Foda, Zachariah H; Kornaj, Maja; Tong, Michael; Moll, Ute M; Seeliger, Markus A

    2016-10-09

    Tissue necrosis as a consequence of ischemia-reperfusion injury and oxidative damage is a leading cause of permanent disability and death worldwide. The complete mechanism by which cells undergo necrosis upon oxidative stress is not understood. In response to an oxidative insult, wild-type p53 has been implicated as a central regulatory component of the mitochondrial permeability transition (mPT), triggering necrosis. This process is associated with cellular stabilization and translocation of p53 into the mitochondrial matrix. Here, we probe the mechanism by which p53 activates the key mPT regulator cyclophilin D (CypD). We explore the involvement of Trap1, an Hsp90-related mitochondrial matrix protein and a member of the mitochondrial unfolded protein response, and its ability to suppress mPT in a p53-dependent manner. Our study finds that catalytically active CypD causes strong aggregation of wild-type p53 protein (both full-length and isolated DNA-binding domain) into amyloid-type fibrils in vitro. The responsible CypD residues for this activity were mapped by NMR to the active site amino acids R55, F60, F113, and W121. The data also present a new proline isomerization assay for CypD by monitoring the aggregation of p53 as an indicator of CypD activity. Moreover, we find that the inhibition of Trap1 by the mitochondria-specific HSP90 ATPase antagonist Gamitrinib strongly sensitizes primary mouse embryonic fibroblasts to mPT and permeability transition pore opening in a p53- and CypD-dependent manner. We propose a mechanism by which the influx of unfolded p53 into the mitochondrial matrix in response to oxidative stress indirectly activates the normally inhibited CypD by displacing it from Trap1 complexes. This activates CypD's isomerase activity. Liberated CypD then isomerizes multiple proteins including p53 (causing p53 aggregation) and the structural components of the mPTP pore, inducing pore opening. This working model can now be tested in the future

  5. The pro-survival function of p53 in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Kang, Mi Young; Jang, Eun Yeong; Kim, Jin Hong [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of)

    2014-11-15

    The rate of apoptosis and autophagy was variable with different p53 status after IR treatment of cells. The influence of p53 status on cell fate suggests a role of p53 in two fundamentally important cell biological pathways: autophagy and apoptosis. p53 coordinates cell cycle arrest and apoptosis to govern cell fate. This study was done to identify p53-mediated regulation of cell's fate. Autophagy induced by IR may prevent cells from undergoing apoptosis, implying an interlink modulation between autophagy and apoptosis. The rate of apoptosis and autophagy was determined with different p53 status after IR treatment of HeLa cells in this study. Our research on IR-induced cellular responses may provide new information about fate decision between the processes of apoptosis and autophagy.

  6. CD95 is part of a let-7/p53/miR-34 regulatory network.

    Directory of Open Access Journals (Sweden)

    Annika Hau

    Full Text Available The death receptor CD95 (APO-1/Fas mediates apoptosis induction upon ligation by its cognate ligand CD95L. Two types of CD95 signaling pathways have been identified, which are characterized by the absence (Type I or presence (Type II of mitochondrial involvement. Micro(miRNAs are small noncoding RNAs that negatively regulate gene expression. They are important regulators of differentiation processes and are found frequently deregulated in many human cancers. We recently showed that Type I cells express less of the differentiation marker miRNA let-7 and, hence, likely represent more advanced tumor cells than the let-7 high expressing Type II cells. We have now identified miR-34a as a selective marker for cells that are sensitive to CD95-mediated apoptosis. Both CD95 and miR-34a are p53 target genes, and consequently, both the sensitivity of cancer cells to CD95-mediated apoptosis and the ability to respond to p53 mediated DNA genotoxic stress are linked. Interestingly, while miR-34a was found to positively correlate with the ability of cells to respond to genotoxic stress, let-7 was negatively correlated. The expression level of CD95 inversely correlated with the expression of let-7 suggesting regulation of let-7 expression by CD95. To test a link between p53 and miR-34a, we altered the expression of CD95. This affected the ability of cells to activate p53 and to regulate miR-34a. Our data point to a novel regulatory network comprising p53, CD95, let-7, and miR-34a that affects cancer cell survival, differentiation, and sensitivity to apoptotic signals. The possible relevance of this regulatory network for cancer stem cells is discussed.

  7. Silica nanoparticles mediated neuronal cell death in corpus striatum of rat brain: implication of mitochondrial, endoplasmic reticulum and oxidative stress

    Science.gov (United States)

    Parveen, Arshiya; Rizvi, Syed Husain Mustafa; Mahdi, Farzana; Tripathi, Sandeep; Ahmad, Iqbal; Shukla, Rajendra K.; Khanna, Vinay K.; Singh, Ranjana; Patel, Devendra K.; Mahdi, Abbas Ali

    2014-11-01

    Extensive uses of silica nanoparticles (SiNPs) in biomedical and industrial fields have increased the risk of exposure, resulting concerns about their safety. We focussed on some of the safety aspects by studying neurobehavioural impairment, oxidative stress (OS), neurochemical and ultrastructural changes in corpus striatum (CS) of male Wistar rats exposed to 80-nm SiNPs. Moreover, its role in inducing mitochondrial and endoplasmic reticulum (ER) stress-mediated neuronal apoptosis was also investigated. The results demonstrated impairment in neurobehavioural indices, and a significant increase in lipid peroxide levels (LPO), hydrogen peroxide (H2O2), superoxide (O2 -) and protein carbonyl content, whereas there was a significant decrease in the activities of the enzymes, manganese superoxide dismutase (Mn SOD), glutathione peroxidase (GPx), catalase (CAT) and reduced glutathione (GSH) content, suggesting impaired antioxidant defence system. Protein (cytochrome c, Bcl-2, Bax, p53, caspase-3, caspase 12 and CHOP/Gadd153) and mRNA (Bcl-2, Bax, p53 and CHOP/Gadd153, cytochrome c) expression studies of mitochondrial and ER stress-related apoptotic factors suggested that both the cell organelles were involved in OS-mediated apoptosis in treated rat brain CS. Moreover, electron microscopic studies clearly showed mitochondrial and ER dysfunction. In conclusion, the result of the study suggested that subchronic SiNPs' exposure has the potential to alter the behavioural activity and also to bring about changes in biochemical, neurochemical and ultrastructural profiles in CS region of rat brain. Furthermore, we also report SiNPs-induced apoptosis in CS, through mitochondrial and ER stress-mediated signalling.

  8. Cycloheximide Can Induce Bax/Bak Dependent Myeloid Cell Death Independently of Multiple BH3-Only Proteins.

    Directory of Open Access Journals (Sweden)

    Katharine J Goodall

    Full Text Available Apoptosis mediated by Bax or Bak is usually thought to be triggered by BH3-only members of the Bcl-2 protein family. BH3-only proteins can directly bind to and activate Bax or Bak, or indirectly activate them by binding to anti-apoptotic Bcl-2 family members, thereby relieving their inhibition of Bax and Bak. Here we describe a third way of activation of Bax/Bak dependent apoptosis that does not require triggering by multiple BH3-only proteins. In factor dependent myeloid (FDM cell lines, cycloheximide induced apoptosis by a Bax/Bak dependent mechanism, because Bax-/-Bak-/- lines were profoundly resistant, whereas FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Addition of cycloheximide led to the rapid loss of Mcl-1 but did not affect the expression of other Bcl-2 family proteins. In support of these findings, similar results were observed by treating FDM cells with the CDK inhibitor, roscovitine. Roscovitine reduced Mcl-1 abundance and caused Bax/Bak dependent cell death, yet FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Therefore Bax/Bak dependent apoptosis can be regulated by the abundance of anti-apoptotic Bcl-2 family members such as Mcl-1, independently of several known BH3-only proteins.

  9. Battle Against Cancer: An Everlasting Saga of p53

    Directory of Open Access Journals (Sweden)

    Qian Hao

    2014-12-01

    Full Text Available Cancer is one of the most life-threatening diseases characterized by uncontrolled growth and spread of malignant cells. The tumor suppressor p53 is the master regulator of tumor cell growth and proliferation. In response to various stress signals, p53 can be activated and transcriptionally induces a myriad of target genes, including both protein-encoding and non-coding genes, controlling cell cycle progression, DNA repair, senescence, apoptosis, autophagy and metabolism of tumor cells. However, around 50% of human cancers harbor mutant p53 and, in the majority of the remaining cancers, p53 is inactivated through multiple mechanisms. Herein, we review the recent progress in understanding the molecular basis of p53 signaling, particularly the newly identified ribosomal stress—p53 pathway, and the development of chemotherapeutics via activating wild-type p53 or restoring mutant p53 functions in cancer. A full understanding of p53 regulation will aid the development of effective cancer treatments.

  10. Combining Oncolytic Virotherapy with p53 Tumor Suppressor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Christian Bressy

    2017-06-01

    Full Text Available Oncolytic virus (OV therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53 or another p53 family member (TP63 or TP73 were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.

  11. The contribution of p53 and Y chromosome long arm genes to regulation of apoptosis in mouse testis.

    Science.gov (United States)

    Lech, Tomasz; Styrna, Józefa; Kotarska, Katarzyna

    2018-03-01

    Apoptosis of excessive or defective germ cells is a natural process occurring in mammalian testes. Tumour suppressor protein p53 is involved in this process both in developing and adult male gonads. Its contribution to testicular physiology is known to be modified by genetic background. The aim of this study was to evaluate the combined influence of the p53 and Y chromosome long arm genes on male germ cell apoptosis. Knockout of the transformation related protein 53 (Trp53) gene was introduced into congenic strains: B10.BR (intact Y chromosome) and B10.BR-Ydel (Y chromosome with a deletion in the long arm). The level of apoptosis in the testes of 19-day-old and 3-month-old male mice was determined using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick-end labelling (TUNEL) method. The study revealed that although p53 is involved in germ cell apoptosis in peripubertal testes, this process can also be mediated by p53-independent mechanisms. However, activation of p53-independent apoptotic pathways in the absence of the p53 protein requires engagement of the multicopy Yq genes and was not observed in gonads of B10.BR-Ydel-p53-/- males. The role of Yq genes in the regulation of testicular apoptosis seems to be restricted to the initial wave of spermatogenesis and is not evident in adult gonads. The study confirmed, instead, that p53 does participate in spontaneous apoptosis in mature testes.

  12. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, Shashi; Oddi, Vineesha [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070 (India)

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  13. Activations of Both Extrinsic and Intrinsic Pathways in HCT 116 Human Colorectal Cancer Cells Contribute to Apoptosis through p53-Mediated ATM/Fas Signaling by Emilia sonchifolia Extract, a Folklore Medicinal Plant

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Lan

    2012-01-01

    Full Text Available Emilia sonchifolia (L. DC (Compositae, an herbaceous plant found in Taiwan and India, is used as folk medicine. The clinical applications include inflammation, rheumatism, cough, cuts fever, dysentery, analgesic, and antibacteria. The activities of Emilia sonchifolia extract (ESE on colorectal cancer cell death have not been fully investigated. The purpose of this study explored the induction of apoptosis and its molecular mechanisms in ESE-treated HCT 116 human colorectal cancer cells in vitro. The methanolic ESE was characterized, and γ-humulene was formed as the major constituent (63.86%. ESE induced cell growth inhibition in a concentration- and time-dependent response by MTT assay. Apoptotic cells (DNA fragmentation, an apoptotic catachrestic were found after ESE treatment by TUNEL assay and DNA gel electrophoresis. Alternatively, ESE stimulated the activities of caspase-3, -8, and -9 and their specific caspase inhibitors protected against ESE-induced cytotoxicity. ESE promoted the mitochondria-dependent and death-receptor-associated protein levels. Also, ESE increased ROS production and upregulated the levels of ATM, p53, and Fas in HCT 116 cells. Strikingly, p53 siRNA reversed ESE-reduced viability involved in p53-mediated ATM/Fas signaling in HCT 116 cells. In summary, our result is the first report suggesting that ESE may be potentially efficacious in the treatment of colorectal cancer.

  14. Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis.

    Science.gov (United States)

    Armata, Heather L; Golebiowski, Diane; Jung, Dae Young; Ko, Hwi Jin; Kim, Jason K; Sluss, Hayla K

    2010-12-01

    Ataxia telangiectasia (A-T) patients can develop multiple clinical pathologies, including neuronal degeneration, an elevated risk of cancer, telangiectasias, and growth retardation. Patients with A-T can also exhibit an increased risk of insulin resistance and type 2 diabetes. The ATM protein kinase, the product of the gene mutated in A-T patients (Atm), has been implicated in metabolic disease, which is characterized by insulin resistance and increased cholesterol and lipid levels, blood pressure, and atherosclerosis. ATM phosphorylates the p53 tumor suppressor on a site (Ser15) that regulates transcription activity. To test whether the ATM pathway that regulates insulin resistance is mediated by p53 phosphorylation, we examined insulin sensitivity in mice with a germ line mutation that replaces the p53 phosphorylation site with alanine. The loss of p53 Ser18 (murine Ser15) led to increased metabolic stress, including severe defects in glucose homeostasis. The mice developed glucose intolerance and insulin resistance. The insulin resistance correlated with the loss of antioxidant gene expression and decreased insulin signaling. N-Acetyl cysteine (NAC) treatment restored insulin signaling in late-passage primary fibroblasts. The addition of an antioxidant in the diet rendered the p53 Ser18-deficient mice glucose tolerant. This analysis demonstrates that p53 phosphorylation on an ATM site is an important mechanism in the physiological regulation of glucose homeostasis.

  15. Ursodeoxycholic acid protects cardiomyocytes against cobalt chloride induced hypoxia by regulating transcriptional mediator of cells stress hypoxia inducible factor 1α and p53 protein.

    Science.gov (United States)

    Mohamed, Anis Syamimi; Hanafi, Noorul Izzati; Sheikh Abdul Kadir, Siti Hamimah; Md Noor, Julina; Abdul Hamid Hasani, Narimah; Ab Rahim, Sharaniza; Siran, Rosfaiizah

    2017-10-01

    In hepatocytes, ursodeoxycholic acid (UDCA) activates cell signalling pathways such as p53, intracellular calcium ([Ca 2+ ] i ), and sphingosine-1-phosphate (S1P)-receptor via Gα i -coupled-receptor. Recently, UDCA has been shown to protect the heart against hypoxia-reoxygenation injury. However, it is not clear whether UDCA cardioprotection against hypoxia acts through a transcriptional mediator of cells stress, HIF-1α and p53. Therefore, in here, we aimed to investigate whether UDCA could protect cardiomyocytes (CMs) against hypoxia by regulating expression of HIF-1α, p53, [Ca 2+ ] i , and S1P-Gα i -coupled-receptor. Cardiomyocytes were isolated from newborn rats (0-2 days), and hypoxia was induced by using cobalt chloride (CoCl 2 ). Cardiomyocytes were treated with UDCA and cotreated with either FTY720 (S1P-receptor agonist) or pertussis toxin (PTX; Gα i inhibitor). Cells were subjected for proliferation assay, beating frequency, QuantiGene Plex assay, western blot, immunofluorescence, and calcium imaging. Our findings showed that UDCA counteracted the effects of CoCl 2 on cell viability, beating frequency, HIF-1α, and p53 protein expression. We found that these cardioprotection effects of UDCA were similar to FTY720, S1P agonist. Furthermore, we observed that UDCA protects CMs against CoCl 2 -induced [Ca 2+ ] i dynamic alteration. Pharmacological inhibition of the Gα i -sensitive receptor did not abolish the cardioprotection of UDCA against CoCl 2 detrimental effects, except for cell viability and [Ca 2+ ] i . Pertussis toxin is partially effective in inhibiting UDCA protection against CoCl 2 effects on CM cell viability. Interestingly, PTX fully inhibits UDCA cardioprotection on CoCl 2 -induced [Ca 2+ ] i dynamic changes. We conclude that UDCA cardioprotection against CoCl 2 -induced hypoxia is similar to FTY720, and its actions are not fully mediated by the Gα i -coupled protein sensitive pathways. Ursodeoxycholic acid is the most hydrophilic bile

  16. Recurrent pregnancy failure is associated with a polymorphism in the p53 tumour suppressor gene.

    Science.gov (United States)

    Pietrowski, Detlef; Bettendorf, Hertha; Riener, Eva-Katrin; Keck, Christoph; Hefler, Lukas A; Huber, Johannes C; Tempfer, Clemens

    2005-04-01

    The p53 tumour suppressor gene is a well-known factor regulating apoptosis in a wide variety of cells and tissues. Alterations in the p53 gene are among the most common genetic changes in human cancers. In addition, recent data provide evidence that p53 plays a critical role in mediating pregnancy by regulating steroid hormone activation. In idiopathic recurrent miscarriages (IRM), causes and associations are much debated as the exact pathophysiological mechanisms are unknown. In this study, we assess whether an established polymorphism in the p53 gene is associated with the occurrence of IRM. Genotyping was performed by PCR-based amplification of the p53 Arg and Pro variants at codon 72 in 175 cases of IRM and 143 controls. We observed a statistically significant association between carriage of the Pro allele and the occurrence of IRM (P = 0.03, odds ratio 1.49, confidence interval 1.04-2.14). Distribution of genotypes was in Hardy-Weinberg equilibrium. Our results indicate an over-representation of the Pro allele of the p53 gene in women with IRM, giving support to the theory that p53 has a potential role during pregnancy.

  17. Enrofloxacin enhances the effects of chemotherapy in canine osteosarcoma cells with mutant and wild-type p53.

    Science.gov (United States)

    York, D; Withers, S S; Watson, K D; Seo, K W; Rebhun, R B

    2017-09-01

    Adjuvant chemotherapy improves survival time in dogs receiving adequate local control for appendicular osteosarcoma, but most dogs ultimately succumb to metastatic disease. The fluoroquinolone antibiotic enrofloxacin has been shown to inhibit survival and proliferation of canine osteosarcoma cells in vitro. Others have reported that fluoroquinolones may modulate cellular responses to DNA damaging agents and that these effects may be differentially mediated by p53 activity. We therefore determined p53 status and activity in three canine osteosarcoma cell lines and examined the effects of enrofloxacin when used alone or in combination with doxorubicin or carboplatin chemotherapy. Moresco and Abrams canine osteosarcoma cell lines contained mutations in p53, while no mutations were identified in the D17 cells or in a normal canine osteoblast cell line. The addition of enrofloxacin to either doxorubicin or carboplatin resulted in further reductions in osteosarcoma cell viability; this effect was apparent regardless of p53 mutational status or downstream activity. © 2016 John Wiley & Sons Ltd.

  18. p53-dependent control of cell death by nicastrin: lack of requirement for presenilin-dependent gamma-secretase complex.

    Science.gov (United States)

    Pardossi-Piquard, Raphaëlle; Dunys, Julie; Giaime, Emilie; Guillot-Sestier, Marie-Victoire; St George-Hyslop, Peter; Checler, Frédéric; Alves da Costa, Cristine

    2009-04-01

    Nicastrin (NCT) is a component of the presenilin (PS)-dependent gamma-secretase complexes that liberate amyloid beta-peptides from the beta-Amyloid Precursor Protein. Several lines of evidence indicate that the members of these complexes could also contribute to the control of cell death. Here we show that over-expression of NCT increases the viability of human embryonic kidney (HEK293) cells and decreases staurosporine (STS)- and thapsigargin (TPS)-induced caspase-3 activation in various cell lines from human and neuronal origins by Akt-dependent pathway. NCT lowers p53 expression, transcriptional activity and promoter transactivation and reduces p53 phosphorylation. NCT-associated protection against STS-stimulated cell death was completely abolished by p53 deficiency. Conversely, the depletion of NCT drastically enhances STS-induced caspase-3 activation and p53 pathway and favored p53 nuclear translocation. We examined whether NCT protective function depends on PS-dependent gamma-secretase activity. First, a 29-amino acid deletion known to reduce NCT-dependent amyloid beta-peptide production did not affect NCT-associated protective phenotype. Second, NCT still reduces STS-induced caspase-3 activation in fibroblasts lacking PS1 and PS2. Third, the gamma-secretase inhibitor DFK167 did not affect NCT-mediated reduction of p53 activity. Altogether, our study indicates that NCT controls cell death via phosphoinositide 3-kinase/Akt and p53-dependent pathways and that this function remains independent of the activity and molecular integrity of the gamma-secretase complexes.

  19. [Punish or cherish: p53, metabolism and tumor suppression].

    Science.gov (United States)

    Albagli, Olivier

    2015-10-01

    The p53 gene is essential for tumor suppression, but how it does so remains unclear. Upon genotoxic or oncogenic stresses, increased p53 activity induces transient cell cycle arrest, senescence or apoptosis, the three cornerstones of the so-called triumvirate. Accordingly, it has long been thought that p53 suppresses tumorigenesis by somehow counteracting cell proliferation or survival. However, several recently described genetically modified mice indicate that p53 can suppress tumorigenesis without triggering these three responses. Rather, as an important mechanism for tumor suppression, these mutant mice point to the ability of p53 to prevent the Warburg effect, that is to dampen glycolysis and foster mitochondrial respiration. Interestingly, these metabolic functions of p53 rely, in part, on its "unstressed" (basal) expression, a feature shared by its mechanistically linked anti-oxydant function. Together, these "conservative" activities of p53 may prevent tumor initiation by promoting and maintaining a normal oxidative metabolism and hence underly the "daily" tumor suppression by p53 in most cells. Conversely, destructive activities elicited by high p53 levels and leading to senescence or apoptosis provide a shield against partially or overtly transformed cells. This last situation, although relatively infrequent throughout life, is usual in experimental settings, which could explain the disproportionally high number of data implicating the triumvirate in tumor suppression by p53. © 2015 médecine/sciences – Inserm.

  20. ZNF307, a novel zinc finger gene suppresses p53 and p21 pathway

    International Nuclear Information System (INIS)

    Li Jing; Wang Yuequn; Fan Xiongwei; Mo Xiaoyang; Wang Zequn; Li Yongqing; Yin Zhaochu; Deng Yun; Luo Na; Zhu Chuanbing; Liu Mingyao; Ma Qian; Ocorr, Karen; Yuan Wuzhou; Wu Xiushan

    2007-01-01

    We have cloned a novel KRAB-related zinc finger gene, ZNF307, encoding a protein of 545 aa. ZNF307 is conserved across species in evolution and is differentially expressed in human adult and fetal tissues. The fusion protein of EGFP-ZNF307 localizes in the nucleus. Transcriptional activity assays show ZNF307 suppresses transcriptional activity of L8G5-luciferase. Overexpressing ZNF307 in different cell lines also inhibits the transcriptional activities of p53 and p21. Moreover, ZNF307 works by reducing the p53 protein level and p53 protein reduction is achieved by increasing transcription of MDM2 and EP300. ZNF307 might suppress p53-p21 pathway through activating MDM2 and EP300 expression and inducing p53 degradation

  1. C/EBPβ represses p53 to promote cell survival downstream of DNA damage independent of oncogenic Ras and p19Arf

    Science.gov (United States)

    Ewing, SJ; Zhu, S; Zhu, F; House, JS; Smart, RC

    2013-01-01

    CCAAT/enhancer-binding protein-β (C/EBPβ) is a mediator of cell survival and tumorigenesis. When C/EBPβ−/− mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19Arf and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19Arf is dramatically elevated in C/EBPβ−/− epidermis and that C/EBPβ represses a p19Arf promoter reporter. To determine whether p19Arf is responsible for the proapoptotic phenotype in C/EBPβ−/− mice, C/EBPβ−/−;p19Arf−/− mice were generated. C/EBPβ−/−;p19Arf−/− mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19Arf is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPβ−/− epidermis, we generated K14-ER:Ras; C/EBPβ−/− mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPβ−/− mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPβ represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPβ may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents. PMID:18636078

  2. Prediction of P53 mutants (multiple sites transcriptional activity based on structural (2D&3D properties.

    Directory of Open Access Journals (Sweden)

    R Geetha Ramani

    Full Text Available Prediction of secondary site mutations that reinstate mutated p53 to normalcy has been the focus of intense research in the recent past owing to the fact that p53 mutants have been implicated in more than half of all human cancers and restoration of p53 causes tumor regression. However laboratory investigations are more often laborious and resource intensive but computational techniques could well surmount these drawbacks. In view of this, we formulated a novel approach utilizing computational techniques to predict the transcriptional activity of multiple site (one-site to five-site p53 mutants. The optimal MCC obtained by the proposed approach on prediction of one-site, two-site, three-site, four-site and five-site mutants were 0.775,0.341,0.784,0.916 and 0.655 respectively, the highest reported thus far in literature. We have also demonstrated that 2D and 3D features generate higher prediction accuracy of p53 activity and our findings revealed the optimal results for prediction of p53 status, reported till date. We believe detection of the secondary site mutations that suppress tumor growth may facilitate better understanding of the relationship between p53 structure and function and further knowledge on the molecular mechanisms and biological activity of p53, a targeted source for cancer therapy. We expect that our prediction methods and reported results may provide useful insights on p53 functional mechanisms and generate more avenues for utilizing computational techniques in biological data analysis.

  3. Dihydromyricetin promotes hepatocellular carcinoma regression via a p53 activation-dependent mechanism

    Science.gov (United States)

    Zhang, Qingyu; Liu, Jie; Liu, Bin; Xia, Juan; Chen, Nianping; Chen, Xiaofeng; Cao, Yi; Zhang, Chen; Lu, Caijie; Li, Mingyi; Zhu, Runzhi

    2014-04-01

    The development of antitumor chemotherapy drugs remains a key goal for oncologists, and natural products provide a vast resource for anti-cancer drug discovery. In the current study, we found that the flavonoid dihydromyricetin (DHM) exhibited antitumor activity against liver cancer cells, including primary cells obtained from hepatocellular carcinoma (HCC) patients. In contrast, DHM was not cytotoxic to immortalized normal liver cells. Furthermore, DHM treatment resulted in the growth inhibition and remission of xenotransplanted tumors in nude mice. Our results further demonstrated that this antitumor activity was caused by the activation of the p53-dependent apoptosis pathway via p53 phosphorylation at serine (15Ser). Moreover, our results showed that DHM plays a dual role in the induction of cell death when administered in combination with cisplatin, a common clinical drug that kills primary hepatoma cells but not normal liver cells.

  4. The adenovirus oncoprotein E1a stimulates binding of transcription factor ETF to transcriptionally activate the p53 gene.

    Science.gov (United States)

    Hale, T K; Braithwaite, A W

    1999-08-20

    Expression of the tumor suppressor protein p53 plays an important role in regulating the cellular response to DNA damage. During adenovirus infection, levels of p53 protein also increase. It has been shown that this increase is due not only to increased stability of the p53 protein but to the transcriptional activation of the p53 gene during infection. We demonstrate here that the E1a proteins of adenovirus are responsible for activating the mouse p53 gene and that both major E1a proteins, 243R and 289R, are required for complete activation. E1a brings about the binding of two cellular transcription factors to the mouse p53 promoter. One of these, ETF, binds to three upstream sites in the p53 promoter and one downstream site, whereas E2F binds to one upstream site in the presence of E1a. Our studies indicate that E2F binding is not essential for activation of the p53 promoter but that ETF is. Our data indicate the ETF site located downstream of the start site of transcription is the key site in conferring E1a responsiveness on the p53 promoter.

  5. SIGNALING TO THE P53 TUMOR SUPPRESSOR THROUGH PATHWAYS ACTIVATED BY GENOTOXIC AND NON-GENOTOXIC STRESSES.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2002-07-01

    The p53 tumor suppressor is a tetrameric transcription factor that is post-translational modified at {approx}18 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review the posttranslational modifications to p53 and the pathways that produce them in response to both genotoxic and non-genotoxic stresses.

  6. The absence of Ser389 phosphorylation in p53 affects the basal gene expression level of many p53-dependent genes and alters the biphasic response to UV exposure in mouse embryonic fibroblasts

    NARCIS (Netherlands)

    Bruins, Wendy; Bruning, Oskar; Jonker, Martijs J.; Zwart, Edwin; van der Hoeven, Tessa V.; Pennings, Jeroen L. A.; Rauwerda, Han; de Vries, Annemieke; Breit, Timo M.

    2008-01-01

    Phosphorylation is important in p53-mediated DNA damage responses. After UV irradiation, p53 is phosphorylated specifically at murine residue Ser389. Phosphorylation mutant p53.S389A cells and mice show reduced apoptosis and compromised tumor suppression after UV irradiation. We investigated the

  7. The Coordinated P53 and Estrogen Receptor Cis-Regulation at an FLT1 Promoter SNP Is Specific to Genotoxic Stress and Estrogenic Compound

    Science.gov (United States)

    Langen, Jan-Stephan; Schoenfelder, Gilbert; Resnick, Michael A.; Inga, Alberto

    2010-01-01

    Background Recently, we established that a C>T single nucleotide polymorphism (SNP) in the promoter of the VEGF receptor FLT1 gene generates a ½ site p53 response element (RE-T) that results in p53 responsiveness of the promoter. The transcriptional control required an estrogen receptor (ER) ½ site response element (ERE1) 225 nt upstream to the RE-T. Methodology/Principal Findings Here we report the identification of a second ER ½ site (ERE2) located 145 bp downstream of the RE-T and establish that both EREs can impact p53-mediated transactivation of FLT1-T in a manner that is cell type and ER level dependent. Gene reporter assays and ChIP experiments conducted in the breast cancer-derived MCF7 cells revealed that the ERE2 site was sufficient for p53-mediated ERα recruitment and transactivation of the FLT1-T promoter/reporter construct. Surprisingly, unlike the case for other p53 target promoters, p53-mediated transactivation of FLT1-T constructs or expression of the endogenous FLT1 gene, as well as binding of p53 and ER at the promoter constructs, was inducible by doxorubicin but not by 5-fluorouracil. Furthermore, ER activity at FLT1-T was differentially affected by ER ligands, compared to a control TFF1/pS2 ER target promoter. The p53-related transcription factors (TFs) p73 and p63 had no effect on FLT1 transactivation. Conclusions/Significance We establish a new dimension to the p53 master regulatory network where p53-mediated transcription from a ½ site RE can be determined by ER binding at one or more cis-acting EREs in manner that is dependent on level of ER protein, the type of ER ligand and the specific p53-inducing agent. PMID:20422012

  8. Targeting p53 by small molecules in hematological malignancies

    OpenAIRE

    Saha, Manujendra N; Qiu, Lugui; Chang, Hong

    2013-01-01

    p53 is a powerful tumor suppressor and is an attractive cancer therapeutic target. A breakthrough in cancer research came from the discovery of the drugs which are capable of reactivating p53 function. Most anti-cancer agents, from traditional chemo- and radiation therapies to more recently developed non-peptide small molecules exert their effects by enhancing the anti-proliferative activities of p53. Small molecules such as nutlin, RITA, and PRIMA-1 that can activate p53 have shown their ant...

  9. Drug resistance to inhibitors of the human double minute-2 E3 ligase is mediated by point mutations of p53, but can be overcome with the p53 targeting agent RITA.

    Science.gov (United States)

    Jones, Richard J; Bjorklund, Chad C; Baladandayuthapani, Veerabhadran; Kuhn, Deborah J; Orlowski, Robert Z

    2012-10-01

    The human double minute (HDM)-2 E3 ubiquitin ligase plays a key role in p53 turnover and has been validated preclinically as a target in multiple myeloma (MM) and mantle cell lymphoma (MCL). HDM-2 inhibitors are entering clinical trials, and we therefore sought to understand potential mechanisms of resistance in lymphoid models. Wild-type p53 H929 MM and Granta-519 MCL cells resistant to MI-63 or Nutlin were generated by exposing them to increasing drug concentrations. MI-63-resistant H929 and Granta-519 cells were resistant to Nutlin, whereas Nutlin-resistant cells displayed cross-resistance to MI-63. These cells also showed cross-resistance to bortezomib, doxorubicin, cisplatin, and melphalan, but remained sensitive to the small molecule inhibitor RITA (reactivation of p53 and induction of tumor cell apoptosis). HDM-2 inhibitor-resistant cells harbored increased p53 levels, but neither genotoxic nor nongenotoxic approaches to activate p53 induced HDM-2 or p21. Resequencing revealed wild-type HDM-2, but mutations were found in the p53 DNA binding and dimerization domains. In resistant cells, RITA induced a G(2)-M arrest, upregulation of p53 targets HDM-2, PUMA, and NOXA, and PARP cleavage. Combination regimens with RITA and MI-63 resulted in enhanced cell death compared with RITA alone. These findings support the possibility that p53 mutation could be a primary mechanism of acquired resistance to HDM-2 inhibitors in MCL and MM. Furthermore, they suggest that simultaneous restoration of p53 function and HDM-2 inhibition is a rational strategy for clinical translation.

  10. Loss of p53 induces M-phase retardation following G2 DNA damage checkpoint abrogation.

    Science.gov (United States)

    Minemoto, Yuzuru; Uchida, Sanae; Ohtsubo, Motoaki; Shimura, Mari; Sasagawa, Toshiyuki; Hirata, Masato; Nakagama, Hitoshi; Ishizaka, Yukihito; Yamashita, Katsumi

    2003-04-01

    Most cell lines that lack functional p53 protein are arrested in the G2 phase of the cell cycle due to DNA damage. When the G2 checkpoint is abrogated, these cells are forced into mitotic catastrophe. A549 lung adenocarcinoma cells, in which p53 was eliminated with the HPV16 E6 gene, exhibited efficient arrest in the G2 phase when treated with adriamycin. Administration of caffeine to G2-arrested cells induced a drastic change in cell phenotype, the nature of which depended on the status of p53. Flow cytometric and microscopic observations revealed that cells that either contained or lacked p53 resumed their cell cycles and entered mitosis upon caffeine treatment. However, transit to the M phase was slower in p53-negative cells than in p53-positive cells. Consistent with these observations, CDK1 activity was maintained at high levels, along with stable cyclin B1, in p53-negative cells. The addition of butyrolactone I, which is an inhibitor of CDK1 and CDK2, to the p53-negative cells reduced the floating round cell population and induced the disappearance of cyclin B1. These results suggest a relationship between the p53 pathway and the ubiquitin-mediated degradation of mitotic cyclins and possible cross-talk between the G2-DNA damage checkpoint and the mitotic checkpoint.

  11. Screening of medicinal plant phytochemicals as natural antagonists of p53-MDM2 interaction to reactivate p53 functioning.

    Science.gov (United States)

    Riaz, Muhammad; Ashfaq, Usman A; Qasim, Muhammad; Yasmeen, Erum; Ul Qamar, Muhammad T; Anwar, Farooq

    2017-10-01

    In most types of cancer, overexpression of murine double minute 2 (MDM2) often leads to inactivation of p53. The crystal structure of MDM2, with a 109-residue amino-terminal domain, reveals that MDM2 has a core hydrophobic region to which p53 binds as an amphipathic α helix. The interface depends on the steric complementarity between MDM2 and the hydrophobic region of p53. Especially, on p53's triad, amino acids Phe19, Trp23 and Leu26 bind to the MDM2 core. Results from studies suggest that the structural motif of both p53 and MDM2 can be attributed to similarities in the amphipathic α helix. Thus, in the current investigation it is hypothesized that the similarity in the structural motif might be the cause of p53 inactivation by MDM2. Hence, molecular docking and phytochemical screening approaches are appraised to inhibit the hydrophobic cleft of MDM2 and to stop p53-MDM2 interaction, resulting in reactivation of p53 activity. For this purpose, a library of 2295 phytochemicals were screened against p53-MDM2 to find potential candidates. Of these, four phytochemicals including epigallocatechin gallate, alvaradoin M, alvaradoin E and nordihydroguaiaretic acid were found to be potential inhibitors of p53-MDM2 interaction. The screened phytochemicals, derived from natural extracts, may have negligible side effects and can be explored as potent antagonists of p53-MDM2 interactions, resulting in reactivation of the normal transcription of p53.

  12. Epstein-Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities

    International Nuclear Information System (INIS)

    Yi Fuming; Saha, Abhik; Murakami, Masanao; Kumar, Pankaj; Knight, Jason S.; Cai Qiliang; Choudhuri, Tathagata; Robertson, Erle S.

    2009-01-01

    The p53 tumor suppressor gene is one of the most commonly mutated genes in human cancers and the corresponding encoded protein induces apoptosis or cell-cycle arrest at the G1/S checkpoint in response to DNA damage. To date, previous studies have shown that antigens encoded by human tumor viruses such as SV40 large T antigen, adenovirus E1A and HPV E6 interact with p53 and disrupt its functional activity. In a similar fashion, we now show that EBNA3C, one of the EBV latent antigens essential for the B-cell immortalization in vitro, interacts directly with p53. Additionally, we mapped the interaction of EBNA3C with p53 to the C-terminal DNA-binding and the tetramerization domain of p53, and the region of EBNA3C responsible for binding to p53 was mapped to the N-terminal domain of EBNA3C (residues 130-190), previously shown to interact with a number of important cell-cycle components, specifically SCF Skp2 , cyclin A, and cMyc. Furthermore, we demonstrate that EBNA3C substantially represses the transcriptional activity of p53 in luciferase based reporter assays, and rescues apoptosis induced by ectopic p53 expression in SAOS-2 (p53 -/- ) cells. Interestingly, we also show that the DNA-binding ability of p53 is diminished in the presence of EBNA3C. Thus, the interaction between the p53 and EBNA3C provides new insights into the mechanism(s) by which the EBNA3C oncoprotein can alter cellular gene expression in EBV associated human cancers.

  13. POSTRANSLATIONAL MODIFICATIONS OF P53: UPSTREAM SIGNALING PATHWAYS.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2003-10-23

    The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at >20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and non-genotoxic stresses result in p53 posttranslational modifications.

  14. Identification of Bax-Interacting Proteins in Oligodendrocyte Progenitors during Glutamate Excitotoxicity and Perinatal Hypoxia–Ischemia

    Directory of Open Access Journals (Sweden)

    Sopio Simonishvili

    2013-11-01

    Full Text Available OPC (oligodendrocyte progenitor cell death contributes significantly to the pathology and functional deficits following hypoxic-ischemic injury in the immature brain and to deficits resulting from demyelinating diseases, trauma and degenerative disorders in the adult CNS. Glutamate toxicity is a major cause of oligodendroglial death in diverse CNS disorders, and previous studies have demonstrated that AMPA/kainate receptors require the pro-apoptotic protein Bax in OPCs undergoing apoptosis. The goal of the present study was to define the pro-apoptotic and anti-apoptotic effectors that regulate Bax in healthy OPCs and after exposure to excess glutamate in vitro and following H–I (hypoxia–ischemia in the immature rat brain. We show that Bax associates with a truncated form of Bid, a BH3-only domain protein, subsequent to glutamate treatment. Furthermore, glutamate exposure reduces Bax association with the anti-apoptotic Bcl family member, Bcl-xL. Cell fractionation studies demonstrated that both Bax and Bid translocate from the cytoplasm to mitochondria during the early stages of cell death consistent with a role for Bid as an activator, whereas Bcl-xL, which normally complexes with both Bax and Bid, disassociates from these complexes when OPCs are exposed to excess glutamate. Bax remained unactivated in the presence of insulin-like growth factor-1, and the Bcl-xL complexes were protected. Our data similarly demonstrate loss of Bcl-xL–Bax association in white matter following H–I and implicate active Bad in Bax-mediated OPC death. To identify other Bax-binding partners, we used proteomics and identified cofilin as a Bax-associated protein in OPCs. Cofilin and Bax associated in healthy OPCs, whereas the Bax–cofilin association was disrupted during glutamate-induced OPC apoptosis.

  15. Notch1/3 and p53/p21 are a potential therapeutic target for APS-induced apoptosis in non-small cell lung carcinoma cell lines.

    Science.gov (United States)

    Zhang, Jing-Xi; Han, Yi-Ping; Bai, Chong; Li, Qiang

    2015-01-01

    Previous studies have shown that Astragalus polysaccharide (APS) can be applied to anti-cancer. However, the mechanism by which APS mediate this effect is unclear. In the present study, APS-mediated NSCLC cell apoptosis was investigated through the regulation of the notch signaling pathway. The cell viability was detected by the CCK8 assay. The mRNA and protein expression of notch1/3 and tumor suppressors were analyzed by RT-PCR and western blotting, respectively. The mRNA and protein of notch1 and notch3 were significantly up-regulated in tumor tissues as compared to non-tumor adjacent tissues. Treatment of human NSCLC cells with APS induced cell death in a dose-and time-dependent manner by using CCK8 assay. The mRNA and protein expression of notch1 and notch3 were significantly lower in NSCLC cells with APS treatment than that in control group. Moreover, western blotting analysis showed that treatment of H460 cells with APS significantly increased the pro-apoptotic Bax and caspase 8 levels, decreased the anti-apoptotic Bcl-2 level. Furthermore, p53, p21 and p16 were obviously up-regulated by APS treatment in H460 cell. This study demonstrated that APS-treated could inhibit proliferation and promote cell apoptosis, at least partially, through suppressing the expression of notch1 and notch3 and up-regulating the expression of tumor suppressors in H460 NSCLC cell lines.

  16. Mutant p53 perturbs DNA replication checkpoint control through TopBP1 and Treslin.

    Science.gov (United States)

    Liu, Kang; Lin, Fang-Tsyr; Graves, Joshua D; Lee, Yu-Ju; Lin, Weei-Chin

    2017-05-09

    Accumulating evidence supports the gain-of-function of mutant forms of p53 (mutp53s). However, whether mutp53 directly perturbs the DNA replication checkpoint remains unclear. Previously, we have demonstrated that TopBP1 forms a complex with mutp53s and mediates their gain-of-function through NF-Y and p63/p73. Akt phosphorylates TopBP1 and induces its oligomerization, which inhibits its ATR-activating function. Here we show that various contact and conformational mutp53s bypass Akt to induce TopBP1 oligomerization and attenuate ATR checkpoint response during replication stress. The effect on ATR response caused by mutp53 can be exploited in a synthetic lethality strategy, as depletion of another ATR activator, DNA2, in mutp53-R273H-expressing cancer cells renders cells hypersensitive to cisplatin. Expression of mutp53-R273H also makes cancer cells more sensitive to DNA2 depletion or DNA2 inhibitors. In addition to ATR-activating function during replication stress, TopBP1 interacts with Treslin in a Cdk-dependent manner to initiate DNA replication during normal growth. We find that mutp53 also interferes with TopBP1 replication function. Several contact, but not conformational, mutp53s enhance the interaction between TopBP1 and Treslin and promote DNA replication despite the presence of a Cdk2 inhibitor. Together, these data uncover two distinct mechanisms by which mutp53 enhances DNA replication: ( i ) Both contact and conformational mutp53s can bind TopBP1 and attenuate the checkpoint response to replication stress, and ( ii ) during normal growth, contact (but not conformational) mutp53s can override the Cdk2 requirement to promote replication by facilitating the TopBP1/Treslin interaction.

  17. P53 family members modulate the expression of PRODH, but not PRODH2, via intronic p53 response elements.

    Directory of Open Access Journals (Sweden)

    Ivan Raimondi

    Full Text Available The tumor suppressor p53 was previously shown to markedly up-regulate the expression of the PRODH gene, encoding the proline dehydrogenase (PRODH enzyme, which catalyzes the first step in proline degradation. Also PRODH2, which degrades 4-hydroxy-L-proline, a product of protein (e.g. collagen catabolism, was recently described as a p53 target. Here, we confirmed p53-dependent induction of endogenous PRODH in response to genotoxic damage in cell lines of different histological origin. We established that over-expression of TAp73β or TAp63β is sufficient to induce PRODH expression in p53-null cells and that PRODH expression parallels the modulation of endogenous p73 by genotoxic drugs in several cell lines. The p53, p63, and p73-dependent transcriptional activation was linked to specific intronic response elements (REs, among those predicted by bioinformatics tools and experimentally validated by a yeast-based transactivation assay. p53 occupancy measurements were validated in HCT116 and MCF7 human cell lines. Conversely, PRODH2 was not responsive to p63 nor p73 and, at best, could be considered a weak p53 target. In fact, minimal levels of PRODH2 transcript induction by genotoxic stress was observed exclusively in one of four p53 wild-type cell lines tested. Consistently, all predicted p53 REs in PRODH2 were poor matches to the p53 RE consensus and showed very weak responsiveness, only to p53, in the functional assay. Taken together, our results highlight that PRODH, but not PRODH2, expression is under the control of p53 family members, specifically p53 and p73. This supports a deeper link between proteins of the p53-family and metabolic pathways, as PRODH modulates the balance of proline and glutamate levels and those of their derivative alpha-keto-glutarate (α-KG under normal and pathological (tumor conditions.

  18. Polycomb Group Protein PHF1 Regulates p53-dependent Cell Growth Arrest and Apoptosis*

    Science.gov (United States)

    Yang, Yang; Wang, Chenji; Zhang, Pingzhao; Gao, Kun; Wang, Dejie; Yu, Hongxiu; Zhang, Ting; Jiang, Sirui; Hexige, Saiyin; Hong, Zehui; Yasui, Akira; Liu, Jun O.; Huang, Haojie; Yu, Long

    2013-01-01

    Polycomb group protein PHF1 is well known as a component of a novel EED-EZH2·Polycomb repressive complex 2 complex and plays important roles in H3K27 methylation and Hox gene silencing. PHF1 is also involved in the response to DNA double-strand breaks in human cells, promotes nonhomologous end-joining processes through interaction with Ku70/Ku80. Here, we identified another function of PHF1 as a potential p53 pathway activator in a pathway screen using luminescence reporter assay. Subsequent studies showed PHF1 directly interacts with p53 proteins both in vivo and in vitro and co-localized in nucleus. PHF1 binds to the C-terminal regulatory domain of p53. Overexpression of PHF1 elevated p53 protein level and prolonged its turnover. Knockdown of PHF1 reduced p53 protein level and its target gene expression both in normal state and DNA damage response. Mechanically, PHF1 protects p53 proteins from MDM2-mediated ubiquitination and degradation. Furthermore, we showed that PHF1 regulates cell growth arrest and etoposide-induced apoptosis in a p53-dependent manner. Finally, PHF1 expression was significantly down-regulated in human breast cancer samples. Taken together, we establish PHF1 as a novel positive regulator of the p53 pathway. These data shed light on the potential roles of PHF1 in tumorigenesis and/or tumor progression. PMID:23150668

  19. 40 Years of Research Put p53 in Translation

    Science.gov (United States)

    Marcel, Virginie; Nguyen Van Long, Flora; Diaz, Jean-Jacques

    2018-01-01

    Since its discovery in 1979, p53 has shown multiple facets. Initially the tumor suppressor p53 protein was considered as a stress sensor able to maintain the genome integrity by regulating transcription of genes involved in cell cycle arrest, apoptosis and DNA repair. However, it rapidly came into light that p53 regulates gene expression to control a wider range of biological processes allowing rapid cell adaptation to environmental context. Among them, those related to cancer have been extensively documented. In addition to its role as transcription factor, scattered studies reported that p53 regulates miRNA processing, modulates protein activity by direct interaction or exhibits RNA-binding activity, thus suggesting a role of p53 in regulating several layers of gene expression not restricted to transcription. After 40 years of research, it appears more and more clearly that p53 is strongly implicated in translational regulation as well as in the control of the production and activity of the translational machinery. Translation control of specific mRNAs could provide yet unsuspected capabilities to this well-known guardian of the genome.

  20. INGN 201: Ad-p53, Ad5CMV-p53, Adenoviral p53, INGN 101, p53 gene therapy--Introgen, RPR/INGN 201.

    Science.gov (United States)

    2003-01-01

    Introgen's adenoviral p53 gene therapy [INGN 201, ADVEXIN] is in clinical development for the treatment of various cancers. The p53 tumour suppressor gene is deleted or mutated in many tumour cells and is one of the most frequently mutated genes in human tumours. INGN 201 has been shown to kill cancer cells directly. In August 2002, Introgen announced plans to file an application for INGN 201 with the European Agency for the Evaluation of Medicinal Products (EMEA) for the treatment of head and neck cancer; the European filing will be submitted simultaneously with the previously scheduled (planned for 2004) submission of a Biologics License Application (BLA) for ADVEXIN to the US FDA. On 20 February 2003, INGN 201 received orphan drug designation from the US FDA for head and neck cancer. INGN 201 is available for licensing although Introgen favours retaining partial or full rights to the therapy in the US. Introgen Therapeutics and its collaborative partner for the p53 programme, Aventis Gencell, have been developing p53 gene therapy products. The agreement was originally signed by Rhône-Poulenc Rorer's Gencell division, which became Aventis Gencell after Rhône-Poulenc Rorer merged with Hoechst Marion Roussel to form Aventis Pharma. According to the original agreement, Introgen was responsible for phase I and preclinical development in North America, while Aventis Gencell was responsible for clinical trials conducted in Europe and for clinical trials in North America beyond phase I. In April 2001, Aventis Gencell and Introgen restructured their existing collaboration agreement for p53 gene therapy products. Aventis Gencell indicated that p53 research had suffered from internal competition for resources and was pulling back from its development agreement with Introgen for p53 gene therapy products. Introgen will assume responsibility for worldwide development of all p53 programmes and will obtain exclusive worldwide commercial rights to p53-based gene therapy

  1. Hormonal control of p53 and chemoprevention

    International Nuclear Information System (INIS)

    Jerry, D Joseph; Minter, Lisa M; Becker, Klaus A; Blackburn, Anneke C

    2002-01-01

    Improvements in the detection and treatment of breast cancer have dramatically altered its clinical course and outcome. However, prevention of breast cancer remains an elusive goal. Parity, age of menarche, and age at menopause are major risk factors drawing attention to the important role of the endocrine system in determining the risk of breast cancer, while heritable breast cancer susceptibility syndromes have implicated tumor suppressor genes as important targets. Recent work demonstrating hormonal modulation of the p53 tumor suppressor pathway draws together these established determinants of risk to provide a model of developmental susceptibility to breast cancer. In this model, the mammary epithelium is rendered susceptible due to impaired p53 activity during specific periods of mammary gland development, but specific endocrine stimuli serve to activate p53 function and to mitigate this risk. The results focus attention on p53 as a molecular target for therapies to reduce the risk of breast cancer

  2. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras

    Science.gov (United States)

    Acin, Sergio; Li, Zhongyou; Mejia, Olga; Roop, Dennis R; El-Naggar, Adel K; Caulin, Carlos

    2015-01-01

    Mutations in p53 occur in over 50% of the human head and neck squamous cell carcinomas (SCCHN). The majority of these mutations result in the expression of mutant forms of p53, rather than deletions in the p53 gene. Some p53 mutants are associated with poor prognosis in SCCHN patients. However, the molecular mechanisms that determine the poor outcome of cancers carrying p53 mutations are unknown. Here, we generated a mouse model for SCCHN and found that activation of the endogenous p53 gain-of-function mutation p53R172H, but not deletion of p53, cooperates with oncogenic K-ras during SCCHN initiation, accelerates oral tumour growth, and promotes progression to carcinoma. Mechanistically, expression profiling of the tumours that developed in these mice and studies using cell lines derived from these tumours determined that mutant p53 induces the expression of genes involved in mitosis, including cyclin B1 and cyclin A, and accelerates entry in mitosis. Additionally, we discovered that this oncogenic function of mutant p53 was dependent on K-ras because the expression of cyclin B1 and cyclin A decreased, and entry in mitosis was delayed, after suppressing K-ras expression in oral tumour cells that express p53R172H. The presence of double-strand breaks in the tumours suggests that oncogene-dependent DNA damage resulting from K-ras activation promotes the oncogenic function of mutant p53. Accordingly, DNA damage induced by doxorubicin also induced increased expression of cyclin B1 and cyclin A in cells that express p53R172H. These findings represent strong in vivo evidence for an oncogenic function of endogenous p53 gain-of-function mutations in SCCHN and provide a mechanistic explanation for the genetic interaction between oncogenic K-ras and mutant p53. PMID:21952947

  3. P53 autoantibodies in 1006 patients followed up for breast cancer

    International Nuclear Information System (INIS)

    Metcalfe, Su; Wheeler, Terence K; Picken, Sheila; Negus, Susanne; Jo Milner, A

    2000-01-01

    to p53 would reflect tumour behaviour. However, we found that the presence or absence of p53 autoantibodies was not predictive of presence or absence of recurrent disease. There was an equivalent incidence of active disease at the time of sampling in both the autoantibody-negative and autoantibody-positive groups, these being 25.2 and 28.7%, respectively. Thus, humoral immune activity against p53 appeared to be relatively restricted to a subgroup of patients in whom, once an autoantibody response had been generated, antibody was likely to persist regardless of tumour behaviour. Conversely, where no detectable p53 autoantibody was present at the time of primary diagnosis, these patients remained similarly negative for antibody, irrespective of subsequent disease activity (Table 3). In contrast to shed markers that correlate with tumour mass, such as CA15.3 for cancer of the breast, any tumour-related immune response will be subject to complex regulation. Autoantibody responses to p53 will require appropriate primary immunization; initial low-dose antigen exposure may induce immune tolerance and lack of response. Higher antigen doses may activate either antibody-mediated immunity, or cellular immunity. In breast cancer patients, our results suggest that, once an active humoral response against p53 is established, then this remains active. This persistent humoral reaction may be driven by persistent antigenic stimulation by p53 protein derived from overexpression of p53 at distant metastatic sites; alternatively, irradiated normal tissue may be a source of continued antigenic stimulation, because a long-term side effect of radiation therapy is an increased expression of p53 in normal breast tissue that persists for several years [12]. Since the great majority of our total patient cohort had received radiotherapy, humoral immunity to p53 associated with primary disease might persist, even in those patients who enter remission, due to tumour-independent antigenic

  4. RITA enhances chemosensivity of pre-B ALL cells to doxorubicin by inducing p53-dependent apoptosis.

    Science.gov (United States)

    Kazemi, Ahmad; Safa, Majid; Shahbazi, Atefeh

    2011-07-01

    The use of low-molecular-weight, non-peptidic molecules that disrupt the interaction between the p53 tumor suppressor and its negative regulator MDM2 has provided a promising alternative for the treatment of different types of cancer. Here, we used small-molecule reactivation of p53 and induction of tumor cell apoptosis (RITA) to sensitize leukemic NALM-6 cells to doxorubicin by upregulating p53 protein. RITA alone effectively inhibited NALM-6 cells viability in dose-dependent manner as measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay and induced apoptosis as evaluated by flow cytometry, whereas RITA in combination with doxorubicin enhanced NALM-6 cells to doxorubicin-sensitivity and promoted doxorubicin induced apoptosis. Levels of p53 protein and its proapoptotic target genes, quantified by western blot and real-time PCR respectively, showed that expression of p53 was significantly increased after RITA treatment. Using p53 inhibitors PFT-alpha and PFT-mu it was shown that p53-mediated apoptosis induced by RITA can be regulated by both p53-transcription-dependent and -independent pathways. Moreover, RITA-induced apoptosis was accompanied by the activation of caspase-3 and PARP cleavage. Therefore, exploiting synergistic effects between RITA and chemotherapeutics might be an effective clinical strategy for leukemia chemotherapy.

  5. The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy

    International Nuclear Information System (INIS)

    Bristow, Robert G.; Benchimol, Samuel; Hill, Richard P.

    1996-01-01

    Background and purpose: Experimental studies have implicated the normal or 'wild type' p53 protein (i.e. WTp53) in the cellular response to ionizing radiation and other DNA damaging agents. Whether altered WTp53 protein function can lead to changes in cellular radiosensitivity and/or clinical radiocurability remains an area of ongoing study. In this review, we describe the potential implications of altered WTp53 protein function in normal and tumour cells as it relates to clinical radiotherapy, and describe novel treatment strategies designed to re-institute WTp53 protein function as a means of sensitizing cells to ionizing radiation. Methods and Materials: A number of experimental and clinical studies are critically reviewed with respect to the role of the p53 protein as a determinant of cellular oncogenesis, genomic stability, apoptosis, DNA repair and radioresponse in normal and transformed mammalian cells. Results: In normal fibroblasts, exposure to ionizing radiation leads to a G1 cell cycle delay (i.e. a 'G1 checkpoint') as a result of WTp53-mediated inhibition of G1-cyclin-kinase and retinoblastoma (pRb) protein function. The G1 checkpoint response is absent in tumour cells which express a mutant form of the p53 protein (i.e. MTp53), leading to acquired radioresistance in vitro. Depending on the cell type studied, this increase in cellular radiation survival can be mediated through decreased radiation-induced apoptosis, or altered kinetics of the radiation-induced G1 checkpoint. Recent biochemical studies support an indirect role for the p53 protein in both nucleotide excision and recombinational DNA repair pathways. However, based on clinicopathologic data, it remains unclear as to whether WTp53 protein function can predict for human tumour radiocurability and normal tissue radioresponse. Conclusions: Alterations in cell cycle control secondary to aberrant WTp53 protein function may be clinically significant if they lead to the acquisition of mutant

  6. Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships.

    Science.gov (United States)

    Mantovani, Fiamma; Zannini, Alessandro; Rustighi, Alessandra; Del Sal, Giannino

    2015-10-01

    The p53 protein family, comprising p53, p63 and p73, is primarily involved in preserving genome integrity and preventing tumor onset, and also affects a range of physiological processes. Signal-dependent modifications of its members and of other pathway components provide cells with a sophisticated code to transduce a variety of stress signaling into appropriate responses. TP53 mutations are highly frequent in cancer and lead to the expression of mutant p53 proteins that are endowed with oncogenic activities and sensitive to stress signaling. p53 family proteins have unique structural and functional plasticity, and here we discuss the relevance of prolyl-isomerization to actively shape these features. The anti-proliferative functions of the p53 family are carefully activated upon severe stress and this involves the interaction with prolyl-isomerases. In particular, stress-induced stabilization of p53, activation of its transcriptional control over arrest- and cell death-related target genes and of its mitochondrial apoptotic function, as well as certain p63 and p73 functions, all require phosphorylation of specific S/T-P motifs and their subsequent isomerization by the prolyl-isomerase Pin1. While these functions of p53 counteract tumorigenesis, under some circumstances their activation by prolyl-isomerases may have negative repercussions (e.g. tissue damage induced by anticancer therapies and ischemia-reperfusion, neurodegeneration). Moreover, elevated Pin1 levels in tumor cells may transduce deregulated phosphorylation signaling into activation of mutant p53 oncogenic functions. The complex repertoire of biological outcomes induced by p53 finds mechanistic explanations, at least in part, in the association between prolyl-isomerases and the p53 pathway. This article is part of a Special Issue entitled Proline-directed foldases: Cell signaling catalysts and drug targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. P53-mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2013-02-01

    Full Text Available Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling vector susceptibility to pathogens has profound implications for developing novel strategies for controlling insect-transmitted infectious diseases. The fact that many viruses carry genes that have anti-apoptotic activity has long led to the hypothesis that induction of apoptosis could be a fundamental innate immune response. However, the cellular mechanisms mediating the induction of apoptosis following viral infection remained enigmatic, which has prevented experimental verification of the functional significance of apoptosis in limiting viral infection in insects. In addition, studies with cultured insect cells have shown that there is sometimes a lack of apoptosis, or the pro-apoptotic response happens relatively late, thus casting doubt on the functional significance of apoptosis as an innate immunity. Using in vivo mosquito models and the native route of infection, we found that there is a rapid induction of reaper-like pro-apoptotic genes within a few hours following exposure to DNA or RNA viruses. Recapitulating a similar response in Drosophila, we found that this rapid induction of apoptosis requires the function of P53 and is mediated by a stress-responsive regulatory region upstream of reaper. More importantly, we showed that the rapid induction of apoptosis is responsible for preventing the expression of viral genes and blocking the infection. Genetic changes influencing this rapid induction of reaper-like pro-apoptotic genes led to significant differences in susceptibility to viral infection.

  8. Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expression.

    Science.gov (United States)

    Wang, Weicheng; Guo, Wenjie; Li, Lele; Fu, Zan; Liu, Wen; Gao, Jian; Shu, Yongqian; Xu, Qiang; Sun, Yang; Gu, Yanhong

    2016-12-01

    5-FU is the first line therapy for colorectal cancer, however, treatment effect is often hampered by the development of drug resistance or toxicity at high doses. Andrographolide is a natural diterpenoid from Andrographis paniculata which has anti-bacterial, anti-antiviral and anti-inflammation activities. In the current study, we test the hypothesis that Andrographolide reverses 5-FU resistance in colorectal cancer and examine the underlying mechanism. In vitro and vivo studies indicated that Andrographolide treatment significantly re-sensitizes HCT116/5-FUR cells (HCT116 cells which are 5-FU resistant) to cytotoxicity of 5-FU. Mechanism analysis showed that Andrographolide/5-FU co-treatment elevated apoptosis level of HCT116/5-FUR cells with highly increased level of BAX. By using biotin-Andrographolide pull down and cellular thermal shift assay, we found out that Andrographolide can directly target to BAX. Andrographolide-BAX interaction prevented BAX degradation, enhancing mitochondria-mediated apoptosis thus reversed 5-FU resistance while BAX silence diminished this effect. Further, by analyzing patient samples who received 5-FU involved chemotherapy, we found that expression level of BAX is correlated with PFS. Our results here provide a novel combination treatment strategy, especially for patients with 5-FU-resistant tumors expressing low level of BAX. Meanwhile, we also proposed that BAX expression may be a predicted and prognosis marker of 5-FU involved chemotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Assessment of the DNA damaging potential of environmental chemicals using a quantitative high-throughput screening approach to measure p53 activation.

    Science.gov (United States)

    Witt, Kristine L; Hsieh, Jui-Hua; Smith-Roe, Stephanie L; Xia, Menghang; Huang, Ruili; Zhao, Jinghua; Auerbach, Scott S; Hur, Junguk; Tice, Raymond R

    2017-08-01

    Genotoxicity potential is a critical component of any comprehensive toxicological profile. Compounds that induce DNA or chromosomal damage often activate p53, a transcription factor essential to cell cycle regulation. Thus, within the US Tox21 Program, we screened a library of ∼10,000 (∼8,300 unique) environmental compounds and drugs for activation of the p53-signaling pathway using a quantitative high-throughput screening assay employing HCT-116 cells (p53 +/+ ) containing a stably integrated β-lactamase reporter gene under control of the p53 response element (p53RE). Cells were exposed (-S9) for 16 hr at 15 concentrations (generally 1.2 nM to 92 μM) three times, independently. Excluding compounds that failed analytical chemistry analysis or were suspected of inducing assay interference, 365 (4.7%) of 7,849 unique compounds were concluded to activate p53. As part of an in-depth characterization of our results, we first compared them with results from traditional in vitro genotoxicity assays (bacterial mutation, chromosomal aberration); ∼15% of known, direct-acting genotoxicants in our library activated the p53RE. Mining the Comparative Toxicogenomics Database revealed that these p53 actives were significantly associated with increased expression of p53 downstream genes involved in DNA damage responses. Furthermore, 53 chemical substructures associated with genotoxicity were enriched in certain classes of p53 actives, for example, anthracyclines (antineoplastics) and vinca alkaloids (tubulin disruptors). Interestingly, the tubulin disruptors manifested unusual nonmonotonic concentration response curves suggesting activity through a unique p53 regulatory mechanism. Through the analysis of our results, we aim to define a role for this assay as one component of a comprehensive toxicological characterization of large compound libraries. Environ. Mol. Mutagen. 58:494-507, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Modulation of the DNA repair system and ATR-p53 mediated apoptosis is relevant for tributyltin-induced genotoxic effects in human hepatoma G2 cells.

    Science.gov (United States)

    Li, Bowen; Sun, Lingbin; Cai, Jiali; Wang, Chonggang; Wang, Mengmeng; Qiu, Huiling; Zuo, Zhenghong

    2015-01-01

    The toxic effects of tributyltin (TBT) have been extensively documented in several types of cells, but the molecular mechanisms related to the genotoxic effects of TBT have still not been fully elucidated. Our study showed that exposure of human hepatoma G2 cells to 1-4 μmol/L TBT for 3 hr caused severe DNA damage in a concentration-dependent manner. Moreover, the expression levels of key DNA damage sensor genes such as the replication factor C, proliferating cell nuclear antigen and poly (ADP-ribose) polymerase-1 were inhabited in a concentration-dependent manner. We further demonstrated that TBT induced cell apoptosis via the p53-mediated pathway, which was most likely activated by the ataxia telangiectasia mutated and rad-3 related (ATR) protein kinase. The results also showed that cytochrome c, caspase-3, caspase-8, caspase-9, and the B-cell lymphoma 2 were involved in this process. Taken together, we demonstrated for the first time that the inhibition of the DNA repair system might be more responsible for TBT-induced genotoxic effects in cells. Then the generated DNA damage induced by TBT initiated ATR-p53-mediated apoptosis. Copyright © 2014. Published by Elsevier B.V.

  11. Synergistic effect of p53 on TSA-induced stanniocalcin 1 expression in human nasopharyngeal carcinoma cells, CNE2.

    Science.gov (United States)

    Ching, L Y; Yeung, Bonnie H Y; Wong, Chris K C

    2012-06-01

    Human stanniocalcin 1 (STC1) has recently been identified as a putative protein factor involved in cellular apoptosis. The use of histone deacetylase inhibitor (i.e. trichostatin A (TSA)) and doxorubicin (Dox) is one of the common treatment methods to induce apoptosis in human cancer cells. A study on TSA and Dox-mediated apoptosis may shed light on the regulation and function of STC1 in cancer treatment. In this study, TSA and Dox cotreatment in human nasopharyngeal carcinoma cells (CNE2) elicited synergistic effects on STC1 gene expression and cellular apoptosis. An activation of p53 (TP53) transcriptional activity in Dox- or Dox+TSA-treated cells was revealed by the increased expression levels of p53 mRNA/protein as well as p53-driven luciferase activities. To elucidate the possible involvement of p53 in STC1 gene transcription, a vector expressing wild-type or dominant negative (DN) p53 was transiently transfected into the cells. Both STC1 promoter luciferase constructs and chromatin immunoprecipitation assays did not support the direct role of p53 in STC1 gene transactivation. However, the synergistic effects of p53 on the induction of NF-κB phosphorylation and the recruitment of acetylated histone H3 in STC1 promoter were observed in TSA-cotreated cells. The overexpression of exogenous STC1 sensitized apoptosis in Dox-treated cells. Taken together, this study provides data to show the cross talk of NF-κB, p53, and histone protein in the regulation of STC1 expression and function.

  12. p53 Activation following Rift Valley fever virus infection contributes to cell death and viral production.

    Directory of Open Access Journals (Sweden)

    Dana Austin

    Full Text Available Rift Valley fever virus (RVFV is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production.

  13. Sirt1 overexpression suppresses fluoride-induced p53 acetylation to alleviate fluoride toxicity in ameloblasts responsible for enamel formation.

    Science.gov (United States)

    Suzuki, Maiko; Ikeda, Atsushi; Bartlett, John D

    2018-03-01

    Low-dose fluoride is an effective caries prophylactic, but high-dose fluoride is an environmental health hazard that causes skeletal and dental fluorosis. Treatments to prevent fluorosis and the molecular pathways responsive to fluoride exposure remain to be elucidated. Previously we showed that fluoride activates SIRT1 as an adaptive response to protect cells. Here, we demonstrate that fluoride induced p53 acetylation (Ac-p53) [Lys379], which is a SIRT1 deacetylation target, in ameloblast-derived LS8 cells in vitro and in enamel organ in vivo. Here we assessed SIRT1 function on fluoride-induced Ac-p53 formation using CRISPR/Cas9-mediated Sirt1 knockout (LS8 Sirt/KO ) cells or CRISPR/dCas9/SAM-mediated Sirt1 overexpressing (LS8 Sirt1/over ) cells. NaF (5 mM) induced Ac-p53 formation and increased cell cycle arrest via Cdkn1a/p21 expression in Wild-type (WT) cells. However, fluoride-induced Ac-p53 was suppressed by the SIRT1 activator resveratrol (50 µM). Without fluoride, Ac-p53 persisted in LS8 Sirt/KO cells, whereas it decreased in LS8 Sirt1/over . Fluoride-induced Ac-p53 formation was also suppressed in LS8 Sirt1/over cells. Compared to WT cells, fluoride-induced Cdkn1a/p21 expression was elevated in LS8 Sirt/KO and these cells were more susceptible to fluoride-induced growth inhibition. In contrast, LS8 Sirt1/over cells were significantly more resistant. In addition, fluoride-induced cytochrome-c release and caspase-3 activation were suppressed in LS8 Sirt1/over cells. Fluoride induced expression of the DNA double strand break marker γH2AX in WT cells and this was augmented in LS8 Sirt1/KO cells, but was attenuated in LS8 Sirt1/over cells. Our results suggest that SIRT1 deacetylates Ac-p53 to mitigate fluoride-induced cell growth inhibition, mitochondrial damage, DNA damage and apoptosis. This is the first report implicating Ac-p53 in fluoride toxicity.

  14. Valerian inhibits rat hepatocarcinogenesis by activating GABA(A receptor-mediated signaling.

    Directory of Open Access Journals (Sweden)

    Anna Kakehashi

    Full Text Available Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA A receptor (GABA(AR system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(AR agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN. Formation of glutathione S-transferase placental form positive (GST-P(+ foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2'-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P(+ foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21(Waf1/Cip1, p53 and Bax mRNA expression. Interestingly, expression of the GABA(AR alpha 1 subunit was observed in GST-P(+ foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P(+ foci by activating GABA(AR-mediated signaling.

  15. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6

    Directory of Open Access Journals (Sweden)

    Zanatta Daniela B

    2010-06-01

    Full Text Available Abstract Background Reactivation of p53 by either gene transfer or pharmacologic approaches may compensate for loss of p19Arf or excess mdm2 expression, common events in melanoma and glioma. In our previous work, we constructed the pCLPG retroviral vector where transgene expression is controlled by p53 through a p53-responsive promoter. The use of this vector to introduce p19Arf into tumor cells that harbor p53wt should yield viral expression of p19Arf which, in turn, would activate the endogenous p53 and result in enhanced vector expression and tumor suppression. Since nutlin-3 can activate p53 by blocking its interaction with mdm2, we explored the possibility that the combination of p19Arf gene transfer and nutlin-3 drug treatment may provide an additive benefit in stimulating p53 function. Methods B16 (mouse melanoma and C6 (rat glioma cell lines, which harbor p53wt, were transduced with pCLPGp19 and these were additionally treated with nutlin-3 or the DNA damaging agent, doxorubicin. Viral expression was confirmed by Western, Northern and immunofluorescence assays. p53 function was assessed by reporter gene activity provided by a p53-responsive construct. Alterations in proliferation and viability were measured by colony formation, growth curve, cell cycle and MTT assays. In an animal model, B16 cells were treated with the pCLPGp19 virus and/or drugs before subcutaneous injection in C57BL/6 mice, observation of tumor progression and histopathologic analyses. Results Here we show that the functional activation of endogenous p53wt in B16 was particularly challenging, but accomplished when combined gene transfer and drug treatments were applied, resulting in increased transactivation by p53, marked cell cycle alteration and reduced viability in culture. In an animal model, B16 cells treated with both p19Arf and nutlin-3 yielded increased necrosis and decreased BrdU marking. In comparison, C6 cells were quite susceptible to either treatment, yet

  16. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6

    International Nuclear Information System (INIS)

    Merkel, Christian A; Silva Soares, Rafael B da; Carvalho, Anna Carolina V de; Zanatta, Daniela B; Bajgelman, Marcio C; Fratini, Paula; Costanzi-Strauss, Eugenia; Strauss, Bryan E

    2010-01-01

    Reactivation of p53 by either gene transfer or pharmacologic approaches may compensate for loss of p19Arf or excess mdm2 expression, common events in melanoma and glioma. In our previous work, we constructed the pCLPG retroviral vector where transgene expression is controlled by p53 through a p53-responsive promoter. The use of this vector to introduce p19Arf into tumor cells that harbor p53wt should yield viral expression of p19Arf which, in turn, would activate the endogenous p53 and result in enhanced vector expression and tumor suppression. Since nutlin-3 can activate p53 by blocking its interaction with mdm2, we explored the possibility that the combination of p19Arf gene transfer and nutlin-3 drug treatment may provide an additive benefit in stimulating p53 function. B16 (mouse melanoma) and C6 (rat glioma) cell lines, which harbor p53wt, were transduced with pCLPGp19 and these were additionally treated with nutlin-3 or the DNA damaging agent, doxorubicin. Viral expression was confirmed by Western, Northern and immunofluorescence assays. p53 function was assessed by reporter gene activity provided by a p53-responsive construct. Alterations in proliferation and viability were measured by colony formation, growth curve, cell cycle and MTT assays. In an animal model, B16 cells were treated with the pCLPGp19 virus and/or drugs before subcutaneous injection in C57BL/6 mice, observation of tumor progression and histopathologic analyses. Here we show that the functional activation of endogenous p53wt in B16 was particularly challenging, but accomplished when combined gene transfer and drug treatments were applied, resulting in increased transactivation by p53, marked cell cycle alteration and reduced viability in culture. In an animal model, B16 cells treated with both p19Arf and nutlin-3 yielded increased necrosis and decreased BrdU marking. In comparison, C6 cells were quite susceptible to either treatment, yet p53 was further activated by the combination of p19

  17. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    International Nuclear Information System (INIS)

    Semaan, Sheila J; Nickells, Robert W

    2010-01-01

    Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116 BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. HCT116 BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of BAX aggregation at sub-saturation levels suggests that the

  18. Mitofusin-2 is a novel direct target of p53

    International Nuclear Information System (INIS)

    Wang, Weilin; Cheng, Xiaofei; Lu, Jianju; Wei, Jianfeng; Fu, Guanghou; Zhu, Feng; Jia, Changku; Zhou, Lin; Xie, Haiyang; Zheng, Shusen

    2010-01-01

    Research highlights: → Mfn2 is a novel target gene of p53. → Mfn2 mRNA and protein levels can be up-regulated in a p53-dependent manner. → Mfn2 promoter activity can be elevated by the p53 protein. → P53 protein binds the Mfn2 promoter directly both in vitro and in vivo. -- Abstract: The tumor suppressor p53 modulates transcription of a number of target genes involved in cell cycle arrest, apoptosis, DNA repair, and other important cellular responses. Mitofusin-2 (Mfn2) is a novel suppressor of cell proliferation that may also exert apoptotic effects via the mitochondrial apoptotic pathway. Through bioinformatics analysis, we identified a p53 binding site in the Mfn2 promoter. Consistent with this, we showed that the p53 protein binds the Mfn2 promoter directly both in vitro and in vivo. Additionally, we found that Mfn2 mRNA and protein levels are up-regulated in a p53-dependent manner. Furthermore, luciferase assays revealed that the activity of the wild-type Mfn2 promoter, but not a mutated version of the promoter, was up-regulated by p53. These results indicate that Mfn2 is a novel p53-inducible target gene, which provides insight into the regulation of Mfn2 and its associated activities in the inhibition of cell proliferation, promotion of apoptosis, and modulation of tumor suppression.

  19. USP22 Induces Cisplatin Resistance in Lung Adenocarcinoma by Regulating γH2AX-Mediated DNA Damage Repair and Ku70/Bax-Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Aman Wang

    2017-05-01

    Full Text Available Resistance to platinum-based chemotherapy is one of the most important reasons for treatment failure in advanced non-small cell lung cancer, but the underlying mechanism is extremely complex and unclear. The present study aimed to investigate the correlation of ubiquitin-specific peptidase 22 (USP22 with acquired resistance to cisplatin in lung adenocarcinoma. In this study, we found that overexpression of USP22 could lead to cisplatin resistance in A549 cells. USP22 and its downstream proteins γH2AX and Sirt1 levels are upregulated in the cisplatin- resistant A549/CDDP cell line. USP22 enhances DNA damage repair and induce cisplatin resistance by promoting the phosphorylation of histone H2AX via deubiquitinating histone H2A. In addition, USP22 decreases the acetylation of Ku70 by stabilizing Sirt1, thus inhibiting Bax-mediated apoptosis and inducing cisplatin resistance. The cisplatin sensitivity in cisplatin-resistant A549/CDDP cells was restored by USP22 inhibition in vivo and vitro. In summary, our findings reveal the dual mechanism of USP22 involvement in cisplatin resistance that USP22 can regulate γH2AX-mediated DNA damage repair and Ku70/Bax-mediated apoptosis. USP22 is a potential target in cisplatin-resistant lung adenocarcinoma and should be considered in future therapeutic practice.

  20. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish.

    Science.gov (United States)

    Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue

    Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)- b -poly( ε -caprolactone) (PCL), namely PEG- b -PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG- b -PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG- b -PCL nano-micelle on cardiovascular development. The results showed that PEG- b -PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG- b -PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG- b -PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG- b -PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG- b -PCL nano-micelles, indicating that PEG- b -PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG- b -PCL nano-micelle could

  1. Paclitaxel-induced apoptosis is BAK-dependent, but BAX and BIM-independent in breast tumor.

    Directory of Open Access Journals (Sweden)

    Anna V Miller

    Full Text Available Paclitaxel (Taxol-induced cell death requires the intrinsic cell death pathway, but the specific participants and the precise mechanisms are poorly understood. Previous studies indicate that a BH3-only protein BIM (BCL-2 Interacting Mediator of cell death plays a role in paclitaxel-induced apoptosis. We show here that BIM is dispensable in apoptosis with paclitaxel treatment using bim(-/- MEFs (mouse embryonic fibroblasts, the bim(-/- mouse breast tumor model, and shRNA-mediated down-regulation of BIM in human breast cancer cells. In contrast, both bak (-/- MEFs and human breast cancer cells in which BAK was down-regulated by shRNA were more resistant to paclitaxel. However, paclitaxel sensitivity was not affected in bax(-/- MEFs or in human breast cancer cells in which BAX was down-regulated, suggesting that paclitaxel-induced apoptosis is BAK-dependent, but BAX-independent. In human breast cancer cells, paclitaxel treatment resulted in MCL-1 degradation which was prevented by a proteasome inhibitor, MG132. A Cdk inhibitor, roscovitine, blocked paclitaxel-induced MCL-1 degradation and apoptosis, suggesting that Cdk activation at mitotic arrest could induce subsequent MCL-1 degradation in a proteasome-dependent manner. BAK was associated with MCL-1 in untreated cells and became activated in concert with loss of MCL-1 expression and its release from the complex. Our data suggest that BAK is the mediator of paclitaxel-induced apoptosis and could be an alternative target for overcoming paclitaxel resistance.

  2. System-based strategies for p53 recovery.

    Science.gov (United States)

    Azam, Muhammad Rizwan; Fazal, Sahar; Ullah, Mukhtar; Bhatti, Aamer I

    2018-06-01

    The authors have proposed a systems theory-based novel drug design approach for the p53 pathway. The pathway is taken as a dynamic system represented by ordinary differential equations-based mathematical model. Using control engineering practices, the system analysis and subsequent controller design is performed for the re-activation of wild-type p53. p53 revival is discussed for both modes of operation, i.e. the sustained and oscillatory. To define the problem in control system paradigm, modification in the existing mathematical model is performed to incorporate the effect of Nutlin. Attractor point analysis is carried out to select the suitable domain of attraction. A two-loop negative feedback control strategy is devised to drag the system trajectories to the attractor point and to regulate cellular concentration of Nutlin, respectively. An integrated framework is constituted to incorporate the pharmacokinetic effects of Nutlin in the cancerous cells. Bifurcation analysis is also performed on the p53 model to see the conditions for p53 oscillation.

  3. Microbial Regulation of p53 Tumor Suppressor.

    Directory of Open Access Journals (Sweden)

    Alexander I Zaika

    2015-09-01

    Full Text Available p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40. Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host-bacteria interactions and tumorigenesis associated with bacterial infections.

  4. Inhibition of autophagy exerts anti-colon cancer effects via apoptosis induced by p53 activation and ER stress

    International Nuclear Information System (INIS)

    Sakitani, Kosuke; Hirata, Yoshihiro; Hikiba, Yohko; Hayakawa, Yoku; Ihara, Sozaburo; Suzuki, Hirobumi; Suzuki, Nobumi; Serizawa, Takako; Kinoshita, Hiroto; Sakamoto, Kei; Nakagawa, Hayato; Tateishi, Keisuke; Maeda, Shin; Ikenoue, Tsuneo; Kawazu, Shoji; Koike, Kazuhiko

    2015-01-01

    Although some molecularly targeted drugs for colorectal cancer are used clinically and contribute to a better prognosis, the current median survival of advanced colorectal cancer patients is not sufficient. Autophagy, a basic cell survival mechanism mediated by recycling of cellular amino acids, plays an important role in cancer. Recently, autophagy has been highlighted as a promising new molecular target. The unfolded protein response (UPR) reportedly act in complementary fashion with autophagy in intestinal homeostasis. However, the roles of UPR in colon cancer under autophagic inhibition remain to be elucidated. We aim to clarify the inhibitory effect of autophagy on colon cancer. We crossed K19 CreERT and Atg5 flox/flox mice to generate Atg5 flox/flox /K19 CreERT mice. Atg5 flox/flox /K19 CreERT mice were first treated with azoxymethane/dextran sodium sulfate and then injected with tamoxifen to inhibit autophagy in CK19-positive epithelial cells. To examine the anti-cancer mechanisms of autophagic inhibition, we used colon cancer cell lines harboring different p53 gene statuses, as well as small interfering RNAs (siRNAs) targeting Atg5 and immunoglobulin heavy-chain binding protein (BiP), a chaperone to aid folding of unfolded proteins. Colon tumors in Atg5 flox/flox /K19 CreERT mice showed loss of autophagic activity and decreased tumor size (the total tumor diameter was 28.1 mm in the control and 20.7 mm in Atg5 flox/flox /K19 CreERT mice, p = 0.036). We found that p53 and UPR/endoplasmic reticulum (ER) stress-related proteins, such as cleaved caspase 3, and CAAT/enhancer-binding protein homologous protein, are up-regulated in colon tumors of Atg5 flox/flox /K19 CreERT mice. Although Atg5 and BiP silencing, respectively, increased apoptosis in p53 wild type cells, Atg5 silencing alone did not show the same effect on apoptosis in p53 mutant cells. However, co-transfection of Atg5 and BiP siRNAs led to increased apoptosis in p53 mutant cells. Blocking autophagy

  5. Structural Basis of Competitive Recognition of p53 and MDM2 by HAUSP/USP7: Implications for the Regulation of the p53-MDM2 Pathway.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Herpesvirus-associated ubiquitin-specific protease (HAUSP, also known as USP7, a deubiquitylating enzyme of the ubiquitin-specific processing protease family, specifically deubiquitylates both p53 and MDM2, hence playing an important yet enigmatic role in the p53-MDM2 pathway. Here we demonstrate that both p53 and MDM2 specifically recognize the N-terminal tumor necrosis factor-receptor associated factor (TRAF-like domain of HAUSP in a mutually exclusive manner. HAUSP preferentially forms a stable HAUSP-MDM2 complex even in the presence of excess p53. The HAUSP-binding elements were mapped to a peptide fragment in the carboxy-terminus of p53 and to a short-peptide region preceding the acidic domain of MDM2. The crystal structures of the HAUSP TRAF-like domain in complex with p53 and MDM2 peptides, determined at 2.3-A and 1.7-A resolutions, respectively, reveal that the MDM2 peptide recognizes the same surface groove in HAUSP as that recognized by p53 but mediates more extensive interactions. Structural comparison led to the identification of a consensus peptide-recognition sequence by HAUSP. These results, together with the structure of a combined substrate-binding-and-deubiquitylation domain of HAUSP, provide important insights into regulation of the p53-MDM2 pathway by HAUSP.

  6. Regulation of p53 tetramerization and nuclear export by ARC.

    Science.gov (United States)

    Foo, Roger S-Y; Nam, Young-Jae; Ostreicher, Marc Jason; Metzl, Mark D; Whelan, Russell S; Peng, Chang-Fu; Ashton, Anthony W; Fu, Weimin; Mani, Kartik; Chin, Suet-Feung; Provenzano, Elena; Ellis, Ian; Figg, Nichola; Pinder, Sarah; Bennett, Martin R; Caldas, Carlos; Kitsis, Richard N

    2007-12-26

    Inactivation of the transcription factor p53 is central to carcinogenesis. Yet only approximately one-half of cancers have p53 loss-of-function mutations. Here, we demonstrate a mechanism for p53 inactivation by apoptosis repressor with caspase recruitment domain (ARC), a protein induced in multiple cancer cells. The direct binding in the nucleus of ARC to the p53 tetramerization domain inhibits p53 tetramerization. This exposes a nuclear export signal in p53, triggering Crm1-dependent relocation of p53 to the cytoplasm. Knockdown of endogenous ARC in breast cancer cells results in spontaneous tetramerization of endogenous p53, accumulation of p53 in the nucleus, and activation of endogenous p53 target genes. In primary human breast cancers with nuclear ARC, p53 is almost always WT. Conversely, nearly all breast cancers with mutant p53 lack nuclear ARC. We conclude that nuclear ARC is induced in cancer cells and negatively regulates p53.

  7. The Satellite Cell Niche Regulates the Balance between Myoblast Differentiation and Self-Renewal via p53.

    Science.gov (United States)

    Flamini, Valentina; Ghadiali, Rachel S; Antczak, Philipp; Rothwell, Amy; Turnbull, Jeremy E; Pisconti, Addolorata

    2018-03-13

    Satellite cells are adult muscle stem cells residing in a specialized niche that regulates their homeostasis. How niche-generated signals integrate to regulate gene expression in satellite cell-derived myoblasts is poorly understood. We undertook an unbiased approach to study the effect of the satellite cell niche on satellite cell-derived myoblast transcriptional regulation and identified the tumor suppressor p53 as a key player in the regulation of myoblast quiescence. After activation and proliferation, a subpopulation of myoblasts cultured in the presence of the niche upregulates p53 and fails to differentiate. When satellite cell self-renewal is modeled ex vivo in a reserve cell assay, myoblasts treated with Nutlin-3, which increases p53 levels in the cell, fail to differentiate and instead become quiescent. Since both these Nutlin-3 effects are rescued by small interfering RNA-mediated p53 knockdown, we conclude that a tight control of p53 levels in myoblasts regulates the balance between differentiation and return to quiescence. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. G9a stimulates CRC growth by inducing p53 Lys373 dimethylation-dependent activation of Plk1.

    Science.gov (United States)

    Zhang, Jie; Wang, Yafang; Shen, Yanyan; He, Pengxing; Ding, Jian; Chen, Yi

    2018-01-01

    Rationale: G9a is genetically deregulated in various tumor types and is important for cell proliferation; however, the mechanism underlying G9a-induced carcinogenesis, especially in colorectal cancer (CRC), is unclear. Here, we investigated if G9a exerts oncogenic effects in CRC by increasing polo-like kinase 1 (Plk1) expression. Thus, we further characterized the detailed molecular mechanisms. Methods: The role of Plk1 in G9a aberrant CRC was determined by performing different in vitro and in vivo assays, including assessment of cell growth by performing cell viability assay and assessment of signaling transduction profiles by performing immunoblotting, in the cases of pharmacological inhibition or short RNA interference-mediated suppression of G9a. Detailed molecular mechanisms underlying the effect of G9a on Plk1 expression were determined by performing point mutation analysis, chromatin immunoprecipitation analysis, and luciferase reporter assay. Correlation between G9a and Plk1 expression was determined by analyzing clinical samples of patients with CRC by performing immunohistochemistry. Results: Our study is the first to report a significant positive correlation between G9a and Plk1 levels in 89 clinical samples of patients with CRC. Moreover, G9a depletion decreased Plk1 expression and suppressed CRC cell growth both in vitro and in vivo , thus confirming the significant correlation between G9a and Plk1 levels. Further, we observed that G9a-induced Plk1 regulation depended on p53 inhibition. G9a dimethylated p53 at lysine 373, which in turn increased Plk1 expression and promoted CRC cell growth. Conclusions: These results indicate that G9a-induced and p53-dependent epigenetic programing stimulates the growth of colon cancer, which also suggests that G9a inhibitors that restore p53 activity are promising therapeutic agents for treating colon cancer, especially for CRC expressing wild-type p53.

  9. The PRR11-SKA2 Bidirectional Transcription Unit Is Negatively Regulated by p53 through NF-Y in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yitao Wang

    2017-03-01

    Full Text Available We previously identified proline-rich protein 11 (PRR11 as a novel cancer-related gene that is implicated in the regulation of cell cycle and tumorigenesis. Our recent study demonstrated that PRR11 and its adjacent gene, kinetochore associated 2 (SKA2, constitute a classic head-to-head gene pair that is coordinately regulated by nuclear factor Y (NF-Y. In the present study, we further show that the PRR11-SKA2 bidirectional transcription unit is an indirect target of the tumor suppressor p53. A luciferase reporter assay revealed that overexpression of wild type p53, but not mutant p53, significantly represses the basal activity and NF-Y mediated transactivation of the PRR11-SKA2 bidirectional promoter. Deletion and mutation analysis of the PRR11-SKA2 promoter revealed that p53-mediated PRR11-SKA2 repression is dependent on the presence of functional NF-Y binding sites. Furthermore, a co-immunoprecipitation assay revealed that p53 associates with NF-Y in lung cancer cells, and a chromatin immunoprecipitation assay showed that p53 represses PRR11-SKA2 transcription by reducing the binding amount of NF-Y in the PRR11-SKA2 promoter region. Consistently, the ability of p53 to downregulate PRR11-SKA2 transcription was significantly attenuated upon siRNA-mediated depletion of nuclear factor Y subunit beta (NF-YB. Notably, lung cancer patients with lower expression of either PRR11 or SKA2 along with wild type p53 exhibited the best overall survival compared with others with p53 mutation and/or higher expression of either PRR11 or SKA2. Taken together, our results demonstrate that p53 negatively regulates the expression of the PRR11-SKA2 bidirectional transcription unit through NF-Y, suggesting that the inability to repress the PRR11-SKA2 bidirectional transcription unit after loss of p53 might contribute to tumorigenesis.

  10. BAX protein expression and clinical outcome in epithelial ovarian cancer.

    Science.gov (United States)

    Tai, Y T; Lee, S; Niloff, E; Weisman, C; Strobel, T; Cannistra, S A

    1998-08-01

    Expression of the pro-apoptotic protein BAX sensitizes ovarian cancer cell lines to paclitaxel in vitro by enhancing the pathway of programmed cell death. The present study was performed to determine the relationship between BAX expression and clinical outcome in 45 patients with newly diagnosed ovarian cancer. BAX protein expression was analyzed by immunohistochemistry, and its relationship with clinical outcome was determined. Assessment of BAX mRNA transcript levels and mutational analysis of the BAX coding region were also performed. BAX protein was expressed at high levels (defined as > or = 50% of tumor cells positive) in tumor tissue from 60% of newly diagnosed patients. All patients whose tumors expressed high levels of BAX achieved a complete response (CR) to first-line chemotherapy that contained paclitaxel plus a platinum analogue, compared with 57% of patients in the low-BAX group (P = .036). After a median follow-up of 1.9 years, the median disease-free survival (DFS) of patients in the high-BAX group has not been reached, compared with a median DFS of 1.1 years for low-BAX expressors (P = .0061). BAX retained independent prognostic significance in multivariate analysis when corrected for stage and histology. BAX mRNA transcripts were easily detected in samples with low BAX protein expression, and no BAX mutations were identified. The correlation between high BAX levels and improved clinical outcome suggests that an intact apoptotic pathway is an important determinant of chemoresponsiveness in ovarian cancer patients who receive paclitaxel.

  11. High LET radiation enhances apoptosis in mutated p53 cancer cells through Caspase-9 activation

    International Nuclear Information System (INIS)

    Yamakawa, Nobuhiro; Takahashi, Akihisa; Mori, Eiichiro; Imai, Yuichiro; Ohnishi, Ken; Kirita, Tadaaki; Ohnishi, Takeo; Furusawa, Yoshiya

    2008-01-01

    Although mutations in the p53 gene can lead to resistance to radiotherapy, chemotherapy and thermotherapy, high linear energy transfer (LET) radiation induces apoptosis regardless of p53 gene status in cancer cells. The aim of this study was to clarify the mechanisms involved in high LET radiation-induced apoptosis. Human gingival cancer cells (Ca9-22 cells) containing a mutated p53 (mp53) gene were irradiated with X-rays, C-ion (13-100 KeV/μm), or Fe-ion beams (200 KeV/μm). Cellular sensitivities were determined using colony forming assays. Apoptosis was detected and quantified with Hoechst 33342 staining. The activity of Caspase-3 was analyzed with Western blotting and flow cytometry. Cells irradiated with high LET radiation showed a high sensitivity with a high frequency of apoptosis induction. The relative biological effectiveness (RBE) values for the surviving fraction and apoptosis induction increased in a LET-dependent manner. Both RBE curves reached a peak at 100 KeV/μm, and then decreased at values over 100 KeV/μm. When cells were irradiated with high LET radiation, Caspase-3 was cleaved and activated, leading to poly (ADP-ribose) polymerase (PARP) cleavage. In addition, Caspase-9 inhibitor suppressed Caspase-3 activation and apoptosis induction resulting from high LET radiation to a greater extent than Caspase-8 inhibitor. These results suggest that high LET radiation enhances apoptosis by activation of Caspase-3 through Caspase-9, even in the presence of mp53. (author)

  12. IGF-1 protects against Aβ25-35-induced neuronal cell death via inhibition of PUMA expression and Bax activation.

    Science.gov (United States)

    Hou, Xunyao; Jin, Yan; Chen, Jian; Hong, Yan; Luo, Dingzhen; Yin, Qingqing; Liu, Xueping

    2017-01-10

    Amyloid-β-peptide (Aβ) is considered to be the toxic species in AD and causes cell death in the affected areas of patient's brain. Insulin-like growth factor 1 (IGF-1) has been reported to attenuate Aβ toxicity in neuronal cells. However, the molecular mechanisms involved in the neuroprotective function of IGF-1 remain largely unknown. In the present study, we for the first time demonstrated that IGF-1 protects against Aβ-induced neurotoxicity via inhibition of PUMA expression and Bax activation. We found that IGF-1 could activate Akt, which in turn inhibited Aβ-induced FOXO3a nuclear translocation and thus decreased the binding ability of FOXO3a to PUMA promoter, leading to decreased PUMA expression. In addition, IGF-1 inhibited the translocation of Bax to the mitochondria induced by Aβ. Notably, addition of wortmannin, a specific inhibitor of PI3K, significantly abolished the neuroprotective effect of IGF-1, suggesting that IGF-1 exerts its anti-apoptotic effect depend on PI3K activity. Our findings may provide new insights into molecular mechanisms mediated by IGF-1 in cell survival against Aβ-induced apoptosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Impact of Alu repeats on the evolution of human p53 binding sites

    Directory of Open Access Journals (Sweden)

    Sirotin Michael V

    2011-01-01

    Full Text Available Abstract Background The p53 tumor suppressor protein is involved in a complicated regulatory network, mediating expression of ~1000 human genes. Recent studies have shown that many p53 in vivo binding sites (BSs reside in transposable repeats. The relationship between these BSs and functional p53 response elements (REs remains unknown, however. We sought to understand whether the p53 REs also reside in transposable elements and particularly in the most-abundant Alu repeats. Results We have analyzed ~160 functional p53 REs identified so far and found that 24 of them occur in repeats. More than half of these repeat-associated REs reside in Alu elements. In addition, using a position weight matrix approach, we found ~400,000 potential p53 BSs in Alu elements genome-wide. Importantly, these putative BSs are located in the same regions of Alu repeats as the functional p53 REs - namely, in the vicinity of Boxes A/A' and B of the internal RNA polymerase III promoter. Earlier nucleosome-mapping experiments showed that the Boxes A/A' and B have a different chromatin environment, which is critical for the binding of p53 to DNA. Here, we compare the Alu-residing p53 sites with the corresponding Alu consensus sequences and conclude that the p53 sites likely evolved through two different mechanisms - the sites overlapping with the Boxes A/A' were generated by CG → TG mutations; the other sites apparently pre-existed in the progenitors of several Alu subfamilies, such as AluJo and AluSq. The binding affinity of p53 to the Alu-residing sites generally correlates with the age of Alu subfamilies, so that the strongest sites are embedded in the 'relatively young' Alu repeats. Conclusions The primate-specific Alu repeats play an important role in shaping the p53 regulatory network in the context of chromatin. One of the selective factors responsible for the frequent occurrence of Alu repeats in introns may be related to the p53-mediated regulation of Alu

  14. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    International Nuclear Information System (INIS)

    Chen Wenshu; Lee Yijang; Yu Yichu; Hsaio Chinghui

    2010-01-01

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of γ-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells but not human keratocyte HaCaT cells; it also prolonged radiation-induced G 2 /M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.

  15. B1-induced caspase-independent apoptosis in MCF-7 cells is mediated by down-regulation of Bcl-2 via p53 binding to P2 promoter TATA box

    International Nuclear Information System (INIS)

    Liang Xin; Xu Ke; Xu Yufang; Liu Jianwen; Qian Xuhong

    2011-01-01

    The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with naphthalimide-based DNA intercalators, including M2-A and R16, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl-2 expression remains poorly understood. We report here that p53 contributes to Bcl-2 down-regulation induced by B1, a novel naphthalimide-based DNA intercalating agent. Indeed, the decrease in Bcl-2 protein levels observed during B1-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We found a significant increase of p53 binding to P 2 promoter TATA box in MCF7 cells by chromatin immunoprecipitation. These data suggest that B1-induced caspase-independent apoptosis in MCF-7 cells is associated with the activation of p53 and the down-regulation of Bcl-2. Our study strengthens the links between p53 and Bcl-2 at a transcriptional level, upon naphthalimide-based DNA intercalator treatment. - Research highlights: → B1 induced apoptosis in MCF-7 cells, following a transcriptional decrease in Bcl-2. → B1 treatment triggered p53 activation and leads to a p53-dependent down-regulation of Bcl-2. → B1 induced significant increase of p53 binding to Bcl-2 P 2 promoter TATA box.

  16. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    Directory of Open Access Journals (Sweden)

    Semaan Sheila J

    2010-10-01

    Full Text Available Abstract Background Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Methods Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. Results HCT116BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Conclusion Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of

  17. A high-throughput cellular assay to quantify the p53-degradation activity of E6 from different human papillomavirus types.

    Science.gov (United States)

    Gagnon, David; Archambault, Jacques

    2015-01-01

    A subset of human papillomaviruses (HPVs), known as the high-risk types, are the causative agents of cervical cancer and other malignancies of the anogenital region and oral mucosa. The capacity of these viruses to induce cancer and to immortalize cells in culture relies in part on a critical function of their E6 oncoprotein, that of promoting the poly-ubiquitination of the cellular tumor suppressor protein p53 and its subsequent degradation by the proteasome. Here, we describe a cellular assay to measure the p53-degradation activity of E6 from different HPV types. This assay is based on a translational fusion of p53 to Renilla luciferase (Rluc-p53) that remains sensitive to degradation by high-risk E6 and whose steady-state levels can be accurately measured in standard luciferase assays. The p53-degradation activity of any E6 protein can be tested and quantified in transiently transfected cells by determining the amount of E6-expression vector required to reduce by half the levels of RLuc-p53 luciferase activity (50 % effective concentration [EC50]). The high-throughput and quantitative nature of this assay makes it particularly useful to compare the p53-degradation activities of E6 from several HPV types in parallel.

  18. Cisplatinum and Taxol Induce Different Patterns of p53 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Giovanna Damia

    2001-01-01

    Full Text Available Posttranslational modifications of p53 induced by two widely used anticancer agents, cisplatinum (DDP and taxol were investigated in two human cancer cell lines. Although both drugs were able to induce phosphorylation at serine 20 (Ser20, only DDP treatment induced p53 phosphorylation at serine 15 (Ser15. Moreover, both drug treatments were able to increase p53 levels and consequently the transcription of waf1 and mdm-2 genes, although DDP treatment resulted in a stronger inducer of both genes. Using two ataxia telangiectasia mutated (ATM cell lines, the role of ATM in druginduced p53 phosphorylations was investigated. No differences in drug-induced p53 phosphorylation could be observed, indicating that ATM is not the kinase involved in these phosphorylation events. In addition, inhibition of DNA-dependent protein kinase activity by wortmannin did not abolish p53 phosphorylation at Ser15 and Ser20, again indicating that DNA-PK is unlikely to be the kinase involved. After both taxol and DDP treatments, an activation of hCHK2 was found and this is likely to be responsible for phosphorylation at Ser20. In contrast, only DDP was able to activate ATR, which is the candidate kinase for phosphorylation of Ser15 by this drug. This data clearly suggests that differential mechanisms are involved in phosphorylation and activation of p53 depending on the drug type.

  19. The nucleolus directly regulates p53 export and degradation.

    Science.gov (United States)

    Boyd, Mark T; Vlatkovic, Nikolina; Rubbi, Carlos P

    2011-09-05

    The correlation between stress-induced nucleolar disruption and abrogation of p53 degradation is evident after a wide variety of cellular stresses. This link may be caused by steps in p53 regulation occurring in nucleoli, as suggested by some biochemical evidence. Alternatively, nucleolar disruption also causes redistribution of nucleolar proteins, potentially altering their interactions with p53 and/or MDM2. This raises the fundamental question of whether the nucleolus controls p53 directly, i.e., as a site where p53 regulatory processes occur, or indirectly, i.e., by determining the cellular localization of p53/MDM2-interacting factors. In this work, transport experiments based on heterokaryons, photobleaching, and micronucleation demonstrate that p53 regulatory events are directly regulated by nucleoli and are dependent on intact nucleolar structure and function. Subcellular fractionation and nucleolar isolation revealed a distribution of ubiquitylated p53 that supports these findings. In addition, our results indicate that p53 is exported by two pathways: one stress sensitive and one stress insensitive, the latter being regulated by activities present in the nucleolus.

  20. Sirtuin7 is involved in protecting neurons against oxygen-glucose deprivation and reoxygenation-induced injury through regulation of the p53 signaling pathway.

    Science.gov (United States)

    Lv, Jianrui; Tian, Junbin; Zheng, Guoxi; Zhao, Jing

    2017-10-01

    Sirtuin7 (SIRT7) is known to regulate apoptosis and stress responses. So far, very little is known about the role of SIRT7 in cerebral ischemia/reperfusion injury. In this study, we aimed to investigate the potential role of SIRT7 in regulating oxygen-glucose deprivation and reoxygenation (OGD/R)-induced injury in neurons. We found a significant increase of SIRT7 expression in neurons in response to OGD/R treatment. Knockdown of SIRT7 aggravated OGD/R-induced injury. Knockdown of SIRT7 augmented the levels of total and acetylated p53 protein. Moreover, knockdown of SIRT7 markedly increased the transcriptional activity of p53 toward apoptosis and activated the p53-mediated proapoptotic signaling pathway. By contrast, overexpression of SIRT7 showed the opposite effects. Taken together, the results of our study suggest that SIRT7 is involved in protecting neurons against OGD/R-induced injury, possibly through regulation of the p53-mediated proapoptotic signaling pathway, indicating a potential therapeutic target for cerebral ischemia/reperfusion injury. © 2017 Wiley Periodicals, Inc.

  1. Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy.

    Science.gov (United States)

    Bizzarri, Anna Rita; Santini, Simona; Coppari, Emilia; Bucciantini, Monica; Di Agostino, Silvia; Yamada, Tohru; Beattie, Craig W; Cannistraro, Salvatore

    2011-01-01

    p28 is a 28-amino acid peptide fragment of the cupredoxin azurin derived from Pseudomonas aeruginosa that preferentially penetrates cancerous cells and arrests their proliferation in vitro and in vivo. Its antitumor activity reportedly arises from post-translational stabilization of the tumor suppressor p53 normally downregulated by the binding of several ubiquitin ligases. This would require p28 to specifically bind to p53 to inhibit specific ligases from initiating proteosome-mediated degradation. In this study, atomic force spectroscopy, a nanotechnological approach, was used to investigate the interaction of p28 with full-length p53 and its isolated domains at the single molecule level. Analysis of the unbinding forces and the dissociation rate constant suggest that p28 forms a stable complex with the DNA-binding domain of p53, inhibiting the binding of ubiquitin ligases other than Mdm2 to reduce proteasomal degradation of p53.

  2. Absence of p53 in Clara cells favours multinucleation and loss of cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Clarke Alan R

    2002-11-01

    Full Text Available Abstract Background The p53 oncosuppressor protein is a critical mediator of the response to injury in mammalian cells and is mutationally inactivated in the majority of lung malignancies. In this analysis, the effects of p53-deficiency were investigated in short-term primary cultures of murine bronchiolar Clara cells. Clara cells, isolated from gene-targeted p53-deficient mice, were compared to cells derived from wild type littermates. Results p53 null cultures displayed abnormal morphology; specifically, a high incidence of multinucleation, which increased with time in culture. Multinucleated cells were proficient in S phase DNA synthesis, as determined by BrdU incorporation. However, multinucleation did not reflect altered rates of S phase synthesis, which were similar between wild type and p53-/- cultures. Nucleation defects in p53-/- Clara cells associated with increased centrosome number, as determined by confocal microscopy of pericentrin-stained cultures, and may highlight a novel role of p53 in preserving genomic integrity in lung epithelial cells. Effects of p53-deficiency were also studied following exposure to DNA damage. A p53-dependent reduction in the BrdU index was observed in Clara cells following ionizing radiation. The reduction in BrdU index in wild type cells displayed serum-dependency, and occurred only in the absence of serum. Taken together, these findings demonstrate that in murine primary Clara cell culture, cell cycle arrest is a p53-mediated response to DNA damage, and that extracellular factors, such as serum, influence this response. Conclusion These findings highlight functions of wild type p53 protein in bipolar spindle formation, centrosome regulation, and growth control in bronchiolar Clara cells.

  3. NF-Y loss triggers p53 stabilization and apoptosis in HPV18-positive cells by affecting E6 transcription.

    Science.gov (United States)

    Benatti, Paolo; Basile, Valentina; Dolfini, Diletta; Belluti, Silvia; Tomei, Margherita; Imbriano, Carol

    2016-07-19

    The expression of the high risk HPV18 E6 and E7 oncogenic proteins induces the transformation of epithelial cells, through the disruption of p53 and Rb function. The binding of cellular transcription factors to cis-regulatory elements in the viral Upstream Regulatory Region (URR) stimulates E6/E7 transcription. Here, we demonstrate that the CCAAT-transcription factor NF-Y binds to a non-canonical motif within the URR and activates viral gene expression. In addition, NF-Y indirectly up-regulates HPV18 transcription through the transactivation of multiple cellular transcription factors. NF-YA depletion inhibits the expression of E6 and E7 genes and re-establishes functional p53. The activation of p53 target genes in turn leads to apoptotic cell death. Finally, we show that NF-YA loss sensitizes HPV18-positive cells toward the DNA damaging agent Doxorubicin, via p53-mediated transcriptional response.

  4. Activation of p53 by nutlin-3a induces apoptosis and cellular senescence in human glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Ruth Villalonga-Planells

    2011-04-01

    Full Text Available Glioblastoma multiforme (GBM is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.

  5. Effect of hydroxyurea on the promoter occupancy profiles of tumor suppressor p53 and p73

    Directory of Open Access Journals (Sweden)

    Lu Xin

    2009-06-01

    Full Text Available Abstract Background The p53 tumor suppressor and its related protein, p73, share a homologous DNA binding domain, and mouse genetics studies have suggested that they have overlapping as well as distinct biological functions. Both p53 and p73 are activated by genotoxic stress to regulate an array of cellular responses. Previous studies have suggested that p53 and p73 independently activate the cellular apoptotic program in response to cytotoxic drugs. The goal of this study was to compare the promoter-binding activity of p53 and p73 at steady state and after genotoxic stress induced by hydroxyurea. Results We employed chromatin immunoprecipitation, the NimbleGen promoter arrays and a model-based algorithm for promoter arrays to identify promoter sequences enriched in anti-p53 or anti-p73 immunoprecipitates, either before or after treatment with hydroxyurea, which increased the expression of both p53 and p73 in the human colon cancer cell line HCT116-3(6. We calculated a model-based algorithm for promoter array score for each promoter and found a significant correlation between the promoter occupancy profiles of p53 and p73. We also found that after hydroxyurea treatment, the p53-bound promoters were still bound by p73, but p73 became associated with additional promoters that that did not bind p53. In particular, we showed that hydroxyurea induces the binding of p73 but not p53 to the promoter of MLH3, which encodes a mismatch repair protein, and causes an up-regulation of the MLH3 mRNA. Conclusion These results suggest that hydroxyurea exerts differential effects on the promoter-binding functions of p53 and p73 and illustrate the power of model-based algorithm for promoter array in the analyses of promoter occupancy profiles of highly homologous transcription factors.

  6. Inhibition of Endothelial p53 Improves Metabolic Abnormalities Related to Dietary Obesity

    Directory of Open Access Journals (Sweden)

    Masataka Yokoyama

    2014-06-01

    Full Text Available Accumulating evidence has suggested a role for p53 activation in various age-associated conditions. Here, we identified a crucial role of endothelial p53 activation in the regulation of glucose homeostasis. Endothelial expression of p53 was markedly upregulated when mice were fed a high-calorie diet. Disruption of endothelial p53 activation improved dietary inactivation of endothelial nitric oxide synthase that upregulated the expression of peroxisome proliferator-activated receptor-γ coactivator-1α in skeletal muscle, thereby increasing mitochondrial biogenesis and oxygen consumption. Mice with endothelial cell-specific p53 deficiency fed a high-calorie diet showed improvement of insulin sensitivity and less fat accumulation, compared with control littermates. Conversely, upregulation of endothelial p53 caused metabolic abnormalities. These results indicate that inhibition of endothelial p53 could be a novel therapeutic target to block the vicious cycle of cardiovascular and metabolic abnormalities associated with obesity.

  7. Pax3 stimulates p53 ubiquitination and degradation independent of transcription.

    Directory of Open Access Journals (Sweden)

    Xiao Dan Wang

    Full Text Available Pax3 is a developmental transcription factor that is required for neural tube and neural crest development. We previously showed that inactivating the p53 tumor suppressor protein prevents neural tube and cardiac neural crest defects in Pax3-mutant mouse embryos. This demonstrates that Pax3 regulates these processes by blocking p53 function. Here we investigated the mechanism by which Pax3 blocks p53 function.We employed murine embryonic stem cell (ESC-derived neuronal precursors as a cell culture model of embryonic neuroepithelium or neural crest. Pax3 reduced p53 protein stability, but had no effect on p53 mRNA levels or the rate of p53 synthesis. Full length Pax3 as well as fragments that contained either the DNA-binding paired box or the homeodomain, expressed as GST or FLAG fusion proteins, physically associated with p53 and Mdm2 both in vitro and in vivo. In contrast, Splotch Pax3, which causes neural tube and neural crest defects in homozygous embryos, bound weakly, or not at all, to p53 or Mdm2. The paired domain and homeodomain each stimulated Mdm2-mediated ubiquitination of p53 and p53 degradation in the absence of the Pax3 transcription regulatory domains, whereas Splotch Pax3 did not stimulate p53 ubiquitination or degradation.Pax3 inactivates p53 function by stimulating its ubiquitination and degradation. This process utilizes the Pax3 paired domain and homeodomain but is independent of DNA-binding and transcription regulation. Because inactivating p53 is the only required Pax3 function during neural tube closure and cardiac neural crest development, and inactivating p53 does not require Pax3-dependent transcription regulation, this indicates that Pax3 is not required to function as a transcription factor during neural tube closure and cardiac neural crest development. These findings further suggest novel explanations for PAX3 functions in human diseases, such as in neural crest-derived cancers and Waardenburg syndrome types 1 and 3.

  8. p53 Aggregates penetrate cells and induce the co-aggregation of intracellular p53.

    Directory of Open Access Journals (Sweden)

    Karolyn J Forget

    Full Text Available Prion diseases are unique pathologies in which the infectious particles are prions, a protein aggregate. The prion protein has many particular features, such as spontaneous aggregation, conformation transmission to other native PrP proteins and transmission from an individual to another. Protein aggregation is now frequently associated to many human diseases, for example Alzheimer's disease, Parkinson's disease or type 2 diabetes. A few proteins associated to these conformational diseases are part of a new category of proteins, called prionoids: proteins that share some, but not all, of the characteristics associated with prions. The p53 protein, a transcription factor that plays a major role in cancer, has recently been suggested to be a possible prionoid. The protein has been shown to accumulate in multiple cancer cell types, and its aggregation has also been reproduced in vitro by many independent groups. These observations suggest a role for p53 aggregates in cancer development. This study aims to test the «prion-like» features of p53. Our results show in vitro aggregation of the full length and N-terminally truncated protein (p53C, and penetration of these aggregates into cells. According to our findings, the aggregates enter cells using macropinocytosis, a non-specific pathway of entry. Lastly, we also show that once internalized by the cell, p53C aggregates can co-aggregate with endogenous p53 protein. Together, these findings suggest prion-like characteristics for p53 protein, based on the fact that p53 can spontaneously aggregate, these aggregates can penetrate cells and co-aggregate with cellular p53.

  9. Glycerol restores the p53 function in human lingual cancer cells bearing mutant p53

    International Nuclear Information System (INIS)

    Ota, Ichiro; Yane, Katsunari; Yuki, Kazue; Kanata, Hirokazu; Hosoi, Hiroshi; Miyahara, Hiroshi

    2001-01-01

    Mutations in p53, tumor suppressor gene, have recently been shown to have an impact on the clinical course of several human tumors, including head and neck cancers. The genetic status of the p53 gene has been focused on as the most important candidate among various cancer-related genes for prognosis-predictive assays of cancer therapy. We examined the restoration of radiation- or cisplatin (CDDP)-induced p53-dependent apoptosis in human lingual cancer cells. The results suggest that glycerol is effective in inducing a conformational change of p53 and restoring normal function of mutant p53, leading to enhanced radiosensitivity or chemosensitivity through the induction of apoptosis. We have also represented the same results in vivo as in vitro. Thus, this novel tool for enhancement of radiosensitivity or chemosensitivity in cancer cells bearing m p53 may be applicable for p53-targeted cancer therapy. (author)

  10. Haploinsufficiency for Core Exon Junction Complex Components Disrupts Embryonic Neurogenesis and Causes p53-Mediated Microcephaly.

    Directory of Open Access Journals (Sweden)

    Hanqian Mao

    2016-09-01

    Full Text Available The exon junction complex (EJC is an RNA binding complex comprised of the core components Magoh, Rbm8a, and Eif4a3. Human mutations in EJC components cause neurodevelopmental pathologies. Further, mice heterozygous for either Magoh or Rbm8a exhibit aberrant neurogenesis and microcephaly. Yet despite the requirement of these genes for neurodevelopment, the pathogenic mechanisms linking EJC dysfunction to microcephaly remain poorly understood. Here we employ mouse genetics, transcriptomic and proteomic analyses to demonstrate that haploinsufficiency for each of the 3 core EJC components causes microcephaly via converging regulation of p53 signaling. Using a new conditional allele, we first show that Eif4a3 haploinsufficiency phenocopies aberrant neurogenesis and microcephaly of Magoh and Rbm8a mutant mice. Transcriptomic and proteomic analyses of embryonic brains at the onset of neurogenesis identifies common pathways altered in each of the 3 EJC mutants, including ribosome, proteasome, and p53 signaling components. We further demonstrate all 3 mutants exhibit defective splicing of RNA regulatory proteins, implying an EJC dependent RNA regulatory network that fine-tunes gene expression. Finally, we show that genetic ablation of one downstream pathway, p53, significantly rescues microcephaly of all 3 EJC mutants. This implicates p53 activation as a major node of neurodevelopmental pathogenesis following EJC impairment. Altogether our study reveals new mechanisms to help explain how EJC mutations influence neurogenesis and underlie neurodevelopmental disease.

  11. The maternal genes Ci-p53/p73-a and Ci-p53/p73-b regulate zygotic ZicL expression and notochord differentiation in Ciona intestinalis embryos.

    Science.gov (United States)

    Noda, Takeshi

    2011-12-01

    I isolated a Ciona intestinalis homolog of p53, Ci-p53/p73-a, in a microarray screen of rapidly degraded maternal mRNA by comparing the transcriptomes of unfertilized eggs and 32-cell stage embryos. Higher expression of the gene in eggs and lower expression in later embryonic stages were confirmed by whole-mount in situ hybridization (WISH) and quantitative reverse transcription-PCR (qRT-PCR); expression was ubiquitous in eggs and early embryos. Knockdown of Ci-p53/p73-a by injection of antisense morpholino oligonucleotides (MOs) severely perturbed gastrulation cell movements and expression of notochord marker genes. A key regulator of notochord differentiation in Ciona embryos is Brachyury (Ci-Bra), which is directly activated by a zic-like gene (Ci-ZicL). The expression of Ci-ZicL and Ci-Bra in A-line notochord precursors was downregulated in Ci-p53/p73-a knockdown embryos. Maternal expression of Ci-p53/p73-b, a homolog of Ci-p53/p73-a, was also detected. In Ci-p53/p73-b knockdown embryos, gastrulation cell movements, expression of Ci-ZicL and Ci-Bra in A-line notochord precursors, and expression of notochord marker gene at later stages were perturbed. The upstream region of Ci-ZicL contains putative p53-binding sites. Cis-regulatory analysis of Ci-ZicL showed that these sites are involved in expression of Ci-ZicL in A-line notochord precursors at the 32-cell and early gastrula stages. These results suggest that p53 genes are maternal factors that play a crucial role in A-line notochord differentiation in C. intestinalis embryos by regulating Ci-ZicL expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean

    International Nuclear Information System (INIS)

    Hollmann, Gabriela; Linden, Rafael; Giangrande, Angela; Allodi, Silvana

    2016-01-01

    Highlights: • The paper characterizes molecular pathways of cell responses to environmental doses of UV in brain tissue of a crab species. • The UV radiation changes levels of proteins which trigger apoptotic or cell cycle arrest pathways and also it changes neurotrophins which lead to apoptosis of neural cell in the central nervous system (CNS) of the crab Ucides cordatus. • The UVB wavelengths in the solar simulator damaged the DNA, either directly or indirectly, by increasing ROS, and induced the increase of p53 and AKT, which blocked p21 and increased the expression of activated caspase-3, triggering apoptosis. The signs of death increased the expression of neurotrophins (BDNF and GDNF), which continued to stimulate the apoptosis signaling mediated by caspase-3. • In the brain of the crab U. cordatus, p53/p21 relationship in response to UV radiation is different from that of most mammals. - Abstract: Ultraviolet (UV) radiation can produce biological damage, leading the cell to apoptosis by the p53 pathway. This study evaluated some molecular markers of the apoptosis pathway induced by UVA, UVB and UVA+ UVB (Solar Simulator, SIM) in environmental doses, during five consecutive days of exposure, in the brain of the crab Ucides cordatus. We evaluated the central nervous system (CNS) by immunoblotting the content of proteins p53, p21, phosphorylated AKT, BDNF, GDNF, activated caspase-3 (C3) and phosphohistone H3 (PH3); and by immunohistochemical tests of the cells labeled for PH3 and C3. After the fifth day of exposure, UVB radiation and SIM increased the protein content of p53, increasing the content of AKT and, somehow, blocking p21, increasing the content of activated caspase-3, which led the cells to apoptosis. The signs of death affected the increase in neurotrophins, such as BDNF and GDNF, stimulating the apoptotic cascade of events. Immunohistochemical assays and immunoblotting showed that apoptosis was present in the brains of all UV groups, while

  13. Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, Gabriela, E-mail: gabrielahollmann@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Linden, Rafael, E-mail: rlinden@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Giangrande, Angela, E-mail: angela.giangrande@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire-IGBMC, INSERM, Strasbourg (France); Allodi, Silvana, E-mail: sallodi@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil)

    2016-04-15

    Highlights: • The paper characterizes molecular pathways of cell responses to environmental doses of UV in brain tissue of a crab species. • The UV radiation changes levels of proteins which trigger apoptotic or cell cycle arrest pathways and also it changes neurotrophins which lead to apoptosis of neural cell in the central nervous system (CNS) of the crab Ucides cordatus. • The UVB wavelengths in the solar simulator damaged the DNA, either directly or indirectly, by increasing ROS, and induced the increase of p53 and AKT, which blocked p21 and increased the expression of activated caspase-3, triggering apoptosis. The signs of death increased the expression of neurotrophins (BDNF and GDNF), which continued to stimulate the apoptosis signaling mediated by caspase-3. • In the brain of the crab U. cordatus, p53/p21 relationship in response to UV radiation is different from that of most mammals. - Abstract: Ultraviolet (UV) radiation can produce biological damage, leading the cell to apoptosis by the p53 pathway. This study evaluated some molecular markers of the apoptosis pathway induced by UVA, UVB and UVA+ UVB (Solar Simulator, SIM) in environmental doses, during five consecutive days of exposure, in the brain of the crab Ucides cordatus. We evaluated the central nervous system (CNS) by immunoblotting the content of proteins p53, p21, phosphorylated AKT, BDNF, GDNF, activated caspase-3 (C3) and phosphohistone H3 (PH3); and by immunohistochemical tests of the cells labeled for PH3 and C3. After the fifth day of exposure, UVB radiation and SIM increased the protein content of p53, increasing the content of AKT and, somehow, blocking p21, increasing the content of activated caspase-3, which led the cells to apoptosis. The signs of death affected the increase in neurotrophins, such as BDNF and GDNF, stimulating the apoptotic cascade of events. Immunohistochemical assays and immunoblotting showed that apoptosis was present in the brains of all UV groups, while

  14. An Integrative Analysis Reveals a Central Role of P53 Activation via MDM2 in Zika Virus Infection Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Yue Teng

    2017-07-01

    Full Text Available Zika virus (ZIKV infection is an emerging global threat that is suspected to be associated with fetal microcephaly. However, the molecular mechanisms underlying ZIKV disease pathogenesis in humans remain elusive. Here, we investigated the human protein interaction network associated with ZIKV infection using a systemic virology approach, and reconstructed the transcriptional regulatory network to analyze the mechanisms underlying ZIKV-elicited microcephaly pathogenesis. The bioinformatics findings in this study show that P53 is the hub of the genetic regulatory network for ZIKV-related and microcephaly-associated proteins. Importantly, these results imply that the ZIKV capsid protein interacts with mouse double-minute-2 homolog (MDM2, which is involved in the P53-mediated apoptosis pathway, activating the death of infected neural cells. We also found that synthetic mimics of the ZIKV capsid protein induced cell death in vitro and in vivo. This study provides important insight into the relationship between ZIKV infection and brain diseases.

  15. Knockout and transgenic mice of Trp53: what have we learned about p53 in breast cancer?

    International Nuclear Information System (INIS)

    Blackburn, Anneke C; Jerry, D Joseph

    2002-01-01

    The human p53 tumor suppressor gene TP53 is mutated at a high frequency in sporadic breast cancer, and Li-Fraumeni syndrome patients who carry germline mutations in one TP53 allele have a high incidence of breast cancer. In the 10 years since the first knockout of the mouse p53 tumor suppressor gene (designated Trp53) was published, much has been learned about the contribution of p53 to biology and tumor suppression in the breast through the use of p53 transgenic and knockout mice. The original mice deficient in p53 showed no mammary gland phenotype. However, studies using BALB/c-Trp53-deficient mice have demonstrated a delayed involution phenotype and a mammary tumor phenotype. Together with other studies of mutant p53 transgenes and p53 bitransgenics, a greater understanding has been gained of the role of p53 in involution, of the regulation of p53 activity by hormones, of the effect of mouse strain and modifier genes on tumor phenotype, and of the cooperation between p53 and other oncogenic pathways, chemical carcinogens and hormonal stimulation in mammary tumorigenesis. Both p53 transgenic and knockout mice are important in vivo tools for understanding breast cancer, and are yet to be exploited for developing therapeutic strategies in breast cancer

  16. Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: effects of p38MAPK and ERK1/2 signaling.

    Science.gov (United States)

    Dyugovskaya, Larissa; Polyakov, Andrey; Cohen-Kaplan, Victoria; Lavie, Peretz; Lavie, Lena

    2012-10-22

    Prolonged neutrophil survival is evident in various cardiovascular and respiratory morbidities, in hypoxic conditions in-vitro and in patients with obstructive sleep apnea (OSA) characterized by nightly intermittent hypoxia (IH). This may lead to persistent inflammation, tissue injury and dysfunction. We therefore investigated by a translational approach the potential contribution of the intrinsic stress-induced mitochondrial pathway in extending neutrophil survival under IH conditions. Thus, neutrophils of healthy individuals treated with IH in-vitro and neutrophils of OSA patients undergoing nightly IH episodes in-vivo were investigated. Specifically, the balance between pro-apoptotic Bax and anti-apoptotic Mcl-1 protein expression, and the potential involvement of p38MAPK and ERK1/2 signaling pathways in the control of Mcl-1 expression were investigated. Purified neutrophils were exposed to IH and compared to normoxia and to sustained hypoxia (SH) using a BioSpherix-OxyCycler C42 system. Bax and Mcl-1 levels, and p38MAPK and ERK1/2 phosphorylation were determined by western blotting. Also, Bax/Mcl-1 expression and Bax translocation to the mitochondria were assessed by confocal microscopy in pre-apoptotic neutrophils, before the appearance of apoptotic morphology. Co-localization of Bax and mitochondria was quantified by LSM 510 CarlZeiss MicroImaging using Manders Overlap Coefficient. A paired two-tailed t test, with Bonferroni correction for multiple comparisons, was used for statistical analysis. Compared to normoxia, IH and SH up-regulated the anti-apoptotic Mcl-1 by about 2-fold, down-regulated the pro-apoptotic Bax by 41% and 27%, respectively, and inhibited Bax co-localization with mitochondria before visible morphological signs of apoptosis were noted. IH induced ERK1/2 and p38MAPKs phosphorylation, whereas SH induced only p38MAPK phosphorylation. Accordingly, both ERK and p38MAPK inhibitors attenuated the IH-induced Mcl-1 increase. In SH, only p38MAPK

  17. Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: effects of p38MAPK and ERK1/2 signaling

    Directory of Open Access Journals (Sweden)

    Dyugovskaya Larissa

    2012-10-01

    Full Text Available Abstract Background Prolonged neutrophil survival is evident in various cardiovascular and respiratory morbidities, in hypoxic conditions in-vitro and in patients with obstructive sleep apnea (OSA characterized by nightly intermittent hypoxia (IH. This may lead to persistent inflammation, tissue injury and dysfunction. We therefore investigated by a translational approach the potential contribution of the intrinsic stress-induced mitochondrial pathway in extending neutrophil survival under IH conditions. Thus, neutrophils of healthy individuals treated with IH in-vitro and neutrophils of OSA patients undergoing nightly IH episodes in-vivo were investigated. Specifically, the balance between pro-apoptotic Bax and anti-apoptotic Mcl-1 protein expression, and the potential involvement of p38MAPK and ERK1/2 signaling pathways in the control of Mcl-1 expression were investigated. Methods Purified neutrophils were exposed to IH and compared to normoxia and to sustained hypoxia (SH using a BioSpherix-OxyCycler C42 system. Bax and Mcl-1 levels, and p38MAPK and ERK1/2 phosphorylation were determined by western blotting. Also, Bax/Mcl-1 expression and Bax translocation to the mitochondria were assessed by confocal microscopy in pre-apoptotic neutrophils, before the appearance of apoptotic morphology. Co-localization of Bax and mitochondria was quantified by LSM 510 CarlZeiss MicroImaging using Manders Overlap Coefficient. A paired two-tailed t test, with Bonferroni correction for multiple comparisons, was used for statistical analysis. Results Compared to normoxia, IH and SH up-regulated the anti-apoptotic Mcl-1 by about 2-fold, down-regulated the pro-apoptotic Bax by 41% and 27%, respectively, and inhibited Bax co-localization with mitochondria before visible morphological signs of apoptosis were noted. IH induced ERK1/2 and p38MAPKs phosphorylation, whereas SH induced only p38MAPK phosphorylation. Accordingly, both ERK and p38MAPK inhibitors attenuated

  18. Retention of the In Vitro Radiosensitizing Potential of Gemcitabine Under Anoxic Conditions, in p53 Wild-Type and p53-Deficient Non-Small-Cell Lung Carcinoma Cells

    International Nuclear Information System (INIS)

    Wouters, An; Pauwels, Bea; Lambrechts, Hilde A.J.; Pattyn, Greet G.O.; Ides, Johan; Baay, Marc; Meijnders, Paul; Peeters, Marc; Vermorken, Jan B.; Lardon, Filip

    2011-01-01

    Purpose: Whereas radiosensitization by gemcitabine is well studied under normal oxygen conditions, little is known about its radiosensitizing potential under reduced oxygen conditions. Therefore, the present study evaluated the impact of anoxia on gemcitabine-mediated radiosensitization. Methods and Materials: The clonogenic assay was performed in three isogenic A549 cell lines differing in p53 status (24 h, 0-15 nM gemcitabine, 0-8 Gy irradiation, normoxia vs. anoxia). Using radiosensitizing conditions, cells were collected for cell cycle analysis and apoptosis detection. Results: Whereas wild-type p53 A549-LXSN cells were more sensitive to radiation than p53-deficient A549-E6 cells, both cell lines showed similar radiosensitization by gemcitabine under normoxia and anoxia. Independent of p53 functionality, gemcitabine was able to overcome anoxia-induced G 0/1 arrest and established an (early) S phase block in normoxic and anoxic cells. The percentage early and late apoptotic/necrotic cells increased with the gemcitabine/radiation combination, with a significant difference between A549-LXSN and A549-E6. Conclusions: This study is the first to show that gemcitabine retains its radiosensitizing potential under low oxygen conditions. Although radiosensitization was observed in both p53 wild-type and p53-deficient cells, p53 status might influence induction of apoptosis after gemcitabine/radiation treatment, whereas no effect on cell cycle progression was noticed.

  19. Functional promoter upstream p53 regulatory sequence of IGFBP3 that is silenced by tumor specific methylation

    International Nuclear Information System (INIS)

    Hanafusa, Tadashi; Shinji, Toshiyuki; Shiraha, Hidenori; Nouso, Kazuhiro; Iwasaki, Yoshiaki; Yumoto, Eichiro; Ono, Toshiro; Koide, Norio

    2005-01-01

    Insulin-like growth factor binding protein (IGFBP)-3 functions as a carrier of insulin-like growth factors (IGFs) in circulation and a mediator of the growth suppression signal in cells. There are two reported p53 regulatory regions in the IGFBP3 gene; one upstream of the promoter and one intronic. We previously reported a hot spot of promoter hypermethylation of IGFBP-3 in human hepatocellular carcinomas and derivative cell lines. As the hot spot locates at the putative upstream p53 consensus sequences, these p53 consensus sequences are really functional is a question to be answered. In this study, we examined the p53 consensus sequences upstream of the IGFBP-3 promoter for the p53 induced expression of IGFBP-3. Deletion, mutagenesis, and methylation constructs of IGFBP-3 promoter were assessed in the human hepatoblastoma cell line HepG2 for promoter activity. Deletions and mutations of these sequences completely abolished the expression of IGFBP-3 in the presence of p53 overexpression. In vitro methylation of these p53 consensus sequences also suppressed IGFBP-3 expression. In contrast, the expression of IGFBP-3 was not affected in the absence of p53 overexpression. Further, we observed by electrophoresis mobility shift assay that p53 binding to the promoter region was diminished when methylated. From these observations, we conclude that four out of eleven p53 consensus sequences upstream of the IGFBP-3 promoter are essential for the p53 induced expression of IGFBP-3, and hypermethylation of these sequences selectively suppresses p53 induced IGFBP-3 expression in HepG2 cells

  20. Bioluminescence Detection of Cells Having Stabilized p53 in Response to a Genotoxic Event

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2004-01-01

    Full Text Available Inactivation of p53 is one of the most frequent molecular events in neoplastic transformation. Approximately 60% of all human tumors have mutations in both p53 alleles. Wild-type p53 activity is regulated in large part by the proteosome-dependent degradation of p53, resulting in a short p53 half-life in unstressed and untransformed cells. Activation of p53 by a variety of stimuli, including DNA damage induced by genotoxic drugs or radiation, is accomplished by stabilization of wild-type p53. The stabilized and active p53 can result in either cell-cycle arrest or apoptosis. Surprisingly, the majority of tumor-associated, inactivating p53 mutations also result in p53 accumulation. Thus, constitutive elevation of p53 levels in cells is a reliable measure of p53 inactivation, whereas transiently increased p53 levels reflect a recent genotoxic stress. In order to facilitate noninvasive imaging of p53 accumulation, we here describe the construction of a p53-luciferase fusion protein. Induction of DNA damage in cells expressing the fusion protein resulted in a time-dependent accumulation of the fusion that was noninvasively detected using bioluminescence imaging and validated by Western blot analysis. The p53-Luc protein retains p53 function because its expression in HCT116 cells lacking functional p53 resulted in activation of p21 expression as well as induction of apoptosis in response to a DNA damaging event. Employed in a transgenic animal model, the proposed p53-reporter fusion protein will be useful for studying p53 activation in response to exposure to DNA-damaging carcinogenic agents. It could also be used to study p53 stabilization as a result of inactivating p53 mutations. Such studies will further our understanding of p53's role as the “guardian of the genome” and its function in tumorigenesis.

  1. Ubiquitin specific peptidase 5 mediates Histidine-rich protein Hpn induced cell apoptosis in hepatocellular carcinoma through P14-P53 signaling.

    Science.gov (United States)

    Liu, Yi; Wang, Wei-Mao; Zou, Li-Yi; Li, Li; Feng, Lu; Pan, Ming-Zhu; Lv, Min-Yi; Cao, Ying; Wang, Hua; Kung, Hsiang-Fu; Pang, Jian-Xin; Fu, Wei-Ming; Zhang, Jin-Fang

    2017-06-01

    Hpn is a small histidine-rich cytoplasmic protein from Helicobacter pylori and has been recognized as a high-risk factor for several cancers including gastric cancer, colorectal cancer, and MALT lymphoma. However, the relationship between Hpn and cancers remains elusive. In this study, we discovered that Hpn protein effectively suppressed cell growth and induced apoptosis in hepatocellular carcinoma (HCC). A two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics was performed to find the molecular targets of Hpn in HCC cells. It was identified that twelve proteins were differentially expressed, with USP5 being one of the most significantly downregulated protein. The P14 ARF -P53 signaling was activated by USP5 knockdown in HCC cells. Furthermore, USP5 overexpression significantly rescued the suppressive effect of Hpn on the viability of HCC cells. In conclusion, our study suggests that Hpn plays apoptosis-inducing roles through suppressing USP5 expression and activating the P14 ARF -P53 signaling. Therefore, Hpn may be a potential candidate for developing novel anti-HCC drugs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Friend or Foe: MicroRNAs in the p53 network.

    Science.gov (United States)

    Luo, Zhenghua; Cui, Ri; Tili, Esmerina; Croce, Carlo

    2018-04-10

    The critical tumor suppressor gene TP53 is either lost or mutated in more than half of human cancers. As an important transcriptional regulator, p53 modulates the expression of many microRNAs. While wild-type p53 uses microRNAs to suppress cancer development, microRNAs that are activated by gain-of-function mutant p53 confer oncogenic properties. On the other hand, the expression of p53 is tightly controlled by a fine-tune machinery including microRNAs. MicroRNAs can target the TP53 gene directly or other factors in the p53 network so that expression and function of either the wild-type or the mutant forms of p53 is downregulated. Therefore, depending on the wild-type or mutant p53 context, microRNAs contribute substantially to suppress or exacerbate tumor development. Copyright © 2018. Published by Elsevier B.V.

  3. Restriction of human herpesvirus 6B replication by p53

    DEFF Research Database (Denmark)

    Øster, Bodil; Kofod-Olsen, Emil; Bundgaard, Bettina

    2008-01-01

    Human herpesvirus 6B (HHV-6B) induces significant accumulation of p53 in both the nucleus and cytoplasm during infection. Activation of p53 by DNA damage is known to induce either growth arrest or apoptosis; nevertheless, HHV-6B-infected cells are arrested in their cell cycle independently of p53...

  4. Suicide genes or p53 gene and p53 target genes as targets for cancer gene therapy by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Bing; Chinese Academy of Sciences, Beijing; Zhang Hong

    2005-01-01

    Radiotherapy has some disadvantages due to the severe side-effect on the normal tissues at a curative dose of ionizing radiation (IR). Similarly, as a new developing approach, gene therapy also has some disadvantages, such as lack of specificity for tumors, limited expression of therapeutic gene, potential biological risk. To certain extent, above problems would be solved by the suicide genes or p53 gene and its target genes therapies targeted by ionizing radiation. This strategy not only makes up the disadvantage from radiotherapy or gene therapy alone, but also promotes success rate on the base of lower dose. By present, there have been several vectors measuring up to be reaching clinical trials. This review focused on the development of the cancer gene therapy through suicide genes or p53 and its target genes mediated by IR. (authors)

  5. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.

    Science.gov (United States)

    Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya

    2013-01-01

    ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

  6. A Small Ras-like protein Ray/Rab1c modulates the p53-regulating activity of PRPK

    International Nuclear Information System (INIS)

    Abe, Yasuhito; Takeuchi, Takashi; Imai, Yoshinori; Murase, Ryuichi; Kamei, Yoshiaki; Fujibuchi, Taketsugu; Matsumoto, Suguru; Ueda, Norifumi; Ogasawara, Masahito; Shigemoto, Kazuhiro; Kito, Katsumi

    2006-01-01

    PRPK phosphorylates serine-15 residue of p53 and enhances transcriptional activity. PRPK possesses a bipartite nuclear localization signal and localizes in nucleus when over-expressed in cells. However, intrinsic PRPK localizes mainly in the cytosol in situ. While studying the mechanisms in the distribution of intrinsic PRPK, we identified a PRPK binding protein, an ubiquitously expressed Small Ras-like GTPase, Rab1c, also named Ray or Rab35. The over-expressed Ray was distributed in the nucleus, cytosol, and cell membrane. Both Ray wild type and GTP-restrictively binding mutant Ray-Q67L, but not guanine nucleotide unstable binding mutant Ray-N120I, partially distributed the over-expressed PRPK to the cytosol and also suppressed the PRPK-induced p53-transcriptional activity profoundly. A Small Ras-like GTPase protein Ray was thus indicated to modulate p53 transcriptional activity of PRPK

  7. Exercise Activates p53 and Negatively Regulates IGF-1 Pathway in Epidermis within a Skin Cancer Model.

    Science.gov (United States)

    Yu, Miao; King, Brenee; Ewert, Emily; Su, Xiaoyu; Mardiyati, Nur; Zhao, Zhihui; Wang, Weiqun

    2016-01-01

    Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model.

  8. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  9. Analysis of p53- immunoreactivity in astrocytic brain tumors

    Directory of Open Access Journals (Sweden)

    Shinkarenko T.V.

    2016-12-01

    Full Text Available P53 is an antioncogene with the frequently occured mutations in human tumor cells, leading to corresponding protein overexpression which can be detected by immunohistochemistry. Researches dedicated to the investigation of possibilities of using this technique gave controversial results. The authors investigated features of p53 protein expression in astrocytic brain tumors with different degrees of malignancy. Analyzed the relationship of the expression level of p53 by tumor cells with clinical parameters and Ki-67 proliferation index (PI as well. Tissues were collected from 52 cases with diagnosed astrocytic brain tumors. The sections were immunohistochemically stained with p53 and Ki-67. For each marker, 1000 tumor cells were counted and the ratio of positive tumor cells was calculated using software package ImageJ 1,47v. In normal brain tissue p53- expression was not identified. p53-immunoreactive tumor cells were detected in 25% (1/4 pilocytic astrocytomas, 33.3% (2/6 of diffuse astrocytomas, 53.8% (7/13 anaplastic astrocytomas, 58.6% (17/29 glioblastomas. A high proportion of p53-immunoreactive cells (> 30% was observed only in glioblastomas. The level of p53-imunoreactivity was not related to the age, gender and Grade WHO (p> 0,05. Spearman correlation coefficient between the relative quantity of ki-67- and p53-immunoreactive nuclei showed weak direct correlation (0.023, but the one was not statistically significant (p> 0,05. The level of p53-imunoreactivity is not dependent from age and sex of patients, Grade (WHO and proliferative activity (p>0,05 but the high level of p53-immunoreactive cells (>30% is found in glioblastoma specimens only, that may be due to the accumulation of mutations in DNA of tumor cells. There is insignificant weak relationship between relative quantities of ki-67- and p53-immunoreactive tumor cells (p>0,05.

  10. Activation of the Nkx2.5–Calr–p53 signaling pathway by hyperglycemia induces cardiac remodeling and dysfunction in adult zebrafish

    Directory of Open Access Journals (Sweden)

    Yanyi Sun

    2017-10-01

    Full Text Available Hyperglycemia is an independent risk factor for diabetic cardiomyopathy in humans; however, the underlying mechanisms have not been thoroughly elucidated. Zebrafish (Danio rerio was used in this study as a novel vertebrate model to explore the signaling pathways of human adult cardiomyopathy. Hyperglycemia was induced by alternately immersing adult zebrafish in a glucose solution or water. The hyperglycemic fish gradually exhibited some hallmarks of cardiomyopathy such as myocardial hypertrophy and apoptosis, myofibril loss, fetal gene reactivation, and severe arrhythmia. Echocardiography of the glucose-treated fish demonstrated diastolic dysfunction at an early stage and systolic dysfunction at a later stage, consistent with what is observed in diabetic patients. Enlarged hearts with decreased myocardial density, accompanied by decompensated cardiac function, indicated that apoptosis was critical in the pathological process. Significant upregulation of the expression of Nkx2.5 and its downstream targets calreticulin (Calr and p53 was noted in the glucose-treated fish. High-glucose stimulation in vitro evoked marked apoptosis of primary cardiomyocytes, which was rescued by the p53 inhibitor pifithrin-μ. In vitro experiments were performed using compound treatment and genetically via cell infection. Genetically, knockout of Nkx2.5 induced decreased expression of Nkx2.5, Calr and p53. Upregulation of Calr resulted in increased p53 expression, whereas the level of Nkx2.5 remained unchanged. An adult zebrafish model of hyperglycemia-induced cardiomyopathy was successfully established. Hyperglycemia-induced myocardial apoptosis was mediated, at least in part, by activation of the Nkx2.5–Calr–p53 pathway in vivo, resulting in cardiac dysfunction and hyperglycemia-induced cardiomyopathy.

  11. AAVPG: A vigilant vector where transgene expression is induced by p53

    Energy Technology Data Exchange (ETDEWEB)

    Bajgelman, Marcio C.; Medrano, Ruan F.V.; Carvalho, Anna Carolina P.V.; Strauss, Bryan E., E-mail: bstrauss@usp.br

    2013-12-15

    Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl{sub 2}, p<0.001) and biomechanical stress (2.53±0.4 fold increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×10{sup 5}±0.43×10{sup 5} photons/s; post-treatment, 6.6×10{sup 5}±2.1×10{sup 5} photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress.

  12. PKI 166 induced redox signalling and apoptosis through activation of p53, MAP kinase and caspase pathway in epidermoid carcinoma.

    Science.gov (United States)

    Das, Subhasis; Dey, Kaushik Kumar; Bharti, Rashmi; MaitiChoudhury, Sujata; Maiti, Sukumar; Mandal, Mahitosh

    2012-01-01

    Cellular redox changes have emerged as a pivotal and proximal event in cancer. PKI 166 is used to determine the effects of redox sensitive inhibition of EGFR, metastasis and apoptosis in epidermoid carcinoma. Cytotoxicity study of PKI 166 (IC50 1.0 microM) treated A431 cells were performed by MTT assay for 48 and 72 hrs. Morphological analysis of PKI 166 treated A431 cells for 48 hrs. revealed the cell shrinkage, loss of filopodia and lamellipodia by phase contrast and SEM images in dose dependent manner. It has cytotoxic effects through inhibiting cellular proliferation, leads to the induction of apoptosis, as increased fraction of sub-G1 phase of the cell cycle, chromatin condensation and DNA ladder. It inhibited cyclin-D1 and cyclin-E expression and induced p53, p21 expression in dose dependent manner. Consequently, an imbalance of Bax/Bcl-2 ratio triggered caspase cascade and subsequent cleavage of PARP, thereby shifting the balance in favour of apoptosis. PKI 166 treatment actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. It inhibited some metastatic properties of A431 cells supressing colony formation by soft agar assay and inhibition of MMP 9 activity by gelatin zymography and western blot analysis. PKI 166 inhibited growth factor induced phosphorylation of EGFR, Akt, MAPK, JNK and colony formation in A431 cells. Thus the inhibition of proliferation was associated with redox regulation of the caspase cascade, EGFR, Akt/PI3K, MAPK/ ERK and JNK pathway. On the other hand, increased antioxidant activity leads to decreased ROS generation inhibit the anti-proliferative and apoptotic properties of PKI 166 in A431 cells. These observations indicated PKI 166 induced redox signalling dependent inhibition of cell proliferation, metastatic properties and induction of apoptotic potential in epidermoid carcinoma.

  13. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    Science.gov (United States)

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-08-27

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  14. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    Directory of Open Access Journals (Sweden)

    Iva Simeonova

    2013-06-01

    Full Text Available Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53Δ31, a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis, hallmarks of syndromes caused by short telomeres. Indeed, p53Δ31/Δ31 mice had short telomeres and other phenotypic traits associated with the telomere disease dyskeratosis congenita and its severe variant the Hoyeraal-Hreidarsson syndrome. Heterozygous p53+/Δ31 mice were only mildly affected, but decreased levels of Mdm4, a negative regulator of p53, led to a dramatic aggravation of their symptoms. Importantly, several genes involved in telomere metabolism were downregulated in p53Δ31/Δ31 cells, including Dyskerin, Rtel1, and Tinf2, which are mutated in dyskeratosis congenita, and Terf1, which is implicated in aplastic anemia. Together, these data reveal that a truncating mutation can activate p53 and that p53 plays a major role in the regulation of telomere metabolism.

  15. Synthesis and evaluation of modified chalcone based p53 stabilizing agents

    KAUST Repository

    Iftikhar, Sunniya; Khan, Sardraz; Bilal, Aishah; Manzoor, Safia; Abdullah, Muhammad; Emwas, Abdul-Hamid M.; Sioud, Salim; Gao, Xin; Chotana, Ghayoor Abbas; Faisal, Amir; Saleem, Rahman Shah Zaib

    2017-01-01

    Tumor suppressor protein p53 induces cell cycle arrest and apoptotic cell death in response to various cellular stresses thereby preventing cancer development. Activation and stabilization of p53 through small organic molecules is, therefore, an attractive approach for the treatment of cancers retaining wild-type p53. In this context, a series of nineteen chalcones with various substitution patterns of functional groups including chloro, fluoro, methoxy, nitro, benzyloxy, 4-methyl benzyloxy was prepared using Claisen-Schmidt condensation. The compounds were characterized using NMR, HRMS, IR and melting points. Evaluation of synthesized compounds against human colorectal (HCT116) and breast (Cal-51) cancer cell lines revealed potent antiproliferative activities. Nine compounds displayed GI50 values in the low micromolar to submicromolar range; for example (E)-1-phenyl-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (SSE14108) showed GI50 of 0.473 ± 0.043 µM against HCT116 cells. Further analysis of these compounds revealed that (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (SSE14105) and (E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (SSE14106) caused rapid (4 and 8-hour post-treatment) accumulation of p53 in HCT116 cells similar to its induction by positive control, Nutlin-3. Such activities were absent in 3-(4-methoxyphenyl)propiophenone (SSE14106H2) demonstrating the importance of conjugated ketone for antiproliferative and p53 stabilizing activity of the chalcones. We further evaluated p53 levels in the presence of cycloheximide (CHX) and the results showed that the p53 stabilization was regulated at post-translational level through blockage of its degradation. These chalcones can, therefore, act as fragment leads for further structure optimization to obtain more potent p53 stabilizing agents with enhanced anti-proliferative activities.

  16. Synthesis and evaluation of modified chalcone based p53 stabilizing agents

    KAUST Repository

    Iftikhar, Sunniya

    2017-07-15

    Tumor suppressor protein p53 induces cell cycle arrest and apoptotic cell death in response to various cellular stresses thereby preventing cancer development. Activation and stabilization of p53 through small organic molecules is, therefore, an attractive approach for the treatment of cancers retaining wild-type p53. In this context, a series of nineteen chalcones with various substitution patterns of functional groups including chloro, fluoro, methoxy, nitro, benzyloxy, 4-methyl benzyloxy was prepared using Claisen-Schmidt condensation. The compounds were characterized using NMR, HRMS, IR and melting points. Evaluation of synthesized compounds against human colorectal (HCT116) and breast (Cal-51) cancer cell lines revealed potent antiproliferative activities. Nine compounds displayed GI50 values in the low micromolar to submicromolar range; for example (E)-1-phenyl-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (SSE14108) showed GI50 of 0.473 ± 0.043 µM against HCT116 cells. Further analysis of these compounds revealed that (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (SSE14105) and (E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (SSE14106) caused rapid (4 and 8-hour post-treatment) accumulation of p53 in HCT116 cells similar to its induction by positive control, Nutlin-3. Such activities were absent in 3-(4-methoxyphenyl)propiophenone (SSE14106H2) demonstrating the importance of conjugated ketone for antiproliferative and p53 stabilizing activity of the chalcones. We further evaluated p53 levels in the presence of cycloheximide (CHX) and the results showed that the p53 stabilization was regulated at post-translational level through blockage of its degradation. These chalcones can, therefore, act as fragment leads for further structure optimization to obtain more potent p53 stabilizing agents with enhanced anti-proliferative activities.

  17. Quercetin suppresses DNA double-strand break repair and enhances the radiosensitivity of human ovarian cancer cells via p53-dependent endoplasmic reticulum stress pathway

    Directory of Open Access Journals (Sweden)

    Gong C

    2017-12-01

    Full Text Available Cheng Gong,1 Zongyuan Yang,1 Lingyun Zhang,2 Yuehua Wang,2 Wei Gong,2 Yi Liu3 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 2Department of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, 3Department of Medicinal Chemistry, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China Abstract: Quercetin is proven to have anticancer effects for many cancers. However, the role of tumor suppressor p53 on quercetin’s radiosensitization and regulation of endoplasmic reticulum (ER stress response in this process remains obscure. Here, quercetin exposure resulted in ER stress, prolonged DNA repair, and the expression of p53 protein; phosphorylation on serine 15 and 20 increased in combination with X-irradiation. Quercetin pretreatment could potentiate radiation-induced cell death. The combination of irradiation and quercetin treatment aggravated DNA damages and caused typical apoptotic cell death; as well the expression of Bax and p21 elevated and the expression of Bcl-2 decreased. Knocking down of p53 could reverse all the above effects under quercetin in combination with radiation. In addition, quercetin-induced radiosensitization was through stimulation of ATM phosphorylation. In human ovarian cancer xenograft model, combined treatment of quercetin and radiation significantly restrained the growth of tumors, accompanied with the activation of p53, CCAAT/enhancer-binding protein homologous protein, and γ-H2AX. Overall, these results indicated that quercetin acted as a promising radiosensitizer through p53-dependent ER stress signals. Keywords: quercetin, p53, endoplasmic reticulum stress, DNA double-strand breaks, eIF-2α (eukaryotic initiation factor 2α, ATM kinase

  18. p21-LacZ reporter mice reflect p53-dependent toxic insult

    International Nuclear Information System (INIS)

    Vasey, Douglas B.; Wolf, C. Roland; MacArtney, Thomas; Brown, Ken; Whitelaw, C. Bruce A.

    2008-01-01

    There is an urgent need to discover less toxic and more selective drugs to treat disease. The use of transgenic mice that report on toxic insult-induced transcription can provide a valuable tool in this regard. To exemplify this strategy, we have generated transgenic mice carrying a p21-LacZ transgene. Transgene activity reflected endogenous p21 gene activation in various tissues, displayed compound-specific spatial expression signatures in the brain and immune tissues and enabled p53-dependent and p53-independent responses to be identified. We discuss the application of these mice in delineating the molecular events in normal cellular growth and disease and for the evaluation of drug toxicity

  19. Functions of MDMX in the Modulation of the p53-Response

    Directory of Open Access Journals (Sweden)

    Kristiaan Lenos

    2011-01-01

    Full Text Available The MDM family proteins MDM2 and MDMX are two critical regulators of the p53 tumor suppressor protein. Expression of both proteins is necessary for allowing the embryonal development by keeping the activity of p53 in check. Upon stresses that need to activate p53 to perform its function as guardian of the genome, p53 has to be liberated from these two inhibitors. In this review, we will discuss the various mechanisms by which MDMX protein levels are downregulated upon various types of stress, including posttranslational modifications of the MDMX protein and the regulation of mdmx mRNA expression, including alternative splicing. In addition, the putative function(s of the described MDMX splice variants, particularly in tumor development, will be discussed. Lastly, in contrast to common belief, we have recently shown the existence of a p53-MDMX feedback loop, which is important for dampening the p53-response at later phases after genotoxic stress.

  20. P53 suppresses expression of the 14-3-3gamma oncogene

    Directory of Open Access Journals (Sweden)

    Qi Wenqing

    2011-08-01

    Full Text Available Abstract Background 14-3-3 proteins are a family of highly conserved proteins that are involved in a wide range of cellular processes. Recent evidence indicates that some of these proteins have oncogenic activity and that they may promote tumorigenesis. We previously showed that one of the 14-3-3 family members, 14-3-3gamma, is over expressed in human lung cancers and that it can induce transformation of rodent cells in vitro. Methods qRTPCR and Western blot analysis were performed to examine 14-3-3gamma expression in non-small cell lung cancers (NSCLC. Gene copy number was analyzed by qPCR. P53 mutations were detected by direct sequencing and also by western blot. CHIP and yeast one hybrid assays were used to detect p53 binding to 14-3-3gamma promoter. Results Quantitative rtPCR results showed that the expression level of 14-3-3gamma was elevated in the majority of NSCLC that we examined which was also consistent with protein expression. Further analysis of the expression pattern of 14-3-3gamma in lung tumors showed a correlation with p53 mutations suggesting that p53 might suppress 14-3-3 gamma expression. Analysis of the gamma promoter sequence revealed the presence of a p53 consensus binding motif and in vitro assays demonstrated that wild-type p53 bound to this motif when activated by ionizing radiation. Deletion of the p53 binding motif eliminated p53's ability to suppress 14-3-3gamma expression. Conclusion Increased expression of 14-3-3gamma in lung cancer coincides with loss of functional p53. Hence, we propose that 14-3-3gamma's oncogenic activities cooperate with loss of p53 to promote lung tumorigenesis.

  1. Metabolic oxidative stress elicited by the copper(II) complex [Cu(isaepy)2] triggers apoptosis in SH-SY5Y cells through the induction of the AMP-activated protein kinase/p38MAPK/p53 signalling axis: evidence for a combined use with 3-bromopyruvate in neuroblastoma treatment.

    Science.gov (United States)

    Filomeni, Giuseppe; Cardaci, Simone; Da Costa Ferreira, Ana Maria; Rotilio, Giuseppe; Ciriolo, Maria Rosa

    2011-08-01

    We have demonstrated previously that the complex bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N']copper(II), named [Cu(isaepy)(2)], induces AMPK (AMP-activated protein kinase)-dependent/p53-mediated apoptosis in tumour cells by targeting mitochondria. In the present study, we found that p38(MAPK) (p38 mitogen-activated protein kinase) is the molecular link in the phosphorylation cascade connecting AMPK to p53. Transfection of SH-SY5Y cells with a dominant-negative mutant of AMPK resulted in a decrease in apoptosis and a significant reduction in phospho-active p38(MAPK) and p53. Similarly, reverse genetics of p38(MAPK) yielded a reduction in p53 and a decrease in the extent of apoptosis, confirming an exclusive hierarchy of activation that proceeds via AMPK/p38(MAPK)/p53. Fuel supplies counteracted [Cu(isaepy)(2)]-induced apoptosis and AMPK/p38(MAPK)/p53 activation, with glucose being the most effective, suggesting a role for energetic imbalance in [Cu(isaepy)(2)] toxicity. Co-administration of 3BrPA (3-bromopyruvate), a well-known inhibitor of glycolysis, and succinate dehydrogenase, enhanced apoptosis and AMPK/p38(MAPK)/p53 signalling pathway activation. Under these conditions, no toxic effect was observed in SOD (superoxide dismutase)-overexpressing SH-SY5Y cells or in PCNs (primary cortical neurons), which are, conversely, sensitized to the combined treatment with [Cu(isaepy)(2)] and 3BrPA only if grown in low-glucose medium or incubated with the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. Overall, the results suggest that NADPH deriving from the pentose phosphate pathway contributes to PCN resistance to [Cu(isaepy)(2)] toxicity and propose its employment in combination with 3BrPA as possible tool for cancer treatment. © The Authors Journal compilation © 2011 Biochemical Society

  2. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    NARCIS (Netherlands)

    Simeonova, I.; Jaber, S.; Draskovic, I.; Bardot, B.; Fang, M.; Bouarich-Bourimi, R.; Lejour, V.; Charbonnier, L.; Soudais, C.; Bourdon, J.C.; Huerre, M.; Londono-Vallejo, A.; Toledo, F.

    2013-01-01

    Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53(Delta31), a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis,

  3. Flavopiridol induces apoptosis in glioma cell lines independent of retinoblastoma and p53 tumor suppressor pathway alterations by a caspase-independent pathway.

    Science.gov (United States)

    Alonso, Michelle; Tamasdan, Cristina; Miller, Douglas C; Newcomb, Elizabeth W

    2003-02-01

    Flavopiridol is a synthetic flavone, which inhibits growth in vitro and in vivo of several solid malignancies such as renal, prostate, and colon cancers. It is a potent cyclin-dependent kinase inhibitor presently in clinical trials. In this study, we examined the effect of flavopiridol on a panel of glioma cell lines having different genetic profiles: five of six have codeletion of p16(INK4a) and p14(ARF); three of six have p53 mutations; and one of six shows overexpression of mouse double minute-2 (MDM2) protein. Independent of retinoblastoma and p53 tumor suppressor pathway alterations, flavopiridol induced apoptosis in all cell lines but through a caspase-independent mechanism. No cleavage products for caspase 3 or its substrate poly(ADP-ribose) polymerase or caspase 8 were detected. The pan-caspase inhibitor Z-VAD-fmk did not inhibit flavopiridol-induced apoptosis. Mitochondrial damage measured by cytochrome c release and transmission electron microscopy was not observed in drug-treated glioma cells. In contrast, flavopiridol treatment induced translocation of apoptosis-inducing factor from the mitochondria to the nucleus. The proteins cyclin D(1) and MDM2 involved in the regulation of retinoblastoma and p53 activity, respectively, were down-regulated early after flavopiridol treatment. Given that MDM2 protein can confer oncogenic properties under certain circumstances, loss of MDM2 expression in tumor cells could promote increased chemosensitivity. After drug treatment, a low Bcl-2/Bax ratio was observed, a condition that may favor apoptosis. Taken together, the data indicate that flavopiridol has activity against glioma cell lines in vitro and should be considered for clinical development in the treatment of glioblastoma multiforme.

  4. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    1999-11-01

    Full Text Available The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE, which can be activated through hypoxia-inducible factor-1 (HIF-1. We transfected plasmids containing multiple copies of HIRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HIRE copy number, and the degree of hypoxia.

  5. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2010-08-01

    Full Text Available P-glycoprotein (Pgp, encoded by the multidrug resistance 1 (MDR1 gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  6. AMP-activated protein kinase phosphorylates CtBP1 and down-regulates its activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan; Choi, Soo-Youn; Kang, Byung-Hee; Lee, Soon-Min [National Creative Research Center for Epigenome Reprogramming Network, Departments of Biomedical Sciences and Biochemistry and Molecular Biology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Park, Hyung Soon; Kang, Gum-Yong; Bang, Joo Young [Center for Biomedical Mass Spectrometry, Diatech Korea Co., Ltd., Seoul (Korea, Republic of); Cho, Eun-Jung [National Research Laboratory for Chromatin Dynamics, College of Pharmacy, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Youn, Hong-Duk, E-mail: hdyoun@snu.ac.kr [National Creative Research Center for Epigenome Reprogramming Network, Departments of Biomedical Sciences and Biochemistry and Molecular Biology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence and Technology, Seoul National University, Seoul (Korea, Republic of)

    2013-02-01

    Highlights: ► AMPK phosphorylates CtBP1 on serine 158. ► AMPK-mediated phosphorylation of CtBP1 causes the ubiquitination and nuclear export of CtBP1. ► AMPK downregulates the CtBP1-mediated repression of Bax transcription. -- Abstract: CtBP is a transcriptional repressor which plays a significant role in the regulation of cell proliferation and tumor progression. It was reported that glucose withdrawal causes induction of Bax due to the dissociation of CtBP from the Bax promoter. However, the precise mechanism involved in the regulation of CtBP still remains unclear. In this study, we found that an activated AMP-activated protein kinase (AMPK) phosphorylates CtBP1 on Ser-158 upon metabolic stresses. Moreover, AMPK-mediated phosphorylation of CtBP1 (S158) attenuates the repressive function of CtBP1. We also confirmed that triggering activation of AMPK by various factors resulted in an increase of Bax gene expression. These findings provide connections of AMPK with CtBP1-mediated regulation of Bax expression for cell death under metabolic stresses.

  7. A dynamic P53-MDM2 model with time delay

    Energy Technology Data Exchange (ETDEWEB)

    Mihalas, Gh.I. [Department of Biophysics and Medical Informatics, University of Medicine and Pharmacy, Piata Eftimie Murgu, nr. 3, 300041 Timisoara (Romania)]. E-mail: mihalas@medinfo.umft.ro; Neamtu, M. [Department of Forecasting, Economic Analysis, Mathematics and Statistics, West University of Timisoara, Str. Pestalozzi, nr. 14A, 300115 Timisoara (Romania)]. E-mail: mihaela.neamtu@fse.uvt.ro; Opris, D. [Department of Applied Mathematics, West University of Timisoara, Bd. V. Parvan, nr. 4, 300223 Timisoara (Romania)]. E-mail: opris@math.uvt.ro; Horhat, R.F. [Department of Biophysics and Medical Informatics, University of Medicine and Pharmacy, Piata Eftimie Murgu, nr. 3, 300041 Timisoara (Romania)]. E-mail: rhorhat@yahoo.com

    2006-11-15

    Specific activator and repressor transcription factors which bind to specific regulator DNA sequences, play an important role in gene activity control. Interactions between genes coding such transcription factors should explain the different stable or sometimes oscillatory gene activities characteristic for different tissues. Starting with the model P53-MDM2 described into [Mihalas GI, Simon Z, Balea G, Popa E. Possible oscillatory behaviour in P53-MDM2 interaction computer simulation. J Biol Syst 2000;8(1):21-9] and the process described into [Kohn KW, Pommier Y. Molecular interaction map of P53 and MDM2 logic elements, which control the off-on switch of P53 in response to DNA damage. Biochem Biophys Res Commun 2005;331:816-27] we enveloped a new model of this interaction. Choosing the delay as a bifurcation parameter we study the direction and stability of the bifurcating periodic solutions. Some numerical examples are finally given for justifying the theoretical results.

  8. A dynamic P53-MDM2 model with time delay

    International Nuclear Information System (INIS)

    Mihalas, Gh.I.; Neamtu, M.; Opris, D.; Horhat, R.F.

    2006-01-01

    Specific activator and repressor transcription factors which bind to specific regulator DNA sequences, play an important role in gene activity control. Interactions between genes coding such transcription factors should explain the different stable or sometimes oscillatory gene activities characteristic for different tissues. Starting with the model P53-MDM2 described into [Mihalas GI, Simon Z, Balea G, Popa E. Possible oscillatory behaviour in P53-MDM2 interaction computer simulation. J Biol Syst 2000;8(1):21-9] and the process described into [Kohn KW, Pommier Y. Molecular interaction map of P53 and MDM2 logic elements, which control the off-on switch of P53 in response to DNA damage. Biochem Biophys Res Commun 2005;331:816-27] we enveloped a new model of this interaction. Choosing the delay as a bifurcation parameter we study the direction and stability of the bifurcating periodic solutions. Some numerical examples are finally given for justifying the theoretical results

  9. p53 functional impairment and high p21waf1/cip1 expression in human T-cell lymphotropic/leukemia virus type I-transformed T cells.

    Science.gov (United States)

    Cereseto, A; Diella, F; Mulloy, J C; Cara, A; Michieli, P; Grassmann, R; Franchini, G; Klotman, M E

    1996-09-01

    Human T-cell lymphotropic/leukemia virus type I (HTLV-I) is associated with T-cell transformation both in vivo and in vitro. Although some of the mechanisms responsible for transformation remain unknown, increasing evidence supports a direct role of viral as well as dysregulated cellular proteins in transformation. We investigated the potential role of the tumor suppressor gene p53 and of the p53-regulated gene, p21waf1/cip1 (wild-type p53 activated fragment 1/cycling dependent kinases [cdks] interacting protein 1), in HTLV-I-infected T cells. We have found that the majority of HTLV-I-infected T cells have the wild-type p53 gene. However, its function in HTLV-I-transformed cells appears to be impaired, as shown by the lack of appropriate p53-mediated responses to ionizing radiation (IR). Interestingly, the expression of the p53 inducible gene, p21waf1/cip1, is elevated at the messenger ribonucleic acid and protein levels in all HTLV-I-infected T-cell lines examined as well as in Taxl-1, a human T-cell line stably expressing Tax. Additionally, Tax induces upregulation of a p21waf1/cip1 promoter-driven luciferase gene in p53 null cells, and increases p21waf1/cip1 expression in Jurkat T cells. These findings suggest that the Tax protein is at least partially responsible for the p53-independent expression of p21waf1/cip1 in HTLV-I-infected cells. Dysregulation of p53 and p21waf1/cip1 proteins regulating cell-cycle progression, may represent an important step in HTLV-I-induced T-cell transformation.

  10. Iron oxide magnetic nanoparticles combined with actein suppress non-small-cell lung cancer growth in a p53-dependent manner

    Directory of Open Access Journals (Sweden)

    Wang MS

    2017-10-01

    Full Text Available Ming-Shan Wang,1 Liang Chen,2 Ya-Qiong Xiong,2 Jing Xu,2 Ji-Peng Wang,2 Zi-Li Meng2 1Department of Oncology, Huaiyin Hospital of Huai’an City, Huai’an, China; 2Department of Respiration, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China Abstract: Actein (AT is a triterpene glycoside isolated from the rhizomes of Cimicifuga foetida that has been investigated for its antitumor effects. AT treatment leads to apoptosis in various cell types, including breast cancer cells, by regulating different signaling pathways. Iron oxide (Fe3O4 magnetic nanoparticles (MNPs are nanomaterials with biocompatible activity and low toxicity. In the present study, the possible benefits of AT in combination with MNPs on non-small-cell lung cancer (NSCLC were explored in in vitro and in vivo studies. AT-MNP treatment contributed to apoptosis in NSCLC cells, as evidenced by activation of the caspase 3-signaling pathway, which was accompanied by downregulation of the antiapoptotic proteins Bcl2 and BclXL, and upregulation of the proapoptotic signals Bax and Bad. The death receptors of TRAIL were also elevated following AT-MNP treatment in a p53-dependent manner. Furthermore, a mouse xenograft model in vivo revealed that AT-MNP treatment exhibited no toxicity and suppressed NSCLC growth compared to either AT or MNP monotherapies. In conclusion, this study suggests a novel therapy to induce apoptosis in suppressing NSCLC growth in a p53-dependent manner by combining AT with Fe3O4 MNPs. Keywords: actein, Fe3O4 magnetic nanoparticles, NSCLC, apoptosis, p53

  11. S100A4 interacts with p53 in the nucleus and promotes p53 degradation.

    Science.gov (United States)

    Orre, L M; Panizza, E; Kaminskyy, V O; Vernet, E; Gräslund, T; Zhivotovsky, B; Lehtiö, J

    2013-12-05

    S100A4 is a small calcium-binding protein that is commonly overexpressed in a range of different tumor types, and it is widely accepted that S100A4 has an important role in the process of cancer metastasis. In vitro binding assays has shown that S100A4 interacts with the tumor suppressor protein p53, indicating that S100A4 may have additional roles in tumor development. In the present study, we show that endogenous S100A4 and p53 interact in complex samples, and that the interaction increases after inhibition of MDM2-dependent p53 degradation using Nutlin-3A. Further, using proximity ligation assay, we show that the interaction takes place in the cell nucleus. S100A4 knockdown experiments in two p53 wild-type cell lines, A549 and HeLa, resulted in stabilization of p53 protein, indicating that S100A4 is promoting p53 degradation. Finally, we demonstrate that S100A4 knockdown leads to p53-dependent cell cycle arrest and increased cisplatin-induced apoptosis. Thus, our data add a new layer to the oncogenic properties of S100A4 through its inhibition of p53-dependent processes.

  12. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Shi, Qiong; Song, Xiufang; Fu, Juanli; Hu, Lihua; Xu, Demei; Su, Chuanyang; Xia, Xiaomin; Song, Erqun; Song, Yang, E-mail: songyangwenrong@hotmail.com

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observed phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.

  13. Tetrahydroxystilbene Glucoside Effectively Prevents Apoptosis Induced Hair Loss

    Directory of Open Access Journals (Sweden)

    Lulu Chen

    2018-01-01

    Full Text Available The effect of Polygonum multiflorum against hair loss has been widely recognized. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG is the main component of Polygonum multiflorum; however, its role in hair regeneration has not been established. To evaluate the hair growth-promoting activity of TSG, depilated C57BL/6J mice were topically treated with normal saline, TSG, Pifithrin-α, Minoxidil for 2 weeks. In this study, we identified that p53, Caspase-3, Active Caspase-3, and Caspase-9 were obviously upregulated in the skin of human and mice with hair loss by western blot analysis. Depilated mice treated with TSG showed markedly hair regrowth. TUNEL+ cells were also reduced in mice with TSG. These changes were accompanied with inhibition of Fas, p53, Bax, Active Caspase-3, and Procaspase-9 activities. These results demonstrated that TSG exerts great hair regrowth effect on hair loss, which was probably mediated by inhibition of p53, Fas, and Bax induced apoptosis.

  14. Biological activity and safety of adenoviral vector-expressed wild-type p53 after intratumoral injection in melanoma and breast cancer patients with p53-overexpressing tumors

    NARCIS (Netherlands)

    Dummer, R; Bergh, J; Karlsson, Y; Horovitz, JA; Mulder, NH; Huinin, DT; Burg, G; Hofbauer, G; Osanto, S

    p53 mutations are common genetic alterations in human cancer. Gene transfer of a wild-type (wt) p53 gene reverses the loss of normal p53 function in vitro and in vivo. A phase I dose escalation study of single intratumoral (i.t.) injection of a replication-defective adenoviral expression vector

  15. A família do p53: aspectos estruturais e funcionais do p73 e do p63 The p53 family: structural and functional aspects of p73 and p63

    Directory of Open Access Journals (Sweden)

    Alfredo Ribeiro-Silva

    2003-06-01

    Full Text Available O p53 é um gene regulador chave do ciclo celular que, quando sofre mutações, leva ao desenvolvimento de neoplasias, atuando, portanto, como um gene supressor tumoral em condições normais. Recentemente foram identificados genes homólogos ao p53 denominados p73 e p63, provavelmente oriundos de um gene ancestral comum. Apesar da grande homologia estrutural, os membros da família do p53 possuem diferenças funcionais entre si. O presente artigo tem por finalidade discorrer sobre os principais aspectos estruturais e funcionais do p73 e do p63, ressaltando seus papéis na tumorigênese humana. O p73 ativa vários genes responsivos ao p53 e, quando superexpresso, inibe a ação do p53. Raramente encontra-se mutado em neoplasias, e seu papel na tumorigênese humana ainda é motivo de controvérsias. O p63 não é um gene supressor tumoral clássico, sendo essencial para a manutenção de uma população de células precursoras (células-tronco em vários tecidos epiteliais. O p63 marca as células basais de vários órgãos epiteliais, como a pele e a próstata, podendo ser considerado um marcador de indiferenciação celular. O p63 é um marcador recentemente descrito e ainda requer maior investigação para determinar seu papel no desenvolvimento de neoplasias em humanos.The p53 gene has a key role in the cell cycle control. When mutated, it promotes the development of neoplasms, acting in so far as a tumor suppressor gene in normal conditions. Recently, genes homologue to p53 were identified, named p73 e p63, probably originated from a common ancestral gene. Despite the great structural homology, the members of p53 family have functional differences. This article aims to discourse about the major structural and functional aspects of p73 and p63, reinforcing their role in human tumorigenesis. P73 activates several p53 responsive genes and, when overexpressed, inhibits the p53 action. It is rarely mutated in neoplasms and its role in human

  16. Loss of P53 Function in Colon Cancer Cells Results in Increased Phosphocholine and Total Choline

    Directory of Open Access Journals (Sweden)

    Noriko Mori

    2004-10-01

    Full Text Available Mutations in the p53 gene are the most frequently observed genetic lesions in human cancers. Human cancers that contain a p53 mutation are more aggressive, more apt to metastasize, and more often fatal. p53 controls numerous downstream targets that can influence various outcomes such as apoptosis, growth arrest, and DNA repair. Based on previous observations using 1H magnetic resonance spectroscopy (MRS, we have identified choline phospholipid metabolite intensities typical of increased malignancy. Here we have used 1H MRS to characterize the choline phospholipid metabolite levels of p53+/+ and p53−/– cells, and demonstrated that loss of p53 function results in increased phosphocholine and total choline. These data suggest that the increased malignancy of cancer cells resulting from loss of p53 may be mediated, in part, through the choline phospholipid pathway.

  17. Integration of Genomic, Biologic, and Chemical Approaches to Target p53 Loss and Gain-of-Function in Triple Negative Breast Cancer

    Science.gov (United States)

    2016-09-01

    in this progress report: p53 triple-negative breast cancer subtypes gene expression somatic cell genetics CRISPR / Cas 3. ACCOMPLISHMENTS Major...report, we described the creation of an isogenic p53 mutant TNBC cell line panel using CRISPR / Cas -mediated genome editing8 and the resultant...LOF null state. To validate that mutant p53 is directly responsible for this altered transcription, we will use the same CRISPR -mediated genome

  18. Noscapine induced apoptosis via downregulation of survivin in human neuroblastoma cells having wild type or null p53.

    Directory of Open Access Journals (Sweden)

    Shiwang Li

    Full Text Available Neuroblastoma is the most common extracranial solid tumor of childhood. It accounts for 15% of pediatric cancer deaths. Chemotherapy is the mainstay of treatment in children with advanced neuroblastoma. Noscapine, a nontoxic natural compound, can trigger apoptosis in many cancer types. We now show that p53 is dispensable for Noscapine-induced cell death in neuroblastoma cell lines, proapoptotic response to this promising chemopreventive agent is mediated by suppression of survivin protein expression. The Noscapine treatment increased levels of total and Ser(15-phosphorylated p53 protein in SK-SY5Y cells, but the proapoptotic response to this agent was maintained even after knockdown of the p53 protein level. Exposure of SK-SY5Y and LA1-5S cells to Noscapine resulted in a marked decrease in protein and mRNA level of survivin as early as 12 hours after treatment. Ectopic expression of survivin conferred statistically significant protection against Noscapine-mediated cytoplasmic histone-associated apoptotic DNA fragmentation. Also, the Noscapine-induced apoptosis was modestly but statistically significantly augmented by RNA interference of survivin in both cell lines. Furthermore, Noscapine-induced apoptotic cell death was associated with activation of caspase-3 and cleavage of PARP. In conclusion, the present study provides novel insight into the molecular circuitry of Noscapine-induced apoptosis to indicate suppression of survivin expression as a critical mediator of this process.

  19. Drosophila UTX coordinates with p53 to regulate ku80 expression in response to DNA damage.

    Directory of Open Access Journals (Sweden)

    Chengwan Zhang

    Full Text Available UTX is known as a general factor that activates gene transcription during development. Here, we demonstrate an additional essential role of UTX in the DNA damage response, in which it upregulates the expression of ku80 in Drosophila, both in cultured cells and in third instar larvae. We further showed that UTX mediates the expression of ku80 by the demethylation of H3K27me3 at the ku80 promoter upon exposure to ionizing radiation (IR in a p53-dependent manner. UTX interacts physically with p53, and both UTX and p53 are recruited to the ku80 promoter following IR exposure in an interdependent manner. In contrast, the loss of utx has little impact on the expression of ku70, mre11, hid and reaper, suggesting the specific regulation of ku80 expression by UTX. Thus, our findings further elucidate the molecular function of UTX.

  20. AMP-activated protein kinase couples 3-bromopyruvate-induced energy depletion to apoptosis via activation of FoxO3a and upregulation of proapoptotic Bcl-2 proteins.

    Science.gov (United States)

    Bodur, Cagri; Karakas, Bahriye; Timucin, Ahmet Can; Tezil, Tugsan; Basaga, Huveyda

    2016-11-01

    Most tumors primarily rely on glycolysis rather than mitochondrial respiration for ATP production. This phenomenon, also known as Warburg effect, renders tumors more sensitive to glycolytic disturbances compared to normal cells. 3-bromopyruvate is a potent inhibitor of glycolysis that shows promise as an anticancer drug candidate. Although investigations revealed that 3-BP triggers apoptosis through ATP depletion and subsequent AMPK activation, the underlying molecular mechanisms coupling AMPK to apoptosis are poorly understood. We showed that 3-BP leads to a rapid ATP depletion which was followed by growth inhibition and Bax-dependent apoptosis in HCT116 cells. Apoptosis was accompanied with activation of caspase-9 and -3 while pretreatment with a general caspase inhibitor attenuated cell death. AMPK, p38, JNK, and Akt were phosphorylated immediately upon treatment. Pharmacological inhibition and silencing of AMPK largely inhibited 3-BP-induced apoptosis and reversed phosphorylation of JNK. Transcriptional activity of FoxO3a was dramatically increased subsequent to AMPK-mediated phosphorylation of FoxO3a at Ser413. Cell death analysis of cells transiently transfected with wt or AMPK-phosphorylation-deficient FoxO3 expression plasmids verified the contributory role of AMPK-FoxO3a axis in 3-BP-induced apoptosis. In addition, expression of proapoptotic Bcl-2 proteins Bim and Bax were upregulated in an AMPK-dependent manner. Bim was transcriptionally activated in association with FoxO3a activity, while Bax upregulation was abolished in p53-null cells. Together, these data suggest that AMPK couples 3-BP-induced metabolic disruption to intrinsic apoptosis via modulation of FoxO3a-Bim axis and Bax expression. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. Role of p53–fibrinolytic system cross-talk in the regulation of quartz-induced lung injury

    International Nuclear Information System (INIS)

    Bhandary, Yashodhar P.; Shetty, Shwetha K.; Marudamuthu, Amarnath S.; Fu, Jian; Pinson, Barbara M.; Levin, Jeffrey; Shetty, Sreerama

    2015-01-01

    Silica is the major component of airborne dust generated by wind, manufacturing and/or demolition. Chronic occupational inhalation of silica dust containing crystalline quartz is by far the predominant form of silicosis in humans. Silicosis is a progressive lung disease that typically arises after a very long latency and is a major occupational concern with no known effective treatment. The mechanism of silicosis is not clearly understood. However, silicosis is associated with increased cell death, expression of redox enzymes and pro-fibrotic cytokines and chemokines. Since alveolar epithelial cell (AEC) death and disruption of alveolar fibrinolysis is often associated with both acute and chronic lung injuries, we explored whether p53-mediated changes in the urokinase-type plasminogen activator (uPA) system contributes to silica-induced lung injury. We further sought to determine whether caveolin-1 scaffolding domain peptide (CSP), which inhibits p53 expression, mitigates lung injury associated with exposure to silica. Lung tissues and AECs isolated from wild-type (WT) mice exposed to silica exhibit increased apoptosis, p53 and PAI-1, and suppression of uPA expression. Treatment of WT mice with CSP inhibits PAI-1, restores uPA expression and prevents AEC apoptosis by suppressing p53, which is otherwise induced in mice exposed to silica. The process involves CSP-mediated inhibition of serine-15 phosphorylation of p53 by inhibition of protein phosphatase 2A-C (PP2A-C) interaction with silica-induced caveolin-1 in AECs. These observations suggest that changes in the p53–uPA fibrinolytic system cross-talk contribute to lung injury caused by inhalation of silica dust containing crystalline quartz and is protected by CSP by targeting this pathway. - Highlights: • Chronic exposure to quartz dusts is a major cause of lung injury and silicosis. • The survival of patients with silicosis is bleak due to lack of effective treatments. • This study defines a new role of

  2. Family matters: sibling rivalry and bonding between p53 and p63 in cancer.

    Science.gov (United States)

    Romano, Rose-Anne; Sinha, Satrajit

    2014-04-01

    The p53 family (p53, p63 and p73) is intimately linked with an overwhelming number of cellular processes during normal physiological as well as pathological conditions including cancer. The fact that these proteins are expressed in myriad isoforms, each with unique biochemical properties and distinct effects on tumorigenesis, complicates their study. A case in point is Squamous Cell Carcinoma (SCC) where p53 is often mutated and the ΔNp63 isoform is overexpressed. Given that p53 and p63 can hetero-dimerize, bind to quite similar DNA elements and share common co-factors, any alterations in their individual expression levels, activity and/or mutation can severely disrupt the family equilibrium. The burgeoning genomics data sets and new additions to the experimental toolbox are offering crucial insights into the complex role of the p53 family in SCC, but more mechanistic studies are needed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Efficient generation of P53 biallelic knockout Diannan miniature pigs via TALENs and somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Youfeng Shen

    2017-11-01

    Full Text Available Abstract Background Pigs have many features that make them attractive as biomedical models for various diseases, including cancer. P53 is an important tumor suppressor gene that exerts a central role in protecting cells from oncogenic transformation and is mutated in a large number of human cancers. P53 mutations occur in almost every type of tumor and in over 50% of all tumors. In a recent publication, pigs with a mutated P53 gene were generated that resulted in lymphoma and renal and osteogenic tumors. However, approximately 80% of human tumors have dysfunctional P53. A P53-deficient pig model is still required to elucidate. Methods Transcription activator-like effector nucleases (TALENs were designed to target porcine P53 exon 4. The targeting activity was evaluated using a luciferase SSA recombination assay. P53 biallelic knockout (KO cell lines were established from single-cell colonies of fetal fibroblasts derived from Diannan miniature pigs followed by electroporation with TALENs plasmids. One cell line was selected as the donor cell line for somatic cell nuclear transfer (SCNT for the generation of P53 KO pigs. P53 KO stillborn fetuses and living piglets were obtained. Gene typing of the collected cloned individuals was performed by T7EI assay and sequencing. Fibroblast cells from Diannan miniature piglets with a P53 biallelic knockout or wild type were analyzed for the P53 response to doxorubicin treatment by confocal microscopy and western blotting. Results The luciferase SSA recombination assay revealed that the targeting activities of the designed TALENs were 55.35-fold higher than those of the control. Eight cell lines (8/19 were mutated for P53, and five of them were biallelic knockouts. One of the biallelic knockout cell lines was selected as nuclear donor cells for SCNT. The cloned embryos were transferred into five recipient gilts, three of them becoming pregnant. Five live fetuses were obtained from one surrogate by caesarean

  4. Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation

    Science.gov (United States)

    Apostolidis, Pani A.; Lindsey, Stephan; Miller, William M.

    2012-01-01

    During endomitosis, megakaryocytes undergo several rounds of DNA synthesis without division leading to polyploidization. In primary megakaryocytes and in the megakaryocytic cell line CHRF, loss or knock-down of p53 enhances cell cycling and inhibits apoptosis, leading to increased polyploidization. To support the hypothesis that p53 suppresses megakaryocytic polyploidization, we show that stable expression of wild-type p53 in K562 cells (a p53-null cell line) attenuates the cells' ability to undergo polyploidization during megakaryocytic differentiation due to diminished DNA synthesis and greater apoptosis. This suggested that p53's effects during megakaryopoiesis are mediated through cell cycle- and apoptosis-related target genes, possibly by arresting DNA synthesis and promoting apoptosis. To identify candidate genes through which p53 mediates these effects, gene expression was compared between p53 knock-down (p53-KD) and control CHRF cells induced to undergo terminal megakaryocytic differentiation using microarray analysis. Among substantially downregulated p53 targets in p53-KD megakaryocytes were cell cycle regulators CDKN1A (p21) and PLK2, proapoptotic FAS, TNFRSF10B, CASP8, NOTCH1, TP53INP1, TP53I3, DRAM1, ZMAT3 and PHLDA3, DNA-damage-related RRM2B and SESN1, and actin component ACTA2, while antiapoptotic CKS1B, BCL2, GTSE1, and p53 family member TP63 were upregulated in p53-KD cells. Additionally, a number of cell cycle-related, proapoptotic, and cytoskeleton-related genes with known functions in megakaryocytes but not known to carry p53-responsive elements were differentially expressed between p53-KD and control CHRF cells. Our data support a model whereby p53 expression during megakaryopoiesis serves to control polyploidization and the transition from endomitosis to apoptosis by impeding cell cycling and promoting apoptosis. Furthermore, we identify a putative p53 regulon that is proposed to orchestrate these effects. PMID:22548738

  5. p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    Science.gov (United States)

    Yi, Qiyi; Zhao, Xiaoyu; Huang, Yun; Ma, Tieliang; Zhang, Yingyin; Hou, Heli; Cooke, Howard J.; Yang, Da-Qing; Wu, Mian; Shi, Qinghua

    2011-01-01

    Background p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. Principal Findings Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. Conclusions p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway. PMID:22076149

  6. Expression of p53 and p21 in primary glioblastomas

    International Nuclear Information System (INIS)

    Gross, M.W.; Nashwan, K.; Engenhart-Cabillic, R.; Kraus, A.; Mennel, H.D.; Schlegel, J.

    2005-01-01

    Background and purpose: primary glioblastomas (GBMs) are highly radioresistant, and in contrast to secondary GBMs, they bear wild-type (wt) p53 protein, which is stabilized in a proportion of these tumors. Therefore, it was investigated in vivo whether p53 expression has prognostic value in patients undergoing radiochemotherapy. Additionally, the authors tried to identify, in vitro, subgroups of primary GBM with different susceptibilities to irradiation, on the basis of their p53 and p21 responses to ionizing radiation. Material and methods: tumor tissue samples from 31 patients suffering from primary GBM undergoing a combined radiochemotherapy with topotecan were investigated. The percentage of cells expressing p53 protein was determined immunohistochemically. Additionally, primary cultures from eleven primary GBMs were established and investigated. p53 and p21 expressions were evaluated before irradiation with 10 Gy and at 2 and 8 h after irradiation. p53 protein expression was measured by western analysis and p21 mRNA expression by reverse transcription-polymerase chain reaction (RT-PCR). Results: the percentage of p53-positive cells within the tumor specimens obtained from the 31 patients ranged from 0% to 28%, the median value being 4.3%. No significant correlation with disease-free survival or overall survival was found. In vitro, p53 protein was detected in seven of eleven cultures from primary GBM. After irradiation a decrease in p53 protein expression was seen in six of the seven p53-positive cultures. Half of the cultures (two of four) without basal p53 expression showed an increase in p53 expression after irradiation. Basal overexpression of p21 was detected in six of the eleven cultures; in four out of six irradiation led to a decrease in p21 expression. In all cell lines (five of eleven) initially showing absent p21 expression, irradiation induced p21 expression. Despite these responses, G1 arrest was not detectable in any of the GBM cultures

  7. Di-2-pyridylhydrazone Dithiocarbamate Butyric Acid Ester Exerted Its Proliferative Inhibition against Gastric Cell via ROS-Mediated Apoptosis and Autophagy

    Directory of Open Access Journals (Sweden)

    Xingshuang Guo

    2018-01-01

    Full Text Available Diversified biological activities of dithiocarbamates have attracted widespread attention; improving their feature or exploring their potent action of mechanism is a hot topic in medicinal research. Herein, we presented a study on synthesis and investigation of a novel dithiocarbamate, DpdtbA (di-2-pyridylhydrazone dithiocarbamate butyric acid ester, on antitumor activity. The growth inhibition assay revealed that DpdtbA had important antitumor activity for gastric cancer (GC cell lines (IC50 = 4.2 ± 0.52 μM for SGC-7901, 3.80 ± 0.40 μM for MGC-803. The next study indicated that growth inhibition is involved in ROS generation in mechanism; accordingly, the changes in mitochondrial membrane permeability, apoptotic genes, cytochrome c, bax, and bcl-2 were observed, implying that the growth inhibition of DpdtbA is involved in ROS-mediated apoptosis. On the other hand, the upregulated p53 upon DpdtbA treatment implied that p53 could also mediate the apoptosis. Yet the excess generation of ROS induced by DpdtbA led to cathepsin D translocation and increase of autophagic vacuoles and LC3-II, demonstrating that autophagy was also a contributor to growth inhibition. Further investigation showed that DpdtbA could induce cell cycle arrest at the G1 phase. This clearly indicated the growth inhibition of DpdtbA was via triggering ROS formation and evoking p53 response, consequently leading to alteration in gene expressions that are related to cell survival.

  8. Immunohistochemical study of p53, pRb, p16 in esophageal cancer

    International Nuclear Information System (INIS)

    Zo, Jae Ill; Zo, Kyung Ja; Park, Jong Ho; Kim, Mi Hee

    1998-01-01

    To confirm the expression of molecular genetic alterations of p53, pRb, p16 in esophageal cancer and to investigate the expression of p53, pRb, p16 in esophageal cancer according to the pathologic steps of carcinogenesis, immuno-histochemistry was performed in 15 resected esophageal cancer specimens with multiple separated lesions after pathologic mapping. The accumulation of mutant p53 was observed in 60 % of dysplasia and 47 % of invasive cancer, while pRb was not detected in 91 % of dysplasia and 72.7 % of invasive cancer. But p16 was not observed in 0 % in dysplasia and 7 % of invasive cancer. But p16 was not observed in 0 % in dysplasia and 28.6 % in invasive cancer. There was no simultaneous negative pRb and p16 expression. There was no relations between p53 and p16, pRb. As a results, the expression of p53, pRb, p16 was co-related well with molecular genetic changes and inactivation of p53, pRb, p16 was co-related well with molecular genetic changes and inactivation of p53 and pRb was common and early event in esophageal carcinogenesis in Korea, but inactivation of p16 was a infrequent change. (author). 17 refs., 2 tabs., 7 figs

  9. A nanobody modulates the p53 transcriptional program without perturbing its functional architecture

    Science.gov (United States)

    Bethuyne, Jonas; De Gieter, Steven; Zwaenepoel, Olivier; Garcia-Pino, Abel; Durinck, Kaat; Verhelle, Adriaan; Hassanzadeh-Ghassabeh, Gholamreza; Speleman, Frank; Loris, Remy; Gettemans, Jan

    2014-01-01

    The p53 transcription factor plays an important role in genome integrity. To perform this task, p53 regulates the transcription of genes promoting various cellular outcomes including cell cycle arrest, apoptosis or senescence. The precise regulation of this activity remains elusive as numerous mechanisms, e.g. posttranslational modifications of p53 and (non-)covalent p53 binding partners, influence the p53 transcriptional program. We developed a novel, non-invasive tool to manipulate endogenous p53. Nanobodies (Nb), raised against the DNA-binding domain of p53, allow us to distinctively target both wild type and mutant p53 with great specificity. Nb3 preferentially binds ‘structural’ mutant p53, i.e. R175H and R282W, while a second but distinct nanobody, Nb139, binds both mutant and wild type p53. The co-crystal structure of the p53 DNA-binding domain in complex with Nb139 (1.9 Å resolution) reveals that Nb139 binds opposite the DNA-binding surface. Furthermore, we demonstrate that Nb139 does not disturb the functional architecture of the p53 DNA-binding domain using conformation-specific p53 antibody immunoprecipitations, glutaraldehyde crosslinking assays and chromatin immunoprecipitation. Functionally, the binding of Nb139 to p53 allows us to perturb the transactivation of p53 target genes. We propose that reduced recruitment of transcriptional co-activators or modulation of selected post-transcriptional modifications account for these observations. PMID:25324313

  10. A novel alkaloid, evodiamine causes nuclear localization of cytochrome-c and induces apoptosis independent of p53 in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Vijay [School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat (India); Agarwal, Rajesh [Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO (United States); Singh, Rana P., E-mail: ranaps@hotmail.com [School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat (India); Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi (India)

    2016-09-02

    Lung cancer is the most frequently diagnosed malignancy that contributes to high proportion of deaths globally among patients who die due to cancer. Chemotherapy remains the common mode of treatment for lung cancer patients though with limited success. We assessed the biological effects and associated molecular changes of evodiamine, a plant alkaloid, on human lung cancer A549 and H1299 cells along with other epithelial cancer and normal lung SAEC cells. Our data showed that 20–40 μM evodiamine treatment for 24–48 h strongly (up to 73%, P < 0.001) reduced the growth and survival of these cancer cells. However, it also moderately inhibited growth and survival of SAEC cells. A strong inhibition (P < 0.001) was observed on clonogenicity of A549 cells. Further, evodiamine increased (4-fold) mitochondrial membrane depolarization with 6-fold increase in apoptosis and a slight increase in Bax/Bcl-2 ratio. It increased the cytochrome-c release from mitochondria into the cytosol as well as nucleus. Cytosolic cytochrome-c activated cascade of caspase-9 and caspase-3 intrinsic pathway, however, DR5 and caspase-8 extrinsic pathway was also activated which could be due to nuclear cytochrome-c. Pan-caspase inhibitor (z-VAD.fmk) partially reversed evodiamine induced apoptosis. An increase in p53 as well as its serine 15 phosphorylation was also observed. Pifithrin-α, a p53 inhibitor, slightly inhibited growth of A549 cells and under p53 inhibitory condition evodiamine-induced apoptosis could not be reversed. Together these findings suggest that evodiamine is a strong inducer of apoptosis in lung epithelial cancer cells independent of their p53 status and that could involve both intrinsic as well as extrinsic pathway of apoptosis. Thus evodiamine could be a potential anticancer agent against lung cancer. - Highlights: • Evodiamine, a novel plant alkaloid, relatively selectively inhibited growth and survival of human lung cancer cells. • Increased cancer cell

  11. Role of wild-type p53 in apoptotic and non-apoptotic cell death induced by X-irradiation and heat treatment in p53-mutated mouse M10 cells

    International Nuclear Information System (INIS)

    Ito, Atsushi; Nakano, Hisako; Shinohara, Kunio

    2010-01-01

    The sensitizing effects of wild-type p53 on X-ray-induced cell death and on heat-induced apoptosis in M10, a radiosensitive and Trp53 (mouse p53 gene)-mutated lymphoma cell line which dies through necrosis by X-irradiation, were investigated using three M10 derived transfectants with wild-type TP53 (human p53 gene). Cell death was determined by colony formation and/or dye exclusion test, and apoptosis was detected as the changes in nuclear morphology by Giemsa staining. Expression of wild-type p53 protein increased radiosensitivity of cell death as determined by both clonogenic and dye exclusion assays. This increase in radiosensitivity was attributable largely to apoptosis induction in addition to a small enhancement of necrosis. Interestingly neither pathway to cell death was accompanied by caspase-3 activation. On the other hand, heat-induced caspase-3 dependent apoptotic cell death without transfection was further increased by the transfection of wild-type p53. In conclusion, the introduction of wild-type p53 enhanced apoptotic cell death by X-rays or heat via different mechanisms that do or do not activate caspase-3, respectively. In addition, p53 also enhanced the X-ray-induced necrosis in M10 cells. (author)

  12. p53 Over-expression and p53 mutations in colon carcinomas: Relation to dietary risk factors

    NARCIS (Netherlands)

    Voskuil, D.W.; Kampman, E.; Kraats, A.A. van; Balder, H.F.; Muijen, G.N.P. van; Goldbohm, R.A.; Veer, P. van 't

    1999-01-01

    Epidemiological studies have suggested that dietary factors may differently affect p53-dependent and p53-independent pathways to colon cancer. Results of such studies may depend on the method used to assess p53 status. This case-control study of 185 colon-cancer cases and 259 controls examines this

  13. Flavonoids and Tannins from Smilax china L. Rhizome Induce Apoptosis Via Mitochondrial Pathway and MDM2-p53 Signaling in Human Lung Adenocarcinoma Cells.

    Science.gov (United States)

    Fu, San; Yang, Yanfang; Liu, Dan; Luo, Yan; Ye, Xiaochuan; Liu, Yanwen; Chen, Xin; Wang, Song; Wu, Hezhen; Wang, Yuhang; Hu, Qiwei; You, Pengtao

    2017-01-01

    In vitro evidence indicates that Smilax china L. rhizome (SCR) can inhibit cell proliferation. Therefore, in the present study, we analyzed the effects in vitro of SCR extracts on human lung adenocarcinoma A549 cells. Our results showed that A549 cell growth was inhibited in a dose- and time-dependent manner after treatment with SCR extracts. Total flavonoids and total tannins from SCR induced A549 apoptosis in a dose-dependent manner, as shown by our flow cytometry analysis, which was consistent with the alterations in nuclear morphology we observed. In addition, the total apoptotic rate induced by total tannins was higher than the rate induced by total flavonoids at the same dose. Cleaved-caspase-3 protein levels in A549 cells after treatment with total flavonoids or total tannins were increased in a dose-dependent manner, followed by the activation of caspase-8 and caspase-9, finally triggering to PARP cleavage. Furthermore, total flavonoids and total tannins increased the expression of Bax, decreased the expression of Bcl-2, and promoted cytochrome [Formula: see text] release. Moreover, MDM2 and p-MDM2 proteins were decreased, while p53 and p-p53 proteins were increased, both in a dose-dependent manner, after A549 treatment with total flavonoids and total tannins. Finally, cleaved-caspase-3 protein levels in the total flavonoids or total tannins-treated H1299 (p53 null) and p53-knockdown A549 cells were increased. Our results indicated that total flavonoids and total tannins from SCR exerted a remarkable effect in reducing A549 growth through their action on mitochondrial pathway and disruption of MDM2-p53 balance. Hence, our findings demonstrated a potential application of total flavonoids and total tannins from SCR in the treatment of human lung adenocarcinoma.

  14. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation.

    Science.gov (United States)

    Zeng, Kaixuan; Chen, Xiaoxiang; Hu, Xiuxiu; Liu, Xiangxiang; Xu, Tao; Sun, Huiling; Pan, Yuqin; He, Bangshun; Wang, Shukui

    2018-06-13

    Colorectal cancer (CRC) is one of the most common aggressive malignancies. Like other solid tumors, inactivation of tumor suppressor genes and activation of oncogenes occur during CRC development and progression. Recently, a novel tumor suppressor, LACTB, was proposed to inhibit tumor progression, but the functional and clinical significance of this tumor suppressor in CRC remains unexplored. Herein, we found LACTB was significantly downregulated in CRC due to promoter methylation and histone deacetylation, which was associated with metastasis and advanced clinical stage. CRC patients with low LACTB expression had poorer overall survival and LACTB also determined to be an independent prognostic factor for poorer outcome. Ectopic expression of LACTB suppressed CRC cells proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and inhibited CRC growth and metastasis in vivo, while knockout of LACTB by CRISPR/Cas9 gene editing technique resulted in an opposite phenotype. Interestingly, LACTB could exert antitumorigenic effect only in HCT116 and HCT8 cells harboring wild-type TP53, but not in HT29 and SW480 cells harboring mutant TP53 or HCT116 p53 -/- cells. Mechanistic studies demonstrated that LACTB could directly bind to the C terminus of p53 to inhibit p53 degradation by preventing MDM2 from interacting with p53. Moreover, ablation of p53 attenuated the antitumorigenic effects of LACTB overexpression in CRC. Collectively, our findings successfully demonstrate for the first time that LACTB is a novel epigenetic silenced tumor suppressor through modulating the stability of p53, supporting the pursuit of LACTB as a potential therapeutic target for CRC.

  15. hSSB1 regulates both the stability and the transcriptional activity of p53

    OpenAIRE

    Xu, Shuangbing; Wu, Yuanzhong; Chen, Qiong; Cao, Jingying; Hu, Kaishun; Tang, Jianjun; Sang, Yi; Lai, Fenju; Wang, Li; Zhang, Ruhua; Li, Sheng-Ping; Zeng, Yi-Xin; Yin, Yuxin; Kang, Tiebang

    2012-01-01

    The tumor suppressor p53 is essential for several cellular processes that are involved in the response to diverse genotoxic stress, including cell cycle arrest, DNA repair, apoptosis and senescence. Studies of the regulation of p53 have mostly focused on its stability and transactivation; however, new regulatory molecules for p53 have also been frequently identified. Here, we report that human ssDNA binding protein SSB1 (hSSB1), a novel DNA damage-associated protein, can interact with p53 and...

  16. PHTS, a novel putative tumor suppressor, is involved in the transformation reversion of HeLaHF cells independently of the p53 pathway

    International Nuclear Information System (INIS)

    Yu Dehua; Fan, Wufang; Liu, Guohong; Nguy, Vivian; Chatterton, Jon E.; Long Shilong; Ke, Ning; Meyhack, Bernd; Bruengger, Adrian; Brachat, Arndt; Wong-Staal, Flossie; Li, Qi-Xiang

    2006-01-01

    HeLaHF is a non-transformed revertant of HeLa cells, likely resulting from the activation of a putative tumor suppressor(s). p53 protein was stabilized in this revertant and reactivated for certain transactivation functions. Although p53 stabilization has not conclusively been linked to the reversion, it is clear that the genes in p53 pathway are involved. The present study confirms the direct role of p53 in HeLaHF reversion by demonstrating that RNAi-mediated p53 silencing partially restores anchorage-independent growth potential of the revertant through the suppression of anoikis. In addition, we identified a novel gene, named PHTS, with putative tumor suppressor properties, and showed that this gene is also involved in HeLaHF reversion independently of the p53 pathway. Expression profiling revealed that PHTS is one of the genes that is up-regulated in HeLaHF but not in HeLa. It encodes a putative protein with CD59-like domains. RNAi-mediated PHTS silencing resulted in the partial restoration of transformation (anchorage-independent growth) in HeLaHF cells, similar to that of p53 gene silencing, implying its tumor suppressor effect. However, the observed increased transformation potential by PHTS silencing appears to be due to an increased anchorage-independent proliferation rate rather than suppression of anoikis, unlike the effect of p53 silencing. p53 silencing did not affect PHTS gene expression, and vice versa, suggesting PHTS may function in a new and p53-independent tumor suppressor pathway. Furthermore, over-expression of PHTS in different cancer cell lines, in addition to HeLa, reduces cell growth likely via induced apoptosis, confirming the broad PHTS tumor suppressor properties

  17. A dual role of p53 in the control of autophagy.

    Science.gov (United States)

    Tasdemir, Ezgi; Chiara Maiuri, M; Morselli, Eugenia; Criollo, Alfredo; D'Amelio, Marcello; Djavaheri-Mergny, Mojgan; Cecconi, Francesco; Tavernarakis, Nektarios; Kroemer, Guido

    2008-08-01

    Genotoxic stress can induce autophagy in a p53-dependent fashion and p53 can transactivate autophagy-inducing genes. We have observed recently that inactivation of p53 by deletion, depletion or inhibition can trigger autophagy. Thus, human and mouse cells subjected to knockout, knockdown or pharmacological inhibition of p53 manifest signs of autophagy such as depletion of p62/SQSTM1, LC3 lipidation, redistribution of GFP-LC3 in cytoplasmic puncta, and accumulation of autophagosomes and autolysosomes, both in vitro and in vivo. Inhibition of p53 causes autophagy in enucleated cells, indicating that the cytoplasmic, non-nuclear pool of p53 can regulate autophagy. Accordingly, retransfection of p53(-/-) cells with wild-type p53 as well as a p53 mutant that is excluded from the nucleus (due to the deletion of the nuclear localization sequence) can inhibit autophagy, whereas retransfection with a nucleus-restricted p53 mutant (in which the nuclear localization sequence has been deleted) does not inhibit autophagy. Several distinct autophagy inducers (e.g., starvation, rapamycin, lithium, tunicamycin and thapsigargin) stimulate the rapid degradation of p53. In these conditions, inhibition of the p53-specific E3 ubiquitin ligase HDM2 can avoid p53 depletion and simultaneously prevent the activation of autophagy. Moreover, a p53 mutant that lacks the HDM2 ubiquitinylation site and hence is more stable than wild-type p53 is particularly efficient in suppressing autophagy. In conclusion, p53 plays a dual role in the control of autophagy. On the one hand, nuclear p53 can induce autophagy through transcriptional effects. On the other hand, cytoplasmic p53 may act as a master repressor of autophagy.

  18. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    Science.gov (United States)

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.

  19. Neem oil limonoids induces p53-independent apoptosis and autophagy

    Science.gov (United States)

    Chandra, Dhyan

    2012-01-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells. PMID:22915764

  20. Thymocyte apoptosis induced by p53-dependent and independent pathways

    International Nuclear Information System (INIS)

    Clarke, A.R.; Purdie, C.A.; Harrison, D.J.; Morris, R.G.; Bird, C.C.; Hooper, M.L.; Wyllie, A.H.

    1993-01-01

    The authors studied the dependence of apoptosis on p53 expression in cells from the thymus cortex. Short-term thymocyte cultures were prepared from mice constitutively heterozygous or homozygous for a deletion in the p53 gene introduced into the germ line after gene targeting. Wild-type thymocytes readily undergo apoptosis after treatment with ionizing radiation, the glucocorticoid methylprednisolone, or etoposide (an inhibitor of topoisomerase II), or after Ca 2+ -dependent activation by phorbol ester and a calcium ionophore. In contrast, homozygous null p53 thymocytes are resistant to induction of apoptosis by radiation or etoposide, but retain normal sensitivity to glucocorticoid and calcium. The time-dependent apoptosis that occurs in untreated cultures is unaffected by p53 status. Cells heterozygous for p53 deletion are partially resistant to radiation and etoposide. Results show that p53 exerts a significant and dose-dependent effect in the initiation of apoptosis, but only when it is induced by agents that cause DNA-strand breakage. (Author)

  1. Regulation of GAD65 expression by SMAR1 and p53 upon Streptozotocin treatment

    Directory of Open Access Journals (Sweden)

    Singh Sandeep

    2012-09-01

    Full Text Available Abstract Background GAD65 (Glutamic acid decarboxylase 65 KDa isoform is one of the most important auto-antigens involved in Type 1 diabetes induction. Although it serves as one of the first injury markers of β-islets, the mechanisms governing GAD65 expression remain poorly understood. Since the regulation of GAD65 is crucial for the proper functioning of insulin secreting cells, we investigated the stress induced regulation of GAD65 transcription. Results The present study shows that SMAR1 regulates GAD65 expression at the transcription level. Using a novel protein-DNA pull-down assay, we show that SMAR1 binding is very specific to GAD65 promoter but not to the other isoform, GAD67. We show that Streptozotocin (STZ mediated DNA damage leads to upregulation of SMAR1 and p53 expression, resulting in elevated levels of GAD65, in both cell lines as well as mouse β-islets. SMAR1 and p53 act synergistically to up-regulate GAD65 expression upon STZ treatment. Conclusion We propose a novel mechanism of GAD65 regulation by synergistic activities of SMAR1 and p53.

  2. The effect of radiation on bcl-2 and bax in hyperplastic prostatic tissues

    International Nuclear Information System (INIS)

    Ma Qingjie; Li Yuxin; Gu Xinquan; Cao Xia; Zhao Jie; Kong Xiangbo; Cai Shanyu

    2004-01-01

    Aim: To investigate the expressions of bcl-2 and bax in benign prostatic hyperplasia (BPH) and the effect of β-rays on bcl-2 and bax. Methods: The expressions of bcl-2 and bax are studied by means of immunohistochemical method in 9 normal prostate (NP) and 15 BPH and 35 patients treated with 90Sr/90Y Prostatic Hyperplasia Applicator. Results: The expressions of bcl-2 in epithelia of NP and BPH are higher than that in stroma P<0.01=. The expressions of bcl-2 in epithelia and stroma of BPH are higher than that in NP P<0.01=. The expressions of bax in epithelia of NP are higher than that in BPH P<0.05=. However ,the expressions of bcl-2 in epithelia and stroma of BPH are higher than bax P<0.01 =. Compared with the control group, the expressions of bcl-2 in epithelia and stroma of BPH treated with 90Sr/90Y Prostatic Hyperplasia Applicator decreased and the expressions of bax increased P<0.01=. Conclusion: bcl-2 gene and bax gene play an important role in the regulation of prostatic apoptosis and the treatment of β-rays can accelerate the apoptosis of prostatic tissues. (authors)

  3. Loss of p53 enhances the function of the endoplasmic reticulum through activation of the IRE1α/XBP1 pathway

    Science.gov (United States)

    Kodama, Rika; Byun, Sanguine; Yoon, Kyoung Wan; Hiraki, Masatsugu; Mandinova, Anna; Lee, Sam W.

    2015-01-01

    Altered regulation of ER stress response has been implicated in a variety of human diseases, such as cancer and metabolic diseases. Excessive ER function contributes to malignant phenotypes, such as chemoresistance and metastasis. Here we report that the tumor suppressor p53 regulates ER function in response to stress. We found that loss of p53 function activates the IRE1α/XBP1 pathway to enhance protein folding and secretion through upregulation of IRE1α and subsequent activation of its target XBP1. We also show that wild-type p53 interacts with synoviolin (SYVN1)/HRD1/DER3, a transmembrane E3 ubiquitin ligase localized to ER during ER stress and removes unfolded proteins by reversing transport to the cytosol from the ER, and its interaction stimulates IRE1α degradation. Moreover, IRE1α inhibitor suppressed protein secretion, induced cell death in p53-deficient cells, and strongly suppressed the formation of tumors by p53-deficient human tumor cells in vivo compared with those that expressed wild-type p53. Therefore, our data imply that the IRE1α/XBP1 pathway serves as a target for therapy of chemoresistant tumors that express mutant p53. PMID:26254280

  4. Recent progress of the study of p53 control mechanism by ionizing radiation

    International Nuclear Information System (INIS)

    Kawai, Hidehiko

    2004-01-01

    Reviewed are the recent findings on the control mechanism of function and activity of p53 as a response factor to stress of ionizing radiation. The p53 protein is controlled to be essentially inactive in cells under normal conditions and is activated by various stresses. The role of p53 as a stress-responding and tumor-suppressing factor in cells with damaged DNA is discussed in relation with its participation in G1/S and G2/M checkpoints, DNA repair, and apoptosis. The stress like radiation affects the control mechanisms of stability and function of p53 through modification of its N-terminal region (the activation domain of transcription), DNA binding region (core domain) and C-terminal region (domains of the nuclear export signaling, tetramer formation and its own regulation). MDM2 (mouse double minute 2) family, the most important regulatory factor of p53, forms a negative feedback cycle since the family is the target factor of p53 transcription and also suppressor of p53. MDM2 is regulated by phosphorylation and by interaction with itself or other factors like p300/CBP. Further studies on p53 are thus important in various fields as well as in radiation biology. (N.I.)

  5. 14-3-3theta protects against neurotoxicity in a cellular Parkinson's disease model through inhibition of the apoptotic factor Bax.

    Directory of Open Access Journals (Sweden)

    Sunny R Slone

    Full Text Available Disruption of 14-3-3 function by alpha-synuclein has been implicated in Parkinson's disease. As 14-3-3s are important regulators of cell death pathways, disruption of 14-3-3s could result in the release of pro-apoptotic factors, such as Bax. We have previously shown that overexpression of 14-3-3θ reduces cell loss in response to rotenone and MPP(+ in dopaminergic cell culture and reduces cell loss in transgenic C. elegans that overexpress alpha-synuclein. In this study, we investigate the mechanism for 14-3-3θ's neuroprotection against rotenone toxicity. While 14-3-3s can inhibit many pro-apoptotic factors, we demonstrate that inhibition of one factor in particular, Bax, is important to 14-3-3s' protection against rotenone toxicity in dopaminergic cells. We found that 14-3-3θ overexpression reduced Bax activation and downstream signaling events, including cytochrome C release and caspase 3 activation. Pharmacological inhibition or shRNA knockdown of Bax provided protection against rotenone, comparable to 14-3-3θ's neuroprotective effects. A 14-3-3θ mutant incapable of binding Bax failed to protect against rotenone. These data suggest that 14-3-3θ's neuroprotective effects against rotenone are at least partially mediated by Bax inhibition and point to a potential therapeutic role of 14-3-3s in Parkinson's disease.

  6. Contribution of caspase-3 differs by p53 status in apoptosis induced by X-irradiation

    International Nuclear Information System (INIS)

    Kobayashi, Daisuke; Tokino, Takashi; Watanabe, Naoki

    2001-01-01

    We investigated the effect of p53 status on involvement of caspase-3 activation in cell death induced by X-irradiation, using rat embryonic fibroblasts (REFs) transduced with a temperature-sensitive mutant (mt) p53 gene. Cells with wild-type (wt) p53 showed greater resistance to X-irradiation than cells with mt p53. In cells with wt p53, X-irradiation-induced apoptosis was not inhibited by the caspase-3 inhibitor acetyl-L-aspartyl-L-methionyl-L-glutaminyl-L-aspartyl-aldehyde (Ac-DMQD-CHO) and caspase-3 activity was not elevated following X-irradiation, although induction of p53 and p21/WAF-1 protein was observed. In contrast, irradiated cells with mt p53 showed 89% inhibition of cell death with Ac-DMQD-CHO and 98% inhibition with the antioxidant N-acetyl-L-cysteine (NAC). In cells with mt p53, caspase-3 activity was increased approximately 5 times beyond baseline activity at 24 h after irradiation. This increase was almost completely inhibited by NAC. However, inhibition of caspase-3 by Ac-DMQD-CHO failed to decrease production of reactive oxygen species by cells with mt p53. Differential involvement of caspase-3 is a reason for differences in sensitivity to X-irradiation in cells with different p53 status. Caspase-3 activation appears to occur downstream from generation of reactive oxygen species occurring independently of wt p53 during X-irradiation-induced cell death. (author)

  7. RNA content in the nucleolus alters p53 acetylation via MYBBP1A

    Science.gov (United States)

    Kuroda, Takao; Murayama, Akiko; Katagiri, Naohiro; Ohta, Yu-mi; Fujita, Etsuko; Masumoto, Hiroshi; Ema, Masatsugu; Takahashi, Satoru; Kimura, Keiji; Yanagisawa, Junn

    2011-01-01

    A number of external and internal insults disrupt nucleolar structure, and the resulting nucleolar stress stabilizes and activates p53. We show here that nucleolar disruption induces acetylation and accumulation of p53 without phosphorylation. We identified three nucleolar proteins, MYBBP1A, RPL5, and RPL11, involved in p53 acetylation and accumulation. MYBBP1A was tethered to the nucleolus through nucleolar RNA. When rRNA transcription was suppressed by nucleolar stress, MYBBP1A translocated to the nucleoplasm and facilitated p53p300 interaction to enhance p53 acetylation. We also found that RPL5 and RPL11 were required for rRNA export from the nucleolus. Depletion of RPL5 or RPL11 blocked rRNA export and counteracted reduction of nucleolar RNA levels caused by inhibition of rRNA transcription. As a result, RPL5 or RPL11 depletion inhibited MYBBP1A translocation and p53 activation. Our observations indicated that a dynamic equilibrium between RNA generation and export regulated nucleolar RNA content. Perturbation of this balance by nucleolar stress altered the nucleolar RNA content and modulated p53 activity. PMID:21297583

  8. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway.

    Science.gov (United States)

    Zhang, Yuanjun; Xia, Guanghao; Zhang, Yaqiong; Liu, Juxiang; Liu, Xiaowei; Li, Weihua; Lv, Yaya; Wei, Suhong; Liu, Jing; Quan, Jinxing

    2017-08-01

    Toll-like receptor 4 (TLR4) has been implicated in vascular inflammation, as well as in the pathogenesis of atherosclerosis and diabetes. Vascular smooth muscle cell (VSMC) apoptosis has been shown to induce plaque vulnerability in atherosclerosis. Previous studies reported that palmitate induced apoptosis in VSMCs; however, the role of TLR4 in palmitate-induced apoptosis in VSMCs has not yet been defined. In this study, we investigated whether or not palmitate-induced apoptosis depended on the activation of the TLR4 pathway. VSMCs were treated with or without palmitate, CRISPR/Cas9z-mediated genome editing methods were used to deplete TLR4 expression, while NADPH oxidase inhibitors were used to inhibit reactive oxygen species (ROS) generation. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, ROS was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) method, the mRNA and protein expression levels of caspase 3, caspase 9, BCL-2 and p53 were studied by real-time polymerase chain reaction (RT-PCR) and ELISA. Palmitate significantly promotes VSMC apoptosis, ROS generation, and expression of caspase 3, caspase 9 and p53; while NADPH oxidase inhibitor pretreatment markedly attenuated these effects. Moreover, knockdown of TLR4 significantly blocked palmitate-induced ROS generation and VSMC apoptosis accompanied by inhibition of caspase 3, caspase 9, p53 expression and restoration of BCL-2 expression. Our results suggest that palmitate-induced apoptosis depends on the activation of the TLR4/ROS/p53 signaling pathway, and that TLR4 may be a potential therapeutic target for the prevention and treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Anticancer copper(II) phosphorus dendrimers are potent proapoptotic Bax activators.

    Science.gov (United States)

    Mignani, Serge; El Brahmi, Nabil; Eloy, Laure; Poupon, Joel; Nicolas, Valérie; Steinmetz, Anke; El Kazzouli, Said; Bousmina, Mosto M; Blanchard-Desce, Mireille; Caminade, Anne-Marie; Majoral, Jean-Pierre; Cresteil, Thierry

    2017-05-26

    A multivalent phosphorus dendrimer 1G 3 and its corresponding Cu-complex, 1G 3 -Cu have been recently identified as agents retaining high antiproliferative potency. This antiproliferative capacity was preserved in cell lines overexpressing the efflux pump ABC B1, whereas cross-resistance was observed in ovarian cancer cell lines resistant to cisplatin. Theoretical 3D models were constructed: the dendrimers appear as irregularly shaped disk-like nano-objects of about 22 Å thickness and 49 Å diameter, which accumulated in cells after penetration by endocytosis. To get insight in their mode of action, cell death pathways have been examined in human cancer cell lines: early apoptosis was followed by secondary necrosis after multivalent phosphorus dendrimers exposure. The multivalent plain phosphorus dendrimer 1G 3 moderately activated caspase-3 activity, in contrast with the multivalent Cu-conjugated phosphorus dendrimer 1G 3 -Cu which strikingly reduced the caspase-3 content and activity. This decrease of caspase activity is not related to the presence of copper, since inorganic copper has no or little effect on caspase-3. Conversely the potent apoptosis activation could be related to a noticeable translocation of Bax to the mitochondria, resulting in the release of AIF into the cytosol, its translocation to the nucleus and a severe DNA fragmentation, without alteration of the cell cycle. The multivalent Cu-conjugated phosphorus dendrimer is more efficient than its non-complexed analog to activate this pathway in close relationship with the higher antiproliferative potency. Therefore, this multivalent Cu-conjugated phosphorus dendrimer 1G 3 -Cu can be considered as a new and promising first-in-class antiproliferative agent with a distinctive mode of action, inducing apoptosis tumor cell death through Bax activation pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. A combination of p53-activating APR-246 and phosphatidylserine-targeting antibody potently inhibits tumor development in hormone-dependent mutant p53-expressing breast cancer xenografts

    Directory of Open Access Journals (Sweden)

    Liang Y

    2018-03-01

    Full Text Available Yayun Liang,1 Benford Mafuvadze,1 Cynthia Besch-Williford,2 Salman M Hyder1 1Deparment of Biomedical Sciences and Dalton Cardiovascular Research Center, Columbia, MO, USA; 2IDEXX BioResearch, Columbia, MO, USA Background: Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53 lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods: In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results: APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood

  11. The Neuronal Ischemic Tolerance Is Conditioned by the Tp53 Arg72Pro Polymorphism.

    Science.gov (United States)

    Ramos-Araque, Maria E; Rodriguez, Cristina; Vecino, Rebeca; Cortijo Garcia, Elisa; de Lera Alfonso, Mercedes; Sanchez Barba, Mercedes; Colàs-Campàs, Laura; Purroy, Francisco; Arenillas, Juan F; Almeida, Angeles; Delgado-Esteban, Maria

    2018-04-23

    Cerebral preconditioning (PC) confers endogenous brain protection after stroke. Ischemic stroke patients with a prior transient ischemic attack (TIA) may potentially be in a preconditioned state. Although PC has been associated with the activation of pro-survival signals, the mechanism by which preconditioning confers neuroprotection is not yet fully clarified. Recently, we have described that PC-mediated neuroprotection against ischemic insult is promoted by p53 destabilization, which is mediated by its main regulator MDM2. Moreover, we have previously described that the human Tp53 Arg72Pro single nucleotide polymorphism (SNP) controls susceptibility to ischemia-induced neuronal apoptosis and governs the functional outcome of patients after stroke. Here, we studied the contribution of the human Tp53 Arg72Pro SNP on PC-induced neuroprotection after ischemia. Our results showed that cortical neurons expressing the Pro72-p53 variant exhibited higher PC-mediated neuroprotection as compared with Arg72-p53 neurons. PC prevented ischemia-induced nuclear and cytosolic p53 stabilization in Pro72-p53 neurons. However, PC failed to prevent mitochondrial p53 stabilization, which occurs in Arg72-p53 neurons after ischemia. Furthermore, PC promoted neuroprotection against ischemia by controlling the p53/active caspase-3 pathway in Pro72-p53, but not in Arg72-p53 neurons. Finally, we found that good prognosis associated to TIA within 1 month prior to ischemic stroke was restricted to patients harboring the Pro72 allele. Our findings demonstrate that the Tp53 Arg72Pro SNP controls PC-promoted neuroprotection against a subsequent ischemic insult by modulating mitochondrial p53 stabilization and then modulates TIA-induced ischemic tolerance.

  12. Expression of p53/HGF/c-met/STAT3 signal in fetuses with neural tube defects.

    Science.gov (United States)

    Trovato, Maria; D'Armiento, Maria; Lavra, Luca; Ulivieri, Alessandra; Dominici, Roberto; Vitarelli, Enrica; Grosso, Maddalena; Vecchione, Raffaella; Barresi, Gaetano; Sciacchitano, Salvatore

    2007-02-01

    Neural tube defects (NTD) are morphogenetic alterations due to a defective closure of neural tube. Hepatocyte growth factor (HGF)/c-met system plays a role in morphogenesis of nervous system, lung, and kidney. HGF/c-met morphogenetic effects are mediated by signal transducers and activators of transcription (STAT)3 and both HGF and c-met genes are regulated from p53. The aim of our study was to analyze mRNA and protein expressions of p53, HGF, c-met, and STAT3 in fetuses with NTD. By reverse transcriptase-polymerase chain reaction and immunohistochemistry, we analyzed neural tissues from four NTD fetuses and the corresponding non-malformed lungs, kidneys and placentas. We found a reduced mRNA expression of HGF/c-met/STAT3 pathway, in the malformed nervous systems and placentas. The reduced expression of this pathway correlated with the absence of p53 in all these samples. On the contrary, detectable expression levels of p53, HGF, c-met, and STAT3 were observed in non-malformed lungs and kidneys obtained from the same fetuses. Comparable results were obtained by immunohistochemistry, with the exception of p53, which was undetected in all fetal tissues. In conclusion, in NTD fetuses, both the defective neural tube tissue and the placenta have a reduction in all components of the p53/HGF/c-met/STAT3 cascade. This raises the possibility of using the suppression of these genes for early diagnosis of NTD especially on chorionic villus sampling.

  13. The role of p53 molecule in radiation and hyperthermic therapies

    International Nuclear Information System (INIS)

    Yasumoto, Jun-ichi; Takahashi, Akihisa; Ohnishi, Ken; Ohnishi, Takeo

    2003-01-01

    In recent years, cancer-related genes have been analyzed at the molecular level as predictive indicators for cancer therapy. Among those genes, the tumor suppressor gene p53 is worthy of notice in cancer therapy, because the p53 molecule prevents the malignant degeneration of non-cancer cells by regulating cell-cycle arrest, apoptosis, and DNA repair. An abnormality of the p53 gene introduces a genetic instability and increases the incidence of carcinogenesis and teratogenesis. Therefore, p53 is called a guardian of the genome. Mutations of p53 are observed at a high frequency in human tumors, and are recognized in about half of all malignant tumors in human head and neck cancers. We previously reported that radio- and heat-sensitivities of human cultured tongue squamous cell carcinoma cells are p53-dependent, and are closely correlated with the induction of apoptosis. In a human cell culture system, the interactive hyperthermic enhancement of radiosensitivity was observed in wild-type p53 cells, but not in mutated p53 cells. In a transplanted tumor system, the combination therapies of radiation and hyperthermia induced efficient tumor growth depression and apoptosis in the wild-type p53 tumors. In this review, we discuss the p53 activation signaling pathways through the modification of p53 molecules, such as phosphorylation after radiation and hyperthermia treatments. (author)

  14. Molecular mechanism of X-ray-induced p53-dependent apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Hisako [Tokyo Metropolitan Inst. of Medical Center (Japan)

    1999-03-01

    Radiation-induced cell death has been classified into the interphase- and mitotic-ones, both of which apoptosis involving. This review described the molecular mechanism of the apoptosis, focusing on its p53-dependent process. It is known that there are genes regulating cell death either negatively or positively and the latter is involved in apoptosis. As an important factor in the apoptosis, p53 has become remarkable since it was shown that X-ray-induced apoptosis required RNA and protein syntheses in thymocytes and those cells of p53 gene-depleted mouse were shown to be resistant to gamma-ray-induced apoptosis. Radiation sensitivity of MOLT-4 cells derived from human T cell leukemia, exhibiting the typical X-ray-induced p53-dependent apoptosis, depends on the levels of p53 mRNA and protein. p53 is a gene suppressing tumor and also a transcription factor. Consequently, mutation of p53 conceivably leads to the failure of cell cycle regulation, which allows damaged cells to divide without both repair and exclusion due to loss of the apoptotic mechanism, and finally results in carcinogenesis. The radiation effect occurs in the order of the cell damage, inhibition of p53-Mdm2 binding, accumulation of p53, activation of mdm2 transcription, Mdm2 accumulation, p53-protein degradation and recovery to the steady state level. Here, the cystein protease (caspases) plays an important role as a disposing mechanism for cells scheduled to die. However, many are unknown to be solved in future. (K.H.) 119 refs.

  15. The antagonism between MCT-1 and p53 affects the tumorigenic outcomes

    Directory of Open Access Journals (Sweden)

    Lin Tai-Du

    2010-12-01

    Full Text Available Abstract Background MCT-1 oncoprotein accelerates p53 protein degradation via a proteosome pathway. Synergistic promotion of the xenograft tumorigenicity has been demonstrated in circumstance of p53 loss alongside MCT-1 overexpression. However, the molecular regulation between MCT-1 and p53 in tumor development remains ambiguous. We speculate that MCT-1 may counteract p53 through the diverse mechanisms that determine the tumorigenic outcomes. Results MCT-1 has now identified as a novel target gene of p53 transcriptional regulation. MCT-1 promoter region contains the response elements reactive with wild-type p53 but not mutant p53. Functional p53 suppresses MCT-1 promoter activity and MCT-1 mRNA stability. In a negative feedback regulation, constitutively expressed MCT-1 decreases p53 promoter function and p53 mRNA stability. The apoptotic events are also significantly prevented by oncogenic MCT-1 in a p53-dependent or a p53-independent fashion, according to the genotoxic mechanism. Moreover, oncogenic MCT-1 promotes the tumorigenicity in mice xenografts of p53-null and p53-positive lung cancer cells. In support of the tumor growth are irrepressible by p53 reactivation in vivo, the inhibitors of p53 (MDM2, Pirh2, and Cop1 are constantly stimulated by MCT-1 oncoprotein. Conclusions The oppositions between MCT-1 and p53 are firstly confirmed at multistage processes that include transcription control, mRNA metabolism, and protein expression. MCT-1 oncogenicity can overcome p53 function that persistently advances the tumor development.

  16. p53 and the Viral Connection: Back into the Future ‡

    Directory of Open Access Journals (Sweden)

    Ronit Aloni-Grinstein

    2018-06-01

    Full Text Available The discovery of the tumor suppressor p53, through its interactions with proteins of tumor-promoting viruses, paved the way to the understanding of p53 roles in tumor virology. Over the years, accumulating data suggest that WTp53 is involved in the viral life cycle of non-tumor-promoting viruses as well. These include the influenza virus, smallpox and vaccinia viruses, the Zika virus, West Nile virus, Japanese encephalitis virus, Human Immunodeficiency Virus Type 1, Human herpes simplex virus-1, and more. Viruses have learned to manipulate WTp53 through different strategies to improve their replication and spreading in a stage-specific, bidirectional way. While some viruses require active WTp53 for efficient viral replication, others require reduction/inhibition of WTp53 activity. A better understanding of WTp53 functionality in viral life may offer new future clinical approaches, based on WTp53 manipulation, for viral infections.

  17. Conformational detection of p53's oligomeric state by FlAsH Fluorescence

    OpenAIRE

    Webber, Tawnya M.; Allen, Andrew C.; Ma, Wai Kit; Molloy, Rhett G.; Kettelkamp, Charisse N.; Dow, Caitlin A.; Gage, Matthew J.

    2009-01-01

    The p53 tumor suppressor protein is a critical checkpoint in prevention of tumor formation, and the function of p53 is dependent on proper formation of the active tetramer. In vitro studies have shown that p53 binds DNA most efficiently as a tetramer, though inactive p53 is predicted to be monomeric in vivo. We demonstrate that FlAsH binding can be used to distinguish between oligomeric states of p53, providing a potential tool to explore p53 oligomerization in vivo. The FlAsH tetra-cysteine ...

  18. Depression of p53-independent Akt survival signals in human oral cancer cells bearing mutated p53 gene after exposure to high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yosuke [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Takahashi, Akihisa [Advanced Scientific Research Leader Development Unit, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Kajihara, Atsuhisa; Yamakawa, Nobuhiro; Imai, Yuichiro [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ota, Ichiro; Okamoto, Noritomo [Department of Otorhinolaryngology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Mori, Eiichiro [Department of Radiation Oncology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Noda, Taichi [Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Furusawa, Yoshiya [Heavy-ion Radiobiology Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kirita, Tadaaki [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ohnishi, Takeo, E-mail: tohnishi@naramed-u.ac.jp [Department of Radiation Oncology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer High-LET radiation induces efficiently apoptosis regardless of p53 gene status. Black-Right-Pointing-Pointer We examined whether high-LET radiation depresses the Akt-survival signals. Black-Right-Pointing-Pointer High-LET radiation depresses of survival signals even in the mp53 cancer cells. Black-Right-Pointing-Pointer High-LET radiation activates Caspase-9 through depression of survival signals. Black-Right-Pointing-Pointer High-LET radiation suppresses cell growth through depression of survival signals. -- Abstract: Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G{sub 2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling, even in mp

  19. Human Cytomegalovirus nuclear egress and secondary envelopment are negatively affected in the absence of cellular p53

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, Man I; O’Dowd, John M.; Chughtai, Kamila; Hayman, Ian; Brown, Celeste J.; Fortunato, Elizabeth A., E-mail: lfort@uidaho.edu

    2016-10-15

    Human Cytomegalovirus (HCMV) infection is compromised in cells lacking p53, a transcription factor that mediates cellular stress responses. In this study we have investigated compromised functional virion production in cells with p53 knocked out (p53KOs). Infectious center assays found most p53KOs released functional virions. Analysis of electron micrographs revealed modestly decreased capsid production in infected p53KOs compared to wt. Substantially fewer p53KOs displayed HCMV-induced infoldings of the inner nuclear membrane (IINMs). In p53KOs, fewer capsids were found in IINMs and in the cytoplasm. The deficit in virus-induced membrane remodeling within the nucleus of p53KOs was mirrored in the cytoplasm, with a disproportionately smaller number of capsids re-enveloped. Reintroduction of p53 substantially recovered these deficits. Overall, the absence of p53 contributed to inhibition of the formation and function of IINMs and re-envelopment of the reduced number of capsids able to reach the cytoplasm. -- Highlights: •The majority of p53KO cells release fewer functional virions than wt cells. •Nucleocapsids do not efficiently exit the nucleus in p53KO cells. •Infoldings of the inner nuclear membrane are not efficiently formed in p53KO cells. •Cytoplasmic capsids are not efficiently re-enveloped in p53KO cells. •Reintroduction of p53 largely ameliorates these phenotypes.

  20. Interplay between PTB and miR-1285 at the p53 3'UTR modulates the levels of p53 and its isoform Δ40p53α.

    Science.gov (United States)

    Katoch, Aanchal; George, Biju; Iyyappan, Amrutha; Khan, Debjit; Das, Saumitra

    2017-09-29

    p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3'UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3'UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3'UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3'UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3'UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3'UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3'UTR can play pivotal role in fine tuning the expression of the two p53 isoforms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Downregulated long non-coding RNA MEG3 in breast cancer regulates proliferation, migration and invasion by depending on p53’s transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin [West Biostatistics and Cost-effectiveness Research Center, Medical Insurance Office, West China Hospital of Sichuan University, 610041, Sichuan (China); Li, Yu [Department of Anesthesiology, West China Hospital, Sichuan University, 610041, Sichuan (China); Yang, Bangxiang, E-mail: b19933009@qq.coom [Department of Pain Management, West China Hospital of Sichuan University, 610041, Sichuan (China)

    2016-09-09

    Long non-coding RNAs (lncRNAs) was found to play critical roles in tumorigenesis, hence, screen of tumor-related lncRNAs, identification of their biological roles is important for understanding the processes of tumorigenesis. In this study, we identified the expressing difference of several tumor-related lncRNAs in breast cancer samples and found that, MEG3, which is downregulated in non-small cell lung cancer (NSCLC) tumor tissues, is also downregulated in breast cancer samples compared with adjacent tissues. For figuring out the effect of MEG3 in breast cancer cells MCF7 and MB231, we overexpressed MEG3 in these cells, and found that it resulted the inhibition of proliferation, colony formation, migration and invasion capacities by enhancing p53’s transcriptional activity on its target genes, including p21, Maspin and KAI1. MEG3 presented similar effects in MB157, which is a p53-null breast cancer cell line, when functional p53 but not p53R273H mutant, which lacks transcriptional activity, was introduced. Surprisingly, overexpression of MEG3 activates p53’s transcriptional activity by decreasing MDM2’s transcription level, and thus stabilizes and accumulates P53. Taken together, our findings indicate that MEG3 is downregulated in breast cancer tissues and affects breast cancer cells’ malignant behaviors, which indicate MEG3 a potential therapeutic target for breast cancer. - Highlights: • MEG3 RNA is widely downregulated in breast tumor tissue. • MEG3 regulates P53 indirectly through transcriptional regulation of MDM2. • Under unstressed condition, MEG3-related P53 accumulation transcriptionally activates p53’s target genes. • MEG3 expression level tightly regulates proliferation, colony formation, migration and invasion in breast tumor cells.

  2. Defining the ATM-mediated barrier to tumorigenesis in somatic mammary cells following ErbB2 activation.

    Science.gov (United States)

    Reddy, Jay P; Peddibhotla, Sirisha; Bu, Wen; Zhao, Jing; Haricharan, Svasti; Du, Yi-Chieh Nancy; Podsypanina, Katrina; Rosen, Jeffrey M; Donehower, Larry A; Li, Yi

    2010-02-23

    p53, apoptosis, and senescence are frequently activated in preneoplastic lesions and are barriers to progression to malignancy. These barriers have been suggested to result from an ATM-mediated DNA damage response (DDR), which may follow oncogene-induced hyperproliferation and ensuing DNA replication stress. To elucidate the currently untested role of DDR in breast cancer initiation, we examined the effect of oncogene expression in several murine models of breast cancer. We did not observe a detectable DDR in early hyperplastic lesions arising in transgenic mice expressing several different oncogenes. However, DDR signaling was strongly induced in preneoplastic lesions arising from individual mammary cells transduced in vivo by retroviruses expressing either PyMT or ErbB2. Thus, activation of an oncogene after normal tissue development causes a DDR. Furthermore, in this somatic ErbB2 tumor model, ATM, and thus DDR, is required for p53 stabilization, apoptosis, and senescence. In palpable tumors in this model, p53 stabilization and apoptosis are lost, but unexpectedly senescence remains in many tumor cells. Thus, this murine model fully recapitulates early DDR signaling; the eventual suppression of its endpoints in tumorigenesis provides compelling evidence that ErbB2-induced aberrant mammary cell proliferation leads to an ATM-mediated DDR that activates apoptosis and senescence, and at least the former must be overcome to progress to malignancy. This in vivo study also uncovers an unexpected effect of ErbB2 activation previously known for its prosurvival roles, and suggests that protection of the ATM-mediated DDR-p53 signaling pathway may be important in breast cancer prevention.

  3. Wild type p53 transcriptionally represses the SALL2 transcription factor under genotoxic stress.

    Directory of Open Access Journals (Sweden)

    Carlos Farkas

    Full Text Available SALL2- a member of the Spalt gene family- is a poorly characterized transcription factor found deregulated in various cancers, which suggests it plays a role in the disease. We previously identified SALL2 as a novel interacting protein of neurotrophin receptors and showed that it plays a role in neuronal function, which does not necessarily explain why or how SALL2 is deregulated in cancer. Previous evidences indicate that SALL2 gene is regulated by the WT1 and AP4 transcription factors. Here, we identified SALL2 as a novel downstream target of the p53 tumor suppressor protein. Bioinformatic analysis of the SALL2 gene revealed several putative p53 half sites along the promoter region. Either overexpression of wild-type p53 or induction of the endogenous p53 by the genotoxic agent doxorubicin repressed SALL2 promoter activity in various cell lines. However R175H, R249S, and R248W p53 mutants, frequently found in the tumors of cancer patients, were unable to repress SALL2 promoter activity, suggesting that p53 specific binding to DNA is important for the regulation of SALL2. Electrophoretic mobility shift assay demonstrated binding of p53 to one of the identified p53 half sites in the Sall2 promoter, and chromatin immunoprecipitation analysis confirmed in vivo interaction of p53 with the promoter region of Sall2 containing this half site. Importantly, by using a p53ER (TAM knockin model expressing a variant of p53 that is completely dependent on 4-hydroxy-tamoxifen for its activity, we show that p53 activation diminished SALL2 RNA and protein levels during genotoxic cellular stress in primary mouse embryo fibroblasts (MEFs and radiosensitive tissues in vivo. Thus, our finding indicates that p53 represses SALL2 expression in a context-specific manner, adding knowledge to the understanding of SALL2 gene regulation, and to a potential mechanism for its deregulation in cancer.

  4. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation.

    Science.gov (United States)

    Bailon-Moscoso, Natalia; González-Arévalo, Gabriela; Velásquez-Rojas, Gabriela; Malagon, Omar; Vidari, Giovanni; Zentella-Dehesa, Alejandro; Ratovitski, Edward A; Ostrosky-Wegman, Patricia

    2015-01-01

    Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.

  5. Transactivation of bad by vorinostat-induced acetylated p53 enhances doxorubicin-induced cytotoxicity in cervical cancer cells.

    Science.gov (United States)

    Lee, Sook-Jeong; Hwang, Sung-Ook; Noh, Eun Joo; Kim, Dong-Uk; Nam, Miyoung; Kim, Jong Hyeok; Nam, Joo Hyun; Hoe, Kwang-Lae

    2014-02-14

    Vorinostat (VOR) has been reported to enhance the cytotoxic effects of doxorubicin (DOX) with fewer side effects because of the lower DOX dosage in breast cancer cells. In this study, we investigated the novel mechanism underlying the synergistic cytotoxic effects of VOR and DOX co-treatment in cervical cancer cells HeLa, CaSki and SiHa cells. Co-treatment with VOR and DOX at marginal doses led to the induction of apoptosis through caspase-3 activation, poly (ADP-ribose) polymerase cleavage and DNA micronuclei. Notably, the synergistic growth inhibition induced by the co-treatment was attributed to the upregulation of the pro-apoptotic protein Bad, as the silencing of Bad expression using small interfering RNA (siRNA) abolished the phenomenon. As siRNA against p53 did not result in an increase in acetylated p53 and the consequent upregulation of Bad, the observed Bad upregulation was mediated by acetylated p53. Moreover, a chromatin immunoprecipitation analysis showed that the co-treatment of HeLa cells with VOR and DOX increased the recruitment of acetylated p53 to the bad promoter, with consequent bad transactivation. Conversely, C33A cervical cancer cells containing mutant p53 co-treated with VOR and DOX did not exhibit Bad upregulation, acetylated p53 induction or consequent synergistic growth inhibition. Together, the synergistic growth inhibition of cervical cancer cell lines induced by co-treatment with VOR and DOX can be attributed to the upregulation of Bad, which is induced by acetylated p53. These results show for the first time that the acetylation of p53, rather than histones, is a mechanism for the synergistic growth inhibition induced by VOR and DOX co-treatments.

  6. In vitro anti-inflammatory and anti-cancer activities of Cuscuta reflexa Roxb.

    Science.gov (United States)

    Suresh, V; Sruthi, V; Padmaja, B; Asha, V V

    2011-04-12

    To determine anti-inflammatory and anti-cancer activities of Cuscuta reflexa in cell lines (in vitro). Anti-inflammatory activity of the water extract was analysed in vitro using lipopolysaccharide (LPS) induced inflammatory reactions in murine macrophage cell line RAW264.7. The expression of COX-2 and TNF-α genes involved in inflammation was analysed by SQ RT-PCR. EMSA was conducted to analyse the influence of the extract on NF-κB signalling. Anti-cancer activity was analysed on Hep3B cells by MTT assay, DAPI staining, annexin V staining and SQ-RT PCR analysis of BAX, Bcl-2, p53 and survivin. The extract down regulated LPS induced over expression of TNF-α and COX-2 in RAW264.7 cells; blocked NF-κB binding to its motifs and induced apoptosis in Hep3B cells as evidenced from MTT, DAPI staining and annexin V staining assays. The extract up regulated pro-apoptotic factors BAX and p53, and down regulated anti-apoptotic factors Bcl-2 and survivin. The study showed that Cuscuta reflexa inhibits LPS induced inflammatory responses in RAW264.7 cells through interplay of TNF-α, COX-2 and NF-κB signalling. It induced apoptosis in Hep3B cells through the up regulation of p53, BAX and down regulation of Bcl-2 and survivin. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Promotive Effect of Minoxidil Combined with All-trans Retinoic Acid (tretinoin) on Human Hair Growth in Vitro

    Science.gov (United States)

    Kwon, Oh Sang; Pyo, Hyun Keol; Oh, Youn Jin; Han, Ji Hyun; Lee, Se Rah; Chung, Jin Ho; Eun, Hee Chul

    2007-01-01

    Minoxidil induces hair growth in male pattern baldness and prolongs the anagen phase. All-trans retinoic acid (ATRA) has been reported to act synergistically with minoxidil in vivo: they can enhance more dense hair regrowth than either compound alone. We evaluated the effect of minoxidil combined with ATRA on hair growth in vitro. The effect of co-treatment of minoxidil and ATRA on hair growth was studied in hair follicle organ culture. In cultured human dermal papilla cells (DPCs) and normal human epidermal keratinocytes, the expressions of Erk, Akt, Bcl-2, Bax, P53 and P21 were evaluated by immunoblot analysis. Minoxidil plus ATRA additively promoted hair growth in vitro, compared with minoxidil alone. In addition, minoxidil plus ATRA elevated phosphorylated Erk, phosphorylated Akt and the ratio of Bcl-2/Bax, but decreased the expressions of P53 and P21 more effectively than by minoxidil alone. Our results suggest that minoxidil plus ATRA would additively enhance hair growth by mediating dual functions: 1) the prolongation of cell survival by activating the Erk and Akt signaling pathways, and 2) the prevention of apoptosis of DPCs and epithelial cells by increasing the ratio of Bcl-2/Bax and downregulating the expressions of P53 and P21. PMID:17449938

  8. Deficiency of G1 regulators P53, P21Cip1 and/or pRb decreases hepatocyte sensitivity to TGFβ cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Harrison David J

    2007-11-01

    Full Text Available Abstract Background TGFβ is critical to control hepatocyte proliferation by inducing G1-growth arrest through multiple pathways leading to inhibition of E2F transcription activity. The retinoblastoma protein pRb is a key controller of E2F activity and G1/S transition which can be inhibited in viral hepatitis. It is not known whether the impairment of pRb would alter the growth inhibitory potential of TGFβ in disease. We asked how Rb-deficiency would affect responses to TGFβ-induced cell cycle arrest. Results Primary hepatocytes isolated from Rb-floxed mice were infected with an adenovirus expressing CRE-recombinase to delete the Rb gene. In control cells treatment with TGFβ prevented cells to enter S phase via decreased cMYC activity, activation of P16INK4A and P21Cip and reduction of E2F activity. In Rb-null hepatocytes, cMYC activity decreased slightly but P16INK4A was not activated and the great majority of cells continued cycling. Rb is therefore central to TGFβ-induced cell cycle arrest in hepatocytes. However some Rb-null hepatocytes remained sensitive to TGFβ-induced cell cycle arrest. As these hepatocytes expressed very high levels of P21Cip1 and P53 we investigated whether these proteins regulate pRb-independent signaling to cell cycle arrest by evaluating the consequences of disruption of p53 and p21Cip1. Hepatocytes deficient in p53 or p21Cip1 showed diminished growth inhibition by TGFβ. Double deficiency had a similar impact showing that in cells containing functional pRb; P21Cip and P53 work through the same pathway to regulate G1/S in response to TGFβ. In Rb-deficient cells however, p53 but not p21Cip deficiency had an additive effect highlighting a pRb-independent-P53-dependent effector pathway of inhibition of E2F activity. Conclusion The present results show that otherwise genetically normal hepatocytes with disabled p53, p21Cip1 or Rb genes respond less well to the antiproliferative effects of TGFβ. As the function of

  9. Molecular Dynamic Simulation Insights into the Normal State and Restoration of p53 Function

    Directory of Open Access Journals (Sweden)

    Jianzhong Chen

    2012-08-01

    Full Text Available As a tumor suppressor protein, p53 plays a crucial role in the cell cycle and in cancer prevention. Almost 50 percent of all human malignant tumors are closely related to a deletion or mutation in p53. The activity of p53 is inhibited by over-active celluar antagonists, especially by the over-expression of the negative regulators MDM2 and MDMX. Protein-protein interactions, or post-translational modifications of the C-terminal negative regulatory domain of p53, also regulate its tumor suppressor activity. Restoration of p53 function through peptide and small molecular inhibitors has become a promising strategy for novel anti-cancer drug design and development. Molecular dynamics simulations have been extensively applied to investigate the conformation changes of p53 induced by protein-protein interactions and protein-ligand interactions, including peptide and small molecular inhibitors. This review focuses on the latest MD simulation research, to provide an overview of the current understanding of interactions between p53 and its partners at an atomic level.

  10. Modulation of Cyclins, p53 and Mitogen-Activated Protein Kinases Signaling in Breast Cancer Cell Lines by 4-(3,4,5-Trimethoxyphenoxybenzoic Acid

    Directory of Open Access Journals (Sweden)

    Kuan-Han Lee

    2014-01-01

    Full Text Available Despite the advances in cancer therapy and early detection, breast cancer remains a leading cause of cancer-related deaths among females worldwide. The aim of the current study was to investigate the antitumor activity of a novel compound, 4-(3,4,5-trimethoxyphenoxybenzoic acid (TMPBA and its mechanism of action, in breast cancer. Results indicated the relatively high sensitivity of human breast cancer cell-7 and MDA-468 cells towards TMPBA with IC50 values of 5.9 and 7.9 µM, respectively compared to hepatocarcinoma cell line Huh-7, hepatocarcinoma cell line HepG2, and cervical cancer cell line Hela cells. Mechanistically, TMPBA induced apoptotic cell death in MCF-7 cells as indicated by 4',6-diamidino-2-phenylindole (DAPI nuclear staining, cell cycle analysis and the activation of caspase-3. Western blot analysis revealed the ability of TMPBA to target pathways mediated by mitogen-activated protein (MAP kinases, 5' adenosine monophosphate-activated protein kinase (AMPK, and p53, of which the concerted action underlined its antitumor efficacy. In addition, TMPBA induced alteration of cyclin proteins’ expression and consequently modulated the cell cycle. Taken together, the current study underscores evidence that TMPBA induces apoptosis in breast cancer cells via the modulation of cyclins and p53 expression as well as the modulation of AMPK and mitogen-activated protein kinases (MAPK signaling. These findings support TMPBA’s clinical promise as a potential candidate for breast cancer therapy.

  11. Transcriptional Inhibition of the Human Papilloma Virus Reactivates Tumor Suppressor p53 in Cervical Carcinoma Cells

    Science.gov (United States)

    Kochetkov, D. V.; Ilyinskaya, G. V.; Komarov, P. G.; Strom, E.; Agapova, L. S.; Ivanov, A. V.; Budanov, A. V.; Frolova, E. I.; Chumakov, P. M.

    2009-01-01

    Inactivation of tumor suppressor p53 accompanies the majority of human malignancies. Restoration of p53 function causes death of tumor cells and is potentially suitable for gene therapy of cancer. In cervical carcinoma, human papilloma virus (HPV) E6 facilitates proteasomal degradation of p53. Hence, a possible approach to p53 reactivation is the use of small molecules suppressing the function of viral proteins. HeLa cervical carcinoma cells (HPV-18) with a reporter construct containing the b-galactosidase gene under the control of a p53-responsive promoter were used as a test system to screen a library of small molecules for restoration of the transcriptional activity of p53. The effect of the two most active compounds was studied with cell lines differing in the state of p53-dependent signaling pathways. The compounds each specifically activated p53 in cells expressing HPV-18 and, to a lesser extent, HPV-16 and exerted no effect on control p53-negative cells or cells with the intact p53-dependent pathways. Activation of p53 in cervical carcinoma cells was accompanied by induction of p53-dependent CDKN1 (p21), inhibition of cell proliferation, and induction of apoptosis. In addition, the two compounds dramatically decreased transcription of the HPV genome, which was assumed to cause p53 reactivation. The compounds were low-toxic for normal cells and can be considered as prototypes of new anticancer drugs. PMID:17685229

  12. Enhancement of radiosensitivity of recombinant Ad-p53 gene on human lung adenocarcinoma cell with different p53 status

    International Nuclear Information System (INIS)

    Pang Dequan; Wang Peiguo; Wang Ping; Zhang Weiming

    2008-01-01

    Objective: To investigate the enhancement of radiosensitivity of recombinant Ad-p53 gene on human lung adenocarcinoma cell lines(A549 and GLC-82) with different p53 status in vitro. Methods: Two human lung adenocarcinoma cell lines of A549 and GLC-82 were examined on their difference in p53 status with immunohistochemistry stain and PCR-SSCP technique. Expand Ad-wtp53 was transfected into tumor cells. Clonogenic assays were performed to evaluate the inhibition effect on cell growth and the degree of sensitization to irradiation. Apoptosis and cell cycle changes were determined using the flow cytometry assay. Results: The A549 cell line presented positive P53 expression while GLC-82 negative. GLC-82 bore mutant p53 on the exon 7. The wtp53 gene could be efficiently expressed in the two cell lines and greatly inhibit the cell growth. Its efficiency didn't depend on the intrinsic p53 genetic status. After irradiation, its function of inducing G 1 arrest and apoptosis on GLC-82 cell line was much stronger than the A549 cell line. In both the A549 and GLC-82 cell lines, the combination of Ad-p53 plus radiation resulted in more apoptosis than the others. There was no significant difference between two groups. Conclusions: Ad-p53 can depress the tumor growth and enhance the radiosensitivity of human lung adenocarcinoma cells. And this effect is independent of endogenous p53 status. (authors)

  13. The Fanconi anemia pathway sensitizes to DNA alkylating agents by inducing JNK-p53-dependent mitochondrial apoptosis in breast cancer cells.

    Science.gov (United States)

    Zhao, Lin; Li, Yanlin; He, Miao; Song, Zhiguo; Lin, Shu; Yu, Zhaojin; Bai, Xuefeng; Wang, Enhua; Wei, Minjie

    2014-07-01

    The Fanconi anemia/BRCA (FA/BRCA) DNA damage repair pathway plays a pivotal role in the cellular response to DNA alkylating agents and greatly influences drug response in cancer treatment. However, the molecular mechanisms underlying the FA/BRCA pathway reversed resistance have received limited attention. In the present study, we investigated the effect of Fanconi anemia complementation group F protein (FANCF), a critical factor of the FA/BRCA pathway, on cancer cell apoptosis induced by DNA alkylating agents such as mitomycin c (MMC). We found that FANCF shRNA potentiated MMC-induced cytotoxicity and apoptosis in MCF-7 and MDA-MB-231 breast cancer cells. At a mechanistic level, FANCF shRNA downregulated the anti-apoptotic protein Bcl-2 and upregulated the pro-apoptotic protein Bax, accompanied by release of cyt-c and smac into the cytosol in MMC-treated cells. Furthermore, activation of caspase-3 and -9, other than caspase-8, cleavage of poly(ADP ribose) polymerase (PARP), and a decrease of mitochondrial membrane potential (MMP) indicated that involvement of the mitochondrial apoptotic pathway in FANCF silencing of MMC-treated breast cancer cells. A decrease in IAP family proteins XIAP and survivin were also observed following FANCF silencing in MMC-treated breast cancer cells. Notably, FANCF shRNA was able to increase p53 levels through activation of the JNK pathway in MMC-treated breast cancer cells. Furthermore, p53 inhibition using pifithrin-α abolished the induction of caspase-3 and PARP by FANCF shRNA and MMC, indicating that MMC-induced apoptosis is substantially enhanced by FANCF shRNA via p53-dependent mechanisms. To our knowledge, we provide new evidence for the potential application of FANCF as a chemosensitizer in breast cancer therapy.

  14. The expanding universe of p53 targets.

    Science.gov (United States)

    Menendez, Daniel; Inga, Alberto; Resnick, Michael A

    2009-10-01

    The p53 tumour suppressor is modified through mutation or changes in expression in most cancers, leading to the altered regulation of hundreds of genes that are directly influenced by this sequence-specific transcription factor. Central to the p53 master regulatory network are the target response element (RE) sequences. The extent of p53 transactivation and transcriptional repression is influenced by many factors, including p53 levels, cofactors and the specific RE sequences, all of which contribute to the role that p53 has in the aetiology of cancer. This Review describes the identification and functionality of REs and highlights the inclusion of non-canonical REs that expand the universe of genes and regulation mechanisms in the p53 tumour suppressor network.

  15. The sirtuin 1/2 inhibitor tenovin-1 induces a nonlinear apoptosis-inducing factor-dependent cell death in a p53 null Ewing's sarcoma cell line.

    Science.gov (United States)

    Marx, Christian; Marx-Blümel, Lisa; Lindig, Nora; Thierbach, René; Hoelzer, Doerte; Becker, Sabine; Wittig, Susan; Lehmann, Roland; Slevogt, Hortense; Heinzel, Thorsten; Wang, Zhao-Qi; Beck, James F; Sonnemann, Jürgen

    2018-06-01

    The sirtuin 1/2 inhibitor tenovin-1 activates p53 and may have potential in the management of cancer. Here, we investigated the responsiveness of Ewing's sarcoma cells to tenovin-1. We examined its effects in two Ewing's sarcoma cell lines with different p53 status, i.e. in p53 wild-type and p53 null cells. Effects were assessed by flow cytometric analyses of cell death, mitochondrial membrane depolarization and reactive oxygen species (ROS) generation, by caspase 3/7 activity measurement, by mRNA expression profiling and by immunoblotting. Tenovin-1 elicited caspase-mediated cell death in p53 wild-type cells, but caspase-independent cell death in p53 null cells. Remarkably, it induced a nonlinear concentration response in the latter: low concentrations of tenovin-1 were much more effective than were higher concentrations. Tenovin-1's effects in p53 null cells involved gene expression changes of Bcl-2 family members, mitochondrial membrane depolarization, nuclear translocation of apoptosis-inducing factor, ROS formation and DNA damage; all these effects followed a bell-shaped pattern. In conclusion, our results provide new insights into tenovin-1's mode of action by demonstrating that it can induce different pathways of cell death.

  16. Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway.

    Science.gov (United States)

    Zhao, Yi; Yao, Yun-hong; Li, Li; An, Wei-fang; Chen, Hong-zen; Sun, Li-ping; Kang, Hai-xian; Wang, Sen; Hu, Xin-rong

    2014-12-01

    Pokemon has been showed to directly suppress p14(ARF) expression and also to overexpress in multiple cancers. However, p14(ARF)-MDM2-p53 pathway is usually aberrant in colorectal cancer (CRC). The aim is to confirm whether Pokemon plays a role in CRC and explore whether Pokemon works through p14(ARF)-MDM2-p53 pathway in CRC. Immunohistochemistry for Pokemon, p14(ARF) and Mtp53 protein was applied to 45 colorectal epitheliums (CREs), 42 colorectal adenomas (CRAs) and 66 CRCs. Pokemon was knocked down with RNAi technique in CRC cell line Lovo to detect mRNA expression of p14(ARF) with qRT-PCR, cell proliferation with CCK8 assay, and cell cycle and apoptosis with flowcytometry analysis. The protein expression rates were significantly higher in CRC (75.8%) than in CRE (22.2 %) or CRA (38.1%) for Pokemon and higher in CRC (53.0%) than in CRE (0) or CRA (4.8%) for Mtp53, but not significantly different in CRC (86.4 %) versus CRE (93.3%) or CRA (90.5 %) for p14(ARF). Higher expression rate of Pokemon was associated with lymph node metastasis and higher Duke's stage. After knockdown of Pokemon in Lovo cells, the mRNA level of p14(ARF) was not significantly changed, the cell proliferation ability was decreased by 20.6%, cell cycle was arrested by 55.7% in G0/G1 phase, and apoptosis rate was increased by 19.0%. Pokemon enhanced the oncogenesis of CRC by promoting proliferation, cell cycle progression and anti-apoptosis activity of CRC cells independently of p14(ARF)-MDM2-p53 pathway. This finding provided a novel idea for understanding and further studying the molecular mechanism of Pokemon on carcinogenesis of CRC.

  17. p53 and telomerase control rat myocardial tissue response to hypoxia and ageing

    Directory of Open Access Journals (Sweden)

    A. Cataldi

    2009-12-01

    Full Text Available Cellular senescence implies loss of proliferative and tissue regenerative capability. Also hypoxia, producing Reactive Oxygen Species (ROS, can damage cellular components through the oxidation of DNA, proteins and lipids, thus influencing the shortening of telomeres. Since ribonucleoprotein Telomerase (TERT, catalyzing the replication of the ends of eukaryotic chromosomes, promotes cardiac muscle cell proliferation, hypertrophy and survival, here we investigated its role in the events regulating apoptosis occurrence and life span in hearts deriving from young and old rats exposed to hypoxia. TUNEL (terminal-deoxinucleotidyl -transferase- mediated dUTP nick end-labeling analysis reveals an increased apoptotic cell number in both samples after hypoxia exposure, mainly in the young with respect to the old. TERT expression lowers either in the hypoxic young, either in the old in both experimental conditions, with respect to the normoxic young. These events are paralleled by p53 and HIF-1 ? expression dramatic increase and by p53/ HIF-1 ? co-immunoprecipitation in the hypoxic young, evidencing the young subject as the most stressed by such challenge. These effects could be explained by induction of damage to genomic DNA by ROS that accelerates cell senescence through p53 activation. Moreover, by preventing TERT enzyme down-regulation, cell cycle exit and apoptosis occurrence could be delayed and new possibilities for intervention against cell ageing and hypoxia could be opened.

  18. Dihydroptychantol A, a macrocyclic bisbibenzyl derivative, induces autophagy and following apoptosis associated with p53 pathway in human osteosarcoma U2OS cells

    International Nuclear Information System (INIS)

    Li Xia; Wu, William K.K.; Sun Bin; Cui Min; Liu Shanshan; Gao Jian; Lou Hongxiang

    2011-01-01

    Dihydroptychantol A (DHA), a novel macrocyclic bisbibenzyl compound extracted from liverwort Asterella angusta, has antifungal and multi-drug resistance reversal properties. Here, the chemically synthesized DHA was employed to test its anti-cancer activities in human osteosarcoma U2OS cells. Our results demonstrated that DHA induced autophagy followed by apoptotic cell death accompanied with G 2 /M-phase cell cycle arrest in U2OS cells. DHA-induced autophagy was morphologically characterized by the formation of double membrane-bound autophagic vacuoles recognizable at the ultrastructural level. DHA also increased the levels of LC3-II, a marker of autophagy. Surprisingly, DHA-mediated apoptotic cell death was potentiated by the autophagy inhibitor 3-methyladenine, suggesting that autophagy may play a protective role that impedes the eventual cell death. Furthermore, p53 was shown to be involved in DHA-meditated autophagy and apoptosis. In this connection, DHA increased nuclear expression of p53, induced p53 phosphorylation, and upregulated p53 target gene p21 Waf1/Cip1 . In contrast, cytoplasmic p53 was reduced by DHA, which contributed to the stimulation of autophagy. In relation to the cell cycle, DHA decreased the expression of cyclin B 1 , a cyclin required for progression through the G 2 /M phase. Taken together, DHA induces G 2 /M-phase cell cycle arrest and apoptosis in U2OS cells. DHA-induced apoptosis was preceded by the induction of protective autophagy. DHA-mediated autophagy and apoptosis are associated with the cytoplasmic and nuclear functions of p53.

  19. Interplay between PTB and miR-1285 at the p53 3′UTR modulates the levels of p53 and its isoform Δ40p53α

    Science.gov (United States)

    Katoch, Aanchal; George, Biju; Iyyappan, Amrutha; Khan, Debjit

    2017-01-01

    Abstract p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3′UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3′UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3′UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3′UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3′UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3′UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3′UTR can play pivotal role in fine tuning the expression of the two p53 isoforms. PMID:28973454

  20. Genetic Stabilization by p53 Involves Growth Regulatory and Repair Pathways

    Directory of Open Access Journals (Sweden)

    Lisa Wiesmüller

    2001-01-01

    Full Text Available p53 performs a plethora of activities, which are directed towards the maintenance of the genomic integrity and constitute its universal role as a tumor suppressor. 1000 to 10000 latent p53 molecules are permanently available in order to monitor DNA exchange processes in mitotically growing cells. After the introduction of major DNA injuries the levels of posttranslationally modified p53 proteins rise, which in turn transcriptionally signal transient cell cycle arrest or apoptotic cell death, depending on the extent of damage. Taken together, p53 inhibits the manifestation of genomic instabilities at different control levels both during naturally occurring metabolic processes and in response to genotoxic treatments.