WorldWideScience

Sample records for p-type semiconducting nickel

  1. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films.

    Science.gov (United States)

    Sun, Ke; Saadi, Fadl H; Lichterman, Michael F; Hale, William G; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T; Omelchenko, Stefan T; He, Jr-Hau; Papadantonakis, Kimberly M; Brunschwig, Bruce S; Lewis, Nathan S

    2015-03-24

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g).

  2. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke

    2015-03-11

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g). © 2015, National Academy of Sciences. All rights reserved.

  3. Inkjet-printed p-type nickel oxide thin-film transistor

    Science.gov (United States)

    Hu, Hailong; Zhu, Jingguang; Chen, Maosheng; Guo, Tailiang; Li, Fushan

    2018-05-01

    High-performance inkjet-printed nickel oxide thin-film transistors (TFTs) with Al2O3 high-k dielectric have been fabricated using a sol-gel precursor ink. The "coffee ring" effect during the printing process was facilely restrained by modifying the viscosity of the ink to control the outward capillary flow. The impacts on the device performance was studied in detail in consideration of annealing temperature of the nickel oxide film and the properties of dielectric layer. The optimized switching ability of the device were achieved at an annealing temperature of 280 °C on a 50-nm-thick Al2O3 dielectric layer, with a hole mobility of 0.78 cm2/V·s, threshold voltage of -0.6 V and on/off current ratio of 5.3 × 104. The as-printed p-type oxide TFTs show potential application in low-cost, large-area complementary electronic devices.

  4. Ultraviolet light-absorbing and emitting diodes consisting of a p-type transparent-semiconducting NiO film deposited on an n-type GaN homoepitaxial layer

    Science.gov (United States)

    Nakai, Hiroshi; Sugiyama, Mutsumi; Chichibu, Shigefusa F.

    2017-05-01

    Gallium nitride (GaN) and related (Al,Ga,In)N alloys provide practical benefits in the production of light-emitting diodes (LEDs) and laser diodes operating in ultraviolet (UV) to green wavelength regions. However, obtaining low resistivity p-type AlN or AlGaN of large bandgap energies (Eg) is a critical issue in fabricating UV and deep UV-LEDs. NiO is a promising candidate for useful p-type transparent-semiconducting films because its Eg is 4.0 eV and it can be doped into p-type conductivity of sufficiently low resistivity. By using these technologies, heterogeneous junction diodes consisting of a p-type transparent-semiconducting polycrystalline NiO film on an n-type single crystalline GaN epilayer on a low threading-dislocation density, free-standing GaN substrate were fabricated. The NiO film was deposited by using the conventional RF-sputtering method, and the GaN homoepitaxial layer was grown by metalorganic vapor phase epitaxy. They exhibited a significant photovoltaic effect under UV light and also exhibited an electroluminescence peak at 3.26 eV under forward-biased conditions. From the conduction and valence band (EV) discontinuities, the NiO/GaN heterointerface is assigned to form a staggered-type (TYPE-II) band alignment with the EV of NiO higher by 2.0 eV than that of GaN. A rectifying property that is consistent with the proposed band diagram was observed in the current-voltage characteristics. These results indicate that polycrystalline NiO functions as a hole-extracting and injecting layer of UV optoelectronic devices.

  5. Photo-Electrochemical Effect of Zinc Addition on the Electrochemical Corrosion Potentials of Stainless Steels and Nickel Alloys in High Temperature Water

    International Nuclear Information System (INIS)

    Lee, Yi-Ching; Fong, Clinton; Fang-Chu, Charles; Chang, Ching

    2012-09-01

    Hydrogen water chemistry (HWC) is one of the main mitigating methods for stress corrosion cracking problem of reactor core stainless steel and nickel based alloy components. Zinc is added to minimize the radiation increase associated with HWC. However, the subsequently formed zinc-containing surface oxides may exhibit p-type semiconducting characteristics. Upon the irradiation of Cherenkov and Gamma ray in the reactor core, the ECP of stainless steels and nickel based alloys may shift in the anodic direction, possibly offsetting the beneficial effect of HWC. This study will evaluate the photo-electrochemical effect of Zinc Water Chemistry on SS304 stainless steel and Alloy 182 nickel based weld metal under simulated irradiated BWR water environments with UV illumination. The experimental results reveal that Alloy 182 nickel-based alloy generally possesses n-type semiconductor characteristics in both oxidizing NWC and reducing HWC conditions with zinc addition. Upon UV irradiation, the ECP of Alloy 182 will shift in the cathodic direction. In most conditions, SS304 will also exhibit n-type semiconducting properties. Only under hydrogen water chemistry, a weak p-type property may emerge. Only a slight upward shift in the anodic direction is detected when SS304 is illuminated with UV light. The potential influence of p-type semiconductor of zinc containing surface oxides is weak and the mitigation effect of HWC on the stress corrosion cracking is not adversely affected. (authors)

  6. Semiconducting p-type MgNiO:Li epitaxial films fabricated by cosputtering method

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Hun; Chun, Sung Hyun; Cho, Hyung Koun [School of Advanced Materials Science and Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2013-07-15

    Li-doped ternary Mg{sub x}Ni{sub 1-x}O thin films were deposited on (0001) Al{sub 2}O{sub 3} substrates by a radio frequency (RF) magnetron cosputtering method with MgO and NiO:Li targets. The Mg mole fraction and Li content were relatively controlled by changing RF power for the MgO target over a range of 0-300 W, while the NiO:Li target was kept at 150 W. As a result, all films were epitaxially grown on (0001) Al{sub 2}O{sub 3} substrates with the relationship of [110]{sub NiO}||[1110]{sub Al2O3}, [112]{sub NiO}||[2110]{sub Al2O3} (in-plane), and [111]{sub NiO}||[0001]{sub Al2O3} (out-of-plane), and showed p-type semiconducting properties. Furthermore, from x-ray diffraction patterns, the authors found that MgO was effectively mixed with NiO:Li without structural deformation due to low lattice mismatch (0.8%) between NiO and MgO. However, the excess Li contents degraded the crystallinity of the MgNiO films. The band-gap of films was continuously shifted from 3.66 eV (339 nm) to 4.15 eV (299 nm) by the RF power of the MgO target. A visible transmittance of more than 80% was exhibited at RF powers higher than 200 W. Ultimately, the electrical resistivity of p-type MgNiO films was improved from 7.5 to 673.5 {Omega}cm, indicating that the Li-doped MgNiO films are good candidates for transparent p-type semiconductors.

  7. Realization of N-Type Semiconducting of Phosphorene through Surface Metal Doping and Work Function Study

    Directory of Open Access Journals (Sweden)

    Haocheng Sun

    2018-01-01

    Full Text Available Phosphorene becomes an important member of the layered nanomaterials since its discovery for the fabrication of nanodevices. In the experiments, pristine phosphorene shows p-type semiconducting with no exception. To reach its full capability, n-type semiconducting is a necessity. Here, we report the electronic structure engineering of phosphorene by surface metal atom doping. Five metal elements, Cu, Ag, Au, Li, and Na, have been considered which could form stable adsorption on phosphorene. These elements show patterns in their electron configuration with one valence electron in their outermost s-orbital. Among three group 11 elements, Cu can induce n-type degenerate semiconducting, while Ag and Au can only introduce localized impurity states. The distinct ability of Cu, compared to Ag and Au, is mainly attributed to the electronegativity. Cu has smaller electronegativity and thus denotes its electron to phosphorene, upshifting the Fermi level towards conduction band, resulting in n-type semiconducting. Ag and Au have larger electronegativity and hardly transfer electrons to phosphorene. Parallel studies of Li and Na doping support these findings. In addition, Cu doping effectively regulates the work function of phosphorene, which gradually decreases upon increasing Cu concentration. It is also interesting that Au can hardly change the work function of phosphorene.

  8. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    Science.gov (United States)

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  9. Synthesis of p-type nickel oxide nanosheets on n-type titanium dioxide nanorod arrays for p-n heterojunction-based UV photosensor

    Science.gov (United States)

    Yusoff, M. M.; Mamat, M. H.; Malek, M. F.; Abdullah, M. A. R.; Ismail, A. S.; Saidi, S. A.; Mohamed, R.; Suriani, A. B.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) nanorod arrays (TNAs) were synthesized and deposited on fluorine tin oxide (FTO)-coated glass substrate using a novel and facile immersion method in a glass container. The synthesis and deposition of p-type nickel oxide (NiO) nanosheets (NS) on the n-type TNAs was investigated in the p-n heterojunction photodiode (PD) for the application of ultraviolet (UV) photosensor. The fabricated TNAs/NiO NS based UV photosensor exhibited a highly increased photocurrent of 4.3 µA under UV radiation (365 nm, 750 µW/cm2) at 1.0 V reverse bias. In this study, the fabricated TNAs/NiO NS p-n heterojunction based photodiode showed potential applications for UV photosensor based on the stable photo-generated current attained under UV radiation.

  10. Photoelectrochemical characterization of squaraine-sensitized nickel oxide cathodes deposited via screen-printing for p-type dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Naponiello, Gaia; Venditti, Iole [Department of Chemistry, Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy); Zardetto, Valerio [Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome - Tor Vergata, via del Politecnico 1, 00133 Rome (Italy); Saccone, Davide [Department of Chemistry and NIS, Interdepartmental Centre of Excellence, University of Torino, via Pietro Giuria 7, I-10125 Torino (Italy); Di Carlo, Aldo [Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome - Tor Vergata, via del Politecnico 1, 00133 Rome (Italy); Fratoddi, Ilaria [Department of Chemistry, Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy); Center for Nanotechnology for Engineering (CNIS), Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy); Barolo, Claudia [Department of Chemistry and NIS, Interdepartmental Centre of Excellence, University of Torino, via Pietro Giuria 7, I-10125 Torino (Italy); Dini, Danilo, E-mail: danilo.dini@uniroma1.it [Department of Chemistry, Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy)

    2015-11-30

    Graphical abstract: Screen-printing method has been adopted for the deposition of nickel oxide thin film electrodes with mesoporous features. Nickel oxide was sensitized with three newly synthesized squaraines (VG1C8,VG10C8 and DS2/35) and employed as photoelectroactive cathode of p-type dye-sensitized solar cells. Colorant erythrosine b (EB) was taken as commercial benchmark for comparative purposes. Sensitization was successful with the attainment of overall conversion efficiencies in the order of 0.025% when the mesoporous surface of nickel oxide was alkali treated. The prolongation of nickel oxide sensitization time up to 16 h led to a general increase of the open circuit voltage in the corresponding solar cells. - Highlights: • We deposited nickel oxide with screen-printing technique utilizing nickel oxide nanoparticles. • We employed screen-printed nickel oxide as cathodes of p-DSCs. • We employed new squaraine as sensitizers of screen-printed nickel oxide. • Further progress is expected when the formulation of the screen-printing paste will be optimized. - Abstract: In the present paper we report on the employment of the screen-printing method for the deposition of nickel oxide (NiO{sub x}) layers when preformed nanoparticles of the metal oxide (diameter < 50 nm) constitute the precursors in the paste. The applicative purpose of this study is the deposition of mesoporous NiO{sub x} electrodes in the configuration of thin films (thickness, l ≤ 4 μm) for the realization of p-type dye-sensitized solar cells (p-DSCs). Three different squaraine-based dyes (here indicated with VG1C8, VG10C8 and DS2/35), have been used for the first time as sensitizers of a p-type DSC electrode. VG1C8 and VG10C8 present two carboxylic groups as anchoring moieties, whereas DS2/35 sensitizer possesses four acidic anchoring groups. All three squaraines are symmetrical and differ mainly for the extent of electronic conjugation. The colorant erythrosine b (ERY B) was taken as

  11. Influence of γ- radiation on the recombination properties of P-type nickel doped silicon

    International Nuclear Information System (INIS)

    Kurbanov, A.O.; Karimov, M.

    2006-01-01

    Full text: It is well known that the life-time of the charge carriers is most sensitive parameter of the semiconductors. The results of numerous investigations show that by irradiation of the multi-crystal silicon with high-energy particles (electrons, protons, γ-quanta) the life-time of the minor charge carriers appreciably decreases. Ones think that the reason of such effect is the generation of the recombination radiation defects by irradiation. In this connection in this work the investigation of the nickel doped silicon with various post-diffusion cooling is performed. As an initial material the p - Si with ∼ 10 Ohm·cm specific resistance was used. The dislocation density is taken to be ∼10 4 cm -2 . Doping of silicon by nickel carried out in the temperature range of 1050-1150 degree C with succeeding I and II type cooling. The life-time of the charge carriers was determined using the stationary photoconductivity method. It is discovered that the life-time of the charge carriers in p-Si is longer than that in the control silicon as well as τ slightly increases by increasing of the nickel's atoms concentration (in these samples the acceptor centers concentration changes in the range of 1.5·10 14 - 3.5·10 14 cm -3 ). This effect is explained on a basis of investigations of the photoconductivity relaxation kinetics (at 70 K) by the capture of the charge carriers to the sticking level. It is revealed that the relative life-time changing is appreciably various one from other in I and II type samples. In the rapid cooled samples τ more stable than slow cooled samples. In the rapid cooled samples more stable than slow cooled samples up to doze ∼2.5·10 8 R. (author)

  12. Impact of semiconducting electrodes on the electroresistance of ferroelectric tunnel junctions

    Science.gov (United States)

    Asa, M.; Bertacco, R.

    2018-02-01

    Ferroelectric tunnel junctions are promising candidates for the realization of energy-efficient digital memories and analog memcomputing devices. In this work, we investigate the impact of a semiconducting layer in series to the junction on the sign of electroresistance. To this scope, we compare tunnel junctions fabricated out of Pt/BaTiO3/La1/3Sr2/3MnO3 (LSMO) and Pt/BaTiO3/Nb:SrTiO3 (Nb:STO) heterostructures, displaying an opposite sign of the electroresistance. By capacitance-voltage profiling, we observe a behavior typical of Metal-Oxide-Semiconductor tunnel devices in both cases but compatible with the opposite sign of charge carriers in the semiconducting layer. While Nb:STO displays the expected n-type semiconducting character, metallic LSMO develops an interfacial p-type semiconducting layer. The different types of carriers at the semiconducting interfaces and the modulation of the depleted region by the ferroelectric charge have a deep impact on electroresistance, possibly accounting for the different sign observed in the two systems.

  13. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells

    Science.gov (United States)

    Irwin, Michael D.; Buchholz, D. Bruce; Hains, Alexander W.; Chang, Robert P. H.; Marks, Tobin J.

    2008-01-01

    To minimize interfacial power losses, thin (5–80 nm) layers of NiO, a p-type oxide semiconductor, are inserted between the active organic layer, poly(3-hexylthiophene) (P3HT) + [6,6]-phenyl-C61 butyric acid methyl ester (PCBM), and the ITO (tin-doped indium oxide) anode of bulk-heterojunction ITO/P3HT:PCBM/LiF/Al solar cells. The interfacial NiO layer is deposited by pulsed laser deposition directly onto cleaned ITO, and the active layer is subsequently deposited by spin-coating. Insertion of the NiO layer affords cell power conversion efficiencies as high as 5.2% and enhances the fill factor to 69% and the open-circuit voltage (Voc) to 638 mV versus an ITO/P3HT:PCBM/LiF/Al control device. The value of such hole-transporting/electron-blocking interfacial layers is clearly demonstrated and should be applicable to other organic photovoltaics.

  14. Enhanced H2S Sensing Performance of a p-type Semiconducting PdO-NiO Nanoscale Heteromixture

    Science.gov (United States)

    Balamurugan, C.; Jeong, Y. J.; Lee, D. W.

    2017-10-01

    Semiconducting nanocrystalline nickel oxide (NiO) and PdO-doped NiO heteromixture (2, 5 and 10 wt%) have been synthesized via a metal-citrate complex method. The obtained materials were further characterized using TG/DTA, FT-IR, UV-vis, XRD, XPS, BET/BJH, SEM and TEM analyses to determine their structural and morphological properties. The results indicated that the spherical, uniform PdO nanoparticles were densely deposited on the NiO surface mainly in diameters of 10-15 nm. Moreover, the existence of various defect states was also analyzed with the help of photoluminescence (PL) spectroscopy. The gas response characteristics of synthesized materials were evaluated in the presence and absence of toxic gases such as hydrogen sulfide (H2S), carbon monoxide (CO), liquid petroleum gas (LPG), and ethanol (C2H5OH). The experimental results revealed that the sensitivity and selectivity of the NiO-based sensor material are dependent on the weight% of PdO loading in the NiO nanopowder. Among the investigated compound, the 5 wt% PdO-doped NiO sensor material showed excellent sensitivity and selectivity to 100 ppm H2S with a fast response/recovery characteristics of 6 s and 10 s, respectively. Furthermore, the 5 wt% PdO-doped NiO based sensor showed a linear relationship between the different concentrations of H2S gas and a significantly higher response to H2S even at the low concentration of 20 ppm (43%) at 60 °C. The dominant H2S gas sensing mechanisms in the NiO and 5 wt% PdO-doped NiO nanomaterials are systematically discussed based on the obtained characterization results.

  15. Nickel exposure is associated with the prevalence of type 2 diabetes in Chinese adults.

    Science.gov (United States)

    Liu, Gang; Sun, Liang; Pan, An; Zhu, Mingjiang; Li, Zi; ZhenzhenWang, Zhenzhen; Liu, Xin; Ye, Xingwang; Li, Huaixing; Zheng, He; Ong, Choon Nam; Yin, Huiyong; Lin, Xu; Chen, Yan

    2015-02-01

    Nickel exposure can induce hyperglycaemia in rodents, but little is known about its association with abnormal glucose metabolism in humans. We aimed to investigate the association of nickel exposure with the prevalence of type 2 diabetes in Chinese adults. A total of 2115 non-institutionalized men and women aged 55 to 76 years from Beijing and Shanghai were included, and urinary nickel concentration was assessed by inductively coupled plasma mass spectroscopy. The prevalence of type 2 diabetes was compared across urinary nickel quartiles. Fasting plasma glucose, insulin, lipids, C-reactive protein and glycated haemoglobin A1c, as well as urinary albumin and creatinine were measured. The median concentration of urinary nickel was 3.63 mg/l (interquartile range: 2.29–5.89 mg/l), and the prevalence of diabetes was 35.3% (747 cases/2115 persons). Elevated levels of urinary nickel were associated with higher fasting glucose, glycated haemoglobin A1c, insulin and homeostatic model assessment of insulin resistance (all Pnickel quartiles were 1.27 (0.97–1.67), 1.78 (1.36–2.32) and 1.68 (1.29–2.20), respectively (referencing to 1.00), after multivariate adjustment including lifestyle factors, body mass index and family history of diabetes (P for trend nickel concentration is associated with elevated prevalence of type 2 diabetes in humans.

  16. Cyclopentadithiophene–naphthalenediimide polymers; synthesis, characterisation, and n-type semiconducting properties in field-effect transistors and photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Han [Department of Chemical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, 101, Sec. 2, Kuang-Fu Road, Hsin-Chu 30013, Taiwan (China); Kettle, Jeff [School of Electronics, Bangor University, Dean st., Bangor, Gwynedd, LL57 1UT Wales (United Kingdom); Horie, Masaki, E-mail: mhorie@mx.nthu.edu.tw [Department of Chemical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, 101, Sec. 2, Kuang-Fu Road, Hsin-Chu 30013, Taiwan (China)

    2014-04-01

    The synthesis, characterisation, and device performance of a series of cyclopentadithiophene (CPDT)-naphthalenediimide (NDI) donor-acceptor-donor (D-A-D) polymers is reported. The monomers with various alkyl chains are synthesised via direct arylation using palladium complex catalyst. The monomers are then polymerised by oxidative polymerisation using FeCl{sub 3} to provide high molecular weight polymers (M{sub n} = 21,800–76,000). The polymer films show deep-red absorption including near-infrared region up to 1100 nm to give optical bandgap of approximately 1.16 eV. The polymers exhibit only n-type semiconducting properties giving the highest electron mobility of 9 × 10{sup -3} cm{sup 2} V{sup −1} s{sup −1} in organic field-effect transistors (OFETs). Organic photovoltaic (OPV) devices are fabricated from solutions of the polymers as acceptors and poly(3-hexylthiophene) (P3HT) as a donor. - Highlights: • Cyclopentadithiophene–naphthalenediimide oligomers were prepared by direct arylation. • The oligomers were polymerised by oxidative reaction using iron(III)chloride. • The polymer films show deep-red absorption up to 1100 nm with a bandgap of 1.1 eV. • The polymers exhibit only n-type semiconducting properties in OFETs and OPVs.

  17. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    International Nuclear Information System (INIS)

    Du, Juan; Xia, Congxin; Liu, Yaming; Li, Xueping; Peng, Yuting; Wei, Shuyi

    2017-01-01

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm 2 V −1 s −1 ), which is much higher than that of MoS 2 monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm 2 V −1 s −1 ), which is higher than that of MoS 2 monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm 2 V −1 s −1 , which is much higher than that of MoS 2 monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  18. Nickel Electroless Plating: Adhesion Analysis for Mono-Type Crystalline Silicon Solar Cells.

    Science.gov (United States)

    Shin, Eun Gu; Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2015-10-01

    The adhesion of the front electrodes to silicon substrate is the most important parameters to be optimized. Nickel silicide which is formed by sintering process using a silicon substrate improves the mechanical and electrical properties as well as act as diffusion barrier for copper. In this experiment p-type mono-crystalline czochralski (CZ) silicon wafers having resistivity of 1.5 Ω·cm were used to study one step and two step nickel electroless plating process. POCl3 diffusion process was performed to form the emitter with the sheet resistance of 70 ohm/sq. The Six, layer was set down as an antireflection coating (ARC) layer at emitter surface by plasma enhanced chemical vapor deposition (PECVD) process. Laser ablation process was used to open SiNx passivation layer locally for the formation of the front electrodes. Nickel was deposited by electroless plating process by one step and two step nickel electroless deposition process. The two step nickel plating was performed by applying a second nickel deposition step subsequent to the first sintering process. Furthermore, the adhesion analysis for both one step and two steps process was conducted using peel force tester (universal testing machine, H5KT) after depositing Cu contact by light induced plating (LIP).

  19. PREFACE: Semiconducting oxides Semiconducting oxides

    Science.gov (United States)

    Catlow, Richard; Walsh, Aron

    2011-08-01

    their help in producing this special section. We hope that it conveys some of the excitement and significance of the field. Semiconducting oxides contents Chemical bonding in copper-based transparent conducting oxides: CuMO2 (M = In, Ga, Sc) K G Godinho, B J Morgan, J P Allen, D O Scanlon and G W Watson Electrical properties of (Ba, Sr)TiO3 thin films with Pt and ITO electrodes: dielectric and rectifying behaviourShunyi Li, Cosmina Ghinea, Thorsten J M Bayer, Markus Motzko, Robert Schafranek and Andreas Klein Orientation dependent ionization potential of In2O3: a natural source for inhomogeneous barrier formation at electrode interfaces in organic electronicsMareike V Hohmann, Péter Ágoston, André Wachau, Thorsten J M Bayer, Joachim Brötz, Karsten Albe and Andreas Klein Cathodoluminescence studies of electron irradiation effects in n-type ZnOCasey Schwarz, Yuqing Lin, Max Shathkin, Elena Flitsiyan and Leonid Chernyak Resonant Raman scattering in ZnO:Mn and ZnO:Mn:Al thin films grown by RF sputteringM F Cerqueira, M I Vasilevskiy, F Oliveira, A G Rolo, T Viseu, J Ayres de Campos, E Alves and R Correia Structure and electrical properties of nanoparticulate tungsten oxide prepared by microwave plasma synthesisM Sagmeister, M Postl, U Brossmann, E J W List, A Klug, I Letofsky-Papst, D V Szabó and R Würschum Charge compensation in trivalent cation doped bulk rutile TiO2Anna Iwaszuk and Michael Nolan Deep level transient spectroscopy studies of n-type ZnO single crystals grown by different techniquesL Scheffler, Vl Kolkovsky, E V Lavrov and J Weber Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour depositionC David, T Girardeau, F Paumier, D Eyidi, B Lacroix, N Papathanasiou, B P Tinkham, P Guérin and M Marteau Multi-component transparent conducting oxides: progress in materials modellingAron Walsh, Juarez L F Da Silva and Su-Huai Wei Thickness dependence of the strain, band gap and transport properties of

  20. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    Energy Technology Data Exchange (ETDEWEB)

    Du, Juan [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Xia, Congxin, E-mail: xiacongxin@htu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Liu, Yaming [Henan Institute of Science and Technology, Xinxiang 453003 (China); Li, Xueping [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Peng, Yuting [Department of Physics, University of Texas at Arlington, TX 76019 (United States); Wei, Shuyi [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China)

    2017-04-15

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is much higher than that of MoS{sub 2} monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is higher than that of MoS{sub 2} monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm{sup 2} V{sup −1} s{sup −1}, which is much higher than that of MoS{sub 2} monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  1. Nitrogen atom transfer mediated by a new PN3P-pincer nickel core via a putative nitrido nickel intermediate

    KAUST Repository

    Yao, Changguang

    2018-02-13

    A 2nd generation PN3P-pincer azido nickel complex (PN3P)Ni(N3) reacts with isocyanides to afford monosubstituted carbodiimides under irradiation, presumably via a transient nitrido intermediate. The resulting species can further generate unsymmetrical carboddimides and the PN3P nickel halide complex, accomplishing a synthetic cycle for a complete nitrogen atom transfer reaction.

  2. Nitrogen atom transfer mediated by a new PN3P-pincer nickel core via a putative nitrido nickel intermediate

    KAUST Repository

    Yao, Changguang; Wang, Xiufang; Huang, Kuo-Wei

    2018-01-01

    A 2nd generation PN3P-pincer azido nickel complex (PN3P)Ni(N3) reacts with isocyanides to afford monosubstituted carbodiimides under irradiation, presumably via a transient nitrido intermediate. The resulting species can further generate unsymmetrical carboddimides and the PN3P nickel halide complex, accomplishing a synthetic cycle for a complete nitrogen atom transfer reaction.

  3. Rapid nickel diffusion in cold-worked type 316 austenitic steel at 360-500 C

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, Koji [Institute of Nuclear Safety Systems, Inc., Mihama (Japan); Iijima, Yoshiaki [Tohoku Univ., Sendai (Japan). Dept. of Materials Science; Miyamoto, Tomoki [Kobe Material Testing Laboratory Co. Ltd., Harima (Japan)

    2017-10-15

    The diffusion coefficient of nickel in cold-worked Type 316 austenitic steel was determined by the diffusion couple method in the temperature range between 360 and 500 C. A diffusion couple was prepared by electroless nickel plating on the surface of a 20 % cold-worked Type 316 austenitic steel specimen. The growth in width of the interdiffusion zone was proportional to the square root of diffusion time until 14 055 h. The diffusion coefficient of nickel (D{sub Ni}) in cold-worked Type 316 austenitic steel was determined by extrapolating the concentration-dependent interdiffusion coefficient to 11 at.% of nickel. The value of D{sub Ni} at 360 C was about 5 000 times higher than the lattice diffusion coefficient of nickel in Type 316 austenitic steel. The determined activation energy 117 kJ mol{sup -1} was 46.6 % of the activation energy 251 kJ mol{sup -1} for the lattice diffusion of nickel in Type 316 austenitic steel.

  4. p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.

    Science.gov (United States)

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-23

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  5. A submerged ceramic membrane reactor for the p-nitrophenol hydrogenation over nano-sized nickel catalysts.

    Science.gov (United States)

    Chen, R Z; Sun, H L; Xing, W H; Jin, W Q; Xu, N P

    2009-02-01

    The catalytic hydrogenation of p-nitrophenol to p-aminophenol over nano-sized nickel catalysts was carried out in a submerged ceramic membrane reactor. It has been demonstrated that the submerged ceramic membrane reactor is more suitable for the p-nitrophenol hydrogenation over nano-sized nickel catalysts compared with the side-stream ceramic membrane reactor, and the membrane module configuration has a great influence on the reaction rate of p-nitrophenol hydrogenation and the membrane treating capacity. The deactivation of nano-sized nickel is mainly caused by the adsorption of impurity on the surface of nickel and the increase of oxidation degree of nickel.

  6. N-Type Semiconducting Behavior of Copper Octafluorophthalocyanine in an Organic Field-Effect Transistor

    Directory of Open Access Journals (Sweden)

    Akane Matumoto

    2017-10-01

    Full Text Available Based on the crystal structure analysis, the overlap integral between the frontier molecular orbitals of adjacent F8CuPcs in the one-dimensional chain is estimated: the overlap integral between the lowest unoccupied molecular orbitals is 5.4 × 10−3, which is larger than that in a typical n-type semiconducing material F16CuPc (2.1 × 10−3, whereas that between the highest occupied molecular orbitals is 2.9 × 10−4. Contrary to previous studies in air, we found that an organic field-effect transistor (OFET composed of F8CuPc essentially shows clear n-type semiconducting behavior in vacuum.

  7. Evaluation of variables which affect the hardness of nickel plate deposited from watts-type baths

    International Nuclear Information System (INIS)

    Petit, G.S.; Wright, R.R.; Neff, W.A.

    1976-01-01

    In the course of the Cascade Improvement Program, many component equipment parts will be electroplated with nickel for corrosion protection. The maximum hardness which will be acceptable in the electroplated deposit is specified in Union Carbide's Job Specification JS-1396, Revision 3, entitled Electroplated Nickel Coatings on Steel Parts. The hardness specification is intended primarily as a control over both organic and inorganic impurities in the deposit. This report covers a study evaluating several of the numerous controllable variables which influence the hardness of the nickel plate deposited from a Watts-type bath. The variables tested were: 1) bath composition, 2) pH, 3) current density, 4) anode-cathode area ratio, and 5) bath temperature. Within the tested ranges of the variables studied, the pH and current density had the most influence on the plate hardness. The softest deposit was obtained with a bath pH of 1.5, a current density of 30 to 40 amperes/square foot, and with the anode-cathode area ratio in the range of 3:1 to 1:1

  8. pH and Protein Sensing with Functionalized Semiconducting Oxide Nanobelt FETs

    Science.gov (United States)

    Cheng, Yi; Yun, C. S.; Strouse, G. F.; Xiong, P.; Yang, R. S.; Wang, Z. L.

    2008-03-01

    We report solution pH sensing and selective protein detection with high-performance channel-limited field-effect transistors (FETs) based on single semiconducting oxide (ZnO and SnO2) nanobelts^1. The devices were integrated with PDMS microfluidic channels for analyte delivery and the source/drain contacts were passivated for in-solution sensing. pH sensing experiments were performed on FETs with functionalized and unmodified nanobelts. Functionalization of the nanobelts by APTES was found to greatly improve the pH sensitivity. The change in nanobelt conductance as functions of pH values at different gate voltages and ionic strengths showed high sensitivity and consistency. For the protein detection, we achieved highly selective biotinylation of the nanobelt channel with through APTES linkage. The specific binding of fluorescently-tagged streptavidin to the biotinylated nanobelt was verified by fluorescence microscopy; non-specific binding to the substrate was largely eliminated using PEG-silane passivation. The electrical responses of the biotinylated FETs to the streptavidin binding in PBS buffers of different pH values were systematically measured. The results will be presented and discussed. ^1Y. Cheng et al., Appl. Phys. Lett. 89, 093114 (2006). *Supported by NSF NIRT Grant ECS-0210332.

  9. Influence of pressing on the nanostructure and electrical properties of semiconducting polymer nanolayers

    International Nuclear Information System (INIS)

    Park, Jiho; Kim, Hwajeong; Kim, Youngkyoo

    2010-01-01

    In this work we attempted to change the nanostructure and electrical properties of semiconducting polymer nanolayers by employing a nano-pressing technique. The semiconducting polymer nanolayers, which consist of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C 61 (PCBM), were spin-coated on to a conducting polymer buffer layer coated on a transparent conducting oxide substrate. The coated P3HT:PCBM samples were precisely pressed using a nanopress system at 70 .deg. C. The nanostructures of the unpressed and the pressed P3HT:PCBM layers were investigated using a grazing incident angle X-ray diffraction (GIXD) system empowered by a synchrotron radiation source while the electrical properties of those samples were examined using a diode-type device. Results showed that the P3HT chain alignment was improved by pressing, accordingly, the device with the pressed layer exhibited enhanced charge transport characteristics.

  10. Three-Dimensional Porous Nitrogen-Doped NiO Nanostructures as Highly Sensitive NO2 Sensors

    Directory of Open Access Journals (Sweden)

    Van Hoang Luan

    2017-10-01

    Full Text Available Nickel oxide has been widely used in chemical sensing applications, because it has an excellent p-type semiconducting property with high chemical stability. Here, we present a novel technique of fabricating three-dimensional porous nitrogen-doped nickel oxide nanosheets as a highly sensitive NO2 sensor. The elaborate nanostructure was prepared by a simple and effective hydrothermal synthesis method. Subsequently, nitrogen doping was achieved by thermal treatment with ammonia gas. When the p-type dopant, i.e., nitrogen atoms, was introduced in the three-dimensional nanostructures, the nickel-oxide-nanosheet-based sensor showed considerable NO2 sensing ability with two-fold higher responsivity and sensitivity compared to non-doped nickel-oxide-based sensors.

  11. Ruddlesden-Popper compounds (SrO)(LaFeO3)n (n = 1 and 2) as p-type semiconductors for photocatalytic hydrogen production

    International Nuclear Information System (INIS)

    Chen, Hongmei; Sun, Xiaoqin; Xu, Xiaoxiang

    2017-01-01

    Graphical abstract: Two layered ferrites LaSrFeO 4 and La 2 SrFe 2 O 7 have been investigated which demonstrate interesting p-type semconductivity and efficient hydrogen production from water. Display Omitted -- Abstract: Here we report two Ruddlesden-Popper type ferrite perovskites (SrO)(LaFeO 3 ) n (n = 1 and 2) which demonstrate p-type semiconductivity. Their crystal structure, optical absorption and other physicochemical properties have been systematically explored. Our results show that both ferrites crystallize in tetragonal symmetry with structural lamination along c axis. Efficient photocatalytic hydrogen production has been achieved for both samples under full range and visible light illumination. Better performance is noticed for LaSrFeO 4 with apparent quantum efficiency approaches 0.31% and 0.19% under full range and visible light illumination, respectively. The p-type semiconductivity is verified by their cathodic photocurrent as well as negative Mott-Schottky slop during Photoelectrochemical measurement. The relative lower activity for La 2 SrFe 2 O 7 compared to LaSrFeO 4 is likely due to its higher defect concentration which facilitates charge recombination. Both compounds exhibit anisotropic phenomenon for charge migrations according to theoretical calculations. Their p-type semiconductivity, strong visible light absorption, chemical inertness and high abundance of constituent elements signify promising applications in the field of solar energy conversion and optoelectronics.

  12. The solubility and sorption of nickel and niobium under high pH conditions

    International Nuclear Information System (INIS)

    Pilkington, N.J.; Stone, N.S.

    1990-01-01

    The solubilities of nickel and niobium were measured in a range of cement-equilibrated waters. For nickel the effects of cellulose degradation products and of chloride were examined and the dependence of nickel solubility on pH was measured. The sorption of nickel and niobium on to cement representative of the ''near field'' of a radioactive waste repository was also measured. (author)

  13. Special features of nickel-molybdenum alloy electrodeposition onto screen-type cathodes

    International Nuclear Information System (INIS)

    Aleksandrova, G.S.; Varypaev, V.N.

    1982-01-01

    Electrolytic nickel-molybdenum alloy, which has a rather low hydrogen overpotential and high corrosion resistance, is of interest as cathode material in industrial electrolysis. Screen-type electrodes with a nickel-molybdenum coating can be used as nonconsumable cathodes in water-activated magnesium-alloy batteries

  14. Fabrication and Characterization of N-Type Zinc Oxide/P-Type Boron Doped Diamond Heterojunction

    Science.gov (United States)

    Marton, Marián; Mikolášek, Miroslav; Bruncko, Jaroslav; Novotný, Ivan; Ižák, Tibor; Vojs, Marian; Kozak, Halyna; Varga, Marián; Artemenko, Anna; Kromka, Alexander

    2015-09-01

    Diamond and ZnO are very promising wide-bandgap materials for electronic, photovoltaic and sensor applications because of their excellent electrical, optical, physical and electrochemical properties and biocompatibility. In this contribution we show that the combination of these two materials opens up the potential for fabrication of bipolar heterojunctions. Semiconducting boron doped diamond (BDD) thin films were grown on Si and UV grade silica glass substrates by HFCVD method with various boron concentration in the gas mixture. Doped zinc oxide (ZnO:Al, ZnO:Ge) thin layers were deposited by diode sputtering and pulsed lased deposition as the second semiconducting layer on the diamond films. The amount of dopants within the films was varied to obtain optimal semiconducting properties to form a bipolar p-n junction. Finally, different ZnO/BDD heterostructures were prepared and analyzed. Raman spectroscopy, SEM, Hall constant and I-V measurements were used to investigate the quality, structural and electrical properties of deposited heterostructures, respectively. I-V measurements of ZnO/BDD diodes show a rectifying ratio of 55 at ±4 V. We found that only very low dopant concentrations for both semiconducting materials enabled us to fabricate a functional p-n junction. Obtained results are promising for fabrication of optically transparent ZnO/BDD bipolar heterojunction.

  15. Oral nickel exposure may induce Type I hypersensitivity reaction in nickel-sensitized subjects.

    Science.gov (United States)

    Büyüköztürk, Suna; Gelincik, Aslı; Ünal, Derya; Demirtürk, Mustafa; Çelik, Dolay Damla; Erden, Sacide; Çolakoğlu, Bahattin; Erdem Kuruca, Serap

    2015-05-01

    Little is known about the clinical and immunological changes in the nickel allergic patients with systemic symptoms. We aimed to evaluate T helper cell responses of patients with different clinical presentations due to nickel. Patients having various allergic symptoms and positive patch test results to nickel and 20 controls underwent skin prick tests with nickel. IL-10, IL-4, IL-5 and IFN-gamma were measured in the culture supernatants of PBMC stimulated by nickel during lymphocyte proliferation test (LTT). 69 patients (56 female, mean age: 49.2 ± 13.1), 97% having nickel containing dental devices and 20 controls (8 female, mean age 34.9 ± 12.06) were evaluated. Skin prick tests with nickel were positive in 70% of the patients (pnickel. Nickel containing dental alloys and oral nickel intake seem to trigger systemic symptoms in previously nickel sensitized patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Anisotropic-Cyclicgraphene: A New Two-Dimensional Semiconducting Carbon Allotrope

    Directory of Open Access Journals (Sweden)

    Marcin Maździarz

    2018-03-01

    Full Text Available A potentially new, single-atom thick semiconducting 2D-graphene-like material, called Anisotropic-cyclicgraphene , has been generated by the two stage searching strategy linking molecular and ab initio approach. The candidate was derived from the evolutionary-based algorithm and molecular simulations was then profoundly analysed using first-principles density functional theory from the structural, mechanical, phonon, and electronic properties point of view. The proposed polymorph of graphene (rP16-P1m1 is mechanically, dynamically, and thermally stable and can achieve semiconducting with a direct band gap of 0.829 eV.

  17. A nanostructural study of Raney-type nickel catalysts

    NARCIS (Netherlands)

    Devred, F.

    2004-01-01

    Raney-type nickel catalysts have been applied in commercial hydrogenation reactions for decades. They are relatively cheap and have proven to be very efficient in hydrogenation. The preparation process is relatively simple, but it appears that many parameters have an influence on the performance of

  18. Intermetallic semiconducting films

    CERN Document Server

    Wieder, H H

    1970-01-01

    Intermetallic Semiconducting Films introduces the physics and technology of AшВv compound films. This material is a type of a polycrystalline semiconductor that is used for galvanomagnetic device applications. Such material has a high electron mobility that is ideal for generators and magnetoresistors. The book discusses the available references on the preparation and identification of the material. An assessment of its device applications and other possible use is also enumerated. The book describes the structures and physical parts of different films. A section of the book covers the three t

  19. The electrical, optical, structural and thermoelectrical characterization of n- and p-type cobalt-doped SnO2 transparent semiconducting films prepared by spray pyrolysis technique

    International Nuclear Information System (INIS)

    Bagheri-Mohagheghi, Mohammad-Mehdi; Shokooh-Saremi, Mehrdad

    2010-01-01

    The electrical, optical and structural properties of Cobalt (Co) doped SnO 2 transparent semiconducting thin films, deposited by the spray pyrolysis technique, have been studied. The SnO 2 :Co films, with different Co-content, were deposited on glass substrates using an aqueous-ethanol solution consisting of tin and cobalt chlorides. X-ray diffraction studies showed that the SnO 2 :Co films were polycrystalline only with tin oxide phases and preferential orientations along (1 1 0) and (2 1 1) planes and grain sizes in the range 19-82 nm. Optical transmittance spectra of the films showed high transparency ∼75-90% in the visible region, decreasing with increase in Co-doping. The optical absorption edge for undoped SnO 2 films was found to be 3.76 eV, while for higher Co-doped films shifted toward higher energies (shorter wavelengths) in the range 3.76-4.04 eV and then slowly decreased again to 4.03 eV. A change in sign of the Hall voltage and Seebeck coefficient was observed for a specific acceptor dopant level ∼11.4 at% in film and interpreted as a conversion from n-type to p-type conductivity. The thermoelectric electro-motive force (e.m.f.) of the films was measured in the temperature range 300-500 K and Seebeck coefficients were found in the range from -62 to +499 μVK -1 for various Co-doped SnO 2 films.

  20. The electrical, optical, structural and thermoelectrical characterization of n- and p-type cobalt-doped SnO 2 transparent semiconducting films prepared by spray pyrolysis technique

    Science.gov (United States)

    Bagheri-Mohagheghi, Mohammad-Mehdi; Shokooh-Saremi, Mehrdad

    2010-10-01

    The electrical, optical and structural properties of Cobalt (Co) doped SnO 2 transparent semiconducting thin films, deposited by the spray pyrolysis technique, have been studied. The SnO 2:Co films, with different Co-content, were deposited on glass substrates using an aqueous-ethanol solution consisting of tin and cobalt chlorides. X-ray diffraction studies showed that the SnO 2:Co films were polycrystalline only with tin oxide phases and preferential orientations along (1 1 0) and (2 1 1) planes and grain sizes in the range 19-82 nm. Optical transmittance spectra of the films showed high transparency ∼75-90% in the visible region, decreasing with increase in Co-doping. The optical absorption edge for undoped SnO 2 films was found to be 3.76 eV, while for higher Co-doped films shifted toward higher energies (shorter wavelengths) in the range 3.76-4.04 eV and then slowly decreased again to 4.03 eV. A change in sign of the Hall voltage and Seebeck coefficient was observed for a specific acceptor dopant level ∼11.4 at% in film and interpreted as a conversion from n-type to p-type conductivity. The thermoelectric electro-motive force (e.m.f.) of the films was measured in the temperature range 300-500 K and Seebeck coefficients were found in the range from -62 to +499 μVK -1 for various Co-doped SnO 2 films.

  1. Semiconducting icosahedral boron arsenide crystal growth for neutron detection

    Science.gov (United States)

    Whiteley, C. E.; Zhang, Y.; Gong, Y.; Bakalova, S.; Mayo, A.; Edgar, J. H.; Kuball, M.

    2011-03-01

    Semiconducting icosahedral boron arsenide, B12As2, is an excellent candidate for neutron detectors, thermoelectric converters, and radioisotope batteries, for which high quality single crystals are required. Thus, the present study was undertaken to grow B12As2 crystals by precipitation from metal solutions (nickel) saturated with elemental boron (or B12As2 powder) and arsenic in a sealed quartz ampoule. B12As2 crystals of 10-15 mm were produced when a homogeneous mixture of the three elements was held at 1150 °C for 48-72 h and slowly cooled (3.5 °C/h). The crystals varied in color and transparency from black and opaque to clear and transparent. X-ray topography (XRT), and elemental analysis by energy dispersive X-ray spectroscopy (EDS) confirmed that the crystals had the expected rhombohedral structure and chemical stoichiometry. The concentrations of residual impurities (nickel, carbon, etc.) were low, as measured by Raman spectroscopy and secondary ion mass spectrometry (SIMS). Additionally, low etch-pit densities (4.4×107 cm-2) were observed after etching in molten KOH at 500 °C. Thus, the flux growth method is viable for growing large, high-quality B12As2 crystals.

  2. Carbon deposition on nickel ferrites and nickel-magnetite surfaces

    International Nuclear Information System (INIS)

    Allen, G.C.; Jutson, J.A.

    1988-06-01

    Carbon deposition on Commercial Advanced Gas-Cooled Reactor (CAGR) fuel cladding and heat exchanger surfaces lowers heat transfer efficiency and increases fuel pin temperatures. Several types of deposit have been identified including both thin dense layers and also low density columnar deposits with filamentary or convoluted laminar structure. The low-density types are often associated with particles containing iron, nickel or manganese. To identify the role of nickel in the deposition process surfaces composed of nickel-iron spinels or metallic nickel/magnetite mixtures have been exposed to γ radiation in a gas environment simulating that in the reactor. Examination of these surfaces by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) have shown that while metallic nickel (Ni(O)) catalyses the formation of filamentary low density carbon deposits, the presence of divalent nickel (Ni(II)) sites in spinel type oxides is associated only with dense deposits. (author)

  3. Assembly of ordered carbon shells on semiconducting nanomaterials

    Science.gov (United States)

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2012-10-02

    In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.

  4. Pyrochlore type semiconducting ceramic oxides in Ca-Ce-Ti-M-O system (M = Nb or Ta)-Structure, microstructure and electrical properties

    International Nuclear Information System (INIS)

    Deepa, M.; Prabhakar Rao, P.; Radhakrishnan, A.N.; Sibi, K.S.; Koshy, Peter

    2009-01-01

    A new series of pyrochlore type ceramic semiconducting oxides in Ca-Ce-Ti-M-O (M = Nb or Ta) system has been synthesized by the conventional ceramic route. The electrical conductivity measurements show that these oxides exhibit semiconducting behavior and the conductivity increases with the Ce content in the compound. Activation energy of the current carriers is in the range of 0.5-1.6 eV. The electrical conductivity in these oxides is due to the presence of Ce 3+ , which remains in the reduced state without being oxidized to Ce 4+ by structural stabilization. The photoluminescence and X-ray photoelectron spectroscopy analysis corroborate the presence of Ce in the 3+ state. Impedance spectral analysis is carried out to evaluate the transport properties and indicates that the conduction in these compounds is mainly due to electronic contribution. The X-ray powder diffraction and Raman spectroscopy analysis establishes that these oxides belong to a cubic pyrochlore type structure.

  5. Pyrochlore type semiconducting ceramic oxides in Ca-Ce-Ti-M-O system (M = Nb or Ta)-Structure, microstructure and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Deepa, M. [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019 (India); Prabhakar Rao, P., E-mail: padala_rao@yahoo.com [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019 (India); Radhakrishnan, A.N.; Sibi, K.S.; Koshy, Peter [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019 (India)

    2009-07-01

    A new series of pyrochlore type ceramic semiconducting oxides in Ca-Ce-Ti-M-O (M = Nb or Ta) system has been synthesized by the conventional ceramic route. The electrical conductivity measurements show that these oxides exhibit semiconducting behavior and the conductivity increases with the Ce content in the compound. Activation energy of the current carriers is in the range of 0.5-1.6 eV. The electrical conductivity in these oxides is due to the presence of Ce{sup 3+}, which remains in the reduced state without being oxidized to Ce{sup 4+} by structural stabilization. The photoluminescence and X-ray photoelectron spectroscopy analysis corroborate the presence of Ce in the 3+ state. Impedance spectral analysis is carried out to evaluate the transport properties and indicates that the conduction in these compounds is mainly due to electronic contribution. The X-ray powder diffraction and Raman spectroscopy analysis establishes that these oxides belong to a cubic pyrochlore type structure.

  6. Electroless nickel plating on abs plastics from nickel chloride and nickel sulfate baths

    International Nuclear Information System (INIS)

    Inam-ul-haque; Ahmad, S.; Khan, A.

    2005-01-01

    Aqueous acid nickel chloride and alkaline nickel sulphate bath were studied for electroless nickel planting on acrylonitrile-butadiene-styrene (ABS) plastic. Before electroless nickel plating, specimens were etched, sensitized and activated. Effects of sodium hypophosphite and sodium citrate concentration on the electroless nickel plating thickness were discussed. Aqueous acid nickel chloride bath comprising, nickel chloride 10 g/L, sodium hypophosphite 40 g/L, sodium citrate 40g/L at pH 5.5, temperature 85 deg. C and density of 1 Be/ for thirty minutes gave best coating thickness in micrometer. It was found that acid nickel chloride bath had a greater stability, wide operating range and better coating thickness results than alkaline nickel sulphate bath. Acid nickel chloride bath gave better coating thickness than alkaline nickel sulfate bath

  7. Mechanical and wear properties of pre-alloyed molybdenum P/M steels with nickel addition

    Directory of Open Access Journals (Sweden)

    Yamanoglu R.

    2012-01-01

    Full Text Available The aim of this study is to understand the effect of nickel addition on mechanical and wear properties of molybdenum and copper alloyed P/M steel. Specimens with three different nickel contents were pressed under 400 MPa and sintered at 1120ºC for 30 minutes then rapidly cooled. Microstructures and mechanical properties (bending strength, hardness and wear properties of the sintered specimens were investigated in detail. Metallographical investigations showed that the microstructures of consolidated specimens consist of tempered martensite, bainite, retained austenite and pores. It is also reported that the amount of pores varies depending on the nickel concentration of the alloys. Hardness of the alloys increases with increasing nickel content. Specimens containing 2% nickel showed minimum pore quantity and maximum wear resistance. The wear mechanism changed from abrasive wear at low nickel content to adhesive wear at higher nickel content.

  8. An evaluation of two types of nickel-titanium wires in terms of micromorphology and nickel ions' release following oral environment exposure.

    Science.gov (United States)

    Ghazal, Abdul Razzak A; Hajeer, Mohammad Y; Al-Sabbagh, Rabab; Alghoraibi, Ibrahim; Aldiry, Ahmad

    2015-01-01

    This study aimed to compare superelastic and heat-activated nickel-titanium orthodontic wires' surface morphology and potential release of nickel ions following exposure to oral environment conditions. Twenty-four 20-mm-length distal cuts of superelastic (NiTi Force I®) and 24 20-mm-length distal cuts of heat-activated (Therma-Ti Lite®) nickel-titanium wires (American Orthodontics, Sheboygan, WI, USA) were divided into two equal groups: 12 wire segments left unused and 12 segments passively exposed to oral environment for 1 month. Scanning electron microscopy and atomic force microscopy were used to analyze surface morphology of the wires which were then immersed in artificial saliva for 1 month to determine potential nickel ions' release by means of atomic absorption spectrophotometer. Heat-activated nickel-titanium (NiTi) wires were rougher than superelastic wires, and both types of wires released almost the same amount of Ni ions. After clinical exposure, more surface roughness was recorded for superelastic NiTi wires and heat-activated NiTi wires. However, retrieved superelastic NiTi wires released less Ni ions in artificial saliva after clinical exposure, and the same result was recorded regarding heat-activated wires. Both types of NiTi wires were obviously affected by oral environment conditions; their surface roughness significantly increased while the amount of the released Ni ions significantly declined.

  9. A positron annihilation study of compensation defects responsible for conduction-type conversions in LEC-grown InP

    International Nuclear Information System (INIS)

    Shan, Y.Y.; Ling, C.C.; Fung, S.; Beling, C.D.; Zhao, Y.W.

    2001-01-01

    Positron annihilation techniques have been employed to investigate the formation of vacancy type of compensation defects in undoped LEC-grown InP. N-type InP becomes p-type semiconducting by short time annealing at 700 C, and then turns to be n-type again after further annealing but with a much higher resistivity. Positron lifetime measurements show that the positron average lifetime τ av increases to a high value of 247ps for the first n-type to p-type conversion and decreases to 240ps for the following p-type to n-type conversion. τ av increases slightly and saturates at 242ps upon further annealing. The results of positron annihilation Doppler-broadening measurements are consistent with the positron lifetime measurements. The correlation between the characteristics of positron annihilation and the conversions of conduction type indicates that the formation of vacancy type defects and the progressive variation of their concentrations during annealing are critical to the electrical properties of the bulk InP material. (orig.)

  10. [Torque resistance of three different types of nickel-titanium rotary instruments].

    Science.gov (United States)

    Sun, Wei; Hou, Ben-xiang

    2010-10-01

    To compare torsional fracture of three different types of nickel-titanium rotary instruments ProTaper, Hero642 and Mtwo by making a stimulate models in vitro. Through the establishment of model in vitro, compared the different time with 3 kinds of nickel titanium file in cutting-edge bound occurs, and to observe the section of fractured instruments by scanning electron microscope. The resistence to torque was different from three types of nickel titanium instruments. The time to fracture of Mtwo was significantly longer than ProTaper's and Hero642's, but ProTaper's and Hero642's had no significant difference. Three kinds cross-sectional design were different, a lot of toughness nests were seen in broken surface. Most of them were ductile fracture. Time to fracture was influenced by the quality disfigurement. The resistance to torque of Mtwo was better than ProTaper and Hero642. The lifespan was influenced by the design of cross-section. The quality disfigurement of the files reduced the resistance to flexual fatigue.

  11. Semiconducting states and transport in metallic armchair-edged graphene nanoribbons

    International Nuclear Information System (INIS)

    Chen Xiongwen; Wang Haiyan; Wan Haiqing; Zhou Guanghui; Song Kehui

    2011-01-01

    Based on the nonequilibrium Green's function method within the tight-binding approximation scheme, through a scanning tunneling microscopy (STM) model, we study the low-energy electronic states and transport properties of carbon chains in armchair-edged graphene nanoribbons (AGNRs). We show that semiconducting AGNRs possess only semiconducting chains, while metallic ones possess not only metallic chains but also unconventional semiconducting chains located at the 3jth (j≠0) column from the edge (the first chain) due to the vanishing of the metallic component in the electron wavefunction. The two types of states for carbon chains in a metallic AGNR system are demonstrated by different density of states and STM tunneling currents. Moreover, a similar phenomenon is predicted in the edge region of very wide AGNRs. However, there is remarkable difference in the tunneling current between narrow and wide ribbons.

  12. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  13. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells

    International Nuclear Information System (INIS)

    Adámik, Matej; Bažantová, Pavla; Navrátilová, Lucie; Polášková, Alena; Pečinka, Petr; Holaňová, Lucie; Tichý, Vlastimil; Brázdová, Marie

    2015-01-01

    Highlights: • DNA binding of p53 family core domains is inhibited by cadmium, cobalt and nickel. • Binding to DNA protects p53 family core domains from metal induced inhibition. • Cadmium, cobalt and nickel induced inhibition was reverted by EDTA in vitro. - Abstract: Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt, which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50 μM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA–protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA–p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed

  14. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells

    Energy Technology Data Exchange (ETDEWEB)

    Adámik, Matej [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Bažantová, Pavla [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 701 03 Ostrava (Czech Republic); Navrátilová, Lucie; Polášková, Alena [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Pečinka, Petr [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 701 03 Ostrava (Czech Republic); Holaňová, Lucie [Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého 1/3, 61242 Brno (Czech Republic); Tichý, Vlastimil [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Brázdová, Marie, E-mail: maruska@ibp.cz [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého 1/3, 61242 Brno (Czech Republic)

    2015-01-02

    Highlights: • DNA binding of p53 family core domains is inhibited by cadmium, cobalt and nickel. • Binding to DNA protects p53 family core domains from metal induced inhibition. • Cadmium, cobalt and nickel induced inhibition was reverted by EDTA in vitro. - Abstract: Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt, which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50 μM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA–protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA–p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed.

  15. Electrical Characterization of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide

    Science.gov (United States)

    Peterson, George Glenn

    Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon substrates through the use of plasma enhanced chemical vapor deposition (PECVD). Many forms of structural and electrical measurements and analysis have been performed on the p-n heterojunction devices as a function of both He+ ion and neutron irradiation including: transmission electron microscopy (TEM), selected area electron diffraction (SAED), current versus voltage I(V), capacitance versus voltage C(V), conductance versus frequency G(f), and charge carrier lifetime (tau). In stark contrast to nearly all other electronic devices, the electrical performance of these p-n heterojunction diodes improved with irradiation. This is most likely the result of bond defect passivation and resolution of degraded icosahedral based carborane structures (icosahedral molecules missing a B, C, or H atom(s)).

  16. Essential elucidation for preparation of supported nickel phosphide upon nickel phosphate precursor

    International Nuclear Information System (INIS)

    Liu, Xuguang; Xu, Lei; Zhang, Baoquan

    2014-01-01

    Preparation of supported nickel phosphide (Ni 2 P) depends on nickel phosphate precursor, generally related to its chemical composition and supports. Study of this dependence is essential and meaningful for the preparation of supported Ni 2 P with excellent catalytic activity. The chemical nature of nickel phosphate precursor is revealed by Raman and UV–vis spectra. It is found that initial P/Ni mole ratio ≥0.8 prohibits the Ni-O-Ni bridge bonding (i.e., nickel oxide). This chemical bonding will not result in Ni 2 P structure, verified by XRD characterization results. The alumina (namely, γ-Al 2 O 3 , θ-Al 2 O 3 , or α-Al 2 O 3 ) with distinct physiochemical properties also results in diverse chemical nature of nickel phosphate, and then different nickel phosphides. The influence of alumina support on producing Ni 2 P was explained by the theory of surface energy heterogeneity, calculated by the NLDFT method based on N 2 -sorption isotherm. The uniform surface energy of α-Al 2 O 3 results only in the nickel phosphosate precursor and thus the Ni 2 P phase. - Graphical abstract: Surface energy heterogeneity in alumina (namely α-Al 2 O 3 , θ-Al 2 O 3 , and γ-Al 2 O 3 ) supported multi-oxidic precursors with different reducibilities and thus diverse nickel phosphides (i.e., Ni 3 P, Ni 12 P 5 , Ni 2 P). - Highlights: • Preparing pure Ni 2 P. • Elucidating nickel phosphate precursor. • Associating with surface energy

  17. Communication between the Zinc and Nickel Sites in Dimeric HypA: Metal Recognition and pH Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, R.; Perovic, I; Martin-Diaconescu, V; O’Brien, K; Chivers, P; Sondej Pochapsky, S; Pochapsky, T; Maroney, M

    2010-01-01

    Helicobacter pylori, a pathogen that colonizes the human stomach, requires the nickel-containing metalloenzymes urease and NiFe-hydrogenase to survive this low pH environment. The maturation of both enzymes depends on the metallochaperone, HypA. HypA contains two metal sites, an intrinsic zinc site and a low-affinity nickel binding site. X-ray absorption spectroscopy (XAS) shows that the structure of the intrinsic zinc site of HypA is dynamic and able to sense both nickel loading and pH changes. At pH 6.3, an internal pH that occurs during acid shock, the zinc site undergoes unprecedented ligand substitutions to convert from a Zn(Cys){sub 4} site to a Zn(His){sub 2}(Cys){sub 2} site. NMR spectroscopy shows that binding of Ni(II) to HypA results in paramagnetic broadening of resonances near the N-terminus. NOEs between the {beta}-CH{sub 2} protons of Zn cysteinyl ligands are consistent with a strand-swapped HypA dimer. Addition of nickel causes resonances from the zinc binding motif and other regions to double, indicating more than one conformation can exist in solution. Although the structure of the high-spin, 5-6 coordinate Ni(II) site is relatively unaffected by pH, the nickel binding stoichiometry is decreased from one per monomer to one per dimer at pH = 6.3. Mutation of any cysteine residue in the zinc binding motif results in a zinc site structure similar to that found for holo-WT-HypA at low pH and is unperturbed by the addition of nickel. Mutation of the histidines that flank the CXXC motifs results in a zinc site structure that is similar to holo-WT-HypA at neutral pH (Zn(Cys){sub 4}) and is no longer responsive to nickel binding or pH changes. Using an in vitro urease activity assay, it is shown that the recombinant protein is sufficient for recovery of urease activity in cell lysate from a HypA deletion mutant, and that mutations in the zinc-binding motif result in a decrease in recovered urease activity. The results are interpreted in terms of a model

  18. Communication between the Zinc and Nickel Sites in Dimeric HypA: Metal Recognition and pH Sensing

    International Nuclear Information System (INIS)

    Herbst, R.; Perovic, I.; Martin-Diaconescu, V.; O'Brien, K.; Chivers, P.; Sondej Pochapsky, S.; Pochapsky, T.; Maroney, M.

    2010-01-01

    Helicobacter pylori, a pathogen that colonizes the human stomach, requires the nickel-containing metalloenzymes urease and NiFe-hydrogenase to survive this low pH environment. The maturation of both enzymes depends on the metallochaperone, HypA. HypA contains two metal sites, an intrinsic zinc site and a low-affinity nickel binding site. X-ray absorption spectroscopy (XAS) shows that the structure of the intrinsic zinc site of HypA is dynamic and able to sense both nickel loading and pH changes. At pH 6.3, an internal pH that occurs during acid shock, the zinc site undergoes unprecedented ligand substitutions to convert from a Zn(Cys) 4 site to a Zn(His) 2 (Cys) 2 site. NMR spectroscopy shows that binding of Ni(II) to HypA results in paramagnetic broadening of resonances near the N-terminus. NOEs between the β-CH 2 protons of Zn cysteinyl ligands are consistent with a strand-swapped HypA dimer. Addition of nickel causes resonances from the zinc binding motif and other regions to double, indicating more than one conformation can exist in solution. Although the structure of the high-spin, 5-6 coordinate Ni(II) site is relatively unaffected by pH, the nickel binding stoichiometry is decreased from one per monomer to one per dimer at pH = 6.3. Mutation of any cysteine residue in the zinc binding motif results in a zinc site structure similar to that found for holo-WT-HypA at low pH and is unperturbed by the addition of nickel. Mutation of the histidines that flank the CXXC motifs results in a zinc site structure that is similar to holo-WT-HypA at neutral pH (Zn(Cys) 4 ) and is no longer responsive to nickel binding or pH changes. Using an in vitro urease activity assay, it is shown that the recombinant protein is sufficient for recovery of urease activity in cell lysate from a HypA deletion mutant, and that mutations in the zinc-binding motif result in a decrease in recovered urease activity. The results are interpreted in terms of a model wherein HypA controls the

  19. Synthesis of Nickel and Nickel Hydroxide Nanopowders by Simplified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Jeerapan Tientong

    2014-01-01

    Full Text Available Nickel nanopowders were synthesized by a chemical reduction of nickel ions with hydrazine hydrate at pH ~12.5. Sonication of the solutions created a temperature of 54–65°C to activate the reduction reaction of nickel nanoparticles. The solution pH affected the composition of the resulting nanoparticles. Nickel hydroxide nanoparticles were formed from an alkaline solution (pH~10 of nickel-hydrazine complexed by dropwise titration. X-ray diffraction of the powder and the analysis of the resulting Williamson-Hall plots revealed that the particle size of the powders ranged from 12 to 14 nm. Addition of polyvinylpyrrolidone into the synthesis decreased the nickel nanoparticle size to approximately 7 nm. Dynamic light scattering and scanning electron microscopy confirmed that the particles were in the nanometer range. The structure of the synthesized nickel and nickel hydroxide nanoparticles was identified by X-ray diffraction and Fourier transform infrared spectroscopy.

  20. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.

    Science.gov (United States)

    Shi, Weidong; Song, Shuyan; Zhang, Hongjie

    2013-07-07

    Because of their unique chemical and physical properties, inorganic semiconducting nanostructures have gradually played a pivotal role in a variety of research fields, including electronics, chemical reactivity, energy conversion, and optics. A major feature of these nanostructures is the quantum confinement effect, which strongly depends on their size, shape, crystal structure and polydispersity. Among all developed synthetic methods, the hydrothermal method based on a water system has attracted more and more attention because of its outstanding advantages, such as high yield, simple manipulation, easy control, uniform products, lower air pollution, low energy consumption and so on. Precise control over the hydrothermal synthetic conditions is a key to the success of the preparation of high-quality inorganic semiconducting nanostructures. In this review, only the representative hydrothermal synthetic strategies of inorganic semiconducting nanostructures are selected and discussed. We will introduce the four types of strategies based on exterior reaction system adjustment, namely organic additive- and template-free hydrothermal synthesis, organic additive-assisted hydrothermal synthesis, template-assisted hydrothermal synthesis and substrate-assisted hydrothermal synthesis. In addition, the two strategies based on exterior reaction environment adjustment, including microwave-assisted and magnetic field-assisted hydrothermal synthesis, will be also described. Finally, we conclude and give the future prospects of this research area.

  1. Development and electrochemical characterization of Ni‐P coated tungsten incorporated electroless nickel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shibli, S.M.A., E-mail: smashibli@yahoo.com; Chinchu, K.S.

    2016-08-01

    Ni‐P-W alloy and composite coatings were prepared by incorporation of sodium tungstate/tungsten and Ni‐P coated tungsten into electroless nickel bath respectively. Good inter-particle interactions among the depositing elements i.e. Ni and P with the incorporating tungsten particles were achieved by means of pre-coated tungsten particle by electroless nickel covering prior to its addition into the electroless bath. The pre-coated tungsten particles got incorporated uniformly into the Ni-P matrix of the coating. The particles and the coatings were characterized at different stages by different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The electroless Ni-P coating incorporated with pre-coated tungsten exhibited considerably high hardness, thickness and deposition rate. The performance and corrosion resistance characteristics of the composite coating incorporated with the nickel coated tungsten were found to be superior over other conventional Ni-P-W ternary alloy coatings currently reported. - Highlights: • An amorphous Ni-P coating was effectively formed on tungsten particles. • Electroless ternary Ni-P-W composite coatings were successfully prepared. • Enhancement in the inter-particle interaction in the Ni-P composite matrix was achieved. • Efficient and uniform incorporation of the composite in the internal layer was evident. • The tungsten incorporated coating possessed effective barrier protection.

  2. Prevalence of nickel allergy in Europe following the EU Nickel Directive - a review

    DEFF Research Database (Denmark)

    Ahlström, Malin G; Thyssen, Jacob P; Menné, Torkil

    2017-01-01

    .4% versus 19.8%) (p = 0.02), in female dermatitis patients aged ≤17 years (14.3% versus 29.2%) (p women: 20.2% versus 36.6%) (p men: 4.9% versus 6.6%) (p ..., and generally remained high, affecting 8-18% of the general population. A consistent pattern of decreasing prevalence of nickel allergy in some EU countries was observed, although the prevalence among young women remains high. Steps should be taken for better prevention of nickel allergy in EU countries.......Nickel contact allergy remains a problem in EU countries, despite the EU Nickel Directive. To study the prevalence of nickel allergy in EU countries following the implementation of the EU Nickel Directive, we performed a systematic search in PubMed for studies that examined the prevalence of nickel...

  3. Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers

    DEFF Research Database (Denmark)

    Müller, C.; Goffri, S.; Breiby, Dag Werner

    2007-01-01

    Semiconducting diblock copolymers of polyethylene (PE) and regioregular poly(3-hexylthiophene) (P3HT) are demonstrated to exhibit a rich phase behaviour, judicious use of which permitted us to fabricate field-effect transistors that show saturated charge carrier mobilities, mu(FET), as high as 2 x...

  4. Development of N- and P- Types of Semiconducting Polymers

    Science.gov (United States)

    2015-03-05

    type, oligomeric donor monomers with fused thienobenzothiophene structures. These monomers are copolymerized with fluorinated thieno[3,4- b]thiophene...copolymerized with fluorinated thieno[3,4- b]thiophene ester to form a series of polymers which were investigated as donor materials in polymer/fullerene...effective but somewhat toxic drug, significantly lowered the dose of colistin required for killing bacteria and thus increased its safety. These

  5. The electrical properties of semiconducting vanadium phosphate glasses

    International Nuclear Information System (INIS)

    Moridi, G.R.; Hogarth, C.A.; Hekmat Shooar, N.H.

    1984-01-01

    Vanadium phosphate glasses are a group of oxide glasses which show the semiconducting behaviour. In contrast to the conventional glasses, the conduction mechanism in these glasses is electronic, rather than being ionic. Since 1954, when the first paper appeared on the semiconducting properties of these glasses, much work has been carried out on transition-metal-oxide glasses in general, and vanadium phosphate glasses in particular. The mechanism of conduction is basicaly due to the transport of electrons between the transition-metal ions in different valency states. In the present paper, we have reviewed the previous works on the electrical characteristics of P 2 O 5 -V 2 O 5 glasses and also discussed the current theoretical ideas relevant for the interpretation of the experimental data

  6. Binary Oxide p-n Heterojunction Piezoelectric Nanogenerators with an Electrochemically Deposited High p-Type Cu2O Layer.

    Science.gov (United States)

    Baek, Seung Ki; Kwak, Sung Soo; Kim, Joo Sung; Kim, Sang Woo; Cho, Hyung Koun

    2016-08-31

    The high performance of ZnO-based piezoelectric nanogenerators (NGs) has been limited due to the potential screening from intrinsic electron carriers in ZnO. We have demonstrated a novel approach to greatly improve piezoelectric power generation by electrodepositing a high-quality p-type Cu2O layer between the piezoelectric semiconducting film and the metal electrode. The p-n heterojunction using only oxides suppresses the screening effect by forming an intrinsic depletion region, and thus sufficiently enhances the piezoelectric potential, compared to the pristine ZnO piezoelectric NG. Interestingly, a Sb-doped Cu2O layer has high mobility and low surface trap states. Thus, this doped layer is an attractive p-type material to significantly improve piezoelectric performance. Our results revealed that p-n junction NGs consisting of Au/ZnO/Cu2O/indium tin oxide with a Cu2O:Sb (cuprous oxide with a small amount of antimony) layer of sufficient thickness (3 μm) exhibit an extraordinarily high piezoelectric potential of 0.9 V and a maximum output current density of 3.1 μA/cm(2).

  7. Nickel accumulation by Hybanthus floribundus

    Energy Technology Data Exchange (ETDEWEB)

    Severne, B C

    1974-04-26

    Several ecotypes of Hybanthus floribundus are found across the southern part of Australia. However, the three nickel accumulating ecotypes are restricted to a broad belt in Western Australia. Nickel concentrations in this shrub were observed to decrease southwards (from 8000 to 1000 p.p.m.) as the annual rainfall increased from 7 inches to more than 30 inches. Studies have shown that nickel concentrations increase from the roots through the rootstock, into the stems and reach maximum towards the leaf tips. High nickel concentrations are also seen in seed capsules (1500 p.p.m.), seeds (2000 p.p.m.) and flowers. The maximum nickel concentration recorded is 1.6% (26% nickel in ash) in mature leaf tissue. 16 references, 2 tables.

  8. Interconnected Ni_2P nanorods grown on nickel foam for binder free lithium ion batteries

    International Nuclear Information System (INIS)

    Li, Qin; Ma, Jingjing; Wang, Huijun; Yang, Xia; Yuan, Ruo; Chai, Yaqin

    2016-01-01

    Herein, we report a moderate and simple approach to synthesize nickel phosphide nanorods on nickel foam (Ni_2P/NF), which was employed as anode material for lithium ion batteries (LIBs). In this paper, interconnected Ni_2P nanorods were fabricated through hydrothermal treatment of NF and subsequently by high temperature phosphating. NF is not only regarded as nickel source and metal current collector, but also as a support to grow electro-active material (Ni_2P). Therefore, Ni_2P/NF could act as a self-supported working electrode for LIBs without any extra addition of cohesive binders. Moreover, benefiting from the conductive capacity of Ni_2P/NF, the active compound behaved superior lithium storage performance and cycling reversibility during electrochemical cycling process. The Ni_2P/NF delivered excellent reversibility of 507 mAh g"−"1 at the current density of 50 mA g"−"1 after 100 cycles. This work may provide a potential method for preparation of metal phosphides as promising materials for LIBs, hydrogen evolution reaction (HER) or other fields.

  9. Semiconducting III-V compounds

    CERN Document Server

    Hilsum, C; Henisch, Heinz R

    1961-01-01

    Semiconducting III-V Compounds deals with the properties of III-V compounds as a family of semiconducting crystals and relates these compounds to the monatomic semiconductors silicon and germanium. Emphasis is placed on physical processes that are peculiar to III-V compounds, particularly those that combine boron, aluminum, gallium, and indium with phosphorus, arsenic, and antimony (for example, indium antimonide, indium arsenide, gallium antimonide, and gallium arsenide).Comprised of eight chapters, this book begins with an assessment of the crystal structure and binding of III-V compounds, f

  10. Nickel concentrations in fingernails as a measure of occupational exposure to nickel

    DEFF Research Database (Denmark)

    Peters, K; Gammelgaard, Bente; Menné, T

    1991-01-01

    in nails (p less than 0.001). The difference between the 2 levels was also significant (p less than 0.001). No correlation between the nickel concentration in fingernails and the duration of exposure could be demonstrated. It was concluded that the higher the nickel level in the fingernails, the greater...... is the possibility that the person is occupationally exposed to nickel. Nail analysis is suggested as a measure of occupational exposure to nickel.......The nickel concentration in fingernails from 2 groups of people occupationally exposed to nickel was determined. In one group, comprising 83 persons moderately exposed to nickel, the mean +/- standard deviation (SD) was 29.2 micrograms/g +/- 56.7 micrograms/g and the median 13.8 micrograms/g (range...

  11. Intrinsic gettering of nickel impuriy deep levels in silicon substrate ...

    African Journals Online (AJOL)

    The intrinsic gettering of nickel impurity in p-type silicon substrate has been investigated. The density of electrically active nickel in intentionally contaminated silicon was determined before and after oxygen precipitation by means of resistivity measurements. These data, coupled with minority carrier lifetime and infrared ...

  12. Anomalous X-ray scattering studies on semiconducting and metallic glasses

    International Nuclear Information System (INIS)

    Hosokawa, S.; Pilgrim, W.C.; Berar, J.F.; Kohara, S.

    2012-01-01

    In order to explore local- and intermediate-range atomic structures of several semiconducting and metallic glasses, anomalous X-ray scattering (AXS) experiments were performed using an improved detecting system suitable for third-generation synchrotron radiation facilities, and the obtained data were analyzed using reverse Monte Carlo (RMC) modelling to obtain partial structure factors and to construct three-dimensional atomic configurations of these glasses. Examples of GeSe 2 semiconducting and Pd 40 Ni 40 P 20 metallic glasses are demonstrated to exhibit the feasibility of the combination of AXS and RMC techniques. Importance of an additional combination with neutron scattering is also described for alloys containing light elements. (authors)

  13. Electrolytic Recovery of Nickel from Spent Electroless Nickel Bath Solution

    Directory of Open Access Journals (Sweden)

    R. Idhayachander

    2010-01-01

    Full Text Available Plating industry is one of the largest polluting small scale industries and nickel plating is among the important surface finishing process in this industry. The waste generated during this operation contains toxic nickel. Nickel removal and recovery is of great interest from spent bath for environmental and economic reasons. Spent electroless nickel solution from a reed relay switch manufacturing industry situated in Chennai was taken for electrolytic recovery of nickel. Electrolytic experiment was carried out with mild steel and gold coated mild steel as cathode and the different parameters such as current density, time, mixing and pH of the solution were varied and recovery and current efficiency was studied. It was noticed that there was an increase in current efficiency up to 5 A/dm2 and after that it declines. There is no significant improvement with mixing but with modified cathode there was some improvement. Removal of nickel from the spent electroless nickel bath was 81.81% at 5 A/dm2 and pH 4.23. Under this condition, the content of nickel was reduced to 0.94 g/L from 5.16 g/L. with 62.97% current efficiency.

  14. Analysis of nickel-base alloys by Grimm-type glow discharge emission and x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Ferreira, N.P.; Strauss, J.A.; Van Maarseveen, I.; Ivanfy, A.B.

    1985-01-01

    Nickel-base alloys can be analysed as satisfactorily as steels by XRF as well as by the Grimm-type source, in spite of problems caused by element combinations, spectral line overlap and the influence of the structure and heat conduction properties on sputtering in the glow discharge source. This extended abstract briefly discusses the use of Grimm-type glow discharge emission and XRF as techniques for the analysis of nickel-base alloys

  15. P-type Oxide Semiconductors for Transparent & Energy Efficient Electronics

    KAUST Repository

    Wang, Zhenwei

    2018-03-11

    Emerging transparent semiconducting oxide (TSO) materials have achieved their initial commercial success in the display industry. Due to the advanced electrical performance, TSOs have been adopted either to improve the performance of traditional displays or to demonstrate the novel transparent and flexible displays. However, due to the lack of feasible p-type TSOs, the applications of TSOs is limited to unipolar (n-type TSOs) based devices. Compared with the prosperous n-type TSOs, the performance of p-type counterparts is lag behind. However, after years of discovery, several p-type TSOs are confirmed with promising performance, for example, tin monoxide (SnO). By using p-type SnO, excellent transistor field-effect mobility of 6.7 cm2 V-1 s-1 has been achieved. Motivated by this encouraging performance, this dissertation is devoted to further evaluate the feasibility of integrating p-type SnO in p-n junctions and complementary metal oxide semiconductor (CMOS) devices. CMOS inverters are fabricated using p-type SnO and in-situ formed n-type tin dioxide (SnO2). The semiconductors are simultaneously sputtered, which simplifies the process of CMOS inverters. The in-situ formation of SnO2 phase is achieved by selectively sputtering additional capping layer, which serves as oxygen source and helps to balance the process temperature for both types of semiconductors. Oxides based p-n junctions are demonstrated between p-type SnO and n-type SnO2 by magnetron sputtering method. Diode operating ideality factor of 3.4 and rectification ratio of 103 are achieved. A large temperature induced knee voltage shift of 20 mV oC-1 is observed, and explained by the large band gap and shallow states in SnO, which allows minor adjustment of band structure in response to the temperature change. Finally, p-type SnO is used to demonstrating the hybrid van der Waals heterojunctions (vdWHs) with two-dimensional molybdenum disulfide (2D MoS2) by mechanical exfoliation. The hybrid vdWHs show

  16. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei

    2016-02-16

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  17. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei; Nayak, Pradipta K.; Caraveo-Frescas, Jesus Alfonso; Alshareef, Husam N.

    2016-01-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  18. Electronic and elastic properties of new semiconducting oP12-type RuB2 and OsB2

    International Nuclear Information System (INIS)

    Hao Xianfeng; Xu Yuanhui; Gao Faming

    2011-01-01

    Using first-principles total energy calculations we investigate the structural, elastic and electronic properties of new hypothetical oP 12 -type phase RuB 2 and OsB 2 . The calculations indicate that the oP 12 -type phase RuB 2 and OsB 2 are thermodynamically and mechanically stable. Remarkably, the new phases RuB 2 and OsB 2 are predicted to be semiconductors, and the appearance of band gaps is ascribed to the enhanced B-B covalent hybridization. Compared to metallic oP 6 -type RuB 2 and OsB 2 phases, the new phases possess similar mechanical properties and hardness. The combination of the probability of tunable electronic properties, strong stiffness and high hardness make RuB 2 and OsB 2 attractive and interesting for advanced applications.

  19. Electronic and elastic properties of new semiconducting oP(12)-type RuB(2) and OsB(2).

    Science.gov (United States)

    Hao, Xianfeng; Xu, Yuanhui; Gao, Faming

    2011-03-30

    Using first-principles total energy calculations we investigate the structural, elastic and electronic properties of new hypothetical oP(12)-type phase RuB(2) and OsB(2). The calculations indicate that the oP(12)-type phase RuB(2) and OsB(2) are thermodynamically and mechanically stable. Remarkably, the new phases RuB(2) and OsB(2) are predicted to be semiconductors, and the appearance of band gaps is ascribed to the enhanced B-B covalent hybridization. Compared to metallic oP(6)-type RuB(2) and OsB(2) phases, the new phases possess similar mechanical properties and hardness. The combination of the probability of tunable electronic properties, strong stiffness and high hardness make RuB(2) and OsB(2) attractive and interesting for advanced applications. © 2011 IOP Publishing Ltd

  20. Influence of Bath Composition at Acidic pH on Electrodeposition of Nickel-Layered Silicate Nanocomposites for Corrosion Protection

    Directory of Open Access Journals (Sweden)

    Jeerapan Tientong

    2013-01-01

    Full Text Available Nickel-layered silicates were electrochemically deposited from acidic bath solutions. Citrate was used as a ligand to stabilize nickel (II ions in the plating solution. The silicate, montmorillonite, was exfoliated by stirring in aqueous solution over 24 hours. The plating solutions were analyzed for zeta-potential, particle size, viscosity, and conductivity to investigate the effects of the composition at various pHs. The solution particles at pH 2.5 (−22.2 mV and pH 3.0 (−21.9 mV were more stable than at pH 1.6 (−10.1 mV as shown by zeta-potential analysis of the nickel-citrate-montmorillonite plating solution. Ecorr for the films ranged from −0.32 to −0.39 V with varying pH from 1.6 to 3.0. The films were immersed in 3.5% NaCl and the open circuit potential monitored for one month. The coatings deposited at pH 3.0 were stable 13 days longer in the salt solution than the other coatings. X-ray diffraction showed a change in the (111/(200 ratio for the coatings at the various pHs. The scanning electron microscopy and hardness results also support that the electrodeposition of nickel-montmorillonite at pH 3.0 (234 GPa had improved hardness and morphology compared to pH 2.5 (174 GPa and pH 1.6 (147 GPa.

  1. Comparative evaluation of nickel discharge from brackets in artificial saliva at different time intervals.

    Science.gov (United States)

    Jithesh, C; Venkataramana, V; Penumatsa, Narendravarma; Reddy, S N; Poornima, K Y; Rajasigamani, K

    2015-08-01

    To determine and compare the potential difference of nickel release from three different orthodontic brackets, in different artificial pH, in different time intervals. Twenty-seven samples of three different orthodontic brackets were selected and grouped as 1, 2, and 3. Each group was divided into three subgroups depending on the type of orthodontic brackets, salivary pH and the time interval. The Nickel release from each subgroup were analyzed by using inductively coupled plasma-Atomic Emission Spectrophotometer (Perkin Elmer, Optima 2100 DV, USA) model. Quantitative analysis of nickel was performed three times, and the mean value was used as result. ANOVA (F-test) was used to test the significant difference among the groups at 0.05 level of significance (P brackets have the highest at all 4.2 pH except in 120 h. The study result shows that the nickel release from the recycled stainless steel brackets is highest. Metal slot ceramic bracket release significantly less nickel. So, recycled stainless steel brackets should not be used for nickel allergic patients. Metal slot ceramic brackets are advisable.

  2. Evaluation of cyclic flexural fatigue of M-wire nickel-titanium rotary instruments.

    Science.gov (United States)

    Al-Hadlaq, Solaiman M S; Aljarbou, Fahad A; AlThumairy, Riyadh I

    2010-02-01

    This study was conducted to investigate cyclic flexural fatigue resistance of GT series X rotary files made from the newly developed M-wire nickel-titanium alloy compared with GT and Profile nickel-titanium files made from a conventional nickel-titanium alloy. Fifteen files, size 30/0.04, of each type were used to evaluate the cyclic flexural fatigue resistance. A simple device was specifically constructed to measure the time each file type required to fail under cyclic flexural fatigue testing. The results of this experiment indicated that the GT series X files had superior cyclic flexural fatigue resistance than the other 2 file types made from a conventional nickel-titanium alloy (P = .004). On the other hand, the difference between the Profile and the GT files was not statistically significant. The findings of this study suggest that size 30/0.04 nickel-titanium rotary files made from the newly developed M-wire alloy have better cyclic flexural fatigue resistance than files of similar design and size made from the conventional nickel-titanium alloy. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Synthesis of Nickel-Encapsulated Carbon Nanocapsules and Cup-Stacked-Type Carbon Nanotubes via Nickel-Doped Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Tokushi Kizuka

    2012-01-01

    Full Text Available Nickel- (Ni doped C60 nanowhiskers (NWs were synthesized by a liquid-liquid interfacial precipitation method using a C60-saturated toluene solution and isopropanol with Ni nitrate hexahydrate Ni(NO32·6H2O. By varying the heating temperature of Ni-doped C60 NWs, two types of one-dimensional carbon nanostructures were produced. By heating the NWs at 973 and 1173 K, carbon nanocapsules (CNCs that encapsulated Ni nanoparticles were produced. The Ni-encapsulated CNCs joined one dimensionally to form chain structures. Upon heating the NWs to 1373 K, cup-stacked-type carbon nanotubes were synthesized.

  4. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; Hale, William G.; Wang, Hsinping; Zhou, Xinghao; Plymale, Noah T.; Omelchenko, Stefan T.; He, Jr-Hau; Papadantonakis, Kimberly M.; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide

  5. Structural Basis of Low-Affinity Nickel Binding to the Nickel-Responsive Transcription Factor NikR from Escherichia coli

    International Nuclear Information System (INIS)

    Phillips, C.; Schreiter, E.; Stultz, C.; Drennan, C.

    2010-01-01

    Escherichia coli NikR regulates cellular nickel uptake by binding to the nik operon in the presence of nickel and blocking transcription of genes encoding the nickel uptake transporter. NikR has two binding affinities for the nik operon: a nanomolar dissociation constant with stoichiometric nickel and a picomolar dissociation constant with excess nickel (Bloom, S. L., and Zamble, D. B. (2004) Biochemistry 43, 10029-10038; Chivers, P. T., and Sauer, R. T. (2002) Chem. Biol. 9, 1141-1148). While it is known that the stoichiometric nickel ions bind at the NikR tetrameric interface (Schreiter, E. R., et al. (2003) Nat. Struct. Biol. 10, 794-799; Schreiter, E. R., et al. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 13676-13681), the binding sites for excess nickel ions have not been fully described. Here we have determined the crystal structure of NikR in the presence of excess nickel to 2.6 (angstrom) resolution and have obtained nickel anomalous data (1.4845 (angstrom)) in the presence of excess nickel for both NikR alone and NikR cocrystallized with a 30-nucleotide piece of double-stranded DNA containing the nik operon. These anomalous data show that excess nickel ions do not bind to a single location on NikR but instead reveal a total of 22 possible low-affinity nickel sites on the NikR tetramer. These sites, for which there are six different types, are all on the surface of NikR, and most are found in both the NikR alone and NikR-DNA structures. Using a combination of crystallographic data and molecular dynamics simulations, the nickel sites can be described as preferring octahedral geometry, utilizing one to three protein ligands (typically histidine) and at least two water molecules.

  6. Effects of repeated skin exposure to low nickel concentrations

    DEFF Research Database (Denmark)

    Nielsen, N H; Menné, T; Kristiansen, J

    1999-01-01

    and nickel allergy, either on normal or on SLS-treated forearm skin. The present study strongly suggests that the changes observed were specific to nickel exposure. Standardized methods to assess trace to moderate nickel exposure on the hands, and the associated effects in nickel-sensitized subjects......We studied the effects of repeated daily exposure to low nickel concentrations on the hands of patients with hand eczema and nickel allergy. The concentrations used were chosen to represent the range of trace to moderate occupational nickel exposure. The study was double-blinded and placebo...... controlled. Patients immersed a finger for 10 min daily into a 10-p.p.m. nickel concentration in water for the first week, and during the second week into a 100-p.p.m. nickel concentration. This regimen significantly increased (P = 0.05) local vesicle formation and blood flow (P = 0.03) as compared...

  7. Biosorption of nickel with barley straw.

    Science.gov (United States)

    Thevannan, Ayyasamy; Mungroo, Rubeena; Niu, Catherine Hui

    2010-03-01

    Wastewater containing nickel sulphate generated from a nickel plating industry is of great concern. In the present work, biosorption of nickel by barley straw from nickel sulphate solution was investigated. Nickel uptake at room temperature (23+/-0.5 degrees C) was very sensitive to solution pH, showing a better uptake value at a pH of 4.85+/-0.10 among the tested values. The nickel biosorption isotherm fitted well the Langmuir equation. When the ionic strength (IS) of the solution was increased from less than 0.02-0.6M, nickel uptake was reduced to 12% of that obtained at IS of less than 0.02 M. Barley straw showed a higher nickel uptake (0.61 mmol/g) than acid washed crab shells (0.04 mmol/g), demonstrating its potential as an adsorbent for removal of nickel. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  8. Separation and Precipitation of Nickel from Acidic Sulfate Leaching Solution of Molybdenum-Nickel Black Shale by Potassium Nickel Sulfate Hexahydrate Crystallization

    Science.gov (United States)

    Deng, Zhigan; Wei, Chang; Fan, Gang; Li, Xingbin; Li, Minting; Li, Cunxiong

    2018-02-01

    Nickel was separated and precipitated with potassium nickel sulfate hexahydrate [K2Ni(SO4)2·6H2O] from acidic sulfate solution, a leach solution from molybdenum-nickel black shale. The effects of the potassium sulfate (K2SO4) concentration, crystallization temperature, solution pH, and crystallization time on nickel(II) recovery and iron(III) precipitation were investigated, revealing that nickel and iron were separated effectively. The optimum parameters were K2SO4 concentration of 200 g/L, crystallization temperature of 10°C, solution pH of 0.5, and crystallization time of 24 h. Under these conditions, 97.6% nickel(II) was recovered as K2Ni(SO4)2·6H2O crystals while only 2.0% of the total iron(III) was precipitated. After recrystallization, 98.4% pure K2Ni(SO4)2·6H2O crystals were obtained in the solids. The mother liquor was purified by hydrolysis-precipitation followed by cooling, and more than 99.0% K2SO4 could be crystallized. A process flowsheet was developed to separate iron(III) and nickel(II) from acidic-sulfate solution.

  9. Controlled p-type to n-type conductivity transformation in NiO thin films by ultraviolet-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Pranav; Dutta, Titas; Mal, Siddhartha; Narayan, Jagdish [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606 (United States)

    2012-01-01

    We report the systematic changes in structural, electrical, and optical properties of NiO thin films on c-sapphire introduced by nanosecond ultraviolet excimer laser pulses. Epitaxial nature of as deposited NiO was determined by x-ray diffraction phi scans and transmission electron microscopy (TEM) and it was established that NiO film growth takes place with twin domains on sapphire where two types of domains have 60 deg. in-plane rotation with respect to each other about the [111] growth direction. We determined that at pulsed laser energy density of 0.275 J/cm{sup 2}, NiO films exhibited conversion from p-type semiconducting to n-type conductive behavior with three orders of magnitude decrease in resistivity, while maintaining its cubic crystal structure and good epitaxial relationship. Our TEM and electron-energy-loss spectroscopy studies conclusively ruled out the presence of any Ni clustering or precipitation due to the laser treatment. The laser-induced n-type carrier transport and conductivity enhancement were shown to be reversible through subsequent thermal annealing in oxygen. This change in conductivity behavior was correlated with the nonequilibrium concentration of laser induced Ni{sup 0}-like defect states.

  10. Semiconducting La2AuP3, the metallic conductor Ce2AuP3, and other rare-earth gold phosphides Ln2AuP3 with two closely related crystal structures

    International Nuclear Information System (INIS)

    Eschen, M.; Kotzyba, G.; Kuennen, B.; Jeitschko, W.

    2001-01-01

    The compounds Ln 2 AuP 3 were synthesized by reaction of the elemental components in evacuated silica tubes. Their crystal structures were determined from single-crystal diffractometer data. The compounds with Ln = La, Ce, and Pr crystallize with an orthorhombic U 2 NiC 3 type structure (Pnma, Z = 4). The structure refinement for Ce 2 AuP 3 resulted in a = 774.14(6) pm, b = 421.11(4) pm, c = 1612.3(1) pm, R = 0.019 for 1410 structure factors and 38 variable parameters. For Pr 2 AuP 3 a residual of R = 0.024 was obtained. Nd 2 AuP 3 crystallizes with a monoclinic distortion of this structure: P2 1 /c, Z = 4, a = 416.14(4) pm, b = 768.87(6) pm, c = 1647.1(2) pm, β = 104.06(1) , R = 0.022 for 1361 F values and 56 variables. The near-neighbor coordinations of the two structures are nearly the same. In both structures the gold and phosphorus atoms form two-dimensionally infinite nets, where the gold atoms are tetrahedrally coordinated by phosphorus atoms with Au-P distances varying between 245.8 and 284.2 pm. Two thirds of the phosphorus atoms form pairs with single-bond distances varying between 217.7 and 218.9 pm. Thus, using oxidation numbers the structures can be rationalized with the formulas (Ln +3 ) 2 [AuP 3 ] -6 and (Ln +3 ) 2 Au +1 (P 2 ) -4 P -3 . Accordingly, La 2 AuP 3 is a diamagnetic semiconductor. Pr 2 AuP 3 is semi-conducting with an antiferromagnetic ground state, showing metamagnetism with a critical field of B c = 0.5(±0.1) T. In contrast, the cerium compound is a metallic conductor, even though its cell volume indicates that the cerium atoms are essentially trivalent, as is also suggested by the ferro- or ferrimagnetic behavior of the compound. (orig.)

  11. Effect of Mobile Phone Usage on Nickel Ions Release and pH of Saliva in Patients Undergoing Fixed Orthodontic Treatment.

    Science.gov (United States)

    Nanjannawar, Lalita Girish; Girme, Tejashree Suresh; Agrawal, Jiwanasha Manish; Agrawal, Manish Suresh; Fulari, Sangamesh Gurunath; Shetti, Shraddha Subhash; Kagi, Vishwal Ajith

    2017-09-01

    Hand held mobile phones are presently the most popular means of communication worldwide and have transformed our lives in many aspects. The widespread use of such devices have resulted in growing concerns regarding harmful effects of radiations emitted by them. This study was designed to evaluate the effects of mobile phone usage on nickel ion release as well as pH of saliva in patients with fixed orthodontic appliances. To assess the level of nickel ions in saliva and pH of saliva in mobile phone users undergoing fixed orthodontic treatment using inductively coupled plasma atomic emission spectrometry. A total of 42 healthy patients with fixed orthodontic appliance in mouth for a duration of six to nine months were selected for the study. They were divided into experimental group (n=21) consisting of mobile phone users and control group (n=21) of non mobile phone users. Saliva samples were collected from both the groups and nickel ion levels were measured using inductively coupled plasma-mass spectroscopy. The pH values were also assessed for both groups using pH meter. Unpaired t-test was used for the data analysis. Statistical analysis revealed that though the pH levels were reduced and the nickel ion levels were higher in the experimental group compared to the control group, the results were non significant. Mobile phone usage may affect the pH of saliva and result in increased release of nickel ions in saliva of patients with fixed orthodontic appliances in the oral cavity.

  12. Dual Colorimetric and Fluorescent Authentication Based on Semiconducting Polymer Dots for Anticounterfeiting Applications.

    Science.gov (United States)

    Tsai, Wei-Kai; Lai, Yung-Sheng; Tseng, Po-Jung; Liao, Chia-Hsien; Chan, Yang-Hsiang

    2017-09-13

    Semiconducting polymer dots (Pdots) have recently emerged as a novel type of ultrabright fluorescent probes that can be widely used in analytical sensing and material science. Here, we developed a dual visual reagent based on Pdots for anticounterfeiting applications. We first designed and synthesized two types of photoswitchable Pdots by incorporating photochromic dyes with multicolor semiconducting polymers to modulate their emission intensities and wavelengths. The resulting full-color Pdot assays showed that the colorimetric and fluorescent dual-readout abilities enabled the Pdots to serve as an anticounterfeiting reagent with low background interference. We also doped these Pdots into flexible substrates and prepared these Pdots as inks for pen handwriting as well as inkjet printing. We further applied this reagent in printing paper and checks for high-security anticounterfeiting purposes. We believe that this dual-readout method based on Pdots will create a new avenue for developing new generations of anticounterfeiting technologies.

  13. Data on electrical properties of nickel modified potassium polytitanates compacted powders.

    Science.gov (United States)

    Goffman, V G; Gorokhovsky, A V; Gorshkov, N V; Fedorov, F S; Tretychenko, E V; Sevrugin, A V

    2015-09-01

    Potassium polytitanates are new promising type of ferroelectric ceramic materials with high ionic conductivity, highly polarizable structure and extremely high permittivity. Its structure is formed by [TiO6] octahedral units to layers with mobile potassium and hydroxonium ions in-between. The treatment in solutions containing nickel ions allows forming heterostructured materials which consist of potassium polytitanate particles intercalated by Ni(2+) ions and/or decorated by nickel oxides NiO x . This modification route is fully dependant on solution pH, i.e. in acidic solutions the intercalation process prevails, in alkaline solutions potassium polytitanate is mostly decorated by the oxides. Therefore, electronic structure and electrical properties can be regulated depending on modification conditions, pH and ions concentration. Here we report the data on electric properties of potassium titanate modified in nickel sulfate solutions at different pH.

  14. Data on electrical properties of nickel modified potassium polytitanates compacted powders

    Directory of Open Access Journals (Sweden)

    V.G. Goffman

    2015-09-01

    Full Text Available Potassium polytitanates are new promising type of ferroelectric ceramic materials with high ionic conductivity, highly polarizable structure and extremely high permittivity. Its structure is formed by [TiO6] octahedral units to layers with mobile potassium and hydroxonium ions in-between. The treatment in solutions containing nickel ions allows forming heterostructured materials which consist of potassium polytitanate particles intercalated by Ni2+ ions and/or decorated by nickel oxides NiOx. This modification route is fully dependant on solution pH, i.e. in acidic solutions the intercalation process prevails, in alkaline solutions potassium polytitanate is mostly decorated by the oxides. Therefore, electronic structure and electrical properties can be regulated depending on modification conditions, pH and ions concentration. Here we report the data on electric properties of potassium titanate modified in nickel sulfate solutions at different pH.

  15. Behavioral interventions to reduce nickel exposure in a nickel processing plant.

    Science.gov (United States)

    Rumchev, Krassi; Brown, Helen; Wheeler, Amanda; Pereira, Gavin; Spickett, Jeff

    2017-10-01

    Nickel is a widely-used material in many industries. Although there is enough evidence that occupational exposure to nickel may cause respiratory illnesses, allergies, and even cancer, it is not possible to stop the use of nickel in occupational settings. Nickel exposure, however, can be controlled and reduced significantly in workplaces. The main objective of this study was to assess if educational intervention of hygiene behavior could reduce nickel exposure among Indonesian nickel smelter workers. Participants were randomly assigned to three intervention groups (n = 99). Group one (n = 35) received only an educational booklet about nickel, related potential health effects and preventive measures, group two (n = 35) attended a presentation in addition to the booklet, and group three (n = 29) received personal feedback on their biomarker results in addition to the booklet and presentations. Pre- and post-intervention air sampling was conducted to measure concentrations of dust and nickel in air along with worker's blood and urine nickel concentrations. The study did not measure significant differences in particles and nickel concentrations in the air between pre- and post-interventions. However, we achieved significant reductions in the post intervention urine and blood nickel concentrations which can be attributed to changes in personal hygiene behavior. The median urinary nickel concentration in the pre-intervention period for group one was 52.3 µg/L, for group two 57.4 µg/L, and group three 43.2 µg/L which were significantly higher (pnickel with significantly (p nickel levels of 0.1 µg/L for all groups. The study showed that educational interventions can significantly reduce personal exposure levels to nickel among Indonesian nickel smelter workers.

  16. Nickel extraction from nickel matte

    Science.gov (United States)

    Subagja, R.

    2018-01-01

    In present work, the results of research activities to make nickel metal from nickel matte are presented. The research activities were covering a) nickel matte characterization using Inductively Couple plasma (ICP), Electron Probe Micro Analyzer (EPMA) and X-Ray Diffraction (XRD), b) nickel matte dissolution process to dissolve nickel from nickel matte into the spent electrolyte solutions that contains hydrochloric acid, c) purification of nickel chloride leach solution by copper cementation process to remove copper using nickel matte, selective precipitation process to remove iron, solvent extraction using Tri normal octyl amine to separate cobalt from nickel chloride solutions and d) Nickel electro winning process to precipitate nickel into the cathode surface from purified nickel chloride solution by using direct current. The research activities created 99, 72 % pure nickel metal as the final product of the process.

  17. Voltage-Controlled Spray Deposition of Multiwalled Carbon Nanotubes on Semiconducting and Insulating Substrates

    Science.gov (United States)

    Maulik, Subhodip; Sarkar, Anirban; Basu, Srismrita; Daniels-Race, Theda

    2018-05-01

    A facile, cost-effective, voltage-controlled, "single-step" method for spray deposition of surfactant-assisted dispersed carbon nanotube (CNT) thin films on semiconducting and insulating substrates has been developed. The fabrication strategy enables direct deposition and adhesion of CNT films on target samples, eliminating the need for substrate surface functionalization with organosilane binder agents or metal layer coatings. Spray coating experiments on four types of sample [bare silicon (Si), microscopy-grade glass samples, silicon dioxide (SiO2), and polymethyl methacrylate (PMMA)] under optimized control parameters produced films with thickness ranging from 40 nm to 6 μm with substantial surface coverage and packing density. These unique deposition results on both semiconducting and insulator target samples suggest potential applications of this technique in CNT thin-film transistors with different gate dielectrics, bendable electronics, and novel CNT-based sensing devices, and bodes well for further investigation into thin-film coatings of various inorganic, organic, and hybrid nanomaterials on different types of substrate.

  18. Nickel accumulation and storage in bradyrhizobium japonicum

    International Nuclear Information System (INIS)

    Maier, R.J.; Pihl, T.D.; Stults, L.; Sray, W.

    1990-01-01

    Hydrogenase-depressed (chemolithotrophic growth conditions) and heterotrophically grown cultures of Bradyrhizobium japonicum accumulated nickel about equally over a 3-h period. Both types of cultures accumulated nickel primarily in a form that was not exchangeable with NiCl 2 , and they accumulated much more Ni than would be needed for the Ni-containing hydrogenase. The nickel accumulated by heterotrophically incubated cultures could later be mobilized to allow active hydrogenase synthesis during derepression in the absence of nickel, while cells both grown with Ni and the derepressed without nickel had low hydrogenase activities. The level of activity in cells grown with Ni and then derepressed without nickel was about the same as that in cultures derepressed in the presence of nickel. The Ni accumulated by heterotrophically grown cultures was associated principally with soluble proteins rather than particulate material, and this Ni was not lost upon dialyzing an extract containing the soluble proteins against either Ni-containing or EDTA-containing buffer. However, this Ni was lost upon pronase or low pH treatments. The soluble Ni-binding proteins were partially purified by gel filtration and DEAE chromatography. They were not antigenically related to hydrogenase peptides. Much of the 63 Ni eluted as a single peak of 48 kilodaltons. Experiments involving immunuprecipitation of 63 Ni-containing hydrogenase suggested that the stored source of Ni in heterotrophic cultures that could later be mobilized into hydrogenase resided in the nonexchangeable Ni-containing fraction rather than in loosely bound or ionic forms

  19. Logic circuits based on individual semiconducting and metallic carbon-nanotube devices

    International Nuclear Information System (INIS)

    Ryu, Hyeyeon; Kaelblein, Daniel; Ante, Frederik; Zschieschang, Ute; Kern, Klaus; Klauk, Hagen; Weitz, R Thomas; Schmidt, Oliver G

    2010-01-01

    Nanoscale transistors employing an individual semiconducting carbon nanotube as the channel hold great potential for logic circuits with large integration densities that can be manufactured on glass or plastic substrates. Carbon nanotubes are usually produced as a mixture of semiconducting and metallic nanotubes. Since only semiconducting nanotubes yield transistors, the metallic nanotubes are typically not utilized. However, integrated circuits often require not only transistors, but also resistive load devices. Here we show that many of the metallic carbon nanotubes that are deposited on the substrate along with the semiconducting nanotubes can be conveniently utilized as load resistors with favorable characteristics for the design of integrated circuits. We also demonstrate the fabrication of arrays of transistors and resistors, each based on an individual semiconducting or metallic carbon nanotube, and their integration on glass substrates into logic circuits with switching frequencies of up to 500 kHz using a custom-designed metal interconnect layer.

  20. Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes.

    Science.gov (United States)

    Cao, Xuan; Cao, Yu; Zhou, Chongwu

    2016-01-26

    Flexible thin-film transistors based on semiconducting single-wall carbon nanotubes are promising for flexible digital circuits, artificial skins, radio frequency devices, active-matrix-based displays, and sensors due to the outstanding electrical properties and intrinsic mechanical strength of carbon nanotubes. Nevertheless, previous research effort only led to nanotube thin-film transistors with the smallest bending radius down to 1 mm. In this paper, we have realized the full potential of carbon nanotubes by making ultraflexible and imperceptible p-type transistors and circuits with a bending radius down to 40 μm. In addition, the resulted transistors show mobility up to 12.04 cm(2) V(-1) S(-1), high on-off ratio (∼10(6)), ultralight weight (transistors and circuits have great potential to work as indispensable components for ultraflexible complementary electronics.

  1. Nickeliferous minerals in the Cassiar Asbestos Deposit, Northern British Columbia (NTS 104/P/05) - Relevance for Nickel Exploration

    Czech Academy of Sciences Publication Activity Database

    Hora, Z. D.; Langrová, Anna; Pivec, E.

    2011-01-01

    Roč. 2010, 2011-1 (2011), s. 31-35 ISSN 0381-243X Institutional research plan: CEZ:AV0Z30130516 Keywords : Cassiar deposit * MINFILE 104P 005 * chrysolite asbestos * Cr-magnetite * nickel * Ni * heazlewoodite * serpentinization products * nickel minerals * awaruite Subject RIV: DB - Geology ; Mineralogy http://www.em.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/Fieldwork/Documents/2010/03_Hora_2010.pdf

  2. Nickel elution properties of contemporary interatrial shunt closure devices.

    Science.gov (United States)

    Verma, Divya Ratan; Khan, Muhammad F; Tandar, Anwar; Rajasekaran, Namakkal S; Neuharth, Renée; Patel, Amit N; Muhlestein, Joseph B; Badger, Rodney S

    2015-02-01

    We sought to compare nickel elution properties of contemporary interatrial shunt closure devices in vitro. There are two United States Food and Drug Administration (FDA)-approved devices for percutaneous closure of secundum atrial septal defect: the Amplatzer septal occluder (ASO; St Jude Medical Corporation) and Gore Helex septal occluder (HSO; W.L. Gore & Associates). The new Gore septal occluder (GSO) device is in clinical trials. These are also used off-label for patent foramen ovale closure in highly selected patients. These devices have high nickel content. Nickel allergy is the most common reason for surgical device explantation. Nickel elution properties of contemporary devices remain unknown. We compared nickel elution properties of 4 devices - ASO, GSO, HSO, and sternal wire (SW) - while Dulbecco's phosphate-buffered saline (DPBS) served as control. Three samples of each device were submerged in DPBS. Nickel content was measured at 14 intervals over 90 days. Nickel elution at 24 hours, compared to control (0.005 ± 0.0 mg/L), was significantly higher for ASO (2.98 ± 1.65 mg/L; P=.04) and SW (0.03 ± 0.014 mg/L; P=.03). Nickel levels at 90 days, compared to control (0.005 ± 0.0 mg/L) and adjusting for multiple comparisons, were significantly higher for ASO (19.80 ± 2.30 mg/L; P=.01) and similar for HSO (P=.34), GSO (P=.34), and SW (P=.34). ASO had significantly higher nickel elution compared to HSO, GSO, and SW (P=.01). There is substantial variability in nickel elution; devices with less exposed nickel (HSO and GSO) have minimal elution. The safety of low nickel elution devices in patients with nickel allergy needs to be evaluated in prospective trials.

  3. Characterization and Growth Mechanism of Nickel Nanowires Resulting from Reduction of Nickel Formate in Polyol Medium

    OpenAIRE

    Logutenko, Olga A.; Titkov, Alexander I.; Vorob’yov, Alexander M.; Yukhin, Yriy M.; Lyakhov, Nikolay Z.

    2016-01-01

    Nickel linear nanostructures were synthesized by reduction of nickel formate with hydrazine hydrate in ethylene glycol medium in the absence of any surfactants or capping agents for direction of the particles growth. The effect of the synthesis conditions such as temperature, reduction time, type of polyol, and nickel formate concentration on the reduction products was studied. The size and morphology of the nickel nanowires were characterized by X-ray diffraction, scanning, and transmission ...

  4. Fabrication of Completely Polymer-Based Solar Cells with p- and n-Type Semiconducting Block Copolymers with Electrically Inert Polystyrene

    Directory of Open Access Journals (Sweden)

    Eri Tomita

    2018-02-01

    Full Text Available It is widely recognized that fullerene derivatives show several advantages as n-type materials in photovoltaic applications. However, conventional [6,6]-phenyl-C61-butyric acid methyl ester (PCBM exhibits weak absorption in the visible region, and poor morphological stability, due to the facile aggregation. For further improvement of the device performance and durability, utilization of n-type polymeric materials instead of PCBM is considered to be a good way to solve the problems. In this study, we fabricated completely polymer-based solar cells utilizing p- and n-type block copolymers consisting of poly(3-hexylthiophene (P3HT and poly{[N,N′-bis(2-octyldodecylnaphthalene-1,4,5,8-bis(dicarboximide-2,6-diyl]-alt-5,5′-(2,2′-bithiophene} [P(NDI2OD-T2], respectively, containing common polystyrene (PSt inert blocks, which decreased the size of phase separated structures. Electron mobility in synthesized P(NDI2OD-T2-b-PSt film enhanced by a factor of 8 compared with homopolymer. The root mean square roughness of the blend film of two block copolymers (12.2 nm was decreased, compared with that of the simple homopolymers blend (18.8 nm. From the current density-voltage characteristics, it was confirmed that the introduction of PSt into both P3HT and P(NDI2OD-T2 improves short-circuit current density (1.16 to 1.73 mA cm−2 and power-conversion efficiency (0.24% to 0.32%. Better performance is probably due to the uniformity of the phase separation, and the enhancement of charge mobility.

  5. Nano semiconducting materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    The main focus of the present book is the characterization of a number of nano-semiconducting materials, using such techniques as powder X-ray diffraction, UV-visible spectrophotometry, Raman spectrometry, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry. The materials studied include ZnS, TiO2, NiO, Ga doped ZnO, Mn doped SnO2, Mn doped CeO2 and Mn doped ZrO2.

  6. Electrical and optical properties of sub-10 nm nickel silicide films for silicon solar cells

    International Nuclear Information System (INIS)

    Brahmi, Hatem; Ravipati, Srikanth; Yarali, Milad; Wang, Weijie; Ryou, Jae-Hyun; Mavrokefalos, Anastassios; Shervin, Shahab

    2017-01-01

    Highly conductive and transparent films of ultra-thin p-type nickel silicide films have been prepared by RF magnetron sputtering of nickel on silicon substrates followed by rapid thermal annealing in an inert environment in the temperature range 400–600 °C. The films are uniform throughout the wafer with thicknesses in the range of 3–6 nm. The electrical and optical properties are presented for nickel silicide films with varying thickness. The Drude–Lorentz model and Fresnel equations were used to calculate the dielectric properties, sheet resistance, absorption and transmission of the films. These ultrathin nickel silicide films have excellent optoelectronic properties for p-type contacts with optical transparencies up to 80% and sheet resistance as low as ∼0.15 µΩ cm. Furthermore, it was shown that the use of a simple anti-reflection (AR) coating can recover most of the reflected light approaching the values of a standard Si solar cell with the same AR coating. Overall, the combination of ultra-low thickness, high transmittance, low sheet resistance and ability to recover the reflected light by utilizing standard AR coating makes them ideal for utilization in silicon based photovoltaic technologies as a p-type transparent conductor. (paper)

  7. Electrical and optical properties of sub-10 nm nickel silicide films for silicon solar cells

    Science.gov (United States)

    Brahmi, Hatem; Ravipati, Srikanth; Yarali, Milad; Shervin, Shahab; Wang, Weijie; Ryou, Jae-Hyun; Mavrokefalos, Anastassios

    2017-01-01

    Highly conductive and transparent films of ultra-thin p-type nickel silicide films have been prepared by RF magnetron sputtering of nickel on silicon substrates followed by rapid thermal annealing in an inert environment in the temperature range 400-600 °C. The films are uniform throughout the wafer with thicknesses in the range of 3-6 nm. The electrical and optical properties are presented for nickel silicide films with varying thickness. The Drude-Lorentz model and Fresnel equations were used to calculate the dielectric properties, sheet resistance, absorption and transmission of the films. These ultrathin nickel silicide films have excellent optoelectronic properties for p-type contacts with optical transparencies up to 80% and sheet resistance as low as ~0.15 µΩ cm. Furthermore, it was shown that the use of a simple anti-reflection (AR) coating can recover most of the reflected light approaching the values of a standard Si solar cell with the same AR coating. Overall, the combination of ultra-low thickness, high transmittance, low sheet resistance and ability to recover the reflected light by utilizing standard AR coating makes them ideal for utilization in silicon based photovoltaic technologies as a p-type transparent conductor.

  8. Two-dimensional ferromagnet/semiconductor transition metal dichalcogenide contacts: p-type Schottky barrier and spin-injection control

    KAUST Repository

    Gan, Liyong; Cheng, Yingchun; Schwingenschlö gl, Udo; Zhang, Qingyun

    2013-01-01

    We study the ferromagnet/semiconductor contacts formed by transition metal dichalcogenide monolayers, focusing on semiconducting MoS2 and WS2 and ferromagnetic VS2. We investigate the degree of p-type doping and demonstrate tuning of the Schottky barrier height by vertical compressive pressure. An analytical model is presented for the barrier heights that accurately describes the numerical findings and is expected to be of general validity for all transition metal dichalcogenide metal/semiconductor contacts. Furthermore, magnetic proximity effects induce a 100% spin polarization at the Fermi level in the semiconductor where the spin splitting increases up to 0.70 eV for increasing pressure.

  9. Two-dimensional ferromagnet/semiconductor transition metal dichalcogenide contacts: p-type Schottky barrier and spin-injection control

    KAUST Repository

    Gan, Liyong

    2013-09-26

    We study the ferromagnet/semiconductor contacts formed by transition metal dichalcogenide monolayers, focusing on semiconducting MoS2 and WS2 and ferromagnetic VS2. We investigate the degree of p-type doping and demonstrate tuning of the Schottky barrier height by vertical compressive pressure. An analytical model is presented for the barrier heights that accurately describes the numerical findings and is expected to be of general validity for all transition metal dichalcogenide metal/semiconductor contacts. Furthermore, magnetic proximity effects induce a 100% spin polarization at the Fermi level in the semiconductor where the spin splitting increases up to 0.70 eV for increasing pressure.

  10. AN ELECTROPLATING METHOD OF FORMING PLATINGS OF NICKEL, COBALT, NICKEL ALLOYS OR COBALT ALLOYS

    DEFF Research Database (Denmark)

    1997-01-01

    An electroplating method of forming platings of nickel, cobalt, nickel alloys or cobalt alloys with reduced stresses in an electrodepositing bath of the type: Watt's bath, chloride bath or a combination thereof, by employing pulse plating with periodic reverse pulse and a sulfonated naphthalene...

  11. The effect of electron and hole doping on the thermoelectric properties of shandite-type Co3Sn2S2

    OpenAIRE

    Mangelis, Panagiotis; Vaqueiro, Paz; Jumas, Jean-Claude; da Silva, Ivan; Smith, Ronald I; Powell, Anthony V

    2017-01-01

    Electron and hole doping in Co3Sn2S2, through chemical substitution of cobalt by the neighbouring elements, nickel and iron, affects both the structure and thermoelectric properties. Electron doping to form Co3-xNixSn2S2 (0 ≤ x ≤ 3) results in an expansion of the kagome layer and materials become increasingly metallic as cobalt is substituted. Conversely, hole doping in Co3-xFexSn2S2 (0 ≤ x ≤ 0.6) leads to a transition from metallic to n-type semiconducting behaviour at x = 0.5. Iron substitu...

  12. High-mobility ultrathin semiconducting films prepared by spin coating

    Science.gov (United States)

    Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali

    2004-03-01

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (~50Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105Acm-2) and mobilities greater than 10cm2V-1s-1-an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  13. Nickel and chromium ion release from stainless steel bracket on immersion various types of mouthwashes

    Science.gov (United States)

    Mihardjanti, M.; Ismah, N.; Purwanegara, M. K.

    2017-08-01

    The stainless steel bracket is widely used in orthodontics because of its mechanical properties, strength, and good biocompatibility. However, under certain conditions, it can be susceptible to corrosion. Studies have reported that the release of nickel and chromium ions because of corrosion can cause allergic reactions in some individuals and are mutagenic. The condition of the oral environment can lead to corrosion, and one factor that can alter the oral environment is mouthwash. The aim of this study was to measure the nickel and chromium ions released from stainless steel brackets when immersed in mouthwash and aquadest. The objects consisted of four groups of 17 maxillary premolar brackets with .022 slots. Each group was immersed in a different mouthwash and aquadest and incubated at 37 °C for 30 days. After 30 days of immersion, the released ions were measured using the ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). For statistical analysis, both the Kruskal-Wallis and Mann-Whitney tests were used. The results showed differences among the four groups in the nickel ions released (p < 0.05) and the chromium ions released (p < 0.5). In conclusion, the ions released as a result of mouthwash immersion have a small value that is below the limit of daily intake recommended by the World Health Organization.

  14. Characterization and Growth Mechanism of Nickel Nanowires Resulting from Reduction of Nickel Formate in Polyol Medium

    Directory of Open Access Journals (Sweden)

    Olga A. Logutenko

    2016-01-01

    Full Text Available Nickel linear nanostructures were synthesized by reduction of nickel formate with hydrazine hydrate in ethylene glycol medium in the absence of any surfactants or capping agents for direction of the particles growth. The effect of the synthesis conditions such as temperature, reduction time, type of polyol, and nickel formate concentration on the reduction products was studied. The size and morphology of the nickel nanowires were characterized by X-ray diffraction, scanning, and transmission electron microscopy. It was shown that the nickel nanocrystallites were wire-shaped with a face-center-cubic phase. Ethylene glycol was found to play a crucial role in the formation of the nickel nanowires. The possible growth processes of the wire-shaped particles taking place at 110 and 130°C are discussed. It was shown that, under certain synthesis conditions, nickel nanowires grow on the surface of the crystals of the solid intermediate of nickel with hydrazine hydrate.

  15. Scanning microwave microscopy applied to semiconducting GaAs structures

    Science.gov (United States)

    Buchter, Arne; Hoffmann, Johannes; Delvallée, Alexandra; Brinciotti, Enrico; Hapiuk, Dimitri; Licitra, Christophe; Louarn, Kevin; Arnoult, Alexandre; Almuneau, Guilhem; Piquemal, François; Zeier, Markus; Kienberger, Ferry

    2018-02-01

    A calibration algorithm based on one-port vector network analyzer (VNA) calibration for scanning microwave microscopes (SMMs) is presented and used to extract quantitative carrier densities from a semiconducting n-doped GaAs multilayer sample. This robust and versatile algorithm is instrument and frequency independent, as we demonstrate by analyzing experimental data from two different, cantilever- and tuning fork-based, microscope setups operating in a wide frequency range up to 27.5 GHz. To benchmark the SMM results, comparison with secondary ion mass spectrometry is undertaken. Furthermore, we show SMM data on a GaAs p-n junction distinguishing p- and n-doped layers.

  16. Electrochemical Characterization of Nanoporous Nickel Oxide Thin Films Spray-Deposited onto Indium-Doped Tin Oxide for Solar Conversion Scopes

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2015-01-01

    Full Text Available Nonstoichiometric nickel oxide (NiOx has been deposited as thin film utilizing indium-doped tin oxide as transparent and electrically conductive substrate. Spray deposition of a suspension of NiOx nanoparticles in alcoholic medium allowed the preparation of uniform NiOx coatings. Sintering of the coatings was conducted at temperatures below 500°C for few minutes. This scalable procedure allowed the attainment of NiOx films with mesoporous morphology and reticulated structure. The electrochemical characterization showed that NiOx electrodes possess large surface area (about 1000 times larger than their geometrical area. Due to the openness of the NiOx morphology, the underlying conductive substrate can be contacted by the electrolyte and undergo redox processes within the potential range in which NiOx is electroactive. This requires careful control of the conditions of polarization in order to prevent the simultaneous occurrence of reduction/oxidation processes in both components of the multilayered electrode. The combination of the open structure with optical transparency and elevated electroactivity in organic electrolytes motivated us to analyze the potential of the spray-deposited NiOx films as semiconducting cathodes of dye-sensitized solar cells of p-type when erythrosine B was the sensitizer.

  17. Urine nickel concentrations in nickel-exposed workers.

    Science.gov (United States)

    Bernacki, E J; Parsons, G E; Roy, B R; Mikac-Devic, M; Kennedy, C D; Sunderman, F W

    1978-01-01

    Electrothermal atomic absorption spectrometry was employed for analyses of nickel concentrations in urine samples from nickel-exposed workers in 10 occupational groups and from non-exposed workers in two control groups. Mean concentrations of nickel in urine were greatest in workers who were exposed to inhalation of aerosols of soluble nickel salts (e.g., workers in nickel plating operations and in an electrolytic nickel refinery). Less marked increases in urine nickel concentrations were found in groups of metal sprayers, nickel battery workers, bench mechanics and are welders. No significant increases in mean concentrations of nickel were found in urine samples from workers who performed grinding, buffing and polishing of nickel-containing alloys or workers in a coal gasification plant who employed Raney nickel as a hydrogenation catalyst. Measurements of nickel concentrations in urine are more sensitive and practical than measurements of serum nickel concentrations for evaluation of nickel exposures in industrial workers.

  18. Superconductivity in an Inhomogeneous Bundle of Metallic and Semiconducting Nanotubes

    Directory of Open Access Journals (Sweden)

    Ilya Grigorenko

    2013-01-01

    Full Text Available Using Bogoliubov-de Gennes formalism for inhomogeneous systems, we have studied superconducting properties of a bundle of packed carbon nanotubes, making a triangular lattice in the bundle's transverse cross-section. The bundle consists of a mixture of metallic and doped semiconducting nanotubes, which have different critical transition temperatures. We investigate how a spatially averaged superconducting order parameter and the critical transition temperature depend on the fraction of the doped semiconducting carbon nanotubes in the bundle. Our simulations suggest that the superconductivity in the bundle will be suppressed when the fraction of the doped semiconducting carbon nanotubes will be less than 0.5, which is the percolation threshold for a two-dimensional triangular lattice.

  19. Does airborne nickel exposure induce nickel sensitization?

    Science.gov (United States)

    Mann, Eugen; Ranft, Ulrich; Eberwein, Georg; Gladtke, Dieter; Sugiri, Dorothee; Behrendt, Heidrun; Ring, Johannes; Schäfer, Torsten; Begerow, Jutta; Wittsiepe, Jürgen; Krämer, Ursula; Wilhelm, Michael

    2010-06-01

    Nickel is one of the most prevalent causes of contact allergy in the general population. This study focuses on human exposure to airborne nickel and its potential to induce allergic sensitization. The study group consisted of 309 children at school-starter age living in the West of Germany in the vicinity of two industrial sources and in a rural town without nearby point sources of nickel. An exposure assessment of nickel in ambient air was available for children in the Ruhr district using routinely monitored ambient air quality data and dispersion modelling. Internal nickel exposure was assessed by nickel concentrations in morning urine samples of the children. The observed nickel sensitization prevalence rates varied between 12.6% and 30.7%. Statistically significant associations were showed between exposure to nickel in ambient air and urinary nickel concentration as well as between urinary nickel concentration and nickel sensitization. Furthermore, an elevated prevalence of nickel sensitization was associated with exposure to increased nickel concentrations in ambient air. The observed associations support the assumption that inhaled nickel in ambient air might be a risk factor for nickel sensitization; further studies in larger collectives are necessary.

  20. Electrical transport properties of manganese containing pyrochlore type semiconducting oxides using impedance analyses

    International Nuclear Information System (INIS)

    Sumi, S.; Prabhakar Rao, P.; Mahesh, S.K.; Koshy, Peter

    2012-01-01

    Graphical abstract: DC conductivity variation of CaCe 1−x Mn x SnNbO 7−δ (x = 0, 0.2, 0.4 and 0.6) with inverse of temperature. Variation of conductivity with Mn concentration at 600 °C is shown in the inset. Display Omitted Highlights: ► We have observed that the structural ordering as well as grain size increase with Mn substitution. ► Impedance analysis proved that a correlated barrier hopping type conduction mechanism is involved in the materials. ► Activation energy as well as electrical conductivity increases with increase in Mn substitution. ► Localization of electrons associated with Mn 2+ and structural ordering are the key factors for the increased activation energy with Mn substitution. ► All the materials showed good NTC thermistor properties. -- Abstract: A new series of manganese containing pyrochlore type semiconducting oxides CaCe 1−x Mn x SnNbO 7−δ (x = 0, 0.2, 0.4 and 0.6) have been synthesized to study the effect of Mn substitution on the structure, microstructure and electrical properties of these samples. X-ray diffraction and scanning electron microscopy studies revealed an increase of structural ordering and grain size respectively with increase of Mn substitution. Rietveld analysis and Raman spectroscopy were also employed to corroborate the XRD results. The bulk resistance measurements with temperature exhibit negative temperature coefficient behavior. The impedance analysis of the samples revealed a non-Debye type relaxation existed in the materials. The ac conductivity variation with temperature and frequency indicates a correlated barrier hopping type conduction mechanism in these materials. The barrier height and the intersite separation for hopping influence the electrical conductivity of these samples and are found to be a function of localization of electrons associated with the Mn 2+ ions and the unit cell volume respectively. The Mn substitution increases both electrical conductivity and activation energy

  1. Characterisation of electrodeposited polycrystalline uranium dioxide thin films on nickel foil for industrial applications

    International Nuclear Information System (INIS)

    Adamska, A.M.; Bright, E. Lawrence; Sutcliffe, J.; Liu, W.; Payton, O.D.; Picco, L.; Scott, T.B.

    2015-01-01

    Polycrystalline uranium dioxide thin films were grown on nickel substrates via aqueous electrodeposition of a precursor uranyl salt. The arising semiconducting uranium dioxide thin films exhibited a tower-like morphology, which may be suitable for future application in 3D solar cell applications. The thickness of the homogenous, tower-like films reached 350 nm. Longer deposition times led to the formation of thicker (up to 1.5 μm) and highly porous films. - Highlights: • Electrodeposition of polycrystalline UO_2 thin films • Tower-like morphology for 3D solar cell applications • Novel technique for separation of heavy elements from radioactive waste streams

  2. Characterization and Growth Mechanism of Nickel Nano wires Resulting from Reduction of Nickel Formate in Polyol Medium

    International Nuclear Information System (INIS)

    Logutenko, O.A.; Titkov, A.I.; Vorobyov, A.M.; Yukhin, Y.M.; Lyakhov, N.Z.

    2016-01-01

    Nickel linear nano structures were synthesized by reduction of nickel formate with hydrazine hydrate in ethylene glycol medium in the absence of any surfactants or capping agents for direction of the particles growth. The effect of the synthesis conditions such as temperature, reduction time, type of polyol, and nickel formate concentration on the reduction products was studied. The size and morphology of the nickel nano wires were characterized by X-ray diffraction, scanning, and transmission electron microscopy. It was shown that the nickel nano crystallites were wire-shaped with a face-center-cubic phase. Ethylene glycol was found to play a crucial role in the formation of the nickel nano wires. The possible growth processes of the wire-shaped particles taking place at 110 and 130 degree are discussed. It was shown that, under certain synthesis conditions, nickel nano wires grow on the surface of the crystals of the solid intermediate of nickel with hydrazine hydrate.

  3. Electronic and elastic properties of new semiconducting oP{sub 12}-type RuB{sub 2} and OsB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hao Xianfeng; Xu Yuanhui; Gao Faming, E-mail: xfhao1980@yahoo.com.cn [Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China)

    2011-03-30

    Using first-principles total energy calculations we investigate the structural, elastic and electronic properties of new hypothetical oP{sub 12}-type phase RuB{sub 2} and OsB{sub 2}. The calculations indicate that the oP{sub 12}-type phase RuB{sub 2} and OsB{sub 2} are thermodynamically and mechanically stable. Remarkably, the new phases RuB{sub 2} and OsB{sub 2} are predicted to be semiconductors, and the appearance of band gaps is ascribed to the enhanced B-B covalent hybridization. Compared to metallic oP{sub 6}-type RuB{sub 2} and OsB{sub 2} phases, the new phases possess similar mechanical properties and hardness. The combination of the probability of tunable electronic properties, strong stiffness and high hardness make RuB{sub 2} and OsB{sub 2} attractive and interesting for advanced applications.

  4. Structure-Property Relationships of Semiconducting Polymers for Flexible and Durable Polymer Field-Effect Transistors.

    Science.gov (United States)

    Kim, Min Je; Jung, A-Ra; Lee, Myeongjae; Kim, Dongjin; Ro, Suhee; Jin, Seon-Mi; Nguyen, Hieu Dinh; Yang, Jeehye; Lee, Kyung-Koo; Lee, Eunji; Kang, Moon Sung; Kim, Hyunjung; Choi, Jong-Ho; Kim, BongSoo; Cho, Jeong Ho

    2017-11-22

    We report high-performance top-gate bottom-contact flexible polymer field-effect transistors (FETs) fabricated by flow-coating diketopyrrolopyrrole (DPP)-based and naphthalene diimide (NDI)-based polymers (P(DPP2DT-T2), P(DPP2DT-TT), P(DPP2DT-DTT), P(NDI2OD-T2), P(NDI2OD-F2T2), and P(NDI2OD-Se2)) as semiconducting channel materials. All of the polymers displayed good FET characteristics with on/off current ratios exceeding 10 7 . The highest hole mobility of 1.51 cm 2 V -1 s -1 and the highest electron mobility of 0.85 cm 2 V -1 s -1 were obtained from the P(DPP2DT-T2) and P(NDI2OD-Se2) polymer FETs, respectively. The impacts of the polymer structures on the FET performance are well-explained by the interplay between the crystallinity, the tendency of the polymer backbone to adopt an edge-on orientation, and the interconnectivity of polymer fibrils in the film state. Additionally, we demonstrated that all of the flexible polymer-based FETs were highly resistant to tensile stress, with negligible changes in their carrier mobilities and on/off ratios after a bending test. Conclusively, these high-performance, flexible, and durable FETs demonstrate the potential of semiconducting conjugated polymers for use in flexible electronic applications.

  5. Assaying environmental nickel toxicity using model nematodes

    Science.gov (United States)

    Rudel, David; Douglas, Chandler; Huffnagle, Ian; Besser, John M.; Ingersoll, Christopher G.

    2013-01-01

    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegansand P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species.

  6. Nickel Dermatitis - Nickel Excretion

    DEFF Research Database (Denmark)

    Menné, T.; Thorboe, A.

    1976-01-01

    Nickel excretion in urine in four females -sensitive to nickel with an intermittent dyshidrotic eruption was measured with flameless atomic absorption. Excretion of nickel was found to be increased in association with outbreaks of vesicles. The results support the idea that the chronic condition ...

  7. Compensation of native donor doping in ScN: Carrier concentration control and p-type ScN

    Science.gov (United States)

    Saha, Bivas; Garbrecht, Magnus; Perez-Taborda, Jaime A.; Fawey, Mohammed H.; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Hultman, Lars; Sands, Timothy D.

    2017-06-01

    Scandium nitride (ScN) is an emerging indirect bandgap rocksalt semiconductor that has attracted significant attention in recent years for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices and as a substrate material for high quality GaN growth. Due to the presence of oxygen impurities and native defects such as nitrogen vacancies, sputter-deposited ScN thin-films are highly degenerate n-type semiconductors with carrier concentrations in the (1-6) × 1020 cm-3 range. In this letter, we show that magnesium nitride (MgxNy) acts as an efficient hole dopant in ScN and reduces the n-type carrier concentration, turning ScN into a p-type semiconductor at high doping levels. Employing a combination of high-resolution X-ray diffraction, transmission electron microscopy, and room temperature optical and temperature dependent electrical measurements, we demonstrate that p-type Sc1-xMgxN thin-film alloys (a) are substitutional solid solutions without MgxNy precipitation, phase segregation, or secondary phase formation within the studied compositional region, (b) exhibit a maximum hole-concentration of 2.2 × 1020 cm-3 and a hole mobility of 21 cm2/Vs, (c) do not show any defect states inside the direct gap of ScN, thus retaining their basic electronic structure, and (d) exhibit alloy scattering dominating hole conduction at high temperatures. These results demonstrate MgxNy doped p-type ScN and compare well with our previous reports on p-type ScN with manganese nitride (MnxNy) doping.

  8. Synthesis and Applications of Semiconducting Graphene

    Directory of Open Access Journals (Sweden)

    Shahrima Maharubin

    2016-01-01

    Full Text Available Semimetal-to-semiconductor transition in graphene can bestow graphene with numerous novel and enhanced structural, electrical, optical, and physicochemical characteristics. The scope of graphene and its prospective for an array of implications could be significantly outspread by this transition. In consideration of the recent advancements of semiconducting graphene, this article widely reviews the properties, production, and developing operations of this emergent material. The comparisons among the benefits and difficulties of current methods are made, intending to offer evidences to develop novel and scalable synthesis approaches. The emphasis is on the properties and applications resulting from various conversion methods (doping, controlled reduction, and functionalization, expecting to get improved knowledge on semiconducting graphene materials. Intending to motivate further efficient implications, the mechanisms leading to their beneficial usages for energy conversion and storage are also emphasized.

  9. High-mobility ultrathin semiconducting films prepared by spin coating.

    Science.gov (United States)

    Mitzi, David B; Kosbar, Laura L; Murray, Conal E; Copel, Matthew; Afzali, Ali

    2004-03-18

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (approximately 50 A), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS(2-x)Se(x) films, which exhibit n-type transport, large current densities (>10(5) A cm(-2)) and mobilities greater than 10 cm2 V(-1) s(-1)--an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  10. Nickel speciation in cement-stabilized/solidified metal treatment filtercakes

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava, E-mail: reroy@lsu.edu [J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70806, USA (United States); Stegemann, Julia A., E-mail: j.stegemann@ucl.ac.uk [Centre for Resource Efficiency & the Environment, Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK (United Kingdom)

    2017-01-05

    Highlights: • XAS shows the same Ni speciation in untreated and stabilized/solidified filtercake. • Ni solubility is the same for untreated and stabilized/solidified filtercake. • Leaching is controlled by pH and physical encapsulation for all binders. - Abstract: Cement-based stabilization/solidification (S/S) is used to decrease environmental leaching of contaminants from industrial wastes. In this study, two industrial metal treatment filtercakes were characterized by X-ray diffractometry (XRD), thermogravimetric and differential thermogravimetric analysis (TG/DTG) and Fourier transform infrared (FTIR); speciation of nickel was examined by X-ray absorption (XAS) spectroscopy. Although the degree of carbonation and crystallinity of the two untreated filtercakes differed, α-nickel hydroxide was identified as the primary nickel-containing phase by XRD and nickel K edge XAS. XAS showed that the speciation of nickel in the filtercake was unaltered by treatment with any of five different S/S binder systems. Nickel leaching from the untreated filtercakes and all their stabilized/solidified products, as a function of pH in the acid neutralization capacity test, was essentially complete below pH ∼5, but was 3–4 orders of magnitude lower at pH 8–12. S/S does not respeciate nickel from metal treatment filtercakes and any reduction of nickel leaching by S/S is attributable to pH control and physical mechanisms only. pH-dependent leaching of Cr, Cu and Ni is similar for the wastes and s/s products, except that availability of Cr, Cu and Zn at decreased pH is reduced in matrices containing ground granulated blast furnace slag.

  11. Acute toxicity, uptake and accumulation kinetics of nickel in an invasive copepod species: Pseudodiaptomus marinus.

    Science.gov (United States)

    Tlili, Sofiène; Ovaert, Julien; Souissi, Anissa; Ouddane, Baghdad; Souissi, Sami

    2016-02-01

    Pseudodiaptomus marinus is a marine calanoid copepod originating of the Indo-Pacific region, who has successfully colonized new areas and it was recently observed in the European side of the Mediterranean Sea as well as in the North Sea. Actually, many questions were posed about the invasive capacity of this copepod in several non-native ecosystems. In this context, the main aim of this study was to investigate the tolerance and the bioaccumulation of metallic stress in the invasive copepod P. marinus successfully maintained in mass culture at laboratory conditions since 2 years. In order to study the metallic tolerance levels of P. marinus, an emergent trace metal, the nickel, was chosen. First, lethal concentrations determination experiments were done for 24, 48, 72 and 96 h in order to calculated LC50% but also to select a relevant ecological value for the suite of experiments. Then, three types of experiments, using a single concentration of nickel (correspond the 1/3 of 96 h-LC50%) was carried in order to study the toxico-kinetics of nickel in P. marinus. Concerning lethal concentrations, we observed that P. marinus was in the same range of sensitivity compared to other calanoid copepods exposed to nickel in the same standardized experimental conditions. Results showed that the uptake of nickel in P. marinus depends from the pathways of entrance (water of food), but also that Isochrysis galbana, used as a food source, has an important bioaccumulation capacity and a rapid uptake of nickel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. 1/f noise in metallic and semiconducting carbon nanotubes

    Science.gov (United States)

    Reza, Shahed; Huynh, Quyen T.; Bosman, Gijs; Sippel-Oakley, Jennifer; Rinzler, Andrew G.

    2006-11-01

    The charge transport and noise properties of three terminal, gated devices containing multiple single-wall metallic and semiconducting carbon nanotubes were measured at room temperature. Applying a high voltage pulsed bias at the drain terminal the metallic tubes were ablated sequentially, enabling the separation of measured conductance and 1/f noise into metallic and semiconducting nanotube contributions. The relative low frequency excess noise of the metallic tubes was observed to be two orders of magnitude lower than that of the semiconductor tubes.

  13. Assaying environmental nickel toxicity using model nematodes.

    Directory of Open Access Journals (Sweden)

    David Rudel

    Full Text Available Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water, we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species.

  14. Nickel aggregates produced by radiolysis

    International Nuclear Information System (INIS)

    Marignier, J.L.; Belloni, J.

    1988-01-01

    Nickel aggregates with subcolloidal size and stable in water have been synthesized by inhibiting the corrosion by the medium. The protective effect of the surfactant is discussed in relation with the characteristics of various types of polyvinyl alcohol studied. The reactivity of aggregates towards oxidizing compounds, nitro blue tetrazolium, methylene blue, silver ions, oxygen, methylviologen, enables an estimation of the redox potential of nickel aggregates (E = - 04 ± 0.05 V). It has been applied to quantitative analysis of the particles in presence of nickel ions. 55 refs [fr

  15. Ohmic contacts to semiconducting diamond

    Science.gov (United States)

    Zeidler, James R.; Taylor, M. J.; Zeisse, Carl R.; Hewett, C. A.; Delahoussaye, Paul R.

    1990-10-01

    Work was carried out to improve the electron beam evaporation system in order to achieve better deposited films. The basic system is an ion pumped vacuum chamber, with a three-hearth, single-gun e-beam evaporator. Four improvements were made to the system. The system was thoroughly cleaned and new ion pump elements, an e-gun beam adjust unit, and a more accurate crystal monitor were installed. The system now has a base pressure of 3 X 10(exp -9) Torr, and can easily deposit high-melting-temperature metals such as Ta with an accurately controlled thickness. Improved shadow masks were also fabricated for better alignment and control of corner contacts for electrical transport measurements. Appendices include: A Thermally Activated Solid State Reaction Process for Fabricating Ohmic Contacts to Semiconducting Diamond; Tantalum Ohmic Contacts to Diamond by a Solid State Reaction Process; Metallization of Semiconducting Diamond: Mo, Mo/Au, and Mo/Ni/Au; Specific Contact Resistance Measurements of Ohmic Contracts to Diamond; and Electrical Activation of Boron Implanted into Diamond.

  16. Sintering of nickel catalysts. Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants

    Energy Technology Data Exchange (ETDEWEB)

    Sehested, Jens; Gelten, Johannes A.P.; Helveg, Stig [Haldor Topsoee A/S, Nymoellevej 55, DK-2800 Kgs. Lyngby (Denmark)

    2006-08-01

    Supported nickel catalysts are widely used in the steam-reforming process for industrial scale production of hydrogen and synthesis gas. This paper provides a study of sintering in nickel-based catalysts (Ni/Al{sub 2}O{sub 3} and Ni/MgAl{sub 2}O{sub 4}). Specifically the influence of time, temperature, atmosphere, nickel-carrier interactions and dopants on the rate of sintering is considered. To probe the sintering kinetics, all catalysts were analyzed by sulfur chemisorption to determine the Ni surface area. Furthermore selected samples were further analyzed using X-ray diffraction (XRD), mercury porosimetry, BET area measurements, and electron microscopy (EM). The observed sintering rates as a function of time, temperature, and P{sub H{sub 2}O}/P{sub H{sub 2}} ratio were consistent with recent model predictions [J. Sehested, J.A.P. Gelten, I.N. Remediakis, H. Bengaard, J.K. Norskov, J. Catal. 223 (2004) 432] over a broad range of environmental conditions. However, exposing the catalysts to severe sintering conditions the loss of nickel surface area is faster than model predictions and the deviation is attributed to a change in the sintering mechanism and nickel removal by nickel-carrier interactions. Surprisingly, alumina-supported Ni particles grow to sizes larger than the particle size of the carrier indicating that the pore diameter does not represent an upper limit for Ni particle growth. The effects of potassium promotion and sulfur poisoning on the rates of sintering were also investigated. No significant effects of the dopants were observed after ageing at ambient pressure. However, at high pressures of steam and hydrogen (31bar and H{sub 2}O:H{sub 2}=10:1) potassium promotion increased the sintering rate relative to that of the unpromoted catalyst. Sulfur also enhances the rate of sintering at high pressures, but the effect of sulfur is less than for potassium. (author)

  17. Long life nickel electrodes for a nickel-hydrogen cell: Cycle life tests

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    In order to develop a long life nickel electrode for a Ni/H2 cell, the cycle life of nickel electrodes was tested in Ni/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45 minute low Earth orbit cycle regime at 80% depth-of-discharge. It is shown that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength does not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. It is found that the best plaque is made of INCO nickel powder type 287 and has median pore size of 13 micron.

  18. Nickel-based xerogel catalysts: Synthesis via fast sol-gel method and application in catalytic hydrogenation of p-nitrophenol to p-aminophenol

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jin; Wang, Qiang; Fan, Dongliang; Ma, Lirong; Jiang, Deli; Xie, Jimin, E-mail: xiejm391@sohu.com; Zhu, Jianjun, E-mail: zhjj029@sina.com

    2016-09-30

    out to investigate the reducibility of nickel species and the interaction between nickel species and alumina. The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over the prepared nickel-based xerogel catalysts. The conversion of p-nitrophenol was monitored by UV spectrophotometry and high performance liquid chromatography (HPLC). The results show that the catalysts are highly selective for the conversion of p-nitrophenol to p-aminophenol and the order of catalytic activities of the catalysts is Ni < Ni-Al{sub 2}O{sub 3} < Ni-Ca-Al{sub 2}O{sub 3}. The catalysts were recycled and were used to evaluate the reutilization.

  19. Transparent conductive p-type lithium-doped nickel oxide thin films deposited by pulsed plasma deposition

    Science.gov (United States)

    Huang, Yanwei; Zhang, Qun; Xi, Junhua; Ji, Zhenguo

    2012-07-01

    Transparent p-type Li0.25Ni0.75O conductive thin films were prepared on conventional glass substrates by pulsed plasma deposition. The effects of substrate temperature and oxygen pressure on structural, electrical and optical properties of the films were investigated. The electrical resistivity decreases initially and increases subsequently as the substrate temperature increases. As the oxygen pressure increases, the electrical resistivity decreases monotonically. The possible physical mechanism was discussed. And a hetero p-n junction of p-Li0.25Ni0.75O/n-SnO2:W was fabricated by depositing n-SnO2:W on top of the p-Li0.25Ni0.75O, which exhibits typical rectifying current-voltage characteristics.

  20. Transparent conductive p-type lithium-doped nickel oxide thin films deposited by pulsed plasma deposition

    International Nuclear Information System (INIS)

    Huang Yanwei; Zhang Qun; Xi Junhua; Ji Zhenguo

    2012-01-01

    Transparent p-type Li 0.25 Ni 0.75 O conductive thin films were prepared on conventional glass substrates by pulsed plasma deposition. The effects of substrate temperature and oxygen pressure on structural, electrical and optical properties of the films were investigated. The electrical resistivity decreases initially and increases subsequently as the substrate temperature increases. As the oxygen pressure increases, the electrical resistivity decreases monotonically. The possible physical mechanism was discussed. And a hetero p-n junction of p-Li 0.25 Ni 0.75 O/n-SnO 2 :W was fabricated by depositing n-SnO 2 :W on top of the p-Li 0.25 Ni 0.75 O, which exhibits typical rectifying current-voltage characteristics.

  1. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    International Nuclear Information System (INIS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-01-01

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  2. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jinlong, Lv, E-mail: ljlbuaa@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Tongxiang, Liang; Chen, Wang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  3. Fabrication and characterization of inverted organic solar cells using shuttle cock-type metal phthalocyanine and PCBM:P3HT

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Furukawa, Ryo, E-mail: suzuki@mat.usp.ac.jp; Akiyama, Tsuyoshi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo, E-mail: suzuki@mat.usp.ac.jp [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2015-02-27

    Inverted organic solar cells using shuttle cock-type phthalocyanine, semiconducting polymer and fullerenes were fabricated and characterized. Photovoltaic and optical properties of the solar cells with inverted structures were investigated by optical absorption, current density-voltage characteristics. The photovoltaic properties of the tandem organic solar cell using titanyl phthalocyanine, vanadyl phthalocyanine, poly(3-hexylthiophene) (P3HT) and [6, 6]-phenyl C{sub 61}-butyric acid methyl ester (PCBM) were improved. Effect of annealing and solvent treatment on surface morphologies of the active layer was investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed for improvement of the photovoltaic performance.

  4. Fabrication and characterization of inverted organic solar cells using shuttle cock-type metal phthalocyanine and PCBM:P3HT

    International Nuclear Information System (INIS)

    Suzuki, Atsushi; Furukawa, Ryo; Akiyama, Tsuyoshi; Oku, Takeo

    2015-01-01

    Inverted organic solar cells using shuttle cock-type phthalocyanine, semiconducting polymer and fullerenes were fabricated and characterized. Photovoltaic and optical properties of the solar cells with inverted structures were investigated by optical absorption, current density-voltage characteristics. The photovoltaic properties of the tandem organic solar cell using titanyl phthalocyanine, vanadyl phthalocyanine, poly(3-hexylthiophene) (P3HT) and [6, 6]-phenyl C 61 -butyric acid methyl ester (PCBM) were improved. Effect of annealing and solvent treatment on surface morphologies of the active layer was investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed for improvement of the photovoltaic performance

  5. Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Hankare, P.P., E-mail: p_hankarep@rediffmail.com [Solid State Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416 004 (India); Sanadi, K.R., E-mail: sanadikishor@gmail.com [Solid State Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416 004 (India); Garadkar, K.M. [Solid State Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416 004 (India); Patil, D.R. [Material Research Laboratory, Department of Physics, R.L. College, Parola, Jalgaon, Maharashtra 425 111 (India); Mulla, I.S. [Emeritus Scientist-CSIR, Centre for Materials for Electronics and Technology (C-MET), Panchawati, Pune 411 008 (India)

    2013-03-15

    Highlights: ► Co{sub 1−x}Ni{sub x}Fe{sub 2}O{sub 4} Mixed Metal oxides. ► Sol–gel auto-combustion method. ► Cubic spinel symmetry. ► Nanocrystaline material. ► Semiconducting nature. -- Abstract: Nanocrystalline Co{sub 1−x}Ni{sub x}Fe{sub 2}O{sub 4} (where x = 0.0, 0.25, 0.50, 0.75, 1) were successfully synthesized by sol–gel method using citrate–nitrate precursors. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were effectively utilized to investigate the different structural parameters. XRD showed single cubic spinel phase for all the samples. The decrease in lattice parameter and increase in crystallite size of the ferrispinel was observed with increasing nickel content. The surface morphology and elemental composition were studied by Scanning electron microscope (SEM) and Energy Dispersive X-ray analysis (EDAX) respectively. The nanosize of the synthesized material had been identified by TEM investigation and which is lies in between 20–25 nm. The semiconducting nature of the samples was studied by variation of resistivity and thermal emf with temperature.

  6. Diamond semiconducting devices

    International Nuclear Information System (INIS)

    Polowczyk, M.; Klugmann, E.

    1999-01-01

    Many efforts to apply the semiconducting diamond for construction of electronic elements: resistors, thermistors, photoresistors, piezoresistors, hallotrons, pn diodes, Schottky diodes, IMPATT diodes, npn transistor, MESFETs and MISFETs are reviewed. Considering the possibilities of acceptor and donor doping, electrical resistivity and thermal conductivity of diamond as well as high electric-field breakdown points, that diamond devices could be used at about 30-times higher frequency and more then 8200 times power than silicon devices. Except that, due to high heat resistant of diamond, it is concluded that diamond devices can be used in environment at high temperature, range of 600 o C. (author)

  7. Semiconducting compounds and devices incorporating same

    Science.gov (United States)

    Marks, Tobin J.; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2016-01-19

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  8. Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor

    NARCIS (Netherlands)

    Bijmans, M.F.M.; Helvoort, van P.J.; Dar, S.; Dopson, M.; Lens, P.N.L.; Buisman, C.J.N.

    2009-01-01

    Process streams with high concentrations of metals and sulfate are characteristic for the mining and metallurgical industries. This study aims to selectively recover nickel from a nickel-iron-containing solution at pH 5.0 using a single stage bioreactor that simultaneously combines low pH sulfate

  9. Absorption and retention of nickel from drinking water in relation to food intake and nickel sensitivity.

    Science.gov (United States)

    Nielsen, G D; Søderberg, U; Jørgensen, P J; Templeton, D M; Rasmussen, S N; Andersen, K E; Grandjean, P

    1999-01-01

    Two studies were performed to examine the influence of fasting and food intake on the absorption and retention of nickel added to drinking water and to determine if nickel sensitization played any role in this regard. First, eight nonallergic male volunteers fasted overnight before being given nickel in drinking water (12 micrograms Ni/kg) and, at different time intervals, standardized 1400-kJ portions of scrambled eggs. When nickel was ingested in water 30 min or 1 h prior to the meal, peak nickel concentrations in serum occurred 1 h after the water intake, and the peak was 13-fold higher than the one seen 1 h after simultaneous intake of nickel-containing water and scrambled eggs. In the latter case, a smaller, delayed peak occurred 3 h after the meal. Median urinary nickel excretion half-times varied between 19.9 and 26.7 h. Within 3 days, the amount of nickel excreted corresponded to 2.5% of the nickel ingested when it was mixed into the scrambled eggs. Increasing amounts were excreted as the interval between the water and the meal increased, with 25.8% of the administered dose being excreted when the eggs were served 4 h prior to the nickel-containing drinking water. In the second experiment, a stable nickel isotope, 61Ni, was given in drinking water to 20 nickel-sensitized women and 20 age-matched controls, both groups having vesicular hand eczema of the pompholyx type. Nine of 20 nickel allergic eczema patients experienced aggravation of hand eczema after nickel administration, and three also developed a maculopapular exanthema. No exacerbation was seen in the control group. The course of nickel absorption and excretion in the allergic groups did not differ and was similar to the pattern seen in the first study, although the absorption in the women was less. A sex-related difference in gastric emptying rates may play a role. Thus, food intake and gastric emptying are of substantial significance for the bioavailability of nickel from aqueous solutions

  10. Nickel adsorption and desorption in an acric oxisol as a function of pH, ionic strength and incubation time

    Directory of Open Access Journals (Sweden)

    Estêvão Vicari Mellis

    Full Text Available ABSTRACT Although nickel (Ni has both important potential benefits and toxic effects in the environment, its behavior in tropical soils has not been well studied. Nickel adsorption-desorption in topsoil and subsoil samples of an acric Oxisol was studied at three pH values (from 3.0 to 8.0. Adsorption-desorption isotherms were elaborated from experiments with increasing Ni concentration (5 to 100 mg L-1, during 0, 4, and 12 weeks, using CaCl2 0.01 and 0.1 M as electrolytic support in order to also verify the effect of Ni-soil time contact and of ionic strength on the reaction. Experimental results of Ni adsorption fitted Langmuir model, which indicated that maximum Ni adsorption (71,440 mg kg-1 occurred at subsoil, after 12 weeks. Nickel affinity (KL was also greater at subsoil (1.0 L kg-1. The Ni adsorption in the topsoil samples was higher, due to its lower point of zero salt effect (PZSE and higher organic matter content. The increase in soil pH resulted in the increase of Ni adsorption. Nickel desorbed less from soil samples incubated for 4 or 12 weeks, suggesting that Ni interactions with colloidal particles increase over time. The amount of Ni desorbed increased with increasing ionic strength in both the topsoil and subsoil soil samples. Finally, adsorption-desorption hysteresis was clearly observed. Soil pH, ionic strength of soil solution and the Ni-soil contact time should be considered as criteria for selecting the areas for disposal of residues containing Ni or to compose remediation strategies for acric soils contaminated with Ni.

  11. Surface-Enhanced Infrared Absorption of o-Nitroaniline on Nickel Nanoparticles Synthesized by Electrochemical Deposition

    Directory of Open Access Journals (Sweden)

    Yufang Niu

    2014-01-01

    Full Text Available Nickel nanoparticles were electrochemically deposited on indium-tin oxide (ITO coated glass plate in a modified Watt’s electrolyte. The surface-enhanced infrared absorption (SEIRA effect of the nanoparticles was evaluated by attenuated total reflection spectroscopy (ATR-FTIR using o-nitroaniline as a probe molecule. Electrodeposition parameters such as deposition time, pH value, and the type of surfactants were investigated. The morphology and the microstructure of the deposits were characterized by the field emission scanning electron microscope (FESEM and the atomic force microscope (AFM, respectively. The results indicate that the optimum parameters were potential of 1.3 V, time of 30 s, and pH of 8.92 in the solution of 0.3756 mol/L diethanolamine, 0.1 mol/L nickel sulfate, 0.01 mol/L nickel chloride, and 0.05 mol/L boric acid. The FESEM observation shows that the morphology of nickel nanoparticles with best enhancement effect is spherical and narrowly distributed particles with the average size of 50 nm. SEIRA enhancement factor is about 68.

  12. Triboelectric charge generation by semiconducting SnO2 film grown by atomic layer deposition

    Science.gov (United States)

    Lee, No Ho; Yoon, Seong Yu; Kim, Dong Ha; Kim, Seong Keun; Choi, Byung Joon

    2017-07-01

    Improving the energy harvesting efficiency of triboelectric generators (TEGs) requires exploring new types of materials that can be used, and understanding their properties. In this study, we have investigated semiconducting SnO2 thin films as friction layers in TEGs, which has not been explored thus far. Thin films of SnO2 with various thicknesses were grown by atomic layer deposition on Si substrates. Either polymer or glass was used as counter friction layers. Vertical contact/separation mode was utilized to evaluate the TEG efficiency. The results indicate that an increase in the SnO2 film thickness from 5 to 25 nm enhances the triboelectric output voltage of the TEG. Insertion of a 400-nm-thick Pt sub-layer between the SnO2 film and Si substrate further increased the output voltage up to 120 V in a 2 cm × 2 cm contact area, while the enhancement was cancelled out by inserting a 10-nm-thick insulating Al2O3 film between SnO2 and Pt films. These results indicate that n-type semiconducting SnO2 films can provide triboelectric charge to counter-friction layers in TEGs.[Figure not available: see fulltext.

  13. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells.

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Khan, M A Majeed; Alrokayan, Salman A

    2015-09-01

    Nickel ferrite nanoparticles (NPs) have received much attention for their potential applications in biomedical fields such as magnetic resonance imaging, drug delivery and cancer hyperthermia. However, little is known about the toxicity of nickel ferrite NPs at the cellular and molecular levels. In this study, we investigated the cytotoxic responses of nickel ferrite NPs in two different types of human cells (i.e., liver HepG2 and breast MCF-7). Nickel ferrite NPs induced dose-dependent cytotoxicity in both types of cells, which was demonstrated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) assays. Nickel ferrite NPs were also found to induce oxidative stress, which was evident by the depletion of glutathione and the induction of reactive oxygen species (ROS) and lipid peroxidation. The mitochondrial membrane potential due to nickel ferrite NP exposure was also observed. The mRNA levels for the tumor suppressor gene p53 and the apoptotic genes bax, CASP3 and CASP9 were up-regulated, while the anti-apoptotic gene bcl-2 was down-regulated following nickel ferrite NP exposure. Furthermore, the activities of apoptotic enzymes (caspase-3 and caspase-9) were also higher in both types of cells treated with nickel ferrite NPs. Cytotoxicity induced by nickel ferrite was efficiently prevented by N-acetyl cysteine (ROS scavenger) treatment, which suggested that oxidative stress might be one of the possible mechanisms of nickel ferrite NP toxicity. We also observed that MCF-7 cells were slightly more susceptible to nickel ferrite NP exposure than HepG2 cells. This study warrants further investigation to explore the potential mechanisms of different cytotoxic responses of nickel ferrite NPs in different cell lines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The effect of pH on chronic aquatic nickel toxicity is dependent on the pH itself: Extending the chronic nickel bioavailability models.

    Science.gov (United States)

    Nys, Charlotte; Janssen, Colin R; Van Sprang, Patrick; De Schamphelaere, Karel A C

    2016-05-01

    The environmental quality standard for Ni in the European Commission's Water Framework Directive is bioavailability based. Although some of the available chronic Ni bioavailability models are validated only for pH ≤ 8.2, a considerable fraction of European surface waters has a pH > 8.2. Therefore, the authors investigated the effect of a change in pH from 8.2 to 8.7 on chronic Ni toxicity in 3 invertebrate (Daphnia magna, Lymnaea stagnalis, and Brachionus calyciflorus) and 2 plant species (Pseudokirchneriella subcapitata and Lemna minor). Nickel toxicity was almost always significantly higher at pH 8.7 than at pH 8.2. To test whether the existing chronic Ni bioavailability models developed for pH ≤ 8.2 can be used at higher pH levels, Ni toxicity at pH 8.7 was predicted based on Ni toxicity observed at pH 8.2. This resulted in a consistent underestimation of toxicity. The results suggest that the effect of pH on Ni(2+) toxicity is dependent on the pH itself: the slope of the pH effect is steeper above than below pH 8.2 for species for which a species-specific bioavailability model exists. Therefore, the existing chronic Ni bioavailability models were modified to allow predictions of chronic Ni toxicity to invertebrates and plants in the pH range of 8.2 to 8.7 by applying a pH slope (SpH ) dependent on the pH of the target water. These modified Ni bioavailability models resulted in more accurate predictions of Ni toxicity to all 5 species (within 2-fold error), without the bias observed using the bioavailability models developed for pH ≤ 8.2. The results of the present study can decrease the uncertainty in implementing the bioavailability-based environmental quality standard under the Water Framework Directive for high-pH regions in Europe. © 2015 SETAC.

  15. The influence of artificial salivary pH on nickel ion release and the surface morphology of stainless steel bracket-nickel-titanium archwire combinations

    Directory of Open Access Journals (Sweden)

    Ida Bagus Narmada

    2017-06-01

    Full Text Available Background: In the oral cavity, orthodontic appliances come into contact with saliva which may cause corrosion capable of changing their surface morphology due to the release of metal ions. Surface roughness can influence the effectiveness of tooth movement. One of the ions possibly released when body fluid comes into contact with brackets and archwire is nickel ion (Ni. Ni, one of the most popular components of orthodontic appliances, is, however, a toxic element that could potentially increase the likelihood of health problems such as allergic responses during treatment. Purpose: The purpose of this study was to investigate the effect of different artificial salivary pH on the ions released and the surface morphology of stainless steel (SS brackets-nickel-titanium (NiTi and archwire combinations. Methods: Brackets and archwires were analyzed by an Energy Dispersive X-Ray Detector System (EDX to determine their composition, while NiTi archwire compound was examined by means of X-ray Diffraction (XRD. The immersion test was performed at artificial salivary pH levels of 4.2; 6.5; and 7.6 at 37°C for 28 days. Ni ion release measurement was performed using an Atomic Absorption Spectroscopy (AAS. Surface morphology was analyzed by means of a Scanning Electron Microscopy (SEM. Results: The chemical composition of all orthodontic appliances contained Ni element. In addition, XRD was depicted phases not only NiTi but also Ni, Titanium, Silicon and Zinc Oleate. The immersion test showed that the highest release of Ni ions occured at a pH of 4.2, with no significant difference at various levels of pH (p=.092. There were surface morphology changes in the orthodontic appliances. It was revealed that at a pH of 4.2, the surfaces of orthodontic appliances become unhomogenous and rough compared to those at other pH concentrations. Conclusion: The reduction of pH in the artificial saliva increases the amount of released Ni ions, as well as causing changes to

  16. Nickel removal from nickel plating waste water using a biologically active moving-bed sand filter.

    Science.gov (United States)

    Pümpel, Thomas; Macaskie, Lynne E; Finlay, John A; Diels, Ludo; Tsezos, Marios

    2003-12-01

    Efficient removal of dissolved nickel was observed in a biologically active moving-bed 'MERESAFIN' sand filter treating rinsing water from an electroless nickel plating plant. Although nickel is fully soluble in this waste water, its passage through the sand filter promoted rapid removal of approximately 1 mg Ni/l. The speciation of Ni in the waste water was modelled; the most probable precipitates forming under the conditions in the filter were predicted using PHREEQC. Analyses of the Ni-containing biosludge using chemical, electron microscopical and X-ray spectroscopic techniques confirmed crystallisation of nickel phosphate as arupite (Ni3(PO4)2 x 8H2O), together with hydroxyapatite within the bacterial biofilm on the filter sand grains. Biosorption contributed less than 1% of the overall sequestered nickel. Metabolising bacteria are essential for the process; the definitive role of specific components of the mixed population is undefined but the increase in pH promoted by metabolic activity of some microbial components is likely to promote nickel desolubilisation by others.

  17. Inconel type resistive alloys based on ultrahigh purity nickel

    International Nuclear Information System (INIS)

    Matsarin, K.A.; Matsarin, S.K.

    2000-01-01

    The new nickel high-ohm alloys (ρ = 1.2-1.4 μOhm · m), containing the W, Al, Mo alloying elements in the quantity, not exceeding their solubility in a solid solution, are developed on the basis of the Inconel-type standard alloy. The optical composition of the alloy was determined by the results of the alloy was determined by the results of the electric resistance measurement and technological effectiveness indices (relative to the pressure and workable metal yield). The following optimal component concentrations were established: 14-17 %Cr; 10-12 %Fe; 0.5-1.0 %Cu; 1.0-1.5 %Mn; 0.1-0.2 %C; 0.4-0.6 %Si; 0.5-3.0 %W; 5-16 %Mo; 0.5-2.0 %Al; the remainder - Ni. The new alloys are recommended as materials for resistive elements of direct-glow cathode nodes of low capacity electron tubes [ru

  18. Sensitization to nickel: etiology, epidemiology, immune reactions, prevention, and therapy.

    Science.gov (United States)

    Hostynek, Jurij J

    2006-01-01

    Nickel is a contact allergen causing Type I and Type IV hypersensitivity, mediated by reagins and allergen-specific T lymphocytes, expressing in a wide range of cutaneous eruptions following dermal or systemic exposure. As such, nickel is the most frequent cause of hypersensitivity, occupational as well as among the general population. In synoptic form, the many effects that nickel has on the organism are presented to provide a comprehensive picture of the aspects of that metal with many biologically noxious, but metallurgically indispensable characteristics. This paper reviews the epidemiology, the prognosis for occupational and non-occupational nickel allergic hypersensitivity, the types of exposure and resulting immune responses, the rate of diffusion through the skin, and immunotoxicity. Alternatives toward prevention and remediation, topical and systemic, for this pervasive and increasing form of morbidity are discussed. The merits and limitations of preventive measures in industry and private life are considered, as well as the effectiveness of topical and systemic therapy in treating nickel allergic hypersensitivity.

  19. Electrodeposition behavior of nickel and nickel-zinc alloys from the zinc chloride-1-ethyl-3-methylimidazolium chloride low temperature molten salt

    International Nuclear Information System (INIS)

    Gou Shiping; Sun, I.-W.

    2008-01-01

    The electrodeposition of nickel and nickel-zinc alloys was investigated at polycrystalline tungsten electrode in the zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Although nickel(II) chloride dissolved easily into the pure chloride-rich 1-ethyl-3-methylimidazolium chloride ionic melt, metallic nickel could not be obtained by electrochemical reduction of this solution. The addition of zinc chloride to this solution shifted the reduction of nickel(II) to more positive potential making the electrodeposition of nickel possible. The electrodeposition of nickel, however, requires an overpotential driven nucleation process. Dense and compact nickel deposits with good adherence could be prepared by controlling the deposition potential. X-ray powder diffraction measurements indicated the presence of crystalline nickel deposits. Non-anomalous electrodeposition of nickel-zinc alloys was achieved through the underpotential deposition of zinc on the deposited nickel at a potential more negative than that of the deposition of nickel. X-ray powder diffraction and energy-dispersive spectrometry measurements of the electrodeposits indicated that the composition and the phase types of the nickel-zinc alloys are dependent on the deposition potential. For the Ni-Zn alloy deposits prepared by underpotential deposition of Zn on Ni, the Zn content in the Ni-Zn was always less than 50 atom%

  20. Effect of gate dielectrics on the performance of p-type Cu2O TFTs processed at room temperature

    KAUST Repository

    Al-Jawhari, Hala A.

    2013-12-01

    Single-phase Cu2O films with p-type semiconducting properties were successfully deposited by reactive DC magnetron sputtering at room temperature followed by post annealing process at 200°C. Subsequently, such films were used to fabricate bottom gate p-channel Cu2O thin film transistors (TFTs). The effect of using high-κ SrTiO3 (STO) as a gate dielectric on the Cu2O TFT performance was investigated. The results were then compared to our baseline process which uses a 220 nm aluminum titanium oxide (ATO) dielectric deposited on a glass substrate coated with a 200 nm indium tin oxide (ITO) gate electrode. We found that with a 150 nm thick STO, the Cu2O TFTs exhibited a p-type behavior with a field-effect mobility of 0.54 cm2.V-1.s-1, an on/off ratio of around 44, threshold voltage equaling -0.62 V and a sub threshold swing of 1.64 V/dec. These values were obtained at a low operating voltage of -2V. The advantages of using STO as a gate dielectric relative to ATO are discussed. © (2014) Trans Tech Publications, Switzerland.

  1. Semiconducting ZnSnN{sub 2} thin films for Si/ZnSnN{sub 2} p-n junctions

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Ruifeng [Hebei Engineering Laboratory of Photoelectronic Functional Crystals, Hebei University of Technology (HEBUT), Tianjin 300401 (China); Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, and Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo 315201 (China); Cao, Hongtao; Liang, Lingyan, E-mail: lly@nimte.ac.cn, E-mail: swz@hebut.edu.cn; Xie, Yufang; Zhuge, Fei; Zhang, Hongliang; Gao, Junhua; Javaid, Kashif [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, and Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo 315201 (China); Liu, Caichi; Sun, Weizhong, E-mail: lly@nimte.ac.cn, E-mail: swz@hebut.edu.cn [Hebei Engineering Laboratory of Photoelectronic Functional Crystals, Hebei University of Technology (HEBUT), Tianjin 300401 (China)

    2016-04-04

    ZnSnN{sub 2} is regarded as a promising photovoltaic absorber candidate due to earth-abundance, non-toxicity, and high absorption coefficient. However, it is still a great challenge to synthesize ZnSnN{sub 2} films with a low electron concentration, in order to promote the applications of ZnSnN{sub 2} as the core active layer in optoelectronic devices. In this work, polycrystalline and high resistance ZnSnN{sub 2} films were fabricated by magnetron sputtering technique, then semiconducting films were achieved after post-annealing, and finally Si/ZnSnN{sub 2} p-n junctions were constructed. The electron concentration and Hall mobility were enhanced from 2.77 × 10{sup 17} to 6.78 × 10{sup 17 }cm{sup −3} and from 0.37 to 2.07 cm{sup 2} V{sup −1} s{sup −1}, corresponding to the annealing temperature from 200 to 350 °C. After annealing at 300 °C, the p-n junction exhibited the optimum rectifying characteristics, with a forward-to-reverse ratio over 10{sup 3}. The achievement of this ZnSnN{sub 2}-based p-n junction makes an opening step forward to realize the practical application of the ZnSnN{sub 2} material. In addition, the nonideal behaviors of the p-n junctions under both positive and negative voltages are discussed, in hope of suggesting some ideas to further improve the rectifying characteristics.

  2. Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units

    KAUST Repository

    Zhang, Lei

    2016-11-04

    We demonstrate a new method to reverse the polarity and charge transport behavior of naphthalenediimide (NDI)-based copolymers by inserting a vinylene linker between the donor and acceptor units. The vinylene linkers minimize the intrinsic steric congestion between the NDI and thiophene moieties to prompt backbone planarity. The polymers with vinylene linkers exhibit electron n-channel transport characteristics under vacuum, similar to the benchmark polymer, P(NDI2OD-T2). To our surprise, when the polymers are measured in air, the dominant carrier type switches from n- to p-type and yield hole mobilities up to 0.45 cm(2) s(-1) with hole to electron mobility ratio of three (mu(h)/mu(e), similar to 3), which indicates that the hole density in the active layer can be significantly increased by exposure to air. This increase is consistent with the intrinsic more delocalized nature of the highest occupied molecular orbital of the charged vinylene polymer, as estimated by density functional theory (DFT) calculations, which facilitates hole transport within the polymer chains. This is the first demonstration of an efficient NDI-based hole semiconducting polymer, which will enable new developments in all-polymer solar cells, complementary circuits, and dopable polymers for use in thermoelectrics.

  3. Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units

    KAUST Repository

    Zhang, Lei; Rose, Bradley Daniel; Liu, Yao; Nahid, Masrur M.; Gann, Eliot; Ly, Jack; Zhao, Wei; Rosa, Stephen J.; Russell, Thomas P.; Facchetti, Antonio; McNei, Christopher R.; Bredas, Jean-Luc; Briseno, Alejandro L.

    2016-01-01

    We demonstrate a new method to reverse the polarity and charge transport behavior of naphthalenediimide (NDI)-based copolymers by inserting a vinylene linker between the donor and acceptor units. The vinylene linkers minimize the intrinsic steric congestion between the NDI and thiophene moieties to prompt backbone planarity. The polymers with vinylene linkers exhibit electron n-channel transport characteristics under vacuum, similar to the benchmark polymer, P(NDI2OD-T2). To our surprise, when the polymers are measured in air, the dominant carrier type switches from n- to p-type and yield hole mobilities up to 0.45 cm(2) s(-1) with hole to electron mobility ratio of three (mu(h)/mu(e), similar to 3), which indicates that the hole density in the active layer can be significantly increased by exposure to air. This increase is consistent with the intrinsic more delocalized nature of the highest occupied molecular orbital of the charged vinylene polymer, as estimated by density functional theory (DFT) calculations, which facilitates hole transport within the polymer chains. This is the first demonstration of an efficient NDI-based hole semiconducting polymer, which will enable new developments in all-polymer solar cells, complementary circuits, and dopable polymers for use in thermoelectrics.

  4. Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold

    DEFF Research Database (Denmark)

    Goffri, S.; Müller, C.; Stingelin-Stutzmann, N.

    2006-01-01

    of the two components, during which the semiconductor is predominantly expelled to the surfaces of cast films, we can obtain vertically stratified structures in a one-step process. Incorporating these as active layers in polymer field-effect transistors, we find that the concentration of the semiconductor......–crystalline/semiconducting–insulating multicomponent systems offer expanded flexibility for realizing high-performance semiconducting architectures at drastically reduced materials cost with improved mechanical properties and environmental stability, without the need to design all performance requirements into the active semiconducting polymer...

  5. Synthesis and semiconducting properties of tin(II) sulfide: Application to photocatalytic degradation of Rhodamine B under sun light

    Energy Technology Data Exchange (ETDEWEB)

    Kabouche, S. [Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, U.S.T.H.B., BP 32, Algiers, 16111 (Algeria); Bellal, B. [Laboratory of Storage and Valorization of Renewable Energies, Faculty of the Chemistry, U.S.T.H.B., BP 32, Algiers, 16111 (Algeria); Louafi, Y. [Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, U.S.T.H.B., BP 32, Algiers, 16111 (Algeria); Trari, M., E-mail: solarchemistry@gmail.com [Laboratory of Storage and Valorization of Renewable Energies, Faculty of the Chemistry, U.S.T.H.B., BP 32, Algiers, 16111 (Algeria)

    2017-07-01

    We have investigated the semiconducting and photoelectrochemical properties of SnS grown by a template-free chemical route using thiourea as precursor. Tin(II) sulfide is characterized by X-ray diffraction, scanning electron microscopy, diffuse reflectance and Raman spectroscopy. The X-ray diffraction indicates an orthorhombic SnS phase (SG: Pbnm) with a crystallite size of 52 nm while the optical measurements give a direct band gap of 1.33 eV. The Mott–Schottky plot exhibits a linear behavior, characteristic of n-type conductivity with a flat band potential of 0.19 V{sub SCE} and a donor density of 4.12 × 10{sup 18} cm{sup -3}. The electrochemical impedance spectroscopy (EIS) measured in the range (10{sup -2}–5 × 10{sup 4} Hz) shows one semicircle attributed to the bulk resistance (R{sub b} = 20.37 kΩ cm{sup 2}). The conduction band, located at 4.84 eV below vacuum, is made up of Sn{sup 2+:}5p while the valence band (6.17 eV) derives mainly from S{sup 2-}: 3p character. The energy band diagram, constructed from the photoelectrochemical characterization, predicts the photodegradation of Rhodamine B on SnS by H{sub 2}O{sub 2} generated photoelectrochemically. 88.46% of the initial concentration (10 mg L{sup -1}) disappears after adsorption and 4 h of exposure to solar light. The photoactivity is nearly restored during the second cycle and follows a second order kinetic with a rate constant of 1.55 × 10{sup -3} mg{sup -1} L min{sup -1}. - Highlights: • The semiconducting properties of SnS synthesized by chemical route are studied. • The n type conductivity is evidenced by chrono-amperometry and photoelectrochemistry. • The conduction band, located at 4.84 eV below vacuum, is made up of Sn{sup 2+}: 5p. • SnS was successfully used for the Rhodamine B oxidation under sunlight.

  6. Supercapacitive properties of symmetry and the asymmetry two electrode coin type supercapacitor cells made from MWCNTS/nickel oxide nanocomposite

    CSIR Research Space (South Africa)

    Adekunle, AS

    2011-10-01

    Full Text Available Supercapacitive properties of synthesised nickel oxides (NiO) nanoparticles integrated with multi-walled carbon nanotubes (MWCNT) in a two-electrode coin cell type supercapacitor were investigated. Successful formation of the MWCNT-NiO nanocomposite...

  7. APT characterization of high nickel RPV steels

    International Nuclear Information System (INIS)

    Miller, M.K.; Russell, K.F

    2004-01-01

    Full text: The microstructures of several high nickel content pressure vessel steels have been characterized by atom probe tomography. The purposes of this study were to investigate the influence of high nickel levels on the response to neutron irradiation of high and low copper pressure vessel steels and to establish whether any additional phases were present after neutron irradiation. The nickel levels in these steels were at least twice that typically found in Western pressure vessel steels. Two different types of pressure vessel steels with low and high copper contents were selected for this study. The first set of alloys was low copper (∼0.05% Cu) base (15Ch2NMFAA) and weld (12Ch2N2MAA) materials used in a VVER-1000 reactor. The composition of the lower nickel VVER-1000 base material was Fe- 0.17 wt% C, 0.30% Si, 0.46% Mn, 2.2% Cr, 1.26% Ni, 0.05% Cu, 0.01% S, 0.008% P, 0.10% V and 0.50% Mo. The composition of the higher nickel VVER-1000 weld material was Fe- 0.06 wt % C, 0.33% Si, 0.80% Mn, 1.8% Cr, 1.78% Ni, 0.07% Cu, 0.009% S, 0.005% P, and 0.63% Mo. The VVER-1000 steels were irradiated in the HSSI Program's irradiation facilities at the University of Michigan, Ford Nuclear Reactor at a temperature of 288 o C for 2,137 h at an average flux of 7.08 x 10 11 cm 2 s -1 for a fluence of 5.45 x 10 18 n cm -2 (E >1 MeV) and for 5,340 h at an average flux of 4.33 x 10 11 cm -2 s -1 for a fluence of 8.32 x 10 1 28 n cm -2 (E >1 MeV). Therefore, the total fluence was 1.38 x 10 19 n cm -2 (E >1 MeV). The second type of pressure vessel steel was a high copper (0.20% Cu) weld from the Palisades reactor. The average composition of the Palisades weld was Fe- 0.11 wt% C, 0.18% Si, 1.27% Mn, 0.04% Cr, 1.20% Ni, 0.20% Cu, 0.017% S, 0.014% P, 0.003% V and 0.55% Mn. The Palisades weld, designated weldment 'B' from weld heat 34B009, was irradiated at a temperature of 288 o C and a flux of ∼7 x 10 11 cm -2 s -1 to a fast fluence of 1.4 x 10 19 n cm -2 (E >1 MeV). These three

  8. Effects of P/Ni ratio and Ni content on performance of γ-Al_2O_3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons

    International Nuclear Information System (INIS)

    Zhang, Zhena; Tang, Mingxiao; Chen, Jixiang

    2016-01-01

    Graphical abstract: - Highlights: • The formation of AlPO_4 was unfavorable for that of nickel phosphides. • The phase compositions of nickel phosphide depended on the amount of reduced P. • Catalytic activity was determined by surface Ni site density and catalyst acidity. • HDO pathway was promoted by increasing P/Ni ratio and Ni content. • Nickel phosphide gave much higher carbon yield and lower H_2 consumption than Ni. - Abstract: γ-Al_2O_3-supported nickel phosphides (mNi-Pn) were prepared by the TPR method and tested for the deoxygenation of methyl laurate to hydrocarbons. The effects of the P/Ni ratio (n = 1.0–2.5) and Ni content (m = 5–15 wt.%) in the precursors on their structure and performance were investigated. Ni/γ-Al_2O_3 was also studied for comparison. It was found that the formation of AlPO_4 in the precursor inhibited the reduction of phosphate and so the formation of nickel phosphides. With increasing the P/Ni ratio and Ni content, the Ni, Ni_3P, Ni_1_2P_5 and Ni_2P phases orderly formed, accompanying with the increases of their particle size and the amount of weak acid sites (mainly due to P-OH group), while the CO uptake and the amount of medium strong acid sites (mainly related to Ni sites) reached maximum on 10%Ni-P1.5. In the deoxygenation reaction, compared with Ni/γ-Al_2O_3, the mNi-Pn catalysts showed much lower activities for decarbonylation, C−C hydrogenolysis and methanation due to the ligand and ensemble effects of P. The conversion and the selectivity to n-C11 and n-C12 hydrocarbons achieved maximum on 10%Ni-P 2.0 for the 10%Ni-Pn catalysts and on 8%Ni-P2.0 for the mNi-P2.0 catalysts, while the turnover frequency (TOF) of methyl laurate mainly increased with the P/Ni ratio and Ni content. We propose that TOF was influenced by the nickel phosphide phases, the catalyst acidity and the particle size as well as the synergetic effect between the Ni site and acid site. Again, the hydrodeoxygenation pathway of methyl

  9. Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions

    Science.gov (United States)

    Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar

    2018-05-01

    We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.

  10. Semiconducting La{sub 2}AuP{sub 3}, the metallic conductor Ce{sub 2}AuP{sub 3}, and other rare-earth gold phosphides Ln{sub 2}AuP{sub 3} with two closely related crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Eschen, M.; Kotzyba, G.; Kuennen, B.; Jeitschko, W. [Anorganisch-Chemisches Inst. der Westfaelischen Wilhelms-Univ., Muenster (Germany)

    2001-07-01

    The compounds Ln{sub 2}AuP{sub 3} were synthesized by reaction of the elemental components in evacuated silica tubes. Their crystal structures were determined from single-crystal diffractometer data. The compounds with Ln = La, Ce, and Pr crystallize with an orthorhombic U{sub 2}NiC{sub 3} type structure (Pnma, Z = 4). The structure refinement for Ce{sub 2}AuP{sub 3} resulted in a = 774.14(6) pm, b = 421.11(4) pm, c = 1612.3(1) pm, R = 0.019 for 1410 structure factors and 38 variable parameters. For Pr{sub 2}AuP{sub 3} a residual of R = 0.024 was obtained. Nd{sub 2}AuP{sub 3} crystallizes with a monoclinic distortion of this structure: P2{sub 1}/c, Z = 4, a = 416.14(4) pm, b = 768.87(6) pm, c = 1647.1(2) pm, {beta} = 104.06(1) , R = 0.022 for 1361 F values and 56 variables. The near-neighbor coordinations of the two structures are nearly the same. In both structures the gold and phosphorus atoms form two-dimensionally infinite nets, where the gold atoms are tetrahedrally coordinated by phosphorus atoms with Au-P distances varying between 245.8 and 284.2 pm. Two thirds of the phosphorus atoms form pairs with single-bond distances varying between 217.7 and 218.9 pm. Thus, using oxidation numbers the structures can be rationalized with the formulas (Ln{sup +3}){sub 2}[AuP{sub 3}]{sup -6} and (Ln{sup +3}){sub 2}Au{sup +1}(P{sub 2}){sup -4}P{sup -3}. Accordingly, La{sub 2}AuP{sub 3} is a diamagnetic semiconductor. Pr{sub 2}AuP{sub 3} is semi-conducting with an antiferromagnetic ground state, showing metamagnetism with a critical field of B{sub c} = 0.5({+-}0.1) T. In contrast, the cerium compound is a metallic conductor, even though its cell volume indicates that the cerium atoms are essentially trivalent, as is also suggested by the ferro- or ferrimagnetic behavior of the compound. (orig.)

  11. Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xuehang; Xu, Gui-Liang; Zhong, Guiming; Gong, Zhengliang; McDonald, Matthew J.; Zheng, Shiyao; Fu, Riqiang; Chen, Zonghai; Amine, Khalil; Yang, Yong

    2016-08-31

    P2-type sodium nickel manganese oxide-based cathode materials with higher energy densities are prime candidates for applications in rechargeable sodium ion batteries. A systematic study combining in situ high energy X-ray diffraction (HEXRD), ex situ Xray absorption fine spectroscopy (XAFS), transmission electron microscopy (TEM), and solid-state nuclear magnetic resonance (SSNMR) techniques was carried out to gain a deep insight into the structural evolution of P2-Na0.66Ni0.33-xZnxMn0.67O2 (x = 0, 0.07) during cycling. In situ HEXRD and ex situ TEM measurements indicate that an irreversible phase transition occurs upon sodium insertion-extraction of Na0.66Ni0.33Mn0.67O2. Zinc doping of this system results in a high structural reversibility. XAFS measurements indicate that both materials are almost completely dependent on the Ni4+/Ni3+/ Ni2+ redox couple to provide charge/discharge capacity. SS-NMR measurements indicate that both reversible and irreversible migration of transition metal ions into the sodium layer occurs in the material at the fully charged state. The irreversible migration of transition metal ions triggers a structural distortion, leading to the observed capacity and voltage fading. Our results allow a new understanding of the importance of improving the stability of transition metal layers.

  12. Structural Ordering of Semiconducting Polymers and Small-Molecules for Organic Electronics

    Science.gov (United States)

    O'Hara, Kathryn Allison

    Semiconducting polymers and small-molecules can be readily incorporated into electronic devices such as organic photovoltaics (OPVs), thermoelectrics (OTEs), organic light emitting diodes (OLEDs), and organic thin film transistors (OTFTs). Organic materials offer the advantage of being processable from solution to form flexible and lightweight thin films. The molecular design, processing, and resulting thin film morphology of semiconducting polymers drastically affect the optical and electronic properties. Charge transport within films of semiconducting polymers relies on the nanoscale organization to ensure electronic coupling through overlap of molecular orbitals and to provide continuous transport pathways. While the angstrom-scale packing details can be studied using X-ray scattering methods, an understanding of the mesoscale, or the length scale over which smaller ordered regions connect, is much harder to achieve. Grain boundaries play an important role in semiconducting polymer thin films where the average grain size is much smaller than the total distance which charges must traverse in order to reach the electrodes in a device. The majority of semiconducting polymers adopt a lamellar packing structure in which the conjugated backbones align in parallel pi-stacks separated by the alkyl side-chains. Only two directions of transport are possible--along the conjugated backbone and in the pi-stacking direction. Currently, the discussion of transport between crystallites is centered around the idea of tie-chains, or "bridging" polymer chains connecting two ordered regions. However, as molecular structures become increasingly complex with the development of new donor-acceptor copolymers, additional forms of connectivity between ordered domains should be considered. High resolution transmission electron microscopy (HRTEM) is a powerful tool for directly imaging the crystalline grain boundaries in polymer and small-molecule thin films. Recently, structures

  13. Influence of pH on the chemical and structural properties of the oxide films formed on 316L stainless steel, alloy 600 and alloy 690 in high temperature aqueous environments

    International Nuclear Information System (INIS)

    Dupin, M.; Gosser, P.; Walls, M.G.; Rondot, B.; Pastol, J.L.

    2002-01-01

    The oxide films formed on 316L stainless steel, alloy 600 and alloy 690 at 320 deg C in high temperature aqueous environments of different pH have been examined by glow discharge optical spectroscopy, scanning electron microscopy, atomic force microscopy and capacitance measurements. The analytical study reveals that the films formed at pH 5 are mainly composed of chromium oxides. When the pH increases the chromium concentration decreases and those of the other two elements (Ni and Fe) tend to increase. The films formed at pH 5 on 316L stainless steel and alloy 600 are thick and powder-like. The film formed at the same pH on alloy 690 is thin and is composed of a compact protective inner layer and a less-compact outer layer formed by crystals of mixed iron-nickel-chromium oxides. The morphological appearance of the thick films and that of the thin films is very different. However, equivalent morphologies can be observed for the relatively thin duplex films formed at pH 8 and pH 9.5 on the 316L stainless steel and nickel-base alloys. The evolution of the chemical composition of the films is accompanied by important changes from the point of view of their semi-conductivity. (authors)

  14. Producing bio-filter for absorbing and separating stable nickel and feasibility study to separate radioactive nickel by microorganisms

    International Nuclear Information System (INIS)

    Ghafourian, H.; Rabbani, M.; Naseri, Y.; Sadeghi, S.

    2004-01-01

    In this research work, bio absorption of nickel has been investigated by new 16 various bacterial strains isolated from Ramsar warm springs. As the obtained results show a strain of gram negative cocobacilluse bacteria is highly capable to take up nickel in optimum pH about 6. The effect of nickel solution concentrations in 20-200 ppm have been studied. Uptake capacity of bacterial biomass regarding to concentrations below 150 ppm is most highly and nearly constant, but it will be decreased over 150 ppm, and in 200 ppm absorption of nickel reaches to near zero. No nickel was taken up by bacterial biomass. Further studies showed that after 60 minutes of contact time, Nickel uptake reaches maximum by 53%. Considering the uptake mechanism revealed that bio sorption was very limited and the uptake mainly occurs through a accumulation dependent on metabolic activities. Also the results show that the presence of the other cations such as Zn 2+ , Cu 2+ and Pb 2+ is ineffective to biological uptake of nickel. Nickel taken up by biomass can be easily recovered by HNO 3 with the concentration of 0.1 M

  15. Novel C-2 epimerization of aldoses promoted by nickel(II) diamine complexes, involving a stereospecific pinacol-type 1,2-carbon shift

    International Nuclear Information System (INIS)

    Tanase, Tomoaki; Shimizu, Fumihiko; Kuse, Manabu; Yano, Shigenobu; Hidai, Masanobu; Yoshikawa, Sadao

    1988-01-01

    The newly discovered C-2 epimerization of aldoses promoted by nickel(II) diamine complexes has been investigated in detail by using 13 C-enriched D-glucose, 13 C NMR spectroscopy, and EXAFS (extended x-ray absorption fine structure) analysis. Aldoses treated with nickel(II) diamine complexes (diamine = N,N,N'-trimethylethylenediamine (N,N,N'-Me 3 en), N,N,N',N'-tetramethylethylenediamine (N,N,N',N'-Me 4 en), etc.) in methanolic solutions were rapidly (60 degree C, 3-5 min) epimerized at C-2 to give equilibrium mixtures where the ratio of C-2 epimers shifts to the side of the naturally rare mannose-type aldoses (having the cis arrangement of C-2 and C-3 hydroxyl groups) compared with those in the thermodynamic equilibrium states. The epimerization product of D-[1- 13 C]glucose was exclusively D-[2- 13 C]mannose, demonstrating that the reaction involves a stereospecific 1,2-shift of the carbon skeleton resulting in inversion of configuration at C-2. Furthermore, the absorption and circular dichroism spectra of the reaction solutions indicated the presence of an intermediate nickel(II) complex containing both diamine and sugar components, which was directly revealed by EXAFS analysis to be a mononuclear nickel(II) complex having octahedral coordination geometry. All these observations strongly suggest that the C-2 epimerization proceeds through an intermediate mononuclear nickel(II) complex, where the carbinolamine-like adduct of aldose with diamine in an open-chain form is epimerized at C-2 by a stereospecific rearrangement of the carbon skeleton or a pinacol-type rearrangement involving a cyclic transition state. 44 refs., 5 figs., 4 tabs

  16. Nickel in nails, hair and plasma from nickel-hypersensitive women

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Veien, Niels

    1990-01-01

    The concentrations of nickel in finger-nails, toe-nails, hair and plasma from 71 nickel-hypersensitive women and 20 non-hypersensitive women were determined. Nickel concentrations in finger-nails were significantly higher than in toe-nails in both the nickel-hypersensitive group and the control...... group. Nickel-sensitive women had significantly higher levels of nickel in toe-nails, hair and plasma than had control subjects, whereas there was no significant difference in nickel concentration in finger-nails between the two groups. No correlation could be demonstrated between nickel levels in any...... combination of nails, hair and plasma in the nickel-hypersensitive or in the control group....

  17. Nickel - iron battery. Nikkel - jern batteri

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H. A.

    1989-03-15

    A newer type of nickel-iron battery, (SAFT 6v 230 Ah monobloc), which could possibly be used in relation to electrically driven light road vehicles, was tested. The same test methods used for lead batteries were utilized and results compared favourably with those reached during other testings carried out, abroad, on a SAFT nickle-iron battery and a SAB-NIFE nickel-iron battery. Description (in English) of the latter-named tests are included in the publication as is also a presentation of the SAFT battery. Testing showed that this type of battery did not last as long as had been expected, but the density of energy and effect was superior to lead batteries. However energy efficiency was rather poor in comparison to lead batteries and it was concluded that nickel-iron batteries are not suitable for stationary systems where recharging under a constant voltage is necessary. (AB).

  18. Risk assessment for nickel and nickel compounds in the ambient air from exposure by inhalation. Review of the European situation

    Energy Technology Data Exchange (ETDEWEB)

    Lepicard, S; Schneider, T [Centre d` Etude sur l` Evaluation de la Protection dans le Domaine Nucleaire, 92 - Fontenay-aux-Roses (France); Fritsch, P; Maximilien, R [Commissariat a l` Energie Atomique, Brussels (Belgium). Dept. des Sciences du Vivant; Deloraine, A [Centre Rhone-Alpes d` Epidemiologie et de Prevention Sanitaire (France)

    1997-12-01

    The objective of this report is to evaluate the risk associated with exposure to nickel in the ambient air, for the general public. The document is divided into three parts, comprising: A review of the regulatory context, a description of the physical and chemical characteristics of nickel and certain nickel compounds, a description of certain industrial processes involving nickel, and the characterization of human exposure (emissions, immissions, transport in the atmosphere); a risk assessment on the basis of human (occupational exposure) and animal data related to the presumed risk of lung cancer; an assessment of the risk associated with exposure to nickel in the ambient air for the general public. (R.P.) 55 refs.

  19. An alternative approach to charge transport in semiconducting electrodes

    Science.gov (United States)

    Thomchick, J.; Buoncristiani, A. M.

    1980-01-01

    The excess-carrier charge transport through the space-charge region of a semiconducting electrode is analyzed by a technique known as the flux method. In this approach reflection and transmission coefficients appropriate for a sheet of uniform semiconducting material describe its transport properties. A review is presented of the flux method showing that the results for a semiconductor electrode reduce in a limiting case to those previously found by Gaertner if the depletion layer is treated as a perfectly transmitting medium in which scattering and recombination are ignored. Then, in the framework of the flux method the depletion layer is considered more realistically by explicitly taking into account scattering and recombination processes which occur in this region.

  20. Effect of sulfur addition on the transport properties of semiconducting iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    El-Desoky, M.M. [Physics Department, Faculty of Science, Suez Canal University, Suez (Egypt); Ibrahim, F.A. [Department of Physics, Faculty of Education, Suez Canal University, Al-Arish (Egypt); Hassaan, M.Y. [Department of Physics, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo (Egypt)

    2011-08-15

    The present paper focuses on a quantitative analysis of the metallic and semiconducting behavior of electrical resistivity in La{sub 0.91}Rb{sub 0.06}Mn{sub 0.94}O{sub 3} manganites. The contribution of inherent low-frequency acoustic phonons as well as high-frequency optical phonons, to the electron-phonon resistivity is estimated following Bloch-Gruneisen model. The computed phonon resistivity is compared with that of reported metallic resistivity, accordingly {rho}diff. [{rho}exp. - {l_brace}{rho}0 + {rho}e-ph (={rho}ac + {rho}op){r_brace}] have been analysed through electron-electron scattering. Also, the difference can be varies linearly with T{sup 4.5} in accordance with the electron-magnon scattering in the double exchange process. The results reveal important aspects transport mechanism as well as point out that it is not only dominated by electron-phonon scattering, but also by electron-electron and electron-magnon scattering process. Alternatively, in high temperature regime (T {>=} T{sub P}) the semiconducting nature is discussed with Mott's variable range hopping (VRH) and small polaron conduction (SPC) model. (authors)

  1. Effect of sulfur addition on the transport properties of semiconducting iron phosphate glasses

    International Nuclear Information System (INIS)

    El-Desoky, M.M.; Ibrahim, F.A.; Hassaan, M.Y.

    2011-01-01

    The present paper focuses on a quantitative analysis of the metallic and semiconducting behavior of electrical resistivity in La 0.91 Rb 0.06 Mn 0.94 O 3 manganites. The contribution of inherent low-frequency acoustic phonons as well as high-frequency optical phonons, to the electron-phonon resistivity is estimated following Bloch-Gruneisen model. The computed phonon resistivity is compared with that of reported metallic resistivity, accordingly ρdiff. [ρexp. - {ρ0 + ρe-ph (=ρac + ρop)}] have been analysed through electron-electron scattering. Also, the difference can be varies linearly with T 4.5 in accordance with the electron-magnon scattering in the double exchange process. The results reveal important aspects transport mechanism as well as point out that it is not only dominated by electron-phonon scattering, but also by electron-electron and electron-magnon scattering process. Alternatively, in high temperature regime (T ≥ T P ) the semiconducting nature is discussed with Mott's variable range hopping (VRH) and small polaron conduction (SPC) model. (authors)

  2. Synthesis and characterization of n-type NiO:Al thin films for fabrication of p-n NiO homojunctions

    Science.gov (United States)

    Sun, Hui; Liao, Ming-Han; Chen, Sheng-Chi; Li, Zhi-Yue; Lin, Po-Chun; Song, Shu-Mei

    2018-03-01

    n-type NiO:Al thin films were deposited by RF magnetron sputtering. Their optoelectronic properties versus Al target power was investigated. The results show that with increasing Al target power, the conduction type of NiO films changes from p-type to n-type. The variation of the film’s electrical and optical properties depends on Al amount in the film. When Al target power is relatively low, Al3+ cations tend to enter nickel vacancy sites, which makes the lattice structure of NiO more complete. This improves the carrier mobility and film’s transmittance. However, when Al target power exceeds 40 W, Al atoms begin to enter into interstitial sites and form an Al cluster in the NiO film. This behavior is beneficial for improving the film’s n-type conductivity but degrades the film’s transmittance. Finally, Al/(p-type NiO)/(n-type NiO:Al)/ITO homojunctions were fabricated. Their performance was compared with Al/(p-type NiO)/ITO heterojunctions without an n-type NiO layer. Thanks to the better interface quality between the two NiO layers, the homojunctions present better performance.

  3. Nickel base alloys

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Nickel based alloy, the characteristic of which is that it mainly includes in percentages by weight: 57-63 Ni, 7-18 Cr, 10-20 Fe, 4-6 Mo, 1-2 Nb, 0.2-0.8 Si, 0.01-0.05 Zr, 1.0-2.5 Ti, 1.0-2.5 Al, 0.02-0.06 C and 0.002-0.015 B. The aim is to create new nickel-chromium alloys, hardened in a solid solution and by precipitation, that are stable, exhibit reduced swelling and resistant to plastic deformation inside the reactor. These alloys of the gamma prime type have improved mechanical strengthm swelling resistance, structural stability and welding properties compared with Inconel 625 [fr

  4. Nickel-induced cytokine production from mononuclear cells in nickel-sensitive individuals and controls. Cytokine profiles in nickel-sensitive individuals with nickel allergy-related hand eczema before and after nickel challenge

    DEFF Research Database (Denmark)

    Borg, L; Christensen, J M; Kristiansen, J

    2000-01-01

    Exposure to nickel is a major cause of allergic contact dermatitis which is considered to be an inflammatory response induced by antigen-specific T cells. Here we describe the in vitro analysis of the nickel-specific T-cell-derived cytokine response of peripheral blood mononuclear cells from 35...... was somewhat of a surprise, since previous studies have suggested a Th1 response in nickel-mediated allergic contact dermatitis. Subsequently, the nickel-allergic individuals were randomized to experimental exposure to nickel or vehicle in a double-blind design. A daily 10-min exposure of one finger to 10 ppm...... nickel solution for 1 week followed by 100 ppm for an additional week evoked a clinical response of hand eczema in the nickel-exposed group. Blood samples were drawn on days 7 and 14 after the start of this exposure to occupationally relevant concentrations of nickel. No statistically significant...

  5. Study of the high temperature oxidation of nickel; Contribution a l'etude de l'oxydation du nickel aux temperatures elevees

    Energy Technology Data Exchange (ETDEWEB)

    Berry, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-11-01

    The parabolic oxidation of nickel by oxygen and by air at atmospheric pressure has been studied in the temperature range 600 to 1400 C, in particular by thermogravimetric and micrographic techniques. The mechanism of the reaction has been determined; it has been shown in particular that the break in the Arrhenius plot of the kinetics, occurring at about 950 C, is the result of a stimulation of the diffusion across the nickel prot-oxide film above this temperature; this is the result of the presence of excess nickel vacancies in the film. A systematic study has also been made of the influence of the oxygen pressure P{sub O{sub 2}} (10{sup -2} torr {<=} P{sub O{sub 2}} {<=} 760 torr) on the parabolic oxidation of nickel between 800 and 1400 C. In the range 1000 to 1400 C, the activation energy of the process decreases monotonously from 57 to 34 kcal/mole as P{sub O{sub 2}} decreases from 760 to 1 torr. Furthermore, it has been shown that the parabolic oxidation constant is proportional to P{sub O{sub 2}}{sup 1/n} the value of n is not invariant however in the temperature range examined, but decreases from 6 to about 3 when the temperature increases from 900 to 1400 C. Finally, a study has been made of the oxidation of nickel in carbon dioxide at atmospheric pressure between 750 and 1400 C. The main reaction is Ni + CO{sub 2} {yields} NiO + CO, and corresponds, with a good approximation, to the reaction of the metal with the oxygen produced by the thermal dissociation of the CO{sub 2}. (author) [French] L'oxydation parabolique du nickel avec l'oxygene et l'air a la pression atmospherique a ete etudiee dans l'intervalle de temperatures 600-1400 C, surtout par voies thermogravimetrique et micrographique. Le mecanisme de la reaction a ete precise; en particulier, il a ete montre que la brisure de la courbe d'Arrhenius traduisant sa cinetique, qui se produit a 950 C environ, resulte d'une stimulation de la diffusion dans la pellicule de protoxyde de nickel au dessous de

  6. II. Electrodeposition/removal of nickel in a spouted electrochemical reactor

    OpenAIRE

    Grimshaw, Pengpeng; Calo, Joseph M.; Shirvanian, Pezhman A.; Hradil, George

    2011-01-01

    An investigation is presented of nickel electrodeposition from acidic solutions in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on nickel removal/recovery rate, current efficiency, and corrosion rate of deposited nickel on the cathodic particles were explored under galvanostatic operation. Nitrogen sparging was used to decrease the dissolved oxygen concentration in the electrolyte in order to reduce the nickel corrosion rate, ther...

  7. Nickel sensitisation in mice: a critical appraisal.

    Science.gov (United States)

    Johansen, Pål; Wäckerle-Men, Ying; Senti, Gabriela; Kündig, Thomas M

    2010-06-01

    The market release of new domestic and industrial chemical and metal products requires certain safety certification, including testing for skin sensitisation. Although various official guidelines have described how such testing is to be done, the validity of the available test models are in part dubious, for which reason regulatory agencies and research aim to further improve and generalise the models for testing of skin sensitisation. We applied a recently published murine model of nickel allergy as to test its applicability in a regulatory setting and to study and better understand the events leading to type-IV hypersensitivity. Nickel was chosen as model hapten since it induces allergic contact dermatitis with high incidence in the general population. Typically, C57BL/6 mice were sensitised and challenged by intradermal applications of nickel, and cutaneous inflammation was analysed by the mouse ear-swelling test, by histology, and by lymphocyte reactivity in vitro. Surprisingly, the study suggested that the skin reactions observed were results of irritant reactions rather than of adaptive immune responses. Non-sensitised mice responded with cutaneous inflammation and in vitro lymphocyte reactivity which were comparable with nickel-sensitised mice. Furthermore, histological examinations as well as experiments in T-cell deficient mice demonstrated that lymphocytes were not involved and that nickel caused an irritant contact dermatitis rather a true allergic type-IV contact dermatitis. The authors question the validity of the described murine model of nickel allergy. Copyright 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Farming nickel from non-ore deposits, combined with CO2 sequestration

    NARCIS (Netherlands)

    Schuiling, R.D.

    2013-01-01

    A new way is described to recover nickel from common rock-types, by the use of nickel hy- peraccumulator plants. The idea of phytomining nickel was suggested earlier, but never imple- mented. This situation may soon change, be- cause the mining sector suffers from a poor image on account of the

  9. Effects of P/Ni ratio and Ni content on performance of γ-Al{sub 2}O{sub 3}-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhena; Tang, Mingxiao; Chen, Jixiang, E-mail: jxchen@tju.edu.cn

    2016-01-01

    Graphical abstract: - Highlights: • The formation of AlPO{sub 4} was unfavorable for that of nickel phosphides. • The phase compositions of nickel phosphide depended on the amount of reduced P. • Catalytic activity was determined by surface Ni site density and catalyst acidity. • HDO pathway was promoted by increasing P/Ni ratio and Ni content. • Nickel phosphide gave much higher carbon yield and lower H{sub 2} consumption than Ni. - Abstract: γ-Al{sub 2}O{sub 3}-supported nickel phosphides (mNi-Pn) were prepared by the TPR method and tested for the deoxygenation of methyl laurate to hydrocarbons. The effects of the P/Ni ratio (n = 1.0–2.5) and Ni content (m = 5–15 wt.%) in the precursors on their structure and performance were investigated. Ni/γ-Al{sub 2}O{sub 3} was also studied for comparison. It was found that the formation of AlPO{sub 4} in the precursor inhibited the reduction of phosphate and so the formation of nickel phosphides. With increasing the P/Ni ratio and Ni content, the Ni, Ni{sub 3}P, Ni{sub 12}P{sub 5} and Ni{sub 2}P phases orderly formed, accompanying with the increases of their particle size and the amount of weak acid sites (mainly due to P-OH group), while the CO uptake and the amount of medium strong acid sites (mainly related to Ni sites) reached maximum on 10%Ni-P1.5. In the deoxygenation reaction, compared with Ni/γ-Al{sub 2}O{sub 3}, the mNi-Pn catalysts showed much lower activities for decarbonylation, C−C hydrogenolysis and methanation due to the ligand and ensemble effects of P. The conversion and the selectivity to n-C11 and n-C12 hydrocarbons achieved maximum on 10%Ni-P 2.0 for the 10%Ni-Pn catalysts and on 8%Ni-P2.0 for the mNi-P2.0 catalysts, while the turnover frequency (TOF) of methyl laurate mainly increased with the P/Ni ratio and Ni content. We propose that TOF was influenced by the nickel phosphide phases, the catalyst acidity and the particle size as well as the synergetic effect between the Ni site and

  10. II. Electrodeposition/removal of nickel in a spouted electrochemical reactor.

    Science.gov (United States)

    Grimshaw, Pengpeng; Calo, Joseph M; Shirvanian, Pezhman A; Hradil, George

    2011-08-17

    An investigation is presented of nickel electrodeposition from acidic solutions in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on nickel removal/recovery rate, current efficiency, and corrosion rate of deposited nickel on the cathodic particles were explored under galvanostatic operation. Nitrogen sparging was used to decrease the dissolved oxygen concentration in the electrolyte in order to reduce the nickel corrosion rate, thereby increasing the nickel electrowinning rate and current efficiency. A numerical model of electrodeposition, including corrosion and mass transfer in the particulate cathode moving bed, is presented that describes the behavior of the experimental net nickel electrodeposition data quite well.

  11. Bioadsorption of nickel Mining Company by residual biomass Phyllanthus Orbicularis

    Directory of Open Access Journals (Sweden)

    Ariel Díaz-Puig

    2017-01-01

    Full Text Available Kinetic parameters for the adsorption of nickel were studied in the waste CalcinationPlant Company Ernesto Che Guevara biomass Phyllanthus orbicularis synthetic and industrial waste Calcination Plant enterprise solutions. The results showed that the major factors influencing the adsorption capacity of the biomass increases with increasing pH and the initial concentration of nickel in the effluent and is reduced by increasing the biomass concentration. Meanwhile, the removal efficiency of residual nickel increases with increasing pH and concentration of biomass and reduced when the initial concentration of nickel in the effluent increases. The adsorption capacity nickel biomass Phyllanthus orbicularis from synthetic solutions and industrial waste Calcination Plant Company Nickel "Comandante Ernesto Che Guevara" was 44,05 and 26,25 mg/g respectively. The adsorption process nickel biomass Phyllanthus orbicularis follows kinetics pseudo-second order and according to the values of free energy of adsorption obtained through model-RadushkevichDubinin was 267,26 kJ/mol, this nature demonstrates that corresponds to a process mediated by chemical adsorption where the formation of stable bonds between the functional groups present in the biomass and the metal ions predominates.

  12. Itinerant magnetism in doped semiconducting β-FeSi₂ and CrSi₂.

    Science.gov (United States)

    Singh, David J; Parker, David

    2013-12-17

    Novel or unusual magnetism is a subject of considerable interest, particularly in metals and degenerate semiconductors. In such materials the interplay of magnetism, transport and other Fermi liquid properties can lead to fascinating physical behavior. One example is in magnetic semiconductors, where spin polarized currents may be controlled and used. We report density functional calculations predicting magnetism in doped semiconducting β-FeSi₂ and CrSi₂ at relatively low doping levels particularly for n-type. In this case, there is a rapid cross-over to a half-metallic state as a function of doping level. The results are discussed in relation to the electronic structure and other properties of these compounds.

  13. High-performance germanium n+/p junction by nickel-induced dopant activation of implanted phosphorus at low temperature

    International Nuclear Information System (INIS)

    Huang Wei; Lu Chao; Yu Jue; Wei Jiang-Bin; Chen Chao-Wen; Wang Jian-Yuan; Xu Jian-Fang; Li Cheng; Chen Song-Yan; Lai Hong-Kai; Wang Chen; Liu Chun-Li

    2016-01-01

    High-performance Ge n + /p junctions were fabricated at a low formation temperature from 325 °C to 400 °C with a metal(nickel)-induced dopant activation technique. The obtained NiGe electroded Ge n + /p junction has a rectification ratio of 5.6× 10 4 and a forward current of 387 A/cm 2 at −1 V bias. The Ni-based metal-induced dopant activation technique is expected to meet the requirement of the shallow junction of Ge MOSFET. (paper)

  14. Brucella abortus ure2 region contains an acid-activated urea transporter and a nickel transport system

    Directory of Open Access Journals (Sweden)

    García-Lobo Juan M

    2010-04-01

    Full Text Available Abstract Background Urease is a virulence factor that plays a role in the resistance of Brucella to low pH conditions, both in vivo and in vitro. Brucella contains two separate urease gene clusters, ure1 and ure2. Although only ure1 codes for an active urease, ure2 is also transcribed, but its contribution to Brucella biology is unknown. Results Re-examination of the ure2 locus showed that the operon includes five genes downstream of ureABCEFGDT that are orthologs to a nikKMLQO cluster encoding an ECF-type transport system for nickel. ureT and nikO mutants were constructed and analyzed for urease activity and acid resistance. A non-polar ureT mutant was unaffected in urease activity at neutral pH but showed a significantly decreased activity at acidic pH. It also showed a decreased survival rate to pH 2 at low concentration of urea when compared to the wild type. The nikO mutant had decreased urease activity and acid resistance at all urea concentrations tested, and this phenotype could be reverted by the addition of nickel to the growth medium. Conclusions Based on these results, we concluded that the operon ure2 codes for an acid-activated urea transporter and a nickel transporter necessary for the maximal activity of the urease whose structural subunits are encoded exclusively by the genes in the ure1 operon.

  15. Chemoorganotrophic Bioleaching of Olivine for Nickel Recovery

    Directory of Open Access Journals (Sweden)

    Yi Wai Chiang

    2014-06-01

    Full Text Available Bioleaching of olivine, a natural nickel-containing magnesium-iron-silicate, was conducted by applying chemoorganotrophic bacteria and fungi. The tested fungus, Aspergillus niger, leached substantially more nickel from olivine than the tested bacterium, Paenibacillus mucilaginosus. Aspergillus niger also outperformed two other fungal species: Humicola grisae and Penicillium chrysogenum. Contrary to traditional acid leaching, the microorganisms leached nickel preferentially over magnesium and iron. An average selectivity factor of 2.2 was achieved for nickel compared to iron. The impact of ultrasonic conditioning on bioleaching was also tested, and it was found to substantially increase nickel extraction by A. niger. This is credited to an enhancement in the fungal growth rate, to the promotion of particle degradation, and to the detachment of the stagnant biofilm around the particles. Furthermore, ultrasonic conditioning enhanced the selectivity of A. niger for nickel over iron to a value of 3.5. Pre-carbonating the olivine mineral, to enhance mineral liberation and change metal speciation, was also attempted, but did not result in improvement as a consequence of the mild pH of chemoorganotrophic bioleaching.

  16. Advanced STEM/EDX investigation on an oxide scale thermally grown on a high-chromium iron–nickel alloy under very low oxygen partial pressure

    International Nuclear Information System (INIS)

    Latu-Romain, L.; Madi, Y.; Mathieu, S.; Robaut, F.; Petit, J.-P.; Wouters, Y.

    2015-01-01

    Highlights: • A scale grown on a high-chromium iron–nickel alloy under low oxygen partial pressure was studied. • STEM-EDX maps at high resolution on a transversal thin lamella have been conducted. • The real complexity of the oxide layer has been highlighted. • These results explain the elevated number of semiconducting contributions. - Abstract: A thermal oxide scale has been grown on a high-chromium iron-nickel alloy under very low oxygen partial pressure (1050 °C, 10"−"1"0 Pa). In this paper, a special attention has been paid to morphological and chemical characterizations of the scale by scanning transmission electron microscopy and energy dispersive X-ray analysis at high resolution on a cross-section thin lamella beforehand prepared by using a combined focused ion beam/scanning electron microscope instrument. The complexity of the oxide layer is highlighted, and the correlation between the present results and the ones of a photoelectrochemical study is discussed.

  17. Preparation of n- and p-InP films by PH{sub 3} treatment of electrodeposited In layers

    Energy Technology Data Exchange (ETDEWEB)

    Cattarin, S.; Musiani, M. [C.N.R., Padova (Italy). Istituto di Polarografia ed Elettrochimica Preparativa; Casellato, U.; Rossetto, G. [C.N.R., Padova (Italy). Istituto di Chimica e Tecnologie Inorganische e dei Materiali Avanzati; Razzini, G. [Politecnico di Milano (Italy). Dipt. di Chimica Fisica Applicata; Decker, F.; Scrosati, B. [Univ. La Sapienza, Roma (Italy). Dipt. di Chimica

    1995-04-01

    InP is among the few semiconducting materials with the potential for excellence in several applications, including solar energy conversion. Thin InP layers have been prepared by electrodeposition of In films on Ti substrates (ca. 2 mg/cm{sup 2} of In) and their annealing in PH{sub 3} flow. The obtained material, characterized by scanning electron microscopy-energy dispersive X-ray analysis and X-ray diffraction techniques, shows uneven substrate coverage but good crystallinity. Photoelectrochemical investigations in acidic polyiodide medium show significant n-type photoactivity for the samples prepared from a nominally pure In layer. A p-type photoactivity is obtained depositing a small amount of Zn on top of the In layer prior to annealing. Results are compared with those obtained preparing InP layers on Ti by a conventional metallorganic chemical vapor deposition technique.

  18. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    International Nuclear Information System (INIS)

    Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng

    2014-01-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni 2 P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni 2 P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni 2 P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni 2 P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni 2 P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni 2 P was postulated and discussed in detail. To investigate its catalytic properties, SiO 2 supported three-dimensional Ni 2 P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni 2 P/SiO 2

  19. Removing nickel from nickel-coated carbon fibers

    Science.gov (United States)

    Hardianto, A.; Hertleer, C.; De Mey, G.; Van Langenhove, L.

    2017-10-01

    Conductive fibers/yarns are one of the most important materials for smart textiles because of their electrically conductive functionality combined with flexibility and light weight. They can be applied in many fields such as the medical sector, electronics, sensors and even as thermoelectric generators. Temperature sensors, for example, can be made using the thermocouple or thermopile principle which usually uses two different metal wires that can produce a temperature-dependent voltage. However, if metal wires are inserted into a textile structure, they will decrease the flexibility properties of the textile product. Nickel-coated Carbon Fiber (NiCF), a conductive textile yarn, has a potential use as a textile-based thermopile if we can create an alternating region of carbon and nickel along the fiber which in turn it can be used for substituting the metallic thermopile. The idea was to remove nickel from NiCF in order to obtain a yarn that contains alternating zones of carbon and nickel. Due to no literature reporting on how to remove nickel from NiCF, in this paper we investigated some chemicals to remove nickel from NiCF.

  20. The study on corrosion resistance of decorative satin nickel plating

    OpenAIRE

    LU Wenya; CHENG Xianhua

    2012-01-01

    This study examined the corrosion resistance of satin nickel plating on conductive plastic.The electrochemical tests were to analyze the corrosion behavior of satin nickel plating with different processes in 3.5% NaCl solution.The results show that,because the satin nickel plating has an organic film on its surface due to process characteristics,the film results in different corrosion resistance.By increasing satin additive dosage,the nickel plating chroma decreases,the microsurface of the p...

  1. Nickel hydrogen bipolar battery electrode design

    Science.gov (United States)

    Puglisi, V. J.; Russell, P.; Verrier, D.; Hall, A.

    1985-01-01

    The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented.

  2. Preparation of one-dimensional nickel nanowires by self-assembly process

    International Nuclear Information System (INIS)

    Wang Dapeng; Sun Dongbai; Yu Hongying; Qiu Zhigang; Meng Huimin

    2009-01-01

    Self-assembly nickel nanowires were prepared by soft template method in ethylene glycol solutions. The structure and micro-morphology of the products were analyzed using X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). The results showed that the products were pure nickel powders with face-centered cubic (fcc) structure. A growth model was presented to explain the growth mechanism. The effects of pH value, surfactant, reaction temperature and reaction time on the synthesis of nickel nanowires were discussed. When pH > 11.5, the reaction temperature was between 80 deg. C and 90 deg. C, and the concentration of cetyltrimethyl ammonium bromide (CTAB) was higher than 7.0 x 10 -3 , zigzag nickel nanowires with slenderness ratio about 20 could be synthesized

  3. Inkjet Printing NiO-Based p-Type Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Brisse, R; Faddoul, R; Bourgeteau, T; Tondelier, D; Leroy, J; Campidelli, S; Berthelot, T; Geffroy, B; Jousselme, B

    2017-01-25

    Fabrication at low cost of transparent p-type semiconductors with suitable electronic properties is essential toward the scalability of many electronic devices, especially for photovoltaic and photocatalytic applications. In this context, the synthesis of mesoporous NiO films through inkjet printing of a sol-gel ink was investigated for the first time. Nickel chloride and Pluronic F-127, used as nickel oxide precursor and pore-forming agent, respectively, were formulated in a water/ethanol mixture to prepare a jettable ink for Dimatix printer. Multilayer NiO films were formed, and different morphologies could be obtained by playing on the interlayer thermal treatment. At low temperature (30 °C), a porous nanoparticulate-nanofiber dual-pore structure was observed. On the other hand, with a high temperature treatment (450 °C), nanoparticulate denser films without any dual structure were obtained. The mechanism for NiO formation during the final sintering step, investigated by means of X-ray photolectron spectroscopy, shows that a Ni(OH) 2 species is an intermediate between NiCl 2 and NiO. The different morphologies and thicknesses of the NiO films were correlated to their performance in a p-DSSC configuration, using a new push-pull dye (so-called "RBG-174") and an iodine-based electrolyte. Moreover, the positive impact of a nanometric NiO x layer deposited by spin-coating and introduced between FTO and the NiO mesoporous network is highlighted in the present work. The best results were obtained with NiO x /four layer-NiO mesoporous photocathodes of 860 nm, with a current density at the short circuit of 3.42 mA cm -2 (irradiance of 100 mW cm -2 spectroscopically distributed following AM 1.5).

  4. Excitation functions and isotopic effects in (n, p) reactions for stable nickel isotopes from reaction threshold to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lalremruata, B. [Department of Physics, University of Pune, Ganeshkhind, Pune-411007, Maharashtra (India)], E-mail: marema@physics.unipune.ernet.in; Ganesan, S. [Reactor Physics Design Division, BARC, Mumbai 58 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Ganeshkhind, Pune-411007, Maharashtra (India)], E-mail: vnb@physics.unipune.ernet; Dhole, S.D. [Department of Physics, University of Pune, Ganeshkhind, Pune-411007, Maharashtra (India)], E-mail: sanjay@physics.unipune.ernet.in

    2009-05-01

    The excitation function for (n, p) reactions from reaction threshold to 20 MeV on five nickel isotopes viz; {sup 58}Ni, {sup 60}Ni, {sup 61}Ni, {sup 62}Ni and {sup 64}Ni were calculated using Talys-1.0 nuclear model code involving the fixed set of global parameters. A good agreement between the calculated and measured data is obtained with minimum effort on parameter fitting and only one free parameter called 'Shell damping factor'. This is of importance to the validation of nuclear model approaches with increased predictive power. The systematic decrease in (n, p) cross-sections with increasing neutron number in reactions induced by neutrons on isotopes of nickel is explained in terms of the proton separation energy and the pre-equilibrium model. The compound nucleus and pre-equilibrium reaction mechanism as well as the isotopic effects were also studied.

  5. Study of sorption properties of nickel on chitosan; Studium sorpcnych vlastnosti niklu na chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pivarciova, L; Rosskopfova, O; Galambos, M [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra jadrovej chemie, 84215 Bratislava (Slovakia)

    2012-04-25

    Sorption of nickel on the selected sorbent was studied by a batch method. The effect of contact time and pH to reach sorption equilibrium was studied. During sorption of Ni{sup 2+} ions there proceed predominantly ion-exchange reactions on its surface. Time to reach sorption equilibrium of nickel on chitosan was 14 hours. Sorption percentage after 14 hours reached a value of 84 %. Solutions with starting pH value between 3.9 and 8.1 were used for sorption of nickel. A sorption of nickel on chitosan was > 97% in monitored interval of pH after 24 hours of contact . At an initial pH from 3.9 to 6.4 was the final pH 6.6 due to protonisation of amino groups. A pH value was 6.4 after sorption of 7.1. Sorption of nickel is reduced by increasing of concentrations of Ni{sup 2+} ions in the solution. Langmuir isotherm was used for interpretation of nickel sorption on chitosan. A maximum sorption capacity for chitosan was 2,67 {center_dot} 10{sup -3} mol/g{sup -}1. (authors)

  6. Changes of electronic properties of p-GaN(0 0 0 1) surface after low-energy N+-ion bombardment

    Science.gov (United States)

    Grodzicki, M.; Mazur, P.; Ciszewski, A.

    2018-05-01

    The p-GaN(0 0 0 1) crystal with a relatively low acceptor concentration of 5 × 1016 cm-3 is used in these studies, which are carried out in situ under ultrahigh vacuum (UHV) by ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED). The p-GaN(0 0 0 1)-(1 × 1) surface is achieved by thermal cleaning. N+-ion bombardment by a 200 eV ion beam changes the surface stoichiometry, enriches it with nitrogen, and disorders it. Such modified surface layer inverts its semiconducting character from p- into n-type. The electron affinity for the already cleaned p-GaN surface and that just after bombardment shows a shift from 2.2 eV to 3.2 eV, as well as an increase of band bending at the vacuum/surface interface from 1.4 eV to 2.5 eV. Proper post-bombardment heating of the sample restores the initial atomic order of the modified layer, leaving its n-type semiconducting character unchanged. The results of the measurements are discussed based on two types of surface states concepts.

  7. Nickel hydrogen/nickel cadmium battery trade studies

    Science.gov (United States)

    Stadnick, S. J.

    1983-01-01

    Nickel Hydrogen cell and battery technology has matured to the point where a real choice exists between Nickel Hydrogen and Nickel Cadmium batteries for each new spacecraft application. During the past few years, a number of spacecraft programs have been evaluated at Hughes with respect to this choice, with the results being split about fifty-fifty. The following paragraphs contain criteria which were used in making the battery selection.

  8. NICKEL PLATING PROCESS

    Science.gov (United States)

    Hoover, T.B.; Zava, T.E.

    1959-05-12

    A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.

  9. Protective effects of zinc acetate toward the toxicity of nickelous acetate in rats

    International Nuclear Information System (INIS)

    Waalkes, M.P.; Kasprzak, K.S.; Ohshima, M.; Poirier, L.A.

    1985-01-01

    This study was designed to determine the effects of zinc pretreatment on the acute toxicity of nickel. Male Fischer rats received either nickel alone (i.p.), zinc alone (s.c.), zinc plus nickel, or saline (i.p. and s.c.; controls). Zinc pretreatment significantly increased the 14-day survival of nickel-related rats. Zinc did not, however, prevent the reduction in weight gain over 2 weeks seen with nickel treatment. Histopathologically, at 120 h following nickel exposure, kidneys in the group receiving nickel alone generally showed moderate nephropathy (multifocal proximal tubule degeneration with necrosis) while in the zinc plus nickel group the nephropathy was generally mild. Zinc pretreatment had no apparent effect on the pharmacokinetics of nickel over 24 h as assessed by urinary excretion, blood levels or organ distribution. Zinc pretreatment also did not alter the subcellular distribution of renal nickel 6 h after nickel exposure. Enhanced synthesis of metallothionein did not appear to play a critical role in the reduction of nickel toxicity, since renal concentrations of this metalbuilding protein, although elevated compared to control, were not different in rats receiving zinc and nickel or zinc alone. Zinc pretreatment did, however, have marked effect on nickel-induced hyperglycemia, reducing both the duration and severity of elevated blood glucose levels. Results of the study show that zinc can prevent some of the toxic effects of nickel and that the mechanism of this action does not appear to involve either metalothionein or alterations in the pharmacokinetics of nickel. (author)

  10. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  11. p-p Heterojunction of Nickel Oxide-Decorated Cobalt Oxide Nanorods for Enhanced Sensitivity and Selectivity toward Volatile Organic Compounds.

    Science.gov (United States)

    Suh, Jun Min; Sohn, Woonbae; Shim, Young-Seok; Choi, Jang-Sik; Song, Young Geun; Kim, Taemin L; Jeon, Jong-Myeong; Kwon, Ki Chang; Choi, Kyung Soon; Kang, Chong-Yun; Byun, Hyung-Gi; Jang, Ho Won

    2018-01-10

    The utilization of p-p isotype heterojunctions is an effective strategy to enhance the gas sensing properties of metal-oxide semiconductors, but most previous studies focused on p-n heterojunctions owing to their simple mechanism of formation of depletion layers. However, a proper choice of isotype semiconductors with appropriate energy bands can also contribute to the enhancement of the gas sensing performance. Herein, we report nickel oxide (NiO)-decorated cobalt oxide (Co 3 O 4 ) nanorods (NRs) fabricated using the multiple-step glancing angle deposition method. The effective decoration of NiO on the entire surface of Co 3 O 4 NRs enabled the formation of numerous p-p heterojunctions, and they exhibited a 16.78 times higher gas response to 50 ppm of C 6 H 6 at 350 °C compared to that of bare Co 3 O 4 NRs with the calculated detection limit of approximately 13.91 ppb. Apart from the p-p heterojunctions, increased active sites owing to the changes in the orientation of the exposed lattice surface and the catalytic effects of NiO also contributed to the enhanced gas sensing properties. The advantages of p-p heterojunctions for gas sensing applications demonstrated in this work will provide a new perspective of heterostructured metal-oxide nanostructures for sensitive and selective gas sensing.

  12. The EU Nickel Directive revisited--future steps towards better protection against nickel allergy

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Uter, Wolfgang; McFadden, John

    2011-01-01

    In July 2001, the EU Nickel Directive came into full force to protect European citizens against nickel allergy and dermatitis. Prior to this intervention, Northern European governments had already begun to regulate consumer nickel exposure. According to part 2 of the EU Nickel Directive and the D......In July 2001, the EU Nickel Directive came into full force to protect European citizens against nickel allergy and dermatitis. Prior to this intervention, Northern European governments had already begun to regulate consumer nickel exposure. According to part 2 of the EU Nickel Directive...... and the Danish nickel regulation, consumer items intended to be in direct and prolonged contact with the skin were not allowed to release more than 0.5 µg nickel/cm2/week. It was considered unlikely that nickel allergy would disappear altogether as a proportion of individuals reacted below the level defined...

  13. Oxidation characteristics of porous-nickel prepared by powder metallurgy and cast-nickel at 1273 K in air for total oxidation time of 100 h

    Directory of Open Access Journals (Sweden)

    Lamiaa Z. Mohamed

    2017-11-01

    Full Text Available The oxidation behavior of two types of inhomogeneous nickel was investigated in air at 1273 K for a total oxidation time of 100 h. The two types were porous sintered-nickel and microstructurally inhomogeneous cast-nickel. The porous-nickel samples were fabricated by compacting Ni powder followed by sintering in vacuum at 1473 K for 2 h. The oxidation kinetics of the samples was determined gravimetrically. The topography and the cross-section microstructure of each oxidized sample were observed using optical and scanning electron microscopy. X-ray diffractometry and X-ray energy dispersive analysis were used to determine the nature of the formed oxide phases. The kinetic results revealed that the porous-nickel samples had higher trend for irreproducibility. The average oxidation rate for porous- and cast-nickel samples was initially rapid, and then decreased gradually to become linear. Linear rate constants were 5.5 × 10−8 g/cm2 s and 3.4 × 10−8 g/cm2 s for the porous- and cast-nickel samples, respectively. Initially a single-porous non-adherent NiO layer was noticed on the porous- and cast-nickel samples. After a longer time of oxidation, a non-adherent duplex NiO scale was formed. The two layers of the duplex scales were different in color. NiO particles were observed in most of the pores of the porous-nickel samples. Finally, the linear oxidation kinetics and the formation of porous non-adherent duplex oxide scales on the inhomogeneous nickel substrates demonstrated that the addition of new layers of NiO occurred at the scale/metal interface due to the thermodynamically possible reaction between Ni and the molecular oxygen migrating inwardly.

  14. Oxidation characteristics of porous-nickel prepared by powder metallurgy and cast-nickel at 1273 K in air for total oxidation time of 100 h.

    Science.gov (United States)

    Mohamed, Lamiaa Z; Ghanem, Wafaa A; El Kady, Omayma A; Lotfy, Mohamed M; Ahmed, Hafiz A; Elrefaie, Fawzi A

    2017-11-01

    The oxidation behavior of two types of inhomogeneous nickel was investigated in air at 1273 K for a total oxidation time of 100 h. The two types were porous sintered-nickel and microstructurally inhomogeneous cast-nickel. The porous-nickel samples were fabricated by compacting Ni powder followed by sintering in vacuum at 1473 K for 2 h. The oxidation kinetics of the samples was determined gravimetrically. The topography and the cross-section microstructure of each oxidized sample were observed using optical and scanning electron microscopy. X-ray diffractometry and X-ray energy dispersive analysis were used to determine the nature of the formed oxide phases. The kinetic results revealed that the porous-nickel samples had higher trend for irreproducibility. The average oxidation rate for porous- and cast-nickel samples was initially rapid, and then decreased gradually to become linear. Linear rate constants were 5.5 × 10 -8  g/cm 2  s and 3.4 × 10 -8  g/cm 2  s for the porous- and cast-nickel samples, respectively. Initially a single-porous non-adherent NiO layer was noticed on the porous- and cast-nickel samples. After a longer time of oxidation, a non-adherent duplex NiO scale was formed. The two layers of the duplex scales were different in color. NiO particles were observed in most of the pores of the porous-nickel samples. Finally, the linear oxidation kinetics and the formation of porous non-adherent duplex oxide scales on the inhomogeneous nickel substrates demonstrated that the addition of new layers of NiO occurred at the scale/metal interface due to the thermodynamically possible reaction between Ni and the molecular oxygen migrating inwardly.

  15. Nickel-induced hypersensitivity: etiology, immune reactions, prevention and therapy.

    Science.gov (United States)

    Hostýnek, Jurij J

    2002-08-01

    As a contact allergen causing type I and type IV hypersensitivity, mediated by reagins and allergen-specific T lymphocytes, expressed in a wide range of cutaneous eruptions following dermal or systemic exposure, nickel has acquired the distinction of being among the most frequent causes of hypersensitivity, occupationally as well as among the general population. In synoptic form the many effects that nickel has on the organism are presented, to provide a comprehensive picture of the aspects of that metal with many biologically noxious, but metallurgically indispensable characteristics. This paper reviews the epidemiology, the prognosis for occupational and non-occupational nickel allergic hypersensitivity (NAH), the many types of exposure and the resulting immune responses, immunotoxicity and rate of diffusion through the skin. Alternatives towards prevention and remediation, topical and systemic, for this pervasive and increasing form of morbidity resulting from multiple types of exposure are discussed. Merits and limitations of preventive measures in industry and private life are considered, as well as the effectiveness of topical and systemic therapy in treating NAH.

  16. Point defects in nickel

    International Nuclear Information System (INIS)

    Peretto, P.

    1969-01-01

    The defects in electron irradiated nickel (20 deg. K) or neutron irradiated nickel (28 deg. K) are studied by simultaneous analysis using the magnetic after-effect, electron microscopy and electrical resistivity recovery. We use zone refined nickel (99.999 per cent) which, for some experiments, is alloyed with a small amount of iron (for example 0.1 per cent Fe). The temperature dependant electrical recovery may be divided in four stages. The sub-stages I B (31 deg. K), I C (42 deg. K), I D (from to 57 deg. K) and I E (62 deg. K) of stage I are due to the disappearance of single interstitials into vacancies. The interstitial defect has a split configuration with a migration energy of about 0.15 eV. In the close pair which disappears in stage I B the interstitial is found to be in a 3. neighbour position whilst in stage I D it is near the direction from the vacancy. In stage I E there is no longer any interaction between the interstitial and the vacancy. The stage II is due to more complicated interstitial defects: di-interstitials for stage II B (84 deg. K) and larger and larger interstitial loops for the following sub-stages. The loops may be seen by electron microscopy. Impurities can play the role of nucleation centers for the loops. Stages III A (370 deg. K) and III B (376 deg. K) are due to two types of di-vacancies. During stage IV (410 deg. K) the single vacancies migrate. Vacancy type loops and interstitial type loops grow concurrently and disappear at about 800 deg. K as observed by electron microscopy. (author) [fr

  17. Human exposure to nickel

    Energy Technology Data Exchange (ETDEWEB)

    Grandjean, P

    1984-01-01

    In order of abundance in the earth's crust, nickel ranks as the 24th element and has been detected in different media in all parts of the biosphere. Thus, humans are constantly exposed to this ubiquitous element, though in variable amounts. Occupational exposures may lead to the retention of 100 micrograms of nickel per day. Environmental nickel levels depend particularly on natural sources, pollution from nickel-manufacturing industries and airborne particles from combustion of fossil fuels. Absorption from atmospheric nickel pollution is of minor concern. Vegetables usually contain more nickel than do other food items. Certain products, such as baking powder and cocoa powder, have been found to contain excessive amounts of nickel, perhaps related to nickel leaching during the manufacturing process. Soft drinking-water and acid beverages may dissolve nickel from pipes and containers. Scattered studies indicate a highly variable dietary intake of nickel, but most averages are about 200-300 micrograms/day. In addition, skin contact to a multitude of metal objects may be of significance to the large number of individuals suffering from contact dermatitis and nickel allergy. Finally, nickel alloys are often used in nails and prostheses for orthopaedic surgery, and various sources may contaminate intravenous fluids. Thus, human nickel exposure originates from a variety of sources and is highly variable. Occupational nickel exposure is of major significance, and leaching of nickel may add to dietary intakes and to cutaneous exposures. 79 references.

  18. Hall-effect electric fields in semiconducting rings. II

    International Nuclear Information System (INIS)

    Gorodzha, L.V.; Emets, Yu.P.; Stril'ko, S.I.

    1987-01-01

    A calculation is presented for the current density distribution in a semiconducting ring with two electrodes symmetrically located on the outer boundary (system II, Fig. 1). The difference between this electrode position and that on the ring considered previously (system I) leads to substantial changes in the shape of the electric field

  19. Global nickel anomaly links Siberian Traps eruptions and the latest Permian mass extinction.

    Science.gov (United States)

    Rampino, Michael R; Rodriguez, Sedelia; Baransky, Eva; Cai, Yue

    2017-09-29

    Anomalous peaks of nickel abundance have been reported in Permian-Triassic boundary sections in China, Israel, Eastern Europe, Spitzbergen, and the Austrian Carnic Alps. New solution ICP-MS results of enhanced nickel from P-T boundary sections in Hungary, Japan, and Spiti, India suggest that the nickel anomalies at the end of the Permian were a worldwide phenomenon. We propose that the source of the nickel anomalies at the P-T boundary were Ni-rich volatiles released by the Siberian volcanism, and by coeval Ni-rich magma intrusions. The peaks in nickel abundance correlate with negative δ 13 C and δ 18 O anomalies, suggesting that explosive reactions between magma and coal during the Siberian flood-basalt eruptions released large amounts of CO 2 and CH 4 into the atmosphere, causing severe global warming and subsequent mass extinction. The nickel anomalies may provide a timeline in P-T boundary sections, and the timing of the peaks supports the Siberian Traps as a contributor to the latest Permian mass extinction.

  20. Stainless Steel Leaches Nickel and Chromium into Foods During Cooking

    OpenAIRE

    Kamerud, Kristin L.; Hobbie, Kevin A.; Anderson, Kim A.

    2013-01-01

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel sau...

  1. A paste type negative electrode using a MmNi{sub 5} based hydrogen storage alloy for a nickel-metal hydride (Ni-MH) battery

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, H.; Matsumoto, T.; Watanabe, S.; Kobayashi, K.; Hoshino, H. [Tokai Univ., Kanagawa (Japan). School of Engineering

    2001-07-01

    Different conducting materials (nickel, copper, cobalt, graphite) were mixed with a MmNi{sub 5} type hydrogen storage alloy, and negative electrodes for a nickel-metal hydride(Ni-MH) rechargeable battery were prepared and examined with respect to the discharge capacity of the electrodes. The change in the discharge capacity of the electrodes with different conducting materials was measured as a function of the number of electrochemical charge and discharge cycles. From the measurements, the electrodes with cobalt and graphite were found to yield much higher discharge capacities than those with nickel or cobalt. From a comparative discharge measurements for an electrode composed of only cobalt powder without the alloy and an electrode with a mixture of cobalt and the alloy, an appreciable contribution of the cobalt surface to the enhancement of charge and discharge capacities was found. (author)

  2. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries

    Science.gov (United States)

    Joulié, M.; Laucournet, R.; Billy, E.

    2014-02-01

    A hydrometallurgical process is developed to recover valuable metals of the lithium nickel cobalt aluminum oxide (NCA) cathodes from spent lithium-ion batteries (LIBs). Effect of parameters such as type of acid (H2SO4, HNO3 and HCl), acid concentration (1-4 mol L-1), leaching time (3-18 h) and leaching temperature (25-90 °C) with a solid to liquid ratio fixed at 5% (w/v) are investigated to determine the most efficient conditions of dissolution. The preliminary results indicate that HCl provides higher leaching efficiency. In optimum conditions, a complete dissolution is performed for Li, Ni, Co and Al. In the nickel and cobalt recovery process, at first the Co(II) in the leaching liquor is selectively oxidized in Co(III) with NaClO reagent to recover Co2O3, 3H2O by a selective precipitation at pH = 3. Then, the nickel hydroxide is precipitated by a base addition at pH = 11. The recovery efficiency of cobalt and nickel are respectively 100% and 99.99%.

  3. The EU Nickel Directive revisited--future steps towards better protection against nickel allergy

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Uter, Wolfgang; McFadden, John

    2011-01-01

    In July 2001, the EU Nickel Directive came into full force to protect European citizens against nickel allergy and dermatitis. Prior to this intervention, Northern European governments had already begun to regulate consumer nickel exposure. According to part 2 of the EU Nickel Directive...... by the EU Nickel Directive. Despite this, the EU Nickel Directive part 2 was expected to work as an operational limit that would sufficiently protect European consumers against nickel allergy and dermatitis. This review presents the accumulation of epidemiological studies that evaluated the possible effect...... and the Danish nickel regulation, consumer items intended to be in direct and prolonged contact with the skin were not allowed to release more than 0.5 µg nickel/cm2/week. It was considered unlikely that nickel allergy would disappear altogether as a proportion of individuals reacted below the level defined...

  4. Adsorption of nickel on synthetic hydroxyapatite from aqueous solutions

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Galambos, M.; Pivarciova, L.; Rajec, P.; Caplovicova, M.

    2013-01-01

    The sorption of nickel on synthetic hydroxyapatite was investigated using a batch method and radiotracer technique. The hydroxyapatite samples used in experiments were a commercial hydroxyapatite and hydroxyapatite of high crystallinity with Ca/P ratio of 1.563 and 1.688, respectively, prepared by a wet precipitation process. The sorption of nickel on hydroxyapatite was pH independent ranging from 4.5 to 6.5 as a result of buffering properties of hydroxyapatite. The adsorption of nickel was rapid and the percentage of Ni sorption on both samples of hydroxyapatite was >98 % during the first 15-30 min of the contact time for initial Ni 2+ concentration of 1 x 10 -4 mol dm -3 . The experimental data for sorption of nickel have been interpreted in the term of Langmuir isotherm and the value of maximum sorption capacity of nickel on a commercial hydroxyapatite and hydroxyapatite prepared by wet precipitation process was calculated to be 0.184 and 0.247 mmol g -1 , respectively. The sorption of Ni 2+ ions was performed by ion-exchange with Ca 2+ cations on the crystal surface of hydroxyapatite under experimental conditions. The competition effect of Co 2+ and Fe 2+ towards Ni 2+ sorption was stronger than that of Ca 2+ ions. NH 4 + ions have no apparent effect on nickel sorption. (author)

  5. Electronic structure and quantum transport properties of metallic and semiconducting nanowires

    Science.gov (United States)

    Simbeck, Adam J.

    The future of the semiconductor industry hinges upon new developments to combat the scaling issues that currently afflict two main chip components: transistors and interconnects. For transistors this means investigating suitable materials to replace silicon for both the insulating gate and the semiconducting channel in order to maintain device performance with decreasing size. For interconnects this equates to overcoming the challenges associated with copper when the wire dimensions approach the confinement limit, as well as continuing to develop low-k dielectric materials that can assure minimal cross-talk between lines. In addition, such challenges make it increasingly clear that device design must move from a top-down to a bottom-up approach in which the desired electronic characteristics are tailored from first-principles. It is with such fundamental hurdles in mind that ab initio calculations on the electronic and quantum transport properties of nanoscale metallic and semiconducting wires have been performed. More specifically, this study seeks to elaborate on the role played by confinement, contacts, dielectric environment, edge decoration, and defects in altering the electronic and transport characteristics of such systems. As experiments continue to achieve better control over the synthesis and design of nanowires, these results are expected to become increasingly more important for not only the interpretation of electronic and transport trends, but also in engineering the electronic structure of nanowires for the needs of the devices of the future. For the metallic atomic wires, the quantum transport properties are first investigated by considering finite, single-atom chains of aluminum, copper, gold, and silver sandwiched between gold contacts. Non-equilibrium Green's function based transport calculations reveal that even in the presence of the contact the conductivity of atomic-scale aluminum is greater than that of the other metals considered. This is

  6. Evaluation of nickel-hydrogen battery for space application

    Science.gov (United States)

    Billard, J. M.; Dupont, D.

    1983-01-01

    Results of electrical space qualification tests of nickel-hydrogen battery type HR 23S are presented. The results obtained for the nickel-cadmium battery type VO 23S are similar except that the voltage level and the charge conservation characteristics vary significantly. The electrical and thermal characteristics permit predictions of the following optimal applications: charge coefficient in the order of 1.3 to 1.4 at 20C; charge current density higher than C/10 at 20C; discharge current density from C/10 to C/3 at 20C; maximum discharge temperature: OC; storage temperature: -20C.

  7. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes.

    Science.gov (United States)

    Wang, Chuan; Badmaev, Alexander; Jooyaie, Alborz; Bao, Mingqiang; Wang, Kang L; Galatsis, Kosmas; Zhou, Chongwu

    2011-05-24

    This paper reports the radio frequency (RF) and linearity performance of transistors using high-purity semiconducting carbon nanotubes. High-density, uniform semiconducting nanotube networks are deposited at wafer scale using our APTES-assisted nanotube deposition technique, and RF transistors with channel lengths down to 500 nm are fabricated. We report on transistors exhibiting a cutoff frequency (f(t)) of 5 GHz and with maximum oscillation frequency (f(max)) of 1.5 GHz. Besides the cutoff frequency, the other important figure of merit for the RF transistors is the device linearity. For the first time, we report carbon nanotube RF transistor linearity metrics up to 1 GHz. Without the use of active probes to provide the high impedance termination, the measurement bandwidth is therefore not limited, and the linearity measurements can be conducted at the frequencies where the transistors are intended to be operating. We conclude that semiconducting nanotube-based transistors are potentially promising building blocks for highly linear RF electronics and circuit applications.

  8. Investigation of interdiffusion in copper-nickel bilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abdul-Lettif, Ahmed M. [Physics Department, College of Science, Babylon University, Hilla (Iraq)]. E-mail: abdullettif@yahoo.com

    2007-01-15

    Auger depth profiling technique and X-ray diffraction analysis have been employed to study the interdiffusion in vacuum-deposited copper-nickel bilayer thin films. An adaptation of the Whipple model was used to determine the diffusion coefficients of both nickel in copper and copper in nickel. The calculated diffusion coefficient is (2.0x10{sup -7} cm{sup 2}/s)exp(-1.0 eV/kT) for nickel in copper, and (6x10{sup -8} cm{sup 2}/s)exp(-0.98 eV/kT) for copper in nickel. The difference between the diffusion parameters obtained in the present work and those extracted by other investigators is attributed essentially to the difference in the films microstructure and to the annealing ambient. It is concluded that interdiffusion in the investigated films is described by type-B kinetics in which rapid grain-boundary diffusion is coupled to defect-enhanced diffusion into the grain interior. The present data raise a question about the effectiveness of nickel as a diffusion barrier between copper and the silicon substrate.

  9. Excessive nickel release from mobile phones--a persistent cause of nickel allergy and dermatitis.

    Science.gov (United States)

    Jensen, Peter; Johansen, Jeanne D; Zachariae, Claus; Menné, Torkil; Thyssen, Jacob P

    2011-12-01

    Despite the political intention to limit nickel allergy and dermatitis in Europeans, nickel allergy remains frequent. There are several explanations for the persistence of nickel allergy and dermatitis, including the increasing use of mobile phones. Before regulation of nickel release from mobile phones, we showed that eight (19.5%) of 41 mobile phones marketed in Denmark between 2003 and 2007 released nickel in concentrations that may result in nickel allergy and dermatitis. In 2009, the EU Nickel Directive was revised to include nickel-releasing mobile phones. To investigate the proportion of mobile phones sold in Denmark that release nickel after regulation. Metallic parts from 50 randomly selected mobile phones currently for sale in Denmark were tested for nickel release by use of the dimethylglyoxime (DMG)-nickel spot test. Nine (18%) phones showed at least one positive DMG test reaction and two phones had more than one DMG test-positive spot. Apparently, the proportion of mobile phones with significant nickel release remains unchanged, despite the 2009 revision of the EU Nickel Directive. We encourage manufacturers to measure nickel release from metallic components used in the assembly of mobile phones to ensure safe products. © 2011 John Wiley & Sons A/S.

  10. Excessive nickel release from mobile phones--a persistent cause of nickel allergy and dermatitis

    DEFF Research Database (Denmark)

    Jensen, Peter; Johansen, Jeanne D; Zachariae, Claus

    2011-01-01

    Despite the political intention to limit nickel allergy and dermatitis in Europeans, nickel allergy remains frequent. There are several explanations for the persistence of nickel allergy and dermatitis, including the increasing use of mobile phones. Before regulation of nickel release from mobile...... phones, we showed that eight (19.5%) of 41 mobile phones marketed in Denmark between 2003 and 2007 released nickel in concentrations that may result in nickel allergy and dermatitis. In 2009, the EU Nickel Directive was revised to include nickel-releasing mobile phones....

  11. Excessive nickel release from mobile phones--a persistent cause of nickel allergy and dermatitis

    DEFF Research Database (Denmark)

    Jensen, Peter; Johansen, Jeanne D; Zachariae, Claus

    2011-01-01

    phones, we showed that eight (19.5%) of 41 mobile phones marketed in Denmark between 2003 and 2007 released nickel in concentrations that may result in nickel allergy and dermatitis. In 2009, the EU Nickel Directive was revised to include nickel-releasing mobile phones.......Despite the political intention to limit nickel allergy and dermatitis in Europeans, nickel allergy remains frequent. There are several explanations for the persistence of nickel allergy and dermatitis, including the increasing use of mobile phones. Before regulation of nickel release from mobile...

  12. Synthesis of Nickel and Nickel Hydroxide Nano powders by Simplified Chemical Reduction

    International Nuclear Information System (INIS)

    Tientong, J.; Garcia, S.; Thurber, C.R.; Golden, T.D.

    2014-01-01

    Nickel nano powders were synthesized by a chemical reduction of nickel ions with hydrazine hydrate at ph ∼ 12.5. Sonication of the solutions created a temperature of 54-65 °C to activate the reduction reaction of nickel nanoparticles. The solution ph affected the composition of the resulting nanoparticles. Nickel hydroxide nanoparticles were formed from an alkaline solution (ph ∼10) of nickel-hydrazine complexed by dropwise titration. X-ray diffraction of the powder and the analysis of the resulting Williamson-Hall plots revealed that the particle size of the powders ranged from 12 to 14 nm. Addition of polyvinylpyrrolidone into the synthesis decreased the nickel nanoparticle size to approximately 7 nm. Dynamic light scattering and scanning electron microscopy confirmed that the particles were in the nanometer range. The structure of the synthesized nickel and nickel hydroxide nanoparticles was identified by X-ray diffraction and Fourier transform infrared spectroscopy.

  13. The Effects of Electroless Nickel Plating Bath Conditions on Stability of Solution and Properties of Deposit

    International Nuclear Information System (INIS)

    Huh, Jin; Lee, Jae Ho

    2000-01-01

    Electroless depositions of nickel were conducted in different bath conditions to find optimum conditions of electroless nickel plating at low operating temperature and pH. The effect of complexing reagent on stability of plating solution was investigated. Sodium citrate complexed plating solution is more stable than sodium pyrophosphate complexed solution. The effects of nickel salt concentration, reducing agent, complexing agent and inhibitor on deposition rate was investigated. The effects of pH on deposition rate and content of phosphorous in deposited nickel were also analyzed. Electroless deposited nickel become crystallized with increasing pH due to lower phosphorous content. In optimum operating bath condition, deposition rate was 7 μm/hr at 60 .deg. C and pH 10.0 without stabilizer. The rate was decreased with stabilizer concentration

  14. Fluctuations of nickel concentrations in urine of electroplating workers

    International Nuclear Information System (INIS)

    Bernacki, E.J.; Zygowicz, E.; Sunderman, F.W. Jr.

    1980-01-01

    Nickel analyses were performed by electrothermal atomic absorption spectrometry upon urine specimens obtained from electroplating workers at the beginning, middle and end of the work-shift. The means (+- S.D.) for nickel concentrations in urine specimens from seven electroplating workers on three regular workdays were: 34 +- 32 μg/L (pre-shift); 64 +- μg/L (mid-shift) and 46 +- μg/L (end-shift), compared to 2.7 +- 1.6 μg/L (pre-shift) in 19 controls (hospital workers). Nickel concentrations in urine specimens from six electroplating workers on the first workday after a two-week vacation averaged: 5 +- 3 μg/L (pre-shift); 9 +- 6 μg/L (mid-shift), and 12 +- 6 μg/L (end-shift). Nickel concentrations in personal air samples (seven hours) collected from the breathing zones of five electroplating workers on three regular workdays averaged 9.3 +- 4.4 μg/m 3 . Nickel concentrations in the air samples were correlated with nickel concentrations in end-shift urine specimens (corr. coef. = 0.70; P < 0.05), but were not correlated with nickel concentrations in pre-shift or mid-shift urine specimens. In view of the fluctuations of urine nickel concentrations that occur during the work-shift, the authors recommend that nickel analyses of eight hour urine specimens be used routinely to monitor occupational exposures to nickel. In situations where timed urine collections are impractical, analyses of end-shift urine specimens are the best alternative

  15. Oral carcinogenicity study with nickel sulfate hexahydrate in Fischer 344 rats

    International Nuclear Information System (INIS)

    Heim, Katherine E.; Bates, Hudson K.; Rush, Rusty E.; Oller, Adriana R.

    2007-01-01

    Until now, existing data on the oral carcinogenicity of nickel substances have been inconclusive. Yet, the assessment of oral carcinogenicity of nickel has serious scientific and regulatory implications. In the present study, nickel sulfate hexahydrate was administered daily to Fischer 344 rats by oral gavage for 2 years (104 weeks) at exposure levels of 10, 30 and 50 mg NiSO 4 ·6H 2 O/kg. This treatment produced a statistically significant reduction in body weight of male and female rats, compared to controls, in an exposure-related fashion at 30 and 50 mg/kg/day. An exposure-dependent increase in mortality was observed in female rats. However, the overall study survival rate (males and females) was at least 25 animals per group (compliant with OECD guidelines) in the treated animals. Daily oral administration of nickel sulfate hexahydrate did not produce an exposure-related increase in any common tumor type or an increase in any rare tumors. One tumor type was statistically increased in a nickel sulfate-treated group compared to the study controls (keratoacanthoma in the 10 mg NiSO 4 ·6H 2 O/kg/day males), but there was no exposure-response relationship for this common tumor type. This study achieved sufficient toxicity to reach the Maximum Tolerated Dose (MTD) while maintaining a sufficiently high survival rate to allow evaluation for carcinogenicity. The present study indicated that nickel sulfate hexahydrate does not have the potential to cause carcinogenicity by the oral route of exposure in the Fischer 344 rat. Data from this and other studies demonstrate that inhalation is the only route of exposure that might cause concern for cancer in association with nickel exposures

  16. Ab initio density functional theory investigation of electronic properties of semiconducting single-walled carbon nanotube bundles

    Science.gov (United States)

    Moradian, Rostam; Behzad, Somayeh; Azadi, Sam

    2008-09-01

    By using ab initio density functional theory we investigated the structural and electronic properties of semiconducting (7, 0), (8, 0) and (10, 0) carbon nanotube bundles. The energetic and electronic evolutions of nanotubes in the bundling process are also studied. The effects of inter-tube coupling on the electronic dispersions of semiconducting carbon nanotube bundles are demonstrated. Our results show that the inter-tube coupling decreases the energy gap in semiconducting nanotubes. We found that bundles of (7, 0) and (8, 0) carbon nanotubes have metallic feature, while (10, 0) bundle is a semiconductor with an energy gap of 0.22 eV. To clarify our results the band structures of isolated and bundled nanotubes are compared.

  17. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    Department of Chemistry Bayero University, P. M. B. 3011, Kano, Nigeria. E-mail: hnuhu2000@yahoo.com. ABSTRACT. The manganese (II), cobalt (II), nickel (II) and .... water and common organic solvents, but are readily soluble in acetone. The molar conductance measurement [Table 3] of the complex compounds in.

  18. Flow induced/ refined solution crystallization of a semiconducting polymer

    Science.gov (United States)

    Nguyen, Ngoc A.

    Organic photovoltaics, a new generation of solar cells, has gained scientific and economic interests due to the ability of solution-processing and potentially low-cost power production. Though, the low power conversion efficiency of organic/ plastic solar cells is one of the most pertinent challenges that has appealed to research communities from many different fields including materials science and engineering, electrical engineering, chemical engineering, physics and chemistry. This thesis focuses on investigating and controlling the morphology of a semi-conducting, semi-crystalline polymer formed under shear-flow. Molecular structures and processing techniques are critical factors that significantly affect the morphology formation in the plastic solar cells, thus influencing device performance. In this study, flow-induced solution crystallization of poly (3-hexylthiophene) (P3HT) in a poor solvent, 2-ethylnapthalene (2-EN) was utilized to make a paint-like, structural liquid. The polymer crystals observed in this structured paint are micrometers long, nanometers in cross section and have a structure similar to that formed under quiescent conditions. There is pi-pi stacking order along the fibril axis, while polymer chain folding occurs along the fibril width and the order of the side-chain stacking is along fibril height. It was revealed that shear-flow not only induces P3HT crystallization from solution, but also refines and perfects the P3HT crystals. Thus, a general strategy to refine the semiconducting polymer crystals from solution under shear-flow has been developed and employed by simply tuning the processing (shearing) conditions with respect to the dissolution temperature of P3HT in 2-EN. The experimental results demonstrated that shear removes defects and allows more perfect crystals to be formed. There is no glass transition temperature observed in the crystals formed using the flow-induced crystallization indicating a significantly different

  19. Characterization and assessment of dermal and inhalable nickel exposures in nickel production and primary user industries.

    Science.gov (United States)

    Hughson, G W; Galea, K S; Heim, K E

    2010-01-01

    The aim of this study was to measure the levels of nickel in the skin contaminant layer of workers involved in specific processes and tasks within the primary nickel production and primary nickel user industries. Dermal exposure samples were collected using moist wipes to recover surface contamination from defined areas of skin. These were analysed for soluble and insoluble nickel species. Personal samples of inhalable dust were also collected to determine the corresponding inhalable nickel exposures. The air samples were analysed for total inhalable dust and then for soluble, sulfidic, metallic, and oxidic nickel species. The workplace surveys were carried out in five different workplaces, including three nickel refineries, a stainless steel plant, and a powder metallurgy plant, all of which were located in Europe. Nickel refinery workers involved with electrolytic nickel recovery processes had soluble dermal nickel exposure of 0.34 microg cm(-2) [geometric mean (GM)] to the hands and forearms. The GM of soluble dermal nickel exposure for workers involved in packing nickel salts (nickel chloride hexahydrate, nickel sulphate hexahydrate, and nickel hydroxycarbonate) was 0.61 microg cm(-2). Refinery workers involved in packing nickel metal powders and end-user powder operatives in magnet production had the highest dermal exposure (GM = 2.59 microg cm(-2) soluble nickel). The hands, forearms, face, and neck of these workers all received greater dermal nickel exposure compared with the other jobs included in this study. The soluble nickel dermal exposures for stainless steel production workers were at or slightly above the limit of detection (0.02 microg cm(-2) soluble nickel). The highest inhalable nickel concentrations were observed for the workers involved in nickel powder packing (GM = 0.77 mg m(-3)), although the soluble component comprised only 2% of the total nickel content. The highest airborne soluble nickel exposures were associated with refineries using

  20. Electronic diffraction study of the chlorination of nickel; Etude par diffraction electronique de la chloruration du nickel

    Energy Technology Data Exchange (ETDEWEB)

    Vigner, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    A study has been made of the chlorination of the (100), (110) and (111) crystal faces of nickel using high energy electron diffraction and electron microscopy. Two methods have been used: bombardment with chlorine ions having an energy of between 10 and 30 keV, and direct chlorination in a diffractor at pressures of about 10{sup -4} torr. It has thus been possible to show the very special properties of nickel chloride (CdBr{sub 2} type, space group R 3-bar m) which is always formed along the (0001) plane, whatever the orientation of the substrate. It has also been possible to attain the metal-halide interface and to show the existence of two-dimensional chemisorbed films which are ordered or disordered according to the crystal orientation. (author) [French] La chloruration des faces (100) (110) et (111) du nickel a ete etudiee par diffraction des electrons de haute energie et par microscopie electronique. Deux methodes ont ete utilisees: le bombardement avec des ions chlore ayant une energie comprise entre 10 et 30 keV, et la chloruration directe dans un diffracteur pour des pressions de l'ordre de 10{sup -4} torr. Ainsi ont ete mises en evidence les proprietes tres particulieres du chlorure de nickel (type CdBr{sub 2}, groupe spatial R 3-bar m) qui s'accole toujours suivant le plan (0001), quelle que soit l'orientation du substrat. Il a ete egalement possible d'atteindre l'interface metal-halogenure et de montrer l'existence de couches chimisorbees bidimensionnelles, ordonnees ou desordonnees suivant l'orientation cristalline etudiee. (auteur)

  1. Semiconducting polymer-incorporated nanocrystalline TiO2 particles for photovoltaic applications

    International Nuclear Information System (INIS)

    Peng Fuguo; Wu Jihuai; Li Qingbei; Wang Yue; Yue Gentian; Xiao Yaoming; Li Qinghua; Lan Zhang; Fan Leqing; Lin Jianming; Huang Miaoliang

    2011-01-01

    Highlights: → A P3HT-PCBM/TiO 2 trinary hybrid solar cell has been fabricated. → P3HT-PCBM heterojunction replaces the dye and electrolyte in dye-sensitized cell, → Which simplifies preparation procedure and decreases the device cost. → The hybrid cell achieves a light-to-electric conversion efficiency of 2.61%. - Abstract: In this work, we study hybrid solar cells based on blends of the semiconducting polymer poly(3-octylthiophene-2,5-diyl)(P3OT) and [6,6]-phenyl C 61 butyric acid methyl (PCBM) coated titanium dioxide (TiO 2 ) nanocrystal film. The Fourier transform infrared spectra (FTIR), UV-vis absorption spectra and PL quenching researches show that the films had a stronger absorption in visible light range. The influence of the PCBM:P3OT ratio were researched and the optimized ratio of PCBM to P3OT (1:1.5) exhibit a short circuit current of 4.42 mA cm -2 , an open circuit voltage of 0.81 V, a fill factor of 0.73 and a light-to-electric conversion efficiency of 2.61% under a simulated solar light irradiation of 100 mW cm -2 .

  2. Nickel Ore Dispersion Evaluation and Consequences in Flotation Process

    Science.gov (United States)

    de São José, Fábio; Imbelloni, Alaine Moreira; Nogueira, Francielle Câmara; Pereira, Carlos Alberto

    2016-04-01

    Nickel ore dispersion before flotation using different reagents was investigated on a bench scale to improve metallurgical recovery and selectivity. The nickel ore had a content of 0.8 pct nickel and 14.5 pct MgO. A positive linear correlation between MgO and Ni was found. Carboxy methyl cellulose, both pure and combined with Na2CO3, was the best dispersant used. The most efficient collector was potassium amyl xanthate combined with mercaptobenzothiazole, and the addition of xanthate was decisive for this good result because it is normally more stable in the pH range used in the tests. A pH change from 7 to 9 resulted in a metal recovery increase of 49.3 pct, together with an increase of 6.25 pct of MgO in the concentrate.

  3. Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors

    Science.gov (United States)

    2014-01-01

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm2·V–1·s–1, low ohmic contact resistance, steep subthreshold swings (0.12–0.14 V/dec) and high on/off ratios (106) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  4. Electrometric investigation of the formation of different thiotungstates of nickel

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S [Paraiba Univ., Joao Pessoa (Brazil). Dept. de Engenharia Quimica

    1983-02-01

    The reactions of nickel chloride with Na/sub 2/S.WS/sub 3/, 3Na/sub 2/S.4WS/sub 3/, Na/sub 2/S.2WS/sub 3/ and Na/sub 2/S.4WS/sub 3/ have been investigated by pH and conductance measurements. The end-points obtained from the sharp breaks and inflections in titration curves provide definite evidence for the formation of two nickel thiotungstates having molecular formulae NiS.WS/sub 3/ and 3NiS.4WS/sub 3/ in the vicinity of pH 7.6 and 6.9 respectively. The titrations of nickel chloride with Na/sub 2/S.WS/sub 3/ and Na/sub 2/S.4WS/sub 3/ failed to provide any dependable results for the formation of the corresponding nickel thiotungstates. The precipitates obtained at the end-points were analysed gravimetrically and the results support those obtained by the electrometric study.

  5. Combined Scanning Nanoindentation and Tunneling Microscope Technique by Means of Semiconductive Diamond Berkovich Tip

    International Nuclear Information System (INIS)

    Lysenko, O; Novikov, N; Gontar, A; Grushko, V; Shcherbakov, A

    2007-01-01

    A combined Scanning Probe Microscope (SPM) - nanoindentation instrument enables submicron resolution indentation tests and in-situ scanning of structure surfaces. A newly developed technique is based on the scanning tunneling microscopy (STM) with integrated Berkovich diamond semiconductive tip. Diamond tips for a combined SPM were obtained using the developed procedure including the synthesis of the semiconductive borondoped diamond monocrystals by the temperature gradient method at high pressure - high temperature conditions and fabrication of the tips from these crystals considering their zonal structure. Separately grown semiconductive diamond single crystals were studied in order to find the best orientation of diamond crystals. Optimal scanning characteristics and experimental data errors were calculated by an analysis of the general functional dependence of the tunneling current from properties of the tip and specimen. Tests on the indentation and scanning of the gold film deposited on the silicon substrate employing the fabricated tips demonstrated their usability, acceptable resolution and sensitivity

  6. Homocoupling of benzyl halides catalyzed by POCOP-nickel pincer complexes

    KAUST Repository

    Chen, Tao

    2012-08-01

    Two types of POCOP-nickel(II) pincer complexes were prepared by mixing POCOP pincer ligands and NiX 2 in toluene at reflux. The resulting nickel complexes efficiently catalyze the homocoupling reactions of benzyl halides in the presence of zinc. The coupled products were obtained in excellent to quantitative yields. © 2012 Elsevier Ltd. All rights reserved.

  7. Prototype nickel component demonstration. Final report

    International Nuclear Information System (INIS)

    Boss, D.E.

    1994-01-01

    We have been developing a process to produce high-purity nickel structures from nickel carbonyl using chemical vapor deposition (CVD). The prototype demonstration effort had been separated into a number of independent tasks to allow Los Alamos National Laboratory (LANL) the greatest flexibility in tailoring the project to their needs. LANL selected three of the proposed tasks to be performed--Task 1- system modification and demonstration, Task 2-stainless steel mandrel trials, and Task 4-manufacturing study. Task 1 focused on converting the CVD system from a hot-wall to a cold-wall configuration and demonstrating the improved efficiency of the reactor type by depositing a 0.01-inch-thick nickel coating on a cylindrical substrate. Since stainless steel substrates were preferred because of their low α-emitter levels, Task 2 evaluated mandrel configurations which would allow removal of the nickel tube from the substrate. The manufacturing study was performed to develop strategies and system designs for manufacturing large quantities of the components needed for the Sudbury Nuetrino Observatory (SNO) program. Each of these tasks was successfully completed. During these efforts, BIRL successfully produced short lengths of 2-inch-diameter tubing and 6-inch-wide foil with levels of α-radiation emitting contaminants lower than either conventional nickel alloys or electroplated materials. We have produced both the tubing and foil using hot-substrate, cold-wall reactors and clearly demonstrated the advantages of higher precursor efficiency and deposition rate associated with this configuration. We also demonstrated a novel mandrel design which allowed easy removal of the nickel tubing and should dramatically simplify the production of 1.5-meter-long tubes in the production phase of the program

  8. Artificial neural network application for predicting soil distribution coefficient of nickel

    International Nuclear Information System (INIS)

    Falamaki, Amin

    2013-01-01

    The distribution (or partition) coefficient (K d ) is an applicable parameter for modeling contaminant and radionuclide transport as well as risk analysis. Selection of this parameter may cause significant error in predicting the impacts of contaminant migration or site-remediation options. In this regards, various models were presented to predict K d values for different contaminants specially heavy metals and radionuclides. In this study, artificial neural network (ANN) is used to present simplified model for predicting K d of nickel. The main objective is to develop a more accurate model with a minimal number of parameters, which can be determined experimentally or select by review of different studies. In addition, the effects of training as well as the type of the network are considered. The K d values of Ni is strongly dependent on pH of the soil and mathematical relationships were presented between pH and K d of nickel recently. In this study, the same database of these presented models was used to verify that neural network may be more useful tools for predicting of K d . Two different types of ANN, multilayer perceptron and redial basis function, were used to investigate the effect of the network geometry on the results. In addition, each network was trained by 80 and 90% of the data and tested for 20 and 10% of the rest data. Then the results of the networks compared with the results of the mathematical models. Although the networks trained by 80 and 90% of the data the results show that all the networks predict with higher accuracy relative to mathematical models which were derived by 100% of data. More training of a network increases the accuracy of the network. Multilayer perceptron network used in this study predicts better than redial basis function network. - Highlights: ► Simplified models for predicting K d of nickel presented using artificial neural networks. ► Multilayer perceptron and redial basis function used to predict K d of nickel in

  9. Structural characterization of nickel oxide/hydroxide nanosheets produced by CBD technique

    Energy Technology Data Exchange (ETDEWEB)

    Taşköprü, T., E-mail: ttaskopru@anadolu.edu.tr [Department of Physics, Anadolu University, Eskişehir 26470 (Turkey); Department of Physics, Çankırı Karatekin University, Çankırı 18100 (Turkey); Zor, M.; Turan, E. [Department of Physics, Anadolu University, Eskişehir 26470 (Turkey)

    2015-10-15

    Graphical abstract: SEM images of (a) as deposited β-Ni(OH)2 and (b) NiO samples deposited with pH 10 solution. The inset figures shows the absorbance spectra of (a) β-Ni(OH)2 and (b) NiO samples. - Highlights: • The formation of β-Ni(OH){sub 2} and NiO were confirmed with XRD, SEM, FT-IR and Raman. • Porous nickel oxide was synthesized after heat treatment of nickel hydroxide. • The increase in pH value changes the nanoflake structure to hexagonal nanosheet. • On increasing the pH from 8 to 11, the band gap decreases from 3.52 to 3.37 eV. - Abstract: Nickel hydroxide samples were deposited onto glass substrates using Ni(NO{sub 3}){sub 2}·6H{sub 2}O and aqueous ammonia by chemical bath deposition technique. The influence of pH of solution was investigated by means of X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, Raman spectroscopy, optical absorption and BET analysis. The as-deposited samples were identified as β-Ni(OH){sub 2}, were transformed into NiO after heat treatment in air at 500 °C for 2 h. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets. The optical transitions observed in the absorbance spectra below optical band gap is due to defects or Ni{sup 2+} vacancies in NiO samples. The band gap energy of NiO samples changes between 3.37 and 3.52 eV depending on the pH values.

  10. Development of a Micro-Fiber Nickel Electrode for Nickel-Hydrogen Cell

    Science.gov (United States)

    Britton, Doris L.

    1996-01-01

    The development of a high specific energy battery is one of the objectives of the lightweight nickel-hydrogen (NiH2) program at the NASA Lewis Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen fuel cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active materials. Initial tests include activation and capacity measurements at different discharge levels followed by half-cell cycle testing at 80 percent depth-of-discharge in a low Earth orbit regime. The electrodes that pass the initial tests are life cycle tested in a boiler plate nickel-hydrogen cell before flightweight designs are built and tested.

  11. Biological role of nickel

    Energy Technology Data Exchange (ETDEWEB)

    Thauer, R K; Diekert, G; Schoenheit, P

    1980-01-01

    Several enzymes and one cofactor have recently been shown to contain nickel. For example, urease of jack beans has been found to be a nickel protein and factor F/sub 430/ from methanogenic bacteria to be a nickel tetrapyrrole. The biological role of nickel in several organisms is discussed.

  12. Contaminated nickel scrap processing

    International Nuclear Information System (INIS)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include 234 Th, 234 Pa, 137 Cs, 239 Pu (trace), 60 Co, U, 99 Tc, and 237 Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs

  13. Nonlinear wave beams in a piezo semiconducting layer

    International Nuclear Information System (INIS)

    Bagdoev, A.G.; Shekoyan, A.V.; Danoyan, Z.N.

    1997-01-01

    The propagation of quasi-monochromatic nonlinear wave in a piezo semiconducting layer taking into account electron-concentration nonlinearity is considered. For such medium the evolution equations for incoming and reflected waves are derived. Nonlinear Schroedinger equations and solutions for narrow beams are obtained. It is shown that symmetry of incoming and reflected waves does not take place. The focusing of beams is investigated.18 refs

  14. Optically transparent semiconducting polymer nanonetwork for flexible and transparent electronics

    Science.gov (United States)

    Yu, Kilho; Park, Byoungwook; Kim, Geunjin; Kim, Chang-Hyun; Park, Sungjun; Kim, Jehan; Jung, Suhyun; Jeong, Soyeong; Kwon, Sooncheol; Kang, Hongkyu; Kim, Junghwan; Yoon, Myung-Han; Lee, Kwanghee

    2016-01-01

    Simultaneously achieving high optical transparency and excellent charge mobility in semiconducting polymers has presented a challenge for the application of these materials in future “flexible” and “transparent” electronics (FTEs). Here, by blending only a small amount (∼15 wt %) of a diketopyrrolopyrrole-based semiconducting polymer (DPP2T) into an inert polystyrene (PS) matrix, we introduce a polymer blend system that demonstrates both high field-effect transistor (FET) mobility and excellent optical transparency that approaches 100%. We discover that in a PS matrix, DPP2T forms a web-like, continuously connected nanonetwork that spreads throughout the thin film and provides highly efficient 2D charge pathways through extended intrachain conjugation. The remarkable physical properties achieved using our approach enable us to develop prototype high-performance FTE devices, including colorless all-polymer FET arrays and fully transparent FET-integrated polymer light-emitting diodes. PMID:27911774

  15. Mechanical evaluation of quad-helix appliance made of low-nickel stainless steel wire.

    Science.gov (United States)

    dos Santos, Rogério Lacerda; Pithon, Matheus Melo

    2013-01-01

    The objective of this study was to test the hypothesis that there is no difference between stainless steel and low-nickel stainless steel wires as regards mechanical behavior. Force, resilience, and elastic modulus produced by Quad-helix appliances made of 0.032-inch and 0.036-inch wires were evaluated. Sixty Quad-helix appliances were made, thirty for each type of alloy, being fifteen for each wire thickness, 0.032-in and 0.036-in. All the archwires were submitted to mechanical compression test using an EMIC DL-10000 machine simulating activations of 4, 6, 9, and 12 mm. Analysis of variance (ANOVA) with multiple comparisons and Tukey's test were used (p nickel stainless steel alloy had force, resilience, and elastic modulus similar to those made of stainless steel alloy.

  16. Organic small molecule semiconducting chromophores for use in organic electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Gregory C.; Hoven, Corey V.; Nguyen, Thuc-Quyen

    2018-02-13

    Small organic molecule semi-conducting chromophores containing a pyridalthiadiazole, pyridaloxadiazole, or pyridaltriazole core structure are disclosed. Such compounds can be used in organic heterojunction devices, such as organic small molecule solar cells and transistors.

  17. On the system of provision of ojsc "MMC 'Norilsk Nickel'" with interstate and State certified reference materials for quality control of cobalt, nickel, copper and promproducts

    Directory of Open Access Journals (Sweden)

    T. V. Shabelnikova

    2014-01-01

    Full Text Available In order to manage the quality of OJSC "MMC "Norilsk Nickel" products the Centre of Certified Reference Material Development has developed and is currently successfully implementing a system of operations provision with interstate and state certified reference materials of nickel, cobalt and copper composition. The system wholly corresponds to modern metrological requirements. The Centre of Reference Materials Development, fulfilling leading function in the field of state certified reference material production and supply to the Company's operations, aims its activity both at the development of new types of certified reference materials in the form of metals and at widening the range of synthetic oxide certified reference materials. Developed for the first time, metallic state certified reference materials of nickel, cobalt composition with certified mass fractions of oxygen, hydrogen, nitrogen, sulfur and carbon were put into practice of the Company's analytical services work. Certified reference material use provides the possibility to take into account requirements of some consumers to the quality of nickel and produce by OJSC "MMC "Norilsk Nickel" and also helps to raise competitive ability of the products on the world metals market. Over recent years the Centre fulfilled the work on the development, certification in established order, approval and entering into the State Register twenty five types of state certified reference materials. Certified reference materials are intended for fulfillment of the analysis of chemical composition of nickel, cobalt and copper in terms of their conformity with both national and international standards.

  18. Majorana quasiparticles in semiconducting carbon nanotubes

    Science.gov (United States)

    Marganska, Magdalena; Milz, Lars; Izumida, Wataru; Strunk, Christoph; Grifoni, Milena

    2018-02-01

    Engineering effective p -wave superconductors hosting Majorana quasiparticles (MQPs) is nowadays of particular interest, also in view of the possible utilization of MQPs in fault-tolerant topological quantum computation. In quasi-one-dimensional systems, the parameter space for topological superconductivity is significantly reduced by the coupling between transverse modes. Together with the requirement of achieving the topological phase under experimentally feasible conditions, this strongly restricts in practice the choice of systems which can host MQPs. Here, we demonstrate that semiconducting carbon nanotubes (CNTs) in proximity with ultrathin s -wave superconductors, e.g., exfoliated NbSe2, satisfy these needs. By precise numerical tight-binding calculations in the real space, we show the emergence of localized zero-energy states at the CNT ends above a critical value of the applied magnetic field, of which we show the spatial evolution. Knowing the microscopic wave functions, we unequivocally demonstrate the Majorana nature of the localized states. An effective four-band model in the k -space, with parameters determined from the numerical spectrum, is used to calculate the topological phase diagram and its phase boundaries in analytic form. Finally, the impact of symmetry breaking contributions, like disorder and an axial component of the magnetic field, is investigated.

  19. Empirical Equation Based Chirality (n, m Assignment of Semiconducting Single Wall Carbon Nanotubes from Resonant Raman Scattering Data

    Directory of Open Access Journals (Sweden)

    Md Shamsul Arefin

    2012-12-01

    Full Text Available This work presents a technique for the chirality (n, m assignment of semiconducting single wall carbon nanotubes by solving a set of empirical equations of the tight binding model parameters. The empirical equations of the nearest neighbor hopping parameters, relating the term (2n, m with the first and second optical transition energies of the semiconducting single wall carbon nanotubes, are also proposed. They provide almost the same level of accuracy for lower and higher diameter nanotubes. An algorithm is presented to determine the chiral index (n, m of any unknown semiconducting tube by solving these empirical equations using values of radial breathing mode frequency and the first or second optical transition energy from resonant Raman spectroscopy. In this paper, the chirality of 55 semiconducting nanotubes is assigned using the first and second optical transition energies. Unlike the existing methods of chirality assignment, this technique does not require graphical comparison or pattern recognition between existing experimental and theoretical Kataura plot.

  20. Empirical Equation Based Chirality (n, m) Assignment of Semiconducting Single Wall Carbon Nanotubes from Resonant Raman Scattering Data

    Science.gov (United States)

    Arefin, Md Shamsul

    2012-01-01

    This work presents a technique for the chirality (n, m) assignment of semiconducting single wall carbon nanotubes by solving a set of empirical equations of the tight binding model parameters. The empirical equations of the nearest neighbor hopping parameters, relating the term (2n− m) with the first and second optical transition energies of the semiconducting single wall carbon nanotubes, are also proposed. They provide almost the same level of accuracy for lower and higher diameter nanotubes. An algorithm is presented to determine the chiral index (n, m) of any unknown semiconducting tube by solving these empirical equations using values of radial breathing mode frequency and the first or second optical transition energy from resonant Raman spectroscopy. In this paper, the chirality of 55 semiconducting nanotubes is assigned using the first and second optical transition energies. Unlike the existing methods of chirality assignment, this technique does not require graphical comparison or pattern recognition between existing experimental and theoretical Kataura plot. PMID:28348319

  1. Field-induced detrapping in disordered organic semiconducting host-guest systems

    NARCIS (Netherlands)

    Cottaar, J.; Coehoorn, R.; Bobbert, P.A.

    2010-01-01

    In a disordered organic semiconducting host-guest material, containing a relatively small concentration of guest molecules acting as traps, the charge transport may be viewed as resulting from carriers that are detrapped from the guest to the host. Commonly used theories include only detrapping due

  2. Impact of Nb vacancies and p-type doping of the NbCoSn-NbCoSb half-Heusler thermoelectrics.

    Science.gov (United States)

    Ferluccio, Daniella A; Smith, Ronald I; Buckman, Jim; Bos, Jan-Willem G

    2018-02-07

    The half-Heuslers NbCoSn and NbCoSb have promising thermoelectric properties. Here, an investigation of the NbCo 1+y Sn 1-z Sb z (y = 0, 0.05; 0 ≤ z ≤ 1) solid-solution is presented. In addition, the p-type doping of NbCoSn using Ti and Zr substitution is investigated. Rietveld analysis reveals the gradual creation of Nb vacancies to compensate for the n-type doping caused by the substitution of Sb in NbCoSn. This leads to a similar valence electron count (∼18.25) for the NbCo 1+y Sn 1-z Sb z samples (z > 0). Mass fluctuation disorder due to the Nb vacancies strongly decreases the lattice thermal conductivity from 10 W m -1 K -1 (z = 0) to 4.5 W m -1 K -1 (z = 0.5, 1). This is accompanied by a transition to degenerate semiconducting behaviour leading to large power factors, S 2 /ρ = 2.5-3 mW m -1 K -2 and figures of merit, ZT = 0.25-0.33 at 773 K. Ti and Zr can be used to achieve positive Seebeck values, e.g. S = +150 μV K -1 for 20% Zr at 773 K. However, the electrical resistivity, ρ 323K = 27-35 mΩ cm, remains too large for these materials to be considered useful p-type materials.

  3. Nickel adsorption on chalk and calcite

    DEFF Research Database (Denmark)

    Belova, Dina Alexandrovna; Lakshtanov, Leonid; Carneiro, J.F.

    2014-01-01

    Nickel uptake from solution by two types of chalk and calcite was investigated in batch sorption studies. The goal was to understand the difference in sorption behavior between synthetic and biogenic calcite. Experiments at atmospheric partial pressure of CO2, in solutions equilibrated with calcite...... = - 1.12 on calcite and log KNi = - 0.43 and - 0.50 on the two chalk samples. The study confirms that synthetic calcite and chalk both take up nickel, but Ni binds more strongly on the biogenic calcite than on inorganically precipitated, synthetic powder, because of the presence of trace amounts...... of polysaccharides and clay nanoparticles on the chalk surface....

  4. Structural Distortion Stabilizing the Antiferromagnetic and Semiconducting Ground State of BaMn2As2

    Directory of Open Access Journals (Sweden)

    Ekkehard Krüger

    2016-09-01

    Full Text Available We report evidence that the experimentally found antiferromagnetic structure as well as the semiconducting ground state of BaMn 2 As 2 are caused by optimally-localized Wannier states of special symmetry existing at the Fermi level of BaMn 2 As 2 . In addition, we find that a (small tetragonal distortion of the crystal is required to stabilize the antiferromagnetic semiconducting state. To our knowledge, this distortion has not yet been established experimentally.

  5. Contaminated nickel scrap processing

    Energy Technology Data Exchange (ETDEWEB)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

  6. Spin dynamics of light-induced charge separation in composites of semiconducting polymers and PC60BM revealed using Q-band pulse EPR.

    Science.gov (United States)

    Lukina, E A; Suturina, E; Reijerse, E; Lubitz, W; Kulik, L V

    2017-08-23

    Light-induced processes in composites of semiconducting polymers and fullerene derivatives have been widely studied due to their usage as active layers of organic solar cells. However the process of charge separation under light illumination - the key process of an organic solar cell is not well understood yet. Here we report a Q-band pulse electron paramagnetic resonance study of composites of the fullerene derivative PC 60 BM ([6,6]-phenyl-C 61 -butyric acid methyl ester) with different p-type semiconducting polymers regioregular and regiorandom P3HT (poly(3-hexylthiophene-2,5-diyl), MEH-PPV (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]), PCDTBT (poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]), PTB7 (poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}))), resulting in a detailed description of the in-phase laser flash-induced electron spin echo (ESE) signal. We found that in organic donor-acceptor composites the laser flash simultaneously induces species of two types: a polymer˙ + /fullerene˙ - spin-correlated polaron pair (SCPP) with an initial singlet spin state and (nearly) free polymer˙ + and fullerene˙ - species with non-equilibrium spin polarization. Species of the first type (SCPP) are well-known for polymer/fullerene blends and are usually associated with a charge-separated state. Also, spin polarization of long-living free species (polarons in deep traps) is affected by the laser flash, which is the third contribution to the flash-induced ESE signal. A protocol for extracting the in-phase ESE signal of the SCPP based on the dependence of the microwave nutation frequency on the strength of the spin coupling within the polaron pair was developed. Nutation experiments revealed an unusual pattern of the SCPP in RR-P3HT/PC 60 BM composites, from which the strength of the exchange interaction between the polymer

  7. Nickel ferrule applicators: a source of nickel exposure in children.

    Science.gov (United States)

    Jacob, Sharon E; Silverberg, Jonathan I; Rizk, Christopher; Silverberg, Nanette

    2015-01-01

    Eye makeup has been investigated for nickel content and found to have no direct association with nickel allergy and cosmetic dermatitis. However, the tools used (e.g., eyelash curlers, hairdressing scissors, hair curlers, and eye shadow and makeup applicators) may be sources. Nickel is ubiquitous and a wide range of sources have been reported, and makeup applicators (ferrules) now join the list. © 2015 Wiley Periodicals, Inc.

  8. Load Deflection Characteristics of Nickel Titanium Initial Archwires

    Directory of Open Access Journals (Sweden)

    Hossein Aghili

    2016-05-01

    Full Text Available Objectives: The aim of this study was to assess and compare the characteristics of commonly used initial archwires by their load deflection graphs.Materials and Methods: This study tested three wire designs namely copper nickel titanium (CNT, nickel titanium (NiTi, and multi-strand NiTi (MSNT archwires engaged in passive self-ligating (PSL brackets, active self-ligating (ASL brackets or conventional brackets. To evaluate the mechanical characteristics of the specimens, a three-point bending test was performed. The testing machine vertically applied force on the midpoint of the wire between the central incisor and canine teeth to obtain 2 and 4mm of deflection. The force level at maximum deflection and characteristics of plateau (the average plateau load and the plateau length were recorded. Two-way ANOVA and Tukey’s test were used at P <0.05 level of significance.Results: Force level at maximum deflection and plateau length were significantly affected by the amount of deflection. The type of archwires and brackets had significant effects on force level at maximum deflection, and plateau length. However, the bracket type had no significant effect on the average plateau force.Conclusion: With any type of brackets in deflections of 2 and 4mm, MSNT wire exerted the lowest while NiTi wire exerted the highest force level at maximum deflection and plateau phase. The force level at maximum deflection and the plateau length increased with raising the amount of primary deflection; however the average plateau force did not change significantly.

  9. Nickel allergy in a Danish population 25 years after the first nickel regulation

    DEFF Research Database (Denmark)

    Ahlström, Malin G; Menné, Torkil; Thyssen, Jacob P

    2017-01-01

    BACKGROUND: Nickel in metallic items has been regulated in Denmark since 1990; however, 10% of young Danish women are still sensitized to nickel. There is a need for continuous surveillance of the effect of regulation. OBJECTIVES: To identify current self-reported metallic exposures leading...... reactions within 30 min of contact were reported by 30.7% of patients. CONCLUSIONS: Nickel exposures that led to the implementation of a nickel regulation seem to persist. The durations of contact with metallic items to fall under the current REACH regulation of nickel correspond well with the results...... to dermatitis in nickel-allergic patients, and the minimum contact time needed for dermatitis to occur. METHODS: A questionnaire was sent to all patients who reacted positively to nickel sulfate 5% pet. within the last 5 years at the Department of Dermatology and Allergy, Gentofte Hospital. RESULTS...

  10. Characterization of n and p-type ZnO thin films grown by pulsed filtered cathodic vacuum arc system

    International Nuclear Information System (INIS)

    Kavak, H.; Erdogan, E.N.; Ozsahin, I.; Esen, R.

    2010-01-01

    Full text : Semiconductor ZnO thin films with wide band gap attract much interest due to their properties such as chemical stability in hydrogen plasma, high optical transparency in the visible and nearinfrared region. Due to these properties ZnO oxide is a promising materials for electronic or optoelectronic applications such as solar cell (as an antireflecting coating and a transparent conducting material), gas sensors, surface acoustic wave devices. The purpose of this research is to improve the properties of n and p-type ZnO thin films for device applications. Polycrystalline ZnO is naturally n-type and very difficult to dope to make p-type. Therefore nowadays hardly produced p-type ZnO attracts a lot of attention. Nitrogen considered as the best dopant for p-type ZnO thin films.The transparent, conductive and very precise thickness controlled n and p-type semiconducting nanocrystalline ZnO thin films were prepared by pulsed filtered cathodic vacuum arc deposition (PFCVAD) method. Structural, optical and electrical properties of these films were investigated. And also photoluminescence properties of these films were investigated. Transparent p-type ZnO thin films were produced by oxidation of PFCVAD deposited zinc nitride. Zinc nitride thin films were deposited with various thicknesses and under different oxygen pressures on glass substrates. Zinc nitride thin films, which were deposited at room temperatures, were amorphous and the optical transmission was below 70%. For oxidation zinc nitride, the sample was annealed in air starting from 350 degrees Celsium up to 550 degrees Celsium for one hour duration. These XRD patterns imply that zinc nitride thin films converted to zinc oxide thin films with the same hexagonal crystalline structures of ZnO. The optical measurements were made for each annealing temperature and the optical transmissions of ZnO thin films were found better than 90 percent in visible range after annealing over 350 degrees Celsium. By

  11. Specification and prediction of nickel mobilization using artificial intelligence methods

    Science.gov (United States)

    Gholami, Raoof; Ziaii, Mansour; Ardejani, Faramarz Doulati; Maleki, Shahoo

    2011-12-01

    Groundwater and soil pollution from pyrite oxidation, acid mine drainage generation, and release and transport of toxic metals are common environmental problems associated with the mining industry. Nickel is one toxic metal considered to be a key pollutant in some mining setting; to date, its formation mechanism has not yet been fully evaluated. The goals of this study are 1) to describe the process of nickel mobilization in waste dumps by introducing a novel conceptual model, and 2) to predict nickel concentration using two algorithms, namely the support vector machine (SVM) and the general regression neural network (GRNN). The results obtained from this study have shown that considerable amount of nickel concentration can be arrived into the water flow system during the oxidation of pyrite and subsequent Acid Drainage (AMD) generation. It was concluded that pyrite, water, and oxygen are the most important factors for nickel pollution generation while pH condition, SO4, HCO3, TDS, EC, Mg, Fe, Zn, and Cu are measured quantities playing significant role in nickel mobilization. SVM and GRNN have predicted nickel concentration with a high degree of accuracy. Hence, SVM and GRNN can be considered as appropriate tools for environmental risk assessment.

  12. Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon

    International Nuclear Information System (INIS)

    Onundi, Y. B.; Mamun, A. A.; Al Khatib, M. F.; Ahmad, Y. M.

    2010-01-01

    Granular activated carbon produced from palm kernel shell was used as adsorbent to remove copper, nickel and lead ions from a synthesized industrial wastewater. Laboratory experimental investigation was carried out to identify the effect of p H and contact time on adsorption of lead, copper and nickel from the mixed metals solution. Equilibrium adsorption experiments at ambient room temperature were carried out and fitted to Langmuir and Freundlich models. Results showed that p H 5 was the most suitable, while the maximum adsorbent capacity was at a dosage of 1 g/L, recording a sorption capacity of 1.337 mg/g for lead, 1.581 mg/g for copper and 0.130 mg/g for nickel. The percentage metal removal approached equilibrium within 30 minutes for lead, 75 minutes for copper and nickel, with lead recording 100 p ercent , copper 97 p ercent a nd nickel 55 p ercent r emoval, having a trend of Pb 2+ > Cu 2+ > Ni 2+ . Langmuir model had higher R 2 values of 0.977, 0.817 and 0.978 for copper, nickel and lead respectively, which fitted the equilibrium adsorption process more than Freundlich model for the three metals.

  13. Studying thermal dehydration of double nickel alkali metal pyrophosphates

    International Nuclear Information System (INIS)

    Bykanova, T.A.; Lavrov, A.V.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1978-01-01

    The methods of thermogravimetry, paper chromatography, infrared spectroscopy and X-ray phase analysis were used in studying the process of thermal dehydration of pyrophosphates of the M 2 Ni 3 (P 2 O 7 ) 2 xnH 2 O type (where n=6, 10; M=Na, K, Rb, Cs, NH 4 ). The dehydration of Cs 2 Ni 3 (P 2 O 7 ) 2 x10H 2 O proceeds in a single stage (endothermal effect at 210 deg C). The exothermal effects at 730 and 690 deg C correspond to the crystallization of the amorphous dehydration products. It has been established that binary pyrophosphates of nickel with alkali metals decompose when heated into Ni 3 (PO 4 ) 2 +MPO 4

  14. Itinerant magnetism in doped semiconducting β-FeSi2 and CrSi2

    Science.gov (United States)

    Singh, David J.; Parker, David

    2013-01-01

    Novel or unusual magnetism is a subject of considerable interest, particularly in metals and degenerate semiconductors. In such materials the interplay of magnetism, transport and other Fermi liquid properties can lead to fascinating physical behavior. One example is in magnetic semiconductors, where spin polarized currents may be controlled and used. We report density functional calculations predicting magnetism in doped semiconducting β-FeSi2 and CrSi2 at relatively low doping levels particularly for n-type. In this case, there is a rapid cross-over to a half-metallic state as a function of doping level. The results are discussed in relation to the electronic structure and other properties of these compounds. PMID:24343332

  15. Effects of P/Ni ratio and Ni content on performance of γ-Al2O3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons

    Science.gov (United States)

    Zhang, Zhena; Tang, Mingxiao; Chen, Jixiang

    2016-01-01

    γ-Al2O3-supported nickel phosphides (mNi-Pn) were prepared by the TPR method and tested for the deoxygenation of methyl laurate to hydrocarbons. The effects of the P/Ni ratio (n = 1.0-2.5) and Ni content (m = 5-15 wt.%) in the precursors on their structure and performance were investigated. Ni/γ-Al2O3 was also studied for comparison. It was found that the formation of AlPO4 in the precursor inhibited the reduction of phosphate and so the formation of nickel phosphides. With increasing the P/Ni ratio and Ni content, the Ni, Ni3P, Ni12P5 and Ni2P phases orderly formed, accompanying with the increases of their particle size and the amount of weak acid sites (mainly due to P-OH group), while the CO uptake and the amount of medium strong acid sites (mainly related to Ni sites) reached maximum on 10%Ni-P1.5. In the deoxygenation reaction, compared with Ni/γ-Al2O3, the mNi-Pn catalysts showed much lower activities for decarbonylation, Csbnd C hydrogenolysis and methanation due to the ligand and ensemble effects of P. The conversion and the selectivity to n-C11 and n-C12 hydrocarbons achieved maximum on 10%Ni-P 2.0 for the 10%Ni-Pn catalysts and on 8%Ni-P2.0 for the mNi-P2.0 catalysts, while the turnover frequency (TOF) of methyl laurate mainly increased with the P/Ni ratio and Ni content. We propose that TOF was influenced by the nickel phosphide phases, the catalyst acidity and the particle size as well as the synergetic effect between the Ni site and acid site. Again, the hydrodeoxygenation pathway of methyl laurate was promoted with increasing P/Ni ratio and Ni content, ascribed to the phase change in the order of Ni, Ni3P, Ni12P5 and Ni2P in the prepared catalysts.

  16. Effect of nickel and chromium exposure on buccal cells of electroplaters.

    Science.gov (United States)

    Qayyum, Saba; Ara, Anjum; Usmani, Jawed Ahmad

    2012-02-01

    The electroplating industry commonly involves the use of nickel and chromium. An assessment of the genotoxic effects of these metals can be carried out by micronucleus (MN) test in buccal cells. Other nuclear anomalies (NA) observed in buccal cells viz., karyorrhexis, pyknosis and karyolysis are also the indicators of genotoxicity. The current study aims at determining the extent of genotoxic damage in relation to the duration of exposure to nickel and hexavalent chromium via micronuclei induction and other nuclear anomalies. The present investigation included 150 subjects of which 50 individuals with no history of nickel/chromium exposure (Group I) were taken as control, 50 electroplaters exposed to nickel and hexavalent chromium for duration of less than 10 years (Group II) and 50 electroplaters exposed for ≥10 years (Group III) were included. Slides of buccal cells were prepared and the frequency of MN (‰) and NA (‰) were calculated. ANOVA was applied to test significance. Results were considered significant at p exposure increased. Plasma nickel and chromium levels were also determined which showed a positive correlation with frequency MN and other nuclear abnormalities (p < 0.01).

  17. Relationship between nickel allergy and diet

    Directory of Open Access Journals (Sweden)

    Sharma Ashimav

    2007-01-01

    Full Text Available Nickel is a ubiquitous trace element and it occurs in soil, water, air and of the biosphere. It is mostly used to manufacture stainless steel. Nickel is the commonest cause of metal allergy. Nickel allergy is a chronic and recurring skin problem; females are affected more commonly than males. Nickel allergy may develop at any age. Once developed, it tends to persist life-long. Nickel is present in most of the dietary items and food is considered to be a major source of nickel exposure for the general population. Nickel content in food may vary considerably from place to place due to the difference in nickel content of the soil. However, certain foods are routinely high in nickel content. Nickel in the diet of a nickel-sensitive person can provoke dermatitis. Careful selection of food with relatively low nickel concentration can bring a reduction in the total dietary intake of nickel per day. This can influence the outcome of the disease and can benefit the nickel sensitive patient.

  18. Nickel exposure and plasma levels of biomarkers for assessing oxidative stress in nickel electroplating workers.

    Science.gov (United States)

    Tsao, Yu-Chung; Gu, Po-Wen; Liu, Su-Hsun; Tzeng, I-Shiang; Chen, Jau-Yuan; Luo, Jiin-Chyuan John

    2017-07-01

    The mechanism of nickel-induced pathogenesis remains elusive. To examine effects of nickel exposure on plasma oxidative and anti-oxidative biomarkers. Biomarker data were collected from 154 workers with various levels of nickel exposure and from 73 controls. Correlations between nickel exposure and oxidative and anti-oxidative biomarkers were determined using linear regression models. Workers with a exposure to high nickel levels had significantly lower levels of anti-oxidants (glutathione and catalase) than those with a lower exposure to nickel; however, only glutathione showed an independent association after multivariable adjustment. Exposure to high levels of nickel may reduce serum anti-oxidative capacity.

  19. Electro-deposition of nickel, on reactor seal discs

    International Nuclear Information System (INIS)

    Vernekar, R.B.; Bhide, G.K.

    1977-01-01

    The effect of plating variables, acidity, current density and temperature on hardness of nickel deposited from purified nickel sulfamate bath has been investigated and optimum conditions for electrodeposition of nickel plating of hardness 160-170 VHN on reactor seal discs are established. Sodium lauryl sulfate was added as a wetting agent to the bath to overcome pitting tendency of the deposit. Factors affecting hydrogen absorption by electrodeposited nickel are also discussed. It is observed that : (1) at a pH 3.5 - 4.0 the decomposition rate of sulfamate salt is almost negligible and is the best value for bath operation, (2) at 15 A/dm 2 the hardness value is consistently around 160-170 VHN, (3) the temperatures less than 50 0 C give harder deposits and the bath is best operated at temperature 50-60 0 C and (4) annealing of the plated discs substantially reduces the hardness. (M.G.B.)

  20. High emittance black nickel coating on copper substrate for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Soniya, E-mail: jrf0013@isac.gov.in; Pillai, Anju M., E-mail: anjum@isac.gov.in; Rajendra, A., E-mail: rajendra@isac.gov.in; Sharma, A.K., E-mail: aks@isac.gov.in

    2015-09-15

    Highlights: • High emittance black nickel coating is obtained on copper substrate. • The effect of various process parameters on IR emittance is studied systematically. • Process parameters are optimized to develop a high emittance black nickel coating. • Coating obtained using the finalized parameters exhibited an emittance of 0.83. • SEM and EDAX are used for coating characterization. - Abstract: Black nickel, an alloy coating of zinc and nickel, is obtained on copper substrate by pulse electrodeposition from a modified Fishlock bath containing nickel sulphate, nickel ammonium sulphate, zinc sulphate and ammonium thiocyanate. A nickel undercoat of 4–5 μm thickness is obtained using Watts bath to increase the corrosion resistance and adhesion of the black nickel coating. The effect of bath composition, temperature, solution pH, current density and plating time on the coating appearance and corresponding infra-red emittance of the coating is investigated systematically. Process parameters are optimized to develop a high emittance space worthy black nickel coating to improve the heat radiation characteristics. The effect of the chemistry of the plating bath on the coating composition was studied using energy dispersive X-ray analysis (EDAX) of the coatings. The 5–6 μm thick uniform jet black zinc–nickel alloy coating obtained with optimized process exhibited an emittance of 0.83 and an absorbance of 0.92. The zinc to nickel ratio of black nickel coatings showing high emittance and appealing appearance was found to be in the range 2.3–2.4.

  1. The effect of nickel on the mechanical behavior of molybdenum P/M steels

    International Nuclear Information System (INIS)

    Gething, B.A.; Heaney, D.F.; Koss, D.A.; Mueller, T.J.

    2005-01-01

    This study has examined the effects of nickel alloying additions on the microstructural characteristics and mechanical properties of Fe-xNi-0.85Mo-0.4C-base steels that were powder processed using double-press double-sinter processing to maximize density. The steels were examined in the as-processed condition as well as in a quench-and-temper heat treated condition. Tensile behavior indicates that while nickel content (at levels of 2,4, and 6%) increased tensile strength in the as-sintered condition, it did not significantly affect tensile strength in the quenched and tempered condition. In both conditions increasing Ni content decreased elongation to fracture. The 4% Ni steel, which tended to have the smallest maximum pore size, also exhibited the greatest fatigue strength

  2. Differences in genotoxic activity of alpha-Ni3S2 on human lymphocytes from nickel-hypersensitized and nickel-unsensitized donors.

    Science.gov (United States)

    Arrouijal, F Z; Marzin, D; Hildebrand, H F; Pestel, J; Haguenoer, J M

    1992-05-01

    The genotoxic activity of alpha-Ni3S2 was assessed on human lymphocytes from nickel-hypersensitized (SSL) and nickel-unsensitized (USL) subjects. Three genotoxicity tests were performed: the sister chromatid exchange (SCE) test, the metaphase analysis test and the micronucleus test. (i) The SCE test (3-100 micrograms/ml) showed a weak but statistically significant increase in the number of SCE in both lymphocyte types with respect to controls, USL presenting a slightly higher SCE incidence but only at one concentration. (ii) The metaphase analysis test demonstrated a high dose-dependent clastogenic activity of alpha-Ni3S2 in both lymphocyte types. The frequency of chromosomal anomalies was significantly higher in USL than in SSL for all concentrations applied. (iii) The micronucleus test confirmed the dose-dependent clastogenic activity of alpha-Ni3S2 and the differences already observed between USL and SSL, i.e. the number of cells with micronuclei was statistically higher in USL. Finally, the incorporation study with alpha-63Ni3S2 showed a higher uptake of its solubilized fraction by USL. This allows an explanation of the different genotoxic action of nickel on the two cell types. In this study we demonstrated that hypersensitivity has an influence on the incorporation of alpha-Ni3S2 and subsequently on the different induction of chromosomal aberrations in human lymphocytes.

  3. Inhibition in fertilisation of coral gametes following exposure to nickel and copper.

    Science.gov (United States)

    Gissi, Francesca; Stauber, Jenny; Reichelt-Brushett, Amanda; Harrison, Peter L; Jolley, Dianne F

    2017-11-01

    The mining and production of nickel in tropical regions have the potential to impact on ecologically valuable tropical marine ecosystems. Currently, few data exist to assess the risks of nickel exposure to tropical ecosystems and to derive ecologically relevant water quality guidelines. In particular, data are lacking for keystone species such as scleractinian corals, which create the complex structural reef habitats that support many other marine species. As part of a larger study developing risk assessment tools for nickel in the tropical Asia-Pacific region, we investigated the toxicity of nickel on fertilisation success in three species of scleractinian corals: Acropora aspera, Acropora digitifera and Platygyra daedalea. In the literature, more data are available on the effects of copper on coral fertilisation, so to allow for comparisons with past studies, the toxicity of copper to A. aspera and P. daedalea was also determined. Overall, copper was more toxic than nickel to the fertilisation success of the species tested. Acropora aspera was the most sensitive species to nickel (NOEC 4610µg Ni/L). Acropora aspera was also the more sensitive species to copper with an EC10 of 5.8µg Cu/L. The EC10 for P. daedalea was 16µg Cu/L, similar to previous studies. This is the first time that the toxicity of nickel on fertilisation success in Acropora species has been reported, and thus provides valuable data that can contribute to the development of reliable water quality guidelines for nickel in tropical marine waters. Copyright © 2017. Published by Elsevier Inc.

  4. Mechanisms of nickel toxicity in microorganisms

    Science.gov (United States)

    Macomber, Lee

    2014-01-01

    Summary Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological concern. To date, the mechanisms of nickel toxicity in microorganisms and higher eukaryotes are poorly understood. In this review, we summarize nickel homeostasis processes used by microorganisms and highlight in vivo and in vitro effects of exposure to elevated concentrations of nickel. On the basis of this evidence we propose four mechanisms of nickel toxicity: 1) nickel replaces the essential metal of metalloproteins, 2) nickel binds to catalytic residues of non-metalloenzymes; 3) nickel binds outside the catalytic site of an enzyme to inhibit allosterically, and 4) nickel indirectly causes oxidative stress. PMID:21799955

  5. Effect on growth and nickel content of cabbage plants watered with nickel solutions

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, O B

    1979-01-01

    Chinese cabbage plants were watered with different concentrations of NiCl/sub 2/ solutions and the effect on growth and uptake of nickel in the plants were studied. No toxic effect on plant growth was observed. A higher content of nickel was found in the plants exposed to more concentrated nickel solutions. Nickel contamination and its clinical consequences are discussed. 29 references, 1 figure, 1 table.

  6. Energy dissipation of free exciton polaritons in semiconducting films

    International Nuclear Information System (INIS)

    De Crescenzi, M.; Harbeke, G.; Tosatti, E.

    1978-08-01

    The effective (thickness-dependent) light absorption coefficient K(ω,d) is discussed for thin semiconducting films in the frequency range of free, spatially dispersive exciton polaritons. We find that (i) it oscillates strongly for small film thicknesses; (ii) it exhibits a slanted peak lineshape; (iii) its integrated strength also depends upon the exciton damping and extrapolates to zero for vanishing damping

  7. Removal of Nickel from Aqueous Solution by Hard-Shell Pistachios

    Directory of Open Access Journals (Sweden)

    Shayan Shamohammadi

    2013-08-01

    Full Text Available Nickel is one of the heavy metals which commonly can be found in industrial wastewater. Many studies have been done on agricultural waste for the removal of nickel from aqueous solutions. The purpose of this study is to identify hard-shell pistachios as a local attraction for removal of nickel from aqueous solution. Nickel adsorption isotherm models are studied using shell pistachios. Pistachio shell was chosen which its particle size is between 800-600 microns. The stock solution of nickel ions was prepared mixing nickel nitrate with distilled water. The results showed that the maximum absorption efficiency occurs (73.3% at pH=8. Also, it was shown that with increasing adsorbent dose, equilibrium time decreased within constant concentration. Examination of uptake isotherm models showed that models of Freundlich, BET, Radke-Praunitz, Redlich-Peterson and Sips describe data in 97% level of confidence well,  however Freundlich and Sips isotherm models has the lowest error factor 0.10597 and 0/10598 respectively and the highest correlation coefficient (0.9785. Comparison of adsorbent capacity within removal of nickel from aqueous solution shows that Pistachio shell with special absorbent surface of 1.7 m2/g and uptake capacity of 0.3984 mg/g is proper than adsorbents of Kaolinite, Bagasse, sludge-ash.

  8. The optimization of the analysis of nickel-63 in urine

    International Nuclear Information System (INIS)

    Kramer, G.H.

    1981-05-01

    A method has been developed that separates nickel-63 from urine. The subsequent estimation of activity is by liquid scintillation counting. The urine is wet ashed by a new procedure which is much faster than conventional ashing methods. Interfering phosphates are removed prior to a precipitation of Ni as the dimethylglyoxime complex. The effects of the carrier weight, the pH of the phosphate removal step and the pH of the dimethylglyoxime precipiation have been investigated and optimized to give a mean recovery of 97 +- 8% for nickel-63. The detection limit is estimated to be 1.5 pCi (55 mBq) per sample. (author)

  9. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.

    Science.gov (United States)

    Muguruma, Hitoshi; Hoshino, Tatsuya; Nowaki, Kohei

    2015-01-14

    An electrochemical enzyme biosensor with electronically type-sorted (metallic and semiconducting) single-walled carbon nanotubes (SWNTs) for use in aqueous media is presented. This research investigates how the electronic types of SWNTs influence the amperometric response of enzyme biosensors. To conduct a clear evaluation, a simple layer-by-layer process based on a plasma-polymerized nano thin film (PPF) was adopted because a PPF is an inactive matrix that can form a well-defined nanostructure composed of SWNTs and enzyme. For a biosensor with the glucose oxidase (GOx) enzyme in the presence of oxygen, the response of a metallic SWNT-GOx electrode was 2 times larger than that of a semiconducting SWNT-GOx electrode. In contrast, in the absence of oxygen, the response of the semiconducting SWNT-GOx electrode was retained, whereas that of the metallic SWNT-GOx electrode was significantly reduced. This indicates that direct electron transfer occurred with the semiconducting SWNT-GOx electrode, whereas the metallic SWNT-GOx electrode was dominated by a hydrogen peroxide pathway caused by an enzymatic reaction. For a biosensor with the glucose dehydrogenase (GDH; oxygen-independent catalysis) enzyme, the response of the semiconducting SWNT-GDH electrode was 4 times larger than that of the metallic SWNT-GDH electrode. Electrochemical impedance spectroscopy was used to show that the semiconducting SWNT network has less resistance for electron transfer than the metallic SWNT network. Therefore, it was concluded that semiconducting SWNTs are more suitable than metallic SWNTs for electrochemical enzyme biosensors in terms of direct electron transfer as a detection mechanism. This study makes a valuable contribution toward the development of electrochemical biosensors that employ sorted SWNTs and various enzymes.

  10. Formation of Nanostructures on the Nickel Metal Surface in Ionic Liquid under Anodizing

    Science.gov (United States)

    Lebedeva, O. K.; Root, N. V.; Kultin, D. Yu.; Kalmykov, K. B.; Kustov, L. M.

    2018-05-01

    The formation of nanostructures in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide on the surface of a nickel electrode during anodizing was studied. Hexagonal ordered surface nanostructures were found to form in a narrow range of current densities. The form of the potential transients of the nickel electrode corresponded to the morphology of the nickel surface obtained which was studied by electron microscopy. No other types of nanostructures were found under the electrosynthesis conditions under study.

  11. Environmental and human toxicology of nickel - a review; Umwelt- und Humantoxikologie von Nickel - eine aktuelle Uebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Beyersmann, D. [Fachbereich Biologie und Chemie, Univ. Bremen (Germany)

    2006-07-01

    Nickel is a relatively rare element, and its concentrations in ambient air, soils and waters are very low. Higher burdens of nickel are found in nickel industries and their proximity. The human uptake of nickel from the ambient air is neglectably low, except in industrial exposures. The main fraction of human nickel uptake is from food, nearly 50% stems from vegetables. Only about 2% of the oral uptake of nickel are resorbed and distributed over all organs investigated. The uptake of nickel compounds through the skin generally is very low. However, chronic skin contact with nickel and nickel compounds causes a specific contact allergy. This disease was observed after occupational exposure but also frequently in the general population. The number of new cases has dropped considerably due to reinforced prevention. Epidemiological studies with workers of nickel smelting and refining plants have demonstrated increased risks of nose and lung cancer. Human data are supported by results from animal experiments which have shown that inhalation of various nickel compounds caused lung cancer. Furthermore, animal experiments have yielded evidence that oral and inhalative exposure to nickel compounds impair reproduction. National and international agencies have classified various nickel compounds as carcinogenic to humans. The unit cancer risk attributed to life-long inhalation of 1 {mu}g Ni/m{sup 3} air is estimated to be between 2 x 10{sup -4} and 7 x 10{sup -4}. Occupational exposure limits in Germany have been the Technical Guidance Values of 0.5 mg/m{sup 3} for nickel and weakly soluble nickel compounds and of 0.05 mg/m{sup 3} for inhalable droplets of soluble nickel salts. The German limit value for ambient immission is 0.015 mg Ni/m{sup 2}. d, and for emission 0,5 mg Ni/m{sup 3}. Limit values for nickel in air are to be taken not as safe thresholds but as guidance values for the delimitation of the cancer risk. (orig.)

  12. Semiconducting Nanocrystals in Mesostructured Thin Films for Optical and Opto-Electronic Device Applications

    National Research Council Canada - National Science Library

    Chmelka, Bradley F

    2007-01-01

    ...) nanocomposite films have been measured and controlled to modify, enhance, and understand their optical and/or semiconducting properties over a hierarchy of dimensions, from molecular to macroscopic...

  13. Plastic Electronics and Optoelectronics: New Science and Technology from Soluble Semiconducting Polymers and Bulk Heterojunction Solar Cells Fabricated from Soluble Semiconducting Polymers

    Science.gov (United States)

    2011-11-03

    Seifter, A. J. Heeger, Adv. Mater., 23, 1679–1683 (2011). 8. Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode...distribution is unlimited. 13. SUPPLEMENTARY NOTES None 14. ABSTRACT Bulk heterojunction (BHJ) solar cells were invented at UC Santa Barbara after the...Bulk Heterojunction Solar Cells Fabricated from Soluble Semiconducting Polymers Grant number: AFOSR FA9550-08-1-0248 Dr. Charle Lee, Program

  14. Progress in the Development of Lightweight Nickel Electrode for Nickel-Hydrogen Cell

    Science.gov (United States)

    Britton, Doris L.

    1999-01-01

    Development of a high specific energy battery is one of the objectives of the lightweight nickel-hydrogen (Ni-H2) program at the NASA Glenn Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a lighter weight electrode for the nickel-hydrogen cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active material. Initial tests include activation and capacity measurements at five different discharge levels, C/2, 1.0 C, 1.37 C, 2.0 C, and 2.74 C. The electrodes are life cycle tested using a half-cell configuration at 40 and 80% depths-of-discharge (DOD) in a low-Earth-orbit regime. The electrodes that pass the initial tests are life cycle-tested in a boiler plate nickel-hydrogen cell before flight weight design are built and tested.

  15. Electrodeposited and Sol-gel Precipitated p-type SrTi1-xFexO3-δ Semiconductors for Gas Sensing

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2007-09-01

    Full Text Available In the present contribution, three methods for the preparation of nanoscaledSrTi1-xFexO3-δ sensor films for hydrocarbon sensing were investigated. Besides screen-printed thick films based on sol-precipitated nanopowders, two novel synthesis methods,electrospinning and electrospraying, were tested successfully. All of these sensor devicesshowed improved sensor functionality in comparison to conventional microscaled thickfilms. In order to explain the impact of the enhanced surface-to-volume ratio on sensorproperties in a quantitative way, a mechanistic model was applied to micro- and nanoscaleddevices. In contrast to the conventional diffusion-reaction model that has been proposed forn-type semiconducting sensors, it contained novel approaches with respect to themicroscopic mechanism. With very few fit variables, the present model was found torepresent well sensor functionality of p-type conducting SrTi0.8Fe0.2O3-δ films. In additionto the temperature dependency of the sensor response, the effect of the specific surface areaon the sensor response was predicted.

  16. Alleviation of mandibular anterior crowding with copper-nickel-titanium vs nickel-titanium wires: a double-blind randomized control trial.

    Science.gov (United States)

    Pandis, Nikolaos; Polychronopoulou, Argy; Eliades, Theodore

    2009-08-01

    The purpose of this study was to investigate the efficiency of copper-nickel-titanium (CuNiTi) vs nickel-titanium (NiTi) archwires in resolving crowding of the anterior mandibular dentition. Sixty patients were included in this single-center, single-operator, double-blind randomized trial. All patients were bonded with the In Ovation-R self-ligating bracket (GAC, Central Islip, NY) with a 0.022-in slot, and the amount of crowding of the mandibular anterior dentition was assessed by using the irregularity index. The patients were randomly allocated into 2 groups of 30 patients, each receiving a 0.016-in CuNiTi 35 degrees C (Ormco, Glendora, Calif) or a 0.016-in NiTi (ModernArch, Wyomissing, Pa) wire. The type of wire selected for each patient was not disclosed to the provider or the patient. The date that each patient received a wire was recorded, and all patients were followed monthly for a maximum of 6 months. Demographic and clinical characteristics between the 2 wire groups were compared with the t test or the chi-square test and the Fisher exact test. Time to resolve crowding was explored with statistical methods for survival analysis, and alignment rate ratios for wire type and crowding level were calculated with Cox proportional hazards multivariate modeling. The type of wire (CuNiTi vs NiTi) had no significant effect on crowding alleviation (129.4 vs 121.4 days; hazard ratio, 1.3; P >0.05). Severe crowding (>5 on the irregularity index) showed a significantly higher probability of crowding alleviation duration relative to dental arches with a score of wires in laboratory and clinical conditions might effectively eliminate the laboratory-derived advantage of CuNiTi wires.

  17. 40 CFR 721.5330 - Nickel salt of an organo compound containing nitrogen.

    Science.gov (United States)

    2010-07-01

    ... containing nitrogen. 721.5330 Section 721.5330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5330 Nickel salt of an organo compound containing nitrogen. (a) Chemical... as nickel salt of an organo compound containing nitrogen (PMN P-92-686) is subject to reporting under...

  18. Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors

    Directory of Open Access Journals (Sweden)

    Ping Feng

    2014-09-01

    Full Text Available One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed.

  19. Nickel-catalyzed direct synthesis of dialkoxymethane ethers

    Indian Academy of Sciences (India)

    MURUGAN SUBARAMANIAN

    Nickel catalysis; alcohol; paraformaldehyde; ether; solvent-free condition. 1. Introduction ..... oxidation and Dopamine Release with Protective Effects. Against Central ... P, Ghosh A, Saha R and Saha B 2016 A Review on the. Advancement of ...

  20. Determination of macro nickel, vanadium and iron in crude oil and residues by derivative spectrophotometry

    International Nuclear Information System (INIS)

    Liu, W.; Wang, L.; Li, X.

    1992-01-01

    In this paper, a new method with derivative spectrophotometry and 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol as the chromogenic reagent in buffer solution of different pH developed for determining micro amounts of nickel. Vanadium and iron in crude oil and residues is reported. Forth-, Second- and Third-, Fourth-order derivative spectrophotometry were applied to determine nickel, nickel and vanadium, nickel and iron in crude oil and residues, respectively. The derivative maximums chosen for the measurement were at 556 nm for nickel, 540 nm and 643 nm for nickel and vanadium, 524 nm and 604 nm for nickel and iron. Beer's law is valid for the range 1.0 x 10 -6 to 2.5 x 10 -5 M

  1. Low cost AB{sub 5}-type hydrogen storage alloys for a nickel-metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Lijun [General Res. Inst. for Non-Ferrous Metals, Beijing (China); Zhan Feng [General Res. Inst. for Non-Ferrous Metals, Beijing (China); Bao Deyou [General Res. Inst. for Non-Ferrous Metals, Beijing (China); Qing Guangrong [General Res. Inst. for Non-Ferrous Metals, Beijing (China); Li Yaoquan [General Res. Inst. for Non-Ferrous Metals, Beijing (China); Wei Xiuying [General Res. Inst. for Non-Ferrous Metals, Beijing (China)

    1995-12-15

    The studies have been carried out on utilizing Ml(NiAl){sub 5}-based alloys as a low cost negative battery electrode. The replacement of nickel by copper improved the cycle lifetime to some extent without a decrease in capacity. Using Ml(NiAlCu){sub 5} alloys, hydrogen storage alloys with good overall characteristics and low cost were obtained through substituting cobalt or silicon for nickel. The discharge capacity was further increased by increasing the lanthanum content in lanthanum-rich mischmetal. (orig.)

  2. Zinc-nickel alloy electrodeposits for water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheela, G.; Pushpavanam, Malathy; Pushpavanam, S. [Central Electrochemical Research Inst., Karaikudi (India)

    2002-06-01

    Electrodeposited zinc-nickel alloys of various compositions were prepared. A suitable electrolyte and conditions to produce alloys of various compositions were identified. Alloys produced on electroformed nickel foils were etched in caustic to leach out zinc and to produce the Raney type, porous electro catalytic surface for hydrogen evolution. The electrodes were examined by polarisation measurements, to evaluate their Tafel parameters, cyclic voltammetry, to test the change in surface properties on repeated cycling, scanning electron microscopy to identify their microstructure and X-ray diffraction. The catalytic activity as well as the life of the electrode produced from 50% zinc alloy was found to be better than others. (Author)

  3. Sorption studies of nickel ions onto activated carbon

    Science.gov (United States)

    Joshi, Parth; Vyas, Meet; Patel, Chirag

    2018-05-01

    Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. The use of low-cost activated carbon derived from azadirachta indica, an agricultural waste material, has been investigated as a replacement for the current expensive methods of removing nickel ions from wastewater. The temperature variation study showed that the nickel ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the nickel ion solutions. Therefore, this study revealed that azadirachta indica can serve as a good source of activated carbon with multiple and simultaneous metal ions removing potentials and may serve as a better replacement for commercial activated carbons in applications that warrant their use.

  4. Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni-P films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y., E-mail: liu_yunli@hotmail.com [R and D Department, MacDermid plc, 198 Golden Hillock Road, Birmingham B11 2PN (United Kingdom); Beckett, D.; Hawthorne, D. [R and D Department, MacDermid plc, 198 Golden Hillock Road, Birmingham B11 2PN (United Kingdom)

    2011-02-15

    Electroless black nickel-phosphorus plating is an advanced electroless nickel plating process formulated to deposit a black finish when processed through an oxidizing acid solution. Heat treatment, five types of top organic coating techniques and one conversion coating technique with three different experimental conditions were investigated to stabilize the black film and increase the hardness and corrosion resistance. Morphology and compositions of electroless nickel-phosphorous films with or without heat treatment, with five types of top organic coatings, and with three conversion coatings were compared to examine nickel, phosphorus, oxygen, carbon, silicon and chrome contents on the corrosion resistance of black surfaces by energy dispersive X-ray microanalysis and scanning electron microscope. Corrosion resistance of black electroless nickel-phosphorus coatings with or without heat treatment, with five types of top organic coatings, and with three conversion coatings was investigated by the polarization measurements and the salt spray test in 5% NaCl solution, respectively. HydroLac as the top organic coating from MacDermid showed the excellent corrosion resistance and the black EN film did not lose the black color after 48 h salt spray test. Electrotarnil B process with 0.5 ASD for 1 min stabilized the black Ni-P film immediately and increased the hardness and corrosion performance of the black Ni-P film. The black Ni-P coating with Electroarnil B process passed the 5% NaCl salt spray test for 3000 h in the black color and had a minimal corrosion current 0.8547 {mu}A/cm{sup 2} by the polarization measurement.

  5. Nickel patch test reactivity and the menstrual cycle

    DEFF Research Database (Denmark)

    Rohold, A E; Halkier-Sørensen, L; Thestrup-Pedersen, K

    1994-01-01

    Premenstrual exacerbation of allergic contact dermatitis and varying allergic patch test responses have been reported at different points of the period. Using a dilution series of nickel sulphate, we studied the variation in patch test reactivity in nickel allergic women in relation to the menstr......Premenstrual exacerbation of allergic contact dermatitis and varying allergic patch test responses have been reported at different points of the period. Using a dilution series of nickel sulphate, we studied the variation in patch test reactivity in nickel allergic women in relation...... were tested first on day 7-10 and the other half first on day 20-24. There was no difference in the degree of patch test reactivity, when the results from day 7-10 and day 20-24 were compared (p > 0.4). However, when we compared the patch test results from the first and second test procedure, we found...... of positive patch tests led to an increased skin reactivity towards the same allergen, when the patients were retested weeks later....

  6. Development of process technologies for improvement of electroless nickel coatings properties

    International Nuclear Information System (INIS)

    Barba-Pingarrón, A; Trujillo-Barragán, M; Hernandez-Gallegos, M A; Valdez-Navarro, R; Bolarín-Miró, A; Jesús, F Sánchez – de; Vargas-Mendoza, L; Molera-Sola, P

    2013-01-01

    This paper describes research and technology developments that enable to improve nickel electroless coating properties. This work deals with: (a) different methods in order to achieve Ni-P-Mo coatings. (b) Other development is related with coatings with addition of hard particles such as SiC, WC or Al 2 O 3 ,(c) Electroless nickel deposits on PBT and austempered ductile iron (ADI). (d) In addition, nickel coatings were deposited on powder metallic pieces and finally, electroless nickel coatings, in conjunction with layers from thermal spray process were formed. Characterization of all coatings by means of optical microscopy, scanning electron microscopy, micro-hardness, wear and corrosion tests were carried out. Results indicate positive increment in both mechanical and electrochemical properties which enhance field applications in Mexican industry.

  7. Effect of thermocycling on nickel release from orthodontic arch wires: an in vitro study.

    Science.gov (United States)

    Sheibaninia, Ahmad

    2014-12-01

    The amount of daily intake of metals from orthodontic appliances over time is a matter of great concern. Nickel results in one of the most common metal-induced allergic contact dermatitis in humans; it produces more allergic reactions than all the other metals combined together. The purpose of this study was to evaluate the effects of thermocycling on the nickel release from orthodontic arch wires stored in artificial saliva with different pH values. Forty new wire pieces were selected. Each wire piece was placed in a special capillary Pyrex tube filled with artificial saliva, which was sealed and immersed in deionized water at 37 °C. The samples were divided into four groups of ten. Group I received no treatment; group II was subjected to thermocycling. The pH of storage in groups III and IV was reduced to 4.5, and group IV was subjected to thermocycling. Thermocycling was carried out between 5 and 55 °C for 500 cycles. The release of nickel ions was statistically analyzed by two-way ANOVA for the effects of two variables: pH and thermocycling. The interaction between pH and thermocycling was found to be statistically significant (F = 12.127, P = 0.001). Two-way ANOVA showed that different storage media or pH and thermocycling had a significant effect on the nickel release (F = 52.812, P nickel from orthodontic wires, while thermocycling is clearly the dominant factor.

  8. Mechanical and microstructural characterization of new nickel-free low modulus β-type titanium wires during thermomechanical treatments

    Energy Technology Data Exchange (ETDEWEB)

    Guillem-Martí, J. [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus Río Ebro, Edificio I+D Bloque 5, 1a planta, C/ Poeta Mariano Esquillor s/n, 50018 Zaragoza (Spain); Centre for Research in NanoEngineering (CRNE) – UPC, C/Pascual i Vila 15, 08028 Barcelona (Spain); Herranz-Díez, C. [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus Río Ebro, Edificio I+D Bloque 5, 1a planta, C/ Poeta Mariano Esquillor s/n, 50018 Zaragoza (Spain); Shaffer, J.E. [Fort Wayne Metals Research Products Corporation, 9609 Ardmore Avenue, 46809 Fort Wayne (United States); Gil, F.J. [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus Río Ebro, Edificio I+D Bloque 5, 1a planta, C/ Poeta Mariano Esquillor s/n, 50018 Zaragoza (Spain); Centre for Research in NanoEngineering (CRNE) – UPC, C/Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2015-06-11

    NiTi alloy is the only practical shape memory alloy (SMA) in biomedical use because of its excellent mechanical stability and functionality. However, it is estimated that between 4.5% and 28.5% of the population are hypersensitive to nickel metal, with a higher prevalence in females. Therefore, developing nickel-free low modulus β-type titanium alloys showing shape memory or super elastic behavior would have a great interest in the biomaterials field. Homogeneous 127 μm diameter Ti25Hf21Nb wires were produced and compared to straight annealed Ti–50.8 at% Ni (Nitinol) and 90% cold-drawn 316L wires. Microstructural changes taking place during the heat treatment of cold-worked Ti25Hf21Nb wires were investigated. Large plastic deformation during wire drawing and subsequent annealing led to nano-crystallization and amorphization which may contribute to the observed superelasticity. Mechanical properties were characterized using cyclic uniaxial tension and rotary beam fatigue test modes. A modulus of elasticity of less than 60 GPa and axial recoverable strain of greater than 3% were observed with stress hysteresis resembling a reversible stress-induced martensitic transformation at higher temperatures. The new Ti25Hf21Nb alloy is an important candidate for developing Ni-free SMAs in the future.

  9. Mechanical and microstructural characterization of new nickel-free low modulus β-type titanium wires during thermomechanical treatments

    International Nuclear Information System (INIS)

    Guillem-Martí, J.; Herranz-Díez, C.; Shaffer, J.E.; Gil, F.J.

    2015-01-01

    NiTi alloy is the only practical shape memory alloy (SMA) in biomedical use because of its excellent mechanical stability and functionality. However, it is estimated that between 4.5% and 28.5% of the population are hypersensitive to nickel metal, with a higher prevalence in females. Therefore, developing nickel-free low modulus β-type titanium alloys showing shape memory or super elastic behavior would have a great interest in the biomaterials field. Homogeneous 127 μm diameter Ti25Hf21Nb wires were produced and compared to straight annealed Ti–50.8 at% Ni (Nitinol) and 90% cold-drawn 316L wires. Microstructural changes taking place during the heat treatment of cold-worked Ti25Hf21Nb wires were investigated. Large plastic deformation during wire drawing and subsequent annealing led to nano-crystallization and amorphization which may contribute to the observed superelasticity. Mechanical properties were characterized using cyclic uniaxial tension and rotary beam fatigue test modes. A modulus of elasticity of less than 60 GPa and axial recoverable strain of greater than 3% were observed with stress hysteresis resembling a reversible stress-induced martensitic transformation at higher temperatures. The new Ti25Hf21Nb alloy is an important candidate for developing Ni-free SMAs in the future

  10. Crystallite size effects in stacking faulted nickel hydroxide and its electrochemical behaviour

    International Nuclear Information System (INIS)

    Ramesh, T.N.

    2009-01-01

    β-Nickel hydroxide comprises a long range periodic arrangement of atoms with a stacking sequence of AC AC AC-having an ideal composition Ni(OH) 2 . Variation in the preparative conditions can lead to the changes in the stacking sequence (AC AC BA CB AC AC or AC AC AB AC AC). This type of variation in stacking sequence can result in the formation of stacking fault in nickel hydroxide. The stability of the stacking fault depends on the free energy content of the sample. Stacking faults in nickel hydroxide is essential for better electrochemical activity. Also there are reports correlating particle size to the better electrochemical activity. Here we present the effect of crystallite size on the stacking faulted nickel hydroxide samples. The electrochemical performance of stacking faulted nickel hydroxide with small crystallite size exchanges 0.8e/Ni, while the samples with larger crystallite size exchange 0.4e/Ni. Hence a right combination of crystallite size and stacking fault content has to be controlled for good electrochemical activity of nickel hydroxide

  11. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors

    Science.gov (United States)

    Kagan; Mitzi; Dimitrakopoulos

    1999-10-29

    Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials. A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated. Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets. Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 0.6 square centimeters per volt-second and current modulation greater than 10(4). Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors.

  12. Electroless Ni-P/Ni-B duplex coatings: preparation and evaluation of microhardness, wear and corrosion resistance

    International Nuclear Information System (INIS)

    Narayanan, T.S.N. Sankara; Krishnaveni, K.; Seshadri, S.K.

    2003-01-01

    The present work deals with the formation of Ni-P/Ni-B duplex coatings by electroless plating process and evaluation of their hardness, wear resistance and corrosion resistance. The Ni-P/Ni-B duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with both Ni-P and Ni-B as inner layers and with varying single layer thickness. Scanning electron microscopy (SEM) was used to assess the duplex interface. The microhardness, wear resistance and corrosion resistance of electroless nickel duplex coatings were compared with electroless Ni-P and Ni-B coatings of similar thickness. The study reveals that the Ni-P and Ni-B coatings are amorphous in their as-plated condition and upon heat-treatment at 450 deg. C for 1 h, both Ni-P and Ni-B coatings crystallize and produce nickel, nickel phosphide and nickel borides in the respective coatings. All the three phases are formed when Ni-P/Ni-B and Ni-B/Ni-P duplex coatings are heat-treated at 450 deg. C for 1 h. The duplex coatings are uniform and the compatibility between the layers is good. The microhardness, wear resistance and corrosion resistance of the duplex coating is higher than Ni-P and Ni-B coatings of similar thickness. Among the two types of duplex coatings studied, hardness and wear resistance is higher for coatings having Ni-B coating as the outer layer whereas better corrosion resistance is offered by coatings having Ni-P coating as the outer layer

  13. The cost of nickel allergy

    DEFF Research Database (Denmark)

    Hamann, Carsten R; Hamann, Dathan; Hamann, Curtis

    2013-01-01

    %), followed by aluminium-bronze (62, 17%). In total, 239 denominations released nickel (28%). Coins from Bolivia, Brazil and Costa Rica did not release nickel. Fewer than one-third of the denominations or issues from China, India, the euro area and Indonesia released nickel. In the United States, the Russian...... Federation, Japan, and Mexico, one-third or more of the denominations released nickel. Conclusions. This worldwide selection of circulating coins covered countries with 75% of the world population, and shows that the majority of the world population lives in countries where coins release nickel. Pertinently...

  14. Development of p-type amorphous Cu{sub 1−x}B{sub x}O{sub 2−δ} thin films and fabrication of pn hetero junction

    Energy Technology Data Exchange (ETDEWEB)

    Sanal, K.C., E-mail: sanalcusat@gmail.com [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kerala 682022 (India); Inter University Center for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala 682022 (India); Center for Advanced Materials, Cochin University of Science and Technology, Kerala 682022 (India); Jayaraj, M.K., E-mail: mkj@cusat.ac.in [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kerala 682022 (India); Center for Advanced Materials, Cochin University of Science and Technology, Kerala 682022 (India)

    2014-07-01

    Highlights: • Growth of p-type semiconducting amorphous Cu{sub 1−x}B{sub x}O{sub 2−δ} thin films by co-sputtering. • Atomic percentage of Cu{sub 1−x}B{sub x}O{sub 2−δ} thin films from the XPS analysis. • Variation of bandgap with boron concentration in Cu{sub 1−x}B{sub x}O{sub 2−δ} thin films. • Demonstration of p–n hetero junctions fabricated in the structure n-Si/p-Cu{sub 1−x}B{sub x}O{sub 2−δ}/Au. - Abstract: Transparent conducting amorphous p type Cu{sub 1−x}B{sub x}O{sub 2−δ} thin films were grown by RF magnetron co-sputtering at room temperature, using copper and boron targets in oxygen atmosphere. The structural, electrical as well as optical properties were studied. Composition of the films was analyzed by XPS. Amorphous structure of as deposited films was confirmed by GXRD. Surface morphology of the films was analyzed by AFM studies. p-Type nature and concentration of carriers were investigated by Hall effect measurement. Band gap of the films was found to increase with the atomic content of boron in the film. A p–n hetero junction using p-type Cu{sub 1−x}B{sub x}O{sub 2−δ} and n-type silicon was fabricated in the structure n-Si/p-Cu{sub 1−x}B{sub x}O{sub 2−δ}/Au which showed rectifying behavior. As deposited amorphous Cu{sub 1−x}B{sub x}O{sub 2−δ} thin films with lower carrier concentration can be used as a channel layer for thin film transistors.

  15. Microstructural studies of carbides in MAR-M247 nickel-based superalloy

    Science.gov (United States)

    Szczotok, A.; Rodak, K.

    2012-05-01

    Carbides play an important role in the strengthening of microstructures of nickel-based superalloys. Grain boundary carbides prevent or retard grain-boundary sliding and make the grain boundary stronger. Carbides can also tie up certain elements that would otherwise promote phase instability during service. Various types of carbides are possible in the microstructure of nickel-based superalloys, depending on the superalloy composition and processing. In this paper, scanning electron and scanning transmission electron microscopy studies of carbides occurring in the microstructure of polycrystalline MAR-M247 nickel-based superalloy were carried out. In the present work, MC and M23C6 carbides in the MAR-M247 microstructure were examined.

  16. Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Chamousis, RL; Chang, LL; Watterson, WJ; Montgomery, RD; Taylor, RP; Moule, AJ; Shaheen, SE; Ilan, B; van de Lagemaat, J; Osterloh, FE

    2014-08-21

    Living organisms use fractal structures to optimize material and energy transport across regions of differing size scales. Here we test the effect of fractal silver electrodes on light distribution and charge collection in organic semiconducting polymer films made of P3HT and PCBM. The semiconducting polymers were deposited onto electrochemically grown fractal silver structures (5000 nm x 500 nm; fractal dimension of 1.71) with PEDOT:PSS as hole-selective interlayer. The fractal silver electrodes appear black due to increased horizontal light scattering, which is shown to improve light absorption in the polymer. According to surface photovoltage spectroscopy, fractal silver electrodes outperform the flat electrodes when the BHJ film thickness is large (>400 nm, 0.4 V photovoltage). Photocurrents of up to 200 microamperes cm(-2) are generated from the bulk heterojunction (BHJ) photoelectrodes under 435 nm LED (10-20 mW cm(-2)) illumination in acetonitrile solution containing 0.005 M ferrocenium hexafluorophosphate as the electron acceptor. The low IPCE values (0.3-0.7%) are due to slow electron transfer to ferrocenium ion and due to shunting along the large metal-polymer interface. Overall, this work provides an initial assessment of the potential of fractal electrodes for organic photovoltaic cells.

  17. THE EFFECT OF SINGLE NICKEL AND COMBINED NICKEL AND ZINC PERORAL ADMINISTRATION ON HAEMATOLOGICAL PARAMETERS IN RABBITS

    Directory of Open Access Journals (Sweden)

    Jana Emrichová

    2013-06-01

    Full Text Available The aim of this study was to determine the effect of single nickel (NiCl2 and nickel in combination with zinc (ZnCl2 on selected haematological parameters of rabbits: white blood cell, red blood cell, haemoglobin, haematocrit, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, platelets, mean platelet volume, red cell distribution width, lymphocytes, monocytes, eosinophils, neutrophils, basophils. Twenty rabbits of broiler line Californian were used in this experiment. The animals were divided into the five groups, four animals in each ones (control group K and experimental groups E1, E2, E3 and E4. Animals were fed ad libitum using KKV1 feeding mixture (FM with or without nickel and zinc addition for 90 days follows: group E1 received 17.5 g of NiCl2.100 kg-1 FM; group E2 35 g NiCl2.100 kg-1 FM; group E3 17.5 g NiCl2 + 30 g ZnCl2.100 kg-1 FM and group E4 35 g NiCl2 + 30 g ZnCl2.100 kg-1 FM. The parameters were analysed using Advia – 120. Blood was collected into tubes containing anticoagulant agents K – EDTA. Statistical analyse showed a significant changes (P 0.05. Nickel has negative effect on some haematological parameters, but zinc can eliminates its influence.

  18. Sorption of cobalt and nickel on anaerobic granular sludges: isotherms and sequential extraction

    NARCIS (Netherlands)

    Hullebusch, van E.D.; Peerbolte, A.; Zandvoort, M.H.; Lens, P.N.L.

    2005-01-01

    The objective of this study was to investigate the sorption capacity and the fractionation of sorbed nickel and cobalt onto anaerobic granular sludges. Two different anaerobic granular sludges (non-fed, pH = 7) were loaded with nickel and cobalt in. adsorption experiments (monometal and competitive

  19. Separation and Preconcentration of Trace Amounts of Nickel from Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Reyhaneh Rahnama

    2018-05-01

    Full Text Available In this paper, a new method for preconcentration and measurement of trace amounts of nickel in aqueous samples by magnetic solid phase extraction (MSPE via magnetic carbon nanotubes (Mag-CNTs was developed. In order to increase selectivity, α-Furildioxime was used as chelating agent. In order to do extraction, optimum amount of ligand was added to the nickel sample and pH was set on 9, then 7 ml. of adsorbent was added and stirred for 15 minutes. After that, aqueous phase and adsorbent were separated by a strong magnet. Finally, the absorption was measured via flame atomic absorption spectrometry by analyte elution from the absorbent with an appropriate solution. Parameters affecting the extraction and preconcentration of nickel were investigated and optimized. Under optimum conditions, the calibration curve was linear in concentration range from 2.5 to 375 µg L-1 and the detection limit was 0.8 µg L-1 of nickel. The method was applied for determination of nickel in aqueous samples. The relative efficiency values of nickel measurement in aqueous samples were from 98.7% to 102.1%.  Results indicated that Mag-CNTs can be used as an effective and inexpensive absorbent for preconcentration and extraction of nickel from actual samples.

  20. Corrosion properties of plasma deposited nickel and nickel-based alloys

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Pražák, M.; Kalabisová, E.; Kreislová, K.; Had, J.; Neufuss, Karel

    2003-01-01

    Roč. 48, č. 3 (2003), s. 215-226 ISSN 0001-7043 R&D Projects: GA ČR GA106/99/0298 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma deposits, nickel, nickel-based alloys Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  1. Corrosion behaviour of nickel during anodic polarization in chloride solution

    International Nuclear Information System (INIS)

    Memon, S.A.; Isani, A.A.; Memon, A.N.

    1998-01-01

    This research presents the effect of oxygen and nitrogen on the corrosion behaviour of nickel in the chloride solution, at the steady state polarized and unpolarized potentials. The additives were selected from those, which are used for bright nickel plating. It was observed that the agitation of electrolyte in a particular pH-(Cl)' range increase the potentials in comparison of the potentials to the un-agitated electrolytes. (author)

  2. EPIDEMIOLOGICAL AND PATHOGENETIC ASPECTS OF NICKEL POISONING

    Directory of Open Access Journals (Sweden)

    Vladmila Bojanic

    2007-04-01

    Full Text Available Nickel is widely distributed in the environment. High consumption of nickel containing products inevitably leads to environmental pollution by nickel and its derivatives at all stages of production, utilization, and disposal.Human exposure to nickel occurs primarily via inhalation and ingestion and is particularly high among nickel metallurgy workers. In addition, implantation of nickel-containing endoprostheses and iatrogenic administration of nickel-contaminated medica-tions leads to significant parenteral exposures. Exposure to nickel compounds can produce a variety of adverse effects on human health. Nickel allergy in the form of contact dermatitis is the most common reaction.A frontal headache, vertigo, nausea, vomiting, insomnia, and irritability are the most common signs of acute poisoning with nickel compounds. The respiratory tract, kidneys and liver suffer the most significant changes like nickel pneumoconiosis, chronic rhinitis and sinonasal tumors and transitory nephropathy. Although the accumulation of nickel in the body through chronic exposure can lead to lung fibrosis, cardiovascular and kidney diseases, the most serious concerns relate to nickel’s carcinogenic activity. Nickel compounds are carcinogenic to humans and metallic nickel is possibly carcinogenic to humans.

  3. Nickel: makes stainless steel strong

    Science.gov (United States)

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  4. EPIDEMIOLOGICAL AND PATHOGENETIC ASPECTS OF NICKEL POISONING

    OpenAIRE

    Vladmila Bojanic; Vladimir Ilic; Biljana Jovic

    2007-01-01

    Nickel is widely distributed in the environment. High consumption of nickel containing products inevitably leads to environmental pollution by nickel and its derivatives at all stages of production, utilization, and disposal.Human exposure to nickel occurs primarily via inhalation and ingestion and is particularly high among nickel metallurgy workers. In addition, implantation of nickel-containing endoprostheses and iatrogenic administration of nickel-contaminated medica-tions leads to signif...

  5. Relationship between nickel allergy and diet

    OpenAIRE

    Sharma Ashimav

    2007-01-01

    Nickel is a ubiquitous trace element and it occurs in soil, water, air and of the biosphere. It is mostly used to manufacture stainless steel. Nickel is the commonest cause of metal allergy. Nickel allergy is a chronic and recurring skin problem; females are affected more commonly than males. Nickel allergy may develop at any age. Once developed, it tends to persist life-long. Nickel is present in most of the dietary items and food is considered to be a major source of nickel exposure for the...

  6. Phosphorus effect on structure and physical properties of iron-nickel alloys

    International Nuclear Information System (INIS)

    Berseneva, F.N.; Kalinin, V.M.; Rybalko, O.F.

    1982-01-01

    The structure and properties of iron-nickel alloys (30-50 % Ni) containing from 0.02 to 0.5 wt. % P have been investigated. It has been found that phosphorus solubility in iron-nickel alloys at most purified from impurities exceeds limiting solubility values usually observed for commercial alloys. Phosphide eutectics precipitation over the grain boundaries of studied alloys occurs but with phosphorus content equal 0.45 wt. %. The 0.4 wt. % P addition in invar alloys increases saturation magnetization and the Curie point and leads to a more homogeneous structure

  7. Absorption and retention of nickel from drinking water in relation to food intake and nickel sensitivity

    DEFF Research Database (Denmark)

    Nielsen, G D; Søderberg, U; Jørgensen, Poul Jørgen

    1999-01-01

    nickel in drinking water (12 micrograms Ni/kg) and, at different time intervals, standardized 1400-kJ portions of scrambled eggs. When nickel was ingested in water 30 min or 1 h prior to the meal, peak nickel concentrations in serum occurred 1 h after the water intake, and the peak was 13-fold higher...... than the one seen 1 h after simultaneous intake of nickel-containing water and scrambled eggs. In the latter case, a smaller, delayed peak occurred 3 h after the meal. Median urinary nickel excretion half-times varied between 19.9 and 26.7 h. Within 3 days, the amount of nickel excreted corresponded...... to 2.5% of the nickel ingested when it was mixed into the scrambled eggs. Increasing amounts were excreted as the interval between the water and the meal increased, with 25.8% of the administered dose being excreted when the eggs were served 4 h prior to the nickel-containing drinking water...

  8. Nickel/zinc-catalyzed decarbonylative addition of anhydrides to alkynes: a DFT study.

    Science.gov (United States)

    Meng, Qingxi; Li, Ming

    2013-10-01

    Density functional theory (DFT) was used to investigate the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. All intermediates and transition states were optimized completely at the B3LYP/6-31+G(d,p) level. Calculated results indicated that the decarbonylative addition of phthalic anhydrides to alkynes was exergonic, and the total free energy released was -87.6 kJ mol(-1). In the five-coordinated complexes M4a and M4b, the insertion reaction of alkynes into the Ni-C bond occurred prior to that into the Ni-O bond. The nickel(0)/zinc-catalyzed decarbonylative addition was much more dominant than the nickel-catalyzed one in whole catalytic decarbonylative addition. The reaction channel CA→M1'→T1'→M2'→T2'→M3a'→M4a'→T3a1'→M5a1' →T4a1'→M6a'→P was the most favorable among all reaction pathways of the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. And the alkyne insertion reaction was the rate-determining step for this channel. The additive ZnCl2 had a significant effect, and it might change greatly the electron and geometry structures of those intermediates and transition states. On the whole, the solvent effect decreased the free energy barriers.

  9. Hypersensitivity to conventional and to nickel-free orthodontic brackets Hipersensibilidade a bráquetes ortodônticos convencionais e a bráquetes "nickel-free"

    Directory of Open Access Journals (Sweden)

    Mariele Cristina Garcia Pantuzo

    2007-12-01

    Full Text Available The aim of this study was to evaluate the allergenic potential of orthodontic brackets, comparing the cutaneous sensitivity provoked by metals present in conventional metallic brackets to that provoked by brackets with a low concentration of nickel, known as "nickel-free". A sample was selected from 400 patients undergoing treatment in the orthodontic clinic of the Pontifical Catholic University of Minas Gerais (Belo Horizonte, MG, Brazil, in the period from the beginning of 2002 to the end of 2003. A cutaneous sensitivity patch test containing 5% nickel sulphate was used in 58 patients (30 males and 28 females, aged between 11 and 30, which were using fixed appliances with Morelli® brackets in both arches. In a second phase, 30 days later, a comparative test of cutaneous sensitivity was applied to the whole sample with two types of test specimens, in the form of a disc. Two alloys were tested: discs composed of the alloy used in the construction of conventional brackets and discs composed of a nickel-free alloy. The internal part of the forearm was chosen for testing, and 20 test specimens of each experiment (corresponding to the twenty brackets of a complete fixed appliance were applied. Of the 58 patients evaluated, 16 patients were sensitive to the patch test with 5% nickel sulphate. Out of these 16 patients, 12 developed an allergic reaction to experiment 1 (test specimen with nickel, while in experiment 2, only 5 patients showed sensitivity to that sample. The McNemar test revealed that the nickel-free test specimens provoked less allergic reaction when compared with the conventional alloy (p = 0.016.Este trabalho teve como objetivo avaliar a capacidade alergênica provocada pelos bráquetes ortodônticos, comparando a sensibilidade cutânea provocada pelos metais presentes nos bráquetes metálicos convencionais com a provocada por bráquetes com baixa concentração de níquel ("nickel-free". A amostra foi selecionada dos 400 pacientes

  10. Effect of nickel and iron co-exposure on human lung cells

    International Nuclear Information System (INIS)

    Salnikow, Konstantin; Li Xiaomei; Lippmann, Morton

    2004-01-01

    Exposure to ambient air particulate matter (PM) is associated with increased mortality and morbidity in susceptible populations. The epidemiological data also suggest a relationship between PM air pollution and impairment of cardiopulmonary function. The mechanisms that may be responsible for these effects are not fully understood and are likely related to perturbations of cellular and molecular functions. One type of PM, residual oil fly ash (ROFA), is of particular interest. ROFA does not contain much organic material, but does contain relatively high quantities of transition metals, predominantly nickel, vanadium, and iron, as well as black carbon and sulfates. In this study, we investigated the effect of two metals (iron and nickel) on the induction of 'hypoxia-like' stress and the production of interleukins (ILs) in minimally transformed human airway epithelial cells (1HAEo - ). We found that exposure to soluble nickel sulfate results in the induction of hypoxia-inducible genes and IL-8 production by the 1HAEo - cells. The simultaneous addition of iron in either ferric or ferrous form and nickel completely inhibited IL-8 production and had no effect on 'hypoxia-like' stress caused by nickel, suggesting the existence of two different pathways for the induction 'hypoxia-like' stress and IL-8 production. The effect of nickel was not related to the blocking of iron entry into cells since the level of intracellular iron was not affected by co-exposure with nickel. The obtained data indicate that nickel can induce different signaling pathways with or without interference with iron metabolism. Our observations suggest that in some cases the excess of iron in PM can cancel the effects of nickel

  11. Efficiency of Tea Disposal from Cafeteria for Removal Nickel ion from Contaminated Groundwater

    Directory of Open Access Journals (Sweden)

    Rusul Nasser Mohammed

    2017-07-01

    Full Text Available This work aims to study the removal of Nickel from ground water using low cost adsorbent tea waste from cafeteria. The total adsorbed amounts, equilibrium uptakes and overall removal efficiency of Nickel were determined by investigating the breakthrough curve obtained at different inlet Nickel concentrations, various pH value, gain size of waste tea and bed height. Decrease in the grain size of adsorbent tea from 0.3 to 0.05 cm resulted in essential increase in the removal rate and total adsorbed amounts while increasing the bed depth leads the increase of bed capability and the breakthrough period. The experimental data were calibrated using three isotherm models, Dubinin- Radushkevich (DRM Langmuir (LM , Freundlich (FM where the experimental data is well fitted to the Langmuir (LM. Experimental and theoretical breakthrough study showed that the prolonged breakthrough period and maximum capability of nickel is achieved at pH of 3, 125 mg/L of inlet concentration and 0.5 m of bed depth. As a final engineering observation, waste tea from cafeteria is a good and low-cost material that can absorb nickel from groundwater.

  12. Nickel contact sensitivity in the guinea pig. An efficient open application test method

    DEFF Research Database (Denmark)

    Nielsen, G D; Rohold, A E; Andersen, Klaus Ejner

    1992-01-01

    Nickel contact sensitivity was successfully induced in guinea pigs using an open epicutaneous application method. Immediately after pretreatment with 1% aqueous sodium lauryl sulfate, upper back skin was treated daily for 4 weeks with 0.3%-3% nickel sulfate in either a 1% lanolin cream (Vaseline, p...

  13. Thin-film transistors with a channel composed of semiconducting metal oxide nanoparticles deposited from the gas phase

    International Nuclear Information System (INIS)

    Busch, C.; Schierning, G.; Theissmann, R.; Nedic, A.; Kruis, F. E.; Schmechel, R.

    2012-01-01

    The fabrication of semiconducting functional layers using low-temperature processes is of high interest for flexible printable electronics applications. Here, the one-step deposition of semiconducting nanoparticles from the gas phase for an active layer within a thin-film transistor is described. Layers of semiconducting nanoparticles with a particle size between 10 and 25 nm were prepared by the use of a simple aerosol deposition system, excluding potentially unwanted technological procedures like substrate heating or the use of solvents. The nanoparticles were deposited directly onto standard thin-film transistor test devices, using thermally grown silicon oxide as gate dielectric. Proof-of-principle experiments were done deploying two different wide-band gap semiconducting oxides, tin oxide, SnO x , and indium oxide, In 2 O 3 . The tin oxide spots prepared from the gas phase were too conducting to be used as channel material in thin-film transistors, most probably due to a high concentration of oxygen defects. Using indium oxide nanoparticles, thin-film transistor devices with significant field effect were obtained. Even though the electron mobility of the investigated devices was only in the range of 10 −6 cm 2V−1s−1 , the operability of this method for the fabrication of transistors was demonstrated. With respect to the possibilities to control the particle size and layer morphology in situ during deposition, improvements are expected.

  14. A novel blister test to evaluate the interface strength between nickel coating and low carbon steel substrate

    International Nuclear Information System (INIS)

    Xiao, L.H.; Su, Xu Ping.; Wang, J.H.; Zhou, Y.C.

    2009-01-01

    A novel blister test theory model was developed based on the bending theory of beams for assessing the interface strength of the nickel coating/low carbon steel substrate material system. The strain energy of the debonded nickel coating was calculated analytically and by finite element analysis, respectively. The analytic solutions agree well with the FE calculation results. Some blister tests were carried out on the WII-5 Computer Controlled Material Mechanical Properties Testing Machine, using four nickel-coated specimens type-A, -B, -C and -D which were electrodeposited on low carbon steel substrate. Here, types A, B, C and D correspond to the nickel coating thickness of 5 μm, 10 μm, 15μm and 25μm, respectively. The interface strength, evaluated by this blister test method, is 196.86 J/m 2 and 269.40 J/m 2 for type-C and -D specimens, respectively. However the tests demonstrate that the type-A and -B specimens were cut through by the spindle and no delaminations between the coating and the substrate could be found

  15. Surface treatment for hydrogen storage alloy of nickel/metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.-S.; Wu, H.-R.; Wang, Y.-Y.; Wan, C.-C. [National Tsing Hua Univ., Hsinchu (Taiwan). Dept. of Chemical Engineering

    2000-04-28

    The electrochemical performance of AB{sub 2}-type (Ti{sub 0.35}Zr{sub 0.65}Ni{sub 1.2}V{sub 0.6}Mn{sub 0.2}Cr{sub 0.2}) and AB{sub 5}-type (MmB{sub 4.3}(Al{sub 0.3}Mn{sub 0.4}){sub 0.5}) hydrogen storage alloys modified by hot KOH etching and electroless nickel coating has been investigated. It is found that the alloy modified with hot KOH solution shows quick activation but at the expense of cycle-life stability. The alloy coated with nickel was effectively improved in both cycle-life stability and discharge capacity. Both the exchange and limiting current densities were increased by modifying the alloys by hot KOH solution dipping or electroless nickel coating as compared with untreated alloy electrode. The electrode with higher exchange current density and limiting current density leads to increased high-rate dischargeability. A duplex surface modified alloy (i.e., alloy first treated with hot KOH solution and then coated with nickel) has been developed, which performs satisfactorily with respect to both quick activation and long cycle life. In addition, the high-rate dischargeability for the electrode with duplex surface modification is superior to that of electrode solely treated with KOH etching or Ni plating. (orig.)

  16. In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode

    Science.gov (United States)

    Phuan, Yi Wen; Ibrahim, Elyas; Chong, Meng Nan; Zhu, Tao; Lee, Byeong-Kyu; Ocon, Joey D.; Chan, Eng Seng

    2017-01-01

    Nanostructured nickel oxide-hematite (NiO/α-Fe2O3) p-n junction photoanodes synthesized from in situ doping of nickel (Ni) during cathodic electrodeposition of hematite were successfully demonstrated. A postulation model was proposed to explain the fundamental mechanism of Ni2+ ions involved, and the eventual formation of NiO on the subsurface region of hematite that enhanced the potential photoelectrochemical water oxidation process. Through this study, it was found that the measured photocurrent densities of the Ni-doped hematite photoanodes were highly dependent on the concentrations of Ni dopant used. The optimum Ni dopant at 25 M% demonstrated an excellent photoelectrochemical performance of 7-folds enhancement as compared to bare hematite photoanode. This was attributed to the increased electron donor density through the p-n junction and thus lowering the energetic barrier for water oxidation activity at the optimum Ni dopant concentration. Concurrently, the in situ Ni-doping of hematite has also lowered the photogenerated charge carrier transfer resistance as measured using the electrochemical impedance spectroscopy. It is expected that the fundamental understanding gained through this study is helpful for the rational design and construction of highly efficient photoanodes for application in photoelectrochemical process.

  17. Bioavailability of nickel in man: effects of foods and chemically-defined dietary constituents on the absorption of inorganic nickel.

    Science.gov (United States)

    Solomons, N W; Viteri, F; Shuler, T R; Nielsen, F H

    1982-01-01

    By serial determination of the change in plasma nickel concentration following a standard dose of 22.4 mg of nickel sulfate hexahydrate containing 5 mg of elemental nickel, the bioavailability of nickel was estimated in human subjects. Plasma nickel concentration was stable in the fasting state and after an unlabeled test meal, but after the standard dose of nickel in water was elevated 48.8, 73.0, 80.0, and 53.3 microgram/1, respectively, at hours 1, 2, 3, and 4. Plasma nickel did not rise above fasting levels when 5 mg of nickel was added to two standard meals: a typical Guatemalan meal and a North American breakfast. When 5 mg of nickel was added to five beverages-whole cow milk, coffee, tea, orange juice, and Coca Cola-the rise in plasma nickel was significantly suppressed with all but Coca Cola. Response to nickel also was suppressed in the presence of 1 g of ascorbic acid. Phytic acid in a 2:1 molar ratio with nickel, however, did not affect the rise in plasma nickel. The chelate of iron and ethylenediaminetetraacetate, NaFeEDTA, an iron-fortifying agent suggested for application in Central America, slightly but not significantly depressed plasma nickel rise at 2 hours, whereas disodium EDTA depressed plasma nickel levels significantly below the fasting nickel curve at 3 and 4 hours postdose. These studies suggest that the differential responses of inorganic nickel to distinct foods, beverages, and chemically-defined dietary constituents could be important to human nutrition.

  18. Enhanced Thermal Conductivity and Viscosity of Nanodiamond-Nickel Nanocomposite Nanofluids

    OpenAIRE

    Sundar, L. Syam; Singh, Manoj K.; Ramana, E. Venkata; Singh, Budhendra; Grácio, José; Sousa, Antonio C. M.

    2014-01-01

    We report a new type of magnetic nanofluids, which is based on a hybrid composite of nanodiamond and nickel (ND-Ni) nanoparticles. We prepared the nanoparticles by an in-situ method involving the dispersion of caboxylated nanodiamond (c-ND) nanoparticles in ethylene glycol (EG) followed by mixing of nickel chloride and, at the reaction temperature of 140°C, the use of sodium borohydrate as the reducing agent to form the ND-Ni nanoparticles. We performed their detailed surface and magnetic cha...

  19. Effects of cobalt in nickel-base superalloys

    Science.gov (United States)

    Tien, J. K.; Jarrett, R. N.

    1983-01-01

    The role of cobalt in a representative wrought nickel-base superalloy was determined. The results show cobalt affecting the solubility of elements in the gamma matrix, resulting in enhanced gamma' volume fraction, in the stabilization of MC-type carbides, and in the stabilization of sigma phase. In the particular alloy studied, these microstructural and microchemistry changes are insufficient in extent to impact on tensile strength, yield strength, and in the ductilities. Depending on the heat treatment, creep and stress rupture resistance can be cobalt sensitive. In the coarse grain, fully solutioned and aged condition, all of the alloy's 17% cobalt can be replaced by nickel without deleteriously affecting this resistance. In the fine grain, partially solutioned and aged condition, this resistance is deleteriously affected only when one-half or more of the initial cobalt content is removed. The structure and property results are discussed with respect to existing theories and with respect to other recent and earlier findings on the impact of cobalt, if any, on the performance of nickel-base superalloys.

  20. Standard molar enthalpies of formation of nickel(II) {beta}-diketonates and monothio-{beta}-diketonates

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro da Silva, Manuel A.V. [Centro de Investigacao em Quimica, Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)]. E-mail: risilva@fc.up.pt; Santos, Luis M.N.B.F. [Centro de Investigacao em Quimica, Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Giera, Edward [Faculty of Chemistry, Wroclaw University, ul. F. Joliot-Curie 14, 50-383 Wroclaw (Poland)

    2007-03-15

    The standard (p{sup o}=0.1MPa) molar enthalpies of formation of the crystalline diaquobis(dibenzoylmethanate)nickel(II), Ni(dbm){sub 2}(H{sub 2}O){sub 2}, diaquobis(thenoyltrifluoroacetonate)nickel(II), Ni(ttfa){sub 2}(H{sub 2}O){sub 2} bis(monothiodibenzoylmethanate)nickel(II), Ni(dbmS){sub 2} and bis(monothiothenoyltrifluoroacetonate)nickel(II), Ni(HttfaS){sub 2} were determined, at T=298.15K, by high precision solution-reaction calorimetry. The standard molar enthalpy of sublimation of the monothiothenoyltrifluoroacetone (HttfaS) complex was measured by high-temperature Calvet microcalorimetry. From the standard molar enthalpies of formation of the complexes in the gaseous state, the mean nickel(II)-ligand molar dissociation enthalpies, (Ni-L), were derived. {delta}{sub f}H{sub m}{sup o}(cr)/(kJ.mol{sup -1})Diaquobis(dibenzoylmethanate)nickel(II), Ni(dbm){sub 2}(H{sub 2}O){sub 2}-993.3+/-3.8Diaquobis(thenoyltrifluoroacetonate)nickel(II), Ni(ttfa){sub 2}(H{sub 2}O){sub 2}-2452.0+/-8.3Bis(monothiodibenzoylmethanate)nickel(II), Ni(dbmS){sub 2}-42.1+/-5.9Bis(monothiothenoyltrifluoroacetonate)nickel(II), Ni(ttfaS){sub 2}-1473.5+/-8.1.

  1. P-adic Schroedinger type equation

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1988-12-01

    In p-adic quantum mechanics a Schroedinger type equation is considered. We discuss the appropriate notion of differential operators. A solution of the Schroedinger type equation is given. A new set of vacuum states for the p-adic quantum harmonic oscillator is presented. The correspondence principle with the standard quantum mechanics is discussed. (orig.)

  2. Modulating Hole Transport in Multilayered Photocathodes with Derivatized p-Type Nickel Oxide and Molecular Assemblies for Solar-Driven Water Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Bing [Department; Sherman, Benjamin D. [Department; Klug, Christina M. [Center; Nayak, Animesh [Department; Marquard, Seth L. [Department; Liu, Qing [Department; Bullock, R. Morris [Center; Meyer, Thomas J. [Department

    2017-08-31

    We report here a new photocathode composed of a bi-layered doped NiO film topped by a macro-mesoporous ITO (ioITO) layer with molecular assemblies attached to the ioITO surface. The NiO film containing a 2% K+ doped NiO inner layer and a 2% Cu2+ doped NiO outer layer provides sufficient driving force for hole transport after injection to NiO by the molecular assembly. The tri-layered oxide, NiK0.02O | NiCu0.02O | ioITO, sensitized by a ruthenium polypyridyl dye and functionalized with a nickel-based hydrogen evolution catalyst, outperforms its counterpart, NiO | NiO | ioITO, in photocatalytic hydrogen evolution from water over a period of several hours with a Faradaic yield of ~90%.

  3. The effect of nickel electrodeposition on magnetic properties of CoFeSiB amorphous wire

    International Nuclear Information System (INIS)

    Atalay, F.E.

    2004-01-01

    Nickel films were electrodeposited on rapidly quenched amorphous wires from nitrate bath using a constant voltage. It was found that the pH of plating bath had a very strong effect on the formation of nickel films. The magnetic field, H, dependence of the impedance, of nickel plated (Co 0.94 Fe 0.06 ) 72.5 Si 12.5 B 15 wires have been investigated using a Hewlett-Packard 4294A impedance analyser with 42941A impedance probe. The best elecroplating condition and GMI response were obtained for the plated wire at pH 5 for 30 min plating time

  4. Chemical-free n-type and p-type multilayer-graphene transistors

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, D. M. N. M., E-mail: nandithad@voxtel-inc.com [Voxtel Inc, Lockey Laboratories, University of Oregon, Eugene Oregon 97402 (United States); Eisaman, M. D. [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794 (United States); Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794 (United States)

    2016-08-01

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping. When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.

  5. semiconducting nanostructures: morphology and thermoelectric properties

    Science.gov (United States)

    Culebras, Mario; Torán, Raquel; Gómez, Clara M.; Cantarero, Andrés

    2014-08-01

    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1- x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

  6. Electrodeionization 1: migration of nickel ions absorbed in a rigid, macroporous cation-exchange resin

    NARCIS (Netherlands)

    Spoor, P.B.; Veen, ter W.R.; Janssen, L.J.J.

    2001-01-01

    The removal of nickel ions from a packed bed of ion-exchange material under an applied potential is studied. This process involves the use of an electrodialysis type cell in which the centre compartment is filled with a packed bed of ion-exchange particles. The bed width, concentration of nickel in

  7. Defect studies in copper-based p-type transparent conducting oxides

    Science.gov (United States)

    Ameena, Fnu

    Among other intrinsic open-volume defects, copper vacancy (VCu) has been theoretically identified as the major acceptor in p-type Cu-based semiconducting transparent oxides, which has potential as low-cost photovoltaic absorbers in semi-transparent solar cells. A series of positron annihilation experiments with pure Cu, Cu2O, and CuO presented strong presence of VCu and its complexes in the copper oxides. The lifetime data also showed that the density of VCu was becoming higher as the oxidation state of Cu increased which was consistent with the decrease in the formation energy of VCu. Doppler broadening measurements further indicated that electrons with low momentum made more contribution to the contributed as pure Cu oxidizes to copper oxides. The metastable defects are known to be generated in Cu2O upon illumination and it has been known to affect the performance of Cu2O-based hetero-junctions used in solar cells. The metastable effect was studied using positron annihilation lifetime spectroscopy and its data showed the change in the defect population upon light exposure and the minimal effect of light-induced electron density increase in the bulk of materials to the average lifetime of the positrons. The change in the defect population is concluded to be related to the dissociation and association of VCu -- V Cu complexes. For example, the shorter lifetime under light was ascribed to the annihilation with smaller size vacancies, which explains the dissociation of the complexes with light illumination. Doppler broadening of the annihilation was independent of light illumination, which suggested that the chemical nature of the defects remained without change upon their dissociation and association -- only the size distribution of copper vacancies varied. The delafossite metal oxides, CuMIIIO2 are emerging wide-bandgap p-type semiconductors. In this research, the formation energies of structural vacancies are calculated using Van Vechten cavity model as an attempt

  8. Nickel allergy

    DEFF Research Database (Denmark)

    Fischer, L A; Johansen, J D; Menné, T

    2007-01-01

    BACKGROUND: The frequency of nickel allergy varies between different population groups. Exposure regulation has proven effective in decreasing the frequency. Experimental studies with other allergens have shown a significant relation between patch test reactivity and repeated open application test...... in a patch test and a dilution series of three concentrations in a ROAT, with duration of up to 21 days. Eighteen persons with no nickel allergy were included as control group for the ROAT. RESULTS: The predicted dose which will elicit a reaction in 10% of allergic individuals was calculated to be 0......-response; indeed, there was no statistically significant difference. CONCLUSIONS: For elicitation of nickel allergy the elicitation threshold for the patch test is higher than the elicitation threshold (per application) for the ROAT, but is approximately the same as the accumulated elicitation threshold...

  9. Initial study of Nickel Electrolyte for EnFACE Process

    Directory of Open Access Journals (Sweden)

    Tri Widayatno

    2015-03-01

    Full Text Available Nickel electrolyte for a micro-pattern transfer process without photolithography, EnFACE, has been developed. Previous work on copper deposition indicated that a conductivity of ~2.7 Sm-1 is required. Electrochemical parameters of electrolyte i.e. current density and overpotential are also crucial to govern a successful pattern replication. Therefore, the investigation focused on the measurement of physicochemical properties and electrochemical behaviour of the electrolyte at different nickel concentrations and complexing agents of chloride and sulfamate. Nickel electrolytes containing sulfamate, chloride and combined sulfamate-chloride with concentrations between 0.14 M and 0.3 M were investigated. Physicochemical properties i.e. pH and conductivity were measured to ensure if they were in the desired value. The electrochemical behaviour of the electrolytes was measured by polarisation experiments in a standard three-electrode cell. The working electrode was a copper disc (surface area of 0.196 cm2 and the counter electrode was platinum mesh. The potential was measured againts a saturated calomel reference electrode (SCE. The experiments were carried out at various scan rate and Rotating Disc Electrode (RDE rotation speed to see the effect of scan rate and agitation. Based on the measured physicochemical properties, the electrolyte of 0.19 M nickel sulfamate was chosen for experimentation. Polarisation curve of agitated solution suggested that overall nickel electrodeposition reaction is controlled by a combination of kinetics and mass transfer.  Reduction potential of nickel was in the range of -0.7 to -1.0 V. The corresponding current densities for nickel deposition were in the range of -0.1 to -1.5 mA cm-2.

  10. Template-Assisted Synthesis and Characterization of Passivated Nickel Nanoparticles

    Directory of Open Access Journals (Sweden)

    Al-Omari IA

    2010-01-01

    Full Text Available Abstract Potential applications of nickel nanoparticles demand the synthesis of self-protected nickel nanoparticles by different synthesis techniques. A novel and simple technique for the synthesis of self-protected nickel nanoparticles is realized by the inter-matrix synthesis of nickel nanoparticles by cation exchange reduction in two types of resins. Two different polymer templates namely strongly acidic cation exchange resins and weakly acidic cation exchange resins provided with cation exchange sites which can anchor metal cations by the ion exchange process are used. The nickel ions which are held at the cation exchange sites by ion fixation can be subsequently reduced to metal nanoparticles by using sodium borohydride as the reducing agent. The composites are cycled repeating the loading reduction cycle involved in the synthesis procedure. X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron microscopy, Energy Dispersive Spectrum, and Inductively Coupled Plasma Analysis are effectively utilized to investigate the different structural characteristics of the nanocomposites. The hysteresis loop parameters namely saturation magnetization and coercivity are measured using Vibrating Sample Magnetometer. The thermomagnetization study is also conducted to evaluate the Curie temperature values of the composites. The effect of cycling on the structural and magnetic characteristics of the two composites are dealt in detail. A comparison between the different characteristics of the two nanocomposites is also provided.

  11. Experimental nickel-induced pulmonary lesions in nonhuman primates: Histologic and ultrastructural analysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Bice, D.E.; Muggenburg, B.A.; Hahn, F.F.

    1988-01-01

    The histologic and ultrastructural alterations of lung were evaluated in cynomolgus monkeys instilled with nickel subsulfide (Ni 3 S 2 ) at a final dose of 0.06 μmol/g lung with and without repeated intrapulmonary exposure to sheep red blood cells (SRBC). individual lung lobes were exposed to nickel alone, SRBC alone, or nickel and SRBC together. Lesions were found in nickel-exposed lobes only, regardless of exposure to SRBC. Lesions were more developed at 14 days than at 21 days after exposure to nickel, and were characterized by multifocal perivascular and peribronchiolar lymphocytic infiltrates along with microgranuloma formation, occasional fibrosis and moderate type II epithelial cell hyperplasia. Microgranulomas consisted of either central histiocytic cores surrounded by lymphocytic mantles or dense aggregates of epithelioid cells forming irregular interstitial nodules. Tracheobronchial lymph nodes had marked reactive hyperplasia of cortical and paracortical zones. Ultrastructural analysis of lung lesions revealed numerous well-differentiated lymphocytes intermixed with macrophages, in a background of mature collagen bundles. Cell associated particles were evaluated by energy dispersive microanalysis and found to consist of nickel and sulfur. These lesions appeared to be distinct from pneumoconiotic lesions induced by inert dusts and had histologic qualities compatible with immune-mediated phenomena. Because nickel compounds stimulate strong humoral and cellular immune responses in man, we conclude that pulmonary exposure of nonhuman primates to nickel compounds may provide information useful in delineating Immune mediated pulmonary disorders of man. (author)

  12. Progress on sputter-deposited thermotractive titanium-nickel films

    International Nuclear Information System (INIS)

    Grummon, D.S.; Hou Li; Zhao, Z.; Pence, T.J.

    1995-01-01

    It is now well established that titanium-nickel alloys fabricated as thin films by physical vapor deposition can display the same transformation and shape-memory effects as their ingot-metallurgy counterparts. As such they may find important application to microelectromechanical and biomechanical systems. Furthermore, we show here that titanium-nickel films may be directly processed so as to possess extremely fine austenite grain size and very high strength. These films display classical transformational superelasticity, including high elastic energy storage capacity, the expected dependence of martensite-start temperature on transformation enthalpy, and large, fully recoverable anelastic strains at temperatures above A f . Processing depends on elevated substrate temperatures during deposition, which may be manipulated within a certain range to control both grain size and crystallographic texture. It is also possible to deposit crystalline titanium-nickel films onto polymeric substrates, making them amenable to lithographic patterning into actuator elements that are well-suited to electrical excitation of the martensite reversion transformation. Finally, isothermal annealing of nickel-rich films, under conditions of controlled extrinsic residual stress, leads to topotaxial orientation of Ni 4 Ti 3 -type precipitates, and the associated possibility of two-way memory effects. Much work remains to be done, especially with respect to precise control of composition. (orig.)

  13. Investigation of effect of Ag(1), Cd(2) and Zn(2) on chemical nickel plating

    International Nuclear Information System (INIS)

    Lunyatskas, A.M.; Tarozajte, R.K.; Gyanutene, I.K.; Lyaukonis, Yu.Yu.

    1978-01-01

    Investigated is the effect of Ag(1), Cd(2) and Zn(2) on chemical nickel plating using hypophosphite aimed to get corresponding alloys from alkali solutions. The H 2 formed volume and potential of coating have been measured while nickel plating. It is possible to have plating of Ni-P-Ag, Ni-P-Zn, Ni-P-Cd, Ni-P-Zn-Cd content coatings in alkali solutions using hypophosphite Ni-P-Zh and Ni-P-Zn-Cd coatings have corrosion resistance and unporousness. Cd and Zn inclusion in Ni-P coating is supposed to have both chemical and electrochemical origin

  14. Process for electroforming nickel containing dispersed thorium oxide particles therein

    International Nuclear Information System (INIS)

    Malone, G.A.

    1975-01-01

    Nickel electroforming is effected by passing a direct current through a bath containing a dissolved nickel salt or a mixture of such salts, such as those present in sulfamate or Watts baths, and finely divided sol-derived thorium oxide particles of 75 to 300 angstroms, preferably 100 to 200 angstroms diameters therein, at a pH in the range of 0.4 to 1.9, preferably 0.8 to 1.3. The nickel so deposited, as on a pre-shaped stainless steel cathode, may be produced in desired shape and may be removed from the cathode and upon removal, without additional working, possesses desirable engineering properties at elevated temperatures, e.g., 1,500 to 2,200 0 F. Although the material produced is of improved high temperature stability, hardness, and ductility, compared with nickel alone, it is still ductile at room temperature and has properties equivalent or superior to nickel at room temperatures up to 1,500 0 F. Further improvements in mechanical properties of the material may be obtained by working. Also disclosed are electrodeposition baths, methods for their manufacture, and products resulting from the electrodeposition process. (U.S.)

  15. [Nickel levels in female dermatological patients].

    Science.gov (United States)

    Schwegler, U; Twardella, D; Fedorov, M; Darsow, U; Schaller, K-H; Habernegg, R; Behrendt, H; Fromme, H

    2009-07-01

    Nickel levels in urine were determined among 163 female dermatological patients aged 18 to 46 years. Data on life-style factors were collected in parallel via a questionnaire. Urinary nickel excretion was in the normal range of the German female population (0.2-46.1 microg Ni/g creatinine). The 95th percentile (3.9 microg Ni/l urine) exceeded the German reference value (3.0 microg Ni/l urine). In the multivariate regression analyses we found a statistically significant increase of ln-transformed nickel levels with increase in age and in women using dietary supplements. The following variables were not associated with Nickel urine levels: suffering from nickel eczema, smoking, drinking stagnated water, eating foods with high nickel contents and using nickel-containing kitchen utensils as, for example, an electric kettle with an open heater coil. We conclude that personal urinary levels should be assessed with simultaneous consideration of habits and life-style factors. A German national survery would be useful. Those patients who experience the exacerbation of their eczema in cases of oral provocation, for example, by a high nickel diet should be aware of potential sources of nickel, such as supplements.

  16. Toxicity of nickel-spiked freshwater sediments to benthic invertebrates-Spiking methodology, species sensitivity, and nickel bioavailability

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Kemble, Nile E.; Ivey, Chris D.; Kunz, James L.; Ingersoll, Christopher G.; Rudel, David

    2011-01-01

    This report summarizes data from studies of the toxicity and bioavailability of nickel in nickel-spiked freshwater sediments. The goal of these studies was to generate toxicity and chemistry data to support development of broadly applicable sediment quality guidelines for nickel. The studies were conducted as three tasks, which are presented here as three chapters: Task 1, Development of methods for preparation and toxicity testing of nickel-spiked freshwater sediments; Task 2, Sensitivity of benthic invertebrates to toxicity of nickel-spiked freshwater sediments; and Task 3, Effect of sediment characteristics on nickel bioavailability. Appendices with additional methodological details and raw chemistry and toxicity data for the three tasks are available online at http://pubs.usgs.gov/sir/2011/5225/downloads/.

  17. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  18. Iminobisphosphines to (non-)symmetrical diphosphinoamine ligands : Metal-induced synthesis of diphosphorus nickel complexes and application in ethylene oligomerisation reactions

    NARCIS (Netherlands)

    Boulens, Pierre; Lutz, Martin|info:eu-repo/dai/nl/304828971; Jeanneau, Erwann; Olivier-Bourbigou, Hélène; Reek, Joost N H; Breuil, Pierre Alain R

    2014-01-01

    We describe the synthesis of a range of novel iminobisphosphine ligands based on a sulfonamido moiety [R1SO2N=P(R 2)2-P(R3)2]. These molecules rearrange in the presence of nickel by metal-induced breakage of the P-P bond to yield symmetrical and nonsymmetrical diphosphinoamine nickel complexes of

  19. Genotoxic Effects Due to Exposure to Chromium and Nickel Among Electroplating Workers.

    Science.gov (United States)

    El Safty, Amal Mohamed Kamal; Samir, Aisha Mohamed; Mekkawy, Mona Kamal; Fouad, Marwa Mohamed

    Using chromium and nickel for electroplating is important in many industries. This process induces variable adverse health effects among exposed workers. The aim of this study is to detect the genotoxic effects of combined exposure to chromium and nickel among electroplating workers. This study was conducted on 41 male workers occupationally exposed to chromium and nickel in the electroplating section of a factory compared to 41 male nonexposed individuals, where full history and clinical examination were performed. Laboratory investigations included measurement of serum chromium, nickel, 8-hydroxydeoxyguanosine (8-OHdG), and micronuclei were measured in buccal cells. In exposed workers, serum chromium ranged from 0.09 to 7.20 µg/L, serum nickel ranged from 1.20 to 28.00 µg/L, serum 8-OHdG ranged from 1.09 to12.60 ng/mL, and these results were statistically significantly increased compared to nonexposed group ( P electroplating industry are at risk of significant cytogenetic damage.

  20. Mechanisms of nickel toxicity in microorganisms

    OpenAIRE

    Macomber, Lee; Hausinger, Robert P.

    2011-01-01

    Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological co...

  1. Evolution of plant P-type ATPases

    Directory of Open Access Journals (Sweden)

    Christian N.S. Pedersen

    2012-02-01

    Full Text Available Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauria and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a moss, Selaginella moellendorffii (a primitive vascular plant, and Arabidopsis thaliana (a model flowering plant. Each organism contained sequences for all five subfamilies of P-type ATPases. Our analysis demonstrates when specific subgroups of P-type ATPases disappeared in the evolution of Angiosperms. Na/K-pump related P2C ATPases were lost with the evolution of streptophytes whereas Na+ or K+ pumping P2D ATPases and secretory pathway Ca2+-ATPases remained until mosses. An N-terminally located calmodulin binding domain in P2B ATPases can only be detected in pumps from Streptophytae, whereas, like in animals, a C-terminally localized calmodulin binding domain might be present in chlorophyte P2B Ca2+-ATPases. Chlorophyte genomes encode P3A ATPases resembling protist plasma membrane H+-ATPases and a C-terminal regulatory domain is missing. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps.

  2. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics.

    Science.gov (United States)

    Lei, Ting; Guan, Ming; Liu, Jia; Lin, Hung-Cheng; Pfattner, Raphael; Shaw, Leo; McGuire, Allister F; Huang, Tsung-Ching; Shao, Leilai; Cheng, Kwang-Ting; Tok, Jeffrey B-H; Bao, Zhenan

    2017-05-16

    Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal-oxide-semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m 2 ) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics.

  3. Performance improvement of pasted nickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries

    International Nuclear Information System (INIS)

    Song, Q.S.; Aravindaraj, G.K.; Sultana, H.; Chan, S.L.I.

    2007-01-01

    Carbon nanotubes (CNTs) were employed as a functional additive to improve the electrochemical performance of pasted nickel-foam electrodes for rechargeable nickel-based batteries. The nickel electrodes were prepared with spherical β-Ni(OH) 2 powder as the active material and various amounts of CNTs as additives. Galvanostatic charge/discharge cycling tests showed that in comparison with the electrode without CNTs, the pasted nickel electrode with added CNTs exhibited better electrochemical properties in the chargeability, specific discharge capacity, active material utilization, discharge voltage, high-rate capability and cycling stability. Meanwhile, the CNT addition also lowered the packing density of Ni(OH) 2 particles in the three-dimensional porous nickel-foam substrate, which could lead to the decrease in the active material loading and discharge capacity of the electrode. Hence, the amount of CNTs added to Ni(OH) 2 should be optimized to obtain a high-performance nickel electrode, and an optimum amount of CNT addition was found to be 3 wt.%. The superior electrochemical performance of the nickel electrode with CNTs could be attributed to lower electrochemical impedance and less γ-NiOOH formed during charge/discharge cycling, as indicated by electrochemical impedance spectroscopy and X-ray diffraction analyses. Thus, it was an effective method to improve the electrochemical properties of pasted nickel electrodes by adding an appropriate amount of CNTs to spherical Ni(OH) 2 as the active material

  4. Epicutaneous exposure to nickel induces nickel allergy in mice via a MyD88-dependent and interleukin-1-dependent pathway.

    Science.gov (United States)

    Vennegaard, Marie T; Dyring-Andersen, Beatrice; Skov, Lone; Nielsen, Morten M; Schmidt, Jonas D; Bzorek, Michael; Poulsen, Steen S; Thomsen, Allan R; Woetmann, Anders; Thyssen, Jacob P; Johansen, Jeanne D; Odum, Niels; Menné, Torkil; Geisler, Carsten; Bonefeld, Charlotte M

    2014-10-01

    Several attempts to establish a model in mice that reflects nickel allergy in humans have been made. Most models use intradermal injection of nickel in combination with adjuvant to induce nickel allergy. However, such models poorly reflect induction of nickel allergy following long-lasting epicutaneous exposure to nickel. To develop a mouse model reflecting nickel allergy in humans induced by epicutaneous exposure to nickel, and to investigate the mechanisms involved in such allergic responses. Mice were exposed to NiCl2 on the dorsal side of the ears. Inflammation was evaluated by the swelling and cell infiltration of the ears. T cell responses were determined as numbers of CD4+ and CD8+ T cells in the draining lymph nodes. Localization of nickel was examined by dimethylglyoxime staining. Epicutaneous exposure to nickel results in prolonged localization of nickel in the epidermis, and induces nickel allergy in mice. The allergic response to nickel following epicutaneous exposure is MyD88-dependent and interleukin (IL)-1 receptor-dependent, but independent of toll-like receptor (TLR)-4. This new model for nickel allergy that reflects epicutaneous exposure to nickel in humans shows that nickel allergy is dependent on MyD88 and IL-1 receptor signalling, but independent of TLR4. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The Corrosion Behavior of Nickel and Inconel 600 in Sodium Hydroxide and Hydrochloric Acid Solution at 280 .deg. C

    International Nuclear Information System (INIS)

    Lee, Ihh Chong; Suk, Tae Won

    1980-01-01

    The corrosion behavior of nickel and Inconel 600 has been investigated by the weight change measurement method at pH ranges 3∼13 of the solution. The specimens were exposed to aqueous solutions in a static autoclave at 280 .deg. C for 210 hours. The pH of the solutions was adjusted by hydrochloric acid and sodium hydroxide and the dissolved oxygen concentration was fixed as 10 ppb by using pure nitrogen gas. Weight loss of Inconel 600 was much less than that of nickel over the tested pH ranges. At pH 9.5, nickel and Inconel 600 showed the minimum weight loss phenomenon and the values of weight loss were 1.5mg/dm 2 and 0.9mg/dm 2 , respectively. Microscopic examination showed that nickel surface was attacked uniformly, whereas Inconel 600 surface was not greatly

  6. Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.

    Science.gov (United States)

    Wood, Mary H; Welbourn, Rebecca J L; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M

    2015-06-30

    Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.

  7. Nickel-hydrogen bipolar battery system

    Science.gov (United States)

    Thaller, L. H.

    1982-01-01

    Rechargeable nickel-hydrogen systems are described that more closely resemble a fuel cell system than a traditional nickel-cadmium battery pack. This was stimulated by the currently emerging requirements related to large manned and unmanned low Earth orbit applications. The resultant nickel-hydrogen battery system should have a number of features that would lead to improved reliability, reduced costs as well as superior energy density and cycle lives as compared to battery systems constructed from the current state-of-the-art nickel-hydrogen individual pressure vessel cells.

  8. Fabrication and characterization of nickel nanowires deposited on metal substrate

    International Nuclear Information System (INIS)

    Rahman, I.Z.; Razeeb, K.M.; Rahman, M.A.; Kamruzzaman, Md.

    2003-01-01

    The present investigation is a part of ongoing systematic study of production and process development of nanometer scale arrays of magnetic wires on metal substrates. Nickel nanowires are grown in ordered anodic alumina templates using galvanostatic electrodeposition. In this paper we report on the growth of nanowires on the electrochemical cell parameters such as bath temperature, pH and time. Focused ion beam analysis revealed heterogeneous growth of nickel nanowires. X-ray diffraction spectrum showed that FCC nickel changed the preferred orientation from (2 2 0) at lower bath temperatures to (2 0 0) at higher bath temperatures. Magnetic measurement showed that coercive fields were higher for wires with smaller diameters. Magneto-impedance was measured as a function of applied magnetic field and wire diameter

  9. Use of zeolite to neutralise nickel in a soil environment.

    Science.gov (United States)

    Boros-Lajszner, Edyta; Wyszkowska, Jadwiga; Kucharski, Jan

    2017-12-30

    Nickel is a heavy metal which is a stable soil pollutant which is difficult to remediate. An attempt to reduce its impact on the environment can be made by changing its solubility. The right level of hydrogen ions and the content of mineral and organic colloids are crucial in this regard. Therefore, methods to neutralise heavy metals in soil are sought. There are no reports in the literature on the possibility of using minerals in the detoxication of a soil environment contaminated with metals. It is important to fill the gap in research on the effect of zeolites on the microbiological, biochemical and physicochemical properties of soils under pressure from heavy metals. Therefore, a pot experiment was conducted on two soils which examined the effect of various levels of contamination of soil with nickel on the activity of soil enzymes, physical and chemical properties and growth and development of plants. An alleviating effect of zeolite Bio.Zeo.S.01 on the negative impact of nickel on the soil and a plant (oats) was examined. The enzyme activity and the oat yield were found to be significantly and negatively affected by an excess of nickel in the soil, regardless of the soil type. The metal was accumulated more in the oat roots than in the above-ground parts. An addition of zeolite decreased the level of accumulation of nickel in oats grown only on sandy-silty loam. Zeolite Bio.Zeo.S.01 used in the study only slightly alleviated the negative effect of nickel on the biochemical properties of soil. Therefore, its usability in the remediation of soil contaminated with nickel is small.

  10. Improved mechanical and corrosion properties of nickel composite coatings by incorporation of layered silicates

    Energy Technology Data Exchange (ETDEWEB)

    Tientong, J. [University of North Texas, Department of Chemistry, 1155 Union Circle #305070, Denton, TX 76203 (United States); Ahmad, Y.H. [Center for Advanced Materials, P.O. Box 2713, Qatar University, Doha (Qatar); Nar, M.; D' Souza, N. [University of North Texas, Department of Mechanical and Energy Engineering, Denton, TX 76207 (United States); Mohamed, A.M.A. [Center for Advanced Materials, P.O. Box 2713, Qatar University, Doha (Qatar); Golden, T.D., E-mail: tgolden@unt.edu [University of North Texas, Department of Chemistry, 1155 Union Circle #305070, Denton, TX 76203 (United States)

    2014-05-01

    Layered silicates as exfoliated montmorillonite are incorporated into nickel films by electrodeposition, enhancing both corrosion resistance and hardness. Films were deposited onto stainless steel from a plating solution adjusted to pH 9 containing nickel sulfate, sodium citrate, and various concentrations of exfoliated montmorillonite. The presence of the incorporated layered silicate was confirmed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The composite films were also compact and smooth like the pure nickel films deposited under the same conditions as shown by scanning electron microscopy. X-ray diffraction results showed that incorporation of layered silicates into the film do not affect the nickel crystalline fcc structure. The nanocomposite films exhibited improved stability and adhesion. Pure nickel films cracked and peeled from the substrate when immersed in 3.5% NaCl solution within 5 days, while the nanocomposite films remained attached even after 25 days. The corrosion resistance of the nickel nanocomposites was also improved compared to nickel films. Nickel-layered silicate composites showed a 25% increase in Young's modulus and a 20% increase in hardness over pure nickel films. - Highlights: • 0.05–2% of layered silicates are incorporated into crystalline nickel films. • Resulting composite films had improved stability and adhesion. • Corrosion resistance improved for the composite films. • Hardness improved 20% and young's modulus improved 25% for the composite films.

  11. Structural and electronic properties of AlX (X = P, As, Sb) nanowires: Ab initio study

    International Nuclear Information System (INIS)

    Srivastava, Anurag; Tyagi, Neha

    2012-01-01

    Present paper discusses the structural stability and electronic properties of AlX (X = P, As and Sb) nanowires in its linear, zigzag, ladder, square and hexagonal type atomic configurations. The structural optimization has been performed in self consistence manner by using generalized gradient approximation with revised Perdew, Burke and Ernzerhof type parameterization. The study observes that in all the three nanowires, the square shaped atomic configuration is the most stable one. The calculated electronic band structures and density of states profile confirms the semiconducting behaviour of linear and zigzag shaped nanowires of AlP, whereas for AlAs and AlSb nanowires are metallic. The ground state properties have also been analysed in terms of bond length, bulk modulus and pressure derivative for all the nanowires along with their bulk counterpart. The lower bulk modulus of all the linear shaped geometries of AlX nanowires in comparison to its bulk counterpart indicates softening of the material at reduced dimension. -- Graphical abstract: Figure-Electronic band structure of zigzag shaped AlP nanowire. The present electronic band structures of zigzag and linear shaped AlP nanowires are showing a clear band gap at Γ point, however others (AlAs and AlSb) in zigzag as well as in linear shape show metallic behaviour. Highlights: ► Stability analysis of five geometries of AlX (X = P, As and Sb) nanowires studied. ► Square shaped geometry of AlX nanowires is most stable. ► Linear and zigzag shaped AlP nanowires are semiconducting. ► Bulk moduli of all the linear nanowires are lower than their bulk counterpart. ► Lower bulk moduli defends the softening of material.

  12. Mua (HP0868) Is a Nickel-Binding Protein That Modulates Urease Activity in Helicobacter pylori

    Science.gov (United States)

    Benoit, Stéphane L.; Maier, Robert J.

    2011-01-01

    A novel mechanism aimed at controlling urease expression in Helicobacter pylori in the presence of ample nickel is described. Higher urease activities were observed in an hp0868 mutant (than in the wild type) in cells supplemented with nickel, suggesting that the HP0868 protein (herein named Mua for modulator of urease activity) represses urease activity when nickel concentrations are ample. The increase in urease activity in the Δmua mutant was linked to an increase in urease transcription and synthesis, as shown by quantitative real-time PCR, SDS-PAGE, and immunoblotting against UreAB. Increased urease synthesis was also detected in a Δmua ΔnikR double mutant strain. The Δmua mutant was more sensitive to nickel toxicity but more resistant to acid challenge than was the wild-type strain. Pure Mua protein binds 2 moles of Ni2+ per mole of dimer. Electrophoretic mobility shift assays did not reveal any binding of Mua to the ureA promoter or other selected promoters (nikR, arsRS, 5′ ureB-sRNAp). Previous yeast two-hybrid studies indicated that Mua and RpoD may interact; however, only a weak interaction was detected via cross-linking with pure components and this could not be verified by another approach. There was no significant difference in the intracellular nickel level between wild-type and mua mutant cells. Taken together, our results suggest the HP0868 gene product represses urease transcription when nickel levels are high through an as-yet-uncharacterized mechanism, thus counterbalancing the well-described NikR-mediated activation. PMID:21505055

  13. The accumulation of nickel in human lungs.

    OpenAIRE

    Edelman, D A; Roggli, V L

    1989-01-01

    Using data from published studies, lung concentrations of nickel were compare for persons with and without occupational exposure to nickel. As expected, the concentrations were much higher for persons with occupational exposure. To estimate the effects of nickel-containing tobacco smoke and nickel in the ambient air on the amount of nickel accumulated in lungs over time, a model was derived that took into account various variables related to the deposition of nickel in lungs. The model predic...

  14. The association between hand eczema and nickel allergy has weakened among young women in the general population following the Danish nickel regulation: results from two cross-sectional studies

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Linneberg, Allan René; Menné, Torkil

    2009-01-01

    tested with nickel. Data were analysed by logistic regression analyses and associations were expressed as odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS: The prevalence of concomitant nickel contact allergy and a history of hand eczema decreased among 18-35-year-old women from 9.......0% in 1990 to 2.1% in 2006 (P women, no significant changes were observed in the association between...

  15. Carbon formation on nickel and nickel-copper alloy catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alstrup, I.; Soerensen, O.; Rostrup-Nielsen, J.R. [Haldor Topsoe Research Labs., Lyngby (Denmark); Tavares, M.T.; Bernardo, C.A.

    1998-05-01

    Equilibrium, kinetic and morphological studies of carbon formation in CH{sub 4} + H{sub 2}, CO, and CO + H{sub 2} gases on silica supported nickel and nickel-copper catalysts are reviewed. The equilibrium deviates in all cases from graphite equilibrium and more so in CO + CO{sub 2} than in CH{sub 4} + H{sub 2}. A kinetic model based on information from surface science results with chemisorption of CH{sub 4} and possibly also the first dehydrogenation step as rate controlling describes carbon formation on nickel catalyst in CH{sub 4} + H{sub 2} well. The kinetics of carbon formation in CO and CO + H{sub 2} gases are in agreement with CO disproportionation as rate determining step. The presence of hydrogen influences strongly the chemisorption of CO. Carbon filaments are formed when hydrogen is present in the gas while encapsulating carbon dominates in pure CO. Small amounts of Cu alloying promotes while larger amounts (Cu : Ni {>=} 0.1) inhibits carbon formation and changes the morphology of the filaments (``octopus`` carbon formation). Adsorption induced nickel segregation changes the kinetics of the alloy catalysts at high carbon activities. Modifications suggested in some very recent papers on the basis of new results are also briefly discussed. (orig.) 31 refs.

  16. Activation behaviour of ZrCrNi mechanically milled with nickel

    International Nuclear Information System (INIS)

    Jung, C. B.; Ho Kim, J.; Sub Lee, K.

    1998-01-01

    AB 2 type Laves phase alloys have some promising properties as a negative electrode in rechargeable Ni/MH batteries because of high electrochemical capacity and good cyclic life. However, they have the disadvantage of requiring many charge-discharge cycles for activation. In this study, the mechanical milling with nickel has been introduced to modify the electrochemical behaviour of the ZrCrNi alloy. A composite-like structure (ZrCrNi+nickel) and nanocrystalline ZrCrNi were obtained through the mechanical milling and the hydrogenation behaviour of the electrode was greatly improved. (orig.)

  17. Charge Transport in Two-Photon Semiconducting Structures for Solar Fuels

    OpenAIRE

    Liu, Guohua; Du, Kang; Haussener, Sophia; Wang, Kaiying

    2016-01-01

    Semiconducting heterostructures are emerging as promising light absorbers and offer effective electron–hole separation to drive solar chemistry. This technology relies on semiconductor composites or photoelectrodes that work in the presence of a redox mediator and that create cascade junctions to promote surface catalytic reactions. Rational tuning of their structures and compositions is crucial to fully exploit their functionality. In this review, we describe the possibilities of applying th...

  18. Investigation of spin-gapless semiconductivity and half-metallicity in Ti2MnAl-based compounds

    International Nuclear Information System (INIS)

    Lukashev, P.; Staten, B.; Hurley, N.; Kharel, P.; Gilbert, S.; Fuglsby, R.; Huh, Y.; Valloppilly, S.; Zhang, W.; Skomski, R.; Sellmyer, D. J.; Yang, K.

    2016-01-01

    The increasing interest in spin-based electronics has led to a vigorous search for new materials that can provide a high degree of spin polarization in electron transport. An ideal candidate would act as an insulator for one spin channel and a conductor or semiconductor for the opposite spin channel, corresponding to the respective cases of half-metallicity and spin-gapless semiconductivity. Our first-principle electronic-structure calculations indicate that the metallic Heusler compound Ti 2 MnAl becomes half-metallic and spin-gapless semiconducting if half of the Al atoms are replaced by Sn and In, respectively. These electronic structures are associated with structural transitions from the regular cubic Heusler structure to the inverted cubic Heusler structure.

  19. First principles nickel-cadmium and nickel hydrogen spacecraft battery models

    Energy Technology Data Exchange (ETDEWEB)

    Timmerman, P.; Ratnakumar, B.V.; Distefano, S.

    1996-02-01

    The principles of Nickel-Cadmium and Nickel-Hydrogen spacecraft battery models are discussed. The Ni-Cd battery model includes two phase positive electrode and its predictions are very close to actual data. But the Ni-H2 battery model predictions (without the two phase positive electrode) are unacceptable even though the model is operational. Both models run on UNIX and Macintosh computers.

  20. Electroless deposition, post annealing and characterization of nickel ...

    Indian Academy of Sciences (India)

    Electroless deposition of nickel (EN) films on -type silicon has been investigated under different process conditions. The interface between the film and substrate has been characterized for electrical properties by probing the contact resistances. X-ray diffraction and atomic force microscopy have been performed to obtain ...

  1. Bioleaching of a low-grade nickel-copper sulfide by mixture of four thermophiles.

    Science.gov (United States)

    Li, Shuzhen; Zhong, Hui; Hu, Yuehua; Zhao, Jiancun; He, Zhiguo; Gu, Guohua

    2014-02-01

    This study investigated thermophilic bioleaching of a low grade nickel-copper sulfide using mixture of four acidophilic thermophiles. Effects of 0.2g/L l-cysteine on the bioleaching process were further evaluated. It aimed at offering new alternatives for enhancing metal recoveries from nickel-copper sulfide. Results showed a recovery of 80.4% nickel and 68.2% copper in 16-day bioleaching without l-cysteine; while 83.7% nickel and 81.4% copper were recovered in the presence of l-cysteine. Moreover, nickel recovery was always higher than copper recovery. l-Cysteine was found contributing to lower pH value, faster microbial growth, higher Oxidation-Reduction Potential (ORP), higher zeta potential and absorbing on the sulfide surfaces through amino, carboxyl and sulfhydryl groups. X-ray Diffraction (XRD) patterns of leached residues showed generation of S, jarosite and ammoniojarosite. Denaturing Gradient Gel Electrophoresis (DGGE) results revealed that l-cysteine could have variant impacts on different microorganisms and changed the microbial community composition dramatically during nickel-copper sulfide bioleaching. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Improvement of solvents for chemical decontamination: nickel ferrites removal

    International Nuclear Information System (INIS)

    Figueroa, Carlos A.; Morando, Pedro J.; Blesa, Miguel A.

    1999-01-01

    Carboxylic acids are usually included in commercial solvents for the chemical cleaning and decontamination of metal surfaces from the oxide layers grown and/or deposited from high temperature water by corrosive process. In particular oxalic acid is included in second path of AP-Citrox method. However, in some cases, their use shows low efficiency. This fact is attributed to the special passivity of the mixed oxides as nickel ferrites. This work reports a kinetic study of dissolution of a synthetic nickel ferrite (NiFe 2 O 4 ) confronted with simple oxides (NiO and Fe 2 O 3 ) in mineral acids and oxalic acid. The dissolution factor and reaction rate were determined in several conditions (reactive concentrations, pH and added ferrous ions). Experimental data of dissolution (with and without Fe(II) added) show a congruent kinetic regime. Pure nickel oxide (NiO) is rather resistant to the attack by oxalic acid solutions, and ferrous ions do not accelerate dissolution. In fact, nickel oxide dissolves better by oxidative attack that takes advantage of the higher lability of Ni 3+ . It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel. Our results point to use more reactive solvents in iron from mixed oxides and to the possibility of using one stage decontamination method. (author)

  3. Nickel and cobalt release from jewellery and metal clothing items in Korea.

    Science.gov (United States)

    Cheong, Seung Hyun; Choi, You Won; Choi, Hae Young; Byun, Ji Yeon

    2014-01-01

    In Korea, the prevalence of nickel allergy has shown a sharply increasing trend. Cobalt contact allergy is often associated with concomitant reactions to nickel, and is more common in Korea than in western countries. The aim of the present study was to investigate the prevalence of items that release nickel and cobalt on the Korean market. A total of 471 items that included 193 branded jewellery, 202 non-branded jewellery and 76 metal clothing items were sampled and studied with a dimethylglyoxime (DMG) test and a cobalt spot test to detect nickel and cobalt release, respectively. Nickel release was detected in 47.8% of the tested items. The positive rates in the DMG test were 12.4% for the branded jewellery, 70.8% for the non-branded jewellery, and 76.3% for the metal clothing items. Cobalt release was found in 6.2% of items. Among the types of jewellery, belts and hair pins showed higher positive rates in both the DMG test and the cobalt spot test. Our study shows that the prevalence of items that release nickel or cobalt among jewellery and metal clothing items is high in Korea. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Semiconducting properties of oxide films formed onto an Nb electrode in NaOH solutions

    Directory of Open Access Journals (Sweden)

    VLADIMIR D. JOVIC

    2008-03-01

    Full Text Available In this paper, the results of the potentiostatic formation of homogeneous and heterogeneous, nano-crystalline passive films of Nb2O5 onto an Nb electrode in NaOH solutions of different concentrations at potentials lower than 3.0 V vs. SCE are presented. The semiconducting properties of such films were investigated by EIS measurements. After fitting the EIS results by appropriate equivalent circuits, the space charge capacitance (Csc and space charge resistance (Rsc of these films were determined. The donor density (Nsc, flat band potential (Efb and thickness of the space charge layer (dsc for such oxide films were determined from the corresponding Mott–Schottky (M–S plots. It is shown that all oxide films were n-type semiconductors in a certain potential range.

  5. Synthesis of p-type GaN nanowires.

    Science.gov (United States)

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  6. Degadation of semiconducting polymers by concentrated sunlight

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Manceau, Matthieu; Petersen, Martin Helgesen

    2011-01-01

    infra-red spectra of MEH-PPV degraded at 1 sun intensity and at high solar concentration only showed minor deviations in degradation mechanisms. The acceleration factor was found to vary linearly with the solar concentration. Finally, a comparison of the degradation rates at 1 sun and 100 suns...... was carried out in a materials study employing five different conjugated polymers relevant to polymer solar cells for which acceleration factors in the range 19–55 were obtained.......A lens based sunlight concentration setup was used to accelerate the degradation of semiconducting polymers. Sunlight was collected outdoor and focused into an optical fiber bundle allowing for indoor experimental work. Photo-degradation of several polymers was studied by UV–vis absorbance...

  7. Study on the influences of reduction temperature on nickel-yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode

    Science.gov (United States)

    Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki

    2016-10-01

    In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.

  8. Recovery Of Nickel From Spent Nickel-Cadmium Batteries Using A Direct Reduction Process

    Directory of Open Access Journals (Sweden)

    Shin D.J.

    2015-06-01

    Full Text Available Most nickel is produced as Ferro-Nickel through a smelting process from Ni-bearing ore. However, these days, there have been some problems in nickel production due to exhaustion and the low-grade of Ni-bearing ore. Moreover, the smelting process results in a large amount of wastewater, slag and environmental risk. Therefore, in this research, spent Ni-Cd batteries were used as a base material instead of Ni-bearing ore for the recovery of Fe-Ni alloy through a direct reduction process. Spent Ni-Cd batteries contain 24wt% Ni, 18.5wt% Cd, 12.1% C and 27.5wt% polymers such as KOH. For pre-treatment, Cd was vaporized at 1024K. In order to evaluate the reduction conditions of nickel oxide and iron oxide, pre-treated spent Ni-Cd batteries were experimented on under various temperatures, gas-atmospheres and crucible materials. By a series of process, alloys containing 75 wt% Ni and 20 wt% Fe were produced. From the results, the reduction mechanism of nickel oxide and iron oxide were investigated.

  9. Magnetic vortex state and multi-domain pattern in electrodeposited hemispherical nanogranular nickel films

    International Nuclear Information System (INIS)

    Samardak, Alexander; Sukovatitsina, Ekaterina; Ognev, Alexey; Stebliy, Maksim; Davydenko, Alexander; Chebotkevich, Ludmila; Keun Kim, Young; Nasirpouri, Forough; Janjan, Seyed-Mehdi; Nasirpouri, Farzad

    2014-01-01

    Magnetic states of nickel nanogranular films were studied in two distinct structures of individual and agglomerated granules electrodeposited on n-type Si(1 1 1) surface from a modified Watts bath at a low pH of 2. Magnetic force microscopy and micromagnetic simulations revealed three-dimensional out-of-plane magnetic vortex states in stand-alone hemispherical granules and their arrays, and multi-domain patterns in large agglomerates and integrated films. Once the granules coalesce into small chains or clusters, the coercivity values increased due to the reduction of inter-granular spacing and strengthening of the magnetostatic interaction. Further growth leads to the formation of a continuous granulated film which strongly affected the coercivity and remanence. This was characterized by the domain wall nucleation and propagation leading to a stripe domain pattern. Magnetoresistance measurements as a function of external magnetic field are indicative of anisotropic magnetoresistance (AMR) for the continuous films electrodeposited on Si substrate. - Highlights: • Magnetic states of electrodeposited nickel in isolated spherical and agglomerated nanogranules, and a continuous film. • Preferential magnetization reversal mechanism in isolated granules is vortex state. • Micromagnetic simulations confirm the three-dimensional vortex. • Transition between the vortex state and multi-domain magnetic pattern causes a significant decrease in the coercive force. • Continuous nickel films electrodeposited on silicon substrate exhibit AMR whose magnitude increases with the film thickness

  10. Respiratory carcinogenicity assessment of soluble nickel compounds.

    OpenAIRE

    Oller, Adriana R

    2002-01-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear...

  11. Surface characterization of nickel titanium orthodontic arch wires

    Science.gov (United States)

    Krishnan, Manu; Seema, Saraswathy; Tiwari, Brijesh; Sharma, Himanshu S.; Londhe, Sanjay; Arora, Vimal

    2015-01-01

    Background Surface roughness of nickel titanium orthodontic arch wires poses several clinical challenges. Surface modification with aesthetic/metallic/non metallic materials is therefore a recent innovation, with clinical efficacy yet to be comprehensively evaluated. Methods One conventional and five types of surface modified nickel titanium arch wires were surface characterized with scanning electron microscopy, energy dispersive analysis, Raman spectroscopy, Atomic force microscopy and 3D profilometry. Root mean square roughness values were analyzed by one way analysis of variance and post hoc Duncan's multiple range tests. Results Study groups demonstrated considerable reduction in roughness values from conventional in a material specific pattern: Group I; conventional (578.56 nm) > Group V; Teflon (365.33 nm) > Group III; nitride (301.51 nm) > Group VI (i); rhodium (290.64 nm) > Group VI (ii); silver (252.22 nm) > Group IV; titanium (229.51 nm) > Group II; resin (158.60 nm). It also showed the defects with aesthetic (resin/Teflon) and nitride surfaces and smooth topography achieved with metals; titanium/silver/rhodium. Conclusions Resin, Teflon, titanium, silver, rhodium and nitrides were effective in decreasing surface roughness of nickel titanium arch wires albeit; certain flaws. Findings have clinical implications, considering their potential in lessening biofilm adhesion, reducing friction, improving corrosion resistance and preventing nickel leach and allergic reactions. PMID:26843749

  12. Carcinogenicity assessment of water-soluble nickel compounds.

    Science.gov (United States)

    Goodman, Julie E; Prueitt, Robyn L; Dodge, David G; Thakali, Sagar

    2009-01-01

    IARC is reassessing the human carcinogenicity of nickel compounds in 2009. To address the inconsistencies among results from studies of water-soluble nickel compounds, we conducted a weight-of-evidence analysis of the relevant epidemiological, toxicological, and carcinogenic mode-of-action data. We found the epidemiological evidence to be limited, in that some, but not all, data suggest that exposure to soluble nickel compounds leads to increased cancer risk in the presence of certain forms of insoluble nickel. Although there is no evidence that soluble nickel acts as a complete carcinogen in animals, there is limited evidence that suggests it may act as a tumor promoter. The mode-of-action data suggest that soluble nickel compounds will not be able to cause genotoxic effects in vivo because they cannot deliver sufficient nickel ions to nuclear sites of target cells. Although the mode-of-action data suggest several possible non-genotoxic effects of the nickel ion, it is unclear whether soluble nickel compounds can elicit these effects in vivo or whether these effects, if elicited, would result in tumor promotion. The mode-of-action data equally support soluble nickel as a promoter or as not being a causal factor in carcinogenesis at all. The weight of evidence does not indicate that soluble nickel compounds are complete carcinogens, and there is only limited evidence that they could act as tumor promoters.

  13. Point defects in nickel; Les defauts ponctuels dans le nickel

    Energy Technology Data Exchange (ETDEWEB)

    Peretto, P [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    The defects in electron irradiated nickel (20 deg. K) or neutron irradiated nickel (28 deg. K) are studied by simultaneous analysis using the magnetic after-effect, electron microscopy and electrical resistivity recovery. We use zone refined nickel (99.999 per cent) which, for some experiments, is alloyed with a small amount of iron (for example 0.1 per cent Fe). The temperature dependant electrical recovery may be divided in four stages. The sub-stages I{sub B} (31 deg. K), I{sub C} (42 deg. K), I{sub D} (from to 57 deg. K) and I{sub E} (62 deg. K) of stage I are due to the disappearance of single interstitials into vacancies. The interstitial defect has a split configuration with a migration energy of about 0.15 eV. In the close pair which disappears in stage I{sub B} the interstitial is found to be in a 3. neighbour position whilst in stage I{sub D} it is near the <110> direction from the vacancy. In stage I{sub E} there is no longer any interaction between the interstitial and the vacancy. The stage II is due to more complicated interstitial defects: di-interstitials for stage II{sub B} (84 deg. K) and larger and larger interstitial loops for the following sub-stages. The loops may be seen by electron microscopy. Impurities can play the role of nucleation centers for the loops. Stages III{sub A} (370 deg. K) and III{sub B} (376 deg. K) are due to two types of di-vacancies. During stage IV (410 deg. K) the single vacancies migrate. Vacancy type loops and interstitial type loops grow concurrently and disappear at about 800 deg. K as observed by electron microscopy. (author) [French] Les defauts crees dans le nickel par irradiation avec des electrons a la temperature de 20 deg. K et par irradiation avec des neutrons a la temperature de 28 deg. K sont etudies par l'analyse simultanee du trainage magnetique, de la microscopie electronique et de la restauration de la resistivite electrique. Les echantillons sont en nickel, purifie par la methode de la zone fondue

  14. Point defects in nickel; Les defauts ponctuels dans le nickel

    Energy Technology Data Exchange (ETDEWEB)

    Peretto, P. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    The defects in electron irradiated nickel (20 deg. K) or neutron irradiated nickel (28 deg. K) are studied by simultaneous analysis using the magnetic after-effect, electron microscopy and electrical resistivity recovery. We use zone refined nickel (99.999 per cent) which, for some experiments, is alloyed with a small amount of iron (for example 0.1 per cent Fe). The temperature dependant electrical recovery may be divided in four stages. The sub-stages I{sub B} (31 deg. K), I{sub C} (42 deg. K), I{sub D} (from to 57 deg. K) and I{sub E} (62 deg. K) of stage I are due to the disappearance of single interstitials into vacancies. The interstitial defect has a split configuration with a migration energy of about 0.15 eV. In the close pair which disappears in stage I{sub B} the interstitial is found to be in a 3. neighbour position whilst in stage I{sub D} it is near the <110> direction from the vacancy. In stage I{sub E} there is no longer any interaction between the interstitial and the vacancy. The stage II is due to more complicated interstitial defects: di-interstitials for stage II{sub B} (84 deg. K) and larger and larger interstitial loops for the following sub-stages. The loops may be seen by electron microscopy. Impurities can play the role of nucleation centers for the loops. Stages III{sub A} (370 deg. K) and III{sub B} (376 deg. K) are due to two types of di-vacancies. During stage IV (410 deg. K) the single vacancies migrate. Vacancy type loops and interstitial type loops grow concurrently and disappear at about 800 deg. K as observed by electron microscopy. (author) [French] Les defauts crees dans le nickel par irradiation avec des electrons a la temperature de 20 deg. K et par irradiation avec des neutrons a la temperature de 28 deg. K sont etudies par l'analyse simultanee du trainage magnetique, de la microscopie electronique et de la restauration de la resistivite electrique. Les echantillons sont en nickel, purifie par la methode de la zone

  15. Piezoresistance in p-type silicon revisited

    DEFF Research Database (Denmark)

    Richter, Jacob; Pedersen, Jesper; Brandbyge, Mads

    2008-01-01

    We calculate the shear piezocoefficient pi44 in p-type Si with a 6×6 k·p Hamiltonian model using the Boltzmann transport equation in the relaxation-time approximation. Furthermore, we fabricate and characterize p-type silicon piezoresistors embedded in a (001) silicon substrate. We find...... to experiments. Finally, we present a fitting function of temperature and acceptor density to the 6×6 model that can be used to predict the piezoresistance effect in p-type silicon. ©2008 American Institute of Physics...... that the relaxation-time model needs to include all scattering mechanisms in order to obtain correct temperature and acceptor density dependencies. The k·p results are compared to results obtained using a recent tight-binding (TB) model. The magnitude of the pi44 piezocoefficient obtained from the TB model...

  16. Formation of chemical compounds under vacuum plasma-arc deposition of nickel and its alloy onto piezoceramics

    International Nuclear Information System (INIS)

    Grinchenko, V.T.; Lyakhovich, T.K.; Prosina, N.I.; Khromov, S.M.

    1988-01-01

    The phase composition of the transition layer appearing during vacuum-arc coating of nickel and nickel alloy with copper on barium titanate and lead zirconate-titanate is identified. During vacuum plasma-arc coating of nickel and its alloy at the boundary with barium titanate and lead zirconate-titanate the Ni 2 Ti 4 O compound appears which has the crystal lattice type identical with substrate with the parity of lattice parameters. The transition layer contains nickel oxides and NiTiO 3 in the case of barium titanate. When titanate content in substrate increases the zone of reaction diffusion increases in value and becomes more complicate in composition

  17. Epicutaneous exposure to nickel induces nickel allergy in mice via a MyD88-dependent and interleukin-1-dependent pathway

    DEFF Research Database (Denmark)

    Vennegaard, Marie T; Dyring-Andersen, Beatrice; Skov, Lone

    2014-01-01

    -lasting epicutaneous exposure to nickel. OBJECTIVE: To develop a mouse model reflecting nickel allergy in humans induced by epicutaneous exposure to nickel, and to investigate the mechanisms involved in such allergic responses. METHODS: Mice were exposed to NiCl2 on the dorsal side of the ears. Inflammation...... was evaluated by the swelling and cell infiltration of the ears. T cell responses were determined as numbers of CD4(+) and CD8(+) T cells in the draining lymph nodes. Localization of nickel was examined by dimethylglyoxime staining. RESULTS: Epicutaneous exposure to nickel results in prolonged localization...... of nickel in the epidermis, and induces nickel allergy in mice. The allergic response to nickel following epicutaneous exposure is MyD88-dependent and interleukin (IL)-1 receptor-dependent, but independent of toll-like receptor (TLR)-4. CONCLUSION: This new model for nickel allergy that reflects...

  18. Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide

    International Nuclear Information System (INIS)

    Lai, Teh-Long; Lai, Yuan-Lung; Yu, Jen-Wei; Shu, Youn-Yuen; Wang, Chen-Bin

    2009-01-01

    Coralloid nanostructured nickel hydroxide hydrate has been successfully synthesized by a simple microwave-assisted hydrothermal process using nickel sulfate hexahydrate as precursor and urea as hydrolysis-controlling agent. A pure coralloid nanostructured nickel oxide can be obtained from the nickel hydroxide hydrate after calcination at 400 deg. C. The thermal property, structure and morphology of samples were characterized by thermogravimetry (TG), temperature-programmed reduction (TPR), X-ray (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  19. Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Teh-Long [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Lai, Yuan-Lung [Department of Mechanical and Automation Engineering, Da-Yeh University, Changhua 515, Taiwan (China); Yu, Jen-Wei [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Shu, Youn-Yuen, E-mail: shuyy@nknucc.nknu.edu.tw [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Wang, Chen-Bin, E-mail: chenbin@ccit.edu.tw [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan 335, Taiwan (China)

    2009-10-15

    Coralloid nanostructured nickel hydroxide hydrate has been successfully synthesized by a simple microwave-assisted hydrothermal process using nickel sulfate hexahydrate as precursor and urea as hydrolysis-controlling agent. A pure coralloid nanostructured nickel oxide can be obtained from the nickel hydroxide hydrate after calcination at 400 deg. C. The thermal property, structure and morphology of samples were characterized by thermogravimetry (TG), temperature-programmed reduction (TPR), X-ray (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  20. Respiratory carcinogenicity assessment of soluble nickel compounds.

    Science.gov (United States)

    Oller, Adriana R

    2002-10-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear because of limitations of the exposure data, inconsistent results across cohorts, and the presence of mixed exposures to water-insoluble nickel compounds and other confounders that are known or suspected carcinogens. Moreover, well-conducted animal inhalation studies, where exposures were solely to soluble nickel, failed to demonstrate a carcinogenic potential. Similar negative results were seen in animal oral studies. A model exists that relates respiratory carcinogenic potential to the bioavailability of nickel ion at nuclear sites within respiratory target cells. This model helps reconcile human, animal, and mechanistic data for soluble nickel compounds. For inhalation exposures, the predicted lack of bioavailability of nickel ion at target sites suggests that water-soluble nickel compounds, by themselves, will not be complete human carcinogens. However, if inhaled at concentrations high enough to induce chronic lung inflammation, these compounds may enhance carcinogenic risks associated with inhalation exposure to other substances. Overall, the weight of evidence indicates that inhalation exposure to soluble nickel alone will not cause cancer; moreover, if exposures are kept below levels that cause chronic respiratory toxicity, any possible tumor-enhancing effects (particularly in smokers) would be avoided.

  1. Superconductivity in Ti3P-type compounds

    International Nuclear Information System (INIS)

    Wills, J.O.; Hein, R.A.; Waterstrat, R.M.

    1978-01-01

    A study of 12 intermetallic A 3 B compounds which crsytallize in the tetragonal Ti 3 P-type structure has revealed five new superconductors with transition temperatures below 1 K: Zr 3 Si, Zr 3 Ge, Zr 3 P, V 3 P, and Nb 3 Ge (extrapolated from the alloy series Nb-Ge-As). In addition, two compounds, Zr 3 Sb and Ta 3 Ge, having the Ni 3 P structure type are found to be superconducting below 1 K. Within the Ti 3 P-type compounds, those with the lighter ''B'' elements in a given column of the Periodic Table have the higher transition temperatures. Critical-magnetic-field and electrical-resistivity data are reported for the superconducting Ti 2 P-type compound Nb 3 P, which permit one to estimate the Ginzburg-Landau kappa parameter and the electronic-specific-heat coefficient γ. The kappa value of 8.4 indicates that this material is type II, and the γ value of 1.3 mJ/mole K 2 for Nb 3 P is probably related to its low transition temperature relative to many A15 compounds

  2. O,O'-Dialkyldithiophosphato and O-alkyldithiophosphato nickel(II) complexes with bidentate P-donor ligands

    Czech Academy of Sciences Publication Activity Database

    Szüčová, Lucie; Trávníček, Zdeněk; Marek, J.

    2003-01-01

    Roč. 22, č. 10 (2003), s. 1341-1348 ISSN 0277-5387 R&D Projects: GA ČR GA203/02/0436 Institutional research plan: CEZ:AV0Z5038910 Keywords : Nickel(II) * Dithiophosphates * X-ray structures Subject RIV: CE - Biochemistry Impact factor: 1.584, year: 2003

  3. Electron transfer behaviour of single-walled carbon nanotubes electro-decorated with nickel and nickel oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Adekunle, Abolanle S.; Ozoemena, Kenneth I. [Department of Chemistry, University of Pretoria, Pretoria 0002 (South Africa)

    2008-08-01

    The electron transfer behaviour of nickel film-decorated single-walled carbon nanotubes (SWCNTs-Ni) at edge plane pyrolytic graphite electrodes (EPPGEs) was investigated. The impact of SWCNTs on the redox properties of the nickel film was investigated with cyclic voltammetry and electrochemical impedance spectroscopy (EIS). From EIS data, obtained using ferrocyanide/ferricyanide as a redox probe, we show that the electrodes based on nickel and nickel oxide films follow electrical equivalent circuit models typical of partial charge transfer or adsorption-controlled kinetics, resembling the 'electrolyte-insulator-semiconductor sensors (EIS)'. From the models, we prove that EPPGE-SWCNT-Ni exhibits the least resistance to charge transport compared to other electrodes (approximately 30 times faster than the EPPGE-SWCNT-NiO, 25 times faster than EPPGE-SWCNT, and over 300 times faster than the bare EPPGE) suggesting the ability of the SWCNTs to act as efficient conducting species that facilitate electron transport of the integrated nickel and nickel oxide particles. (author)

  4. Spectrochemical analysis of impurities in nickel and in nickel oxide

    International Nuclear Information System (INIS)

    Goldbart, Z.; Lorber, A.; Harel, A.

    1981-11-01

    Various spectrochemical methods are described for the quantitative determination of 23 impurities in metallic nickel and in nickel oxide. The average limit of detection is from 1 to 5 ppm and the dynamic range lies over 2.5 orders of magnitude. The elements that were determined are: Al,B,Ba,Bi,Ca,Cd,Co,Cu,Fe,Ga,Ge,In,Mg,Mn,Mo,Nb,Si,Sn,Sr,Ti,Cr,V. (author)

  5. Controlled synthesis of size-tunable nickel and nickel oxide nanoparticles using water-in-oil microemulsions

    International Nuclear Information System (INIS)

    Kumar, Ajeet; Saxena, Amit; Shankar, Ravi; Mozumdar, Subho; De, Arnab

    2013-01-01

    Industrial demands have generated a growing need to synthesize pure metal and metal–oxide nanoparticles of a desired size. We report a novel and convenient method for the synthesis of spherical, size tunable, well dispersed, stable nickel and nickel oxide nanoparticles by reduction of nickel nitrate at room temperature in a TX-100/n-hexanol/cyclohexane/water system by a reverse microemulsion route. We determined that reduction with alkaline sodium borohydrate in nitrogen atmosphere leads to the formation of nickel nanoparticles, while the use of hydrazine hydrate in aerobic conditions leads to the formation of nickel oxide nanoparticles. The influence of several reaction parameters on the size of nickel and nickel oxide nanoparticles were evaluated in detail. It was found that the size can be easily controlled either by changing the molar ratio of water to surfactant or by simply altering the concentration of the reducing agent. The morphology and structure of the nanoparticles were characterized by quasi-elastic light scattering (QELS), transmission electron microscopy (TEM), x-ray diffraction (XRD), electron diffraction analysis (EDA) and energy dispersive x-ray (EDX) spectroscopy. The results show that synthesized nanoparticles are of high purity and have an average size distribution of 5–100 nm. The nanoparticles prepared by our simple methodology have been successfully used for catalyzing various chemical reactions. (paper)

  6. Extraction and Separation of Cobalt and Nickel with Extractants Cyanex 302, Cyanex 272 and Their Mixture

    Directory of Open Access Journals (Sweden)

    Lenhard, Z.

    2008-09-01

    Full Text Available The extraction and separation of cobalt(II and nickel(II from sulphate solutions with different initial volume fractions of commercial organophosphorus extractants Cyanex 302, Cyanex 272 and their mixture, in kerosene as diluent, were investigated. Prepared samples contained the mixture of cobalt(II and nickel(II in mass concentrations chosen to approximate the mass concentrations of the two metals in solutions obtained by leaching typical low-grade ores or waste materials with sulphuric acid. The experiments were carried out at two concentration ratios of nickel to cobalt(ζNi/Co, 25 and 125. The latter ratio was chosen as model for the solutions of naturally occurring ores and other materials in which the concentration of nickel is much higher than that of cobalt. In all cases, the concentration of cobalt was approximately y= 0.15 g L–1, and the concentration of nickel was approximately g= 3.80 g L–1 (at ζNi/Co = 25 and 18.80 g L–1 (at ζNi/Co = 125. Other initial values were based on conditions found to be optimal in previous investigations, and kept constant in all experiments: pH0= 8, θ0 = 25 °C, phase volume ratio organic to aqueous ψ = 1 and 0.5, contact time 2 minutes.The tested fractions of extractants (Cyanex 302 or Cyanex 272, diluted in kerosene, were j = 2.5, 5.0, 7.5 and φ = 10 %. The studies of the mixture of extractants were carried out at two sets of fractions. In the first set, the fraction of Cyanex 302 was kept at φ = 10 %, and Cyanex 272 was varied in the range φ = 2.5 –10 %. In the second set, the mass concentration of each of the two extractants was varied in the range φ = 2.5–10 % so that the total fraction of the two extractants always added up to φ= 10 %.The obtained results describe the influences of type and initial volume fraction of extractant on the separation and extraction of cobalt and nickel. Under the investigated range of conditions, Cyanex 302 outperformed Cyanex 272 in cobalt-nickel

  7. Nickel Excretion in Urine after Oral Administration

    DEFF Research Database (Denmark)

    Menne, T.; Mikkelsen, H. I.; Solgaard, Per Bent

    1978-01-01

    In recent years the importance of internal exposure to nickel in patients with recurrent hand eczema and nickel allergy has become evident. The present study was performed in order to investigate the value of urinary nickel determinations as an index of oral nickel intake. After oral administration...

  8. Results of a technical analysis of the Hubble Space Telescope nickel-cadmium and nickel-hydrogen batteries

    Science.gov (United States)

    Manzo, Michelle A.

    1991-01-01

    The Hubble Space Telescope (HST) Program Office requested the expertise of the NASA Aerospace Flight Battery Systems Steering Committee (NAFBSSC) in the conduct of an independent assessment of the HST's battery system to assist in their decision of whether to fly nickel-cadmium or nickel-hydrogen batteries on the telescope. In response, a subcommittee to the NAFBSSC was organized with membership comprised of experts with background in the nickel-cadmium/nickel-hydrogen secondary battery/power systems areas. The work and recommendations of that subcommittee are presented.

  9. An augmented space formulation of the optical conductivity of random semiconducting alloys

    International Nuclear Information System (INIS)

    Mookerjee, A.

    1984-08-01

    A formalism has been developed for the study of optical conductivity of disordered semiconducting alloys effect of off-diagonal disorder, clustering and randomness in the electron-photon interaction matrix may be incorporated within this. The aim is to finally study GaAssub(x)Sbsub(1-x) as well as deep levels in this alloy. (author)

  10. Nickel Nanowire@Porous NiCo2O4 Nanorods Arrays Grown on Nickel Foam as Efficient Pseudocapacitor Electrode

    Directory of Open Access Journals (Sweden)

    Houzhao Wan

    2017-12-01

    Full Text Available A three dimensional hierarchical nanostructure composed of nickel nanowires and porous NiCo2O4 nanorods arrays on the surface of nickel foam is successfully fabricated by a facile route. In this structure, the nickel nanowires are used as core materials to support high-pseudocapacitance NiCo2O4 nanorods and construct the well-defined NiCo2O4 nanorods shell/nickel nanowires core hierarchical structure on nickel foam. Benefiting from the participation of nickel nanowires, the nickel nanowire@NiCo2O4/Ni foam electrode shows a high areal specific capacitance (7.4 F cm−2 at 5 mA cm−2, excellent rate capability (88.04% retained at 100 mA cm−2, and good cycling stability (74.08% retained after 1,500 cycles. The superior electrochemical properties made it promising as electrode for supercapacitors.

  11. Comparative study between c-Si and CZT semiconducting detectors using the mathematical simulation of the radiation transport through matter

    International Nuclear Information System (INIS)

    Dona, O.; Leyva, A.; Pinera, I.; Abreu, Y.; Cruz, C.

    2007-01-01

    Using the code system MCNP-X, based on the Monte Carlo statistical method, a comparative study of some properties of the crystalline silicon and CZT semiconducting detectors was carried out. This program, conceived to simulate the transport of several types of particles through matter, allowed the study of spatial distribution of the radiation energy deposition in detectors and evaluate the devices quantum efficiency. A quantitative estimation of the number of charge carriers generated in active zone of the detector was also presented. The results of the displacement cross sections calculation and the devices resistance to the radiacional damage are discussed. (Author)

  12. Thermodynamic-Controlled Gas Phase Process for the Synthesis of Nickel Nanoparticles of Adjustable Size and Morphology

    International Nuclear Information System (INIS)

    Kauffeldt, Elena; Kauffeldt, Thomas

    2006-01-01

    Gas phase processes are a successful route for the synthesis of nano materials. Nickel particles are used in applications ranging from catalysis to nano electronics and energy storage. The application field defines the required particle size, morphology, crystallinity and purity. Nickel tetracarbonyl is the most promising precursor for the synthesis of high purity nickel particles. Due to the toxicity of this precursor and to obtain an optimal process control we developed a two-step flow type process. Nickel carbonyl and nickel particles are synthesized in a sequence of reactions. The particles are formed in a hot wall reactor at temperatures below 400 deg. C in different gas compositions. Varying the process conditions enables the adjustment of the particle size in a range from 3 to 140 nm. The controllable crystalline habits are polycrystalline, single crystals or multiple twinned particles (MTP). Spectroscopic investigations show an excellent purity. We report about the process and first investigations of the properties of the synthesized nickel nanomaterial

  13. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate.

    Science.gov (United States)

    Wu, Chia-Ching; Yang, Cheng-Fu

    2013-06-12

    P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.

  14. Degradable conjugated polymers for the selective sorting of semiconducting carbon nanotubes

    Science.gov (United States)

    Gopalan, Padma; Arnold, Michael Scott; Kansiusarulsamy, Catherine Kanimozhi; Brady, Gerald Joseph; Shea, Matthew John

    2018-04-10

    Conjugated polymers composed of bi-pyridine units linked to 9,9-dialkyl fluorenyl-2,7-diyl units via imine linkages along the polymer backbone are provided. Also provided are semiconducting single-walled carbon nanotubes coated with the conjugated polymers and methods of sorting and separating s-SWCNTs from a sample comprising a mixture of s-SWCNTs and metallic single-walled carbon nanotubes using the conjugated polymers.

  15. Analytical approaches for the characterization of nickel proteome.

    Science.gov (United States)

    Jiménez-Lamana, Javier; Szpunar, Joanna

    2017-08-16

    The use of nickel in modern industry and in consumer products implies some health problems for the human being. Nickel allergy and nickel carcinogenicity are well-known health effects related to human exposure to nickel, either during production of nickel-containing products or by direct contact with the final item. In this context, the study of nickel toxicity and nickel carcinogenicity involves the understanding of their molecular mechanisms and hence the characterization of the nickel-binding proteins in different biological samples. During the last 50 years, a broad range of analytical techniques, covering from the first chromatographic columns to the last generation mass spectrometers, have been used in order to fully characterize the nickel proteome. The aim of this review is to present a critical view of the different analytical approaches that have been applied for the purification, isolation, detection and identification of nickel-binding proteins. The different analytical techniques used are discussed from a critical point of view, highlighting advantages and limitations.

  16. Nickel release from orthodontic retention wires: the action of mechanical loading and pH

    NARCIS (Netherlands)

    Milheiro, A.; Kleverlaan, C.; Muris, J.; Feilzer, A.; Pallav, P.

    2012-01-01

    Nickel (Ni) is a potent sensitizer and may induce innate and adaptive immune responses. Ni is an important component of orthodontic appliances (8-50 wt%). Due to chemical and mechanical factors in the oral environment, Ni is released from these appliances. Retention wires are in situ for a long

  17. Semiconducting behavior of the anodically passive films formed on AZ31B alloy

    Directory of Open Access Journals (Sweden)

    A. Fattah-alhosseini

    2014-12-01

    Full Text Available This work includes determination of the semiconductor character and estimation of the dopant levels in the passive film formed on AZ31B alloy in 0.01 M NaOH, as well as the estimation of the passive film thickness as a function of the film formation potential. Mott–Schottky analysis revealed that the passive films displayed n-type semiconductive characteristics, where the oxygen vacancies and interstitials preponderated. Based on the Mott–Schottky analysis, it was shown that the calculated donor density increases linearly with increasing the formation potential. Also, the electrochemical impedance spectroscopy (EIS results indicated that the thickness of the passive film was decreased linearly with increasing the formation potential. The results showed that decreasing the formation potential offer better conditions for forming the passive films with higher protection behavior, due to the growth of a much thicker and less defective films.

  18. Liquid Membranes as a Tool for Chemical Speciation of Metals in Natural Waters: Organic and Inorganic Complexes of Nickel

    Directory of Open Access Journals (Sweden)

    Cristina Vergel

    2018-04-01

    Full Text Available The different species of nickel present in natural waters exhibit different transport behaviour through bulk liquid membranes (BLMs. This fact has been used to design and optimise a separation/pre-concentration system applicable to separate labile and non-labile nickel fractions. A hydrazone derivative—1,2-cyclohexanedione bis-benzoyl-hydrazone (1,2-CHBBH dissolved in toluene/dimethyl formamide (2% DMF—was used as a chemical carrier of nickel species, from an aqueous source solution (sample to a receiving acidic solution. Both chemical and hydrodynamic conditions controlling the transport system were studied and optimised. Under optimum conditions, variations in the transport of nickel ions as a function of organic (humic acids and inorganic (chloride ions ligands were studied. Relationships between the permeability coefficient (P or recovery efficiency (%R and the concentrations of ligands and nickel species were analysed using Winhumic V software. A negative correlation between P and the concentration of organic nickel complexes was found, suggesting that only labile nickel species are transported through the liquid membrane, with non-labile complexes remaining in the water sample; allowing for their separation and subsequent quantification in natural waters.

  19. Liquid Membranes as a Tool for Chemical Speciation of Metals in Natural Waters: Organic and Inorganic Complexes of Nickel.

    Science.gov (United States)

    Vergel, Cristina; Mendiguchía, Carolina; Moreno, Carlos

    2018-04-15

    The different species of nickel present in natural waters exhibit different transport behaviour through bulk liquid membranes (BLMs). This fact has been used to design and optimise a separation/pre-concentration system applicable to separate labile and non-labile nickel fractions. A hydrazone derivative-1,2-cyclohexanedione bis-benzoyl-hydrazone (1,2-CHBBH) dissolved in toluene/dimethyl formamide (2% DMF)-was used as a chemical carrier of nickel species, from an aqueous source solution (sample) to a receiving acidic solution. Both chemical and hydrodynamic conditions controlling the transport system were studied and optimised. Under optimum conditions, variations in the transport of nickel ions as a function of organic (humic acids) and inorganic (chloride ions) ligands were studied. Relationships between the permeability coefficient ( P ) or recovery efficiency (%R) and the concentrations of ligands and nickel species were analysed using Winhumic V software. A negative correlation between P and the concentration of organic nickel complexes was found, suggesting that only labile nickel species are transported through the liquid membrane, with non-labile complexes remaining in the water sample; allowing for their separation and subsequent quantification in natural waters.

  20. Nickel allergy in patch-tested female hairdressers and assessment of nickel release from hairdressers' scissors and crochet hooks

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Milting, Kristina; Bregnhøj, Anne

    2009-01-01

    the proportion of hairdressers' scissors and crochet hooks that released an excessive amount of nickel and to determine the prevalence of nickel allergy among patch-tested female hairdressers. MATERIALS: Random hairdressers' stores in Copenhagen were visited. The dimethylglyoxime (DMG) test was used to assess...... excessive nickel release. The prevalence of nickel allergy among female hairdressers from the database at Gentofte Hospital was compared with the prevalence of nickel allergy among other consecutively patch-tested dermatitis patients. RESULTS: DMG testing showed that 1 (0.5%; 95% CI = 0 - 2.0) of 200 pairs...

  1. Photochemical Creation of Fluorescent Quantum Defects in Semiconducting Carbon Nanotube Hosts.

    Science.gov (United States)

    Wu, Xiaojian; Kim, Mijin; Kwon, Hyejin; Wang, YuHuang

    2018-01-15

    Quantum defects are an emerging class of synthetic single-photon emitters that hold vast potential for near-infrared imaging, chemical sensing, materials engineering, and quantum information processing. Herein, we show that it is possible to optically direct the synthetic creation of molecularly tunable fluorescent quantum defects in semiconducting single-walled carbon nanotube hosts through photochemical reactions. By exciting the host semiconductor with light that resonates with its electronic transition, we find that halide-containing aryl groups can covalently bond to the sp 2 carbon lattice. The introduced quantum defects generate bright photoluminescence that allows tracking of the reaction progress in situ. We show that the reaction is independent of temperature but correlates strongly with the photon energy used to drive the reaction, suggesting a photochemical mechanism rather than photothermal effects. This type of photochemical reactions opens the possibility to control the synthesis of fluorescent quantum defects using light and may enable lithographic patterning of quantum emitters with electronic and molecular precision. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effects of fixed orthodontic treatment using conventional (two-piece) versus metal injection moulding brackets on hair nickel and chromium levels: a double-blind randomized clinical trial.

    Science.gov (United States)

    Khaneh Masjedi, Mashallah; Haghighat Jahromi, Nima; Niknam, Ozra; Hormozi, Elham; Rakhshan, Vahid

    2017-02-01

    Although nickel and chromium are known as allergen and cytotoxic orthodontic metals, very few and controversial studies have assessed the effect of orthodontic treatment on their systemic levels especially those reflected by their best biomarker of exposure, hair. Additionally, metal injection moulding (MIM) brackets are not studied, and there is no study on systemic ion changes following their usage. In this double-blind randomized clinical trial, scalp hair samples of 24 female and 22 male fixed orthodontic patients [as two groups of conventional (two-piece) versus MIM brackets, n = 23×2] were collected before treatment and 6 months later. Randomization was carried out using a computer-generated random number table. The patients, laboratory expert, and author responsible for analyses were blinded of the bracket allocations. Hair nickel and chromium levels were measured using atomic absorption spectrophotometry. The effects of treatment, bracket types, gender, and age on hair ions were analysed statistically (α = 0.05, β ≤ 0.02). In both groups combined (n = 46), nickel increased from 0.1600±0.0890 µg/g dry hair mass (pre-treatment) to 0.3199±0.1706 (6th month). Chromium increased from 0.1657±0.0884 to 0.3066±0.1362 µg/g. Both of these increases were significant (paired t-test, P = 0.0000). Bracket types, age, and gender had no significant influence on ion levels (P > 0.05). ANCOVA indicated different patterns of chromium increases in different genders (P = 0.033) and ages (P = 0.056). Sample size determination should have accounted for the grouping as well. Hair nickel and chromium levels might increase about 185-200% after 6 months. They might not be affected by bracket types. Gender and age might not influence the baseline or 6th-month levels of both metals. Gender might however interact with orthodontic treatment, only in the case of chromium. The research is registered offline (thesis) and online (IR.AJUMS.REC.1394.516). The protocol was pre

  3. P -type transparent conducting oxides

    International Nuclear Information System (INIS)

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-01-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n -type, such as Sn doped In 2 O 3 , Al doped ZnO, and F doped SnO 2 . However, the development of efficient p -type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2 p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2 p orbitals with close-shell Cu 3 d 10 orbitals. This work has sparked tremendous interest in designing p -TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p -TCOs, including Cu + -based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr 3+ -based oxides (3 d 3 ) and post-transition metal oxides with lone pair state (ns 2 ). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p -type conductivity and optical properties. Device applications based on p -TCOs for transparent p – n junctions will also be briefly discussed. (topical review)

  4. Low temperature (< 100 °C) deposited P-type cuprous oxide thin films: Importance of controlled oxygen and deposition energy

    International Nuclear Information System (INIS)

    Li, Flora M.; Waddingham, Rob; Milne, William I.; Flewitt, Andrew J.; Speakman, Stuart; Dutson, James; Wakeham, Steve; Thwaites, Mike

    2011-01-01

    With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p–n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu 2 O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu 2 O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu 2 O films are reported. It is known from previously published work that the formation of pure Cu 2 O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu 2 O thin films (as opposed to CuO or mixed phase CuO/Cu 2 O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu 2 O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a

  5. Cashew nut shell liquid, a valuable raw material for generating semiconductive polyaniline nanofibers

    Directory of Open Access Journals (Sweden)

    Raiane Valenti Gonçalves

    2018-03-01

    Full Text Available Abstract Cashew nut shell liquid (CNSL is an abundant and renewable by-product of the cashew nut industry. It appears to be a valuable raw material for generating semiconductive polyaniline (PAni nanomaterial with enhanced thermal stability and well-defined nanofiber morphology following a polymerization dispersion process. This study confirms that CNSL acts as a soft template during PAni synthesis, leading to an improvement in the nanofiber aspect. CNSL also improves the thermal stability of the PAni nanomaterial. Moreover, CNSL is an effective surfactant that promotes and stabilizes the dispersion of PAni nanofibers within water, allowing the more ecofriendly preparation of PAni nanomaterial by substituting the commonly used organic solvent with aqueous media. Finally, although CNSL promotes the formation of the conductive emeraldine salt form of PAni, increasing CNSL concentrations appear to plasticize the PAni polymer, leading to reduced electrical conductivity. However, this reduction is not detrimental, and PAni nanofibers remain semiconductive even under high CNSL concentrations.

  6. Mechanical Properties of Electrolyte Jet Electrodeposited Nickel Foam

    Directory of Open Access Journals (Sweden)

    Jinsong Chen

    2013-07-01

    Full Text Available Principles of the preparation of nickel foam by electrolyte jet electrodeposition were introduced, Nickel foam samples with different porosity were fabricated. Effect of different porosity on microhardness and uniaxial tensile properties of nickel foam was discussed. The results show that the microhardness of nickel foam is 320~400 HV, lower than entitative metal clearly. The lower the porosity of nickel foam, the higher the microhardness is. During the process of uniaxial tensile, nickel foam is characterized by three distinct regions, e.g. elastic deforming region, plastic plateau region and densification region. The higher the porosity of nickel foam, the lower the plastic plateau and the poorer the strength of nickel foam, accordingly

  7. Texture and microstructure evolution in nickel electrodeposited from an additive-free Watts electrolyte

    DEFF Research Database (Denmark)

    Alimadadi, Hossein; da Silva Fanta, Alice Bastos; Kasama, Takeshi

    2016-01-01

    Nickel layers with 〈100〉, 〈210〉, 〈110〉 and 〈211〉 fiber textures were electrodeposited from additive-free Watts type electrolytes by adjusting both the pH and the applied current density. Quantitative crystallographic texture analysis by XRD was supplemented by micro-texture analysis applying EBSD....... While XRD results correspond to absorption-weighted averages over the top part of the layer, EBSD on the cross section allowed studying the texture evolution as a function of distance to the substrate. Although layer growth started on amorphous substrates, implying that nucleation occurs unbiased...

  8. Phytotoxicity and bioavailablity of nickel: chemical speciation and bioaccumulation

    NARCIS (Netherlands)

    Weng, L.P.; Lexmond, T.M.; Wolthoorn, A.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2003-01-01

    The effect of pH on the bioaccumulation of nickel (Ni) by plants is opposite when using a nutrient solution or a soil as a growing medium. This paradox can be understood if the pH effect on the bioaccumulation, on the chemical speciation in the soil solution, and on the binding to the soil of Ni are

  9. High power nickel - cadmium cells with fiber electrodes (FNC)

    International Nuclear Information System (INIS)

    Haschka, F.; Schlieck, D.

    1986-01-01

    Nickel cadmium batteries differ greatly in their mechanical design and construction of the electrodes. Using available electrode constructions, batteries are designed which meet the requirements of specific applications and offer optimum performance. Pocket- and tubular cells are basically developed with the technology of the year 1895. Since then some improvements with todays technology have been made. The sintered cells use the technology of the 1930's and they are still limited to high power application. With this knowledge and the technology of today the fiber-structured nickel electrode (FNC) was developed at DAUG laboratory, a subsidiary company of Mercedes-Benz and Volkswagen. After ten years of experience in light weight prototype batteries for electric vehicles (1-2), the system was brought into production by a new company, DAUG-HOPPECKE. Characteristics of fiber electrodes: thickness and size can be easily changed; pure active materials are used; high conductor density; high elasticity of the structure; high porosity. Since 1983 NiCd-batteries with fiber-structured nickel electrodes (FNC) have been in production. Starting with the highly demanded cell-types for low, medium and high performance called L, M and H according to IEC 623 for low, medium and high performance applications, the program was recently completed with the X-type cell for very high power, as an alternative to sintered cells

  10. Repeated patch testing to nickel during childhood do not induce nickel sensitization

    DEFF Research Database (Denmark)

    Søgaard Christiansen, Elisabeth

    2014-01-01

    Background: Previously, patch test reactivity to nickel sulphate in a cohort of unselected infants tested repeatedly at 3-72 months of age has been reported. A reproducible positive reaction at 12 and 18 months was selected as a sign of nickel sensitivity, provided a patch test with an empty Finn...

  11. Systemic contact dermatitis due to nickel

    Directory of Open Access Journals (Sweden)

    Taruli Olivia

    2015-08-01

    Full Text Available Introduction: Systemic contact dermatitis (SCD is a systemic reactivation of a previous allergic contact dermatitis. The initial exposure may usually be topical, followed by oral, intravenous or inhalation exposure leading to a systemic hypersensitivity reaction. A case of a 27 year-old male with SCD due to nickel is reported Case Report: A 27 year-old male presented with recurrent pruritic eruption consist of deep seated vesicles on both palmar and left plantar since 6 months before admission. This complaint began after patient consumed excessive amounts of chocolate, canned food, and beans. The patient worked as a technician in a food factory. History of allergy due to nickel was acknowledged since childhood. The clinical presentation was diffuse deep seated vesicles, and multiple erythematous macules to plaques, with collarette scale. Patch test using the European standard showed a +3 result to nickel. The patient was diagnosed as systemic contact dermatitis due to nickel. The treatments were topical corticosteroid and patient education of avoidance of both contact and systemic exposure to nickel. The patient showed clinical improvement after 2 weeks. Discussion: SCD was diagnosed due to the history of massive consumption of food containing nickel in a patient who had initial sensitization to nickel, with clinical features and the patch test result. Advice to be aware of nickel and its avoidance is important in SCD management.

  12. Electrochemical reactor with rotating cylinder electrode for optimum electrochemical recovery of nickel from plating rinsing effluents

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Tapia, J.R.; Vazquez-Arenas, J., E-mail: jgva@xanum.uam.mx; González, I.

    2013-11-15

    Highlights: • Rotating cylinder cathode enhanced mass transport rates of Ni(II) species. • pH control around 4 is crucial to recover high purity nickel. • Increasing cathodic currents increased energy consumptions for nickel recovery. • Specific energy consumptions increase drastically at the end of electrolysis. -- Abstract: This study is devoted to analyze the metallic electrochemical recovery of nickel from synthetic solutions simulating plating rinsing discharges, in order to meet the water recycling policies implemented in these industries. These effluents present dilute Ni(II) concentrations (100 and 200 ppm) in chloride and sulfate media without supporting electrolyte (397–4202 μS cm{sup −1}), which stems poor current distribution, limited mass transfer, ohmic drops and enhancement of parasitic reactions. An electrochemical reactor with rotating cylinder electrode (RCE) and a pH controller were utilized to overcome these problems. The pH control around 4 was crucial to yield high purity nickel, and thus prevent the precipitation of hydroxides and oxides. Macroelectrolysis experiments were systematically conducted to analyze the impacts of the applied current density in the recovery efficiency and energy consumption, particularly for very diluted effluents (100 and 200 ppm Ni(II)), which present major recovery problems. Promising nickel recoveries in the order of 90% were found in the former baths using a current density of −3.08 mA cm{sup −2}, and with overall profits of 9.64 and 14.69 USD kg{sup −1}, respectively. These estimations were based on the international market price for nickel ($18 USD kg{sup −1})

  13. Growth and Functionality of Cells Cultured on Conducting and Semi-Conducting Surfaces Modified with Self-Assembled Monolayers (SAMs

    Directory of Open Access Journals (Sweden)

    Rajendra K. Aithal

    2016-02-01

    Full Text Available Bioengineering of dermal and epidermal cells on surface modified substrates is an active area of research. The cytotoxicity, maintenance of cell phenotype and long-term functionality of human dermal fibroblast (HDF cells on conducting indium tin oxide (ITO and semi-conducting, silicon (Si and gallium arsenide (GaAs, surfaces modified with self-assembled monolayers (SAMs containing amino (–NH2 and methyl (–CH3 end groups have been investigated. Contact angle measurements and infrared spectroscopic studies show that the monolayers are conformal and preserve their functional end groups. Morphological analyses indicate that HDFs grow well on all substrates except GaAs, exhibiting their normal spindle-shaped morphology and exhibit no visible signs of stress or cytoplasmic vacuolation. Cell viability analyses indicate little cell death after one week in culture on all substrates except GaAs, where cells died within 6 h. Cells on all surfaces proliferate except on GaAs and GaAs-ODT. Cell growth is observed to be greater on SAM modified ITO and Si-substrates. Preservation of cellular phenotype assessed through type I collagen immunostaining and positive staining of HDF cells were observed on all modified surfaces except that on GaAs. These results suggest that conducting and semi-conducting SAM-modified surfaces support HDF growth and functionality and represent a promising area of bioengineering research.

  14. Carrier removal and defect behavior in p-type InP

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Drevinsky, P. J.

    1992-01-01

    A simple expression, obtained from the rate equation for defect production, was used to relate carrier removal to defect production and hole trapping rates in p-type InP after irradiation by 1-MeV electrons. Specific contributions to carrier removal from defect levels H3, H4, and H5 were determined from combined deep-level transient spectroscopy (DLTS) and measured carrier concentrations. An additional contribution was attributed to one or more defects not observed by the present DLTS measurements. The high trapping rate observed for H5 suggests that this defect, if present in relatively high concentration, could be dominant in p-type InP.

  15. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    Science.gov (United States)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500 mAh, AAA size type 900 mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material.

  16. Ultraviolet optical absorptions of semiconducting copper phosphate glasses

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    Results are presented of a quantitative investigation of the change in UV optical absorption in semiconducting copper phosphate glasses with batch compositions of 40, 50, and 55 percent CuO, as a function of the Cu(2+)/Cu(total) ratio in the glasses for each glass composition. It was found that optical energy gap, E(opt), of copper phosphate glass is a function of both glass composition and Cu(2+)/Cu(total) ratio in the glass. E(opt) increases as the CuO content for fixed Cu(2+)/Cu(total) ratio and the Cu(2+)/Cu(total) ratio for fixed glass composition are reduced.

  17. Nickel stabilization efficiency of aluminate and ferrite spinels and their leaching behavior.

    Science.gov (United States)

    Shih, Kaimin; White, Tim; Leckie, James O

    2006-09-01

    Stabilization efficiencies of spinel-based construction ceramics incorporating simulated nickel-laden waste sludge were evaluated and the leaching behavior of products investigated. To simulate the process of immobilization, nickel oxide was mixed alternatively with gamma-alumina, kaolinite, and hematite. These tailoring precursors are commonly used to prepare construction ceramics in the building industry. After sintering from 600 to 1480 degrees C at 3 h, the nickel aluminate spinel (NiAl204) and the nickel ferrite spinel (NiFe204) crystallized with the ferrite spinel formation commencing about 200-300 degrees C lower than for the aluminate spinel. All the precursors showed high nickel incorporation efficiencies when sintered at temperatures greater than 1250 degrees C. Prolonged leach tests (up to 26 days) of product phases were carried out using a pH 2.9 acetic acid solution, and the spinel products were invariably superior to nickel oxide for immobilization over longer leaching periods. The leaching behavior of NiAl2O4 was consistent with congruent dissolution without significant reprecipitation, but for NiFe2O4, ferric hydroxide precipitation was evident. The major leaching reaction of sintered kaolinite-based products was the dissolution of cristobalite rather than NiAl2O4. This study demonstrated the feasibility of transforming nickel-laden sludge into spinel phases with the use of readily available and inexpensive ceramic raw materials, and the successful reduction of metal mobility under acidic environments.

  18. Effects of high light intensities on the optical Kerr nonlinearity of semiconducting polymers

    International Nuclear Information System (INIS)

    Charra, Fabrice

    1990-01-01

    Experimental investigations, in the picosecond time scale, of the Kerr type optical nonlinearity (or pump and probe) are presented. The nonlinear molecules semiconducting polymers of the type poly-diacetylene. The degenerate case (pump and probe at the same frequency) has been studied by four wave mixing at 1064 nm, in the configuration of phase conjugation. It is shown that the response is dominated by high orders of nonlinearity. The results are analysed in terms of two photon resonance. The non-degenerate case is studied by two wave mixing or in the optical Kerr gate experiment. The optical Stark effect and the differential spectra of photoinduced species are analysed. Two photon excitations at 1064 nm and one photon excitations at 532 nm are compared. A consequence of the mechanism of the nonlinearity is the possibility of generating phase conjugate waves at double frequency. The theoretical analysis and the experimental demonstration of this process are presented. The experiment is only sensitive to nonlinearities of the fifth order or more and thus allows to clarify its origins and dynamics. Finally, quantum modelling and calculations of the nonlinear optical responses, developed for the interpretations of the above experiments, are presented. (author) [fr

  19. Sintering of nickel steam reforming catalysts

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Niels Wessel; Falsig, Hanne

    2014-01-01

    . In this paper, particle migration and coalescence in nickel steam reforming catalysts is studied. Density functional theory calculations indicate that Ni-OH dominate nickel transport at nickel surfaces in the presence of steam and hydrogen as Ni-OH has the lowest combined energies of formation and diffusion...

  20. Nickel release from inexpensive jewelry and hair clasps purchased in an EU country - Are consumers sufficiently protected from nickel exposure?

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Menné, Torkil; Johansen, Jeanne Duus

    2009-01-01

    BACKGROUND: Nickel allergic subjects are at risk factor of acquiring hand eczema. In 1990 and 1994, respectively, Denmark and member states in the EU regulated nickel release from selected consumer products. The intention was that the nickel epidemic could be controlled and prevented if the general...... population was protected from high cutaneous nickel concentrations. Despite a decrease, the prevalence of nickel allergy remains high as nearly 10% of young women are nickel allergic. OBJECTIVE: This study aimed to perform dimethylglyoxime (DMG) testing of inexpensive jewelry and hair clasps purchased from...

  1. Solubility of nickel ferrite (NiFe2O4) from 100 to 200 deg. C

    International Nuclear Information System (INIS)

    Bellefleur, Alexandre; Bachet, Martin; Benezeth, Pascale; Schott, Jacques

    2012-09-01

    The solubility of nickel ferrite was measured in a Hydrogen-Electrode Concentration Cell (HECC) at temperatures of 100 deg. C, 150 deg. C and 200 deg. C and pH between 4 and 5.25. The experimental solution was composed of HCl and NaCl (0.1 mol.L -1 ). Based on other studies ([1,2]), pure nickel ferrite was experimentally synthesized by calcination of a mixture of hematite Fe 2 O 3 and bunsenite NiO in molten salts at 1000 deg. C for 15 hours in air. The so obtained powder was fully characterized. The Hydrogen-Electrode Concentration cell has been described in [3]. It allowed us to run solubility experiments up to 250 deg. C with an in-situ pH measurement. To avoid reduction of the solid phase to metallic nickel, a hydrogen/argon mixture was used instead of pure hydrogen. Consequently, the equilibration time for the electrodes was longer than with pure hydrogen. Eight samples were taken on a 70 days period. After the experiments, the powder showed no significant XRD evidence of Ni (II) reduction. Nickel concentration was measured by atomic absorption spectroscopy and iron concentration was measured by UV spectroscopy. The protocol has been designed to be able to measure both dissolved Fe (II) and total iron. The nickel solubility of nickel ferrite was slightly lower than the solubility of nickel oxide in close experimental conditions [3]. Dissolved iron was mainly ferrous and the solution was under-saturated relative to both hematite and magnetite. The nickel/iron ratio indicated a non-stoichiometric dissolution. The solubility measurements were compared with equilibrium calculations using the MULTEQ database. [1] Hayashi et al (1980) J. Materials Sci. 15, 1491-1497. [2] Ziemniak et al (2007) J. Physics and Chem. of Solids. 68,10-21. [3] EPRI Report 1003155 (2002). (authors)

  2. Magnetism by interfacial hybridization and p-type doping of MoS(2) in Fe(4)N/MoS(2) superlattices: a first-principles study.

    Science.gov (United States)

    Feng, Nan; Mi, Wenbo; Cheng, Yingchun; Guo, Zaibing; Schwingenschlögl, Udo; Bai, Haili

    2014-03-26

    Magnetic and electronic properties of Fe4N(111)/MoS2(√3 × √3) superlattices are investigated by first-principles calculations, considering two models: (I) Fe(I)Fe(II)-S and (II) N-S interfaces, each with six stacking configurations. In model I, strong interfacial hybridization between Fe(I)/Fe(II) and S results in magnetism of monolayer MoS2, with a magnetic moment of 0.33 μB for Mo located on top of Fe(I). For model II, no magnetism is induced due to weak N-S interfacial bonding, and the semiconducting nature of monolayer MoS2 is preserved. Charge transfer between MoS2 and N results in p-type MoS2 with Schottky barrier heights of 0.5-0.6 eV. Our results demonstrate that the interfacial geometry and hybridization can be used to tune the magnetism and doping in Fe4N(111)/MoS2(√3 × √3) superlattices.

  3. Nickel acts as an adjuvant during cobalt sensitization

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menne; Nielsen, Morten Milek; Vennegaard, Marie T.

    2015-01-01

    Metal allergy is the most frequent form of contact allergy with nickel and cobalt being the main culprits. Typically, exposure comes from metal-alloys where nickel and cobalt co-exist. Importantly, very little is known about how co-exposure to nickel and cobalt affects the immune system. We...... investigated these effects by using a recently developed mouse model. Mice were epicutaneously sensitized with i) nickel alone, ii) nickel in the presence of cobalt, iii) cobalt alone, or iv) cobalt in the presence of nickel, and then followed by challenge with either nickel or cobalt alone. We found...... that sensitization with nickel alone induced more local inflammation than cobalt alone as measured by increased ear-swelling. Furthermore, the presence of nickel during sensitization to cobalt led to a stronger challenge response to cobalt as seen by increased ear-swelling and increased B and T cell responses...

  4. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations.

    Science.gov (United States)

    Jourand, Philippe; Ducousso, Marc; Reid, Robert; Majorel, Clarisse; Richert, Clément; Riss, Jennifer; Lebrun, Michel

    2010-10-01

    Ectomycorrhizal (ECM) Pisolithus albus (Cooke & Massee), belonging to the ultramafic ecotype isolated in nickel-rich serpentine soils from New Caledonia (a tropical hotspot of biodiversity) and showing in vitro adaptive nickel tolerance, were inoculated to Eucalyptus globulus Labill used as a Myrtaceae plant-host model to study ectomycorrhizal symbiosis. Plants were then exposed to a nickel (Ni) dose-response experiment with increased Ni treatments up to 60 mg kg( - )(1) soil as extractable Ni content in serpentine soils. Results showed that plants inoculated with ultramafic ECM P. albus were able to tolerate high and toxic concentrations of Ni (up to 60 μg g( - )(1)) while uninoculated controls were not. At the highest Ni concentration tested, root growth was more than 20-fold higher and shoot growth more than 30-fold higher in ECM plants compared with control plants. The improved growth in ECM plants was associated with a 2.4-fold reduction in root Ni concentration but a massive 60-fold reduction in transfer of Ni from root to shoots. In vitro, P. albus strains could withstand high Ni concentrations but accumulated very little Ni in its tissue. The lower Ni uptake by mycorrhizal plants could not be explained by increased release of metal-complexing chelates since these were 5- to 12-fold lower in mycorrhizal plants at high Ni concentrations. It is proposed that the fungal sheath covering the plant roots acts as an effective barrier to limit transfer of Ni from soil into the root tissue. The degree of tolerance conferred by the ultramafic P. albus isolates to growth of the host tree species is considerably greater than previously reported for other ECM. The primary mechanisms underlying this improved growth were identified as reduced Ni uptake into the roots and markedly reduced transfer from root to shoot in mycorrhizal plants. The fact that these positive responses were observed at Ni concentrations commonly observed in serpentinic soils suggests that

  5. Electroless nickel-plating for the PWSCC mitigation of nickel-base alloys in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Ji Hyun; Hwang, Il Soon

    2008-01-01

    The feasibility study has been performed as an effort to apply the electroless nickel-plating method for a proposed countermeasure to mitigate primary water stress corrosion cracking (PWSCC) of nickel-base alloys in nuclear power plants. In order to understand the corrosion behavior of nickel-plating at high temperature water, the electrochemical properties of electroless nickel-plated alloy 600 specimens exposed to simulated pressurized water reactor (PWR) primary water were experimentally characterized in high temperature and high pressure water condition. And, the resistance to the flow accelerated corrosion (FAC) test was investigated to check the durability of plated layers in high-velocity water-flowing environment at high temperature. The plated surfaces were examined by using both scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after exposures to the condition. From this study, it is found that the corrosion resistance of electroless nickel-plated Alloy 600 is higher than that of electrolytic plating in 290 deg. C water

  6. In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Phuan, Yi Wen, E-mail: phuan.yi.wen@monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia); Ibrahim, Elyas, E-mail: meibr2@student.monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia); Chong, Meng Nan, E-mail: Chong.Meng.Nan@monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia); Sustainable Water Alliance, Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia); Zhu, Tao, E-mail: zhu.tao@monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia); Lee, Byeong-Kyu, E-mail: bklee@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Nam-gu, Daehakro 93, Ulsan 680-749 (Korea, Republic of); Ocon, Joey D., E-mail: jdocon@up.edu.ph [Laboratory of Electrochemical Engineering (LEE), Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101 (Philippines); Chan, Eng Seng, E-mail: chan.eng.seng@monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia)

    2017-01-15

    Highlights: • NiO-hematite p-n junction photoanodes were fabricated via an in situ Ni-doping. • The fundamental mechanism of Ni{sup 2+} ions involved was elucidated. • The optimum Ni dopant was 25 M% for the highest photocurrent density. • It exhibited an excellent photoelectrochemical performance of 7-folds enhancement. - Abstract: Nanostructured nickel oxide-hematite (NiO/α-Fe{sub 2}O{sub 3}) p-n junction photoanodes synthesized from in situ doping of nickel (Ni) during cathodic electrodeposition of hematite were successfully demonstrated. A postulation model was proposed to explain the fundamental mechanism of Ni{sup 2+} ions involved, and the eventual formation of NiO on the subsurface region of hematite that enhanced the potential photoelectrochemical water oxidation process. Through this study, it was found that the measured photocurrent densities of the Ni-doped hematite photoanodes were highly dependent on the concentrations of Ni dopant used. The optimum Ni dopant at 25 M% demonstrated an excellent photoelectrochemical performance of 7-folds enhancement as compared to bare hematite photoanode. This was attributed to the increased electron donor density through the p-n junction and thus lowering the energetic barrier for water oxidation activity at the optimum Ni dopant concentration. Concurrently, the in situ Ni-doping of hematite has also lowered the photogenerated charge carrier transfer resistance as measured using the electrochemical impedance spectroscopy. It is expected that the fundamental understanding gained through this study is helpful for the rational design and construction of highly efficient photoanodes for application in photoelectrochemical process.

  7. In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode

    International Nuclear Information System (INIS)

    Phuan, Yi Wen; Ibrahim, Elyas; Chong, Meng Nan; Zhu, Tao; Lee, Byeong-Kyu; Ocon, Joey D.; Chan, Eng Seng

    2017-01-01

    Highlights: • NiO-hematite p-n junction photoanodes were fabricated via an in situ Ni-doping. • The fundamental mechanism of Ni"2"+ ions involved was elucidated. • The optimum Ni dopant was 25 M% for the highest photocurrent density. • It exhibited an excellent photoelectrochemical performance of 7-folds enhancement. - Abstract: Nanostructured nickel oxide-hematite (NiO/α-Fe_2O_3) p-n junction photoanodes synthesized from in situ doping of nickel (Ni) during cathodic electrodeposition of hematite were successfully demonstrated. A postulation model was proposed to explain the fundamental mechanism of Ni"2"+ ions involved, and the eventual formation of NiO on the subsurface region of hematite that enhanced the potential photoelectrochemical water oxidation process. Through this study, it was found that the measured photocurrent densities of the Ni-doped hematite photoanodes were highly dependent on the concentrations of Ni dopant used. The optimum Ni dopant at 25 M% demonstrated an excellent photoelectrochemical performance of 7-folds enhancement as compared to bare hematite photoanode. This was attributed to the increased electron donor density through the p-n junction and thus lowering the energetic barrier for water oxidation activity at the optimum Ni dopant concentration. Concurrently, the in situ Ni-doping of hematite has also lowered the photogenerated charge carrier transfer resistance as measured using the electrochemical impedance spectroscopy. It is expected that the fundamental understanding gained through this study is helpful for the rational design and construction of highly efficient photoanodes for application in photoelectrochemical process.

  8. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering.

    Science.gov (United States)

    Bettinger, Christopher J; Bruggeman, Joost P; Misra, Asish; Borenstein, Jeffrey T; Langer, Robert

    2009-06-01

    The advancement of tissue engineering is contingent upon the development and implementation of advanced biomaterials. Conductive polymers have demonstrated potential for use as a medium for electrical stimulation, which has shown to be beneficial in many regenerative medicine strategies including neural and cardiac tissue engineering. Melanins are naturally occurring pigments that have previously been shown to exhibit unique electrical properties. This study evaluates the potential use of melanin films as a semiconducting material for tissue engineering applications. Melanin thin films were produced by solution processing and the physical properties were characterized. Films were molecularly smooth with a roughness (R(ms)) of 0.341 nm and a conductivity of 7.00+/-1.10 x 10(-5)S cm(-1) in the hydrated state. In vitro biocompatibility was evaluated by Schwann cell attachment and growth as well as neurite extension in PC12 cells. In vivo histology was evaluated by examining the biomaterial-tissue response of melanin implants placed in close proximity to peripheral nerve tissue. Melanin thin films enhanced Schwann cell growth and neurite extension compared to collagen films in vitro. Melanin films induced an inflammation response that was comparable to silicone implants in vivo. Furthermore, melanin implants were significantly resorbed after 8 weeks. These results suggest that solution-processed melanin thin films have the potential for use as a biodegradable semiconducting biomaterial for use in tissue engineering applications.

  9. Exposure of nickel and the relevance of nickel sensitivity among hospital cleaners

    Energy Technology Data Exchange (ETDEWEB)

    Clemmensen, O J; Menne, T; Kaaber, K; Solgaard, P

    1981-01-01

    The nickel content of water specimens from consecutive stages during the cleaning process in a Danish hospital was analyzed. Statistically significant increases of the nickel concentrations were found from step to step of the cleaning, eventually exceeding the theoretical sensitizing safety limit. The relevance of the findings in relation to hand eczema is discussed.

  10. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Progress in the development of nickel-zinc batteries for electric vehicles is reported. Information is presented on nickel electrode preparation and testing; zinc electrode preparation with additives and test results; separator development and the evaluation of polymer-blend separator films; sealed Ni-Zn cells; and the optimization of electric vehicle-type Ni-Zn cells. (LCL)

  11. Nickel recycling in the United States in 2004

    Science.gov (United States)

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of nickel from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap) in 2004. This materials flow study includes a description of nickel supply and demand for the United States to illustrate the extent of nickel recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the old scrap recycling efficiency for nickel was estimated to be 56.2 percent. In 2004, nickel scrap consumption in the United States was as follows: new scrap containing 13,000 metric tons (t) of nickel (produced during the manufacture of products), 12 percent; and old scrap containing 95,000 t of nickel (articles discarded after serving a useful purpose), 88 percent. The recycling rate for nickel in 2004 was 40.9 percent, and the percentage of nickel in products attributed to nickel recovered from nickel-containing scrap was 51.6 percent. Furthermore, U.S. nickel scrap theoretically generated in 2004 had the following distribution: scrap to landfills, 24 percent; recovered and used scrap, 50 percent; and unaccounted for scrap, 26 percent. Of the 50 percent of old scrap generated in the United States that was recovered and then used in 2004, about one-third was exported and two-thirds was consumed in the domestic production of nickel-containing products.

  12. A MATHEMATICAL MODEL TO PREDICT NICKEL CONCENTRATION IN KARAJ RIVER SEDIMENTS

    Directory of Open Access Journals (Sweden)

    R. Ramezankhani, A. A. M. Sharif, M. T. Sadatipour, R.Abdolahzadeh

    2008-04-01

    Full Text Available The contamination of surface waters through human activities has been intensified over the past years as population density has increased. Nickel is a metallic element and fuel combustion, nickel mining, refining waste, sewage sludge, and incineration are the major sources of nickel propagation. Nickel from various industrial wastewaters and other sources finally are disposed into water bodies. In this work, Karaj river was considered from 50º to 50º 14´longitudes and 35º 45´ to 35º 58´ latitudes and the presence of nickel was also assessed in this area. Sixteen stations were randomly selected and sediment samples were collected in polyethylene containers. Some water quality parameters such as pH, temperature, dissolved oxygen, electrical conductivity, were determind by direct on-site measurements. To measure COD, 16 water samples were collected in dark bottles and transferred to laboratory spatial parameters such as slope and distance from start point were also calculated by ARCGIS 9.2. The relation between Ni concentration with spatial parameters and water quality parameters were obtained by multivariate analysis. Results showed that there was a significant relation between Ni concentration in sediments and distance from start point and electrical conductivity.

  13. Prevalence of nickel and cobalt allergy among female patients with dermatitis before and after Danish government regulation: a 23-year retrospective study

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Johansen, Jeanne Duus; Carlsen, Berit Christina

    2009-01-01

    with isolated cobalt allergy than among patients with nickel allergy (P exposures was available. CONCLUSIONS: Nickel allergy decreased among young female patients with dermatitis between 1985 and 2007 whereas it increased among older patients, probably......BACKGROUND: An increased prevalence of nickel allergy prompted the Danish government to prohibit excessive nickel release (ie, >0.5 microg nickel/cm(2)/wk) from consumer products in 1990. Concomitant allergy to nickel and cobalt is often observed among patients with dermatitis, probably as a result...... of cosensitization. OBJECTIVES: The study investigated the development of nickel and cobalt allergy among Danish female patients with dermatitis tested between 1985 and 2007. This was done to examine whether Danish nickel regulation has reduced the prevalence of nickel allergy and to examine whether the prevalence...

  14. Differential gene expression profile of the calanoid copepod, Pseudodiaptomus annandalei, in response to nickel exposure.

    Science.gov (United States)

    Jiang, Jie-Lan; Wang, Gui-Zhong; Mao, Ming-Guang; Wang, Ke-Jian; Li, Shao-Jing; Zeng, Chao-Shu

    2013-03-01

    To better understand the underlying mechanisms of reactions of copepods exposed to elevated level of nickel, the suppression subtractive hybridization (SSH) was used to elucidate the response of the copepod Pseudodiaptomus annandalei to nickel exposure at the gene level. P. annandale is one of a few copepod species that can be cultured relatively easy under laboratory condition, and it is considered to be a potential model species for toxicity study. In the present study, P. annandalei were exposed to nickel at a concentration of 8.86 mgL(-1) for 24h, after which the RNA was prepared for SSH using unexposed P. annandalei as drivers. A total of 474 clones on the middle scale in the SSH library were sequenced. Among these genes, 129 potential functional genes were recognized based on the BLAST searches in NCBI and Uniprot databases. These genes were then categorized into nine groups in association with different biological processes using AmiGO against the Gene Ontology database. Of the 129 genes, 127 translatable DNA sequences were predicted to be proteins, and the putative amino acid sequences were searched for conserved domains (CD) and proteins using the CD-Search service and BLASTp. Among 129 genes, 119 (92.2%) were annotated to be involved in different biological processes, while 10 genes (7.8%) were classified as an unknown-function gene group. To further confirm the up-regulation of differentially expressed genes, the quantitative real time PCR were performed to test eight randomly selected genes, in which five of them, i.e. α-tubulin, ribosomal protein L13, ferritin, separase and Myohemerythrin-1, exhibited clear up-regulation after nickel exposure. In addition, MnSOD was further studied for the differential expression pattern after nickel exposure and the results showed that MnSOD had a time- and dose-dependent expression pattern in the copepod after nickel exposure. To the best of our knowledge, this is the first attempt to investigate the toxicity

  15. Visibility and oxidation stability of hybrid-type copper mesh electrodes with combined nickel-carbon nanotube coating

    Science.gov (United States)

    Kim, Bu-Jong; Hwang, Young-Jin; Park, Jin-Seok

    2017-04-01

    Hybrid-type transparent conductive electrodes (TCEs) were fabricated by coating copper (Cu) meshes with carbon nanotube (CNT) via electrophoretic deposition, and with nickel (Ni) via electroplating. For the fabricated electrodes, the effects of the coating with CNT and Ni on their transmittance and reflectance in the visible-light range, electrical sheet resistance, and chromatic parameters (e.g., redness and yellowness) were characterized. Also, an oxidation stability test was performed by exposing the electrodes to air for 20 d at 85 °C and 85% temperature and humidity conditions, respectively. It was discovered that the CNT coating considerably reduced the reflectance of the Cu meshes, and that the Ni coating effectively protected the Cu meshes against oxidation. Furthermore, after the coating with CNT, both the redness and yellowness of the Cu mesh regardless of the Ni coating approached almost zero, indicating a natural color. The experiment results confirmed that the hybrid-type Cu meshes with combined Ni-CNT coating improved characteristics in terms of reflectance, sheet resistance, oxidation stability, and color, superior to those of the primitive Cu mesh, and also simultaneously satisfied most of the requirements for TCEs.

  16. Pelepasan ion nikel dan kromium kawat Australia dan stainless steel dalam saliva buatan (The release of nickel and chromium ions from Australian wire and stainless steel in artificial saliva

    Directory of Open Access Journals (Sweden)

    Nolista Indah Rasyid

    2014-09-01

    Full Text Available Background: Fixed orthodontic treatment needs several types of wire to produce biomechanical force to move teeth. The use orthodontic wire within the mouth interacts with saliva, causing the release of nickel and chromium ions. Purpose: The study was aimed to examine the effect of immersion time in artificial saliva between special type of Australian wire and stainless steel on the release of nickel and chromium ions. Methods: Thirty special type Australian wires and 30 stainless steel wires were used in this study, each of which weighed 0.12 grams. The wires were immersed for 1, 7, 28, 35, 42, and 49 days in artificial saliva with a normal pH. The release of ions in saliva was examined using Atomic Absorption spectrophotometry. Results: The result indicated that the release of nickel ions on special type of Australian wire was larger than that on stainless steel wire (p<0.005, there were differences in the release of the amount of nickel ions on special type of Australia in different immersion time, and there was a correlation between the types of wire and immersion time. Nickel ions released from the special type of Australian wire detected on the 7th day of immersion and reached its peak on the 35th day, while from stainless steel wire were detected on the 49th day of immersion. The released of chromium ions from the special type of Australian wire and stainless steel wire were not detected until the 49th day of immersion. Conclusion: The release of nickel ions were highest on the 35th day of immersion in special type of Australian wire and they were detected on the 49th day in stainless steel wire. The release of chromium ions were not detected until 49th day of immersion in special type of Australian and stainless steel wire.Latar belakang: Perawatan ortodonti cekat memerlukan beberapa macam kawat untuk menghasilkan kekuatan biomekanika yang sesuai dalam menggerakkan gigi. Pemakaian kawat ortodonti di dalam mulut dapat bereaksi dengan

  17. Systemic contact dermatitis after oral exposure to nickel

    DEFF Research Database (Denmark)

    Jensen, Christian Stab; Menné, Torkil; Johansen, Jeanne Duus

    2006-01-01

    Systemic contact dermatitis can be elicited experimentally in nickel-sensitive individuals by oral nickel exposure. A crucial point interpreting such experiments has been the relevance of nickel exposure from drinking water and diet. The aim of this meta-analysis study on former nickel......-exposure investigations was to provide the best possible estimation of threshold values of nickel doses that may cause systemic contact dermatitis in nickel-sensitive patients. 17 relevant investigations were identified, and statistical analyses were performed in a stepwise procedure. 9 studies were included in the final...... of the doses that, theoretically, would cause systemic contact dermatitis in exposed nickel-sensitive patients. The results from the 2 most sensitive groups show that 1% of these individuals may react with systemic contact dermatitis at normal daily nickel exposure from drinking water and diet, i.e. 0...

  18. The GENIALL process for generation of nickel-iron alloys from nickel ores or mattes

    International Nuclear Information System (INIS)

    Diaz, G.; Frias, C.; Palma, J.

    2001-01-01

    A new process, called GENIALL (acronym of Generation of Nickel Alloys), for nickel recovery as ferronickel alloys from ores or mattes without previous smelting is presented in this paper. Its core technology is a new electrolytic concept, the ROSEL cell, for electrowinning of nickel-iron alloys from concentrated chloride solutions. In the GENIALL Process the substitution of iron-based solid wastes as jarosite, goethite or hematite, by saleable ferronickel plates provides both economic and environmental attractiveness. Another advantage is that no associated sulfuric acid plant is required. The process starts with leaching of the raw material (ores or mattes) with a solution of ferric chloride. The leachate liquor is purified by conventional methods like cementation or solvent extraction, to remove impurities or separate by-products like copper and cobalt. The purified solution, that contains a mixture of ferrous and nickel chlorides is fed to the cathodic compartment of the electrowinning cell, where nickel and ferrous ions are reduced together to form an alloy. Simultaneously, ferrous chloride is oxidized to ferric chloride in the anodic compartment, from where it is recycled to the leaching stage. The new electrolytic equipment has been developed and scaled up from laboratory to pilot prototypes with commercial size electrodes of 1 m 2 . Process operating conditions have been established in continuous runs at bench and pilot plant scale. The technology has shown a remarkable capacity to produce nickel-iron alloys of a wide range of compositions, from 10% to 80% nickel, just by adjusting the operating parameters. This emerging technology could be implemented in many processes in which iron and other non-ferrous metals are harmful impurities to be removed, or valuable metals to be recovered as a marketable iron alloy. Other potential applications of this technology are regeneration of spent etching liquors, and iron removal from aqueous effluents. (author)

  19. NICKEL – ENVIRONMENTAL ALLERGEN

    Directory of Open Access Journals (Sweden)

    Henryka Langauer-Lewowicka

    2010-06-01

    Full Text Available Nickel (Ni is ubiquitus in our biosphere because of its emission from natural and anthropogenic sources. Its toxic and carcinogenic properties are well recognised only in workers exposed to high Ni concentrations. Nickel allergy is the most common form of cutaneus hypersensitivity in general population and also in occupationally exposed groups. As sensitizing agent Ni has a high prevalence of allergic contact dermatitis. The most important known risk factor associated with nickel allergy is ear piercing and use of other jewelry in females. In general population 17 % adults and 8 % children have Ni allergy symptoms. Permanently growing Ni allergy is regarded as serious risk for public health.

  20. Effect of L-ascorbic acid on nickel-induced alterations in serum lipid profiles and liver histopathology in rats.

    Science.gov (United States)

    Das, Kusal K; Gupta, Amrita Das; Dhundasi, Salim A; Patil, Ashok M; Das, Swastika N; Ambekar, Jeevan G

    2006-01-01

    Nickel exposure greatly depletes intracellular ascorbate and alters ascorbate-cholesterol metabolism. We studied the effect of the simultaneous oral treatment with L-ascorbic acid (50 mg/100 g body weight (BW) and nickel sulfate (2.0 mg/100 g BW, i.p) on nickelinduced changes in serum lipid profiles and liver histopathology. Nickel-treated rats showed a significant increase in serum low-density lipoprotein-cholesterol, total cholesterol, triglycerides, and a significant decrease in serum high-density lipoprotein-cholesterol. In the liver, nickel sulfate caused a loss of normal architecture, fatty changes, extensive vacuolization in hepatocytes, eccentric nuclei, and Kupffer cell hypertrophy. Simultaneous administration of L-ascorbic acid with nickel sulfate improved both the lipid profile and liver impairments when compared with rats receiving nickel sulfate only. The results indicate that L-ascorbic acid is beneficial in preventing nickel-induced lipid alterations and hepatocellular damage.

  1. Gold, nickel and copper mining and processing.

    Science.gov (United States)

    Lightfoot, Nancy E; Pacey, Michael A; Darling, Shelley

    2010-01-01

    Ore mining occurs in all Canadian provinces and territories except Prince Edward Island. Ores include bauxite, copper, gold, iron, lead and zinc. Workers in metal mining and processing are exposed, not only to the metal of interest, but also to various other substances prevalent in the industry, such as diesel emissions, oil mists, blasting agents, silica, radon, and arsenic. This chapter examines cancer risk related to the mining of gold, nickel and copper. The human carcinogenicity of nickel depends upon the species of nickel, its concentration and the route of exposure. Exposure to nickel or nickel compounds via routes other than inhalation has not been shown to increase cancer risk in humans. As such, cancer sites of concern include the lung, and the nasal sinus. Evidence comes from studies of nickel refinery and leaching, calcining, and sintering workers in the early half of the 20th century. There appears to be little or no detectable risk in most sectors of the nickel industry at current exposure levels. The general population risk from the extremely small concentrations detectable in ambient air are negligible. Nevertheless, animal carcinogenesis studies, studies of nickel carcinogenesis mechanisms, and epidemiological studies with quantitative exposure assessment of various nickel species would enhance our understanding of human health risks associated with nickel. Definitive conclusions linking cancer to exposures in gold and copper mining and processing are not possible at this time. The available results appear to demand additional study of a variety of potential occupational and non-occupational risk factors.

  2. Charge-carrier mobilities in disordered semiconducting polymers : effects of carrier density and electric field

    NARCIS (Netherlands)

    Meisel, K.D.; Pasveer, W.F.; Cottaar, J.; Tanase, C.; Coehoorn, R.; Bobbert, P.A.; Blom, P.W.M.; Leeuw, D.M. de; Michels, M.A.J.

    2006-01-01

    We model charge transport in disordered semiconducting polymers by hopping of charge carriers on a square lattice of sites with Gaussian on-site energy disorder, using Fermi-Dirac statistics. From numerically exact solutions of the Master equation, we study the dependence of the charge-carrier

  3. Nickel exposure from keys: a Brazilian issue.

    Science.gov (United States)

    Suzuki, Nathalie Mie; Duarte, Ida Alzira Gomes; Hafner, Mariana de Figueiredo Silva; Lazzarini, Rosana

    2017-01-01

    Keys are a significant source of exposure to metal allergens and can be a relevant problem for nickel-allergic individuals. This study aimed to perform nickel and cobalt spot testing among the 5 most common Brazilian brands of keys. Among the tested keys, 100% showed positive result to nickel spot test, 83,3% presented strong positive reaction. 50% exhibited cobalt release as well. Nickel release from keys is very common in our country and may cause a negative impact on sensitized individual's quality of life. Study's results highlight the importance of establishing directives to regulate nickel release in Brazil.

  4. Nickel exposure from keys: alternatives for protection and prevention.

    Science.gov (United States)

    Hamann, Dathan; Scheman, Andrew J; Jacob, Sharon E

    2013-01-01

    Keys are an important exposure source of metal allergens to consumers and confer a significant problem for nickel-allergic individuals because of repeated daily use. The aims of this study were to investigate the frequency of nickel and cobalt release in keys and to consider the effectiveness of coatings for preventing metallic allergen release from common metal allergen-releasing keys. Keys from a variety of common stores were nickel and cobalt spot tested. Nickel-releasing keys were coated with enamel sprays, subjected to a use test, and retested to assess for metal allergen release. Of 55 tested keys, 80% showed a strong positive result to the nickel spot test. None of the tested keys exhibited cobalt release. No keys initially released nickel after enamel coatings. Key coatings chipped at the portion inserted into a lock after 30 insertions, and keys were found to release nickel. The handle of the key was not found to release nickel after 60 insertions. Nickel release from keys is very common; nickel-allergic consumers should consider purchasing keys that do not release nickel (eg, brass, anodized). Enamel coating may be useful in protecting nickel-sensitive individuals from their keys but cannot consistently prevent nickel-release from portions used frequently.

  5. Phase transformation in nickel during tribotesting

    Energy Technology Data Exchange (ETDEWEB)

    Hershberger, J. [Energy Technology Division, Argonne National Laboratory, Building 212 Room D204, 9700 S Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: jhersh@anl.gov; Ajayi, O.O. [Energy Technology Division, Argonne National Laboratory, Building 212 Room D204, 9700 S Cass Avenue, Argonne, IL 60439 (United States); Fenske, G.R. [Energy Technology Division, Argonne National Laboratory, Building 212 Room D204, 9700 S Cass Avenue, Argonne, IL 60439 (United States)

    2005-12-15

    Commercially pure nickel was subjected to a polyalphaolefin-lubricated reciprocating tribotest with increasing load. A friction transition was observed and X-ray diffraction was performed on low-friction and high-friction areas. Hexagonal nickel or nickel carbide was formed at high friction. Broadening of the face-centered cubic peaks did not show dislocation structures characteristic of scuffing.

  6. Phase transformation in nickel during tribotesting

    International Nuclear Information System (INIS)

    Hershberger, J.; Ajayi, O.O.; Fenske, G.R.

    2005-01-01

    Commercially pure nickel was subjected to a polyalphaolefin-lubricated reciprocating tribotest with increasing load. A friction transition was observed and X-ray diffraction was performed on low-friction and high-friction areas. Hexagonal nickel or nickel carbide was formed at high friction. Broadening of the face-centered cubic peaks did not show dislocation structures characteristic of scuffing

  7. Development of nickel-hydrogen battery for electric vehicle; Denki jidoshayo nickel-suiso denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research and development of battery, a main part of electric vehicle, have been promoted. Various batteries, such as lead battery, nickel-cadmium battery, nickel-hydrogen battery, lithium ion battery and so on, have been investigated for electric vehicles. Among these, nickel-hydrogen battery is superior to the others from the points of energy density, lifetime, low-temperature properties, and safety. It is one of the most prospective batteries for electric vehicle. Research and development of the nickel-hydrogen battery with higher energy density and longer lifetime have been promoted for the practical application by Tohoku Electric Power Co., Inc. This article shows main performance of the developed nickel-hydrogen battery for electric vehicle. The nominal voltage is 12 V, the rated capacity is 125 Ah, the outside dimension is L302{times}W170{times}H245 mm, the weight is 25.5 kg, the energy density is 60 Wh/kg, the output density is 180 W/kg, and the available environment temperature is between -20 and 60 {degree}C. 1 fig., 1 tab.

  8. Microstructure and properties of ultrafine grain nickel 200 after hydrostatic extrusion processes

    Science.gov (United States)

    Sitek, R.; Krajewski, C.; Kamiński, J.; Spychalski, M.; Garbacz, H.; Pachla, W.; Kurzydłowski, K. J.

    2012-09-01

    This paper presents the results of the studies of the structure and properties of ultrafine grained nickel 200 obtained by hydrostatic extrusion processes. Microstructure was characterized by means of optical microscopy and electron transmission microscopy. Corrosion resistance was studied by impedance and potentiodynamic methods using an AutoLab PGSTAT 100 potentiostat in 0.1 M Na2SO4 solution and in acidified (by addition of H2SO4) 0.1 M NaCl solution at pH = 4.2 at room temperature. Microhardness tests were also performed. The results showed that hydrostatic extrusion produces a heterogeneous, ultrafine-grained microstructure in nickel 200. The corrosive resistance tests showed that the grain refinement by hydrostatic extrusion is accompanied by a decreased corrosive resistance of nickel 200.

  9. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    International Nuclear Information System (INIS)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    2006-01-01

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500mAh, AAA size type 900mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material. alized by using an improved superlattice alloy for negative electrode material. (author)

  10. Ultrasensitive Detection of Proteins on Western Blots with Semiconducting Polymer Dots

    OpenAIRE

    Ye, Fangmao; Smith, Polina B.; Wu, Changfeng; Chiu, Daniel T.

    2013-01-01

    We demonstrate ultrasensitive fluorescence imaging of proteins on Western blots using a bright, compact, and orange-emitting semiconducting polymer dot (CN-PPV). We achieved a detection limit at the single-picogram level in dot blots; with conventional Western blotting, we detected 50 pg of transferrin and trypsin inhibitor after SDS-PAGE and transfer onto a PVDF membrane. Our method does not require any additional equipment or time compared to the conventional procedure with traditional fluo...

  11. Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Rostgaard, Carsten; Rubio, A.

    2009-01-01

    On the basis of first-principles G0W0 calculations we systematically study how the electronic levels of a benzene molecule are renormalized by substrate polarization when physisorbed on different metallic and semiconducting surfaces. The polarization-induced reduction in the energy gap between oc...... find that error cancellations lead to remarkably good agreement between the G0W0 and Kohn-Sham energies for the occupied orbitals of the adsorbed molecule....

  12. Giant magnetoresistance and extraordinary magnetoresistance in inhomogeneous semiconducting DyNiBi

    OpenAIRE

    Casper, Frederick; Felser, Claudia

    2007-01-01

    The semiconducting half-Heulser compound DyNiBi shows a negative giant magnetoresistance (GMR) below 200 K. Except for a weak deviation, this magnetoresistance scales roughly with the square of the magnetization in the paramagnetic state, and is related to the metal-insulator transition. At low temperature, a positive magnetoresistance is found, which can be suppressed by high fields. The magnitude of the positive magnetoresistance changes slightly with the amount of impurity phase.

  13. Research in Nickel/Metal Hydride Batteries 2017

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2018-02-01

    Full Text Available Continuing from a special issue in Batteries in 2016, nineteen new papers focusing on recent research activities in the field of nickel/metal hydride (Ni/MH batteries have been selected for the 2017 Special Issue of Ni/MH Batteries. These papers summarize the international joint-efforts in Ni/MH battery research from BASF, Wayne State University, Michigan State University, FDK Corp. (Japan, Institute for Energy Technology (Norway, Central South University (China, University of Science and Technology Beijing (China, Zhengzhou University of Light Industry (China, Inner Mongolia University of Science and Technology (China, Shenzhen Highpower (China, and University of the Witwatersrand (South Africa from 2016–2017 through reviews of AB2 metal hydride alloys, Chinese and EU Patent Applications, as well as descriptions of research results in metal hydride alloys, nickel hydroxide, electrolyte, and new cell type, comparison work, and projections of future works.

  14. 14th Conference on "Microscopy of Semiconducting Materials"

    CERN Document Server

    Hutchison, J

    2005-01-01

    This is a long-established international biennial conference series, organised in conjunction with the Royal Microscopical Society, Oxford, the Institute of Physics, London and the Materials Research Society, USA. The 14th conference in the series focused on the most recent advances in the study of the structural and electronic properties of semiconducting materials by the application of transmission and scanning electron microscopy. The latest developments in the use of other important microcharacterisation techniques were also covered and included the latest work using scanning probe microscopy and also X-ray topography and diffraction. Developments in materials science and technology covering the complete range of elemental and compound semiconductors are described in this volume.

  15. The endosomal sorting complex required for transport (ESCRT) is required for the sensitivity of yeast cells to nickel ions in Saccharomyces cerevisiae.

    Science.gov (United States)

    Luo, Chong; Cao, Chunlei; Jiang, Linghuo

    2016-05-01

    Nickel is one of the toxic environment metal pollutants and is linked to various human diseases. In this study, through a functional genomics approach we have identified 16 nickel-sensitive and 22 nickel-tolerant diploid deletion mutants of budding yeast genes, many of which are novel players in the regulation of nickel homeostasis. The 16 nickel-sensitive mutants are of genes mainly involved in the protein folding, modification and destination and the cellular transport processes, while the 22 nickel-tolerant mutants are of genes encoding components of ESCRT complexes as well as protein factors involved in both the cell wall integrity maintenance and the vacuolar protein sorting process. In consistence with their phenotypes, most of these nickel-sensitive mutants show reduced intracellular nickel contents, while the majority of these nickel-tolerant mutants show elevated intracellular nickel contents, as compared to the wild type in response to nickel stress. Our data provides a basis for our understanding the regulation of nickel homeostasis and molecular mechanisms of nickel-induced human pathogenesis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Is there a Difference in Van Der Waals Interactions between Rare Gas Atoms Adsorbed on Metallic and Semiconducting Single-Walled Carbon Nanotubes?

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De-Li [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; Mandeltort, Lynn [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemistry; Saidi, Wissam A. [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; Yates, John T. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemistry; Cole, Milton W. [Pennsylvania State Univ., University Park, PA (United States). Dept of Physics; Johnson, J. Karl [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2013-03-01

    Differences in polarizabilities of metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) might give rise to differences in adsorption potentials. We show from experiments and van der Waals-corrected density functional theory (DFT) that binding energies of Xe adsorbed on M- and S-SWNTs are nearly identical. Temperature programmed desorption of Xe on purified M- and S-SWNTs give similar peak temperatures, indicating that desorption kinetics and binding energies are independent of the type of SWNT. Binding energies computed from vdW-corrected DFT are in good agreement with experiments.

  17. Mortality study of nickel platers with special reference to cancers of the stomach and lung, 1945-93.

    OpenAIRE

    Pang, D; Burges, D C; Sorahan, T

    1996-01-01

    OBJECTIVES: To re-examine mortality patterns in a cohort of nickel platers with no history of chromium plating. METHODS: All 284 men first employed by the company in 1945-75 with a minimum employment of three months in the nickel plating department were identified. Workers who had worked in the chromium plating or nickel/chromium plating departments were excluded. Standardised mortality ratios (SMRs), P values, and 95% confidence intervals were calculated. Poisson regression was used to carry...

  18. Occupational exposure to nickel salts in electrolytic plating.

    Science.gov (United States)

    Kiilunen, M; Aitio, A; Tossavainen, A

    1997-04-01

    An occupational hygiene survey was made in 38 nickel plating shops in Finland and exposure to nickel was studied by means of biological measurements and, in three shops, by using air measurements. The average after-shift urinary nickel concentration of 163 workers was 0.16 mumol l.-1 (range 0.001-4.99 mumol l.-1). After the 1-5 week vacation the urinary nickel concentration was higher than the upper reference limit of non-exposed Finns indicating that a part of water-soluble nickel salts is accumulated in the body. Urinary nickel concentrations in the shops considered clean in the industrial hygiene walk-through were not different from those observed in the shops considered dirty. The correlation between the concentrations of nickel in the air and in the urine was low, and the amount of nickel excreted in the urine exceeded the calculated inhaled amounts, indicating exposure by other routes such as ingestion.

  19. Effects of nickel on irradiation embrittlement of light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    2005-06-01

    This TECDOC was developed under the IAEA Coordinated Research Project (CRP) entitled Effects of Nickel on Irradiation Embrittlement of Light Water Reactor Pressure Vessel (RPV) Steels. This CRP is the sixth in a series of CRPs to determine the influence of the mechanism and quantify the influence of nickel content on the deterioration of irradiation embrittlement of reactor pressure vessel steels of the Ni-Cr-Mo-V or Mn-Ni-Cr-Mo types. The scientific scope of the programme includes procurement of materials, determination of mechanical properties, irradiation and testing of specimens in power and/or test reactors, and microstructural characterization. Eleven institutes from eight different countries and the European Union participated in this CRP and six institutes conducted the irradiation experiments of the CRP materials. In addition to the irradiation and testing of those materials, irradiation experiments of various national steels were also conducted. Moreover, some institutes performed microstructural investigations of both the CRP materials and national steels. This TECDOC presents and discusses all the results obtained and the analyses performed under the CRP. The results analysed are clear in showing the significantly higher radiation sensitivity of high nickel weld metal (1.7 wt%) compared with the lower nickel base metal (1.2 wt%). These results are supported by other similar results in the literature for both WWER-1000 RPV materials, pressurized water reactor (PWR) type materials, and model alloys. Regardless of the increased sensitivity of WWER-1000 high nickel weld metal (1.7 wt%), the transition temperature shift for the WWER-1000 RPV design fluence is still below the curve predicted by the Russian code (standard for strength calculations of components and piping in NPPs - PNAE G 7-002-86). For higher fluence, no data were available and the results should not be extrapolated. Although manganese content was not incorporated directly in this CRP

  20. High power Co3O4/ZnO p–n type piezoelectric transducer

    International Nuclear Information System (INIS)

    Hu, Yuh-Chung; Lee, Tsung-Han; Chang, Pei-Zen; Su, Pei-Chen

    2015-01-01

    Enhancing the output power of piezoelectric transducer is essential in order to supply sufficient and sustainable power to wireless sensor nodes or electronic devices. In this work, a Co 3 O 4 /ZnO p–n type power piezoelectric transducer which can be operated at low frequencies has been developed by utilizing n-type semiconducting zinc oxide (ZnO) and p-type semiconducting tricobalt tetroxide (Co 3 O 4 ). We utilize ZnO to be the piezoelectric transducer and build a multi-layer (Au/Co 3 O 4 /ZnO/Ti) thin film structure. The ZnO thin film with preferred orientation along the (002) plane was deposited under optimized deposition conditions on the flexible titanium (Ti) foil with thickness of 80 μm. The Co 3 O 4 /ZnO interface forms a p–n junction and increases the difference in Fermi levels between the two electrodes, resulting in the great enhancement of output power. The measured output power of the p–n type piezoelectric transducer with optimal resistance of 100 kΩ is 10.4 μW at low operating frequency of 37 Hz, which is 10.9 times of output power of ZnO piezoelectric transducers. - Highlights: • Deposited zinc oxide performed good piezoelectric coefficient. • ZnO thin film with preferred orientation along the (002) plane was deposited. • A p–n type piezoelectric transducer with enhanced output power was fabricated. • 10.9 times increment in output power was obtained. • Increase of difference in Fermi level and p–n junction formation was explained

  1. The determination of sulphur in copper, nickel and aluminium alloys by proton activation analysis

    International Nuclear Information System (INIS)

    Vandecasteele, C.; Dewaele, J.; Esprit, M.; Goethals, P.

    1981-01-01

    The 34 S(p,n) 34 sup(m)Cl reaction, induced by 13 MeV protons is used for the determination of sulphur in copper, nickel and aluminium alloys. The 34 sup(m)Cl is separated by repeated precipitation as silver chloride. The results obtained were resp. 3.08 +- 0.47, 1.47 +- 0.17 and -1 for copper, nickel and aluminium alloys. (orig.)

  2. Electrodeposition of zinc--nickel alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J W; Johnson, H R

    1977-10-01

    One possible substitute for cadmium in some applications is a zinc--nickel alloy deposit. Previous work by others showed that electrodeposited zinc--nickel coatings containing about 85 percent zinc and 15 percent nickel provided noticeably better corrosion resistance than pure zinc. Present work which supports this finding also shows that the corrosion resistance of the alloy deposit compares favorably with cadmium.

  3. Nickel-accumulating plant from Western Australia

    Energy Technology Data Exchange (ETDEWEB)

    Severne, B C; Brooks, R R

    1972-01-01

    A small shrub Hybanthus floribundus (Lindl.) F. Muell. Violaceae growing in Western Australia accumulates nickel and cobalt to a very high degree. Values of up to 23% nickel in leaf ash may represent the highest relative accumulation of a metal on record. The high accumulation of nickel poses interesting problems in plant physiology and plant biochemistry. 9 references, 2 figures, 1 table.

  4. Risk assessment of nickel carcinogenicity and occupational lung cancer.

    OpenAIRE

    Shen, H M; Zhang, Q F

    1994-01-01

    Recent progress in risk assessment of nickel carcinogenicity and its correlation with occupational lung cancer in nickel-exposed workers is reviewed. Epidemiological investigations provide reliable data indicating the close relation between nickel exposure and high lung cancer risk, especially in nickel refineries. The nickel species-specific effects and the dose-response relationship between nickel exposure and lung cancer are among the main questions that are explored extensively. It is als...

  5. Combined effect of vanadium and nickel on lipid peroxidation and ...

    African Journals Online (AJOL)

    The exposure to nickel led to a significant decrease (p < 0.001) in SOD, GST activities in liver and GSH content in kidney and a significant (p < 0.001) increase in the hepatic MDA content and renal SOD activity. When the metals were administered in combination, the elevation of lipid peroxidation did not potentiate. However ...

  6. Theoretical Modelling of Immobilization of Cadmium and Nickel in Soil Using Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vaidotas Danila

    2017-09-01

    Full Text Available Immobilization using zero valent using iron nanoparticles is a soil remediation technology that reduces concentrations of dissolved contaminants in soil solution. Immobilization of heavy metals in soil can be achieved through heavy metals adsorption and surface complexation reactions. These processes result in adsorption of heavy metals from solution phase and thus reducing their mobility in soil. Theoretical modelling of heavy metals, namely, cadmium and nickel, adsorption using zero valent iron nanoparticles was conducted using Visual MINTEQ. Adsorption of cadmium and nickel from soil solutions were modelled separately and when these metals were dissolved together. Results have showed that iron nanoparticles can be successfully applied as an effective adsorbent for cadmium and nickel removal from soil solution by producing insoluble compounds. After conducting the modelling of dependences of Cd+2 and Ni+2 ions adsorption on soil solution pH using iron nanoparticles, it was found that increasing pH of solution results in the increase of these ions adsorption. Adsorption of cadmium reached approximately 100% when pH ≥ 8.0, and adsorption of nickel reached approximately 100% when pH ≥ 7.0. During the modelling, it was found that adsorption of heavy metals Cd and Ni mostly occur, when one heavy metal ion is chemically adsorbed on two sorption sites. During the adsorption modelling, when Cd+2 and Ni+2 ions were dissolved together in acidic phase, it was found that adsorption is slightly lower than modelling adsorption of these metals separately. It was influenced by the competition of Cd+2 and Ni+2 ions for sorption sites on the surface of iron nanoparticles.

  7. Mortality study of nickel platers with special reference to cancers of the stomach and lung, 1945-93.

    Science.gov (United States)

    Pang, D; Burges, D C; Sorahan, T

    1996-10-01

    To re-examine mortality patterns in a cohort of nickel platers with no history of chromium plating. All 284 men first employed by the company in 1945-75 with a minimum employment of three months in the nickel plating department were identified. Workers who had worked in the chromium plating or nickel/chromium plating departments were excluded. Standardised mortality ratios (SMRs), P values, and 95% confidence intervals were calculated. Poisson regression was used to carry out statistical modelling of mortalities within the cohort (internal standard). Four variables were considered to have the potential to influence mortality within the cohort: attained age (age at follow up or age at death), year of starting nickel work, period of follow up (measured from the first period of work with nickel exposure), and duration of exposure to nickel. The only significant difference between observed and expected numbers, when investigated by site of cancer and by broad non-cancer groupings, was that for stomach cancer (observed eight, expected 2.49, SMR 322). The study provides only weak evidence that nickel plating is associated with an excess risk of stomach cancer. This cohort of nickel platers does not seem to have experienced any discernible risk of occupational lung cancer. Other studies of nickel platers rather than nickel/chromium platers would be useful.

  8. Semiconducting properties of oxide and passive films formed on AISI 304 stainless steel and Alloy 600

    Directory of Open Access Journals (Sweden)

    Ferreira M. G. S.

    2002-01-01

    Full Text Available The semiconducting properties of passive films formed on AISI 304 stainless steel and Alloy 600 in borate buffer solution were studied by capacitance (Mott-Schottky approach and photocurrent measurements. Oxide films formed on 304 stainless steel in air at 350 ºC have also been studied. The results obtained show that, in all cases the electronic structure of the films is comparable to that of a p-n heterojunction in which the space charges developed at the metal-film and film-electrolyte interfaces have also to be considered. This is in accordance with analytical results showing that the oxide films are in all cases composed of an inner region rich in chromium oxide and an outer region rich in iron oxide.

  9. Systemic nickel hypersensitivity and diet: myth or reality?

    Science.gov (United States)

    Pizzutelli, S

    2011-02-01

    Nickel is a very common metal contained in many everyday objects and is the leading cause of ACD (Allergic Contact Dermatitis). Nickel is present in most of the constituents of a normal diet, but some food groups are usually considered to be richer. However, the nickel content of specific food can vary widely, depending on many factors. Thus, the daily intake of nickel is also highly variable both among different populations and in a single individual, in different seasons and even in different days. Measuring precisely the daily intake of nickel from food and drinks is extremely difficult, if not impossible. The relationship between ACD and contact with nickel is undisputed and widely confirmed in literature. The situation is different for systemic nickel allergy syndrome (SNAS). The SNAS can have cutaneous signs and symptoms (Systemic Contact Dermatitis or SCD) or extracutaneous signs and symptoms (gastrointestinal, respiratory, neurological, etc.).The occurrence of SCD as a systemic reaction to the nickel normally assumed in the daily diet is very controversial. A rigorous demonstration of the relationship between SCD and nickel is extremely difficult. In particular, further and larger studies are needed to assess the reality and the prevalence of nickel urticaria. With respect to nickel-related gastrointestinal symptoms, as well as chronic fatigue syndrome, fibromyalgia, headache, recurring cold sores and recurrent infections in general, the data available in literature are not conclusive and the studies lack the support of clear, first-hand evidence. With respect to respiratory disorders, the role of food nickel and the effectiveness of a dietary treatment have been assumed but not proven. In fact, the usefullness of a therapeutic low-nickel diet is controversial: rare, if not exceptional, and limited to very sporadic cases of SCD. Additionally, the quantitative and qualitative composition of a low-nickel diet presents few certainties and many uncertainties

  10. Nickel oxide electrode interlayer in CH3 NH3 PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells.

    Science.gov (United States)

    Jeng, Jun-Yuan; Chen, Kuo-Cheng; Chiang, Tsung-Yu; Lin, Pei-Ying; Tsai, Tzung-Da; Chang, Yun-Chorng; Guo, Tzung-Fang; Chen, Peter; Wen, Ten-Chin; Hsu, Yao-Jane

    2014-06-25

    This study successfully demonstrates the application of inorganic p-type nickel oxide (NiOx ) as electrode interlayer for the fabrication of NiOx /CH3 NH3 PbI3 perovskite/PCBM PHJ hybrid solar cells with a respectable solar-to-electrical PCE of 7.8%. The better energy level alignment and improved wetting of the NiOx electrode interlayer significantly enhance the overall photovoltaic performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Corrosion Behaviour of Nickel Plated Low Carbon Steel in Tomato Fluid

    Directory of Open Access Journals (Sweden)

    Oluleke OLUWOLE

    2010-12-01

    Full Text Available This research work investigated the corrosion resistance of nickel plated low carbon steel in tomato fluid. It simulated the effect of continuous use of the material in a tomato environment where corrosion products are left in place. Low carbon steel samples were nickel electroplated at 4V for 20, 25, 30 and 35 mins using Watts solution.The plated samples were then subjected to tomato fluid environment for for 30 days. The electrode potentials mV (SCE were measured every day. Weight loss was determined at intervals of 5 days for the duration of the exposure period. The result showed corrosion attack on the nickel- plated steel, the severity decreasing with the increasing weight of nickel coating on substrate. The result showed that thinly plated low carbon steel generally did not have any advantage over unplated steel. The pH of the tomato solution which initially was acidic was observed to progress to neutrality after 4 days and then became alkaline at the end of the thirty days test (because of corrosion product contamination of the tomatocontributing to the reduced corrosion rates in the plated samples after 10 days. Un-plated steel was found to be unsuitable for the fabrication of tomato processing machinery without some form of surface treatment - thick nickel plating is suitable as a protective coating in this environment.

  12. Effect of nickel addition on mechanical properties of powder forged Fe-Cu-C

    Science.gov (United States)

    Archana Barla, Nikki

    2018-03-01

    Fe-Cu-C system is very popular in P/M industry for its good compressibility and dimensional stability with high strength. Fe-Cu-C is a structural material and is used where high strength with high hardness is required. The composition of powder metallurgy steel plays a vital role in the microstructure and physical properties of the sintered component. Fe-2Cu-0.7C-Ni alloy with varying nickel composition (0%, 0.5%, 1.0%, 1.5%, 2.0%, and 3.0%) wt. % was prepared by powder metallurgy (P/M) sinter forging process. The present work discuss the effect of varying nickel content on microstructure and mechanical properties.

  13. Synthesis of uniform-sized bimetallic iron-nickel phosphide nanorods

    International Nuclear Information System (INIS)

    Yoon, Ki Youl; Jang, Youngjin; Park, Jongnam; Hwang, Yosun; Koo, Bonil; Park, Je-Geun; Hyeon, Taeghwan

    2008-01-01

    We synthesized uniform-sized nanorods of iron-nickel phosphides from the thermal decomposition of metal-phosphine complexes. Uniform-sized (Fe x Ni 1-x ) 2 P nanorods (0≤x≤1) of various compositions were synthesized by thermal decomposition of Ni-trioctylphosphine (TOP) complex and Fe-TOP complex. By measuring magnetic properties, we found that blocking temperature and coercive field depend on Ni content in the nanorods. Both parameters were more sensitive to doping compared with bulk samples. - Graphical abstract: We synthesized uniform-sized nanorods of iron-nickel phosphides from thermal decomposition of metal-phosphine complexes. The magnetic studies showed that blocking temperature and coercive field depend on Ni content in the nanorods

  14. The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel

    Science.gov (United States)

    Mende, Mandy; Schwarz, Dana; Steinbach, Christine; Schwarz, Simona

    2018-01-01

    The biodegradable polysaccharide chitosan possesses protonated and natural amino groups at medium pH values and has therefore been used as an adsorbing material for nickel salts in water treatment. Nickel is a problematic heavy metal ion which can cause various diseases and disorders in living organisms. Here, we show the influence of oxyanions (e.g., nitrate and sulfate) to the adsorption of nickel ions. Hence, simultaneously we are addressing the increasing global problem of nitrate and sulfate ion pollution in groundwater and surface water. A series of adsorption experiments was carried out in order to determine (i) the adsorption equilibrium, (ii) the adsorption capacity in dependence on the initial nickel ion concentration, and (iii) the influence of the anion presented in solution for the adsorption capacity. Surface morphology of chitosan flakes before and after the adsorption process has been studied with SEM-EDX analysis. The chitosan flakes exhibited promising adsorption capacities of 81.9 mg·g−1 and 21.2 mg·g−1 for nickel (sulfate) and nickel (nitrate), respectively. The calculated values of Gibbs free energy change ΔG0 confirm the higher adsorption of nickel ions in presence of sulfate ions. Hence, higher anion valence leads to a higher adsorption capacity. PMID:29510485

  15. A review of nickel hydrogen battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Smithrick, J.J.; Odonnell, P.M.

    1995-05-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market.

  16. Nickel Nanowire@Porous NiCo{sub 2}O{sub 4} Nanorods Arrays Grown on Nickel Foam as Efficient Pseudocapacitor Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Houzhao; Li, Lang; Zhang, Jun; Liu, Xiang; Wang, Hanbin; Wang, Hao, E-mail: nanoguy@126.com [Faculty of Physics and Electronic Science, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan (China)

    2017-12-13

    A three dimensional hierarchical nanostructure composed of nickel nanowires and porous NiCo{sub 2}O{sub 4} nanorods arrays on the surface of nickel foam is successfully fabricated by a facile route. In this structure, the nickel nanowires are used as core materials to support high-pseudocapacitance NiCo{sub 2}O{sub 4} nanorods and construct the well-defined NiCo{sub 2}O{sub 4} nanorods shell/nickel nanowires core hierarchical structure on nickel foam. Benefiting from the participation of nickel nanowires, the nickel nanowire@NiCo{sub 2}O{sub 4}/Ni foam electrode shows a high areal specific capacitance (7.4 F cm{sup −2} at 5 mA cm{sup −2}), excellent rate capability (88.04% retained at 100 mA cm{sup −2}), and good cycling stability (74.08% retained after 1,500 cycles). The superior electrochemical properties made it promising as electrode for supercapacitors.

  17. Hydrothermal synthesis of Ni_2P nanoparticle and its hydrodesulfurization of dibenzothiophene

    International Nuclear Information System (INIS)

    Zhao, Qi; Han, Yang; Huang, Xiang; Dai, Jinhui; Tian, Jintao; Zhu, Zhibin; Yue, Li

    2017-01-01

    Nanosized nickel phosphide (Ni_2P) has been synthesized via hydrothermal reaction with environmental-friendly red phosphorus and nickel chloride. The reaction mechanism has been studied by measurement techniques of IC, XRD ,TEM, EDS, and XPS. The results showed that the particle sizes of as-prepared Ni_2P are in nanoscale ranging from 10 to 30 nm. In hydrothermal reaction, red phosphorus reacts with water to its oxyacids, especially its hypophosphorous acid (or hypophosphite) which can reduce nickel chloride to nickel, and then metallic nickel will penetrate into the rest of red phosphorus to generate nano-Ni_2P. Furthermore, the catalytic performance of as-synthesized Ni_2P for the hydrodesulfurization of dibenzothiophene has been tested. It has been shown that the HDS reaction process over Ni_2P catalyst agrees well with the pseudo-first order kinetic equation, and the HDS conversion can reach up to 43.83% in 5 h with a stable increasing catalytic activity during the whole examination process.

  18. Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz.

    Science.gov (United States)

    Cao, Yu; Brady, Gerald J; Gui, Hui; Rutherglen, Chris; Arnold, Michael S; Zhou, Chongwu

    2016-07-26

    In this paper, we report record radio frequency (RF) performance of carbon nanotube transistors based on combined use of a self-aligned T-shape gate structure, and well-aligned, high-semiconducting-purity, high-density polyfluorene-sorted semiconducting carbon nanotubes, which were deposited using dose-controlled, floating evaporative self-assembly method. These transistors show outstanding direct current (DC) performance with on-current density of 350 μA/μm, transconductance as high as 310 μS/μm, and superior current saturation with normalized output resistance greater than 100 kΩ·μm. These transistors create a record as carbon nanotube RF transistors that demonstrate both the current-gain cutoff frequency (ft) and the maximum oscillation frequency (fmax) greater than 70 GHz. Furthermore, these transistors exhibit good linearity performance with 1 dB gain compression point (P1dB) of 14 dBm and input third-order intercept point (IIP3) of 22 dBm. Our study advances state-of-the-art of carbon nanotube RF electronics, which have the potential to be made flexible and may find broad applications for signal amplification, wireless communication, and wearable/flexible electronics.

  19. Nickel may be released from laptop computers

    DEFF Research Database (Denmark)

    Jensen, Peter; Jellesen, Morten Stendahl; Møller, Per

    2012-01-01

    Consumer nickel sensitization and dermatitis is caused by prolonged or repeated skin exposure to items that release nickel, for example jewellery, belts, buttons, watches, and mobile phones (1–3). We recently described a patient in whom primary nickel contact sensitization and dermatitis develope...

  20. Improved nickel plating of Inconel X-750

    Science.gov (United States)

    Farmer, M. E.; Feeney, J. E.; Kuster, C. A.

    1969-01-01

    Electroplating technique with acid pickling provides a method of applying nickel plating on Inconel X-750 tubing to serve as a wetting agent during brazing. Low-stress nickel-plating bath contains no organic wetting agents that cause the nickel to blister at high temperatures.