WorldWideScience

Sample records for p-type gallium arsenide

  1. Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide

    International Nuclear Information System (INIS)

    Tanaka, Akiyo

    2004-01-01

    Gallium arsenide (GaAs), indium arsenide (InAs), and aluminium gallium arsenide (AlGaAs) are semiconductor applications. Although the increased use of these materials has raised concerns about occupational exposure to them, there is little information regarding the adverse health effects to workers arising from exposure to these particles. However, available data indicate these semiconductor materials can be toxic in animals. Although acute and chronic toxicity of the lung, reproductive organs, and kidney are associated with exposure to these semiconductor materials, in particular, chronic toxicity should pay much attention owing to low solubility of these materials. Between InAs, GaAs, and AlGaAs, InAs was the most toxic material to the lung followed by GaAs and AlGaAs when given intratracheally. This was probably due to difference in the toxicity of the counter-element of arsenic in semiconductor materials, such as indium, gallium, or aluminium, and not arsenic itself. It appeared that indium, gallium, or aluminium was toxic when released from the particles, though the physical character of the particles also contributes to toxic effect. Although there is no evidence of the carcinogenicity of InAs or AlGaAs, GaAs and InP, which are semiconductor materials, showed the clear evidence of carcinogenic potential. It is necessary to pay much greater attention to the human exposure of semiconductor materials

  2. Metal Contacts to Gallium Arsenide.

    Science.gov (United States)

    Ren, Fan

    1991-07-01

    While various high performance devices fabricated from the gallium arsenide (GaAs) and related materials have generated considerable interest, metallization are fundamental components to all semiconductor devices and integrated circuits. The essential roles of metallization systems are providing the desired electrical paths between the active region of the semiconductor and the external circuits through the metal interconnections and contacts. In this work, in-situ clean of native oxide, high temperature n-type, low temperature n-type and low temperature p-type ohmic metal systems have been studied. Argon ion mill was used to remove the native oxide prior to metal deposition. For high temperature process n-type GaAs ohmic contacts, Tungsten (W) and Tungsten Silicide (WSi) were used with an epitaxial grown graded Indium Gallium Arsenide (InGaAs) layer (0.2 eV) on GaAs. In addition, refractory metals, Molybdenum (Mo), was incorporated in the Gold-Germanium (AuGe) based on n-type GaAs ohmic contacts to replace conventional silver as barrier to prevent the reaction between ohmic metal and chlorine based plasma as well as the ohmic metallization intermixing which degrades the device performance. Finally, Indium/Gold-Beryllium (In/Au-Be) alloy has been developed as an ohmic contact for p-type GaAs to reduce the contact resistance. The Fermi-level pinning of GaAs has been dominated by the surface states. The Schottky barrier height of metal contacts are about 0.8 V regardless of the metal systems. By using p-n junction approach, barrier height of pulsed C-doped layers was achieved as high as 1.4 V. Arsenic implantation into GaAs method was also used to enhance the barrier height of 1.6 V.

  3. Thermodynamics of gallium arsenide electrodeposition

    International Nuclear Information System (INIS)

    Perrault, G.G.

    1986-01-01

    Gallium Arsenide is well known as a very interesting compound for photoelectrical devices. Up to now, it has been prepared mostly by high temperature technology, and the authors considered that it might be of interest to set up an electrodeposition technique suitable to prepare thin layers of this compound. A reaction sequence similar to the one observed for Cadmium Sulfide or Cadmium Telluride could be considered. In these cases, the metal chalcogenide is obtained from the precipitation of the metal ions dissolved in the solutions by the reduction product of the metalloidic compound

  4. Gallium interstitial contributions to diffusion in gallium arsenide

    Science.gov (United States)

    Schick, Joseph T.; Morgan, Caroline G.

    2011-09-01

    encountered in fitting experimental results for heavily p-type, Ga-rich gallium arsenide by simply extending a model for gallium interstitial diffusion which has been used for less p-doped material.

  5. Window structure for passivating solar cells based on gallium arsenide

    Science.gov (United States)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  6. Normal vibrations in gallium arsenide

    International Nuclear Information System (INIS)

    Dolling, G.; Waugh, J.L.T.

    1964-01-01

    The triple axis crystal spectrometer at Chalk River has been used to observe coherent slow neutron scattering from a single crystal of pure gallium arsenide at 296 o K. The frequencies of normal modes of vibration propagating in the [ζ00], (ζζζ], and (0ζζ] crystal directions have been determined with a precision of between 1 and 2·5 per cent. A limited number of normal modes have also been studied at 95 and 184 o K. Considerable difficulty was experienced in obtaining welt resolved neutron peaks corresponding to the two non-degenerate optic modes for very small wave-vector, particularly at 296 o K. However, from a comparison of results obtained under various experimental conditions at several different points in reciprocal space, frequencies (units 10 12 c/s) for these modes (at 296 o K) have been assigned: T 8·02±0·08 and L 8·55±02. Other specific normal modes, with their measured frequencies are (a) (1,0,0): TO 7·56 ± 008, TA 2·36 ± 0·015, LO 7·22 ± 0·15, LA 6·80 ± 0·06; (b) (0·5, 0·5, 0·5): TO 7·84 ± 0·12, TA 1·86 ± 0·02, LO 7·15 ± 0·07, LA 6·26 ± 0·10; (c) (0, 0·65, 0·65): optic 8·08 ±0·13, 7·54 ± 0·12 and 6·57 ± 0·11, acoustic 5·58 ± 0·08, 3·42 · 0·06 and 2·36 ± 004. These results are generally slightly lower than the corresponding frequencies for germanium. An analysis in terms of various modifications of the dipole approximation model has been carried out. A feature of this analysis is that the charge on the gallium atom appears to be very small, about +0·04 e. The frequency distribution function has been derived from one of the force models. (author)

  7. Normal vibrations in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Dolling, G; Waugh, J L T

    1964-07-01

    The triple axis crystal spectrometer at Chalk River has been used to observe coherent slow neutron scattering from a single crystal of pure gallium arsenide at 296{sup o}K. The frequencies of normal modes of vibration propagating in the [{zeta}00], ({zeta}{zeta}{zeta}], and (0{zeta}{zeta}] crystal directions have been determined with a precision of between 1 and 2{center_dot}5 per cent. A limited number of normal modes have also been studied at 95 and 184{sup o}K. Considerable difficulty was experienced in obtaining welt resolved neutron peaks corresponding to the two non-degenerate optic modes for very small wave-vector, particularly at 296{sup o}K. However, from a comparison of results obtained under various experimental conditions at several different points in reciprocal space, frequencies (units 10{sup 12} c/s) for these modes (at 296{sup o}K) have been assigned: T 8{center_dot}02{+-}0{center_dot}08 and L 8{center_dot}55{+-}02. Other specific normal modes, with their measured frequencies are (a) (1,0,0): TO 7{center_dot}56 {+-} 008, TA 2{center_dot}36 {+-} 0{center_dot}015, LO 7{center_dot}22 {+-} 0{center_dot}15, LA 6{center_dot}80 {+-} 0{center_dot}06; (b) (0{center_dot}5, 0{center_dot}5, 0{center_dot}5): TO 7{center_dot}84 {+-} 0{center_dot}12, TA 1{center_dot}86 {+-} 0{center_dot}02, LO 7{center_dot}15 {+-} 0{center_dot}07, LA 6{center_dot}26 {+-} 0{center_dot}10; (c) (0, 0{center_dot}65, 0{center_dot}65): optic 8{center_dot}08 {+-}0{center_dot}13, 7{center_dot}54 {+-} 0{center_dot}12 and 6{center_dot}57 {+-} 0{center_dot}11, acoustic 5{center_dot}58 {+-} 0{center_dot}08, 3{center_dot}42 {center_dot} 0{center_dot}06 and 2{center_dot}36 {+-} 004. These results are generally slightly lower than the corresponding frequencies for germanium. An analysis in terms of various modifications of the dipole approximation model has been carried out. A feature of this analysis is that the charge on the gallium atom appears to be very small, about +0{center_dot}04 e. The

  8. Maskless proton beam writing in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, P. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom) and Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)]. E-mail: p.mistry@surrey.ac.uk; Gomez-Morilla, I. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Smith, R.C. [Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom); Thomson, D. [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom); Grime, G.W. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Webb, R.P. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Gwilliam, R. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Jeynes, C. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Cansell, A. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Merchant, M. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Kirkby, K.J. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2007-07-15

    Proton beam writing (PBW) is a direct write technique that employs a focused MeV proton beam which is scanned in a pre-determined pattern over a target material which is subsequently electrochemically etched or chemically developed. By changing the energy of the protons the range of the protons can be changed. The ultimate depth of the structure is determined by the range of the protons in the material and this allows structures to be formed to different depths. PBW has been successfully employed on etchable glasses, polymers and semiconductor materials such as silicon (Si) and gallium arsenide (GaAs). This study reports on PBW in p-type GaAs and compares experimental results with computer simulations using the Atlas (copy right) semiconductor device package from SILVACO. It has already been proven that hole transport is required for the electrochemical etching of GaAs using Tiron (4,5-dihydroxy-m-benzenedisulfonic acid, di-sodium salt). PBW in GaAs results in carrier removal in the irradiated regions and consequently minimal hole transport (in these regions) during electrochemical etching. As a result the irradiated regions are significantly more etch resistant than the non-irradiated regions. This allows high aspect ratio structures to be formed.

  9. Maskless proton beam writing in gallium arsenide

    International Nuclear Information System (INIS)

    Mistry, P.; Gomez-Morilla, I.; Smith, R.C.; Thomson, D.; Grime, G.W.; Webb, R.P.; Gwilliam, R.; Jeynes, C.; Cansell, A.; Merchant, M.; Kirkby, K.J.

    2007-01-01

    Proton beam writing (PBW) is a direct write technique that employs a focused MeV proton beam which is scanned in a pre-determined pattern over a target material which is subsequently electrochemically etched or chemically developed. By changing the energy of the protons the range of the protons can be changed. The ultimate depth of the structure is determined by the range of the protons in the material and this allows structures to be formed to different depths. PBW has been successfully employed on etchable glasses, polymers and semiconductor materials such as silicon (Si) and gallium arsenide (GaAs). This study reports on PBW in p-type GaAs and compares experimental results with computer simulations using the Atlas (copy right) semiconductor device package from SILVACO. It has already been proven that hole transport is required for the electrochemical etching of GaAs using Tiron (4,5-dihydroxy-m-benzenedisulfonic acid, di-sodium salt). PBW in GaAs results in carrier removal in the irradiated regions and consequently minimal hole transport (in these regions) during electrochemical etching. As a result the irradiated regions are significantly more etch resistant than the non-irradiated regions. This allows high aspect ratio structures to be formed

  10. Photo-dissociation of hydrogen passivated dopants in gallium arsenide

    International Nuclear Information System (INIS)

    Tong, L.; Larsson, J.A.; Nolan, M.; Murtagh, M.; Greer, J.C.; Barbe, M.; Bailly, F.; Chevallier, J.; Silvestre, F.S.; Loridant-Bernard, D.; Constant, E.; Constant, F.M.

    2002-01-01

    A theoretical and experimental study of the photo-dissociation mechanisms of hydrogen passivated n- and p-type dopants in gallium arsenide is presented. The photo-induced dissociation of the Si Ga -H complex has been observed for relatively low photon energies (3.48 eV), whereas the photo-dissociation of C As -H is not observed for photon energies up to 5.58 eV. This fundamental difference in the photo-dissociation behavior between the two dopants is explained in terms of the localized excitation energies about the Si-H and C-H bonds

  11. Optical Characterization of Thick Growth Orientation-Patterned Gallium Arsenide

    National Research Council Canada - National Science Library

    Meyer, Joshua W

    2006-01-01

    .... Orientation patterned gallium arsenide (OPGaAs) is a promising nonlinear conversion material because it has broad transparency and can be engineered for specific pump laser and output wavelengths using quasi-phase matching techniques...

  12. Inhalation developmental toxicology studies: Gallium arsenide in mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T.J.; Greenspan, B.J.; Dill, J.A.; Stoney, K.H.; Evanoff, J.J.; Rommereim, R.L.

    1990-12-01

    Gallium arsenide is a crystalline compound used extensively in the semiconductor industry. Workers preparing solar cells and gallium arsenide ingots and wafers are potentially at risk from the inhalation of gallium arsenide dust. The potential for gallium arsenide to cause developmental toxicity was assessed in Sprague- Dawley rats and CD-1 (Swiss) mice exposed to 0, 10, 37, or 75 mg/m{sup 3} gallium arsenide, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and {approx}30 positively mated rats or {approx}24 positively mated mice. Mice were exposed on 4--17 days of gestation (dg), and rats on 4--19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Gallium and arsenic concentrations were determined in the maternal blood and uterine contents of the rats (3/group) at 7, 14, and 20 dg. 37 refs., 11 figs., 30 tabs.

  13. White beam synchrotron x-ray topography of gallium arsenide

    International Nuclear Information System (INIS)

    Winter, J.M. Jr.; Green, R.E. Jr.; Corak, W.S.

    1988-01-01

    The defect structure of gallium arsenide was investigated using white beam transmission topography. The samples were cut and polished monocrystal substrates from different suppliers. The goal of the work was to determine the viability of the method for documenting various crystallographic defect structures and establishing their effect on the performance of integrated microwave circuits fabricated on the wafers. The principles of the technique, essentially identical to classical Laue x-ray diffraction, are outlined. Two distinct defect structures were determined in the topographs. Reasons for the defect structures were postulated and the application of the method for quality control assessments of manufacturer-supplied gallium arsenide substrates was assessed

  14. Point defects in gallium arsenide characterized by positron annihilation spectroscopy and deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Mih, R.; Gronsky, R.; Sterne, P.A.

    1995-01-01

    Positron annihilation lifetime spectroscopy (PALS) is a unique technique for detection of vacancy related defects in both as-grown and irradiated materials. The authors present a systematic study of vacancy defects in stoichiometrically controlled p-type Gallium Arsenide grown by the Hot-Wall Czochralski method. Microstructural information based on PALS, was correlated to crystallographic data and electrical measurements. Vacancies were detected and compared to electrical levels detected by deep level transient spectroscopy and stoichiometry based on crystallographic data

  15. Rutherford backscatter measurements on tellurium and cadmium implanted gallium arsenide

    International Nuclear Information System (INIS)

    Bell, E.C.

    1979-10-01

    The primary aim of the work described in this thesis was to examine implanted layers of the dopant impurities cadmium and tellurium in gallium arsenide and to experimentally assess their potential for producing electrically active layers. 1.5 MeV Rutherford backscattering measurements of lattice disorder and atom site location have been used to assess post implantation thermal annealing and elevated temperature implantations to site the dopant impurities on either gallium or arsenic lattice positions in an otherwise undisordered lattice. Pyrolitically deposited silicon dioxide was used as an encapsulant to prevent thermal dissociation of the gallium arsenide during annealing. It has been shown that high doses of cadmium and tellurium can be implanted without forming amorphous lattice disorder by heating the gallium arsenide during implantation to relatively low temperatures. Atom site location measurements have shown that a large fraction of a tellurium dose implanted at 180 0 C is located on or near lattice sites. Channeled backscatter measurements have shown that there is residual disorder or lattice strain in gallium arsenide implanted at elevated temperatures. The extent of this disorder has been shown to depend on the implanted dose and implantation temperature. The channeling effect has been used to measure annealing of the disorder. (author)

  16. High purity liquid phase epitaxial gallium arsenide nuclear radiation detector

    International Nuclear Information System (INIS)

    Alexiev, D.; Butcher, K.S.A.

    1991-11-01

    Surface barrier radiation detector made from high purity liquid phase epitaxial gallium arsenide wafers have been operated as X- and γ-ray detectors at various operating temperatures. Low energy isotopes are resolved including 241 Am at 40 deg C. and the higher gamma energies of 235 U at -80 deg C. 15 refs., 1 tab., 6 figs

  17. Assessment of arsenic exposures and controls in gallium arsenide production.

    Science.gov (United States)

    Sheehy, J W; Jones, J H

    1993-02-01

    The electronics industry is expanding the use of gallium arsenide in the production of optoelectronic devices and integrated circuits. Workers in the electronics industry using gallium arsenide are exposed to hazardous substances such as arsenic, arsine, and various acids. Arsenic requires stringent controls to minimize exposures (the current OSHA PEL for arsenic is 10 micrograms/m3 and the NIOSH REL is 2 micrograms/m3 ceiling). Inorganic arsenic is strongly implicated in respiratory tract and skin cancer. For these reasons, NIOSH researchers conducted a study of control systems for facilities using gallium arsenide. Seven walk-through surveys were performed to identify locations for detailed study which appeared to have effective controls; three facilities were chosen for in-depth evaluation. The controls were evaluated by industrial hygiene sampling. Including personal breathing zone and area air sampling for arsenic and arsine; wipe samples for arsenic also were collected. Work practices and the use of personal protective equipment were documented. This paper reports on the controls and the arsenic exposure results from the evaluation of the following gallium arsenide processes: Liquid Encapsulated Czochralski (LEC) and Horizontal Bridgeman (HB) crystal growing, LEC cleaning operations, ingot grinding/wafer sawing, and epitaxy. Results at one plant showed that in all processes except epitaxy, average arsenic exposures were at or above the OSHA action level of 5 micrograms/m3. While cleaning the LEC crystal pullers, the average potential arsenic exposure of the cleaning operators was 100 times the OSHA PEL. At the other two plants, personal exposures for arsenic were well controlled in LEC, LEC cleaning, grinding/sawing, and epitaxy operations.

  18. Study of current instabilities in high resistivity gallium arsenide

    International Nuclear Information System (INIS)

    Barraud, A.

    1968-01-01

    We have shown the existence and made a study of the current oscillations produced in high-resistivity gallium arsenide by a strong electric field. The oscillations are associated with the slow travelling of a region of high electrical field across the whole sample. An experimental study of the properties of these instabilities has made it possible for us to distinguish this phenomenon from the Gunn effect, from acoustic-electric effects and from contact effects. In order to account for this type of instability, a differential trapping mechanism involving repulsive impurities is proposed; this mechanism can reduce the concentration of charge carriers in the conduction band at strong electrical fields and can lead to the production of a high-field domain. By developing this model qualitatively we have been able to account for all the properties of high-resistance gallium arsenide crystals subjected to a strong electrical field: increase of the Hall constant, existence of a voltage threshold for these oscillations, production of domains of high field, low rate of propagation of these domains, and finally the possibility of inverting the direction of the propagation of the domain without destroying the latter. A quantitative development of the model makes it possible to calculate the various characteristic parameters of these instabilities. Comparison with experiment shows that there is a good agreement, the small deviations coming especially from the lack of knowledge concerning transport properties in gallium arsenide subjected to high fields. From a study of this model, it appears that the instability phenomenon can occur over a wide range of repulsive centre concentrations, and also for a large range of resistivities. This is the reason why it appears systematically in gallium arsenide of medium and high resistivity. (authors) [fr

  19. Testing of gallium arsenide solar cells on the CRRES vehicle

    International Nuclear Information System (INIS)

    Trumble, T.M.

    1985-01-01

    A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage

  20. Liquid phase epitaxy of gallium arsenide - a review

    International Nuclear Information System (INIS)

    Alexiev, D.; Edmondson, M.; Butcher, K.S.A.; Tansley, T.

    1992-07-01

    Liquid phase epitaxy of gallium arsenide has been investigated intensively from the late 1960's to the present and has now a special place in the manufacture of wide band, compound semiconductor radiation detectors. Although this particular process appears to have gained prominence in the last three decades, the authors point out that its origins reach back to 1836 when Frankenheim made his first observations. A brief review is presented from a semiconductor applications point of view on how this subject developed. 70 refs., 5 figs

  1. Anomalous tensoelectric effects in gallium arsenide tunnel diodes

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.; Shchegol' , A.A.

    1988-02-01

    Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.

  2. Neutron transmutation doping of gallium arsenide

    International Nuclear Information System (INIS)

    Alexiev, D.

    1987-12-01

    Neutron transmutation doping (NTD) was studied as a means of compensating p-type Cd-doped GaAs. By introducing specific donor concentrations, the net acceptor level was measured and showed a progressive reduction. The NTD constant K = 0.32 donor atoms.cm 3 per cm 2 was also measured. Radiation damage caused by neutron bombardment was annealed and no additional traps were generated

  3. Macroscopic diffusion models for precipitation in crystalline gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Kimmerle, Sven-Joachim Wolfgang

    2009-09-21

    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose two different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first model treats the diffusion-controlled regime of interface motion, while the second model is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. These models generalise the well-known Mullins- Sekerka model for Ostwald ripening. We concentrate on arsenic-rich liquid spherical droplets in a gallium arsenide crystal. Droplets can shrink or grow with time but the centres of droplets remain fixed. The liquid is assumed to be homogeneous in space. Due to different scales for typical distances between droplets and typical radii of liquid droplets we can derive formally so-called mean field models. For a model in the diffusion-controlled regime we prove this limit by homogenisation techniques under plausible assumptions. These mean field models generalise the Lifshitz-Slyozov-Wagner model, which can be derived from the Mullins-Sekerka model rigorously, and is well understood. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. We determine possible equilibria and discuss their stability. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  4. Synchrotron white beam topographic studies of gallium arsenide crystals

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Wieteska, K.; Graeff, W.

    1997-01-01

    A series of samples cut out from different types of gallium arsenide crystals with low dislocation density were studied by means of white beam synchrotron topography. The investigation was performed with transmission and black-reflection projection methods and transmission section method. Some of topographs in transmission geometry provided a very high sensitivity suitable for revealing small precipitates. The transmission section images significantly differed depending on the wavelength and absorption. In some cases a distinct Pendelloesung fringes and fine details of dislocation and precipitates images were observed. It was possible to reproduce the character of these images by means of numerical simulation based on integration of Takagi-Taupin equations. Due to more convenient choice of radiation, synchrotron back-reflection projection topography provided much better visibility of dislocations than analogous realized with conventional X-ray sources. (author)

  5. Density Functional Theory Study on Defect Feature of AsGaGaAs in Gallium Arsenide

    Directory of Open Access Journals (Sweden)

    Deming Ma

    2015-01-01

    Full Text Available We investigate the defect feature of AsGaGaAs defect in gallium arsenide clusters in detail by using first-principles calculations based on the density functional theory (DFT. Our calculations reveal that the lowest donor level of AsGaGaAs defect on the gallium arsenide crystal surface is 0.85 eV below the conduction band minimum, while the lowest donor level of the AsGaGaAs defect inside the gallium arsenide bulk is 0.83 eV below the bottom of the conduction band, consistent with gallium arsenide EL2 defect level of experimental value (Ec-0.82 eV. This suggests that AsGaGaAs defect is one of the possible gallium arsenide EL2 deep-level defects. Moreover, our results also indicate that the formation energies of internal AsGaGaAs and surface AsGaGaAs defects are predicted to be around 2.36 eV and 5.54 eV, respectively. This implies that formation of AsGaGaAs defect within the crystal is easier than that of surface. Our results offer assistance in discussing the structure of gallium arsenide deep-level defect and its effect on the material.

  6. Optical and Electrical Characterization of Melt-Grown Bulk Indium Gallium Arsenide and Indium Arsenic Phosphide Alloys

    Science.gov (United States)

    2011-03-01

    spectrum, photoluminescence (PL), and refractive index measurements. Other methods such as infrared imagery and micro probe wavelength dispersing ...States. AFIT/DS/ENP/11-M02 OPTICAL AND ELECTRICAL CHARACTERIZATION OF MELT- GROWN BULK INDIUM GALLIUM ARSENIDE AND INDIUM ARSENIC PHOSPHIDE ...CHARACTERIZATION OF MELT-GROWN BULK INDIUM GALLIUM ARSENIDE AND INDIUM ARSENIC PHOSPHIDE ALLOYS Jean Wei, BS, MS Approved

  7. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    Energy Technology Data Exchange (ETDEWEB)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna [School of Microelectronic Engineering, Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  8. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    Science.gov (United States)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-05-01

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, Pmax was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  9. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    International Nuclear Information System (INIS)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-01-01

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P max was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs

  10. Properties of gallium arsenide alloyed with Ge and Se by irradiation in nuclear reactor thermal column

    International Nuclear Information System (INIS)

    Kolin, N.G.; Osvenskij, V.B.; Tokarevskij, V.V.; Kharchenko, V.A.; Ievlev, S.M.

    1985-01-01

    Dependences of electrophysical properties as well as lattice unit spacing and density of nuclear-alloyed gallium arsenide on the fluence of reactor neutrons and heat treatment are investigated. Neutron radiation of gallium arsenide with different energy spectra is shown to differently affect material properties. Fast neutrons make the main contribution to defect formation. Concentration of compensating acceptor defects formed under GaAs radiation in a thermal column practically equals concentration of introduced donor impurities. Radiation defects of acceptor type are not annealed in the material completely even at 900-1000 deg C

  11. Noise suppression and long-range exchange coupling for gallium arsenide spin qubits

    DEFF Research Database (Denmark)

    Malinowski, Filip

    This thesis presents the results of the experimental study performed on spin qubits realized in gate-defined gallium arsenide quantum dots, with the focus on noise suppression and long-distance coupling. First, we show that the susceptibility to charge noise can be reduced by reducing the gradien...

  12. Continuum modelling of silicon diffusion in indium gallium arsenide

    Science.gov (United States)

    Aldridge, Henry Lee, Jr.

    A possible method to overcome the physical limitations experienced by continued transistor scaling and continue improvements in performance and power consumption is integration of III-V semiconductors as alternative channel materials for logic devices. Indium Gallium Arsenide (InGaAs) is such a material from the III-V semiconductor family, which exhibit superior electron mobilities and injection velocities than that of silicon. In order for InGaAs integration to be realized, contact resistances must be minimized through maximizing activation of dopants in this material. Additionally, redistribution of dopants during processing must be clearly understood and ultimately controlled at the nanometer-scale. In this work, the activation and diffusion behavior of silicon, a prominent n-type dopant in InGaAs, has been characterized and subsequently modelled using the Florida Object Oriented Process and Device Simulator (FLOOPS). In contrast to previous reports, silicon exhibits non-negligible diffusion in InGaAs, even for smaller thermal budget rapid thermal anneals (RTAs). Its diffusion is heavily concentration-dependent, with broadening "shoulder-like" profiles when doping levels exceed 1-3x1019cm -3, for both ion-implanted and Molecular Beam Epitaxy (MBE)-grown cases. Likewise a max net-activation value of ˜1.7x1019cm -3 is consistently reached with enough thermal processing, regardless of doping method. In line with experimental results and several ab-initio calculation results, rapid concentration-dependent diffusion of Si in InGaAs and the upper limits of its activation is believed to be governed by cation vacancies that serve as compensating defects in heavily n-type regions of InGaAs. These results are ultimately in line with an amphoteric defect model, where the activation limits of dopants are an intrinsic limitation of the material, rather than governed by individual dopant species or their methods of incorporation. As a result a Fermi level dependent point

  13. Complete p-type activation in vertical-gradient freeze GaAs co-implanted with gallium and carbon

    Science.gov (United States)

    Horng, S. T.; Goorsky, M. S.

    1996-03-01

    High-resolution triple-axis x-ray diffractometry and Hall-effect measurements were used to characterize damage evolution and electrical activation in gallium arsenide co-implanted with gallium and carbon ions. Complete p-type activation of GaAs co-implanted with 5×1014 Ga cm-2 and 5×1014 C cm-2 was achieved after rapid thermal annealing at 1100 °C for 10 s. X-ray diffuse scattering was found to increase after rapid thermal annealing at 600-900 °C due to the aggregation of implantation-induced point defects. In this annealing range, there was ˜10%-72% activation. After annealing at higher annealing temperatures, the diffuse scattered intensity decreased drastically; samples that had been annealed at 1000 °C (80% activated) and 1100 °C (˜100% activated) exhibited reciprocal space maps that were indicative of high crystallinity. The hole mobility was about 60 cm2/V s for all samples annealed at 800 °C and above, indicating that the crystal perfection influences dopant activation more strongly than it influences mobility. Since the high-temperature annealing simultaneously increases dopant activation and reduces x-ray diffuse scattering, we conclude that point defect complexes which form at lower annealing temperatures are responsible for both the diffuse scatter and the reduced activation.

  14. Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment

    Science.gov (United States)

    Francis, R. W.; Betz, F. E.

    1985-01-01

    The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.

  15. A study of ion implanted gallium arsenide using deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Emerson, N.G.

    1981-03-01

    This thesis is concerned with the study of deep energy levels in ion implanted gallium arsenide (GaAs) using deep level transient spectroscopy (D.L.T.S.). The D.L.T.S. technique is used to characterise deep levels in terms of their activation energies and capture cross-sections and to determine their concentration profiles. The main objective is to characterise the effects on deep levels, of ion implantation and the related annealing processes. In the majority of cases assessment is carried out using Schottky barrier diodes. Low doses of selenium ions 1 to 3 x 10 12 cm -2 are implanted into vapour phase epitaxial (V.P.E.) GaAs and the effects of post-implantation thermal and pulsed laser annealing are compared. The process of oxygen implantation with doses in the range 1 x 10 12 to 5 x 10 13 cm -2 followed by thermal annealing at about 750 deg C, introduces a deep level at 0.79 eV from the conduction band. Oxygen implantation, at doses of 5 x 10 13 cm -2 , into V.P.E. GaAs produces a significant increase in the concentration of the A-centre (0.83 eV). High doses of zinc (10 15 cm -2 ) are implanted into n-type V.P.E. GaAs to form shallow p-type layers. The D.L.T.S. system described in the text is used to measure levels in the range 0.16 to 1.1 eV (for GaAs) with a sensitivity of the order 1:10 3 . (U.K.)

  16. Effect of barrier height on friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals

    Science.gov (United States)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.

  17. Detection of spin-states in Mn-doped gallium arsenide films

    International Nuclear Information System (INIS)

    Hofer, Werner A; Palotas, Krisztian; Teobaldi, Gilberto; Sadowski, Janusz; Mikkelsen, Anders; Lundgren, Edvin

    2007-01-01

    We show that isolated magnetic dipoles centred at the position of manganese impurities in a gallium arsenide lattice lead to spin polarized states in the bandgap of the III-V semiconductor. Spectroscopy simulations with a tungsten tip agree well with experimental data; in this case, no difference can be observed for the two magnetic groundstates. But if the signal is read with a magnetic iron tip, it changes by a factor of up to 20, depending on the magnetic orientation of the Mn atom

  18. Growth of Gold-assisted Gallium Arsenide Nanowires on Silicon Substrates via Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Ramon M. delos Santos

    2008-06-01

    Full Text Available Gallium arsenide nanowires were grown on silicon (100 substrates by what is called the vapor-liquid-solid (VLS growth mechanism using a molecular beam epitaxy (MBE system. Good quality nanowires with surface density of approximately 108 nanowires per square centimeter were produced by utilizing gold nanoparticles, with density of 1011 nanoparticles per square centimeter, as catalysts for nanowire growth. X-ray diffraction measurements, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy revealed that the nanowires are epitaxially grown on the silicon substrates, are oriented along the [111] direction and have cubic zincblende structure.

  19. Pulsed electron-beam annealing of selenium-implanted gallium arsenide

    International Nuclear Information System (INIS)

    Inada, T.; Tokunaga, K.; Taka, S.

    1979-01-01

    Electrical properties of selenium-implanted gallium arsenide annealed by a single shot of high-power pulsed electron beams have been investigated by differential Hall-effect and sheet-resistivity measurements. It has been shown that higher electrical activation of implanted selenium can be obtained after electron-beam annealing at an incident energy density of 1.2 J/cm 2 , independent of heating of GaAs substrate during implantation. Measured carrier concentrations exhibit uniformly distributed profiles having carrier concentrations of 2--3 x 10 19 /cm 3 , which is difficult to realize by conventional thermal annealing

  20. THE QUANTUM-WELL STRUCTURES OF SELF ELECTROOPTIC-EFFECT DEVICES AND GALLIUM-ARSENIDE

    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ

    1996-02-01

    Full Text Available Multiple quantum-well (MQW electroabsorptive self electro optic-effect devices (SEEDs are being extensively studied for use in optical switching and computing. The self electro-optic-effect devices which has quantum-well structures is a new optoelectronic technology with capability to obtain both optical inputs and outputs for Gallium-Arsenide/Aluminum Gallium-Arsenide (GaAs/AlGaAs electronic circuits. The optical inputs and outputs are based on quantum-well absorptive properties. These quantum-well structures consist of many thin layers of semiconductors materials of GaAs/AlGaAs which have emerged some important directions recently. The most important advance in the physics of these materials since the early days has been invention of the heterojunction structures which is based at present on GaAs technology. GaAs/AlGaAs structures present some important advantages to relevant band gap and index of refraction which allow to form the quantum-well structures and also to make semiconductor lasers, dedectors and waveguide optical switches.

  1. Structural and electrooptical characteristics of quantum dots emitting at 1.3 μm on gallium arsenide

    DEFF Research Database (Denmark)

    Fiore, A.; Oesterle, U.; Stanley, R.P.

    2001-01-01

    We present a comprehensive study of the structural and emission properties of self-assembled InAs quantum dots emitting at 1.3 mum. The dots are grown by molecular beam epitaxy on gallium arsenide substrates. Room-temperature emission at 1.3 mum is obtained by embedding the dots in an InGaAs layer...

  2. A final report for Gallium arsenide P-I-N detectors for high-sensitivity imaging of thermal neutrons

    CERN Document Server

    Vernon, S M

    1999-01-01

    This SBIR Phase I developed neutron detectors made FR-om gallium arsenide (GaAs) p-type/ intrinsic/n-type (P-I-N) diodes grown by metalorganic chemical vapor deposition (MOCVD) onto semi-insulating (S1) bulk GaAs wafers. A layer of isotonically enriched boron-10 evaporated onto the FR-ont surface serves to convert incoming neutrons into lithium ions and a 1.47 MeV alpha particle which creates electron-hole pairs that are detected by the GaAs diode. Various thicknesses of ''intrinsic'' (I) undoped GaAs were tested, as was use of a back-surface field (BSF) formed FR-om a layer of Al sub x Ga sub 1 sub - sub x As. Schottky-barrier diodes formed FR-om the same structures without the p+ GaAs top layer were tested as a comparison. After mesa etching and application of contacts, devices were tested in visible light before application of the boron coating. Internal quantum efficiency (IQE) of the best diode near the GaAs bandedge is over 90%. The lowest dark current measured is 1 x 10 sup - sup 1 sup 2 amps at -1 V o...

  3. Damage structure of gallium arsenide irradiated in a high-voltage electron microscope

    International Nuclear Information System (INIS)

    Loretto, D.; Loretto, M.H.

    1989-01-01

    Semi-insulating undoped gallium arsenide has been irradiated in a high-voltage electron microscope between room temperature and about 500 0 C for doses of up to 5 x 10 22 electrons cm -2 at 1 MeV. Room-temperature irradiation produces small (less than 5 nm) damage clusters. As the temperature of the irradiation is increased, the size of these clusters increases, until at about 300 0 C a high density of dislocation loops can be resolved. The dislocation loops, 20 nm or less in diameter, which are produced at about 500 0 C have been analysed in a bright field using a two-beam inside-outside method which minimises the tilt necessary between micrographs. It is concluded that the loops are an interstitial perfect-edge type with a Burgers vector of (a/2) . (author)

  4. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    Science.gov (United States)

    Bhasin, K. B.; Connolly, D. J.

    1986-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  5. Ultrafast photocurrents and terahertz radiation in gallium arsenide and carbon based nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Prechtel, Hans Leonhard

    2011-08-15

    In this thesis we developed a measurement technique based on a common pump-probe scheme and coplanar stripline circuits that enables time-resolved photocurrent measurements of contacted nanosystems with a micrometer spatial and a picosecond time resolution. The measurement technique was applied to lowtemperature grown gallium arsenide (LT-GaAs), carbon nanotubes (CNTs), graphene, and p-doped gallium arsenide (GaAs) nanowires. The various mechanisms responsible for the generation of current pulses by pulsed laser excitation were reviewed. Furthermore the propagation of the resulting electromagnetic radiation along a coplanar stripline circuit was theoretically and numerically treated. The ultrafast photocurrent response of low-temperature grown GaAs was investigated. We found two photocurrent pulses in the time-resolved response. We showed that the first pulse is consistent with a displacement current pulse. We interpreted the second pulse to result from a transport current process. We further determined the velocity of the photo-generated charge carriers to exceed the drift, thermal and quantum velocities of single charge carriers. Hereby, we interpreted the transport current pulse to stem from an electron-hole plasma excitation. We demonstrated that the photocurrent response of CNTs comprises an ultrafast displacement current and a transport current. The data suggested that the photocurrent is finally terminated by the recombination lifetime of the charge carriers. To the best of our knowledge, we presented in this thesis the first recombination lifetime measurements of contacted, suspended, CVD grown CNT networks. In addition, we studied the ultrafast photocurrent dynamics of freely suspended graphene contacted by metal electrodes. At the graphene-metal interface, we demonstrated that built-in electric fields give rise to a photocurrent with a full-width-half-maximum of a few picoseconds and that a photo-thermoelectric effect generates a current with a decay time

  6. Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots

    Science.gov (United States)

    Shang, Ru-Nan; Zhang, Ting; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping

    2018-02-01

    Besides the spin Kondo effect, other degrees of freedom can give rise to the pseudospin Kondo effect. We report a direct observation of the orbital spin Kondo effect in a series-coupled gallium arsenide (GaAs) double quantum dot device where orbital degrees act as pseudospin. Electron occupation in both dots induces a pseudospin Kondo effect. In a region of one net spin impurity, complete spectra with three resonance peaks are observed. Furthermore, we observe a pseudo-Zeeman effect and demonstrate its electrical controllability for the artificial pseudospin in this orbital spin Kondo process via gate voltage control. The fourfold degeneracy point is realized at a specific value supplemented by spin degeneracy, indicating a transition from the SU(2) to the SU(4) Kondo effect.

  7. Precision calibration of the silicon doping level in gallium arsenide epitaxial layers

    Science.gov (United States)

    Mokhov, D. V.; Berezovskaya, T. N.; Kuzmenkov, A. G.; Maleev, N. A.; Timoshnev, S. N.; Ustinov, V. M.

    2017-10-01

    An approach to precision calibration of the silicon doping level in gallium arsenide epitaxial layers is discussed that is based on studying the dependence of the carrier density in the test GaAs layer on the silicon- source temperature using the Hall-effect and CV profiling techniques. The parameters are measured by standard or certified measuring techniques and approved measuring instruments. It is demonstrated that the use of CV profiling for controlling the carrier density in the test GaAs layer at the thorough optimization of the measuring procedure ensures the highest accuracy and reliability of doping level calibration in the epitaxial layers with a relative error of no larger than 2.5%.

  8. Model for transport and reaction of defects and carriers within displacement cascades in gallium arsenide

    International Nuclear Information System (INIS)

    Wampler, William R.; Myers, Samuel M.

    2015-01-01

    A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers, and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation

  9. Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats

    International Nuclear Information System (INIS)

    Flora, Swaran J.S.; Bhatt, Kapil; Mehta, Ashish

    2009-01-01

    Gallium arsenide (GaAs), an intermetallic semiconductor finds widespread applications in high frequency microwave and millimeter wave, and ultra fast supercomputers. Extensive use of GaAs has led to increased exposure to humans working in semiconductor industry. GaAs has the ability to dissociate into its constitutive moieties at physiological pH and might be responsible for the oxidative stress. The present study was aimed at evaluating, the principle moiety (Ga or As) in GaAs to cause neurological dysfunction based on its ability to cause apoptosis, in vivo and in vitro and if this neuronal dysfunction translated to neurobehavioral changes in chronically exposed rats. Result indicated that arsenic moiety in GaAs was mainly responsible for causing oxidative stress via increased reactive oxygen species (ROS) and nitric oxide (NO) generation, both in vitro and in vivo. Increased ROS further caused apoptosis via mitochondrial driven pathway. Effects of oxidative stress were also confirmed based on alterations in antioxidant enzymes, GPx, GST and SOD in rat brain. We noted that ROS induced oxidative stress caused changes in the brain neurotransmitter levels, Acetylcholinesterase and nitric oxide synthase, leading to loss of memory and learning in rats. The study demonstrates for the first time that the slow release of arsenic moiety from GaAs is mainly responsible for oxidative stress induced apoptosis in neuronal cells causing behavioral changes.

  10. Modelling of the small pixel effect in gallium arsenide X-ray imaging detectors

    CERN Document Server

    Sellin, P J

    1999-01-01

    A Monte Carlo simulation has been carried out to investigate the small pixel effect in highly pixellated X-ray imaging detectors fabricated from semi-insulating gallium arsenide. The presence of highly non-uniform weighting fields in detectors with a small pixel geometry causes the majority of the induced signal to be generated when the moving charges are close to the pixellated contacts. The response of GaAs X-ray imaging detectors is further complicated by the presence of charge trapping, particularly of electrons. In this work detectors are modelled with a pixel pitch of 40 and 150 mu m, and with thicknesses of 300 and 500 mu m. Pulses induced in devices with 40 mu m pixels are due almost totally to the movement of the lightly-trapped holes and can exhibit significantly higher charge collection efficiencies than detectors with large electrodes, in which electron trapping is significant. Details of the charge collection efficiencies as a function of interaction depth in the detector and of the incident phot...

  11. Radiation effects in silicon and gallium arsenide solar cells using isotropic and normally incident radiation

    Science.gov (United States)

    Anspaugh, B. E.; Downing, R. G.

    1984-01-01

    Several types of silicon and gallium arsenide solar cells were irradiated with protons with energies between 50 keV and 10 MeV at both normal and isotropic incidence. Damage coefficients for maximum power relative to 10 MeV were derived for these cells for both cases of omni-directional and normal incidence. The damage coefficients for the silicon cells were found to be somewhat lower than those quoted in the Solar Cell Radiation Handbook. These values were used to compute omni-directional damage coefficients suitable for solar cells protected by coverglasses of practical thickness, which in turn were used to compute solar cell degradation in two proton-dominated orbits. In spite of the difference in the low energy proton damage coefficients, the difference between the handbook prediction and the prediction using the newly derived values was negligible. Damage coefficients for GaAs solar cells for short circuit current, open circuit voltage, and maximum power were also computed relative to 10 MeV protons. They were used to predict cell degradation in the same two orbits and in a 5600 nmi orbit. Results show the performance of the GaAs solar cells in these orbits to be superior to that of the Si cells.

  12. Irradiation effects of swift heavy ions on gallium arsenide, silicon and silicon diodes

    International Nuclear Information System (INIS)

    Bhoraskar, V.N.

    2001-01-01

    The irradiation effects of high energy lithium, boron, oxygen and silicon ions on crystalline silicon, gallium arsenide, porous silicon and silicon diodes were investigated. The ion energy and fluence were varied over the ranges 30 to 100 MeV and 10 11 to 10 14 ions/cm 2 respectively. Semiconductor samples were characterized with the x-ray fluorescence, photoluminescence, thermally stimulated exo-electron emission and optical reflectivity techniques. The life-time of minority carriers in crystalline silicon was measured with a pulsed electron beam and the lithium depth distribution in GaAs was measured with the neutron depth profiling technique. The diodes were characterized through electrical measurements. The results of optical reflectivity, life-time of minority carriers and photoluminescence show that swift heavy ions induce defects in the surface region of crystalline silicon. In the ion-irradiated GaAs, migration of silicon, oxygen and lithium atoms from the buried region towards the surface was observed, with orders of magnitude enhancement in the diffusion coefficients. Enhancement in the photoluminescence intensity was observed in the GaAs and porous silicon samples that, were irradiated with silicon ions. The trade-off between the turn-off time and the voltage, drop in diodes irradiated with different swift heavy ions was also studied. (author)

  13. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    Science.gov (United States)

    Jadhav, Vidya

    2015-09-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0> orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 1017 cm-3 were irradiated at 100 MeV Fe7+ ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 1010-1 × 1014 ions cm-2. The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet-visible-NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 1013, 5 × 1013 and 1 × 1014 ions cm-2, we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 1013 ion cm-2 was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E1, E1 + Δ and E2 band gaps in all irradiated samples.

  14. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    International Nuclear Information System (INIS)

    Jadhav, Vidya

    2015-01-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0〉 orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 10 17 cm −3 were irradiated at 100 MeV Fe 7+ ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 10 10 –1 × 10 14 ions cm −2 . The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet–visible–NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 10 13 , 5 × 10 13 and 1 × 10 14 ions cm −2 , we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 10 13 ion cm −2 was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E 1 , E 1 + Δ and E 2 band gaps in all irradiated samples

  15. Selectivity control of photosensitive structures based on gallium arsenide phosphide solid solutions by changing the rate of surface recombination

    International Nuclear Information System (INIS)

    Tarasov, S A; Andreev, M Y; Lamkin, I A; Solomonov, A V

    2016-01-01

    In this paper, we demonstrate the effect of surface recombination on spectral sensitivity of structures based on gallium arsenide phosphide solid solutions. Simulation of the effect for structures based on a p-n junction and a Schottky barrier was carried out. Photodetectors with different rates of surface recombination were fabricated by using different methods of preliminary treatment of the semiconductor surface. We experimentally demonstrated the possibility to control photodetector selectivity by altering the rate of surface recombination. The full width at half maximum was reduced by almost 4 times, while a relatively small decrease in sensitivity at the maximum was observed. (paper)

  16. Study of current instabilities in high resistivity gallium arsenide; Etude des instabilites de courant dans l'arseniure de gallium de haute resistivite

    Energy Technology Data Exchange (ETDEWEB)

    Barraud, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    We have shown the existence and made a study of the current oscillations produced in high-resistivity gallium arsenide by a strong electric field. The oscillations are associated with the slow travelling of a region of high electrical field across the whole sample. An experimental study of the properties of these instabilities has made it possible for us to distinguish this phenomenon from the Gunn effect, from acoustic-electric effects and from contact effects. In order to account for this type of instability, a differential trapping mechanism involving repulsive impurities is proposed; this mechanism can reduce the concentration of charge carriers in the conduction band at strong electrical fields and can lead to the production of a high-field domain. By developing this model qualitatively we have been able to account for all the properties of high-resistance gallium arsenide crystals subjected to a strong electrical field: increase of the Hall constant, existence of a voltage threshold for these oscillations, production of domains of high field, low rate of propagation of these domains, and finally the possibility of inverting the direction of the propagation of the domain without destroying the latter. A quantitative development of the model makes it possible to calculate the various characteristic parameters of these instabilities. Comparison with experiment shows that there is a good agreement, the small deviations coming especially from the lack of knowledge concerning transport properties in gallium arsenide subjected to high fields. From a study of this model, it appears that the instability phenomenon can occur over a wide range of repulsive centre concentrations, and also for a large range of resistivities. This is the reason why it appears systematically in gallium arsenide of medium and high resistivity. (authors) [French] Nous avons mis en evidence et etudie des oscillations de courant qui se produisent a champ electrique eleve dans l'arseniure de

  17. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, Vidya, E-mail: vj1510@yahoo.com

    2015-09-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0〉 orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 10{sup 17} cm{sup −3} were irradiated at 100 MeV Fe{sup 7+} ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 10{sup 10}–1 × 10{sup 14} ions cm{sup −2}. The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet–visible–NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 10{sup 13}, 5 × 10{sup 13} and 1 × 10{sup 14} ions cm{sup −2}, we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 10{sup 13} ion cm{sup −2} was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E{sub 1}, E{sub 1} + Δ and E{sub 2} band gaps in all irradiated samples.

  18. Gallium

    Science.gov (United States)

    Foley, Nora K.; Jaskula, Brian W.; Kimball, Bryn E.; Schulte, Ruth F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. Gallium is used in a wide variety of products that have microelectronic components containing either gallium arsenide (GaAs) or gallium nitride (GaN). GaAs is able to change electricity directly into laser light and is used in the manufacture of optoelectronic devices (laser diodes, light-emitting diodes [LEDs], photo detectors, and solar cells), which are important for aerospace and telecommunications applications and industrial and medical equipment. GaAs is also used in the production of highly specialized integrated circuits, semiconductors, and transistors; these are necessary for defense applications and high-performance computers. For example, cell phones with advanced personal computer-like functionality (smartphones) use GaAs-rich semiconductor components. GaN is used principally in the manufacture of LEDs and laser diodes, power electronics, and radio-frequency electronics. Because GaN power transistors operate at higher voltages and with a higher power density than GaAs devices, the uses for advanced GaN-based products are expected to increase in the future. Gallium technologies also have large power-handling capabilities and are used for cable television transmission, commercial wireless infrastructure, power electronics, and satellites. Gallium is also used for such familiar applications as screen backlighting for computer notebooks, flat-screen televisions, and desktop computer monitors.Gallium is dispersed in small amounts in many minerals and rocks where it substitutes for elements of similar size and charge, such as aluminum and zinc. For example, gallium is found in small amounts (about 50 parts per million) in such aluminum-bearing minerals as diaspore-boehmite and gibbsite, which form bauxite deposits, and in the zinc-sulfide mineral sphalerite, which is found in many mineral deposits. At the present time, gallium metal is derived mainly as a

  19. Investigation on properties of ultrafast switching in a bulk gallium arsenide avalanche semiconductor switch

    International Nuclear Information System (INIS)

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Yuan, Xuelin

    2014-01-01

    Properties of ultrafast switching in a bulk gallium arsenide (GaAs) avalanche semiconductor switch based on semi-insulating wafer, triggered by an optical pulse, were analyzed using physics-based numerical simulations. It has been demonstrated that when a voltage with amplitude of 5.2 kV is applied, after an exciting optical pulse with energy of 1 μJ arrival, the structure with thickness of 650 μm reaches a high conductivity state within 110 ps. Carriers are created due to photons absorption, and electrons and holes drift to anode and cathode terminals, respectively. Static ionizing domains appear both at anode and cathode terminals, and create impact-generated carriers which contribute to the formation of electron-hole plasma along entire channel. When the electric field in plasma region increases above the critical value (∼4 kV/cm) at which the electrons drift velocity peaks, a domain comes into being. An increase in carrier concentration due to avalanche multiplication in the domains reduces the domain width and results in the formation of an additional domain as soon as the field outside the domains increases above ∼4 kV/cm. The formation and evolution of multiple powerfully avalanching domains observed in the simulations are the physical reasons of ultrafast switching. The switch exhibits delayed breakdown with the characteristics affected by biased electric field, current density, and optical pulse energy. The dependence of threshold energy of the exciting optical pulse on the biased electric field is discussed

  20. Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide

    Directory of Open Access Journals (Sweden)

    Domenico Melisi

    2014-11-01

    Full Text Available In this paper, a spray technique is used to perform low temperature deposition of multi-wall carbon nanotubes on semi-insulating gallium arsenide in order to obtain photodectors. A dispersion of nanotube powder in non-polar 1,2-dichloroethane is used as starting material. The morphological properties of the deposited films has been analysed by means of electron microscopy, in scanning and transmission mode. Detectors with different layouts have been prepared and current–voltage characteristics have been recorded in the dark and under irradiation with light in the range from ultraviolet to near infrared. The device spectral efficiency obtained from the electrical characterization is finally reported and an improvement of the photodetector behavior due to the nanotubes is presented and discussed.

  1. Study of Gallium Arsenide Etching in a DC Discharge in Low-Pressure HCl-Containing Mixtures

    Science.gov (United States)

    Dunaev, A. V.; Murin, D. B.

    2018-04-01

    Halogen-containing plasmas are often used to form topological structures on semiconductor surfaces; therefore, spectral monitoring of the etching process is an important diagnostic tool in modern electronics. In this work, the emission spectra of gas discharges in mixtures of hydrogen chloride with argon, chlorine, and hydrogen in the presence of a semiconducting gallium arsenide plate were studied. Spectral lines and bands of the GaAs etching products appropriate for monitoring the etching rate were determined. It is shown that the emission intensity of the etching products is proportional to the GaAs etching rate in plasmas of HCl mixtures with Ar and Cl2, which makes it possible to monitor the etching process in real time by means of spectral methods.

  2. Characteristics of trap-filled gallium arsenide photoconductive switches used in high gain pulsed power applications

    International Nuclear Information System (INIS)

    ISLAM, N.E.; SCHAMILOGLU, E.; MAR, ALAN; LOUBRIEL, GUILLERMO M.; ZUTAVERN, FRED J.; JOSHI, R.P.

    2000-01-01

    The electrical properties of semi-insulating (SI) Gallium Arsenide (GaAs) have been investigated for some time, particularly for its application as a substrate in microelectronics. Of late this material has found a variety of applications other than as an isolation region between devices, or the substrate of an active device. High resistivity SI GaAs is increasingly being used in charged particle detectors and photoconductive semiconductor switches (PCSS). PCSS made from these materials operating in both the linear and non-linear modes have applications such as firing sets, as drivers for lasers, and in high impedance, low current Q-switches or Pockels cells. In the non-linear mode, it has also been used in a system to generate Ultra-Wideband (UWB) High Power Microwaves (HPM). The choice of GaAs over silicon offers the advantage that its material properties allow for fast, repetitive switching action. Furthermore photoconductive switches have advantages over conventional switches such as improved jitter, better impedance matching, compact size, and in some cases, lower laser energy requirement for switching action. The rise time of the PCSS is an important parameter that affects the maximum energy transferred to the load and it depends, in addition to other parameters, on the bias or the average field across the switch. High field operation has been an important goal in PCSS research. Due to surface flashover or premature material breakdown at higher voltages, most PCSS, especially those used in high power operation, need to operate well below the inherent breakdown voltage of the material. The lifetime or the total number of switching operations before breakdown, is another important switch parameter that needs to be considered for operation at high bias conditions. A lifetime of ∼ 10 4 shots has been reported for PCSS's used in UWB-HPM generation [5], while it has exceeded 10 8 shots for electro-optic drivers. Much effort is currently being channeled in the

  3. High field electron-spin transport and observation of the Dyakonov-Perel spin relaxation of drifting electrons in low temperature-grown gallium arsenide

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2008-01-01

    High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained

  4. High field electron-spin transport and observation of the Dyakonov-Perel spin relaxation of drifting electrons in low temperature-grown gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong-4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-11-17

    High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained.

  5. Point defects and electric compensation in gallium arsenide single crystals; Punktdefekte und elektrische Kompensation in Galliumarsenid-Einkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Kretzer, Ulrich

    2007-12-10

    In the present thesis the point-defect budget of gallium arsenide single crystals with different dopings is studied. It is shown, in which way the concentration of the single point defects depende on the concentration of the dopants, the stoichiometry deviation, and the position of the Fermi level. For this serve the results of the measurement-technical characterization of a large number of samples, in the fabrication of which these parameters were directedly varied. The main topic of this thesis lies in the development of models, which allow a quantitative description of the experimentally studied electrical and optical properties of gallium arsenide single crystals starting from the point-defect concentrations. Because from point defects charge carriers can be set free, their concentration determines essentially the charge-carrier concentration in the bands. In the ionized state point defects act as scattering centers for free charge carriers and influence by this the drift mobility of the charge carriers. A thermodynamic modeling of the point-defect formation yields statements on the equilibrium concentrations of the point defects in dependence on dopant concentration and stoichiometry deviation. It is show that the electrical properties of the crystals observed at room temperature result from the kinetic suppression of processes, via which the adjustment of a thermodynamic equilibrium between the point defects is mediated. [German] In der vorliegenden Arbeit wird der Punktdefekthaushalt von Galliumarsenid-Einkristallen mit unterschiedlichen Dotierungen untersucht. Es wird gezeigt, in welcher Weise die Konzentration der einzelnen Punktdefekte von der Konzentration der Dotierstoffe, der Stoechiometrieabweichung und der Lage des Ferminiveaus abhaengen. Dazu dienen die Ergebnisse der messtechnischen Charakterisierung einer grossen Anzahl von Proben, bei deren Herstellung diese Parameter gezielt variiert wurden. Der Schwerpunkt der Arbeit liegt in der Entwicklung

  6. Defect study of Zn-doped p-type gallium antimonide using positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Ling, C. C.; Fung, S.; Beling, C. D.; Huimin, Weng

    2001-01-01

    Defects in p-type Zn-doped liquid-encapsulated Czochralski--grown GaSb were studied by the positron lifetime technique. The lifetime measurements were performed on the as-grown sample at temperature varying from 15 K to 297 K. A positron trapping center having a characteristic lifetime of 317 ps was identified as the neutral V Ga -related defect. Its concentration in the as-grown sample was found to be in the range of 10 17 --10 18 cm -3 . At an annealing temperature of 300 o C, the V Ga -related defect began annealing out and a new defect capable of trapping positrons was formed. This newly formed defect, having a lifetime value of 379 ps, is attributed to a vacancy--Zn-defect complex. This defect started annealing out at a temperature of 580 o C. A positron shallow trap having binding energy and concentration of 75 meV and 10 18 cm -3 , respectively, was also observed in the as-grown sample. This shallow trap is attributed to positrons forming hydrogenlike Rydberg states with the ionized dopant acceptor Zn

  7. Ohmic contact formation process on low n-type gallium arsenide (GaAs) using indium gallium zinc oxide (IGZO)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong-Uk [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Product and Test Engineering Team, System LSI Division, Samsung Electronics Co., Ltd, Yongin 446-711 (Korea, Republic of); Jung, Woo-Shik [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Lee, In-Yeal; Jung, Hyun-Wook; Kim, Gil-Ho [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Jin-Hong, E-mail: jhpark9@skku.edu [Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-02-01

    Highlights: • We propose a method to fabricate non-gold Ohmic contact on low n-type GaAs with IGZO. • 0.15 A/cm{sup 2} on-current and 1.5 on/off-current ratio are achieved in the junction. • InAs and InGaAs formed by this process decrease an electron barrier height. • Traps generated by diffused O atoms also induce a trap-assisted tunneling phenomenon. - Abstract: Here, an excellent non-gold Ohmic contact on low n-type GaAs is demonstrated by using indium gallium zinc oxide and investigating through time of flight-secondary ion mass spectrometry, X-ray photoelectron spectroscopy, transmission electron microscopy, J–V measurement, and H [enthalpy], S [entropy], Cp [heat capacity] chemistry simulation. In is diffused through GaAs during annealing and reacts with As, forming InAs and InGaAs phases with lower energy bandgap. As a result, it decreases the electron barrier height, eventually increasing the reverse current. In addition, traps generated by diffused O atoms induce a trap-assisted tunneling phenomenon, increasing generation current and subsequently the reverse current. Therefore, an excellent Ohmic contact with 0.15 A/cm{sup 2} on-current density and 1.5 on/off-current ratio is achieved on n-type GaAs.

  8. Trapping of positron in gallium arsenide: evidencing of vacancies and of ions with a negative charge

    International Nuclear Information System (INIS)

    Pierre, F.

    1989-12-01

    Vacancy type defects in Ga As as grown and irradiated by electrons are characterized by lifetime of positrons. Positron lifetime increases from 230 ps to 258 and 295 ps in presence of native vacancies in n type Ga As. Configuration of native vacancies changes when Fermi level crosses energy levels localized in the forbidden zone at 0.035eV and at 0.10eV from the bottom of the conduction band. Native vacancies are identified to arsenic vacancies with or without other point defects. Positron lifetime increases from 230 to 260 ps in presence of vacancies produced by low temperature irradiation negative ions are also produced. In irradiated Ga As, these ions trap positrons in competition with vacancies produced by irradiation, showing they have a negative charge. Two annealing zones between 180-300K and 300-600K are presented by vacancies. Ions do not anneal below ambient temperature. Vacancies and negative ions are identified respectively to gallium vacancies and gallium antisite [fr

  9. Study by optical spectroscopy of the interaction between a hydrogen multi-polar plasma and a gallium arsenide surface

    International Nuclear Information System (INIS)

    Ferdinand, Robin

    1990-01-01

    The objective of this research thesis has been to understand which are the involved species during the deoxidation-passivation stage of the processing of gallium arsenide platelets used in semiconductor industry. The author describes problems related to the presence of oxides, and highlights the benefit of using a hydrogen multi-polar plasma to softly remove surface oxides. The experimental set-up is notably characterised by the role of magnetic confinement and its influence on plasma. A theoretical model is then developed for a better understanding of chemical and physical-chemical reactions occurring in the hydrogen plasma. Based on the use of the Boltzmann equation, the model calculates the electron energy distribution function, and allows the follow-up of species present in the plasma with respect to available and accessible parameters (pressure, discharge current, discharge voltage). A spectroscopic study of the hydrogen plasma is then reported, and the numerical model is validated by interpreting line shapes of the hydrogen Balmer series. A second experimental approach, based on electrostatic probes, is implemented, and the Laframboise theory is applied to this technique and allows electronic and ionic densities, and electron temperature to be determined. Experimental and numerical results are compared. All this leads to the study of the interaction of plasma with a sample, with a first step of study of a mixture plasma containing 85 per cent of hydrogen and 15 per cent of arsine, in order to get a general knowledge of emissions related to the presence of AsH 3 . Finally, interaction studies are performed by using laser-induced fluorescence and conventional space-resolved optical spectroscopy

  10. The roles of the temperature on the structural and electronic properties of deep-level V{sub As}V{sub Ga} defects in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Deming, E-mail: xautmdm@163.com; Chen, Xi; Qiao, Hongbo; Shi, Wei; Li, Enling

    2015-07-15

    Highlights: • The energy gap of the Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} is 0.82 eV. • Proves that the Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} belongs to EL2 deep-level defect in GaAs. • Proves that EL2 and EL6 deep-level defects can transform into each other. • Temperature has an important effect on the microstructure of deep-level defects. - Abstract: The roles of temperature on the structural and electronic properties of V{sub As}V{sub Ga} defects in gallium arsenide have been studied by using ab-initio molecular dynamic (MD) simulation. Our calculated results show that the relatively stable quaternary complex defect of Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} can be converted from the V{sub As}V{sub Ga} complex clusters defect between 300 K and 1173 K; however, from 1173 K to 1373 K, the decomposition of the complex defect Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} occurs, turning into a deep-level V{sub As}V{sub Ga} cluster defect and an isolated As{sub Ga} antisite defect, and relevant defect of Ga{sub As} is recovered. The properties of Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} defect has been studied by first-principles calculations based on hybrid density functional theory. Our calculated results show that the Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} belongs to EL2 deep-level defect in GaAs. Thus, we reveal that the temperature has an important effect on the microstructure of deep-level defects and defect energy level in gallium arsenide that EL2 and EL6 deep-level defects have a certain correlation, which means they could transform into each other. Controlling temperature in the growth process of GaAs could change the microstructure of deep-level defects and defect energy levels in gallium arsenide materials, whereby affects the electron transport properties of materials.

  11. Gallium arsenide injection lasers

    International Nuclear Information System (INIS)

    Thompson, G.H.B.

    1975-01-01

    The semiconductor injection laser includes a thin inner GaAs p-n junction layer between two outer GaAlAs layers which are backed by further thin outer GaAlAs layers with a heavier doping of AlAs. This reduces optical losses. Optical energy is further confined within the inner layers and the lasing threshold reduced by added outer GaAs layers of low electrical and thermal resistivity

  12. Biological monitoring of arsenic exposure of gallium arsenide- and inorganic arsenic-exposed workers by determination of inorganic arsenic and its metabolites in urine and hair

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, H.; Takahashi, K.; Mashiko, M.; Yamamura, Y. (St. Marianna Univ. School of Medicine, Kawasaki (Japan))

    1989-11-01

    In an attempt to establish a method for biological monitoring of inorganic arsenic exposure, the chemical species of arsenic were measured in the urine and hair of gallium arsenide (GaAs) plant and copper smelter workers. Determination of urinary inorganic arsenic concentration proved sensitive enough to monitor the low-level inorganic arsenic exposure of the GaAs plant workers. The urinary inorganic arsenic concentration in the copper smelter workers was far higher than that of a control group and was associated with high urinary concentrations of the inorganic arsenic metabolites, methylarsonic acid (MAA) and dimethylarsinic acid (DMAA). The results established a method for exposure level-dependent biological monitoring of inorganic arsenic exposure. Low-level exposures could be monitored only by determining urinary inorganic arsenic concentration. High-level exposures clearly produced an increased urinary inorganic arsenic concentration, with an increased sum of urinary concentrations of inorganic arsenic and its metabolites (inorganic arsenic + MAA + DMAA). The determination of urinary arsenobetaine proved to determine specifically the seafood-derived arsenic, allowing this arsenic to be distinguished clearly from the arsenic from occupational exposure. Monitoring arsenic exposure by determining the arsenic in the hair appeared to be of value only when used for environmental monitoring of arsenic contamination rather than for biological monitoring.

  13. A novel wide range, real-time neutron fluence monitor based on commercial off the shelf gallium arsenide light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, B., E-mail: bhaskar.mukherjee@uk-essen.de [Westdeutsches Protonentherapiezentrum Essen (WPE) gGmbH, Hufelandstrasse 55, D-45147 Essen (Germany); Hentschel, R. [Strahlenklinik, University Hospital Essen (Germany); Lambert, J. [Westdeutsches Protonentherapiezentrum Essen (WPE) gGmbH, Hufelandstrasse 55, D-45147 Essen (Germany); Deya, W. [Strahlenklinik, University Hospital Essen (Germany); Farr, J. [Westdeutsches Protonentherapiezentrum Essen (WPE) gGmbH, Hufelandstrasse 55, D-45147 Essen (Germany)

    2011-10-01

    Displacement damage produced by high-energy neutrons in gallium arsenide (GaAs) light emitting diodes (LED) results in the reduction of light output. Based on this principle we have developed a simple, cost effective, neutron detector using commercial off the shelf (COTS) GaAs-LED for the assessment of neutron fluence and KERMA at critical locations in the vicinity of the 230 MeV proton therapy cyclotron operated by Westdeutsches Protonentherapiezentrum Essen (WPE). The LED detector response (mV) was found to be linear within the neutron fluence range of 3.0x10{sup 8}-1.0x10{sup 11} neutron cm{sup -2}. The response of the LED detector was proportional to neutron induced displacement damage in LED; hence, by using the differential KERMA coefficient of neutrons in GaAs, we have rescaled the calibration curve for two mono-energetic sources, i.e. 1 MeV neutrons and 14 MeV neutrons generated by D+T fusion reaction. In this paper we present the principle of the real-time GaAs-LED based neutron fluence monitor as mentioned above. The device was calibrated using fast neutrons produced by bombarding a thick beryllium target with 14 MeV deuterons from a TCC CV 28 medical cyclotron of the Strahlenklinik University Hospital Essen.

  14. Application of low-cost Gallium Arsenide light-emitting-diodes as kerma dosemeter and fluence monitor for high-energy neutrons

    International Nuclear Information System (INIS)

    Mukherjee, B.; Simrock, S.; Khachan, J.; Rybka, D.; Romaniuk, R.

    2007-01-01

    Displacement damage (DD) caused by fast neutrons in unbiased Gallium Arsenide (GaAs) light emitting diodes (LED) resulted in a reduction of the light output. On the other hand, a similar type of LED irradiated with gamma rays from a 60 Co source up to a dose level in excess of 1.0 kGy (1.0 x 10 5 rad) was found to show no significant drop of the light emission. This phenomenon was used to develop a low cost passive fluence monitor and kinetic energy released per unit mass dosemeter for accelerator-produced neutrons. These LED-dosemeters were used to assess the integrated fluence of photoneutrons, which were contaminated with a strong Bremsstrahlung gamma-background generated by the 730 MeV superconducting electron linac driving the free electron laser in Hamburg (FLASH) at Deutsches Elektronen-Synchrotron. The applications of GaAs LED as a routine neutron fluence monitor and DD precursor for the electronic components located in high-energy accelerator environment are highlighted. (authors)

  15. a Positron 2D-ACAR Study of the Silicon-Dioxide Interface and the Point Defects in the Semi-Insulating Gallium Arsenide

    Science.gov (United States)

    Peng, Jianping

    The SiO_2-Si system has been the subject of extensive study for several decades. Particular interest has been paid to the interface between Si single crystal and the amorphous SiO_2 which determines the properties and performances of devices. This is significant because of the importance of Si technology in the semiconductor industry. The development of the high-intensity slow positron beam at Brookhaven National Laboratory make it possible to study this system for the first time using the positron two-dimensional angular correlation of annihilation radiation (2D-ACAR) technique. 2D-ACAR is a well established and is a non-destructive microscopic probe for studying the electronic structure of materials, and for doing the depth-resolved measurements. Some unique information was obtained from the measurements performed on the SiO_2-Si system: Positronium (Ps) atoms formation and trapping in microvoids in both oxide and interface regions; and positron annihilation at vacancy-like defects in the interface region which can be attributed to the famous Pb centers. The discovery of the microvoids in the interface region may have some impact on the fabrication of the next generation electronic devices. Using the conventional 2D-ACAR setup with a ^{22}Na as positron source, we also studied the native arsenic (As) vacancy in the semi -insulating gallium-arsenide (SI-GaAs), coupled with in situ infrared light illumination. The defect spectrum was obtained by comparing the spectrum taken without photo -illumination to the spectrum taken with photo-illumination. The photo-illumination excited electrons from valence band to the defect level so that positrons can become localized in the defects. The two experiments may represent a new direction of the application of positron 2D-ACAR technique on the solid state physics and materials sciences.

  16. Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas

    Science.gov (United States)

    2007-06-01

    models is of great interest in space applications. By increasing the efficiency of photovoltaics, the number of solar panels is decreased. Therefore...obtained in single-junction solar cells by using Gallium Arsenide. Monocrystalline Gallium Arsenide has a maximum efficiency of approximately 25.1% [10

  17. Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet

    Science.gov (United States)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2015-02-01

    In this paper, we describe efforts to enhance the efficiency of Cu2O-based heterojunction solar cells fabricated with an aluminum-gallium-oxide (Al-Ga-O) thin film as the n-type layer and a p-type sodium (Na)-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing copper sheets. The optimal Al content [X; Al/(Ga + Al) atomic ratio] of an AlX-Ga1-X-O thin-film n-type layer was found to be approximately 2.5 at. %. The optimized resistivity was approximately 15 Ω cm for n-type AlX-Ga1-X-O/p-type Cu2O:Na heterojunction solar cells. A MgF2/AZO/Al0.025-Ga0.975-O/Cu2O:Na heterojunction solar cell with 6.1% efficiency was fabricated using a 60-nm-thick n-type oxide thin-film layer and a 0.2-mm-thick Cu2O:Na sheet with the optimized resistivity.

  18. Medical Applications and Toxicities of Gallium Compounds

    Directory of Open Access Journals (Sweden)

    Christopher R. Chitambar

    2010-05-01

    Full Text Available Over the past two to three decades, gallium compounds have gained importance in the fields of medicine and electronics. In clinical medicine, radioactive gallium and stable gallium nitrate are used as diagnostic and therapeutic agents in cancer and disorders of calcium and bone metabolism. In addition, gallium compounds have displayed anti-inflammatory and immunosuppressive activity in animal models of human disease while more recent studies have shown that gallium compounds may function as antimicrobial agents against certain pathogens. In a totally different realm, the chemical properties of gallium arsenide have led to its use in the semiconductor industry. Gallium compounds, whether used medically or in the electronics field, have toxicities. Patients receiving gallium nitrate for the treatment of various diseases may benefit from such therapy, but knowledge of the therapeutic index of this drug is necessary to avoid clinical toxicities. Animals exposed to gallium arsenide display toxicities in certain organ systems suggesting that environmental risks may exist for individuals exposed to this compound in the workplace. Although the arsenic moiety of gallium arsenide appears to be mainly responsible for its pulmonary toxicity, gallium may contribute to some of the detrimental effects in other organs. The use of older and newer gallium compounds in clinical medicine may be advanced by a better understanding of their mechanisms of action, drug resistance, pharmacology, and side-effects. This review will discuss the medical applications of gallium and its mechanisms of action, the newer gallium compounds and future directions for development, and the toxicities of gallium compounds in current use.

  19. POLLUTION PREVENTION IN THE SEMICONDUCTOR INDUSTRY THROUGH RECOVERY AND RECYCLING OF GALLIUM AND ARSENIC FROM GAAS POLISHING WASTES

    Science.gov (United States)

    A process was developed for the recovery of both arsenic and gallium from gallium arsenide polishing wastes. The economics associated with the current disposal techniques utilizing ferric hydroxide precipitation dictate that sequential recovery of toxic arsenic and valuble galliu...

  20. Gallium arsenide detectors for minimum ionizing particles

    International Nuclear Information System (INIS)

    Beaumont, S.B.; Bertin, R.; Booth, C.N.; Buttar, C.; Capiluppi, C.; Carraresi, L.; Cindolo, F.; Colocci, M.; Combley, F.H.; D'Auria, S.; Del Papa, C.; Dogru, M.; Edwards, M.; Fiori, F.; Foster, F.; Francescato, A.; Gray, R.; Hill, G.; Hou, Y.; Houston, P.; Hughes, G.; Jones, B.K.; Lynch, J.G.; Lisowsky, B.; Matheson, J.; Nava, F.; Nuti, M.; O'Shea, V.; Pelfer, P.G.; Raine, C.; Santana, J.; Saunders, I.J.; Seller, P.H.; Shankar, K.; Sharp, P.H.; Skillicorn, I.O.; Sloan, T.; Smith, K.M.; Tartoni, N.; Ten Have, I.; Turnbull, R.M.; Vanni, U.; Vinattieri, A.; Zichichi, A.

    1993-01-01

    Progress on the development of GaAs solid state detectors is presented. 80% charge collection efficiency has been achieved, and double sided detectors with metal rectifying contacts have been tested. Measurements of capacitance and tests with SEM are giving more information on the behaviour of these devices. (orig.)

  1. Development of gallium arsenide gamma spectrometric detector

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kuru, I.

    1975-03-01

    GaAs semiconductor material has been considered to be a suitable material for gamma-ray spectrometer operating at room temperature since it has a wid-band gap, larger than that of silicon and germanium. The basic objective of this work is to develop a GaAs gamma-ray spectrometric detector which could be used for gamma spectrometric measurement of uranium and plutonium in nuclear fuel safeguards. Liquid phase epitaxial techniques using iron (Fe) as dopant have been developed in making high purity GaAs crystals suitable for gamma-ray spectrometer operating at room temperature. Concentration of Fe in the epitaxial crystal was controlled by initial growth temperature. The best quality epitaxial crystal was obtained under the following conditions: starting temperature is about 800degC, the proportion of Fe to Ga solvent is 1 to 300. Carrier concentration of epitaxial crystals grown distributed in the ranges of 10 12 cm -3 to 10 14 cm -3 at room temperature. The thickness of the crystals ranged from 38 μm to 120 μm. Au-GaAs surface barrier detector was made of epitaxial crystal. Some of the detector were encapsulated in a can with a 50 μm Be window by welding a can to the detector holder. The detector with high energy resolution and good charge collecting characteristics was selected by alpha spectrometry at room temperature. Energy resolution of the detector for gamma-rays up to about 200 keV was very good at room temperature operation. The best energy resolutions taken with a GaAs detector were 3 keV (fwhm) and 3.8 keV for 241 Am 59.6 keV and 57 Co 122 keV, respectively, at room temperature. In order to study the applicability of the detector for nuclear safeguards, the measurements of 235 U gamma-ray spectrum have been carried out at room temperature. It was clarified that the gamma-ray spectrum of enriched U sample could be measured in high resolution with GaAs detector at room temperature, and that the content of 235 U in enriched U sources could be determined by measuring gamma-ray spectrum with GaAs detector. However, gamma-ray counting efficiency of the detector was not enough to built portable type instrument of gamma-ray spectrometer used for routine works of nuclear safeguards. In order to improve gamma-ray counting efficiency of the detector, double-epitaxial-layer detector has been studied. The preliminary results showed that the improvement of the detector gamma-ray counting efficiency was possible by using double-epitaxial-layer structure. It was also clarified that the good quality GaAs crystal was a key to obtaining a low noise, good charge collection detector

  2. Selenium implantation in epitaxial gallium arsenide layers

    International Nuclear Information System (INIS)

    Inada, T.; Tokunaga, K.; Taka, S.; Yuge, Y.; Kohzu, H.

    1981-01-01

    Selenium implantation at room temperature in S-doped epitaxial GaAs layers as a means of the formation of n + layers has been investigated. Doping profiles for Se-implanted layers have been examined by a C-V technique and/or a differential Hall effect method. It has been shown that n + layers with a maximum carrier concentration of approx. equal to1.5 x 10 18 cm -3 can be formed by implantation followed by a 15 min annealing at 950 0 C. Contact resistance of ohmic electrodes is reduced by use of the Se-implanted n + layers, resulting in the improvement on GaAs FET performance. Measured minimum noise figure of the Se-implanted GaAs FETs is 0.74 dB at 4 GHz. (orig.)

  3. Gallium Arsenide and Related Compounds, 1986.

    Science.gov (United States)

    1986-01-01

    F-Yiuang, WL,, PK Rhattacharva, UDas, A Chin , IJlackson and D L Persechini 417 -422 High quality lattice matched lnGaAs/InP heterostructures prepared...Sci. Technol. B3 1162. Schwartz G. P. 1983 Thin solid Films 103 3. Spicer W. E., Lindau I., Skeath P. R., Su C Y. and Chye P. W. 19R0 Phys. Rev. Lett... Chin R, Nakano K, and Milano R A 1981 IEEE J. Quantum Electron. QEJJ7, 275. Murgatroyd I J, Norman A G, and Booker G R 1986 Phys. Rev. Lett

  4. Lattice Dynamics of Gallium Phosphide

    International Nuclear Information System (INIS)

    Yarnell, J.L.; Warren, J.L.; Wenzel, R.G.; Dean, P.J.

    1968-01-01

    Dispersion curves for phonons propagating in the [100], [110], and [111] directions in gallium phosphide have been measured using a triple-axis neutron diffraction spectrometer operating in the constant-Q mode. The sample was a pseudo-single crystal which was prepared by gluing together 36 single crystal plates of gallium phosphide 1 to 2.5 cm in diameter and ∼0.07 cm thick. The plates were grown epitaxially on substrates of gallium arsenide or gallium phosphide, and aligned individually by neutron diffraction. Rocking curves for eight reflections symmetrically distributed in the plane of the experiment had full widths at half maximum in the range 0.52° - 0.58° and were approximately Gaussian in shape. Gallium phosphide crystallizes in the zinc blende structure. A group theoretic analysis of the lattice dynamics of this structure and a shell model fit to the measured dispersion curves are presented. Various optical properties of gallium phosphide are discussed in terms of the phonon dispersion curves. In particular, the phonons which assist indirect electronic transitions are identified as those at the zone boundary in the [100] direction (symmetry point X) in agreement with theoretical and experimental indications that the extrema of the conduction and valence bands are at X and Γ (center of the zone), respectively. The LO branches lie above the TO branches throughout the Brillouin zone in contradiction to the predictions of Keyes and Mitra. The shell model fit indicates that the charge on the gallium atom is negative. (author)

  5. Clinical evaluation of dentin hypersensitivity treatment with the low intensity Gallium-Aluminum-Arsenide laser - AsGaAl Avaliação clínica do tratamento da hiperestesia dentinária com laser de baixa potência de Arseniato de Gálio-Alumínio - AsGaAl

    Directory of Open Access Journals (Sweden)

    Luciana Chucre Gentile

    2004-12-01

    Full Text Available The dentin hypersensitivity is a painful condition rather prevalent in the general population. There are several ways of treatment for such condition, including the low intensity lasers. The proposal of this study was to verify the effectiveness of the Gallium-Aluminum-Arsenide diode laser in the treatment of this painful condition, using a placebo as control. MATERIALS AND METHODS: Thirty-two patients were selected, 22 females and 10 males, with ages ranging from 20 to 52 years old. The 32 patients were randomly distributed into two groups, treated and control; the sample consisted of 68 teeth, 35 in the treated group and 33 in the control group. The treated group was exposed to six laser applications with intervals from 48 to 72 hours, and the control group received, as placebo, applications of a curing light. RESULTS: A significant reduction was observed in the pain condition between the initial phase and after six laser applications; however, such reduction could also be observed for the control group exposed to the placebo. CONCLUSION: Therapy with the low intensity Gallium-Aluminum-Arsenide laser - AsGaAl induces a statistically significant reduction in the painful condition after each application and between the beginning and end of treatment, although there was no statistically significant difference between the treated group (laser and the control group (placebo at the end of treatment and after the mediate evaluation results (after 6 weeks, this way impairing the real measurement of laser effectiveness and placebo effect.A hiperestesia dentinária trata-se de uma condição dolorosa bastante prevalente nas populações mundiais. Várias são as modalidades de tratamento para tal condição, entre elas, os lasers de baixa potência. A proposta deste estudo foi a de verificar a efetividade do laser de diodo de Arseniato de Gálio-Alumínio no tratamento desta condição dolorosa, utilizando-se um placebo como controle. MATERIAIS E M

  6. Radiation annealing of gallium arsenide implanted with sulphur

    CERN Document Server

    Ardyshev, V M

    2002-01-01

    Sulfur ions were implanted in a semi-insulating GaAs. Photon annealing (805 deg C/(10-12) s) and the thermal one (800 deg C/30 min) were conducted under SiO sub 2 -films coating obtained by different ways. Contents of GaAs components in films were determined from Rutherford backscattering spectra; concentration profiles of electrons were measured by the voltage-capacitance method. Diffusion of sulfur was shown to go in two directions - to the surface and into bulk of GaAs. The first process was induced by vacancies that had been formed near the surface of semiconductors during the dielectric coating. The coefficient of the bulk-diffusion and diffusion-to-surface of sulfur ions under photon annealing was twice as much as that under thermal one. The doping efficiency was also larger

  7. Supralinear photoconductivity of copper doped semi-insulating gallium arsenide

    Science.gov (United States)

    Schoenbach, K. H.; Joshi, R. P.; Peterkin, F.; Druce, R. L.

    1995-05-01

    The high gain effect was shown to be a threshold effect and was dependent on the photoactivation energy level. For the studied material, laser energy densities in the order of 10 mJ cm(sup - 2) for a laser pulse duration of 200 ps were needed to switch into the high gain mode. The observed supralinear behavior of the peak photoconductivity and the charge carrier lifetime can be accounted by the shifts in quasi Fermi levels and the occupancy of copper states within the forbidden gap. Numerical simulations were also presented that yielded quantitative values for the trapping cross sections and recombination center densities. From the perspective of applications, the GaAs:Si:Cu material had great potential for high-power repetitive switching and photodetection.

  8. Supralinear photoconductivity of copper doped semi-insulating gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbach, K.H.; Joshi, R.P.; Peterkin, F. [Physical Electronics Research Institute, Old Dominion University, Norfolk, Virginia 23529 (United States); Druce, R.L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    1995-05-15

    We report on the intensity dependent supralinear photoconductivity in GaAs:Si:Cu material. The results of our measurements show that the effective carrier lifetime can change over two orders of magnitude with variations in the intensity of the optical excitation. A threshold intensity level has been observed and can be related to the occupancy of the deep copper level. Numerical simulations have also been carried out to analyze the trapping dynamics. The intensity dependent lifetimes obtained from the simulations match the experimental data very well. Finally, based on the nonlinear intensity dependence of the effective lifetimes, a possible low-energy phototransistor application for the GaAs:Cu material system is presented. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  9. Shallow doping of gallium arsenide by recoil implantation

    International Nuclear Information System (INIS)

    Sadana, D.K.; Souza, J.P. de; Rutz, R.F.; Cardone, F.; Norcott, M.H.

    1989-01-01

    Si atoms were recoil-implanted into GaAs by bombarding neutral (As + ) or dopant (Si + ) ions through a thin Si cap. The bombarded samples were subsequently rapid thermally or furnace annealed at 815-1000 degree C in Ar or arsine ambient. The presence of the recoiled Si in GaAs and resulting n + -doping was confirmed by secondary ion mass spectrometry and Hall measurements. It was found that sheet resistance of 19 cm 3 and the annealing temperature was > 850 degree C. The present electrical data show that the recoil implant method is a viable alternative to direct shallow implant for n + doping of GaAs. 7 refs., 3 figs., 1 tab

  10. Electrical properties of gallium arsenide irradiated with electrons and neutrons

    International Nuclear Information System (INIS)

    Kol'chenko, T.I.; Lomako, V.M.

    1975-01-01

    A study was made of changes in the electrical properties of GaAs doped with Te, S, Se, Si, Ge, Sn (n 0 approximately 10 16 -10 18 cm -3 ) and irradiated either with 2.5-28 MeV electrons or with fast reactor neutrons. An analysis of changes in the electron density indicated that the rate of carrier removal by electron bombardment was independent of the dopant but was governed by isolated radiation defects. The change in the mobility due to irradiation with 2.5-10 MeV electrons was also governed by isolated defects. When the electron energy was increased to 28 MeV the main contribution to the change in the mobility was made by defect clusters. In the neutron-irradiation case the changes in the carrier density and mobility were mainly due to defect clusters and the nature of changes in the electrical properties was again independent of the dopant

  11. Ultrafast Time-Resolved Photoluminescence Studies of Gallium-Arsenide

    Science.gov (United States)

    Johnson, Matthew Bruce

    This thesis concerns the study of ultrafast phenomena in GaAs using time-resolved photoluminescence (PL). The thesis consists of five chapters. Chapter one is an introduction, which discusses the study of ultrafast phenomena in semiconductors. Chapter two is a description of the colliding-pulse mode-locked (CPM) ring dye laser, which is at the heart of the experimental apparatus used in this thesis. Chapter three presents a detailed experimental and theoretical investigation of photoluminescence excitation correlation spectroscopy (PECS), the novel technique which is used to time-resolve ultrafast PL phenomena. Chapters 4 and 5 discuss two applications of the PECS technique. In Chapter 4 the variation of PL intensity in In-alloyed GaAs substrate material is studied, while Chapter 5 discusses the variation of carrier lifetimes in ion-damaged GaAs used in photo-conductive circuit elements (PCEs). PECS is a pulse-probe technique that measures the cross correlation of photo-excited carrier populations. The theoretical model employed in this thesis is based upon the rate equation for a simple three-level system consisting of valence and conduction bands and a single trap level. In the limit of radiative band-to-band dominated recombination, no PECS signal should be observed; while in the capture -dominated recombination limit, the PECS signal from the band-to-band PL measures the cross correlation of the excited electron and hole populations and thus, the electron and hole lifetimes. PECS is experimentally investigated using a case study of PL in semi-insulating (SI) GaAs and In -alloyed GaAs. At 77 K, the PECS signal is characteristic of a capture-dominated system, yielding an electron-hole lifetime of about 200 ps. However, at 5 K the behavior is more complicated and shows saturation effects due to the C acceptor level, which is un-ionized at 5 K. As a first application, PECS is used to investigate the large band-to-band PL contrast observed near dislocations in In-alloyed GaAs. It is found that the PL intensity contrast between bright and dark areas correlates with the ratio of the lifetimes measured using PECS in these areas. Thus, the PL intensity contrast is due to the difference in the carrier lifetimes in the different regions. The carrier lifetimes in the bright and dark regions have different temperature dependences. (Abstract shortened with permission of author.).

  12. Experimental studies on the photoemission of gallium arsenide crystals

    International Nuclear Information System (INIS)

    Westermann, M.

    2003-04-01

    In this thesis the study influence of residual gases on the lifetime, the temperature dependence of the quantum yield, and the influence of activation with potassium on both effects for GaAs-photocathodes is described. (HSI)

  13. Superlattice Intermediate Band Solar Cell on Gallium Arsenide

    Science.gov (United States)

    2015-02-09

    13  Figure 11. (a) Contour plot of device EOL efficiency as a function of emitter and i-region thickness for a 1MeV electron...fluence dose of 2x1015cm-2 (b) EOL I-V characteristic of the device...expanded our simulations to include the effect of radiation degradation to assess the end of life ( EOL ) efficiencies of these devices in space. Figure 10

  14. Electrodeposition of epitaxial CdSe on (111) gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Cachet, H.; Cortes, R.; Froment, M. [Universite Pierre et Marie Curie, Paris (France). Phys. des Liquides et Electrochimie; Etcheberry, A. [Institut Lavoisier (IREM) UMR CNRS C0173, Universite de Versailles- St Quentin en Yvelynes, 45 Avenue des Etats Unis, 78035, Versailles (France)

    2000-02-21

    Epitaxial growth of CdSe has been achieved on GaAs(111) by electrodeposition from an aqueous electrolyte. The structure of the film corresponds to the cubic modification of CdSe. The quality of epitaxy has been investigated by reflection high energy electron diffraction, transmission electron microscopy and X-ray diffraction techniques. By XPS measurements the chemistry of the CdSe/GaAs interface and the composition of CdSe are determined. (orig.)

  15. Multifunctional homojunction gallium arsenide n–p–m-structure

    Directory of Open Access Journals (Sweden)

    Karimov A. V.

    2009-11-01

    Full Text Available The brief information about created phototransistor nGaAs–рGaAs–Ag-structure are given. The processes of photogeneration of carriers in the base and in the space-charge layers of semiconductor junction as well as of metal — semiconductor junction are analyzed depending on the mode of inclusion. It is shown the multifunctionality of offered homojunction structure that is perspective for creating the optical receiver or the optical transformer.

  16. Characterizing and engineering tunable spin functionality inside indium arsenide/gallium arsenide quantum dot molecules

    Science.gov (United States)

    Liu, Weiwen

    The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.

  17. Doped Aluminum Gallium Arsenide (AlGaAs)/Gallium Arsenide (GaAs) Photoconductive Semiconductor Switch (PCSS) Fabrication

    Science.gov (United States)

    2016-09-27

    it as-grown and it densifies as the H leaves when annealed above approximately 500 °C. This densification causes the film to contract, becoming...tensile. The final deposition recipe shown in the Appendix, Section 2 was found after numerous trials and results in a minimum between compressive...marks b) ULVAC etch: 500 -W ICP, 50-W RIE, 4 mT, 16-sccm BCl3, 4-sccm Ar, 12 s (~50 nm)  GaAs etches at 7.54 nm/s after 6-s etch delay. PR etches at

  18. State and prospects of Russian and world gallium market

    Directory of Open Access Journals (Sweden)

    F. D. Larichkin

    2017-12-01

    Full Text Available The authors consider the state of Russian and world mineral and raw materials base of gallium, the main spheres of application in various branches and industries of the national economy. The article presents the generalization and analysis of trends in world and Russian production, consumption of rare metal and its compounds, the world trade and global market of gallium and products based on it, consuming it in new science-intensive innovative industries, including the production of military equipment. The unique chemical properties of gallium remained unclaimed for a long time. Only after the discovery of the semiconductor properties of gallium compounds has the situation radically changed: the rate of growth in production and consumption of metallic gallium at the end of the twentieth and beginning of the 21st century amounted to an average of more than 8% per year. The largest area of consumption of gallium is the production of semiconductor materials – gallium arsenide (GaAs and gallium nitride (GaN. The areas of application of gallium not related to the semiconductor industry are very small. Industry structure of consumption of GaAs and GaN: in integrated circuits is 66%; optoelectronic devices (light-emitting diodes, laser diodes, photodetectors and solar batteries – 20%; the remaining 14% – scientific research, special alloys, etc. Optoelectronic devices are used in aerospace industry, consumer goods, industrial and medical equipment and telecommunications. Integral circuits are used in the military industry, high-power computers and electronic communications. The most significant growing sectors of the market are LEDs, electronics based on gallium nitride and solar cells. Solar energy has become the fastest growing branch of the world economy. The volumes of gallium production in Russia do not correspond to its raw material, scientific and technological potential as the country and require the development activation based on state

  19. P -type transparent conducting oxides

    International Nuclear Information System (INIS)

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-01-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n -type, such as Sn doped In 2 O 3 , Al doped ZnO, and F doped SnO 2 . However, the development of efficient p -type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2 p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2 p orbitals with close-shell Cu 3 d 10 orbitals. This work has sparked tremendous interest in designing p -TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p -TCOs, including Cu + -based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr 3+ -based oxides (3 d 3 ) and post-transition metal oxides with lone pair state (ns 2 ). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p -type conductivity and optical properties. Device applications based on p -TCOs for transparent p – n junctions will also be briefly discussed. (topical review)

  20. High-performance indium gallium phosphide/gallium arsenide heterojunction bipolar transistors

    Science.gov (United States)

    Ahmari, David Abbas

    Heterojunction bipolar transistors (HBTs) have demonstrated the high-frequency characteristics as well as the high linearity, gain, and power efficiency necessary to make them attractive for a variety of applications. Specific applications for which HBTs are well suited include amplifiers, analog-to-digital converters, current sources, and optoelectronic integrated circuits. Currently, most commercially available HBT-based integrated circuits employ the AlGaAs/GaAs material system in applications such as a 4-GHz gain block used in wireless phones. As modern systems require higher-performance and lower-cost devices, HBTs utilizing the newer, InGaP/GaAs and InP/InGaAs material systems will begin to dominate the HBT market. To enable the widespread use of InGaP/GaAs HBTs, much research on the fabrication, performance, and characterization of these devices is required. This dissertation will discuss the design and implementation of high-performance InGaP/GaAs HBTs as well as study HBT device physics and characterization.

  1. Hot electron light emission in gallium arsenide/aluminium(x) gallium(1-x) arsenic heterostructures

    Science.gov (United States)

    Teke, Ali

    In this thesis we have demonstrated the operation of a novel tunable wavelength surface light emitting device. The device is based on a p-GaAs, and n-Ga1- xAlxAs heterojunction containing an inversion layer on the p- side, and GaAs quantum wells on the n- side, and, is referred to as HELLISH-2 (Hot Electron Light Emitting and Lasing in Semiconductor Heterostructure-Type 2). The devices utilise hot electron longitudinal transport and, therefore, light emission is independent of the polarity of the applied voltage. The wavelength of the emitted light can be tuned with the applied bias from GaAs band-to-band transition in the inversion layer to e1-hh1 transition in the quantum wells. In this work tunable means that the device can be operated at either single or multiple wavelength emission. The operation of the device requires only two diffused in point contacts. In this project four HELLISH-2 samples coded as ES1, ES2, ES6 and QT919 have been studied. First three samples were grown by MBE and the last one was grown by MOVPE techniques. ES1 was designed for single and double wavelength operation. ES2 was a control sample used to compare our results with previous work on HELLISH-2 and ES6 was designed for single, double and triple wavelength operation. Theoretical modelling of the device operation was carried out and compared with the experimental results. HELLISH-2 structure was optimised for low threshold and high efficiency operation as based on our model calculations. The last sample QT919 has been designed as an optimised device for single and double wavelength operation like ES1. HELLISH-2 has a number of advantages over the conventional light emitters, resulting in some possible applications, such as light logic gates and wavelength division multiplexing in optoelectronic.

  2. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  3. Efeito da terapia com laser de arsenieto de gálio e alumínio (660Nm sobre a recuperação do nervo ciático de ratos após lesão por neurotmese seguida de anastomose epineural: análise funcional Effect of gallium-aluminum-arsenide laser therapy (660Nm on recovery of the sciatic nerve in rats following neurotmesis lesion and epineural anastomosis: functional analysis

    Directory of Open Access Journals (Sweden)

    FA Reis

    2008-06-01

    Full Text Available CONTEXTUALIZAÇÃO: As lesões nervosas periféricas podem comprometer atividades diárias de um indivíduo e resultam em perda da sensibilidade e motricidade do território inervado. OBJETIVO: Com o intuito de acelerar os processos regenerativos, objetivou-se analisar a influência da aplicação do laser de arsenieto de gálio e alumínio (AsGaAl, 660Nm sobre a recuperação funcional do nervo ciático de ratos. MATERIAIS E MÉTODOS: O nervo ciático de 12 ratos Wistar foi submetido à lesão por neurotmese e anastomose epineural e divididos em dois grupos: controle e laserterapia. Após a lesão, utilizou-se o laser de GaAlAs, 660Nm, 4J/cm², 26,3mW, feixe de 0,63cm², em três pontos eqüidistantes sobre a lesão, por 20 dias. As impressões das pegadas dos animais foram obtidas antes e após (sete, 14 e 21 dias pós-operatórios o procedimento cirúrgico e calculou-se o índice funcional do ciático (IFC. RESULTADOS: A comparação do IFC não resultou em diferença significante (p>0,05 entre os grupos. CONCLUSÕES: Conclui-se que os parâmetros e métodos empregados na laserterapia demonstram resultados nulos sobre o IFC no período avaliado.CONTEXT: Peripheral nerve injuries result in sensory and motor losses in the innervated area and can hinder individuals’ daily activities. Objective: The objective was to analyze the influence of applying gallium-aluminum-arsenide (GaAlAs laser (660Nm on the functional recovery of the sciatic nerve in rats. METHODS: The sciatic nerve of 12 Wistar rats was subjected to injury consisting of neurotmesis and epineural anastomosis. The rats were divided into two groups: control and laser therapy. After the injury, a GaAlAs laser was used (660Nm, 4J/cm², 26.3mW and 0.63cm² beam at three equidistant points on the injury, for 20 days. Footprint impressions were obtained from the animals before and seven, 14 and 21 days after the surgical procedure and the sciatic functional index (SFI was calculated

  4. Investigations in gallium removal

    Energy Technology Data Exchange (ETDEWEB)

    Philip, C.V.; Pitt, W.W. [Texas A and M Univ., College Station, TX (United States); Beard, C.A. [Amarillo National Resource Center for Plutonium, TX (United States)

    1997-11-01

    Gallium present in weapons plutonium must be removed before it can be used for the production of mixed-oxide (MOX) nuclear reactor fuel. The main goal of the preliminary studies conducted at Texas A and M University was to assist in the development of a thermal process to remove gallium from a gallium oxide/plutonium oxide matrix. This effort is being conducted in close consultation with the Los Alamos National Laboratory (LANL) personnel involved in the development of this process for the US Department of Energy (DOE). Simple experiments were performed on gallium oxide, and cerium-oxide/gallium-oxide mixtures, heated to temperatures ranging from 700--900 C in a reducing environment, and a method for collecting the gallium vapors under these conditions was demonstrated.

  5. Investigations in gallium removal

    International Nuclear Information System (INIS)

    Philip, C.V.; Pitt, W.W.; Beard, C.A.

    1997-11-01

    Gallium present in weapons plutonium must be removed before it can be used for the production of mixed-oxide (MOX) nuclear reactor fuel. The main goal of the preliminary studies conducted at Texas A and M University was to assist in the development of a thermal process to remove gallium from a gallium oxide/plutonium oxide matrix. This effort is being conducted in close consultation with the Los Alamos National Laboratory (LANL) personnel involved in the development of this process for the US Department of Energy (DOE). Simple experiments were performed on gallium oxide, and cerium-oxide/gallium-oxide mixtures, heated to temperatures ranging from 700--900 C in a reducing environment, and a method for collecting the gallium vapors under these conditions was demonstrated

  6. Electron transport in erbium arsenide:indium gallium(aluminum)arsenide metal/semiconductor nanocomposites for thermoelectric power generation

    Science.gov (United States)

    Bahk, Je-Hyeong

    Electron transport in thin film ErAs:InGa(Al)As metal/semiconductor nanocomposite materials grown by molecular beam epitaxy is investigated experimentally and theoretically for efficient thermoelectric power generation. Thermoelectric properties such as the Seebeck coefficient, the electrical conductivity, and the thermal conductivity are measured for the various compositions of the material up to 840 K. A special sample preparation method is proposed to protect the thin films from damage and/or decomposition, and prevent the parasitic substrate conduction effect during the high temperature measurements. The sample preparation method includes surface passivation, high temperature metallization with a diffusion barrier, and the covalent oxide bonding technique for substrate removal. The experimental results for the nanocomposite materials are analyzed using the Boltzmann transport equation under the relaxation time approximation. The scattering characteristics of free electrons in the InGa(Al)As is defined by four major scattering mechanisms such as the polar optical phonon scattering, the ionized impurity scattering, the alloy scattering, and the acoustic phonon deformation potential scattering. Combining these scattering mechanisms, the electron transport model successfully fits the temperature-dependent thermoelectric properties of Si-doped InGaAlAs materials, and predicts the figure of merits at various doping levels in various Al compositions. The nanoparticle-electron interaction is modeled as a momentum scattering for free electrons caused by the electrostatic potential perturbation around nanoparticles and the band offset at the interface. The ErAs nanoparticles are assumed to be semi-metals that can donate electrons to the matrix, and positively charged after the charge transfer to build up the screened coulomb potential outside them. The nanoparticle scattering rate is calculated for this potential profile using the partial wave method, and used to analyze the enhancement of the Seebeck coefficient. Finally, the experimental results for the various compositions of the ErAs:InGa(Al)As nanocomposites are fit using the electron transport model and the nanoparticle scattering. It is shown that nanoparticle scattering can enhance the power factor via energy-dependent electron scattering in ErAs:InGaAs system. The figure of merit for the 0.6% ErAs:(InGaAs)0.8(InAlAs) 0.2 lattice matched to InP is measured to be 1.3 at 800 K, and the theory predicts that it can reach 1.9 at 1000 K.

  7. Photoconduction spectroscopy of p-type GaSb films

    Energy Technology Data Exchange (ETDEWEB)

    Shura, M.W., E-mail: Megersa.Shura@live.nmmu.ac.za [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Wagener, V.; Botha, J.R.; Wagener, M.C. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-05-15

    Excess carrier lifetimes (77 K) have been measured as function of the absorbed flux density in undoped p-type gallium antimonide films (GaSb/GaAs) using steady state photoconductivity measurements with the illumination wavelength of 1.1 {mu}m. Using the results from Hall effect measurements along with the relations describing the lifetimes of the excess minority carriers in the bulk of the films and at the surface, the theoretical values of the effective excess carrier lifetime in the materials were also calculated. Discrepancies between the experimental and theoretical results were described using a two-layer model, by considering the variation in the charge distribution within the layer due to the presence of surface states, as well as the band offset between the layer and the substrate. Theoretical modeling of the experimental result yields values of different parameters such as band bending at the surface, minimum value of Shockley-Read-Hall lifetime and maximum value of the surface recombination velocity.

  8. Photoconduction spectroscopy of p-type GaSb films

    International Nuclear Information System (INIS)

    Shura, M.W.; Wagener, V.; Botha, J.R.; Wagener, M.C.

    2012-01-01

    Excess carrier lifetimes (77 K) have been measured as function of the absorbed flux density in undoped p-type gallium antimonide films (GaSb/GaAs) using steady state photoconductivity measurements with the illumination wavelength of 1.1 μm. Using the results from Hall effect measurements along with the relations describing the lifetimes of the excess minority carriers in the bulk of the films and at the surface, the theoretical values of the effective excess carrier lifetime in the materials were also calculated. Discrepancies between the experimental and theoretical results were described using a two-layer model, by considering the variation in the charge distribution within the layer due to the presence of surface states, as well as the band offset between the layer and the substrate. Theoretical modeling of the experimental result yields values of different parameters such as band bending at the surface, minimum value of Shockley–Read–Hall lifetime and maximum value of the surface recombination velocity.

  9. Piezoresistance in p-type silicon revisited

    DEFF Research Database (Denmark)

    Richter, Jacob; Pedersen, Jesper; Brandbyge, Mads

    2008-01-01

    We calculate the shear piezocoefficient pi44 in p-type Si with a 6×6 k·p Hamiltonian model using the Boltzmann transport equation in the relaxation-time approximation. Furthermore, we fabricate and characterize p-type silicon piezoresistors embedded in a (001) silicon substrate. We find...... to experiments. Finally, we present a fitting function of temperature and acceptor density to the 6×6 model that can be used to predict the piezoresistance effect in p-type silicon. ©2008 American Institute of Physics...... that the relaxation-time model needs to include all scattering mechanisms in order to obtain correct temperature and acceptor density dependencies. The k·p results are compared to results obtained using a recent tight-binding (TB) model. The magnitude of the pi44 piezocoefficient obtained from the TB model...

  10. Evolution of plant P-type ATPases

    Directory of Open Access Journals (Sweden)

    Christian N.S. Pedersen

    2012-02-01

    Full Text Available Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauria and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a moss, Selaginella moellendorffii (a primitive vascular plant, and Arabidopsis thaliana (a model flowering plant. Each organism contained sequences for all five subfamilies of P-type ATPases. Our analysis demonstrates when specific subgroups of P-type ATPases disappeared in the evolution of Angiosperms. Na/K-pump related P2C ATPases were lost with the evolution of streptophytes whereas Na+ or K+ pumping P2D ATPases and secretory pathway Ca2+-ATPases remained until mosses. An N-terminally located calmodulin binding domain in P2B ATPases can only be detected in pumps from Streptophytae, whereas, like in animals, a C-terminally localized calmodulin binding domain might be present in chlorophyte P2B Ca2+-ATPases. Chlorophyte genomes encode P3A ATPases resembling protist plasma membrane H+-ATPases and a C-terminal regulatory domain is missing. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps.

  11. P-type silicon drift detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Krieger, B.; Krofcheck, D.; O'Donnell, R.; Odyniec, G.; Partlan, M.D.; Wang, N.W.

    1995-06-01

    Preliminary results on 16 CM 2 , position-sensitive silicon drift detectors, fabricated for the first time on p-type silicon substrates, are presented. The detectors were designed, fabricated, and tested recently at LBL and show interesting properties which make them attractive for use in future physics experiments. A pulse count rate of approximately 8 x l0 6 s -1 is demonstrated by the p-type silicon drift detectors. This count rate estimate is derived by measuring simultaneous tracks produced by a laser and photolithographic mask collimator that generates double tracks separated by 50 μm to 1200 μm. A new method of using ion-implanted polysilicon to produce precise valued bias resistors on the silicon drift detectors is also discussed

  12. Gallium scintigraphy in AIDS

    International Nuclear Information System (INIS)

    Van der Wall, Hans; Provan, I.; Murray, C.; Dwyer, M.; Jones, P.D.

    1990-01-01

    Gallium-67 scanning, indicated either for the elucidation of symptoms or for the assessment of appropriate therapy, was performed in 56 AIDS patients who underwent a total of 77 scans from 1986 to 1988. The age range of the patients was 13-66 years with an average age of 39 years. The majority of patients (95%) were male homosexuals. Gallium scanning has been applied to a wide spectrum of malignancies and to the detection of occult infections. Several mechanisms of uptake have been postulated for the localization of gallium. In general, gallium-67 acts as an analogue of the ferric ion, binding to transferrin soon after intravenous injection. It is believed that it is bound to transferrin receptors on the surface of tumour cells with subsequent intracellular transport. In infection, the association is probably with lactoferrin elaborated by polymorphonuclear cells and siderophores elaborated by bacteria. Gallium-67 is normally distributed to bone and bone marrow, liver, spleen, breast and bowel. In particular, the concentration in the ascending and transverse colon necessitates adequate bowel preparation. Lacrimal, nasopharyngeal and genital activity may also be seen. 11 refs., 2 tabs., 6 figs

  13. Magnetoelectric effect in a sandwich structure of gallium arsenide–nickel–tin–nickel

    Science.gov (United States)

    Galichyan, T. A.; Filippov, D. A.; Tihonov, A. A.; Laletin, V. M.; Firsova, T. O.; Manicheva, I. N.

    2018-04-01

    The results of investigation of the magnetoelectric effect in a nickel-tin-nickel sandwich structure obtained by galvanic deposition of gallium arsenide on a substrate are presented. The technology of constructing such structures is described and the experimental results of the frequency dependence of the effect are presented. It is shown that the use of tin as an intermediate layer reduces the mechanical stresses resulting from the incommensurability of the phases, which permits obtaining qualitative structures with the nickel thickness of about 70 μm. The resulting structures exhibit good adhesion between the layers and have a high quality factor.

  14. Elastic properties of some transition metal arsenides

    Science.gov (United States)

    Nayak, Vikas; Verma, U. P.; Bisht, P. S.

    2018-05-01

    The elastic properties of transition metal arsenides (TMAs) have been studied by employing Wien2K package based on density functional theory in the zinc blende (ZB) and rock salt (RS) phase treating valance electron scalar relativistically. Further, we have also treated them non-relativistically to find out the relativistic effect. We have calculated the elastic properties by computing the volume conservative stress tensor for small strains, using the method developed by Charpin. The obtained results are discussed in paper. From the obtained results, it is clear that the values of C11 > C12 and C44 for all the compounds. The values of shear moduli of these compounds are also calculated. The internal parameter for these compounds shows that ZB structures of these compounds have high resistance against bond order. We find that the estimated elastic constants are in good agreement with the available data.

  15. The internal strain parameter of gallium arsenide measured by energy-dispersive X-ray diffraction

    International Nuclear Information System (INIS)

    Cousins, C.S.G.; Sheldon, B.J.; Webster, G.E.; Gerward, L.; Selsmark, B.; Staun Olsen, J.

    1989-01-01

    The internal strain parameter of GaAs has been measured by observing the stress-dependence of the integrated intensity of the weak 006 reflection, with the compressive stress along the [1anti 10] axis. An energy-dispersive technique was employed so that the reflection could be obtained at a photon energy close to the minimum in the structure factor, thereby approaching closely the strictly-forbidden condition that applies at any energy in the diamond structure. A value anti A=-0.138±0.005, equivalent to a bond-bending parameter ζ=0.55=0.02, has been found. This is in good agreement with recent theoretical calculations and indirect determinations related to the bandstructure of GaAs. (orig.)

  16. Far-infrared reflection-absorption spectroscopy of amorphous and polycrystalline gallium arsenide films

    International Nuclear Information System (INIS)

    Gregory, J.R.

    1992-01-01

    We have reported far-infrared reflection absorption spectra (30-320CM -1 ) at 30 and 310K for nine films of non-stoichiometric GaAs. The FIRRAS measurements were performed using the grazing incidence FIR double-modulation spectroscopy technique first described by DaCosta and Coleman. The films were fabricated by molecular beam deposition on metallized substrates for two As/Ga molecular beam flux ratios. The films were characterized by depth profilometry, IRAS, XRD, and x-ray microprobe analysis. Film thicknesses ranged from 800 to 5800 angstrom and compositions were 45-50% As for a MB flux ratio of 0.29 and 60-70% As for a ratio of 1.12. FIRRAS measurements were made and characterizations performed for as-deposited films and for 5 hour anneals at 473, 573, 673 and 723 degrees C. Vibrational spectra of the crystallized films were interpreted in terms of the exact reflectivity of a thin dielectric film on a conducting substrate, using a classical Lorentzian dielectric function for the response of the film. Resonances appearing in the open-quote forbidden close-quote region between the TO and LO frequencies were modelled with an effective medium approximation and are interpreted as arising from small-scale surface roughness. The behavior of the amorphous film spectra were examined within two models. The effective force constant model describes the variation of the reflection-absorption maxima with measured crystallite size in terms of the effective vibration frequency of 1-D atomic chains having force constants distributed according to the parameters of the crystalline-to-amorphous relaxation length and the crystalline to amorphous force constant ratio. The dielectric function continuum model uses the relaxation of the crystal momentum selection rule to calculate the reflection-absorption spectrum based on a dielectric function in which the oscillator strength is the normalized product of a constant dipole strength and the smoothed vibrational density of states

  17. Transport charge of gallium arsenide films synthesized on polycrystalline silicon by ion ablation

    International Nuclear Information System (INIS)

    Kabyshev, A V; Konusov, F V; Remnev, G E; Pavlov, S K

    2014-01-01

    Electrophysical and photoelectric properties of thin GaAs films deposited on polysilicon by pulse ion ablation using high-power ion beams have been investigated. The predominant charge carriers transfer mechanism in films and the type of dark and photoconductivity have been established. A vacuum annealing effect (10 −2 Pa, 300-1000 K) on energetic and kinetic characteristics of dark and photoconductivity, the transfer mechanism and the type of charge carriers have been determined. The most probable causes of changes in the film electric and photoelectric characteristics have been discussed

  18. Spatially resolved localized vibrational mode spectroscopy of carbon in liquid encapsulated Czochralski grown gallium arsenide wafers

    International Nuclear Information System (INIS)

    Yau, Waifan.

    1988-04-01

    Substitutional carbon on an arsenic lattice site is the shallowest and one of the most dominant acceptors in semi-insulating Liquid Encapsulated Czochralski (LEC) GaAs. However, the role of this acceptor in determining the well known ''W'' shape spatial variation of neutral EL2 concentration along the diameter of a LEC wafer is not known. In this thesis, we attempt to clarify the issue of the carbon acceptor's effect on this ''W'' shaped variation by measuring spatial profiles of this acceptor along the radius of three different as-grown LEC GaAs wafers. With localized vibrational mode absorption spectroscopy, we find that the profile of the carbon acceptor is relatively constant along the radius of each wafer. Average values of concentration are 8 x 10E15 cm -3 , 1.1 x 10E15 cm -3 , and 2.2 x 10E15 cm -3 , respectively. In addition, these carbon acceptor LVM measurements indicate that a residual donor with concentration comparable to carbon exists in these wafers and it is a good candidate for the observed neutral EL2 concentration variation. 22 refs., 39 figs

  19. Gallium arsenide digital integrated circuits for controlling SLAC CW-RF systems

    International Nuclear Information System (INIS)

    Ronan, M.T.; Lee, K.L.; Corredoura, P.; Judkins, J.G.

    1989-01-01

    In order to fill the PEP and SPEAR storage rings with beams from the SLC linac and damping rings, precise control of the linac subharmonic buncher and the damping ring RF is required. Recently several companies have developed resettable GaAs master/slave D-type flip-flops which are capable of operating at frequencies of 3 GHz and higher. Using these digital devices as frequency dividers, one can phase shift the SLAC CW-RF systems to optimize the timing for filling the storage rings. The authors have evaluated the performance of integrated circuits from two vendors for our particular application. Using microstrip circuit techniques, they have built and operated in the accelerator several chassis to synchronize a reset signal from the storage rings to the SLAC 2.856 GHz RF and to phase shift divide-by-four and divide-by-sixteen frequency dividers to the nearest 350 psec bucket required for filling

  20. Gallium arsenide digital integrated circuits for controlling SLAC CW-RF systems

    International Nuclear Information System (INIS)

    Ronan, M.T.; Lee, K.L.; Corredoura, P.; Judkins, J.G.

    1988-10-01

    In order to fill the PEP and SPEAR storage rings with beams from the SLC linac and damping rings, precise control of the linac subharmonic buncher and the damping ring RF is required. Recently several companies have developed resettable GaAs master/slave D-type flip-flops which are capable of operating at frequencies of 3 GHz and higher. Using these digital devices as frequency dividers, one can phase shift the SLAC CW-RF systems to optimize the timing for filling the storage rings. We have evaluated the performance of integrated circuits from two vendors for our particular application. Using microstrip circuit techniques, we have built and operated in the accelerator several chassis to synchronize a reset signal from the storage rings to the SLAC 2.856 GHz RF and to phase shift divide-by-four and divide-by-sixteen frequency dividers to the nearest 350 psec bucket required for filling. 4 refs., 4 figs., 2 tabs

  1. Structural analysis of as-deposited and annealed low-temperature gallium arsenide

    Science.gov (United States)

    Matyi, R. J.; Melloch, M. R.; Woodall, J. M.

    1993-04-01

    The structure of GaAs grown at low substrate temperatures (LT-GaAs) by molecular beam epitaxy has been studied using high resolution X-ray diffraction methods. Double crystal rocking curves from the as-deposited LT-GaAs show well defined interference fringes, indicating a high level of structural perfection. Triple crystal diffraction analysis of the as-deposited sample showed significantly less diffuse scattering near the LT-GaAs 004 reciprocal lattice point compared with the substrate 004 reciprocal lattice point, suggesting that despite the incorporation of approximately 1% excess arsenic, the epitaxial layer had superior crystalline perfection than did the GaAs substrate. Triple crystal scans of annealed LT-GaAs showed an increase in the integrated diffuse intensity by approximately a factor of three as the anneal temperature was increased from 700 to 900°C. Analogous to the effects of SiO2 precipitates in annealed Czochralski silicon, the diffuse intensity is attributed to distortions in the epitaxial LT-GaAs lattice by arsenic precipitates.

  2. High resolution x-ray diffraction analysis of annealed low-temperature gallium arsenide

    Science.gov (United States)

    Matyi, R. J.; Melloch, M. R.; Woodall, J. M.

    1992-05-01

    High resolution x-ray diffraction methods have been used to characterize GaAs grown at low substrate temperatures by molecular beam epitaxy and to examine the effects of post-growth annealing on the structure of the layers. Double crystal rocking curves from the as-deposited epitaxial layer show well-defined interference fringes, indicating a high level of structural perfection despite the presence of excess arsenic. Annealing at temperatures from 700 to 900 °C resulted in a decrease in the perpendicular lattice mismatch between the GaAs grown at low temperature and the substrate from 0.133% to 0.016% and a decrease (but not total elimination) of the visibility of the interference fringes. Triple-crystal diffraction scans around the 004 point in reciprocal space exhibited an increase in the apparent mosaic spread of the epitaxial layer with increasing anneal temperature. The observations are explained in terms of the growth of arsenic precipitates in the epitaxial layer.

  3. High-pressure phase transition and phase diagram of gallium arsenide

    Science.gov (United States)

    Besson, J. M.; Itié, J. P.; Polian, A.; Weill, G.; Mansot, J. L.; Gonzalez, J.

    1991-09-01

    Under hydrostatic pressure, cubic GaAs-I undergoes phase transitions to at least two orthorhombic structures. The initial phase transition to GaAs-II has been investigated by optical-transmittance measurements, Raman scattering, and x-ray absorption. The structure of pressurized samples, which are retrieved at ambient, has been studied by x-ray diffraction and high-resolution diffraction microscopy. Various criteria that define the domain of stability of GaAs-I are examined, such as the occurrence of crystalline defects, the local variation in atomic coordination number, or the actual change in crystal structure. These are shown not to occur at the same pressure at 300 K, the latter being observable only several GPa above the actual thermodynamic instability pressure of GaAs-I. Comparison of the evolution of these parameters on increasing and decreasing pressure locates the thermodynamic transition region GaAs-I-->GaAs-II at 12+/-1.5 GPa and at 300 K that is lower than generally reported. The use of thermodynamic relations around the triple point, and of regularities in the properties of isoelectronic and isostructural III-V compounds, yields a phase diagram for GaAs which is consistent with this value.

  4. Elaboration of a semiconductive thin film device technology on the basis of monocrystalline gallium arsenide

    International Nuclear Information System (INIS)

    Antoshenko, V.; Taurbaev, T.; Skirnevskaya, E.; Shorin, V.; Mihajlov, L.; Bajganatova, Sh.

    1996-01-01

    The aim of the project: To elaborate the economical technological process of preparing super thin monocrystalline GaAs substrates and device structures for semiconductive electronics. To realize the project it is necessary to solve following problems: o to elaborate and produce the equipment for preparing of separated films and thin film multilayer structures with p-n-junction; - to study conditions of preparing plane crystal perfect separated Ga(Al)As - films; - to optimize regimes of preparing thin film structures with p- and n-conductive - layers; - to determine the optimal methods of transferring autonomous films and structures over the second substrates; - to work out preparing methods of ohmic contacts and electrical commutation; - to optimize the process of repeated use of initial monocrystalline GaAs substrate; - to prepare the samples of discrete thin film photo- and emitting devices. As the result of project realization there will be created cheap ecological technology of heterojunction optoelectronic devices on the basis of GaAs and AlGaAs solid solutions, the laboratory samples of thin film devices will be presented

  5. Magnetoelectric Effect in Gallium Arsenide-Nickel-Tin-Nickel Multilayer Structures

    Science.gov (United States)

    Filippov, D. A.; Tikhonov, A. A.; Laletin, V. M.; Firsova, T. O.; Manicheva, I. N.

    2018-02-01

    Experimental data have been presented for the magnetoelectric effect in nickel-tin-nickel multilayer structures grown on a GaAs substrate by cathodic electrodeposition. The method of fabricating these structures has been described, and the frequency dependence of the effect has been demonstrated. It has been shown that tin used as an intermediate layer reduces mechanical stresses due to the phase mismatch at the Ni-GaAs interface and, thus, makes it possible to grow good structures with a 70-μm-thick Ni layer. The grown structures offer good adhesion between layers and a high Q factor.

  6. Temperature dependent characterization of gallium arsenide X-ray mesa p-i-n photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G., E-mail: G.Lioliou@sussex.ac.uk; Barnett, A. M. [Semiconductor Materials and Devices Laboratory, Department Engineering and Design, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Meng, X.; Ng, J. S. [Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2016-03-28

    Electrical characterization of two GaAs p{sup +}-i-n{sup +} mesa X-ray photodiodes over the temperature range 0 °C to 120 °C together with characterization of one of the diodes as an X-ray detector over the temperature range 0 °C to 60 °C is reported as part of the development of photon counting X-ray spectroscopic systems for harsh environments. The randomly selected diodes were fully etched and unpassivated. The diodes were 200 μm in diameter and had 7 μm thick i layers. The leakage current density was found to increase from (3 ± 1) nA/cm{sup −2} at 0 °C to (24.36 ± 0.05) μA/cm{sup −2} at 120 °C for D1 and from a current density smaller than the uncertainty (0.2 ± 1.2) nA/cm{sup −2} at 0 °C to (9.39 ± 0.02) μA/cm{sup −2} at 120 °C for D2 at the maximum investigated reverse bias (15 V). The best energy resolution (FWHM at 5.9 keV) was achieved at 5 V reverse bias, at each temperature; 730 eV at 0 °C, 750 eV at 20 °C, 770 eV at 40 °C, and 840 eV at 60 °C. It was found that the parallel white noise was the main source of the photopeak broadening only when the detector operated at 60 °C, at 5 V, 10 V, and 15 V reverse bias and at long shaping times (>5 μs), whereas the sum of the dielectric noise and charge trapping noise was the dominant source of noise for all the other spectra.

  7. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G.; Barnett, A.M.

    2016-11-11

    Results characterizing GaAs p{sup +}-i-n{sup +} mesa photodiodes with a 10 µm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 µm and 400 µm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm{sup 2} to 67 nA/cm{sup 2} at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. {sup 55}Fe X-ray spectra were obtained using one 200 µm diameter device and one 400 µm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 µm and 740 eV using the 400 µm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. {sup 63}Ni beta particle spectra obtained using the 200 µm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  8. Optimization of the structure of gallium-arsenide-based detectors with taking into account recombination losses

    International Nuclear Information System (INIS)

    Katsoev, L. V.; Katsoev, V. V.; Il'ichev, E. A.

    2009-01-01

    The model describing the physical processes accompanying the interaction of heavy charged particles with an ionizing-radiation semiconductor detector is proposed. The problem of optimization of electrical characteristics and construction of the detector cell is solved. The model makes it possible to calculate the output current of the detector as a function of its active-region's thickness and the voltage applied across the sensor under conditions of the presence of recombination processes.

  9. Positron annihilation measurements in high-energy alpha-irradiated n-type gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Sandip; Mandal, Arunava; SenGupta, Asmita [Visva-Bharati, Department of Physics, Santiniketan, West Bengal (India); Roychowdhury, Anirban [UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, West Bengal (India)

    2015-07-15

    Positron annihilation lifetime spectroscopy and Doppler broadening annihilation line-shape measurements have been carried out in 40-MeV alpha-irradiated n-type GaAs. After irradiation, the sample has been subjected to an isochronal annealing over temperature region of 25-800 C with an annealing time of 30 min at each set temperature. After each annealing, the positron measurements are taken at room temperature. Formation of radiation-induced defects and their recovery with annealing temperature are investigated. The lifetime spectra of the irradiated sample have been fitted with two lifetimes. The average positron lifetime τ{sub avg} = 244 ps at room temperature after irradiation indicates the presence of defects, and the value of τ{sub 2} (262 ps) at room temperature suggests that the probable defects are mono-vacancies. Two distinct annealing stages in τ{sub avg} at 400-600 C and at 650-800 C are observed. The variations in line-shape parameter (S) and defect-specific parameter (R) during annealing in the temperature region 25-800 C resemble the behaviour of τ{sub avg} indicating the migration of vacancies, formation of vacancy clusters and the disappearance of defects between 400 and 800 C. (orig.)

  10. Time-Resolved Studies of Laser-Induced Phase Transitions in Gallium Arsenide

    Science.gov (United States)

    Siegal, Yakir

    This thesis describes a series of time-resolved experiments of the linear and nonlinear optical properties of GaAs during laser-induced phase transitions. The first set of experiments consists of a direct determination of the behavior of the linear dielectric constant at photon energies of 2.2 eV and 4.4 eV following excitation of the sample with 1.9-eV, 70-fs laser pulses spanning a fluence range from 0 to 2.5 kJ/m^2. The results from this set of experiments were used to extract the behavior of the second-order optical susceptibility from second-harmonic generation measurements made under identical excitation conditions. These experiments are unique because they provide explicit information on the behavior of intrinsic material properties--the linear and nonlinear optical susceptibilities--during laser-induced phase transitions in semiconductors without the ambiguities in interpretation that are generally inherent in reflectivity and second-harmonic generation measurements. The dielectric constant data indicate a drop in the average bonding-antibonding splitting of GaAs following the laser pulse excitation. This behavior leads to a collapse of the band-gap on a picosecond time scale for excitation at fluences near the damage threshold of 1.0 kJ/m ^2 and even faster at higher excitation fluences. The changes in the electronic band structure result from a combination of electronic screening by the excited free carriers and structural deformation of the lattice caused by the destabilization of the covalent bonds. The behavior of the second-order susceptibility shows that the material loses long-range order before the average bonding-antibonding splitting, which is more sensitive to short-range structure, changes significantly. Loss of long-range order and a drop of more than 2 eV in the average bonding-antibonding splitting are seen even at fluences below the damage threshold, a regime in which the laser-induced changes are reversible.

  11. Photo-Ultrasonic Study of Extrinsic Photoconductivity in N-Gallium Arsenide

    Science.gov (United States)

    Bradshaw, Randall Grant

    We have measured the velocity of piezoelectrically -active, ultrasonic shear waves between 1.5 K and 68 K for undoped and for oxygen-doped n-type GaAs, during and after illumination at 4.2 K. The results reveal photoconductivity, persistent photoconductivity, and thermally stimulated conductivity. In both samples the Fermi level in the dark is controlled by excess non-shallow donors near 0.2 eV below the conduction band. Analysis of these effects in oxygen-doped material indicates that there are mid-gap and much shallower photoionizable levels and that there is an electron trap near 20 meV below the conduction band. The undoped n-GaAs sample exhibits photoconductivity quenching with photons in the range 0.95-1.26 eV which, by analysis of the quenching rate, is attributed to the EL2 defect. In addition, levels with large hole capture coefficients have been detected.

  12. Superconductor-semiconductor-superconductor planar junctions of aluminium on DELTA-doped gallium arsenide

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Kutchinsky, jonatan

    1997-01-01

    We have fabricated and characterized planar superconductor-semiconductor-superconductor (S-Sm-S) junctions with a high quality (i.e. low barrier) interface between an n++ modulation doped conduction layer in MBE grown GaAs and in situ deposited Al electrodes. The Schottky barrier at the S...

  13. Gallium arsenide p+–n–p+-structures with impoverished base area

    Directory of Open Access Journals (Sweden)

    Karimov A. V.

    2009-06-01

    Full Text Available It is displayed experimentally, that the current transport’s mechanism through p+GaAs–nGaAs–p+GaAs-structure is formed by injection-tunnel and generation-recombination mechanisms. Injection-tunnel current prevails at modulation of base’s part which contains defects, and generation-recombination currents are determinative at modulation of base’s part with lesser defectiveness. p+GaAs–nGaAs–p+GaAs-structures are of interest for creating voltage suppressors and electronic switches on their base.

  14. Low-temperature electron irradiation induced defects in gallium arsenide: bulk and surface acoustic wave studies

    International Nuclear Information System (INIS)

    Brophy, M.J. Jr.

    1985-01-01

    Irradiation of GaAs with 2.25 to 2.5 MeV electrons at temperatures below 190 K produces two peaks in ultrasonic attenuation versus temperature. The defects responsible for both peaks have trigonal symmetry and were observed in n-type and semi-insulating GaAs with bulk and surface acoustic waves (SAW) respectively. Bulk waves at eight frequencies between 9 and 130 MHz and SAW at 73 and 145 MHz were used. The reorientation kinetics of both peaks follow the Arrhenius law. The annealing of both peaks was studied with isochronal and isothermal anneals in the temperature range 200 to 335 K. Peak I anneals with a spectrum of activation energies in the range 0.7-1.1 eV between 220 and 335 K. Peak II anneals with a single activation energy of about 1.1 eV above 300K. The different annealing characteristics indicate that these peaks represent two distinct defects. The annealing above 300 K has not been seen in electrical resistivity measurements, but was observed in earlier length change experiments. Irradiation of GaAs:Cr produces no Cr-radiation defect complexes. The attenuation peak associated with Cr 2+ decrease with electron dose, but starts to recover at 150 K

  15. Digital gallium arsenide insertion into the OH-58D Scout helicopter

    Science.gov (United States)

    Misko, Timothy; Andrade, Norm

    1990-10-01

    A very-high-speed sensor processor subsystem (MSPS) is described in terms of its design, fabrication techniques, and applications to fielded military systems. Incorporated in the design are high-speed GaAs and Si integrated circuits and an algorithm for aided target recognition and multiple target tracking. The existing Mast Mounted Sight (MMS) system is described, and the MSPS system is described in detail to permit a comparison of the two system processors. The speed of the proposed system is 100 million instructions/s, and the system operates in parallel and offers 24-bit floating point multiplies and ALU operations and 16 bit integer multiplies internal with 24-bit integer operations and external memory access. The processor employs existing form factor, power supply, operational software, and interfaces, and can be operated at about the same cost with reduced operator workload.

  16. Gallium arsenide single crystal solar cell structure and method of making

    Science.gov (United States)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  17. High temperature X-ray topography on silicon and gallium arsenide

    International Nuclear Information System (INIS)

    Krueger, H.E.

    1976-01-01

    Beginning with a review of the different theories of X-ray scattering on perfect and deformed crystals, results of the dynamic theory relevant specifically for X-ray topography are presented. The reflected intensity recorded in a X-ray topogram is discussed as a function of the angle of incidence, crystal thickness and lateral distribution. These results, together with fundamental relations of the DT which are developed in the annex, give insight into the contrasts induced by defects. Using practical examples Borrmann contrast, contrast produced by point defect agglomerates and dislocations and the Burgers vector method are explained. Thus the whole spectrum of contrast phenomena observed in the experimental part of the paper is presented. The experimental results were achieved with a high-temperature X-ray topography facility constructed for this purpose. The facility is described. (orig./HPOE) [de

  18. Formation of defects at high temperature plastic deformation of gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Mikhnovich, V.V.

    2006-03-14

    The purpose of the present thesis consists in acquiring more concrete information concerning the mechanism of the movement of dislocations and types of defects that appear during the process of dislocation motion on the basis of systematic experimental studies of the GaAs deformation. Experimental studies concerning the dependence of the stress of the samples from their deformation at different values of the deformation parameters (like temperature and deformation speed) were conducted in this paper. To determine the concentration of defects introduced in samples during the deformation process the positron annihilation spectroscopy (PAS) method was used. The second chapter of this paper deals with models of movement of dislocations and origination of defects during deformation of the samples. In the third chapter channels and models of positron annihilation in the GaAs samples are investigated. In the forth chapter the used experimental methods, preparation procedure of test samples and technical data of conducted experiments are described. The fifth chapter shows the results of deformation experiments. The sixth chapter shows the results of positron lifetime measurements by the PAS method. In the seventh chapter one can find analyses of the values of defects concentration that were introduced in samples during deformation. (orig.)

  19. Mechanism of Doping Gallium Arsenide with Carbon Tetrachloride During Organometallic Vapor-Phase Epitaxy

    National Research Council Canada - National Science Library

    Warddrip, Michael

    1997-01-01

    .... In addition, the reaction of CC14 with the GaAs(001) surface was monitored in ultrahigh vacuum using infrared spectroscopy, temperature programmed desorption, and scanning tunneling microscopy...

  20. Digital Control of the Czochralski Growth of Gallium Arsenide-Controller Software Reference Manual

    Science.gov (United States)

    1987-07-15

    once a parameter was changed. (2) Despite of the fact that there are analog controllers on the market which feature a high degree of automation...single-zone heater is in use.) - 4 - Kfc ^&S^^ p IS’ K: i 1. Digital Control of Czochralski GaAs Crystal Growth (2) Four tachometers which are...34 if either the overlay name or the program version loaded with the overlay do not match the expected data. (It is important not to mix modules

  1. Digital Logic and Reconfigurable Interconnects Using Aluminum Gallium Arsenide Electro-Optic Fredkin Gates

    Science.gov (United States)

    1994-06-01

    electron microscope (SEM) ispection; Carol Isbil for metallizatlon; Wayland Williams for test circuit design and fabrication; and Samuel Adams and...Patterson Air Force Base, OH, Private Conversations, (1990-1994). 156. M. Heiblum, E. E. Mendez and L. Osterling, "Growth by Molecular Beam Epitaxy...and Characterization of High Purity GaAs and AIGaAs," Journal of ADDlied Physics, Vol. 54, 6982, (1983). 157. M. Heiblum, E. E. Mendez and L. Osterling

  2. Radiation and temperature effects in gallium arsenide, indium phosphide, and silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Statler, R. L.

    1987-01-01

    The effects of radiation on performance are determined for both n+p and p+n GaAs and InP cells and for silicon n+p cells. It is found that the radiation resistance of InP is greater than that of both GaAs and Si under 1-MeV electron irradiation. For silicon, the observed decreased radiation resistance with decreased resistivity is attributed to the presence of a radiation-induced boron-oxygen defect. Comparison of radiation damage in both p+n and n+p GaAs cells yields a decreased radiation resistance for the n+p cell attributable to increased series resistance, decreased shunt resistance, and relatively greater losses in the cell's p-region. For InP, the n+p configuration is found to have greater radiation resistance than the p+n cell. The increased loss in this latter cell is attributed to losses in the cell's emitter region. Temperature dependency results are interpreted using a theoretical relation for dVoc/dT, which predicts that increased Voc should result in decreased numerical values for dPm/dT. The predicted correlation is observed for GaAs but not for InP, a result which is attributed to variations in cell processing.

  3. Proximity annealing of sulfur-implanted gallium arsenide using a strip heater

    International Nuclear Information System (INIS)

    Banerjee, S.; Baker, J.

    1985-01-01

    A graphite strip heater has been employed for rapid (-- 30 s) thermal annealing (RTA), at temperatures between 850 and 1150 0 C, of Cr-doped GaAs implanted with 120 keV 32 S + with doses between 10 13 and 10 15 cm -2 . In order to minimize the incongruent evaporation of As, proximity anneals were employed by protecting the implanted samples with GaAs cover pieces. RTA yields electrical activation and donor mobilities better than or comparable to furnace annealing, with less redistribution of the implanted S and background Cr. (author)

  4. Studies on deep electronic levels in silicon and aluminium gallium arsenide alloys

    International Nuclear Information System (INIS)

    Pettersson, H.

    1993-01-01

    This thesis reports on investigations of the electrical and optical properties of deep impurity centers, related to the transition metals (TMs) Ti, Mo, W, V and Ni, in silicon. Emission rates, capture cross sections and photoionization cross sections for these impurities were determined by means of various Junction Space Charge Techniques (JSCTs), such as Deep Level Transient Spectroscopy (DLTS), dark capacitance transient and photo capacitance transient techniques. Changes in Gibbs free energy as a function of temperature were calculated for all levels. From this temperature dependence, the changes in enthalpy and entropy involved in the electron and hole transitions were deduced. The influence of high electric fields on the electronic levels in chalcogen-doped silicon were investigated using the dark capacitance transient technique. The enhancement of the electron emission from the deep centers indicated a more complex field enhancement model than the expected Poole-Frenkel effect for coulombic potentials. The possibility to determine charge states of defects using the Poole-Frenkel effect, as often suggested, is therefore questioned. The observation of a persistent decrease of the dark conductivity due to illumination in simplified AlGaAs/GaAs high Electron Mobility Transistors (HEMTs) over the temperature range 170K< T<300K is reported. A model for this peculiar behavior, based on the recombination of electrons in the two-dimensional electron gas (2DEG) located at the AlGaAs/GaAs interface with holes generated by a two-step excitation process via the deep EL2 center in the GaAs epilayer, is put forward

  5. Size-effects in indium gallium arsenide nanowire field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zota, Cezar B., E-mail: cezar.zota@eit.lth.se; Lind, E. [Department of Electrical and Information Technology, Lund University, Lund 22101 (Sweden)

    2016-08-08

    We fabricate and analyze InGaAs nanowire MOSFETs with channel widths down to 18 nm. Low-temperature measurements reveal quantized conductance due to subband splitting, a characteristic of 1D systems. We relate these features to device performance at room-temperature. In particular, the threshold voltage versus nanowire width is explained by direct observation of quantization of the first sub-band, i.e., band gap widening. An analytical effective mass quantum well model is able to describe the observed band structure. The results reveal a compromise between reliability, i.e., V{sub T} variability, and on-current, through the mean free path, in the choice of the channel material.

  6. A photoemission study of evaporated manganese on gallium arsenide at elevated temperatures

    International Nuclear Information System (INIS)

    James, D.; Tadich, A.; Riley, J.; Leckey, R.; Emtsev, K.; Seyller, T.; Ley, L.

    2004-01-01

    Full text: The interaction between metals and semiconductors has been extensively researched to achieve an understanding of the formation of Schottky barriers and conditions for low resistance electrical connections to devices. The possibility of the use of magnetic materials to generate spin polarised currents, so called spintronics, and has extended this interest to metals that have not traditionally been used for such contacts. Manganese has recently been used as one element in GaAs and ZnSe based devices so its interaction with such surfaces is of interest. An interest that motivates this study is the possibility of lattice-matched growth of transition metal layers on semiconductors. Lattice mismatch initially appeared to inhibit single crystal transition metal growth, but it has been reported that lattice matched growth can occur in some cases. It is thought that reactions at the interface form a buffer layer, which allows for epitaxial growth via a more comparable lattice constant. We report studies of the growth of manganese films on GaAs(100) at several substrate temperatures using angle resolved photoemission, the diffusion of the Mn in the GaAs substrates using SIMS and the morphology of the layers using AFM images

  7. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    Science.gov (United States)

    Lioliou, G.; Barnett, A. M.

    2016-11-01

    Results characterizing GaAs p+-i-n+ mesa photodiodes with a 10 μm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 μm and 400 μm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm2 to 67 nA/cm2 at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. 55Fe X-ray spectra were obtained using one 200 μm diameter device and one 400 μm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 μm and 740 eV using the 400 μm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. 63Ni beta particle spectra obtained using the 200 μm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  8. A Study on the Transversal Optical Mode in Amorphous Gallium Arsenide

    OpenAIRE

    Grado-Caffaro, M. A.; Grado-Caffaro, M.

    1998-01-01

    Contributions to the far-infrared spectrum corresponding to both dynamical and structural disorders in a-GaAs are examined when frequency coincides with the transversal optical mode. Under these circumstances, dipole moment matrix element is discussed.

  9. Theoretical study of IR and photoelectron spectra of small gallium-arsenide clusters

    Energy Technology Data Exchange (ETDEWEB)

    Pouchan, Claude; Marchal, Rémi; Hayashi, Shinsuke [Université de Pau et des Pays de l' Adour, IPREM/ECP, UMR CNRS 5254 (France)

    2015-01-22

    Relative stabilities of small Ga{sub n}As{sub m} clusters, as well as their structural electronic and vibrational properties, were computed and analysed using a CCSD(T) reference method since experimental data in this area are sparse or unknown. With the aim of investigating larger clusters, we explored several DFT functionals and basis sets able to mimic the reliable CCSD(T) approach. Among them, the PBE0/SBKJC+sp,d appears as the most efficient to describe the structural and vibrational properties since average differences of about 0.042Å and 5.1cm{sup −1} were obtained for bond lengths and fundamental vibrational frequencies, respectively for the first small clusters [1] of the series found from our GSAM method [2]. As further test, this model is used in order to investigate and revisit an experimental IR spectrum of Ga{sub n}As{sub m} mixture previously published by Li et al. [3]. More complicated is the difficulty which arises in the electronic description due to the presence of numerous low lying electronic states nearly degenerated to correctly describe the electronic structure. The case of Ga{sub 2}As will be discussed and the photoelectron spectra of the Ga{sub 2}As anion reanalyzed on the ground of our calculations [4] comparatively to the experimental spectra obtained by Neumark and co-workers [5].

  10. Computer modeling characterization, and applications of Gallium Arsenide Gunn diodes in radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    El- Basit, Wafaa Abd; El-Ghanam, Safaa Mohamed; Kamh, Sanaa Abd El-Tawab [Electronics Research Laboratory, Physics Department, Faculty of Women for Arts, Science and Education, Ain-Shams University, Cairo (Egypt); Abdel-Maksood, Ashraf Mosleh; Soliman, Fouad Abd El-Moniem Saad [Nuclear Materials Authority, Cairo (Egypt)

    2016-10-15

    The present paper reports on a trial to shed further light on the characterization, applications, and operation of radar speed guns or Gunn diodes on different radiation environments of neutron or γ fields. To this end, theoretical and experimental investigations of microwave oscillating system for outer-space applications were carried out. Radiation effects on the transient parameters and electrical properties of the proposed devices have been studied in detail with the application of computer programming. Also, the oscillation parameters, power characteristics, and bias current were plotted under the influence of different γ and neutron irradiation levels. Finally, shelf or oven annealing processes were shown to be satisfactory techniques to recover the initial characteristics of the irradiated devices.

  11. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-01-01

    Gallium and copper radionuclides have a long history of use in nuclear medicine. Table 1 presents the nuclear properties of several gallium and copper isotopes that either are used in the routine practice of clinical nuclear medicine or exhibit particular characteristics that might make them useful in diagnostic or therapeutic medicine. This paper will provide some historic perspective along with an overview of some current research directions in gallium and copper radiopharmaceutical chemistry. A more extensive review of gallium radiopharmaceutical chemistry has recently appeared and can be consulted for a more in-depth treatment of this topic

  12. P-type Oxide Semiconductors for Transparent & Energy Efficient Electronics

    KAUST Repository

    Wang, Zhenwei

    2018-01-01

    , the performance of p-type counterparts is lag behind. However, after years of discovery, several p-type TSOs are confirmed with promising performance, for example, tin monoxide (SnO). By using p-type SnO, excellent transistor field-effect mobility of 6.7 cm2 V-1 s

  13. Gallium--A smart metal

    Science.gov (United States)

    Foley, Nora; Jaskula, Brian W.

    2013-01-01

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. The French chemist Paul-Emile Lecoq de Boisbaudran discovered gallium in sphalerite (a zinc-sulfide mineral) in 1875 using spectroscopy. He named the element "gallia" after his native land of France (formerly Gaul; in Latin, Gallia). The existence of gallium had been predicted in 1871 by Dmitri Mendeleev, the Russian chemist who published the first periodic table of the elements. Mendeleev noted a gap in his table and named the missing element "eka-aluminum" because he determined that its location was one place away from aluminum in the table. Mendeleev thought that the missing element (gallium) would be very much like aluminum in its chemical properties, and he was right. Solid gallium has a low melting temperature (~29 degrees Celsius, or °C) and an unusually high boiling point (~2,204 °C). Because of these properties, the earliest uses of gallium were in high-temperature thermometers and in designing metal alloys that melt easily. The development of a gallium-based direct band-gap semiconductor in the 1960s led to what is now one of the most well-known applications for gallium-based products--the manufacture of smartphones and data-centric networks.

  14. Electrospun Gallium Nitride Nanofibers

    International Nuclear Information System (INIS)

    Melendez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-01-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH 3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  15. Electron emission from individual indium arsenide semiconductor nanowires

    NARCIS (Netherlands)

    Heeres, E.C.; Bakkers, E.P.A.M.; Roest, A.L.; Kaiser, M.A.; Oosterkamp, T.H.; Jonge, de N.

    2007-01-01

    A procedure was developed to mount individual semiconductor indium arsenide nanowires onto tungsten support tips to serve as electron field-emission sources. The electron emission properties of the single nanowires were precisely determined by measuring the emission pattern, current-voltage curve,

  16. Discriminating a deep defect from shallow acceptors in supercell calculations: gallium antisite in GaAs

    Science.gov (United States)

    Schultz, Peter

    To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  17. Prospects for recovering gallium from extracted coal

    Energy Technology Data Exchange (ETDEWEB)

    Ratynskiy, V M; Reznik, A M; Zekel, L A; Zharov, Yu N

    1979-01-01

    The authors conducted research in order to establish the physical-chemical mechanisms governing the behavior of rare and dispersed elements within the thermal treatment processes used to treat coal and enrichment waste. New means are proposed for obtaining concentrations of gallium. These methods are under consideration primarily for the isolation of gallium as a by-product during the production of aggloporite from coal waste. The authors examine in detail the results of research dealing with the transfer of gallium compounds in a solution, the extraction of gallium from solutions, the separation of impurities from gallium, and the isolation of gallium from extract. Utilizing research results, the authors determine the expenditure coefficient and costs for additives used to extract gallium from waste by-products. The realization of this gallium extraction process from those products having the best prospects for gallium content resulted in economic savings.

  18. Gallium Safety in the Laboratory

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    2003-01-01

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002

  19. ASSESSMENT OF GALLIUM OXIDE TECHNOLOGY

    Science.gov (United States)

    2017-08-01

    AFRL-RY-WP-TR-2017-0167 ASSESSMENT OF GALLIUM OXIDE TECHNOLOGY Burhan Bayraktaroglu Devices for Sensing Branch Aerospace...TITLE AND SUBTITLE ASSESSMENT OF GALLIUM OXIDE TECHNOLOGY 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER N/A 6...report summarizes the current status of the Ga2O3 technology based on published results on theoretical electronic structure, materials growth, and

  20. Gallium and imaging studies

    International Nuclear Information System (INIS)

    Vogel, H.C.

    1982-01-01

    The indications for the use of 67 Gallium imaging studies of the lungs are discussed. In spite of localization of 67 Ga in a large variety of neoplastic and inflammatory tissues, there is only limited application of the lung study in the differential diagnosis of pulmonary diseases. The chest radiograph will continue to be the principal tool for evaluation of pulmonary diseases. The 67 Ga-citrate scan serves as a study complementary to the chest radiograph, as it indicates the localization, extent and degree of activity of lung disease with greater accuracy than radiography. Gallium-67 scanning may be used in the evaluation of patients with lymphoreticular neoplasms, especially Hodgkin-disease and malignant lymphoma both during initial staging and in evaluation of the response to therapy. The 67 Ga-citrate scan is useful in the pre-operative evaluation of patients with lung cancer. Hilar and mediastinal lymphadenopathy are accurately revealed. The lung study is non-invasive and complementary to mediastinoscopy by showing from which glands a biopsy might be taken. Unsuspected extrathoracic secondaries may be shown up, as well as pulmonary metastases from malignancies elsewhere, although the metastases must be at least 1,5 cm in size. The 67 Ga lung scan is valuable in the evaluation of pulmonary infiltrates of suspicious infective etiology, the differentiation between pulmonary infection and pneumonia in selected cases, follow-up of sarcoid patients on corticosteroid therapy, evaluation of inflammatory activity of idiopathic pulmonary fibrosis and the early detection of neo-plastic or inflammatory diseases before the chest radiograph reveals abnormality, e.g. in diffuse carcinomatosis or Pneumocystis carinii-infection. The sensitivity of tumors to radiation or chemotherapy may be shown

  1. Structural variations in nanosized confined gallium

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Kai [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Tien Cheng [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)] [Center for Micro/Nano Science of Technology, National Cheng Kung University, Tainan 70101, Taiwan, ROC (China); Charnaya, E.V., E-mail: charnaya@live.co [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)] [Institute of Physics, St. Petersburg State University, St. Petersburg, Petrodvorets 198504 (Russian Federation); Sheu, Hwo-Shuenn [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Kumzerov, Yu.A. [A.F. Ioffe Physico-Technical Institute RAS, St. Petersburg, 194021 (Russian Federation)

    2010-03-29

    The complex crystalline structure of gallium under nanoconfinement was revealed by synchrotron radiation x-ray powder diffraction. Nanoconfinement was shown to stabilize delta-Ga which is metastable in bulk. Two new gallium phases named iota- and kappa-Ga were found upon cooling below room temperature. These crystalline modifications were stable and coexisted with known gallium phases. Correlations between confined gallium particle shapes and emergence of particular crystalline phases were observed. Melting and freezing temperatures for different gallium phases were obtained. Remarkable supercooling of liquid gallium was seen in 3.5 nm pores.

  2. On Allosteric Modulation of P-Type Cu+-ATPases

    DEFF Research Database (Denmark)

    Mattle, Daniel; Sitsel, Oleg; Autzen, Henriette Elisabeth

    2013-01-01

    P-type ATPases perform active transport of various compounds across biological membranes and are crucial for ion homeostasis and the asymmetric composition of lipid bilayers. Although their functional cycle share principles of phosphoenzyme intermediates, P-type ATPases also show subclass...... of intramembranous Cu+ binding, and we suggest an alternative role for the proposed second site in copper translocation and proton exchange. The class-specific features demonstrate that topological diversity in P-type ATPases may tune a general energy coupling scheme to the translocation of compounds with remarkably...

  3. Mechanochemical activation and gallium and indiaarsenides surface catalycity

    Science.gov (United States)

    Kirovskaya, I. A.; Mironova, E. V.; Umansky, I. V.; Brueva, O. Yu; Murashova, A. O.; Yureva, A. V.

    2018-01-01

    The present work has been carried out in terms of determining the possibilities for a clearer identification of the active sites nature, intermediate surface compounds nature, functional groups during adsorption and catalysis, activation of the diamond-like semiconductors surface (in particular, the AIIIBV type) based on mechanochemical studies of the “reaction medium (H2O, iso-C3H7OH) - dispersible semiconductor (GaAs, InAs)” systems. As a result, according to the read kinetic curves of dispersion in water, both acidification and alkalinization of the medium have been established and explained; increased activity of the newly formed surface has been noted; intermediate surface compounds, functional groups appearing on the real surface and under H2O adsorption conditions, adsorption and catalytic decomposition of iso-C3H7OH have been found (with explanation of the origin). The unconcealed role of coordinatively unsaturated atoms as active sites of these processes has been shown; the relative catalytic activity of the semiconductors studied has been evaluated. Practical recommendations on the preferred use of gallium arsenide in semiconductor gas analysis and semiconductor catalysis have been given in literature searches, great care should be taken in constructing both.

  4. Electrical properties of indium arsenide irradiated with fast neutrons

    International Nuclear Information System (INIS)

    Kolin, N.G.; Osvenskii, V.B.; Rytova, N.S.; Yurova, E.S.

    1987-01-01

    A study was made of the influence of irradiation with fast reactor neutrons on electrical properties of indium arsenide samples with different dopant concentrations. The laws governing the formation and annealing of radiation defects in indium arsenide were found to be governed by the donor-acceptor interaction. Depending on the density of free carriers in the original crystal, irradiation could produce charged defects of predominantly donor or acceptor types. Donor defects in irradiated InAs samples were annealed practically completely, whereas a considerable fraction of residual acceptor defects was retained even after heat treatment at 900 degree C. The concentration of these residual acceptors depended on the electron density at the annealing temperature

  5. Ohmic Contacts to P-Type SiC

    National Research Council Canada - National Science Library

    Crofton, John

    2000-01-01

    Alloys of aluminum (Al) have previously been used as ohmic contacts to p-type SiC, however the characteristics and performance of these contacts is drastically affected by the type and composition of the Al alloy...

  6. Superconductivity and structure of gallium under nanoconfinement

    Energy Technology Data Exchange (ETDEWEB)

    Charnaya, E V; Tien, Cheng; Lee, Min Kai [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Kumzerov, Yu A [A F Ioffe Physico-Technical Institute RAS, St Petersburg, 194021 (Russian Federation)

    2009-11-11

    Superconductivity and crystalline structure were studied for two nanocomposites consisting of gallium loaded porous glasses with different pore sizes. The superconducting transition temperatures were found to differ from those in known bulk gallium modifications. The transition temperatures 7.1 and 6.7 K were ascribed to two new confined gallium structures, iota- and kappa-Ga, observed by synchrotron radiation x-ray powder diffraction. The evolution of superconductivity on decreasing the pore filling with gallium was also studied.

  7. Short period strain balanced gallium arsenide nitride/indium arsenide nitride superlattice lattice matched to indium phosphide for mid-infrared photovoltaics

    Science.gov (United States)

    Bhusal, Lekhnath

    Dilute nitrogen-containing III-V-N alloys have been intensively studied for their unusual electronic and optical behavior in the presence of a small amount of nitrogen. Those behaviors can further be manipulated, with a careful consideration of the strain and strain balancing, for example, in the context of a strain-balanced superlattice (SL) based on those alloys. In this work, the k.p approximation and the band anti-crossing model modified for the strain have been used to describe the electronic states of the strained bulk-like GaAs1-xNx and InAs 1-yNy ternaries in the vicinity of the center of the Brillouin zone (Gamma-point). Band-offsets between the conduction and valence bands of GaAs1-xNx and InAs1-yN y have also been evaluated, before implementing them into the SL structure. By minimizing the total mechanical energy of the stack of the alternating layers of GaAs1-xNx and InAs1-yNy in the SL, the ratio of the thicknesses of the epilayers is determined to make the structure lattice-matching on the InP(001), through the strain-balancing. Mini-band energies of the strain-balanced GaAs1-xNx/InAs 1-yNy short-period SL on InP(001) is then investigated using the transfer matrix formalism. This enabled identifying the evolution of the band edge transition energies of the superlattice structure for different nitrogen compositions. Results show the potential of the new proposed design to exceed the existing limits of bulk-like InGaAsN alloys and offer the applications for photon absorption/emission energies in the range of ~0.65-0.35eV at 300K for a typical nitrogen composition of ≤5%. The optical absorption coefficient of such a SL is then estimated under the anisotropic medium approximation, where the optical absorption of the bulk structure is modified according to the anisotropy imposed by the periodic potential in the growth direction. As an application, the developed SL structure is used to investigate the performance of double, triple and quadruple junction thermophotovoltaic devices. Integration of the SL structure, which is lattice matched to InP, in the i region of the p(InGaAs)- i(SL) n(InGaAs) diode allowed the possibility of more than two junction thermophotovoltiac device with the enhanced performance in comparison to the conventional p(InGaAs)n(InGaAs) diode.

  8. Hydrogen inventory in gallium

    International Nuclear Information System (INIS)

    Mazayev, S.N.; Prokofiev, Yu.G.

    1994-01-01

    Investigations of hydrogen inventory in gallium (99.9%) were carried out after saturation both from molecular phase and from glow discharge plasma at room temperature, 370 and 520 K. Saturation took place during 3000 s under hydrogen pressure of 20 Pa, and ion flux was about 1x10 15 ions/cm 2 s with an energy about 400 eV during discharge. Hydrogen concentration in Ga at room temperature and that for 370 K by the saturation from gaseous phase was (2-3)x10 14 cm -3 Pa -1/2 . Hydrogen concentration at temperature 520 K increased by five times. Inventory at room temperature for irradiation from discharge was 7x10 16 cm -3 at the dose about 3x10 18 ions/cm 2 . It was more than inventory at temperature 520 K by four times and more than maximum inventory from gaseous phase at 520 K by a factor of 10. Inventory increased when temperature decreased. Diffusion coefficient D=0.003 exp(-2300/RT) cm 2 /s, was estimated from temperature dependence. ((orig.))

  9. Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehyun; Sellan, Daniel P.; Ou, Eric; Shi, Li, E-mail: lishi@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Evans, Daniel A.; Williams, Owen M.; Cowley, Alan H. [Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-05-16

    Recent first principles calculations have predicted that boron arsenide (BAs) can possess an unexpectedly high thermal conductivity that depends sensitively on the crystal size and defect concentration. However, few experimental results have been obtained to verify these predictions. In the present work, we report four-probe thermal and thermoelectric transport measurements of an individual BAs microstructure that was synthesized via a vapor transport method. The measured thermal conductivity was found to decrease slightly with temperature in the range between 250 K and 350 K. The temperature dependence suggests that the extrinsic phonon scattering processes play an important role in addition to intrinsic phonon-phonon scattering. The room temperature value of (186 ± 46) W m{sup −1 }K{sup −1} is higher than that of bulk silicon but still a factor of four lower than the calculated result for a defect-free, non-degenerate BAs rod with a similar diameter of 1.15 μm. The measured p-type Seebeck coefficient and thermoelectric power factor are comparable to those of bismuth telluride, which is a commonly used thermoelectric material. The foregoing results also suggest that it is necessary to not only reduce defect and boundary scatterings but also to better understand and control the electron scattering of phonons in order to achieve the predicted ultrahigh intrinsic lattice thermal conductivity of BAs.

  10. Gallium scintigraphy in Hansen's disease

    International Nuclear Information System (INIS)

    Braga, F.J.H.N.; Sao Paulo Univ., SP; Araejo, E.B.; Camargo, E.E.; Tedesco-Marchesi, L.C.M.; Rivitti, M.C.M.; Bouladour, H.; Galle, P.

    1991-01-01

    Gallium 67 imaging was used in 12 patients with documented Hansen's disease undergoing treatment or not in an attempt to determine the pattern of the disease. Diagnosis was confirmed by histopathology in all patients. The Mitsuda reaction was seen in all patients. Specific nuclear studies were performed when needed to evaluate particular organs better. Gallium 67 images show homogeneous, diffuse and moderate accumulation over the entire skin surface (except for the face) of untreated patients with multibacillary disease. The face skin in these cases presented homogeneous, diffuse but very marked uptake of gallium. Internal organ involvement was variable. There was a very good correlation among clinical, scintigraphical, immunological and histopathological data. The pattern of the body skin ('skin outlining') and face skin ('beard distribution') may be distinct for untreated patients with multibacillary leprosy. (orig.)

  11. Synthesis of p-type GaN nanowires.

    Science.gov (United States)

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  12. Activities towards p-type doping of ZnO

    International Nuclear Information System (INIS)

    Brauer, G; Kuriplach, J; Ling, C C; Djurisic, A B

    2011-01-01

    Zinc oxide (ZnO) is an interesting and promising semiconductor material for many potential applications, e.g. in opto-electronics and for sensor devices. However, its p-type doping represents a challenging problem, and the physical reasons of its mostly n-type conductivity are not perfectly clear at present. Efforts to achieve p-type conductivity by ion implantation are reviewed, and ways to achieve p-type ZnO nanorods and thin films through various growth conditions are summarized. Then, issues associated with the preparation of Schottky contacts is discussed in some detail as this is a requirement of the device formation process. Finally, the possible incorporation of hydrogen and nitrogen into structural defects, which can act as trapping sites for positrons, is discussed in the context of experimental and theoretical positron results and the estimated H and N content in a variety of ZnO materials.

  13. Activities towards p-type doping of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, G [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden (Germany); Kuriplach, J [Department of Low Temperature Physics, Charles University, V Holetovickach 2, CZ-18000 Prague (Czech Republic); Ling, C C; Djurisic, A B, E-mail: g.brauer@fzd.de [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong)

    2011-01-10

    Zinc oxide (ZnO) is an interesting and promising semiconductor material for many potential applications, e.g. in opto-electronics and for sensor devices. However, its p-type doping represents a challenging problem, and the physical reasons of its mostly n-type conductivity are not perfectly clear at present. Efforts to achieve p-type conductivity by ion implantation are reviewed, and ways to achieve p-type ZnO nanorods and thin films through various growth conditions are summarized. Then, issues associated with the preparation of Schottky contacts is discussed in some detail as this is a requirement of the device formation process. Finally, the possible incorporation of hydrogen and nitrogen into structural defects, which can act as trapping sites for positrons, is discussed in the context of experimental and theoretical positron results and the estimated H and N content in a variety of ZnO materials.

  14. Potential effects of gallium on cladding materials

    International Nuclear Information System (INIS)

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented

  15. P-type Oxide Semiconductors for Transparent & Energy Efficient Electronics

    KAUST Repository

    Wang, Zhenwei

    2018-03-11

    Emerging transparent semiconducting oxide (TSO) materials have achieved their initial commercial success in the display industry. Due to the advanced electrical performance, TSOs have been adopted either to improve the performance of traditional displays or to demonstrate the novel transparent and flexible displays. However, due to the lack of feasible p-type TSOs, the applications of TSOs is limited to unipolar (n-type TSOs) based devices. Compared with the prosperous n-type TSOs, the performance of p-type counterparts is lag behind. However, after years of discovery, several p-type TSOs are confirmed with promising performance, for example, tin monoxide (SnO). By using p-type SnO, excellent transistor field-effect mobility of 6.7 cm2 V-1 s-1 has been achieved. Motivated by this encouraging performance, this dissertation is devoted to further evaluate the feasibility of integrating p-type SnO in p-n junctions and complementary metal oxide semiconductor (CMOS) devices. CMOS inverters are fabricated using p-type SnO and in-situ formed n-type tin dioxide (SnO2). The semiconductors are simultaneously sputtered, which simplifies the process of CMOS inverters. The in-situ formation of SnO2 phase is achieved by selectively sputtering additional capping layer, which serves as oxygen source and helps to balance the process temperature for both types of semiconductors. Oxides based p-n junctions are demonstrated between p-type SnO and n-type SnO2 by magnetron sputtering method. Diode operating ideality factor of 3.4 and rectification ratio of 103 are achieved. A large temperature induced knee voltage shift of 20 mV oC-1 is observed, and explained by the large band gap and shallow states in SnO, which allows minor adjustment of band structure in response to the temperature change. Finally, p-type SnO is used to demonstrating the hybrid van der Waals heterojunctions (vdWHs) with two-dimensional molybdenum disulfide (2D MoS2) by mechanical exfoliation. The hybrid vdWHs show

  16. Development and Processing of p-type Oxide Thermoelectric Materials

    DEFF Research Database (Denmark)

    Wu, NingYu; Van Nong, Ngo

    The main aim of this research is to investigate and develop well-performing p-type thermoelectric oxide materials that are sufficiently stable at high temperatures for power generating applications involving industrial processes. Presently, the challenges facing the widespread implementation...

  17. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy

    Science.gov (United States)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  18. High performance p-type half-Heusler thermoelectric materials

    Science.gov (United States)

    Yu, Junjie; Xia, Kaiyang; Zhao, Xinbing; Zhu, Tiejun

    2018-03-01

    Half-Heusler compounds, which possess robust mechanical strength, good high temperature thermal stability and multifaceted physical properties, have been verified as a class of promising thermoelectric materials. During the last two decades, great progress has been made in half-Heusler thermoelectrics. In this review, we summarize some representative work of p-type half-Heusler materials, the thermoelectric performance of which has been remarkably enhanced in recent years. We introduce the features of the crystal and electronic structures of half-Heusler compounds, and successful strategies for optimizing electrical and thermal transport in the p-type RFeSb (R  =  V, Nb, Ta) and MCoSb (M  =  Ti, Zr, Hf) based systems, including band engineering, the formation of solid solutions and hierarchical phonon scattering. The outlook for future research directions of half-Heusler thermoelectrics is also presented.

  19. Lattice parameters guide superconductivity in iron-arsenides

    Science.gov (United States)

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  20. Superconductivity in Ti3P-type compounds

    International Nuclear Information System (INIS)

    Wills, J.O.; Hein, R.A.; Waterstrat, R.M.

    1978-01-01

    A study of 12 intermetallic A 3 B compounds which crsytallize in the tetragonal Ti 3 P-type structure has revealed five new superconductors with transition temperatures below 1 K: Zr 3 Si, Zr 3 Ge, Zr 3 P, V 3 P, and Nb 3 Ge (extrapolated from the alloy series Nb-Ge-As). In addition, two compounds, Zr 3 Sb and Ta 3 Ge, having the Ni 3 P structure type are found to be superconducting below 1 K. Within the Ti 3 P-type compounds, those with the lighter ''B'' elements in a given column of the Periodic Table have the higher transition temperatures. Critical-magnetic-field and electrical-resistivity data are reported for the superconducting Ti 2 P-type compound Nb 3 P, which permit one to estimate the Ginzburg-Landau kappa parameter and the electronic-specific-heat coefficient γ. The kappa value of 8.4 indicates that this material is type II, and the γ value of 1.3 mJ/mole K 2 for Nb 3 P is probably related to its low transition temperature relative to many A15 compounds

  1. Gallium-67 scintigraphy and the Heart

    International Nuclear Information System (INIS)

    Garayt, D.

    1987-01-01

    Although gallium-67 was initially used for tumor imaging, clinical studies suggested its potential use as a method of detecting occult inflammatory lesions. The demonstration of diffuse myocardial uptake of gallium-67 during Lyme disease myocarditis is consistent with a pattern of diffuse myocarditis as seen in sarcoid myocarditis. Two cases are presented. A critical review of the various applications of gallium-67 scintigraphy to myocardium investigation is carried out [fr

  2. Aluminium, gallium, indium and thallium

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    Aluminium can exist in a number of oxyhydroxide mineral phases including corundum, diaspore, boehmite and gibbsite. The stability constants at zero ionic strength reported for Al(OH) 3 (aq) vary linearly with respect to the inverse of absolute temperature. A full suite of thermodynamic parameters is available for all aluminium phases and hydrolysis species. Gallium hydrolyses to a greater extent than aluminium, with the onset of hydrolysis reactions occurring just above a pHof 1. In fact, even though aluminium has the smallest ionic radius of this series of metals, it has the weakest hydrolysis species and oxide/hydroxide phases.This is due to the presence of stabilising d-orbitals in the heavier metals, gallium, indium and thallium(III). There are few available data for the stability constants of indium(III) hydrolysis species. Of those that are available, the range in the proposed stability constants covers many orders of magnitude.

  3. Collector for recovering gallium from weapons plutonium

    International Nuclear Information System (INIS)

    Philip, C.V.; Anthony, R.G.; Chokkaram, S.

    1998-09-01

    Currently, the separation of gallium from weapons plutonium involves the use of aqueous processing using either solvent extraction of ion exchange. However, this process generates significant quantities of liquid radioactive wastes. A Thermally Induced Gallium Removal process, or TIGR, developed by researchers at Los Alamos National Laboratories, is a simpler alternative to aqueous processing. This research examined this process, and the behavior of gallium suboxide, a vapor that is swept away by passing hydrogen/argon over gallium trioxide/plutonium oxide heated at 1100 C during the TIGR process. Through experimental procedures, efforts were made to prevent the deposition of corrosive gallium onto furnace and vent surfaces. Experimental procedures included three options for gallium removal and collection: (1) collection of gallium suboxide through use of a cold finger; (2) collection by in situ air oxidation; and (3) collection of gallium on copper. Results conclude all three collection mechanisms are feasible. In addition, gallium trioxide exists in three crystalline forms, and each form was encountered during each experiment, and that each form will have a different reactivity

  4. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.; John, E.K.; Barnhart, A.J.

    1990-01-01

    Several isotopes of gallium and copper exhibit nuclear properties that make them attractive for applications in nuclear medicine, most notably Ga-67, Ga-68, Cu-67 and Cu-62. Of these, gamma-emitting Ga-67 has historically found the greatest clinical use, based on the observation that tracer gallium(III) citrate rapidly produces Ga-67 transferrin upon intravenous injection and then slowly affords selective Ga-67 localization in sites of abscess and certain tumors. Copper-67 has received attention as a potential label for tissue-selective monoclonal antibodies, since its associated γ-photons can be used for external imaging and its β - -emissions could be used for radiation therapy. Positron-emitting gallium-68 and copper-62, being available from parent/daughter generator systems, have attracted interest as potential labels for radiopharmaceuticals used in positron emission tomography (PET) because they could reduce the dependence of this imaging technology on hospital-based cyclotrons. The 10 min. half-life of Cu-62 is particularly well-suited to the time frame of PET studies of tissue perfusion, an application for which Cu(II)-bis(thiosemicarbazone) derivatives appear promising. The 68 min. half-life of Ga-68 makes it appropriate for PET studies over longer imaging time spans

  5. Characterization and modeling of the intrinsic properties of 1.5-micrometer gallium indium nitrogen arsenic antimonide/gallium arsenide laser

    Science.gov (United States)

    Goddard, Lynford

    2005-12-01

    Low cost access to optical communication networks is needed to satisfy the rapidly increasing demands of home-based high-speed Internet. Existing light sources in the low-loss 1.2--1.6mum telecommunication wavelength bandwidth are prohibitively expensive for large-scale deployment, e.g. incorporation in individual personal computers. Recently, we have extended the lasing wavelength of room-temperature CW GaInNAs(Sb) lasers grown monolithically on GaAs by MBE up to 1.52mum in an effort to replace the traditional, more expensive, InP-based devices. Besides lower cost wafers, GaInNAs(Sb) opto-electronic devices have fundamental material advantages over InP-based devices: a larger conduction band offset which reduces temperature sensitivity and enhances differential gain, a lattice match to a material with a large refractive index contrast, i.e. AlAs, which decreases the necessary number of mirror pairs in DBRs for VCSELs, and native oxide apertures for current confinement. High performance GaInNAs(Sb) edge-emitting lasers, VCSELs, and DFB lasers have been demonstrated throughout the entire telecommunication band. In this work, we analyze the intrinsic properties of the GaInNAsSb material system, e.g. recombination, gain, band structure and renormalization, and efficiency. Theoretical modeling is performed to calculate a map of the bandgap and effective masses for various material compositions. We also present device performance results, such as: room temperature CW threshold densities below 450A/cm2, quantum efficiencies above 50%, and over 425mW of total power from a SQW laser when mounted epi-up and minimally packaged. These results are generally 2--4x better than previous world records for GaAs based devices at 1.5mum. The high CW power and low threshold exhibited by these SQW lasers near 1.5mum make feasible many novel applications, such as broadband Raman fiber amplifiers and uncooled WDM at the chip scale. Device reliability of almost 500 hours at 200mW CW output power has also been demonstrated. Comparative experiments using innovative characterization techniques, such as: the multiple section absorption/gain method to explore the band structure, as well as the Z-parameter to analyze the dominant recombination processes, have identified the physical mechanisms responsible for improved performance. Also, by measuring the temperature dependence of relevant laser parameters, we have been able to simulate device operation while varying temperature and device geometry.

  6. Combined angle-resolved X-ray photoelectron spectroscopy, density functional theory and kinetic study of nitridation of gallium arsenide

    Science.gov (United States)

    Mehdi, H.; Monier, G.; Hoggan, P. E.; Bideux, L.; Robert-Goumet, C.; Dubrovskii, V. G.

    2018-01-01

    The high density of interface and surface states that cause the strong Fermi pinning observed on GaAs surfaces can be reduced by depositing GaN ultra-thin films on GaAs. To further improve this passivation, it is necessary to investigate the nitridation phenomena by identifying the distinct steps occurring during the process and to understand and quantify the growth kinetics of GaAs nitridation under different conditions. Nitridation of the cleaned GaAs substrate was performed using N2 plasma source. Two approaches have been combined. Firstly, an AR-XPS (Angle Resolved X-ray Photoelectron Spectroscopy) study is carried out to determine the chemical environments of the Ga, As and N atoms and the composition depth profile of the GaN thin film which allow us to summarize the nitridation process in three steps. Moreover, the temperature and time treatment have been investigated and show a significant impact on the formation of the GaN layer. The second approach is a refined growth kinetic model which better describes the GaN growth as a function of the nitridation time. This model clarifies the exchange mechanism of arsenic with nitrogen atoms at the GaN/GaAs interface and the phenomenon of quasi-saturation of the process observed experimentally.

  7. Lead-germanium ohmic contact on to gallium arsenide formed by the solid phase epitaxy of germanium: A microstructure study

    Science.gov (United States)

    Radulescu, Fabian

    2000-12-01

    Driven by the remarkable growth in the telecommunication market, the demand for more complex GaAs circuitry continued to increase in the last decade. As a result, the GaAs industry is faced with new challenges in its efforts to fabricate devices with smaller dimensions that would permit higher integration levels. One of the limiting factors is the ohmic contact metallurgy of the metal semiconductor field effect transistor (MESFET), which, during annealing, induces a high degree of lateral diffusion into the substrate. Because of its limited reaction with the substrate, the Pd-Ge contact seems to be the most promising candidate to be used in the next generation of MESFET's. The Pd-Ge system belongs to a new class of ohmic contacts to compound semiconductors, part of an alloying strategy developed only recently, which relies on solid phase epitaxy (SPE) and solid phase regrowth to "un-pin" the Fermi level at the surface of the compound semiconductor. However, implementing this alloy into an integrated process flow proved to be difficult due to our incomplete understanding of the microstructure evolution during annealing and its implications on the electrical properties of the contact. The microstructure evolution and the corresponding solid state reactions that take place during annealing of the Pd-Ge thin films on to GaAs were studied in connection with their effects on the electrical properties of the ohmic contact. The phase transformations sequence, transition temperatures and activation energies were determined by combining differential scanning calorimetry (DSC) for thermal analysis with transmission electron microscopy (TEM) for microstructure identification. In-situ TEM annealing experiments on the Pd/Ge/Pd/GaAs ohmic contact system have permitted real time determination of the evolution of contact microstructure. The kinetics of the solid state reactions, which occur during ohmic contact formation, were determined by measuring the grain growth rates associated with each phase from the videotape recordings. With the exception of the Pd-GaAs interactions, it was found that four phase transformations occur during annealing of the Pd:Ge thin films on top of GaAs. The microstructural information was correlated with specific ohmic contact resistivity measurements performed in accordance with the transmission line method (TLM) and these results demonstrated that the Ge SPE growth on top of GaAs renders the optimal electrical properties for the contact. By using the focused ion beam (FIB) method to produce microcantilever beams, the residual stress present in the thin film system was studied in connection with the microstructure. Although, the PdGe/epi-Ge/GaAs seemed to be the optimal microstructural configuration, the presence of PdGe at the interface with GaAs did not damage the contact resistivity significantly. These results made it difficult to establish a charge transport mechanism across the interface but they explained the wide processing window associated with this contact.

  8. Symmetry and structure of carbon-nitrogen complexes in gallium arsenide from infrared spectroscopy and first-principles calculations

    Science.gov (United States)

    Künneth, Christopher; Kölbl, Simon; Wagner, Hans Edwin; Häublein, Volker; Kersch, Alfred; Alt, Hans Christian

    2018-04-01

    Molecular-like carbon-nitrogen complexes in GaAs are investigated both experimentally and theoretically. Two characteristic high-frequency stretching modes at 1973 and 2060 cm-1, detected by Fourier transform infrared absorption (FTIR) spectroscopy, appear in carbon- and nitrogen-implanted and annealed layers. From isotopic substitution, it is deduced that the chemical composition of the underlying complexes is CN2 and C2N, respectively. Piezospectroscopic FTIR measurements reveal that both centers have tetragonal symmetry. For density functional theory (DFT) calculations, linear entities are substituted for the As anion, with the axis oriented along the 〈1 0 0 〉 direction, in accordance with the experimentally ascertained symmetry. The DFT calculations support the stability of linear N-C-N and C-C-N complexes in the GaAs host crystal in the charge states ranging from + 3 to -3. The valence bonds of the complexes are analyzed using molecular-like orbitals from DFT. It turns out that internal bonds and bonds to the lattice are essentially independent of the charge state. The calculated vibrational mode frequencies are close to the experimental values and reproduce precisely the isotopic mass splitting from FTIR experiments. Finally, the formation energies show that under thermodynamic equilibrium CN2 is more stable than C2N.

  9. Grown-in beryllium diffusion in indium gallium arsenide: An ab initio, continuum theory and kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Liu, Wenyuan; Sk, Mahasin Alam; Manzhos, Sergei; Martin-Bragado, Ignacio; Benistant, Francis; Cheong, Siew Ann

    2017-01-01

    A roadblock in utilizing InGaAs for scaled-down electronic devices is its anomalous dopant diffusion behavior; specifically, existing models are not able to explain available experimental data on beryllium diffusion consistently. In this paper, we propose a more comprehensive model, taking self-interstitial migration and Be interaction with Ga and In into account. Density functional theory (DFT) calculations are first used to calculate the energy parameters and charge states of possible diffusion mechanisms. Based on the DFT results, continuum modeling and kinetic Monte Carlo simulations are then performed. The model is able to reproduce experimental Be concentration profiles. Our results suggest that the Frank-Turnbull mechanism is not likely, instead, kick-out reactions are the dominant mechanism. Due to a large reaction energy difference, the Ga interstitial and the In interstitial play different roles in the kick-out reactions, contrary to what is usually assumed. The DFT calculations also suggest that the influence of As on Be diffusion may not be negligible.

  10. Experimental evidence for an associated defect model for the neutron generated As/sub Ga/ center in gallium arsenide

    International Nuclear Information System (INIS)

    Golzene, A.; Meyer, B.; Schwab, C.

    1984-01-01

    The thermal dependence of EPR spectra of fast neutron irradiated n-type GaAs over the whole 4.2 to 300 K temperature range has been studied using the decomposition of spectra into a quadruplet of four identical Gaussian lines and a Lorentzian singlet. Quadruplet and singlet spectra as well as their proper parameters (inverse of paramagnetic susceptibility, hyperfine constants) could be determined separately. Experiments give evidence that the neutron generated anionic antisites As/sub Ga/ in GaAs are constituting associated defect centers, most likely of intrinsic nature

  11. Physicochemical conditions for the stability of manganese-doped nanolayers of gallium arsenide and its iso-electronic analogues

    Directory of Open Access Journals (Sweden)

    Yu. V. Terenteva

    2015-03-01

    Full Text Available In this paper research of stability of nanolayers of manganese doped materials of AIIIBV and AIIBIVСV2 types holding much promise as spintronic semiconductor compounds is described. The method of non-local density functional has been applied to calculate bonding energies {εij (r} in atomic pairs for structures of AIIIBV and AIIBIVСV2 types and for MnAs. According to the calculations of internal energy, entropy and free energy of Helmholtz (Т = 298К, in the context of used models, addition of manganese to the arsenide’s AIIIBV and AIIBIVСV2 nanolayers affects its stability in different ways depending on its morphology and substitution mode. However, a critical instability in nanofilm leading to the tendency of growing of a new phase germ may be formed under any manganese concentrations. This leads to deterioration of electrophysical parameters of magnetic semiconductor compounds that is agreed with experimental data.

  12. Scattering and mobility in indium gallium arsenide channel, pseudomorphic high electron mobility transistors (InGaAs pHEMTs)

    International Nuclear Information System (INIS)

    Pearson, J.L.

    1999-03-01

    Extensive transport measurements have been completed on deep and shallow-channelled InGaAs p-HEMTs of varying growth temperature, indium content, spacer thickness and doping density, with a view to a thorough characterisation, both in the metallic and the localised regimes. Particular emphasis was given to MBE grown layers, with characteristics applicable for device use, but low measurement temperatures were necessary to resolve the elastic scattering mechanisms. Measurements made in the metallic regime included transport and quantum mobility - the former over a range of temperatures between 1.5K to 300K. Conductivity measurements were also acquired in the strong localisation regime between about 1.5K and 100K. Experimentally determined parameters were tested for comparison with those predicted by an electrostatic model. Excellent agreement was obtained for carrier density. Other parameters were less well predicted, but the relevant experimental measurements, including linear depletion of the 2DEG, were sensitive to any excess doping above a 'critical' value determined by the model. At low temperature (1.5K), it was found that in all samples tested, transport mobility was strongly limited at all carrier densities by a large q mechanism, possibly intrinsic to the channel. This was ascribed either to scattering by the long-range potentials arising from the indium concentration fluctuations or fluctuations in the thickness of the channel layer. This mechanism dominates the transport at low carrier densities for all samples, but at high carrier density, an additional mechanism is significant for samples with the thinnest spacers tested (2.5nm). This is ascribed to direct electron interaction with the states of the donor layer, and produces a characteristic transport mobility peak. At higher carrier densities, past the peak, quantum mobility was found only to increase monotonically in value. Remote ionised impurity scattering while significant, particularly for samples with intermediate (5nm) and thin (2.5nm) spacers, was never found to dominate. As has been reported for similar structures, anisotropy of transport mobility was found, with the [011] direction having a higher mobility than the [011-bar] direction ((100) GaAs substrate nominally aligned ±0.1 deg.). Intermediate directions had intermediate mobilities. The anisotropy increased with indium content and growth temperature, and persisted to at least 300K. In addition, we found that quantum mobility was independent of direction suggesting that the mechanism responsible is dominated by short-range, large q scattering. Both transport and quantum, mobility were reduced when donor layer correlations were removed using the process of bias cooling. Quantum mobility was more sensitive to this process although excess donors in the doping layer also affected values at high carrier densities. Applying Matthiessen's rule to both correlated and uncorrelated transport mobility data, strongly suggested that remote ionised impurity scattering was consistent with theory for samples with a 5nm spacer, but that an additional mechanism, as mentioned above, must exist in the samples with a 2.5nm spacer. Variable temperature studies further revealed that at low carrier densities, weak localisation was present, with strong, temperature dependent, activated transport also apparent at higher depletion. At high carrier densities in the thinnest spacer samples (2.5nm), a transport mobility peak evolved with decreasing temperature. The mechanism responsible was undetermined, but it was reminiscent of weak localisation-like behaviour. (author)

  13. Hard X-ray test and evaluation of a prototype 32x32 pixel gallium-arsenide array

    International Nuclear Information System (INIS)

    Erd, C.; Owens, A.; Brammertz, G.; Bavdaz, M.; Peacock, A.; Laemsae, V.; Nenonen, S.; Andersson, H.; Haack, N.

    2002-01-01

    We report X-ray measurements on a prototype 1.1 cm 2 , 32x32 GaAs pixel array with a pixel size of 350x350 μm 2 produced to assess the technological feasibility of making large area, almost Fano-limited arrays, which operate near room temperature. Measurements were carried out on four widely separated pixels both in our laboratories and using monochromatic X-ray pencil beams at the HASYLAB synchrotron research facility in Hamburg, Germany. The pixels were found to be very uniform both in their energy and spatial responses. For example, typical energy resolutions of ∼280 eV at 10.5 keV, rising to ∼560 eV at 60 keV were achieved. The corresponding resolutions measured under full-pixel illumination were found to be the same within statistics, indicating uniform crystallinity and stoichiometry. Likewise, by scanning a 15 keV, 15x15 μm 2 beam across the entire surface of each of the pixels, the gain uniformity across the pixels (and by implication the entire array) was determined to be statistically flat

  14. Gallium 67 uptake in thymic rebound

    International Nuclear Information System (INIS)

    Hurst, R.; Sabio, H.; Teates, C.D.

    1988-01-01

    We have reported a case of localized thymic enlargement and uptake of gallium 67 in a child who had received antineoplastic chemotherapy. The enlarged thymus showed normal histology, a picture consistent with thymic rebound after nonspecific stress. This case further demonstrates the need to consider thymic rebound as a cause of gallium 67 uptake in children with neoplastic diseases

  15. Gallium-67 citrate scan in extrapulmonary tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Lin Wanyu [Taichung Veterans General Hospital (Taiwan). Dept. of Nuclear Medicine; Hsieh Jihfang [Chi-Mei Foundation Hospital, Tainan (Taiwan)

    1999-07-01

    Aim: Whole-body gallium scan was performed to evaluate the usefulness of gallium scan for detecting extrapulmonary tuberculosis (TB) lesions. Methods: Thirty-seven patients with extrapulmonary TB were included in this study. Four patients were found to have two lesions. Totally, 41 lesions were identified, including 19 TB arthritis, 8 spinal TB, 5 TB meningitis, 3 TB lymphadenopathy, 2 TB pericarditis, 1 TB peritonitis, 1 intestinal TB, 1 skin TB and 1 renal TB. Results: Of the 41 extrapulmonary TB lesions, gallium scan detected 32 lesions with a sensitivity of 78%. All the patients with TB meningitis showed negative gallium scan. When the five cases of TB meningitis were excluded, the detection sensitivity of gallium scan increased to 88.9% (32/36). Conclusion: Our data revealed that gallium scan is a convenient and useful method for evaluating extrapulmonary TB lesions other than TB-meningitis. We suggest that gallium scan be included in the clinical routine for patients with suspected extrapulmonary TB. (orig.) [German] Ziel: Es wurden Ganzkoerper-Gallium-Szintigramme angefertigt, um den Nutzen der Gallium-Szintigraphie zur Erfassung von extrapulmonalen Tuberkuloseherden (TB) zu erfassen. Methoden: 37 Patienten mit extrapulmonaler TB wurden eingeschlossen. 4 Patienten hatten 2 Laesionen. Insgesamt wurden 41 Laesionen identifiziert, hierunter 19 TB-Arthritis, 8 spinale TB, 5 TB-Meningitis, 3 TB-Lymphadenopathie, 2 TB-Perikarditis, 1 TB-Peritonitis, 1 intestinale TB, 1 Haut-TB und eine Nieren-TB. Ergebnisse: Von den 41 extrapulmonalen TB-Herden erfasste die Gallium-Szintigraphie 32 Herde mit einer Sensitivitaet von 78%. Alle Patienten mit TB-Meningitis zeigten einen negativen Gallium-Scan. Wenn die 5 Faelle mit TB-Meningitis ausgeschlossen wurden, stieg die Sensitivititaet der Gallium-Szintigraphie auf 88,9% (32/36). Schlussfolgerung: Die Daten zeigen, dass die Gallium-Szintigraphie eine einfache und nuetzliche Methode zur Erfassung extrapulmonaler TB-Herde ist

  16. Gallium Electromagnetic (GEM) Thrustor Concept and Design

    Science.gov (United States)

    Polzin, Kurt A.; Markusic, Thomas E.

    2006-01-01

    We describe the design of a new type of two-stage pulsed electromagnetic accelerator, the gallium electromagnetic (GEM) thruster. A schematic illustration of the GEM thruster concept is given in Fig. 1. In this concept, liquid gallium propellant is pumped into the first stage through a porous metal electrode using an electromagneticpump[l]. At a designated time, a pulsed discharge (approx.10-50 J) is initiated in the first stage, ablating the liquid gallium from the porous electrode surface and ejecting a dense thermal gallium plasma into the second state. The presence of the gallium plasma in the second stage serves to trigger the high-energy (approx.500 I), send-stage puke which provides the primary electromagnetic (j x B) acceleration.

  17. Fabrication of p-type conductivity in SnO{sub 2} thin films through Ga doping

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, Chien-Yie, E-mail: cytsay@fcu.edu.tw; Liang, Shan-Chien

    2015-02-15

    Highlights: • P-type Ga-doped SnO{sub 2} semiconductor films were prepared by sol-gel spin coating. • Optical bandgaps of the SnO{sub 2}:Ga films are narrower than that of the SnO{sub 2} film. • SnO{sub 2}:Ga films exhibited p-type conductivity as Ga doping content higher than 10%. • A p-n heterojunction composed of p-type SnO{sub 2}:Ga and n-type ZnO:Al was fabricated. - Abstract: P-type transparent tin oxide (SnO{sub 2}) based semiconductor thin films were deposited onto alkali-free glass substrates by a sol-gel spin-coating method using gallium (Ga) as acceptor dopant. In this study, we investigated the influence of Ga doping concentration ([Ga]/[Sn] + [Ga] = 0%, 5%, 10%, 15%, and 20%) on the structural, optical and electrical properties of SnO{sub 2} thin films. XRD analysis results showed that dried Ga-doped SnO{sub 2} (SnO{sub 2}:Ga) sol-gel films annealed in oxygen ambient at 520 °C for 1 h exhibited only the tetragonal rutile phase. The average optical transmittance of as-prepared thin film samples was higher than 87.0% in the visible light region; the optical band gap energy slightly decreased from 3.92 eV to 3.83 eV with increases in Ga doping content. Hall effect measurement showed that the nature of conductivity of SnO{sub 2}:Ga thin films changed from n-type to p-type when the Ga doping level was 10%, and when it was at 15%, Ga-doped SnO{sub 2} thin films exhibited the highest mean hole concentration of 1.70 × 10{sup 18} cm{sup -3}. Furthermore, a transparent p-SnO{sub 2}:Ga (Ga doping level of 15%)/n-ZnO:Al (Al doping level of 2%) heterojunction was fabricated on alkali-free glass. The I-V curve measurement for the p-n heterojunction diode showed a typical rectifying characteristic with a forward turn-on voltage of 0.65 V.

  18. Gallium nitride on gallium oxide substrate for integrated nonlinear optics

    KAUST Repository

    Awan, Kashif M.; Dolgaleva, Ksenia; Mumthaz Muhammed, Mufasila; Roqan, Iman S.

    2017-01-01

    Gallium Nitride (GaN), being a direct bandgap semiconductor with a wide bandgap and high thermal stability, is attractive for optoelectronic and electronic applications. Furthermore, due to its high optical nonlinearity — the characteristic of all 111-V semiconductors — GaN is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a plethora of apphcations, ranging from on-chip wavelength conversion to quantum computing. Although GaN devices are in commercial production, it still suffers from lack of a suitable substrate material to reduce structural defects like high densities of threading dislocations (TDs), stacking faults, and grain boundaries. These defects significandy deteriorate the optical quality of the epi-grown GaN layer, since they act as non-radiative recombination centers. Recent studies have shown that GaN grown on (−201) β-Gallium Oxide (Ga2O3) has superior optical quality due to a better lattice matching as compared to GaN grown on Sapphire (Al2O3) [1-3]. In this work, we report on the fabrication of GaN waveguides on GaiOj substrate and their optical characterization to assess their feasibihty for efficient four-wave mixing (FWM).

  19. Gallium nitride on gallium oxide substrate for integrated nonlinear optics

    KAUST Repository

    Awan, Kashif M.

    2017-11-22

    Gallium Nitride (GaN), being a direct bandgap semiconductor with a wide bandgap and high thermal stability, is attractive for optoelectronic and electronic applications. Furthermore, due to its high optical nonlinearity — the characteristic of all 111-V semiconductors — GaN is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a plethora of apphcations, ranging from on-chip wavelength conversion to quantum computing. Although GaN devices are in commercial production, it still suffers from lack of a suitable substrate material to reduce structural defects like high densities of threading dislocations (TDs), stacking faults, and grain boundaries. These defects significandy deteriorate the optical quality of the epi-grown GaN layer, since they act as non-radiative recombination centers. Recent studies have shown that GaN grown on (−201) β-Gallium Oxide (Ga2O3) has superior optical quality due to a better lattice matching as compared to GaN grown on Sapphire (Al2O3) [1-3]. In this work, we report on the fabrication of GaN waveguides on GaiOj substrate and their optical characterization to assess their feasibihty for efficient four-wave mixing (FWM).

  20. Gallium determination in biological samples

    International Nuclear Information System (INIS)

    Stulzaft, O.; Maziere, B.; Ly, S.

    1980-01-01

    A sensitive, simple and time-saving method has been developed for the neutron activation analysis of gallium at concentrations around 10 -4 ppm in biological tissues. After a 24-hour irradiation in a thermal neutron flux of 2.8x10 13 nxcm -2 xs -1 and a purification by ion-exchange chromatography to eliminate troublesome elements such as sodium, iron and copper, the 72 Ga activity is measured with enough accuracy for the method to be applicable in animal physiology and clinical toxicology. (author)

  1. Electronic structure of p type Delta doped systems

    International Nuclear Information System (INIS)

    Gaggero S, L.M.; Perez A, R.

    1998-01-01

    We summarize of the results obtained for the electronic structure of quantum wells that consist in an atomic layer doped with impurities of p type. The calculations are made within the frame worth of the wrapper function approach to independent bands and with potentials of Hartree. We study the cases reported experimentally (Be in GaAs and B in Si). We present the levels of energy, the wave functions and the rate of the electronic population between the different subbands, as well as the dependence of these magnitudes with the density of impurities in the layer. The participation of the bans of heavy holes is analysed, light and split-off band in the total electronic population. The effect of the temperature is discussed and we give a possible qualitative explanation of the experimental optical properties. (Author)

  2. Hydrogen interaction with radiation defects in p-type silicon

    CERN Document Server

    Feklisova, O V; Yakimov, E B; Weber, J

    2001-01-01

    Hydrogen interaction with radiation defects in p-type silicon has been investigated by deep-level non-stationary spectroscopy. Hydrogen is introduced into the high-energy electron-irradiated crystals under chemical etching in acid solutions at room temperature followed by the reverse-bias annealing at 380 K. It is observed that passivation of the irradiation-induced defects is accompanied by formation of novel electrically active defects with hydrogen-related profiles. Effect of hydrogen on the electrical activity of the C sub s C sub i complexes is shown for the first time. Based on the spatial distribution and passivation kinetics, possible nature of the novel complexes is analyzed. The radii for hydrogen capture by vacancies, K-centers, C sub s C sub i centers and the novel complexes are determined

  3. Effect of neutron irradiation on p-type silicon

    International Nuclear Information System (INIS)

    Sopko, B.

    1973-01-01

    The possibilities are discussed of silicon isotope reactions with neutrons of all energies. In the reactions, 30 Si is converted to a stable phosphorus isotope forming n-type impurities in silicon. The above reactions proceed as a result of thermal neutron irradiation. An experiment is reported involving irradiation of two p-type silicon single crystals having a specific resistance of 2000 ohm.cm and 5000 to 20 000 ohm.cm, respectively, which changed as a result of irradiation into n-type silicon with a given specific resistance. The specific resistance may be pre-calculated from the concentration of impurities and the time of irradiation. The effects of irradiation on other silicon parameters and thus on the suitability of silicon for the manufacture of semiconductor elements are discussed. (J.K.)

  4. Elucidating Functional Aspects of P-type ATPases

    DEFF Research Database (Denmark)

    Autzen, Henriette Elisabeth

    2015-01-01

    and helped enlighten how thapsigargin, a potent inhibitor of SERCA1a, depends on a water mediated hydrogen bond network when bound to SERCA1a. Furthermore, molecular dynamics (MD) simulations of the same P-type ATPase were used to assess a long-standing question whether cholesterol affects SERCA1a through...... similar to that of the wild type (WT) protein. The discrepancy between the newly determined crystal structure of LpCopA and the functional manifestations of the missense mutation in human CopA, could indicate that LpCopA is insufficient in structurally elucidating the effect of disease-causing mutations...... in the human CopA proteins. MD simulations, which combine coarse-grained (CG) and atomistic procedures, were set up in order to elucidate mechanistic implications exerted by the lipid bilayer on LpCopA. The MD simulations of LpCopA corroborated previous and new in vivo activity data and showed...

  5. Adsorption configuration of magnesium on wurtzite gallium nitride surface using first-principles calculations

    International Nuclear Information System (INIS)

    Yan Han; Gan Zhiyin; Song Xiaohui; Chen Zhaohui; Xu Jingping; Liu Sheng

    2009-01-01

    First-principles calculations of magnesium adsorption at the Ga-terminated and N-terminated {0 0 0 1} basal plane wurtzite gallium nitride surfaces have been carried out to explain the atomic-scale insight into the initial adsorption processes of magnesium doping in gallium nitride. The results reveal that magnesium adsorption on N-terminated surfaces is preferred than that on Ga-terminated surfaces. Furthermore, the surface diffusivity of magnesium atom on the N-terminated surface is much lower than that on the Ga-terminated surface, which is due to both the larger average adsorption energies and the lower adsorption distance on N-terminated surface than that on Ga-terminated surface. The results indicate that the p-type doping on the Ga-terminated surface will be better distributed than that on the N-terminated surface.

  6. Gallium-67 citrate scan in extrapulmonary tuberculosis

    International Nuclear Information System (INIS)

    Lin Wanyu

    1999-01-01

    Aim: Whole-body gallium scan was performed to evaluate the usefulness of gallium scan for detecting extrapulmonary tuberculosis (TB) lesions. Methods: Thirty-seven patients with extrapulmonary TB were included in this study. Four patients were found to have two lesions. Totally, 41 lesions were identified, including 19 TB arthritis, 8 spinal TB, 5 TB meningitis, 3 TB lymphadenopathy, 2 TB pericarditis, 1 TB peritonitis, 1 intestinal TB, 1 skin TB and 1 renal TB. Results: Of the 41 extrapulmonary TB lesions, gallium scan detected 32 lesions with a sensitivity of 78%. All the patients with TB meningitis showed negative gallium scan. When the five cases of TB meningitis were excluded, the detection sensitivity of gallium scan increased to 88.9% (32/36). Conclusion: Our data revealed that gallium scan is a convenient and useful method for evaluating extrapulmonary TB lesions other than TB-meningitis. We suggest that gallium scan be included in the clinical routine for patients with suspected extrapulmonary TB. (orig.) [de

  7. Transport studies in p-type double quantum well samples

    International Nuclear Information System (INIS)

    Hyndman, R.J.

    2000-01-01

    The motivation for the study of double quantum well samples is that the extra spatial degree of freedom can modify the ground state energies of the system, leading to new and interesting many body effects. Electron bi-layers have been widely studied but the work presented here is the first systematic study of transport properties of a p-type, double quantum well system. The samples, grown on the 311 plane, consisted of two 100A GaAs wells separated by a 30A AlAs barrier. The thin barrier in our structures, gives rise to very strong inter-layer Coulombic interactions but in contrast to electron double quantum well samples, tunnelling between the two wells is very weak. This is due to the large effective mass of holes compared with electrons. It is possible to accurately control the total density of a sample and the relative occupancy of each well using front and back gates. A systematic study of the magnetoresistance properties of the p-type bi-layers, was carried out at low temperatures and in high magnetic fields, for samples covering a range of densities. Considerable care was required to obtain reliable results as the samples were extremely susceptible to electrical shock and were prone to drift in density slowly over time. With balanced wells, the very low tunnelling in the p-type bi-layer leads to a complete absence of all odd integers in both resistance and thermopower except for the v=1 state, ( v 1/2 in each layer) where v is the total Landau level filling factor. Unlike other FQHE features the v=1 state strengthens with increased density as inter-layer interactions increase in strength over intra-layer interactions. The state is also destroyed at a critical temperature, which is much lower than the measured activation temperature. This is taken as evidence for a finite temperature phase transition predicted for the bi-layer v=1. From the experimental observations, we construct a phase diagram for the state, which agree closely with theoretical predictions

  8. Gallium-67 scintigraphy in borderline lepromatous leprosy

    International Nuclear Information System (INIS)

    Mouratidis, B.; Lomas, F.E.

    1993-01-01

    A middle aged woman with a pyrexia of unknown origin was shown to have borderline lepromatous leprosy. Early gallium-67 scintigraphy demonstrated increased uptake in the subcutaneous tissues of the face and thighs. As a result of these findings skin biopsy was obtained from the right thigh which gave a diagnosis of borderline lepromatous leprosy. The authors have been unable to find other reports of gallium-67 scintigraphy in leprosy but the pattern of gallium-67 distribution should suggest the diagnosis. 5 refs., 1 fig

  9. P-type diamond stripper foils for tandem ion accelerators

    International Nuclear Information System (INIS)

    Phelps, A.W.; Koba, R.

    1989-01-01

    The authors are developing a stripper foil composed of a p-type diamond membrane. This diamond stripper foil should have a significantly longer lifetime than any conventional stripper foil material. To be useful for stripper foils, the boron-doped blue diamond films must be thinner than 0.8 μm and pore-free. Two methods are compared for their ability to achieve a high nucleation areal density on a W substrate. Some W substrates were first coated with think layer of boron (≤20 nm) in order to enhance nucleation. Other W substrates were scratched with submicron diamond particles. A schematic diagram of the stripper foil is shown. Stripper foils were created by etching away the central area of W substrates. The diamond membrane was then supported by an annulus of W. Tungsten was selected as a ring-support material because of its high electrical and thermal conductivity, relatively low thermal expansion, and proven suitability as a substrate for diamond CVD. Warping or fracture of the diamond film after substrate etch-back was investigated

  10. P type porous silicon resistivity and carrier transport

    International Nuclear Information System (INIS)

    Ménard, S.; Fèvre, A.; Billoué, J.; Gautier, G.

    2015-01-01

    The resistivity of p type porous silicon (PS) is reported on a wide range of PS physical properties. Al/PS/Si/Al structures were used and a rigorous experimental protocol was followed. The PS porosity (P % ) was found to be the major contributor to the PS resistivity (ρ PS ). ρ PS increases exponentially with P % . Values of ρ PS as high as 1 × 10 9 Ω cm at room temperature were obtained once P % exceeds 60%. ρ PS was found to be thermally activated, in particular, when the temperature increases from 30 to 200 °C, a decrease of three decades is observed on ρ PS . Based on these results, it was also possible to deduce the carrier transport mechanisms in PS. For P % lower than 45%, the conduction occurs through band tails and deep levels in the tissue surrounding the crystallites. When P % overpasses 45%, electrons at energy levels close to the Fermi level allow a hopping conduction from crystallite to crystallite to appear. This study confirms the potential of PS as an insulating material for applications such as power electronic devices

  11. Electronic processes in uniaxially stressed p-type germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dubon, Jr., Oscar Danilo [Univ. of California, Berkeley, CA (United States)

    1996-02-01

    Effect of uniaxial stress on acceptor-related electronic processes in Ge single crystals doped with Ga, Be, and Cu were studied by Hall and photo-Hall effect measurements in conjunction with infrared spectroscopy. Stress dependence of hole lifetime in p-type Ge single crystals is used as a test for competing models of non-radiative capture of holes by acceptors. Photo-Hall effect shows that hole lifetime in Ga- and Be-doped Ge increases by over one order of magnitude with uniaxial stress at liq. He temps. Photo-Hall of Ge:Be shows a stress-induced change in the temperature dependence of hole lifetime. This is consistent with observed increase of responsivity of Ge:Ga detectors with uniaxial stress. Electronic properties of Ge:Cu are shown to change dramatically with uniaxial stress; the results provide a first explanation for the performance of uniaxially stressed, Cu-diffused Ge:Ga detectors which display a high conductivity in absence of photon signal and therefore have poor sensitivity.

  12. (Ga,Fe)Sb: A p-type ferromagnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Nguyen Thanh; Anh, Le Duc; Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan)

    2014-09-29

    A p-type ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 3.9%–13.7%) has been grown by low-temperature molecular beam epitaxy (MBE) on GaAs(001) substrates. Reflection high energy electron diffraction patterns during the MBE growth and X-ray diffraction spectra indicate that (Ga,Fe)Sb layers have the zinc-blende crystal structure without any other crystallographic phase of precipitates. Magnetic circular dichroism (MCD) spectroscopy characterizations indicate that (Ga,Fe)Sb has the zinc-blende band structure with spin-splitting induced by s,p-d exchange interactions. The magnetic field dependence of the MCD intensity and anomalous Hall resistance of (Ga,Fe)Sb show clear hysteresis, demonstrating the presence of ferromagnetic order. The Curie temperature (T{sub C}) increases with increasing x and reaches 140 K at x = 13.7%. The crystal structure analyses, magneto-transport, and magneto-optical properties indicate that (Ga,Fe)Sb is an intrinsic ferromagnetic semiconductor.

  13. Gallium-67 activity in bronchoalveolar lavage fluid in sarcoidosis

    International Nuclear Information System (INIS)

    Trauth, H.A.; Heimes, K.; Schubotz, R.; von Wichert, P.

    1986-01-01

    Roentgenograms and gallium-67 scans and gallium-67 counts of BAL fluid samples, together with differential cell counts, have proved to be useful in assessing activity and lung involvement in sarcoidosis. In active pulmonary sarcoidosis gallium-67 scans are usually positive. Quantitation of gallium-67 uptake in lung scans, however, may be difficult. Because gallium-67 uptake and cell counts in BAL fluid may be correlated, we set out to investigate gallium-67 activity in BAL fluid recovered from patient of different groups. Sixteen patients with recently diagnosed and untreated sarcoidosis, nine patients with healthy lungs, and five patients with CFA were studied. Gallium-67 uptake of the lung, gallium-67 activity in the lavage fluid, SACE and LACE levels, and alpha 1-AT activity were measured. Significantly more gallium-67 activity was found in BAL fluid from sarcoidosis patients than in that from CFA patients (alpha = .001) or patients with healthy lungs (alpha = .001). Gallium-67 activity in BAL fluid could be well correlated with the number of lymphocytes in BAL fluid, but poorly with the number of macrophages. Subjects with increased levels of SACE or serum alpha 1-AT showed higher lavage gallium-67 activity than did normals, but no correlation could be established. High gallium-67 activity in lavage fluid may be correlated with acute sarcoidosis or physiological deterioration; low activity denotes change for the better. The results show that gallium-67 counts in BAL fluid reflects the intensity of gallium-67 uptake and thus of activity of pulmonary sarcoidosis

  14. NIM Realization of the Gallium Triple Point

    Science.gov (United States)

    Xiaoke, Yan; Ping, Qiu; Yuning, Duan; Yongmei, Qu

    2003-09-01

    In the last three years (1999 to 2001), the gallium triple-point cell has been successfully developed, and much corresponding research has been carried out at the National Institute of Metrology (NIM), Beijing, China. This paper presents the cell design, apparatus and procedure for realizing the gallium triple point, and presents studies on the different freezing methods. The reproducibility is 0.03 mK, and the expanded uncertainty of realization of the gallium triple point is evaluated to be 0.17 mK (p=0.99, k=2.9). Also, the reproducibility of the gallium triple point was compared with that of the triple point of water.

  15. Glutathione role in gallium induced toxicity

    African Journals Online (AJOL)

    Asim

    2012-01-26

    Jan 26, 2012 ... 1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gomal University, D.I. Khan, ... Decrease in GSH level was dependant on gallium nitrate concentration. .... This 2 ml mixture sample was centrifuged at 1000.

  16. Properties of gallium lanthanum sulphide glass

    OpenAIRE

    Bastock, P.; Craig, C.; Khan, K.; Weatherby, E.; Yao, J.; Hewak, D.W.

    2015-01-01

    A series of gallium lanthanum sulphide (GLS) glasses has been studied in order to ascertain properties across the entire glass forming region. This is the first comprehensive study of GLS glass over a wide compositional range.

  17. Glutathione role in gallium induced toxicity

    African Journals Online (AJOL)

    Asim

    2012-01-26

    GSH) present in tissues. It is very important and interesting to study the reaction of gallium nitrate and glutathione as biomarker of glutathione role in detoxification and conjugation in whole blood components (plasma and ...

  18. Response function of a p type - HPGe detector

    International Nuclear Information System (INIS)

    Lopez-Pino, Neivy; Cabral, Fatima Padilla; D'Alessandro, Katia; Maidana, Nora Lia; Vanin, Vito Roberto

    2011-01-01

    The response function of a HPGe detector depends on Ge crystal dimensions and dead layers thicknesses; most of them are not given by the manufacturers or change with detector damage from neutrons or contact with the atmosphere and therefore must be experimentally determined. The response function is obtained by a Monte-Carlo simulation procedure based on the Ge crystal characteristics. In this work, a p-type coaxial HPGe detector with 30% efficiency, manufactured in 1989, was investigated. The crystal radius and length and the inner hole dimensions were obtained scanning the capsule both in the radial and axial directions using 4 mm collimated beams from 137 Cs, 207 Bi point sources placed on a x-y table in steps of 2,00 mm. These dimensions were estimated comparing the experimental peak areas with those obtained by simulation using several hole configurations. In a similar procedure, the frontal dead layer thickness was determined using 2 mm collimated beams of the 59 keV gamma-rays from 241 Am and 81 keV from 133 Ba sources hitting the detector at 90 deg and 45 deg with respect to the capsule surface. The Monte Carlo detector model included, besides the crystal, hole and capsules sizes, the Ge dead-layers. The obtained spectra were folded with a gaussian resolution function to account for electronic noise. The comparison of simulated and experimental response functions for 4 mm collimated beams of 60 Co, 137 Cs, and 207 Bi points sources placed at distances of 7, 11 and 17 cm from the detector end cap showed relative deviations of about 10% in general and below 10% in the peak. The frontal dead layer thickness determined by our procedure was different from that specified by the detector manufacturer. (author)

  19. Irradiation and annealing of p-type silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor' eva, Maria V.; Lebedev, Sergey P. [A.F. Ioffe Physical-Technical Institute, St. Petersburg, 194021 (Russian Federation); Kozlovski, Vitaly V. [St. Petersburg State Polytechnic University, St. Petersburg, 195251 (Russian Federation)

    2014-02-21

    The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ≈ 1.5 × 10{sup 18} cm{sup −3} occurs at an irradiation dose of ∼1.1 × 10{sup 16} cm{sup −2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ≤1000°C. The conductivity is almost completely restored at T ≥ 1200°C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

  20. Membrane Targeting of P-type ATPases in Plant Cells

    International Nuclear Information System (INIS)

    Harper, Jeffrey F.

    2004-01-01

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems

  1. Clinical applications of Gallium-68

    International Nuclear Information System (INIS)

    Banerjee, Sangeeta Ray; Pomper, Martin G.

    2013-01-01

    Gallium-68 is a positron-emitting radioisotope that is produced from a 68 Ge/ 68 Ga generator. As such it is conveniently used, decoupling radiopharmacies from the need for a cyclotron on site. Gallium-68-labeled peptides have been recognized as a new class of radiopharmaceuticals showing fast target localization and blood clearance. 68 Ga-DOTATOC, 8 Ga-DOTATATE, 68 Ga-DOTANOC, are the most prominent radiopharmaceuticals currently in use for imaging and differentiating lesions of various somatostatin receptor subtypes, overexpressed in many neuroendocrine tumors. There has been a tremendous increase in the number of clinical studies with 68 Ga over the past few years around the world, including within the United States. An estimated ∼10,000 scans are being performed yearly in Europe at about 100 centers utilizing 68 Ga-labeled somatostatin analogs within clinical trials. Two academic sites within the US have also begun to undertake human studies. This review will focus on the clinical experience of selected, well-established and recently applied 68 Ga-labeled imaging agents used in nuclear medicine. - Highlights: ► A summary of the emerging clinical uses of 68 Ga-based radiopharmaceuticals is provided. ► 68 Ga-PET may prove as or more clinically robust than the corresponding 18 F-labeled agents. ► 68 Ga-radiopeptides were studied for targeting of somatostatin receptors subtypes. ► 68 Ga-DOTATOC, 68 Ga-DOTATATE, 68 Ga-DOTANOC, are currently in clinical trials

  2. Semiconducting icosahedral boron arsenide crystal growth for neutron detection

    Science.gov (United States)

    Whiteley, C. E.; Zhang, Y.; Gong, Y.; Bakalova, S.; Mayo, A.; Edgar, J. H.; Kuball, M.

    2011-03-01

    Semiconducting icosahedral boron arsenide, B12As2, is an excellent candidate for neutron detectors, thermoelectric converters, and radioisotope batteries, for which high quality single crystals are required. Thus, the present study was undertaken to grow B12As2 crystals by precipitation from metal solutions (nickel) saturated with elemental boron (or B12As2 powder) and arsenic in a sealed quartz ampoule. B12As2 crystals of 10-15 mm were produced when a homogeneous mixture of the three elements was held at 1150 °C for 48-72 h and slowly cooled (3.5 °C/h). The crystals varied in color and transparency from black and opaque to clear and transparent. X-ray topography (XRT), and elemental analysis by energy dispersive X-ray spectroscopy (EDS) confirmed that the crystals had the expected rhombohedral structure and chemical stoichiometry. The concentrations of residual impurities (nickel, carbon, etc.) were low, as measured by Raman spectroscopy and secondary ion mass spectrometry (SIMS). Additionally, low etch-pit densities (4.4×107 cm-2) were observed after etching in molten KOH at 500 °C. Thus, the flux growth method is viable for growing large, high-quality B12As2 crystals.

  3. Picosecond intersubband hole relaxation in p-type quantum wells

    International Nuclear Information System (INIS)

    Xu, Z.; Fauchet, P.M.; Rella, C.W.; Schwettman, H.A.

    1995-01-01

    We report the first direct measurement of the relaxation time of holes in p-type quantum wells using tunable, subpicosecond mid-infrared laser pulses in a pump-probe arrangement. The QW layers consisted of 50 In 0.5 Ga 0.5 As/Al 0.5 Ga 0.5 As periods. The In 0.5 Ga 0.5 As well was 4 nm wide and the Al 0.5 Ga 0.5 As barrier was 8 nm wide. The dopant concentration was 10 19 CM -3 which corresponds to a sheet density of 1.2 x 10 13 CM -2 . The room temperature IR spectrum showed a 50 meV wide absorption peak at 5.25 μm (220 meV). This energy agrees with the calculated n=1 heavy hole to n=1 light hole transition energy of 240 meV (150 meV for strain and 90 meV for confinement). The large absorption width results from hole-hole scattering and the difference in dispersion relations between the two subbands. The equal-wavelength pump-probe transmission measurements were performed using the Stanford free electron laser (FEL). The FEL pulses were tuned between 4 and 6 μ m and their duration was less than 1 ps. The measurements were performed as a function of temperature, pump wavelength and intensity (from 0.3 to 10 GW/cm 2 ). In all our experiments, we find an increase of transmission (decrease of absorption or bleaching) following photopumping, which recovers as a single exponential with a time constant (relaxation time) of the order of 1 picosecond. The maximum change in transmission is linear with pump 2 intensity below 1 GW/cm 2 and saturates to ∼3% with a saturation intensity I sat of 3 GW/cm 2 . As the saturation regime is entered, the relaxation time increases from 0.8 ps to 1.8 ps. This relaxation time depends on the temperature T: it increases from 0.8 ps to 1.3 ps as T decreases from 300 K to 77 K. Finally, when we tune the laser through the absorption band, the magnitude of the signal changes but its temporal behavior does not change, within the accuracy of the measurements

  4. Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers.

    Science.gov (United States)

    Colombara, Diego; Werner, Florian; Schwarz, Torsten; Cañero Infante, Ingrid; Fleming, Yves; Valle, Nathalie; Spindler, Conrad; Vacchieri, Erica; Rey, Germain; Guennou, Mael; Bouttemy, Muriel; Manjón, Alba Garzón; Peral Alonso, Inmaculada; Melchiorre, Michele; El Adib, Brahime; Gault, Baptiste; Raabe, Dierk; Dale, Phillip J; Siebentritt, Susanne

    2018-02-26

    Copper indium gallium diselenide-based technology provides the most efficient solar energy conversion among all thin-film photovoltaic devices. This is possible due to engineered gallium depth gradients and alkali extrinsic doping. Sodium is well known to impede interdiffusion of indium and gallium in polycrystalline Cu(In,Ga)Se 2 films, thus influencing the gallium depth distribution. Here, however, sodium is shown to have the opposite effect in monocrystalline gallium-free CuInSe 2 grown on GaAs substrates. Gallium in-diffusion from the substrates is enhanced when sodium is incorporated into the film, leading to Cu(In,Ga)Se 2 and Cu(In,Ga) 3 Se 5 phase formation. These results show that sodium does not decrease per se indium and gallium interdiffusion. Instead, it is suggested that sodium promotes indium and gallium intragrain diffusion, while it hinders intergrain diffusion by segregating at grain boundaries. The deeper understanding of dopant-mediated atomic diffusion mechanisms should lead to more effective chemical and electrical passivation strategies, and more efficient solar cells.

  5. Surface chemistry of a hydrogenated mesoporous p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Media, El-Mahdi, E-mail: belhadidz@tahoo.fr; Outemzabet, Ratiba, E-mail: oratiba@hotmail.com

    2017-02-15

    Highlights: • Due to its large specific surface porous silicon is used as substrate for drug therapy and biosensors. • We highlight the evidency of the contribution of the hydrides (SiHx) in the formation of the porous silicon. • The responsible species in the porous silicon formation are identified and quantified at different conditions. • By some chemical treatments we show that silicon surface can be turn from hydrophobic to hydrophilic. - Abstract: The finality of this work is devoted to the grafting of organic molecules on hydrogen passivated mesoporous silicon surfaces. The study would aid in the development for the formation of organic monolayers on silicon surface to be exploited for different applications such as the realisation of biosensors and medical devices. The basic material is silicon which has been first investigated by FTIR at atomistic plane during the anodic forward and backward polarization (i.e. “go” and “return”). For this study, we applied a numerical program based on least squares method to infrared absorbance spectra obtained by an in situ attenuated total reflection on p-type silicon in diluted HF electrolyte. Our numerical treatment is based on the fitting of the different bands of IR absorbance into Gaussians corresponding to the different modes of vibration of molecular groups such as siloxanes and hydrides. An adjustment of these absorbance bands is done systematically. The areas under the fitted bands permit one to follow the intensity of the different modes of vibration that exist during the anodic forward and backward polarization in order to compare the reversibility of the phenomenon of the anodic dissolution of silicon. It permits also to follow the evolution between the hydrogen silicon termination at forward and backward scanning applied potential. Finally a comparison between the states of the initial and final surface was carried out. We confirm the presence of clearly four and three distinct vibration modes

  6. 67Gallium • the D,etection and Localization

    African Journals Online (AJOL)

    1971-12-11

    Dec 11, 1971 ... gallium and its compounds was first aroused when it was noted that this element is contained .... MATERIALS AND METHODS. ;;'Gallium citrate was .... another in a patient with a pathological fracture of the right humerus that ...

  7. Proton irradiation effects on deep level states in Mg-doped p-type GaN grown by ammonia-based molecular beam epitaxy

    Science.gov (United States)

    Zhang, Z.; Arehart, A. R.; Kyle, E. C. H.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Speck, J. S.; Ringel, S. A.

    2015-01-01

    The impact of proton irradiation on the deep level states throughout the Mg-doped p-type GaN bandgap is investigated using deep level transient and optical spectroscopies. Exposure to 1.8 MeV protons of 1 × 1013 cm-2 and 3 × 1013 cm-2 fluences not only introduces a trap with an EV + 1.02 eV activation energy but also brings monotonic increases in concentration for as-grown deep states at EV + 0.48 eV, EV + 2.42 eV, EV + 3.00 eV, and EV + 3.28 eV. The non-uniform sensitivities for individual states suggest different physical sources and/or defect generation mechanisms. Comparing with prior theoretical calculations reveals that several traps are consistent with associations to nitrogen vacancy, nitrogen interstitial, and gallium vacancy origins, and thus are likely generated through displacing nitrogen and gallium atoms from the crystal lattice in proton irradiation environment.

  8. Noble Metal Arsenides and Gold Inclusions in Northwest Africa 8186

    Science.gov (United States)

    Srinivasan, P.; McCubbin, F. M.; Rahman, Z.; Keller, L. P.; Agee, C. B.

    2016-01-01

    CK carbonaceous chondrites are a highly thermally altered group of carbonaceous chondrites, experiencing temperatures ranging between approximately 576-867 degrees Centigrade. Additionally, the mineralogy of the CK chondrites record the highest overall oxygen fugacity of all chondrites, above the fayalite-magnetite-quartz (FMQ) buffer. Me-tallic Fe-Ni is extremely rare in CK chondrites, but magnetite and Fe,Ni sulfides are commonly observed. Noble metal-rich inclusions have previously been found in some magnetite and sulfide grains. These arsenides, tellurides, and sulfides, which contain varying amounts of Pt, Ru, Os, Te, As, Ir, and S, are thought to form either by condensation from a solar gas, or by exsolution during metamorphism on the chondritic parent body. Northwest Africa (NWA) 8186 is a highly metamorphosed CK chondrite. This meteorite is predominately composed of NiO-rich forsteritic olivine (Fo65), with lesser amounts of plagioclase (An52), augite (Fs11Wo49), magnetite (with exsolved titanomagnetite, hercynite, and titanohematite), monosulfide solid solution (with exsolved pentlandite), and the phosphate minerals Cl-apatite and merrillite. This meteorite contains coarse-grained, homogeneous silicates, and has 120-degree triple junctions between mineral phases, which indicates a high degree of thermal metamorphism. The presence of NiO-rich olivine, oxides phases all bearing Fe3 plus, and the absence of metal, are consistent with an oxygen fugacity above the FMQ buffer. We also observed noble metal-rich phases within sulfide grains in NWA 8186, which are the primary focus of the present study.

  9. Growth of GaN Layers on Sapphire by Low-Temperature-Deposited Buffer Layers and Realization of p-type GaN by Magesium Doping and Electron Beam Irradiation (Nobel Lecture).

    Science.gov (United States)

    Amano, Hiroshi

    2015-06-26

    This Review is a personal reflection on the research that led to the development of a method for growing gallium nitride (GaN) on a sapphire substrate. The results paved the way for the development of smart display systems using blue LEDs. The most important work was done in the mid to late 80s. The background to the author's work and the process by which the technology that enables the growth of GaN and the realization of p-type GaN was established are reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thermodynamic and transport properties of liquid gallium

    International Nuclear Information System (INIS)

    Park, H.Y.; Jhon, M.S.

    1982-01-01

    The significant structure theory of liquids has been successfully applied to liquid gallium. In this work, we have assumed that two structures exist simultaneously in liquid gallium. One is considerec as loosely close packed β-Ga-like structure and the other is remainder of solid α-Ga or α-Ga-like structure. This two structural model is introduced to construct the liquid partition function. Using the partition function, the thermodynamic and transport properties are calculated ever a wide temperature range. The calculated results are quite satisfactory when compared with the experimental results. (Author)

  11. Gallium uptake in myositis ossificans. Potential pitfalls in diagnosis

    International Nuclear Information System (INIS)

    Salzman, L.; Lee, V.W.; Grant, P.

    1987-01-01

    Seven cases of gallium uptake in myositis ossificans are described. Gallium scans are done frequently in paraplegics, quadriplegics, and comatose patients to look for occult infection. It is important to be aware of possible gallium uptake in myositis ossificans, particularly in the extremities, which is frequent in these patients. Gallium uptake may be present prior to any abnormalities seen on plain films or CT scans. It is important to correlate roentgenograms with abnormal gallium scans, particularly in the extremities, to avoid potential pitfalls in diagnosis and prevent unnecessary antibiotic treatment. A bone scan should be obtained whenever possible, particularly when roentgenograms are negative, to confirm the diagnosis

  12. 67Gallium lung scans in progressive systemic sclerosis

    International Nuclear Information System (INIS)

    Baron, M.; Feiglin, D.; Hyland, R.; Urowitz, M.B.; Shiff, B.

    1983-01-01

    67 Gallium lung scans were performed in 19 patients with progressive systemic sclerosis (scleroderma). Results were expressed quantitatively as the 67 Gallium Uptake Index. The mean total pulmonary 67 Gallium Uptake Index in patients was significantly higher than that in controls (41 versus 25), and 4 patients (21%) fell outside the normal range. There were no clinical or laboratory variables that correlated with the 56 Gallium uptake. Increased pulmonary 67 Gallium uptake in scleroderma may prove useful as an index of pulmonary disease activity

  13. EDXRF and TXRF determination of gallium in gallium-uranium matrix

    International Nuclear Information System (INIS)

    Misra, N.L.; Sanjay Kumar, S.; Dhara, Sangita; Aggarwal, S.K.; Venugopal, V.

    2009-01-01

    Energy Dispersive X-Ray Fluorescence (EDXRF) and Total Reflection X-ray Fluorescence (TXRF) methods for determination of Gallium in Gallium-Uranium matrix have been developed. For EDXRF determinations, 200 μL of standards/samples mixed with internal standard copper were dispersed on 30 mm diameter absorbent sheet so that it behaves like a thin film of the sample. The Gallium amounts in samples were determined from their EDXRF spectra using a calibration plot. For TXRF determinations, samples were taken on flat polished quartz sample supports and Gallium was determined in conventional way. For EDXRF and TXRF determinations, the average precision and accuracy obtained for Ga determinations was better than 3% (1σ). (author)

  14. Two-Dimensional Modeling of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistor

    National Research Council Canada - National Science Library

    Holmes, Kenneth

    2002-01-01

    Gallium Nitride (GaN) High Electron Mobility Transistors (HEMT's) are microwave power devices that have the performance characteristics to improve the capabilities of current and future Navy radar and communication systems...

  15. Application of extraction of gallium molybdotungstate HPA for their investigation in solutions and gallium determination

    International Nuclear Information System (INIS)

    Kol'tsova, E.G.; Vakulich, A.N.; Tsyganok, L.P.

    2001-01-01

    Extraction of gallium molybdotungstate heteropolyacids and their associates with a row of triphenylmethane dyes, use of extraction for study of complexing in Mo 6 -W 6 -Ga 3+ -H 3 O + system are investigated. Research of optimal analytical states and development of extraction spectrophotometric methods of gallium determination are done. It is shown that increase of Mo 6 part in heteropolyanion improves solvation interaction of heteropolyacids with organic solvents elevating extraction properties of polyanion [ru

  16. The role of gallium-67 in Hodgkin's disease

    International Nuclear Information System (INIS)

    Bogart, Jeffrey A.; Chung, T. Chung; Mariados, Neil F.

    1996-01-01

    Purpose/Objective: Although widely used, the value of gallium imaging in managing Hodgkin's lymphoma remains unclear. Methods: Retrospective review of gallium and treatment data in patients with Hodgkin's disease between January 1990 and July 1995. Results: Eighty-six of 101 patients had Ga-67 imaging. Stage was as follows: 1A-11 patients, 1B - 2, 2A - 27, 2B - 22, 3A - 10, 3B - 5, 4A - 3 and 4B - 6. Sixty-two patients had staging gallium scans and 15% of tumors were not gallium avid. Two patients were upstaged based on gallium scan. Five patients had positive laparotomy and all had negative abdominal gallium exams. Three studies had false positive lesions. Initial therapy was assessed with gallium in 61 patients and 45 had complete response. Tumor recurred in 36% ((10(28))) of patients gallium negative after 3-6 cycles of chemotherapy, with no recurrences in 17 patients gallium negative after radiotherapy or chemo radiation. Six of 7 patients with focal gallium uptake after chemotherapy received radiotherapy and all remain disease free. Seven patients had persistent or progressive gallium-avid tumor after chemotherapy correlating with clinical disease. Two patients had false positive exams after radiotherapy. Twenty-two patients had gallium scans at recurrence. One scan was (false) negative and in two cases, gallium imaging was the initial evidence of recurrent tumor. Conclusion: Ga-67 imaging may help confirm the presence of active Hodgkin's disease, but was unreliable in defining disease remission after chemotherapy in this study population. Prospective studies may help define the role of gallium scans

  17. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes

    Science.gov (United States)

    Seral-Ascaso, A.; Metel, S.; Pokle, A.; Backes, C.; Zhang, C. J.; Nerl, H. C.; Rode, K.; Berner, N. C.; Downing, C.; McEvoy, N.; Muñoz, E.; Harvey, A.; Gholamvand, Z.; Duesberg, G. S.; Coleman, J. N.; Nicolosi, V.

    2016-06-01

    We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01663d

  18. Optical characteristics of a gallium laser plasma

    International Nuclear Information System (INIS)

    Shuaibov, A.K.; Shimon, L.L.; Dashchenko, A.I.; Shevera, I.V.; Chuchman, M.P.

    2001-01-01

    Results are presented from studies of the emission from an erosion gallium laser plasma at a moderate intensity (W = (1-5) x 10 8 W/cm 2 ) of a 1.06-μm laser radiation. It is shown that, under these conditions, the lower excited states of gallium atoms are populated most efficiently. Among the ions, only the most intense GaII lines are observed in the emission spectrum. The populations of GaI and GaII excited states are not related to direct electron excitation, but are determined by the recombination of gallium ions with slow electrons. The recombination times of GaIII and GaII ions in the core of the plasma jet are determined from the waveforms of emission in the GaII and GaI spectral lines and are equal to 10 and 140 ns, respectively. The results obtained are of interest for spectroscopic diagnostics of an erosion plasma produced from gallium-containing layered crystals during the laser deposition of thin films

  19. Gallium-positive Lyme disease myocarditis

    International Nuclear Information System (INIS)

    Alpert, L.I.; Welch, P.; Fisher, N.

    1985-01-01

    In the course of a work-up for fever of unknown origin associated with intermittent arrhythmias, a gallium scan was performed which revealed diffuse myocardial uptake. The diagnosis of Lyme disease myocarditis subsequently was confirmed by serologic titers. One month following recovery from the acute illness, the abnormal myocardial uptake completely resolved

  20. Dose dependent disposition of gallium-67 in rats

    International Nuclear Information System (INIS)

    Gautam, S.R.

    1982-01-01

    Radioactive gallium-67 has been employed as a diagnostic and follow-up agent for cancer therapy. Currently gallium nitrate is undergoing Phase I clinical studies. A million fold increase in the concentration of the carrier gallium citrate over the range of carrier-free gallium-67 (pgm) to 1.0 μg caused no significant alteration in the disposition of gallium-67 in rats.Gallium-67 was eliminated from blood with a biological t1/2 of 4.1 days. A linear tissue binding profile was observed for gallium-67 over this concentration range. A multi-compartment pharmacokinetic model was developed in which all the tissues studied were treated as separate compartments. At 1.0 mg dose level, significant alteration in the disposition of gallium-67 was observed in rats, > 95% of the initial radioactivity was characteristic reappearance of the radioactivity in the blood approximately 4 hours after dosing leading to a ''hump'' in the blood concentration-time profiles. Following the 1.0 mg dose low tissue levels were observed, except for the kidneys, which contained about 8% of the administered dose per gram of the tissue one-half hour after dosing. A non-linear tissue binding profile was observed to be associated with gallium at high doses. It was hypothesized that the rapid loss of gallium-67 from the vascular system following the high doses of gallium citrate was due to the accumulation of the drug in the kidneys where it was eventually eliminated via urine. The kidneys thus would act as a temporary storage site for gallium. It was concluded that the dose-related renal toxicity associated with gallium therapy may be attributed to the kidney's role as a temporary storage site following high doses

  1. Indium gallium nitride/gallium nitride quantum wells grown on polar and nonpolar gallium nitride substrates

    Science.gov (United States)

    Lai, Kun-Yu

    Nonpolar (m-plane or a-plane) gallium nitride (GaN) is predicted to be a potential substrate material to improve luminous efficiencies of nitride-based quantum wells (QWs). Numerical calculations indicated that the spontaneous emission rate in a single In0.15Ga0.85N/GaN QW could be improved by ˜2.2 times if the polarization-induced internal field was avoided by epitaxial deposition on nonpolar substrates. A challenge for nonpolar GaN is the limited size (less than 10x10 mm2) of substrates, which was addressed by expansion during the regrowth by Hydride Vapor Phase Epitaxy (HVPE). Subsurface damage in GaN substrates were reduced by annealing with NH3 and N2 at 950°C for 60 minutes. It was additionally found that the variation of m-plane QWs' emission properties was significantly increased when the substrate miscut toward a-axis was increased from 0° to 0.1°. InGaN/GaN QWs were grown by Metalorganic Chemical Vapor Deposition (MOCVD) on c-plane and m-plane GaN substrates. The QWs were studied by cathodoluminescence spectroscopy with different incident electron beam probe currents (0.1 nA ˜ 1000 nA). Lower emission intensities and longer peak wavelengths from c-plane QWs were attributed to the Quantum-confined Stark Effect (QCSE). The emission intensity ratios of m-plane QWs to c-plane QWs decreased from 3.04 at 1 nA to 1.53 at 1000 nA. This was identified as the stronger screening effects of QCSE at higher current densities in c-plane QWs. To further investigate these effects in a fabricated structure, biased photoluminescence measurements were performed on m-plane InGaN/GaN QWs. The purpose was to detect the possible internal fields induced by the dot-like structure in the InGaN layer through the response of these internal fields under externally applied fields. No energy shifts of the QWs were observed, which was attributed to strong surface leakage currents.

  2. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei; Song, Jinhui; Lu, Ming-Yen; Chen, Min-Teng; Gao, Yifan; Chen, Lih-Juann; Wang, Zhong Lin

    2009-01-01

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive

  3. p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.

    Science.gov (United States)

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-23

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  4. Application of neutron transmutation doping method to initially p-type silicon material.

    Science.gov (United States)

    Kim, Myong-Seop; Kang, Ki-Doo; Park, Sang-Jun

    2009-01-01

    The neutron transmutation doping (NTD) method was applied to the initially p-type silicon in order to extend the NTD applications at HANARO. The relationship between the irradiation neutron fluence and the final resistivity of the initially p-type silicon material was investigated. The proportional constant between the neutron fluence and the resistivity was determined to be 2.3473x10(19)nOmegacm(-1). The deviation of the final resistivity from the target for almost all the irradiation results of the initially p-type silicon ingots was at a range from -5% to 2%. In addition, the burn-up effect of the boron impurities, the residual (32)P activity and the effect of the compensation characteristics for the initially p-type silicon were studied. Conclusively, the practical methodology to perform the neutron transmutation doping of the initially p-type silicon ingot was established.

  5. Determination of gallium in flint clay by neutron activation analysis

    International Nuclear Information System (INIS)

    Padova, A.; Even, O.

    1975-01-01

    Neutron activation analysis was applied to determine gallium traces in different flint clay samples found in Israel. The principal 835 KeV gamma ray of gallium-72 was measured with a 60 cm 2 Ge(Li) spectrometer in conjunction with a Packard 4000 channel analyzer and Wang table computer, model 720 C. Samples were weighed into polyethylene vials, sealed and inserted into polyethylene rabbit. Gallium metal and gallium oxide used as standards were similarly prepared for irradiation for 10 minutes in the I.R.R.I., at a thermal flux of 3.5x10 12 n/cm 2 sec. Careful calibration of the spectrometer and judicious choice of cooling time eliminate the influence of such elements as europium-152, and sodium-24 and make possible the determination of gallium without prior chemical separation. Representative Israel flint clay samples contain about 55 ppm gallium. (B.G.)

  6. Interactions of Zircaloy cladding with gallium: 1998 midyear status

    International Nuclear Information System (INIS)

    Wilson, D.F.; DiStefano, J.R.; Strizak, J.P.; King, J.F.; Manneschmidt, E.T.

    1998-06-01

    A program has been implemented to evaluate the effect of gallium in mixed-oxide (MOX) fuel derived from weapons-grade (WG) plutonium on Zircaloy cladding performance. The objective is to demonstrate that low levels of gallium will not compromise the performance of the MOX fuel system in a light-water reactor. The graded, four-phase experimental program was designed to evaluate the performance of prototypic Zircaloy cladding materials against (1) liquid gallium (Phase 1), (2) various concentrations of Ga 2 O 3 (Phase 2), (3) centrally heated surrogate fuel pellets with expected levels of gallium (Phase 3), and (4) centrally heated prototypic MOX fuel pellets (Phase 4). This status report describes the results of a series of tests for Phases 1 and 2. Three types of tests are being performed: (1) corrosion, (2) liquid metal embrittlement, and (3) corrosion-mechanical. These tests will determine corrosion mechanisms, thresholds for temperature and concentration of gallium that may delineate behavioral regimes, and changes in the mechanical properties of Zircaloy. Initial results have generally been favorable for the use of WG-MOX fuel. The MOX fuel cladding, Zircaloy, does react with gallium to form intermetallic compounds at ≥300 C; however, this reaction is limited by the mass of gallium and is therefore not expected to be significant with a low level (parts per million) of gallium in the MOX fuel. Although continued migration of gallium into the initially formed intermetallic compound can result in large stresses that may lead to distortion, this was shown to be extremely unlikely because of the low mass of gallium or gallium oxide present and expected clad temperatures below 400 C. Furthermore, no evidence for grain boundary penetration by gallium has been observed

  7. Psoas abscess localization by gallium scan in aplastic anemia

    International Nuclear Information System (INIS)

    Oster, M.W.; Gelrud, L.G.; Lotz, M.J.; Herzig, G.P.; Johnston, G.S.

    1975-01-01

    Gallium 67 scanning is an effective method of detecting inflammatory lesions, especially abscesses. A 10-year-old boy with aplastic anemia and severe leukopenia and granulocytopenia had a psoas abscess diagnosed by gallium scan. The patient died with Candida sepsis 18 days after bone marrow transplantation. At autopsy, a chronic psoas abscess with Candida was found. The gallium scan offers a clinically effective and noninvasive means of evaluating suspected infection in the granulocytopenia patient. (U.S.)

  8. Survey of the market, supply and availability of gallium

    Energy Technology Data Exchange (ETDEWEB)

    Rosi, F.D.

    1980-07-01

    The objective of this study was to assess the present consumption and supply of gallium, its potential availability in the satellite power system (SPS) implementation time frame, and commercial and new processing methods for increasing the production of gallium. Findings are reported in detail. The findings strongly suggest that with proper long range planning adequate gallium would be available from free-enterprise world supplies of bauxite for SPS implementation.

  9. Interactions of zircaloy cladding with gallium -- 1997 status

    International Nuclear Information System (INIS)

    Wilson, D.F.; DiStefano, J.R.; King, J.F.; Manneschmidt, E.T.; Strizak, J.P.

    1997-11-01

    A four phase program has been implemented to evaluate the effect of gallium in mixed oxide (MOX) fuel derived from weapons grade (WG) plutonium on Zircaloy cladding performance. The objective is to demonstrate that low levels of gallium will not compromise the performance of the MOX fuel system in LWR. This graded, four phase experimental program will evaluate the performance of prototypic Zircaloy cladding materials against: (1) liquid gallium (Phase 1), (2) various concentrations of Ga 2 O 3 (Phase 2), (3) centrally heated surrogate fuel pellets with expected levels of gallium (Phase 3), and (4) centrally heated prototypic MOX fuel pellets (Phase 4). This status report describes the results of an initial series of tests for phases 1 and 2. Three types of tests are being performed: (1) corrosion, (2) liquid metal embrittlement (LME), and (3) corrosion mechanical. These tests are designed to determine the corrosion mechanisms, thresholds for temperature and concentration of gallium that may delineate behavioral regimes, and changes in mechanical properties of Zircaloy. Initial results have generally been favorable for the use of WG-MOX fuel. The MOX fuel cladding, Zircaloy, does react with gallium to form intermetallic compounds at ≥ 300 C; however, this reaction is limited by the mass of gallium and is therefore not expected to be significant with a low level (in parts per million) of gallium in the MOX fuel. While continued migration of gallium into the initially formed intermetallic compound results in large stresses that can lead to distortion, this is also highly unlikely because of the low mass of gallium or gallium oxide present and expected clad temperatures below 400 C. Furthermore, no evidence for grain boundary penetration by gallium has been observed

  10. Inflammatory pseudotumor: A gallium-avid mobile mesenteric mass

    International Nuclear Information System (INIS)

    Auringer, S.T.; Scott, M.D.; Sumner, T.E.

    1991-01-01

    An 8-yr-old boy with a 1-mo history of culture-negative fever and anemia underwent gallium, ultrasound, and computed tomography studies as part of the evaluation of a fever of unknown origin. These studies revealed a mobile gallium-avid solid abdominal mass subsequently proven to be an inflammatory pseudotumor of the mesentery, a rare benign mass. This report documents the gallium-avid nature of this rare lesion and discusses associated characteristic clinical, pathologic, and radiographic features

  11. Reassessment of the recombination parameters of chromium in n- and p-type crystalline silicon and chromium-boron pairs in p-type crystalline silicon

    International Nuclear Information System (INIS)

    Sun, Chang; Rougieux, Fiacre E.; Macdonald, Daniel

    2014-01-01

    Injection-dependent lifetime spectroscopy of both n- and p-type, Cr-doped silicon wafers with different doping levels is used to determine the defect parameters of Cr i and CrB pairs, by simultaneously fitting the measured lifetimes with the Shockley-Read-Hall model. A combined analysis of the two defects with the lifetime data measured on both n- and p-type samples enables a significant tightening of the uncertainty ranges of the parameters. The capture cross section ratios k = σ n /σ p of Cr i and CrB are determined as 3.2 (−0.6, +0) and 5.8 (−3.4, +0.6), respectively. Courtesy of a direct experimental comparison of the recombination activity of chromium in n- and p-type silicon, and as also suggested by modelling results, we conclude that chromium has a greater negative impact on carrier lifetimes in p-type silicon than n-type silicon with similar doping levels.

  12. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    Science.gov (United States)

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Platinum nanoparticles on gallium nitride surfaces: effect of semiconductor doping on nanoparticle reactivity.

    Science.gov (United States)

    Schäfer, Susanne; Wyrzgol, Sonja A; Caterino, Roberta; Jentys, Andreas; Schoell, Sebastian J; Hävecker, Michael; Knop-Gericke, Axel; Lercher, Johannes A; Sharp, Ian D; Stutzmann, Martin

    2012-08-01

    Platinum nanoparticles supported on n- and p-type gallium nitride (GaN) are investigated as novel hybrid systems for the electronic control of catalytic activity via electronic interactions with the semiconductor support. In situ oxidation and reduction were studied with high pressure photoemission spectroscopy. The experiments revealed that the underlying wide-band-gap semiconductor has a large influence on the chemical composition and oxygen affinity of supported nanoparticles under X-ray irradiation. For as-deposited Pt cuboctahedra supported on n-type GaN, a higher fraction of oxidized surface atoms was observed compared to cuboctahedral particles supported on p-type GaN. Under an oxygen atmosphere, immediate oxidation was recorded for nanoparticles on n-type GaN, whereas little oxidation was observed for nanoparticles on p-type GaN. Together, these results indicate that changes in the Pt chemical state under X-ray irradiation depend on the type of GaN doping. The strong interaction between the nanoparticles and the support is consistent with charge transfer of X-ray photogenerated free carriers at the semiconductor-nanoparticle interface and suggests that GaN is a promising wide-band-gap support material for photocatalysis and electronic control of catalysis.

  14. Gallium-cladding compatibility testing plan. Phases 1 and 2: Test plan for gallium corrosion tests. Revision 2

    International Nuclear Information System (INIS)

    Wilson, D.F.; Morris, R.N.

    1998-05-01

    This test plan is a Level-2 document as defined in the Fissile Materials Disposition Program Light-Water-Reactor Mixed-Oxide Fuel Irradiation Test Project Plan. The plan summarizes and updates the projected Phases 1 and 2 Gallium-Cladding compatibility corrosion testing and the following post-test examination. This work will characterize the reactions and changes, if any, in mechanical properties that occur between Zircaloy clad and gallium or gallium oxide in the temperature range 30--700 C

  15. A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein

    DEFF Research Database (Denmark)

    Ekberg, Kira; Palmgren, Michael; Veierskov, Bjarke

    2010-01-01

    The activity of many P-type ATPases is found to be regulated by interacting proteins or autoinhibitory elements located in N- or C-terminal extensions. An extended C terminus of fungal and plant P-type plasma membrane H+-ATPases has long been recognized to be part of a regulatory apparatus....... This identifies the first group of P-type ATPases for which both ends of the polypeptide chain constitute regulatory domains, which together contribute to the autoinhibitory apparatus. This suggests an intricate mechanism of cis-regulation with both termini of the protein communicating to obtain the necessary...

  16. Fabrication of p-type porous GaN on silicon and epitaxial GaN

    OpenAIRE

    Bilousov, Oleksandr V.; Geaney, Hugh; Carvajal, Joan J.; Zubialevich, Vitaly Z.; Parbrook, Peter J.; Giguere, A.; Drouin, D.; Diaz, Francesc; Aguilo, Magdalena; O'Dwyer, Colm

    2013-01-01

    Porous GaN layers are grown on silicon from gold or platinum catalyst seed layers, and self-catalyzed on epitaxial GaN films on sapphire. Using a Mg-based precursor, we demonstrate p-type doping of the porous GaN. Electrical measurements for p-type GaN on Si show Ohmic and Schottky behavior from gold and platinum seeded GaN, respectively. Ohmicity is attributed to the formation of a Ga2Au intermetallic. Porous p-type GaN was also achieved on epitaxial n-GaN on sapphire, and transport measurem...

  17. Systematic Study of p-type Doping and Related Defects in III-Nitrides: Pathway toward a Nitride HBT

    Science.gov (United States)

    2012-11-20

    indium and gallium and were between 0.24 and 0.3 × 10-7 Torr normalized BEP . InGaN was grown via MME using a shutter modulation scheme similar to...surface for subsequent growth.18, 20-23 The aluminum flux during the buffer layer growth was 6x10-7 Torr beam equivalent pressure ( BEP ), and the...Gallium was supplied by either a standard effusion cell or a Veeco SUMO® cell at a metal-rich flux of 6.5x10-7 to 7.5x10-7 Torr BEP . Gallium and

  18. Boron, phosphorus, and gallium determination in silicon crystals doped with gallium

    International Nuclear Information System (INIS)

    Shklyar, B.L.; Dankovskij, Yu.V.; Trubitsyn, Yu.V.

    1989-01-01

    When studying IR transmission spectra of silicon doped with gallium in the range of concentrations 1 x 10 14 - 5 x 10 16 cm -3 , the possibility to quantity at low (∼ 20 K) temperatures residual impurities of boron and phosphorus is ascertained. The lower determination limit of boron is 1 x 10 12 cm -3 for a sample of 10 nm thick. The level of the impurities in silicon crystals, grown by the Czochralski method and method of crucible-free zone melting, is measured. Values of boron and phosphorus concentrations prior to and after their alloying with gallium are compared

  19. Electroforming-free resistive switching memory effect in transparent p-type tin monoxide

    KAUST Repository

    Hota, M. K.; Caraveo-Frescas, J. A.; McLachlan, M. A.; Alshareef, Husam N.

    2014-01-01

    We report reproducible low bias bipolar resistive switching behavior in p-type SnO thin film devices without extra electroforming steps. The experimental results show a stable resistance ratio of more than 100 times, switching cycling performance up

  20. Recent Advances on p-Type III-Nitride Nanowires by Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Songrui Zhao

    2017-09-01

    Full Text Available p-Type doping represents a key step towards III-nitride (InN, GaN, AlN optoelectronic devices. In the past, tremendous efforts have been devoted to obtaining high quality p-type III-nitrides, and extraordinary progress has been made in both materials and device aspects. In this article, we intend to discuss a small portion of these processes, focusing on the molecular beam epitaxy (MBE-grown p-type InN and AlN—two bottleneck material systems that limit the development of III-nitride near-infrared and deep ultraviolet (UV optoelectronic devices. We will show that by using MBE-grown nanowire structures, the long-lasting p-type doping challenges of InN and AlN can be largely addressed. New aspects of MBE growth of III-nitride nanostructures are also discussed.

  1. Origin of the p-type character of AuCl3 functionalized carbon nanotubes

    KAUST Repository

    Murat, Altynbek

    2014-02-13

    The microscopic origin of the p-type character of AuCl3 functionalized carbon nanotubes (CNTs) is investigated using first-principles self-interaction corrected density functional theory (DFT). Recent DFT calculations suggest that the p-type character of AuCl3 functionalized CNTs is due to the Cl atoms adsorbed on the CNTs. We test this hypothesis and show that adsorbed Cl atoms only lead to a p-type character for very specific concentrations and arrangements of the Cl atoms, which furthermore are not the lowest energy configurations. We therefore investigate alternative mechanisms and conclude that the p-type character is due to the adsorption of AuCl4 molecules. The unraveling of the exact nature of the p-doping adsorbates is a key step for further development of AuCl3 functionalized CNTs in water sensor applications. © 2014 American Chemical Society.

  2. Origin of the p-type character of AuCl3 functionalized carbon nanotubes

    KAUST Repository

    Murat, Altynbek; Rungger, Ivan; Jin, Chengjun; Sanvito, Stefano; Schwingenschlö gl, Udo

    2014-01-01

    The microscopic origin of the p-type character of AuCl3 functionalized carbon nanotubes (CNTs) is investigated using first-principles self-interaction corrected density functional theory (DFT). Recent DFT calculations suggest that the p

  3. A Density Functional Theory Study of Doped Tin Monoxide as a Transparent p-type Semiconductor

    KAUST Repository

    Bianchi Granato, Danilo

    2012-01-01

    that yttrium and lanthanum improves the hole mobility. Present results are in good agreement with available experimental works and help to improve the understanding on how to engineer transparent p-type materials with higher hole mobilities.

  4. High surface hole concentration p-type GaN using Mg implantation

    International Nuclear Information System (INIS)

    Long Tao; Yang Zhijian; Zhang Guoyi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 17 cm -3 ) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  5. STUDY OF ELECTRICAL CHARACTERISTIC OF NEW P-TYPE TRENCHED UMOSFET

    OpenAIRE

    Akansha Ephraim*, Neelesh Agrawal, Anil Kumar, A.K. Jaiswal

    2017-01-01

    In this paper p-type trenched UMOSFET was designed without super junction and constructed like any other conventional MOSFET. Characteristic curve was studied between drain current verses drain voltage and drain current verses gate voltage. The trench was designed under TCAD simulation tool Silvaco software using etching process. The specific channel length of the p-type UMOSFET has been concentrated as 0.9 microns. The device structures are designed using Silvaco Athena and characteristics w...

  6. Method for the preparation of n-i-p type radiation detector from silicon

    International Nuclear Information System (INIS)

    Keleti, J.; Toeroek, T.; Lukacs, J.; Molnar, I.

    1978-01-01

    The patent describes a procedure for the preparation of n-i-p type silicon radiation detectors. The aim was to provide an adaquate procedure for the production of α, β, γ-detectors from silicon available on the market, either p-type single crystal silicon characterised by its boron level. The procedure and the 9 claims are illustrated by two examples. (Sz.J.)

  7. Spin polarized first principles study of Mn doped gallium nitride monolayer nanosheet

    Science.gov (United States)

    Sharma, Venus; Kaur, Sumandeep; Srivastava, Sunita; Kumar, Tankeshwar

    2017-05-01

    The structural, electronic and magnetic properties of gallium nitride nanosheet (GaNs) doped with Mn atoms have been studied using spin polarized density functional theory. The binding energy per atom, Energy Band gap, Fermi energy, magnetic moment, electric dipole moment have been found. The doped nanosheet is found to be more stable than pure GaN monolayer nanosheet. Adsorption of Mn atom has been done at four different sites on GaNs which affects the fermi level position. It is found that depending on the doping site, Mn can behave both like p-type semiconductor and also as n-type semiconductor. Also, it is ascertained that Mn doped GaNs (GaNs-Mn) exhibits ferromagnetic behavior.

  8. Two-dimensional dopant profiling of gallium nitride p-n junctions by scanning capacitance microscopy

    Science.gov (United States)

    Lamhamdi, M.; Cayrel, F.; Frayssinet, E.; Bazin, A. E.; Yvon, A.; Collard, E.; Cordier, Y.; Alquier, D.

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p-n and unipolar junctions. For both p-n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p-n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  9. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    International Nuclear Information System (INIS)

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-01-01

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  10. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, S.; Williams, D. S. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Butler, K. T.; Walsh, A. [Center for Sustainable Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Quackenbush, N. F. [Department of Physics, Applied Physics, and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Junda, M.; Podraza, N. J. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States); Fischer, D. A.; Woicik, J. C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); White, B. E.; Piper, L. F. J., E-mail: lpiper@binghamton.edu [Department of Physics, Applied Physics, and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  11. Two-dimensional dopant profiling of gallium nitride p–n junctions by scanning capacitance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lamhamdi, M. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France); Ecole national des sciences appliquées khouribga, Université Hassan 1er, 26000 Settat (Morocco); Cayrel, F. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France); Frayssinet, E. [CRHEA-CNRS, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne (France); Bazin, A.E.; Yvon, A.; Collard, E. [STMicroelectronics, 16 Rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Cordier, Y. [CRHEA-CNRS, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne (France); Alquier, D. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France)

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p–n and unipolar junctions. For both p–n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p–n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  12. Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Yop Rhee, Kyong; Nahm, Seung-Hoon; Park, Soo-Jin

    2014-01-01

    In this study, the hydrogen storage behaviors of p-type multi-walled carbon nanotubes (MWNTs) were investigated through the surface modification of MWNTs by immersing them in sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) at various ratios. The presence of acceptor-functional groups on the p-type MWNT surfaces was confirmed by X-ray photoelectron spectroscopy. Measurement of the zeta-potential determined the surface charge transfer and dispersion of the p-type MWMTs, and the hydrogen storage capacity was evaluated at 77 K and 1 bar. From the results obtained, it was found that acceptor-functional groups were introduced onto the MWNT surfaces, and the dispersion of MWNTs could be improved depending on the acid-mixed treatment conditions. The hydrogen storage was increased by acid-mixed treatments of up to 0.36 wt% in the p-type MWNTs, compared with 0.18 wt% in the As-received MWNTs. Consequently, the hydrogen storage capacities were greatly influenced by the acceptor-functional groups of p-type MWNT surfaces, resulting in increased electron acceptor–donor interaction at the interfaces. - Graphical abstract: Hydrogen storage behaviors of the p-type MWNTs with the acid-mixed treatments are described. Display Omitted Display Omitted

  13. Convergence of valence bands for high thermoelectric performance for p-type InN

    International Nuclear Information System (INIS)

    Li, Hai-Zhu; Li, Ruo-Ping; Liu, Jun-Hui; Huang, Ming-Ju

    2015-01-01

    Band engineering to converge the bands to achieve high valley degeneracy is one of effective approaches for designing ideal thermoelectric materials. Convergence of many valleys in the valence band may lead to a high Seebeck coefficient, and induce promising thermoelectric performance of p-type InN. In the current work, we have systematically investigated the electronic structure and thermoelectric performance of wurtzite InN by using the density functional theory combined with semiclassical Boltzmann transport theory. Form the results, it can be found that intrinsic InN has a large Seebeck coefficient (254 μV/K) and the largest value of Z e T is 0.77. The transport properties of p-type InN are better than that of n-type one at the optimum carrier concentration, which mainly due to the large Seebeck coefficient for p-type InN, although the electrical conductivity of n-type InN is larger than that of p-type one. We found that the larger Seebeck coefficient for p-type InN may originate from the large valley degeneracy in the valence band. Moreover, the low minimum lattice thermal conductivity for InN is one key factor to become a good thermoelectric material. Therefore, p-type InN could be a potential material for further applications in the thermoelectric area.

  14. Automated realization of the gallium melting and triple points

    Science.gov (United States)

    Yan, X.; Duan, Y.; Zhang, J. T.; Wang, W.

    2013-09-01

    In order to improve the automation and convenience of the process involved in realizing the gallium fixed points, an automated apparatus, based on thermoelectric and heat pipe technologies, was designed and developed. This paper describes the apparatus design and procedures for freezing gallium mantles and realizing gallium melting and triple points. Also, investigations on the melting behavior of a gallium melting point cell and of gallium triple point cells were carried out while controlling the temperature outside the gallium point cells at 30 °C, 30.5 °C, 31 °C, and 31.5 °C. The obtained melting plateau curves show dentate temperature oscillations on the melting plateaus for the gallium point cells when thermal couplings occurred between the outer and inner liquid-solid interfaces. The maximum amplitude of the temperature fluctuations was about 1.5 mK. Therefore, the temperature oscillations can be used to indicate the ending of the equilibrium phase transitions. The duration and amplitude of such temperature oscillations depend on the temperature difference between the setting temperature and the gallium point temperature; the smaller the temperature difference, the longer the duration of both the melting plateaus and the temperature fluctuations.

  15. State of rare earth impurities in gallium and indium antimonides

    International Nuclear Information System (INIS)

    Evgen'ev, S.B.; Kuz'micheva, G.M.

    1990-01-01

    State of rare earth impurities in indium and gallium antimonides was studied. Results of measuring density and lattice parameter of samples in GaSb-rare earth and InSb-rare earth systems are presented. It is shown that during rare earth dissolution in indium and gallium antimonides rare earth atoms occupy interstitial positions or, at least, are displaced from lattice points

  16. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    Directory of Open Access Journals (Sweden)

    Tae-Hee Kim

    2016-02-01

    Full Text Available Gallium nitride (GaN nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO33∙xH2O was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6 powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3. Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing.

  17. Gallium-containing hydroxyapatite for potential use in orthopedics

    International Nuclear Information System (INIS)

    Melnikov, P.; Teixeira, A.R.; Malzac, A.; Coelho, M. de B.

    2009-01-01

    A novel material that may be recommended for grafts and implants stimulating bone growth has been obtained by introducing gallium ions (up to 11.0 mass%) into crystalline lattice of hydroxyapatite. The doping was carried out using gallium nitrate and sodium gallate solutions. In both cases, lattice parameters of gallium-doped hydroxyapatite are identical to those of pure synthetic hydroxyapatite. Gallium does not replace calcium as a result of heterovalent substitution and consequently produces no distortions in the framework of hydroxyapatite matrix. It remains strongly fixed in the form of solid solution of intercalation. According to scanning electron microscopy images gallium insertion does not cause any morphological alterations in hydroxyapatite structure and the product developed meets physico-chemical criteria for biomaterial to be employed in orthopedic practice and local handling of traumatic injuries. Its future usage opens the opportunity to enhance osteosynthesis and calcium retention in loco.

  18. Nuclear microprobe imaging of gallium nitrate in cancer cells

    Science.gov (United States)

    Ortega, Richard; Suda, Asami; Devès, Guillaume

    2003-09-01

    Gallium nitrate is used in clinical oncology as treatment for hypercalcemia and for cancer that has spread to the bone. Its mechanism of antitumor action has not been fully elucidated yet. The knowledge of the intracellular distribution of anticancer drugs is of particular interest in oncology to better understand their cellular pharmacology. In addition, most metal-based anticancer compounds interact with endogenous trace elements in cells, altering their metabolism. The purpose of this experiment was to examine, by use of nuclear microprobe analysis, the cellular distribution of gallium and endogenous trace elements within cancer cells exposed to gallium nitrate. In a majority of cellular analyses, gallium was found homogeneously distributed in cells following the distribution of carbon. In a smaller number of cells, however, gallium appeared concentrated together with P, Ca and Fe within round structures of about 2-5 μm diameter located in the perinuclear region. These intracellular structures are typical of lysosomial material.

  19. Nuclear microprobe imaging of gallium nitrate in cancer cells

    International Nuclear Information System (INIS)

    Ortega, Richard; Suda, Asami; Deves, Guillaume

    2003-01-01

    Gallium nitrate is used in clinical oncology as treatment for hypercalcemia and for cancer that has spread to the bone. Its mechanism of antitumor action has not been fully elucidated yet. The knowledge of the intracellular distribution of anticancer drugs is of particular interest in oncology to better understand their cellular pharmacology. In addition, most metal-based anticancer compounds interact with endogenous trace elements in cells, altering their metabolism. The purpose of this experiment was to examine, by use of nuclear microprobe analysis, the cellular distribution of gallium and endogenous trace elements within cancer cells exposed to gallium nitrate. In a majority of cellular analyses, gallium was found homogeneously distributed in cells following the distribution of carbon. In a smaller number of cells, however, gallium appeared concentrated together with P, Ca and Fe within round structures of about 2-5 μm diameter located in the perinuclear region. These intracellular structures are typical of lysosomial material

  20. Fluorimetric analysis of gallium in bauxite, by-products, products from gallium processing and its control solutions

    International Nuclear Information System (INIS)

    Ferreira, C.A.M.; Medeiros, V.

    1987-01-01

    The gallium processing since raw material analysis until end-products analysis is studied. Gallium presence in by-products and products, as well as the fluorimetric method is analyzed. Equipments and materials used in laboratory, reagents and chemical solutions are described. (M.J.C.) [pt

  1. Discovering a Defect that Imposes a Limit to Mg Doping in p-Type GaN

    International Nuclear Information System (INIS)

    Liliental-Weber, Z.; Tomaszewicz, T.; Zakharov, D.; O'Keefe, M.A.

    2006-01-01

    Gallium nitride (GaN) is the III-V semiconductor used to produce blue light-emitting diodes (LEDs) and blue and ultraviolet solid-state lasers. To be useful in electronic devices, GaN must be doped with elements that function either as electron donors or as acceptors to turn it into either an n-type semiconductor or a p-type semiconductor. It has been found that GaN can easily be grown with n-conductivity, even up to large concentrations of donors--in the few 10 19 cm -3 range. However, p-doping, the doping of the structure with atoms that provide electron sinks or holes, is not well understood and remains extremely difficult. The only efficient p-type dopant is Mg, but it is found that the free hole concentration is limited to 2 x 10 18 cm -3 , even when Mg concentrations are pushed into the low 10 19 cm -3 range. This saturation effect could place a limit on further development of GaN based devices. Further increase of the Mg concentration, up to 1 x 10 20 cm -3 leads to a decrease of the free hole concentration and an increase in defects. While low- to medium-brightness GaN light-emitting diodes (LEDs) are remarkably tolerant of crystal defects, blue and UV GaN lasers are much less so. We used electron microscopy to investigate Mg doping in GaN. Our transmission electron microscopy (TEM) studies revealed the formation of different types of Mg-rich defects [1,2]. In particular, high-resolution TEM allowed us to characterize a completely new type of defect in Mg-rich GaN. We found that the type of defect depended strongly on crystal growth polarity. For crystals grown with N-polarity, planar defects are distributed at equal distances (20 unit cells of GaN); these defects can be described as inversion domains [1]. For growth with Ga-polarity, we found a different type of defect [2]. These defects turn out to be three-dimensional Mg-rich hexagonal pyramids (or trapezoids) with their base on the (0001) plane and their six walls formed on {1123} planes (Fig. 1a). In

  2. Patterned gallium surfaces as molecular mirrors.

    Science.gov (United States)

    Bossi, Alessandra; Rivetti, Claudio; Mangiarotti, Laura; Whitcombe, Michael J; Turner, Anthony P F; Piletsky, Sergey A

    2007-09-30

    An entirely new means of printing molecular information on a planar film, involving casting nanoscale impressions of the template protein molecules in molten gallium, is presented here for the first time. The metallic imprints not only replicate the shape and size of the proteins used as template. They also show specific binding for the template species. Such a simple approach to the creation of antibody-like properties in metallic mirrors can lead to applications in separations, microfluidic devices, and the development of new optical and electronic sensors, and will be of interest to chemists, materials scientists, analytical specialists, and electronic engineers.

  3. Sodium Flux Growth of Bulk Gallium Nitride

    Science.gov (United States)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of GaN from the sodium-gallium melt. Different stages of N2 pressure decay were identified and linked to

  4. Segmentation of the Outer Contact on P-Type Coaxial Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.

    2006-09-21

    Germanium detector arrays are needed for low-level counting facilities. The practical applications of such user facilities include characterization of low-level radioactive samples. In addition, the same detector arrays can also perform important fundamental physics measurements including the search for rare events like neutrino-less double-beta decay. Coaxial germanium detectors having segmented outer contacts will provide the next level of sensitivity improvement in low background measurements. The segmented outer detector contact allows performance of advanced pulse shape analysis measurements that provide additional background reduction. Currently, n-type (reverse electrode) germanium coaxial detectors are used whenever a segmented coaxial detector is needed because the outer boron (electron barrier) contact is thin and can be segmented. Coaxial detectors fabricated from p-type germanium cost less, have better resolution, and are larger than n-type coaxial detectors. However, it is difficult to reliably segment p-type coaxial detectors because thick (~1 mm) lithium-diffused (hole barrier) contacts are the standard outside contact for p-type coaxial detectors. During this Phase 1 Small Business Innovation Research (SBIR) we have researched the possibility of using amorphous germanium contacts as a thin outer contact of p-type coaxial detectors that can be segmented. We have developed amorphous germanium contacts that provide a very high hole barrier on small planar detectors. These easily segmented amorphous germanium contacts have been demonstrated to withstand several thousand volts/cm electric fields with no measurable leakage current (<1 pA) from charge injection over the hole barrier. We have also demonstrated that the contact can be sputter deposited around and over the curved outside surface of a small p-type coaxial detector. The amorphous contact has shown good rectification properties on the outside of a small p-type coaxial detector. These encouraging

  5. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei

    2016-02-16

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  6. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei; Nayak, Pradipta K.; Caraveo-Frescas, Jesus Alfonso; Alshareef, Husam N.

    2016-01-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  7. Chemical-free n-type and p-type multilayer-graphene transistors

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, D. M. N. M., E-mail: nandithad@voxtel-inc.com [Voxtel Inc, Lockey Laboratories, University of Oregon, Eugene Oregon 97402 (United States); Eisaman, M. D. [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794 (United States); Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794 (United States)

    2016-08-01

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping. When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.

  8. Nanostructured p-Type Semiconductor Electrodes and Photoelectrochemistry of Their Reduction Processes

    Directory of Open Access Journals (Sweden)

    Matteo Bonomo

    2016-05-01

    Full Text Available This review reports the properties of p-type semiconductors with nanostructured features employed as photocathodes in photoelectrochemical cells (PECs. Light absorption is crucial for the activation of the reduction processes occurring at the p-type electrode either in the pristine or in a modified/sensitized state. Beside thermodynamics, the kinetics of the electron transfer (ET process from photocathode to a redox shuttle in the oxidized form are also crucial since the flow of electrons will take place correctly if the ET rate will overcome that one of recombination and trapping events which impede the charge separation produced by the absorption of light. Depending on the nature of the chromophore, i.e., if the semiconductor itself or the chemisorbed dye-sensitizer, different energy levels will be involved in the cathodic ET process. An analysis of the general properties and requirements of electrodic materials of p-type for being efficient photoelectrocatalysts of reduction processes in dye-sensitized solar cells (DSC will be given. The working principle of p-type DSCs will be described and extended to other p-type PECs conceived and developed for the conversion of the solar radiation into chemical products of energetic/chemical interest like non fossil fuels or derivatives of carbon dioxide.

  9. Formation of p-type ZnO thin film through co-implantation

    Science.gov (United States)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  10. Characterization of plasma etching damage on p-type GaN using Schottky diodes

    International Nuclear Information System (INIS)

    Kato, M.; Mikamo, K.; Ichimura, M.; Kanechika, M.; Ishiguro, O.; Kachi, T.

    2008-01-01

    The plasma etching damage in p-type GaN has been characterized. From current-voltage and capacitance-voltage characteristics of Schottky diodes, it was revealed that inductively coupled plasma (ICP) etching causes an increase in series resistance of the Schottky diodes and compensation of acceptors in p-type GaN. We investigated deep levels near the valence band of p-type GaN using current deep level transient spectroscopy (DLTS), and no deep level originating from the ICP etching damage was observed. On the other hand, by capacitance DLTS measurements for n-type GaN, we observed an increase in concentration of a donor-type defect with an activation energy of 0.25 eV after the ICP etching. The origin of this defect would be due to nitrogen vacancies. We also observed this defect by photocapacitance measurements for ICP-etched p-type GaN. For both n- and p-type GaN, we found that the low bias power ICP etching is effective to reduce the concentration of this defect introduced by the high bias power ICP etching

  11. Optoelectronic properties of transparent p-type semiconductor Cu{sub x}S thin films

    Energy Technology Data Exchange (ETDEWEB)

    Parreira, P.; Valente, J. [ICEMS, IST-UTL, Lisboa (Portugal); Lavareda, G. [Departamento de Fisica, IST-UTL, Lisboa (Portugal); Nunes, F.T. [Departamento de Ciencia dos Materiais, FCT-UNL, Caparica (Portugal); Amaral, A. [Departamento de Fisica, IST-UTL, Lisboa (Portugal); ICEMS, IST-UTL, Lisboa (Portugal); Carvalho, C.N. de [Departamento de Ciencia dos Materiais, FCT-UNL, Caparica (Portugal); ICEMS, IST-UTL, Lisboa (Portugal)

    2010-07-15

    Nowadays, among the available transparent semiconductors for device use, the great majority (if not all) have n-type conductivity. The fabrication of a transparent p-type semiconductor with good optoelectronic properties (comparable to those of n-type: InO{sub x}, ITO, ZnO{sub x} or FTO) would significantly broaden the application field of thin films. However, until now no material has yet presented all the required properties. Cu{sub 2}S is a p-type narrow-band-gap material with an average optical transmittance of about 60% in the visible range for 50 nm thick films. However, due to its high conductivity at room temperature, 10 nm in thickness seems to be appropriate for device use. Cu{sub 2}S thin films with 10 nm in thickness have an optical visible transmittance of about 85% rendering them as very good candidates for transparent p-type semiconductors. In this work Cu{sub x}S thin films were deposited on alkali-free (AF) glass by thermal evaporation. The objective was not only the determination of its optoelectronic properties but also the feasibility of an active layer in a p-type thin film transistor. In our Cu{sub x}S thin films, p-type high conductivity with a total visible transmittance of about 50% have been achieved. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations

    Science.gov (United States)

    Horita, Masahiro; Takashima, Shinya; Tanaka, Ryo; Matsuyama, Hideaki; Ueno, Katsunori; Edo, Masaharu; Takahashi, Tokio; Shimizu, Mitsuaki; Suda, Jun

    2017-03-01

    Mg-doped p-type gallium nitride (GaN) layers with doping concentrations in the range from 6.5 × 1016 cm-3 (lightly doped) to 3.8 × 1019 cm-3 (heavily doped) were investigated by Hall-effect measurement for the analysis of hole concentration and mobility. p-GaN was homoepitaxially grown on a GaN free-standing substrate by metalorganic vapor-phase epitaxy. The threading dislocation density of p-GaN was 4 × 106 cm-2 measured by cathodoluminescence mapping. Hall-effect measurements of p-GaN were carried out at a temperature in the range from 130 to 450 K. For the lightly doped p-GaN, the acceptor concentration of 7.0 × 1016 cm-3 and the donor concentration of 3.2 × 1016 cm-3 were obtained, where the compensation ratio was 46%. We also obtained the depth of the Mg acceptor level to be 220 meV. The hole mobilities of 86, 31, 14 cm2 V-1 s-1 at 200, 300, 400 K, respectively, were observed in the lightly doped p-GaN.

  13. Significantly enhanced thermal conductivity of indium arsenide nanowires via sulfur passivation.

    Science.gov (United States)

    Xiong, Yucheng; Tang, Hao; Wang, Xiaomeng; Zhao, Yang; Fu, Qiang; Yang, Juekuan; Xu, Dongyan

    2017-10-16

    In this work, we experimentally investigated the effect of sulfur passivation on thermal transport in indium arsenide (InAs) nanowires. Our measurement results show that thermal conductivity can be enhanced by a ratio up to 159% by sulfur passivation. Current-voltage (I-V) measurements were performed on both unpassivated and S-passivated InAs nanowires to understand the mechanism of thermal conductivity enhancement. We observed a remarkable improvement in electrical conductivity upon sulfur passivation and a significant contribution of electrons to thermal conductivity, which account for the enhanced thermal conductivity of the S-passivated InAs nanowires.

  14. Undoped p-type GaN1-xSbx alloys: Effects of annealing

    Science.gov (United States)

    Segercrantz, N.; Baumgartner, Y.; Ting, M.; Yu, K. M.; Mao, S. S.; Sarney, W. L.; Svensson, S. P.; Walukiewicz, W.

    2016-12-01

    We report p-type behavior for undoped GaN1-xSbx alloys with x ≥ 0.06 grown by molecular beam epitaxy at low temperatures (≤400 °C). Rapid thermal annealing of the GaN1-xSbx films at temperatures >400 °C is shown to generate hole concentrations greater than 1019 cm-3, an order of magnitude higher than typical p-type GaN achieved by Mg doping. The p-type conductivity is attributed to a large upward shift of the valence band edge resulting from the band anticrossing interaction between localized Sb levels and extended states of the host matrix.

  15. Secondary ion mass spectrometry analysis of In-doped p-type GaN films

    International Nuclear Information System (INIS)

    Chiou, C.Y.; Wang, C.C.; Ling, Y.C.; Chiang, C.I.

    2003-01-01

    SIMS was used to investigate the isoelectronic In-doped p-type GaN films. The growth rate of the p-type GaN film decreased with increasing Mg and In doping. The Mg saturation in GaN was 3.55x10 19 atoms/cm 3 . The role of In as surfactant was evaluated by varying In concentrations and it was observed that the surface appeared smooth with increasing In incorporation. The Mg solubility in p-type GaN improved to 0.0025% molar ratio of the GaN with In incorporation. The In concentration results observed in neutron activation analysis (NAA) were found to be higher by a factor of 2.88 than that observed in SIMS and can be attributed to the difference in sensitivity of the two techniques. Good linearity in the results was observed from both techniques

  16. Transparent p-type SnO nanowires with unprecedented hole mobility among oxide semiconductors

    KAUST Repository

    Caraveo-Frescas, J. A.

    2013-11-25

    p-type tin monoxide (SnO) nanowire field-effect transistors with stable enhancement mode behavior and record performance are demonstrated at 160 °C. The nanowire transistors exhibit the highest field-effect hole mobility (10.83 cm2 V−1 s−1) of any p-type oxide semiconductor processed at similar temperature. Compared to thin film transistors, the SnO nanowire transistors exhibit five times higher mobility and one order of magnitude lower subthreshold swing. The SnO nanowire transistors show three times lower threshold voltages (−1 V) than the best reported SnO thin film transistors and fifteen times smaller than p-type Cu 2O nanowire transistors. Gate dielectric and process temperature are critical to achieving such performance.

  17. A simple model to estimate the optimal doping of p - Type oxide superconductors

    Directory of Open Access Journals (Sweden)

    Adir Moysés Luiz

    2008-12-01

    Full Text Available Oxygen doping of superconductors is discussed. Doping high-Tc superconductors with oxygen seems to be more efficient than other doping procedures. Using the assumption of double valence fluctuations, we present a simple model to estimate the optimal doping of p-type oxide superconductors. The experimental values of oxygen content for optimal doping of the most important p-type oxide superconductors can be accounted for adequately using this simple model. We expect that our simple model will encourage further experimental and theoretical researches in superconducting materials.

  18. Hall and thermoelectric evaluation of p-type InAs

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, M.C., E-mail: magnus.wagener@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Wagener, V.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2009-12-15

    This paper compares the galvanometric and thermoelectric evaluation of the electrical characteristics of narrow gap semiconductors. In particular, the influence of a surface inversion layer is incorporated into the analysis of the temperature-dependent Hall and thermoelectric measurements of p-type InAs. The temperature at which the Seebeck coefficient of p-type material changes sign is shown to be unaffected by the presence of degenerate conduction paths. This finding consequently facilitated the direct determination of the acceptor density of lightly doped thin film InAs.

  19. In and out of the cation pumps: P-type ATPase structure revisited

    DEFF Research Database (Denmark)

    Bublitz, Maike; Poulsen, Hanne; Morth, Jens Preben

    2010-01-01

    Active transport across membranes is a crucial requirement for life. P-type ATPases build up electrochemical gradients at the expense of ATP by forming and splitting a covalent phosphoenzyme intermediate, coupled to conformational changes in the transmembrane section where the ions are translocated....... The marked increment during the last three years in the number of crystal structures of P-type ATPases has greatly improved our understanding of the similarities and differences of pumps with different ion specificities, since the structures of the Ca2+-ATPase, the Na+,K+-ATPase and the H+-ATPase can now...

  20. High surface hole concentration p-type GaN using Mg implantation

    CERN Document Server

    Long Tao; Zhang Guo Yi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 sup 1 sup 7 cm sup - sup 3) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  1. Optical properties of Mg doped p-type GaN nanowires

    Science.gov (United States)

    Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, S.; Tyagi, A. K.

    2015-06-01

    Mg doped p-type GaN nanowires are grown using chemical vapor deposition technique in vapor-liquid-solid (VLS) process. Morphological and structural studies confirm the VLS growth process of nanowires and wurtzite phase of GaN. We report the optical properties of Mg doped p-type GaN nanowires. Low temperature photoluminescence studies on as-grown and post-growth annealed samples reveal the successful incorporation of Mg dopants. The as-grwon and annealed samples show passivation and activation of Mg dopants, respectively, in GaN nanowires.

  2. Dual ohmic contact to N- and P-type silicon carbide

    Science.gov (United States)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  3. Carrier removal and defect behavior in p-type InP

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Drevinsky, P. J.

    1992-01-01

    A simple expression, obtained from the rate equation for defect production, was used to relate carrier removal to defect production and hole trapping rates in p-type InP after irradiation by 1-MeV electrons. Specific contributions to carrier removal from defect levels H3, H4, and H5 were determined from combined deep-level transient spectroscopy (DLTS) and measured carrier concentrations. An additional contribution was attributed to one or more defects not observed by the present DLTS measurements. The high trapping rate observed for H5 suggests that this defect, if present in relatively high concentration, could be dominant in p-type InP.

  4. On the feasibility of p-type Ga2O3

    Science.gov (United States)

    Kyrtsos, Alexandros; Matsubara, Masahiko; Bellotti, Enrico

    2018-01-01

    We investigate the various cation substitutional dopants in Ga2O3 for the possibility of p-type conductivity using density functional theory. Our calculations include both standard density functional theory and hybrid functional calculations. We demonstrate that all the investigated dopants result in deep acceptor levels, not able to contribute to the p-type conductivity of Ga2O3. In light of these results, we compare our findings with other wide bandgap oxides and reexamine previous experiments on zinc doping in Ga2O3.

  5. Subband structure comparison between n- and p- type double delta-doped Ga As quantum wells

    International Nuclear Information System (INIS)

    Rodriguez V, I.; Gaggero S, L.M.

    2004-01-01

    We compute the electron level structure (n-type) and the hole subband structure (p-type) of double -doped GaAs (DDD) quantum wells, considering exchange effects. The Thomas-Fermi (TF), and Thomas-Fermi-Dirac (TFD) approximations have been applied in order to describe the bending of the conduction and valence band, respectively. The electron and the hole subband structure study indicates that exchange effects are more important in p-type DDD quantum wells than in n-type DDD Also our results agree with the experimental data available. (Author) 33 refs., 2 tabs., 5 figs

  6. Hall and thermoelectric evaluation of p-type InAs

    International Nuclear Information System (INIS)

    Wagener, M.C.; Wagener, V.; Botha, J.R.

    2009-01-01

    This paper compares the galvanometric and thermoelectric evaluation of the electrical characteristics of narrow gap semiconductors. In particular, the influence of a surface inversion layer is incorporated into the analysis of the temperature-dependent Hall and thermoelectric measurements of p-type InAs. The temperature at which the Seebeck coefficient of p-type material changes sign is shown to be unaffected by the presence of degenerate conduction paths. This finding consequently facilitated the direct determination of the acceptor density of lightly doped thin film InAs.

  7. Compatibility of ITER candidate structural materials with static gallium

    International Nuclear Information System (INIS)

    Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.

    1993-12-01

    Tests were conducted on the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chromium. Type 316 stainless steel is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400 degrees C, corrosion rates are ∼4.0, 0.5, and 0.03 mm/yr for type 316 SS, Inconel 625, and Nb-5 Mo- 1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than nickel. The corrosion rates at 400 degrees C are ≥88 and 18 mm/yr, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400 degrees C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The solubility data for pure metals and oxygen in gallium are reviewed. The physical, chemical, and radioactive properties of gallium are also presented. The supply and availability of gallium, as well as price predictions through the year 2020, are summarized

  8. The influence of electron irradiation at the various temperatures and annealing on carriers mobility at the low temperatures in neutron transmutation doped gallium arsenide

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Kurilovich, N.F.; Prokhorenko, T.A.; Troshchinskii, V.T.; Shesholko, V.K.

    1999-01-01

    The influence of electron irradiation at the various temperatures and annealing on measured at T=100 K carriers mobility in neutron transmutation doped GaAs have been investigated. It was detected that rate of mobility decreasing with irradiation dose increasing decreases when irradiation temperature increases. It was shown that at the same time it take place the radiation defects creating and their particular or full annealing (in the dependence on irradiation temperature). Radiation stimulated annealing (annealing that take place during irradiation at the elevated temperatures) is more effective than the annealing at the same temperatures that take place after crystals are irradiated at room temperature. It means that any defects annealing during irradiation at elevated temperatures take place at more low temperatures than that during annealing after irradiation at room temperature

  9. Atomic-Scale Structure of the Tin DX Center and Other Related Defects in Aluminum Gallium Arsenide Semiconductors Using Moessbauer Spectroscopy.

    Science.gov (United States)

    Greco, Luigi Alessandro

    The DX center in III-V alloys has limited the use of these materials for electronic devices since the defect acts as an electron trap. To be able to control or eliminate the DX center, its atomic scale structure should be understood. Mossbauer spectroscopy has proven to be a valuable technique in probing the atomic-scale structure of certain atomic species. The dopant studied here is ^{119}Sn. The thermal diffusion of Sn in Al_ {rm x}Ga_{rm 1-x }As using different temperatures, times, sample geometries and As_4 overpressures in evacuated and sealed fused silica ampoules was studied by x-ray diffraction (XRD), secondary ion mass spectroscopy and electrochemical capacitance versus voltage measurements. The AlGaAs surfaces decomposed into various Sn, Si, Ga and As oxides when an As_4 overpressure was introduced during annealing. However, annealing under ambient As_4 and furnace cooling eliminated surface decomposition although the Sn diffusion depth was less than that for a 0.5 atm As_4 overpressure. SiO_{rm x} and Si_{rm x }N_{rm y} RF-sputtered thin film capping layers deposited on AlGaAs were studied by XRD and Auger electron spectroscopy. For the annealed SiO_{rm x} films the AlGaAs surface was preserved, independent of the cooling technique used. Mossbauer spectroscopy was conducted on ^{rm 119m} Sn-implanted Al_ {rm x } Ga_{rm 1-x} As (x = 0.22 and 0.25) used for the source experiments and ^{119}Sn-doped Al _{rm x}Ga _{rm 1-x}As (x = 0.15, N _{rm Sn} ~2 times 10 ^{18} cm^{ -3}) for the absorber experiment. The source samples were capped with 120 nm of SiO_ {rm x} to preserve the surface during the systematic study of annealing temperature versus site occupation and electrical activation via Mossbauer spectroscopy at 76 K and 4 K in the dark and in the light (to observe persistent photoconductivity (PPC) due to the DX center). For all of the annealing conditions used the x = 0.22 sample showed little evidence of PPC possibly due to compensating defects and/or radiation-induced capture. After annealing the x = 0.25 sample at 1000^circC for 2 hours under a Ga + Al overpressure, evidence of PPC was found via Hall measurements but no effect was seen by Mossbauer suggesting radiation-induced capture and/or non-nearest-neighbor lattice relaxation. The Ga + Al overpressure also served to decrease the loss of Sn through the SiO _{rm x} film, possibly through the removal of Ga and Al vacancies. The x = 0.15 absorber showed a persistent 15-18% change in the electrical resistance (10% change in n) between the light and dark. However, the observation of this effect was not apparent, even assuming negative-U (2 electron) behavior, in the Mossbauer measurements. This was also consistent with EXAFS results. These studies do not support the broken-bond model of Chadi and Chang, which is considered to be a widely accepted atomic-scale model of the DX center. A defect complex consisting of a substitutional Sn_{rm Ga(Al) }^+ site, and a (V_{ rm III}^-Al_{ rm As}^{-2}) complex, which localizes 3 electrons and may not be a nearest-neighbor to the donor, was chosen for the DX center in the x = 0.15 sample which supports EXAFS, recent positron annihilation and these Mossbauer studies.

  10. Advanced radiation detector development: Advanced semiconductor detector development: Development of a oom-temperature, gamma ray detector using gallium arsenide to develop an electrode detector

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1995-11-01

    The advanced detector development project at the University of Michigan has completed the first full year of its current funding. Our general goals are the development of radiation detectors and spectrometers that are capable of portable room temperature operation. Over the past 12 months, we have worked primarily in the development of semiconductor spectrometers with open-quotes single carrierclose quotes response that offer the promise of room temperature operation and good energy resolution in gamma ray spectroscopy. We have also begun a small scale effort at investigating the properties of a small non-spectroscopic detector system with directional characteristics that will allow identification of the approximate direction in which gamma rays are incident. These activities have made use of the extensive clean room facilities at the University of Michigan for semiconductor device fabrication, and also the radiation measurement capabilities provided in our laboratory in the Phoenix Building on the North Campus. In addition to our laboratory based activities, Professor Knoll has also been a participant in several Department of Energy review activities held in the Forrestal Building and at the Germantown site. The most recent of these has been service on a DOE review panel chaired by Dr. Hap Lamonds that is reviewing the detector development programs supported through the Office of Arms Control and International Security

  11. Electronic Properties of III-V Semiconductors under [111] Uniaxial Strain; a Tight-Binding Approach: I. Arsenides and Gallium Phosphide

    Directory of Open Access Journals (Sweden)

    Miguel E. Mora-Ramos

    2009-01-01

    Full Text Available Empleando un esquema de cálculo tight-binding que usa una base de orbitales sp3s*d5, se estudian propiedades de la estructura electrónica de un grupo de materiales semiconductores IIIV los cuales son de notable interés para la tecnología de dispositivos electrónicos y optoelectrónicos. En específico, se analiza la influencia sobre estas propiedades de una tensión aplicada según la dirección cristalográfica [111], haciendo uso de una formulación basada en la teoría de la elasticidad para establecer las posiciones relativas de los iones vecinos más próximos. Especial atención se presta a la inclusión del efecto de deformación interna de la red cristalina. Para cada material de los estudiados presentamos las dependencias de las brechas energéticas asociadas a los puntos L, X y L de la zona de Brillouin como funciones de la tensión uniaxial en AlAs, GaAs, InAs y GaP. Asimismo, reportamos expresiones de ajuste para los valores de las masas efectivas de conducción en esos cuatro materiales. La comparación de la variación de la brecha de energía en X para el GaP, calculada con nuestro modelo, y recientes resultados experimentales para la transición indirecta entre la banda de huecos pesados y la banda X de conducción arroja una muy buena concordancia.

  12. Formation of scandium nitride (ScN) layer on gallium arsenide (GaAs) substrate using a combined technique of e-beam evaporator and ammonia annealing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yong Shee Meng, Alvin [Institute of Nano Optoelectronics Research and Technology (INOR), sains@usm, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang (Malaysia); Zainal, Norzaini, E-mail: norzaini@usm.my [Nano Optoelectronics Research and Laboratory, Universiti Sains Malaysia, sains@usm, Persiaran Bukit Jambul, 11900, Bayan Lepas, Penang (Malaysia); Hassan, Zainuriah; Ibrahim, Kamarulazizi [Institute of Nano Optoelectronics Research and Technology (INOR), sains@usm, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang (Malaysia)

    2015-12-30

    Graphical abstract: - Highlights: • Forming ScN layer using electron e-beam evaporator with successive NH{sub 3} annealing thermal has been successfully demonstrated. • NH{sub 3} annealing played the role in changing the grain structure of the ScN layer. • The existence of Sc−N bonds was confirmed by XPS measurement. • The 900 °C annealed ScN layer showed the best structural and optical characteristics. • ScN layer annealed at 980 °C exhibited poor structural and optical characteristics. - Abstract: A demonstration on a new technique of growing ScN using electron beam (e-beam) evaporator, coupled with successive ammonia (NH{sub 3}) annealing treatment is presented in this paper. The annealing temperature was varied at 750, 800, 850, 900 and 980 °C in order to obtain the best ScN layer. It was found that as the annealing temperature increased, the surface morphology of the ScN layer changed and ScN grains formed abundantly on the surface. The best surface of ScN layer was found in the 900 °C annealed sample. However, the roughness of the ScN increased with temperature. The photoluminescence (PL) peak of the near-to-band-edge (NBE) of ScN was observable in all samples and its intensity was the highest in the 900 °C annealed sample. Note that when the annealing treatment was conducted at 980 °C, the GaN PL peak is observable. Raman peaks of TO(X) of ScN were much evident at the annealing temperature above 900 °C. The formation of Sc−N bonds was confirmed by X-ray spectroscopy (XPS) measurement. In the end of this work, we propose that the formation of ScN using the above techniques was successful, with thermal annealing at the temperature of 900 °C.

  13. Formation of scandium nitride (ScN) layer on gallium arsenide (GaAs) substrate using a combined technique of e-beam evaporator and ammonia annealing treatment

    International Nuclear Information System (INIS)

    Yong Shee Meng, Alvin; Zainal, Norzaini; Hassan, Zainuriah; Ibrahim, Kamarulazizi

    2015-01-01

    Graphical abstract: - Highlights: • Forming ScN layer using electron e-beam evaporator with successive NH_3 annealing thermal has been successfully demonstrated. • NH_3 annealing played the role in changing the grain structure of the ScN layer. • The existence of Sc−N bonds was confirmed by XPS measurement. • The 900 °C annealed ScN layer showed the best structural and optical characteristics. • ScN layer annealed at 980 °C exhibited poor structural and optical characteristics. - Abstract: A demonstration on a new technique of growing ScN using electron beam (e-beam) evaporator, coupled with successive ammonia (NH_3) annealing treatment is presented in this paper. The annealing temperature was varied at 750, 800, 850, 900 and 980 °C in order to obtain the best ScN layer. It was found that as the annealing temperature increased, the surface morphology of the ScN layer changed and ScN grains formed abundantly on the surface. The best surface of ScN layer was found in the 900 °C annealed sample. However, the roughness of the ScN increased with temperature. The photoluminescence (PL) peak of the near-to-band-edge (NBE) of ScN was observable in all samples and its intensity was the highest in the 900 °C annealed sample. Note that when the annealing treatment was conducted at 980 °C, the GaN PL peak is observable. Raman peaks of TO(X) of ScN were much evident at the annealing temperature above 900 °C. The formation of Sc−N bonds was confirmed by X-ray spectroscopy (XPS) measurement. In the end of this work, we propose that the formation of ScN using the above techniques was successful, with thermal annealing at the temperature of 900 °C.

  14. Inflammatory process decrease by gallium-aluminium-arsenide (GaAlAs) low intensity laser irradiation on postoperative extraction of impacted lower third molar

    International Nuclear Information System (INIS)

    Atihe, Mauricio Martins

    2002-01-01

    This study aimed the observation of inflammatory process decrease by the use of GaAlAs Low Intensity Laser (λ=830 nm; 40 mW) irradiation. Five patients were selected and submitted to surgery of impacted lower third molars, both right and left sides at different occasions. On a first stage, a tooth of a random chosen side - right or left - was extracted by conventional surgery, without LILT. The inflammatory process was measured at postoperative on the first, third and seventh days. This side was then called 'control side'. After 21 days, period in which the inflammatory process of the first surgery was terminated, the other side surgery took place, this time using LILT (4 J at four spots) at postoperative, first and third days. As the previous surgery, the inflammatory process was also measured at postoperative on the first, third and seventh days. This side was called 'experimental or lased side'. The inflammatory process was evaluated by measuring its four characteristic signs: swelling, pain, color and temperature. It was clearly observed a decrease for swelling, pain and color on the lased side which presented significant inference and descriptive statistics. It can be concluded that GaAlAs Low Intensity Laser (λ=830 nm) can surely be used as an additional and important anti-inflammatory source on impacted lower third molar surgeries. (author)

  15. Synergic phototoxic effect of visible light or Gallium-Arsenide laser in the presence of different photo-sensitizers on Porphyromonas gingivalis and Fusobacterium nucleatum

    Directory of Open Access Journals (Sweden)

    Habibollah Ghanbari

    2015-01-01

    Conclusion: Within the limitations of this study, the synergic phototoxic effect of visible light in combination with each of the photosensitizers on P. gingivalis and F. nucleatum. However, the synergic phototoxic effect of laser exposure and hydrogen peroxide and curcumin as photosensitizers on F. nucleatum was not shown.

  16. Time-resolved characterization of InAs/InGaAs quantum dot gain material for 1.3 µm lasers on gallium arsenide

    DEFF Research Database (Denmark)

    Fiore, Andrea; Borri, Paola; Langbein, Wolfgang

    2000-01-01

    The time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 ìm is presented. A photoluminescence decay time of 1.8 ns and a fast rise time of 10ps are measured close to room temperature....

  17. Proportional counter response calculations for gallium solar neutrino detectors

    International Nuclear Information System (INIS)

    Kouzes, R.T.; Reynolds, D.

    1989-01-01

    Gallium bases solar neutrino detectors are sensitive to the primary pp reaction in the sun. Two experiments using gallium, SAGE in the Soviet Union and GALLEX in Europe, are under construction and will produce data by 1989. The radioactive /sup 71/Ge produced by neutrinos interacting with the gallium detector material, is chemically extracted and counted in miniature proportional counters. A number of calculations have been carried out to simulate the response of these counters to the decay of /sup 71/Ge and to background events

  18. Demethoxycurcumin is a potent inhibitor of P-type ATPases from diverse kingdoms of life

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Sehgal, Pankaj; Thanh Tung, Truong

    2016-01-01

    the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site...

  19. Room temperature deposition of amorphous p-type CuFeO2 and ...

    Indian Academy of Sciences (India)

    fabrication of CuFeO2/n-Si heterojunction by RF sputtering method. TAO ZHU1 ... Transparent conducting amorphous p-type CuFeO2 (CFO) thin film was prepared by radio-frequency ... Delafossite oxides CuMO2 (M is trivalent cation, such as.

  20. Room temperature deposition of amorphous p-type CuFeO2 and ...

    Indian Academy of Sciences (India)

    2Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences, Hefei 230031, China. 3University of Science and Technology of China, Hefei 230026, China. MS received 14 October 2015; accepted 28 December 2015. Abstract. Transparent conducting amorphous p-type CuFeO2 (CFO) thin film was prepared by ...

  1. Theory of Persistent, P-Type, Metallic Conduction in C-GeTe

    National Research Council Canada - National Science Library

    Edwards, Arthur H; Pineda, Andrew C; Schultz, Peter A; Martin, Marcus G; Thompson, Aidan P; Hjalmarson, Harold P

    2005-01-01

    .... However, it always displays p-type metallic conduction. This behavior is also observed in other chalcogenide materials, including Ge2Sb2Te5, commonly used for optically and electrically switched, non-volatile memory, and so is or great interest...

  2. Tetrahydrocarbazoles are a novel class of potent P-type ATPase inhibitors with antifungal activity

    DEFF Research Database (Denmark)

    Bublitz, Maike; Kjellerup, Lasse; Cohrt, Karen O.Hanlon

    2018-01-01

    We have identified a series of tetrahydrocarbazoles as novel P-type ATPase inhibitors. Using a set of rationally designed analogues, we have analyzed their structure-activity relationship using functional assays, crystallographic data and computational modeling. We found that tetrahydrocarbazoles...

  3. Transparent p-type SnO nanowires with unprecedented hole mobility among oxide semiconductors

    KAUST Repository

    Caraveo-Frescas, J. A.; Alshareef, Husam N.

    2013-01-01

    p-type tin monoxide (SnO) nanowire field-effect transistors with stable enhancement mode behavior and record performance are demonstrated at 160 °C. The nanowire transistors exhibit the highest field-effect hole mobility (10.83 cm2 V−1 s−1) of any p

  4. Ge-intercalated graphene: The origin of the p-type to n-type transition

    KAUST Repository

    Kaloni, Thaneshwor P.; Kahaly, M. Upadhyay; Cheng, Yingchun; Schwingenschlö gl, Udo

    2012-01-01

    deposition on the surface; and iii) cluster intercalation. All other configurations under study result in p-type states irrespective of the Ge coverage. We explain the origin of the different doping states and establish the conditions under which a transition

  5. Nanoscale Cross-Point Resistive Switching Memory Comprising p-Type SnO Bilayers

    KAUST Repository

    Hota, Mrinal Kanti; Hedhili, Mohamed N.; Wang, Qingxiao; Melnikov, Vasily; Mohammed, Omar F.; Alshareef, Husam N.

    2015-01-01

    Reproducible low-voltage bipolar resistive switching is reported in bilayer structures of p-type SnO films. Specifically, a bilayer homojunction comprising SnOx (oxygen-rich) and SnOy (oxygen-deficient) in nanoscale cross-point (300 × 300 nm2

  6. Characterization of 3D-DDTC detectors on p-type substrates

    CERN Document Server

    Betta, G -F Dalla; Bosisio, Luciano; Darbo, Giovanni; Gabos, Paolo; Gemme, Claudia; Koehler, Michael; La Rosa, Alessandro; Parzefall, Ulrich; Pernegger, Heinz; Piemonte, Claudio; Povoli, Marco; Rachevskaia, Irina; Ronchin, Sabina; Wiik, Liv; Zoboli, Aanrea; Zorzi, Nicola

    2009-01-01

    We report on the electrical and functional characterization of 3D Double-side, Double-Type-Column (3D- DDTC) detectors fabricated on p-type substrates. Results relevant to detectors in the diode, strip and pixel configurations are presented, and demonstrate a clear improvement in the charge collection performance compared to the first prototypes of these detectors.

  7. P-type silicon surface barrier detector used for x-ray dosimetry

    International Nuclear Information System (INIS)

    Yamamoto, Hisao; Hatakeyama, Satoru; Norimura, Toshiyuki; Tsuchiya, Takehiko

    1983-01-01

    Responses to X-rays of a P-type surface barrier detector fabricated in our laboratory were studied, taking into consideration the dependence on the temperature in order to examine its applicability to dosimetry of short-range radiation. The study was also made in the case of N-type surface barrier detector. At room temperature, the short-circuit current increased linearly with exposure dose rate (15 - 50 R/min) for N- and P-type detectors. The open-circuit voltage showed a nonlinear dependence. With increasing temperature, the short-circuit current for the N-type detector was approximately constant up to 30 0 C and then decreased, though the open-circuit voltage decreased linearly. For the P- type detector, both open-circuit voltage and short-circuit current decreased almost linearly with increasing temperature. While a P-type detector is still open to some improvements, these results indicate that it can be used as a dosimeter. (author)

  8. Structure and mechanism of Zn2+-transporting P-type ATPases

    DEFF Research Database (Denmark)

    Wang, Kaituo; Sitsel, Oleg; Meloni, Gabriele

    2014-01-01

    Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis1. In prokaryotes and photosynthetic eukaryotes, Zn2+-transporting P-type ATPases of class IB (Znt...

  9. Electrical Properties Of Amorphous Selenium (aSe)/p-Type Silicon ...

    African Journals Online (AJOL)

    aSe) on four chemically etched p-type silicon crystals (pSi) each of 5Ω-cm resistivity and carrier concentration of 2.8x1015cm-3. Two of the pSi crystals have surface orientation of (111) while the other two crystals have (100) surface orientation.

  10. Fabrication of Aluminum Gallium Nitride/Gallium Nitride MESFET And It's Applications in Biosensing

    Science.gov (United States)

    Alur, Siddharth

    Gallium Nitride has been researched extensively for the past three decades for its application in Light Emitting Diodes (LED's), power devices and UV photodetectors. With the recent developments in crystal growth technology and the ability to control the doping there has been an increased interest in heterostructures formed between Gallium nitride and it's alloy Aluminium Gallium Nitride. These heterostructures due to the combined effect of spontaneous and piezoelectric effect can form a high density and a high mobility electron gas channel without any intentional doping. This high density electron gas makes these heterostructures ideal to be used as sensors. Gallium Nitride is also chemically very stable. Detection of biomolecules in a fast and reliable manner is very important in the areas of food safety and medical research. For biomolecular detection it is paramount to have a robust binding of the probes on the sensor surface. Therefore, in this dissertation, the fabrication and application of the AlGaN/GaN heterostructures as biological sensors for the detection of DNA and Organophosphate hydrolase enzyme is discussed. In order to use these AlGaN/GaN heterostructures as biological sensors capable of working in a liquid environment photodefinable polydimethyl-siloxane is used as an encapsulant. The immobilization conditions for a robust binding of thiolated DNA and the catalytic receptor enzyme organophosphate hydrolase on gold surfaces is developed with the help of X-ray photoelectron spectroscopy. DNA and OPH are detected by measuring the change in the drain current of the device as a function of time.

  11. Fabrication and properties of gallium metallic photonic crystals

    International Nuclear Information System (INIS)

    Kozhevnikov, V.F.; Diwekar, M.; Kamaev, V.P.; Shi, J.; Vardeny, Z.V.

    2003-01-01

    Gallium metallic photonic crystals with 100% filling factor have been fabricated via infiltration of liquid gallium into opals of 300-nm silica spheres using a novel high pressure-high temperature technique. The electrical resistance of the Ga-opal crystals was measured at temperatures from 10 to 280 K. The data obtained show that Ga-opal crystals are metallic network with slightly smaller temperature coefficient of resistivity than that for bulk gallium. Optical reflectivity of bulk gallium, plain opal and several Ga-opal crystals were measured at photon energies from 0.3 to 6 eV. A pronounced photonic stop band in the visible spectral range was found in both the plain and Ga infiltrated opals. The reflectivity spectra also show increase in reflectivity below 0.6 eV; which we interpret as a significantly lower effective plasma frequency of the metallic mesh in the infiltrated opal compare to the plasma frequency in the pure metal

  12. Single and double ionization of gallium by electron impact

    Indian Academy of Sciences (India)

    Electron impact single and double ionization cross sections of gallium have been calcu- ... The experimental data on single ionization have been compared with the empirical and ..... and multiplication sign curve (¢¢¢) represent present.

  13. Multiple scaling power in liquid gallium under pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Renfeng; Wang, Luhong; Li, Liangliang; Yu, Tony; Zhao, Haiyan; Chapman, Karena W.; Rivers, Mark L.; Chupas, Peter J.; Mao, Ho-kwang; Liu, Haozhe

    2017-06-01

    Generally, a single scaling exponent, Df, can characterize the fractal structures of metallic glasses according to the scaling power law. However, when the scaling power law is applied to liquid gallium upon compression, the results show multiple scaling exponents and the values are beyond 3 within the first four coordination spheres in real space, indicating that the power law fails to describe the fractal feature in liquid gallium. The increase in the first coordination number with pressure leads to the fact that first coordination spheres at different pressures are not similar to each other in a geometrical sense. This multiple scaling power behavior is confined within a correlation length of ξ ≈ 14–15 Å at applied pressure according to decay of G(r) in liquid gallium. Beyond this length the liquid gallium system could roughly be viewed as homogeneous, as indicated by the scaling exponent, Ds, which is close to 3 beyond the first four coordination spheres.

  14. Compatibility of candidate structural materials with static gallium

    International Nuclear Information System (INIS)

    Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.

    1993-01-01

    Scoping tests were conducted on compatibility of gallium with candidate structural materials, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chronimum. Type 316 stainless steel is least resistant and Nb-5 Mo-1 Zr alloy is most resistant to corrosion in static gallium. At 400 degrees C, corrosion rates are ∼4.0, 0.5, and 0.03 mm/y for Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than does nickel. The corrosion rates at 400 degrees C are ≥90 and 17 mm/y, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400 degrees C, corrosion occurs primarily by dissolution accompanied by formation of metal/gallium intermetallic compounds

  15. Gallium accumulation in early pulmonary Pneumocystis carinii infection

    International Nuclear Information System (INIS)

    Stevens, D.A.; Allegra, J.C.

    1986-01-01

    The accumulation of gallium 67 citrate in pulmonary Pneumocystis carinii is well known. The sensitivity of gallium uptake in detecting early inflammatory processes, even when conventional roentgenograms are normal, would seem to make it possible in immunocompromised patients to make a presumptive diagnosis of this serious infection early in its course without using invasive techniques to demonstrate the organism. However, the presence of gallium uptake in radiation pneumonitis, pulmonary drug toxicity, and other processes that also occur in this group limit its usefulness. In our two patients--a young woman with Hodgkin's disease and an elderly woman with small cell lung cancer--this technique proved helpful. Although the latter patient was successfully treated empirically, such empiric treatment should be reserved for patients unable or unwilling to undergo invasive tests. Pulmonary gallium uptake in patients with respiratory symptoms, even with a normal chest film, should prompt attempts to directly demonstrate the organism

  16. Gallium 67 scintigraphic examination of dilated myocardiopathies

    International Nuclear Information System (INIS)

    Lanfranchi, J.; Sachs, R.N.; Beaudet, B.; Deblock, C.; Tellier, P.

    1989-01-01

    Twenty-seven patients were diagnosed as having dilated cardiomyopathies, based on increases in the cardiothoracic index > 0.50, in the diastolic and systolic diameters of the left ventricle, and in the telediastolic volume of the left ventricle, which was indexed by body surface determined by contrast ventriculography. They underwent gallium 67 scintigraphic examination of the myocardium, in order to non-invasively detect the presence of an inflammatory infiltrate. Fifteen of them also had endomyocardial biopsies and all had virology check-up. The results were disappointing. Only in one case was the scintigraphic image undeniably positive; in 20 other patients the findings were dubious or negative. This technique did not demonstrate the presence of an inflammatory infiltrate and thus an association between myocarditis and dilated cardiomyopathy, could not be established [fr

  17. Cavity optomechanics in gallium phosphide microdisks

    International Nuclear Information System (INIS)

    Mitchell, Matthew; Barclay, Paul E.; Hryciw, Aaron C.

    2014-01-01

    We demonstrate gallium phosphide (GaP) microdisk optical cavities with intrinsic quality factors >2.8 × 10 5 and mode volumes 3 , and study their nonlinear and optomechanical properties. For optical intensities up to 8.0 × 10 4 intracavity photons, we observe optical loss in the microcavity to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two-photon absorption is not significant. We observe optomechanical coupling between optical modes of the microdisk around 1.5 μm and several mechanical resonances, and measure an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g 0 /2π∼30 kHz for the fundamental mechanical radial breathing mode at 488 MHz

  18. Ultraviolet light-absorbing and emitting diodes consisting of a p-type transparent-semiconducting NiO film deposited on an n-type GaN homoepitaxial layer

    Science.gov (United States)

    Nakai, Hiroshi; Sugiyama, Mutsumi; Chichibu, Shigefusa F.

    2017-05-01

    Gallium nitride (GaN) and related (Al,Ga,In)N alloys provide practical benefits in the production of light-emitting diodes (LEDs) and laser diodes operating in ultraviolet (UV) to green wavelength regions. However, obtaining low resistivity p-type AlN or AlGaN of large bandgap energies (Eg) is a critical issue in fabricating UV and deep UV-LEDs. NiO is a promising candidate for useful p-type transparent-semiconducting films because its Eg is 4.0 eV and it can be doped into p-type conductivity of sufficiently low resistivity. By using these technologies, heterogeneous junction diodes consisting of a p-type transparent-semiconducting polycrystalline NiO film on an n-type single crystalline GaN epilayer on a low threading-dislocation density, free-standing GaN substrate were fabricated. The NiO film was deposited by using the conventional RF-sputtering method, and the GaN homoepitaxial layer was grown by metalorganic vapor phase epitaxy. They exhibited a significant photovoltaic effect under UV light and also exhibited an electroluminescence peak at 3.26 eV under forward-biased conditions. From the conduction and valence band (EV) discontinuities, the NiO/GaN heterointerface is assigned to form a staggered-type (TYPE-II) band alignment with the EV of NiO higher by 2.0 eV than that of GaN. A rectifying property that is consistent with the proposed band diagram was observed in the current-voltage characteristics. These results indicate that polycrystalline NiO functions as a hole-extracting and injecting layer of UV optoelectronic devices.

  19. Gallium Nitride Schottky betavoltaic nuclear batteries

    International Nuclear Information System (INIS)

    Lu Min; Zhang Guoguang; Fu Kai; Yu Guohao; Su Dan; Hu Jifeng

    2011-01-01

    Research highlights: → Gallium Nitride nuclear batteries with Ni-63 are demonstrated for the first time. → Open circuit voltage of 0.1 V and conversion efficiency of 0.32% have been obtained. → The limited performance is due to thin effective energy deposition layer. → The output power is expected to greatly increase with growing thick GaN films. -- Abstract: Gallium Nitride (GaN) Schottky betavoltaic nuclear batteries (GNBB) are demonstrated in our work for the first time. GaN films are grown on sapphire substrates by metalorganic chemical vapor deposition (MOCVD), and then GaN Schottky diodes are fabricated by normal micro-fabrication process. Nickel with mass number of 63 ( 63 Ni), which emits β particles, is loaded on the GaN Schottky diodes to achieve GNBB. X-ray diffraction (XRD) and photoluminescence (PL) are carried out to investigate the crystal quality for the GaN films as grown. Current-voltage (I-V) characteristics shows that the GaN Schottky diodes are not jet broken down at -200 V due to consummate fabrication processes, and the open circuit voltage of the GNBB is 0.1 V and the short circuit current density is 1.2 nA cm -2 . The limited performance of the GNBB is due to thin effective energy deposition layer, which is only 206 nm to absorb very small partial energy of the β particles because of the relatively high dislocation density and carrier concentration. However, the conversion efficiency of 0.32% and charge collection efficiency (CCE) of 29% for the GNBB have been obtained. Therefore, the output power of the GNBB are expected to greatly increase with growing high quality thick GaN films.

  20. Recovery of gallium from coal fly ash by a dual reactive extraction process

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, B.; Pazos, C.; Coca, J. [University of Oviedo, Oviedo (Spain). Dept. of Chemical Engineering and Environmental Technology

    1997-08-01

    This paper describes the extraction of gallium from coal fly ash by leaching and extraction with commercial extractants Amerlite LA-2 and LIX-54N dissolved in kerosene. Leaching of gallium and other metals from the fly ash was carried out with 6 M hydrochloric acid. The leaching liquor is first contacted with Amerlite LA-2 which extracts the gallium and iron. The iron is then precipitated with sodium hydroxide, while gallium remains in solution. Gallium is extracted selectively from the base solution with LIX 54; the resulting stripped solution contains 83% of the gallium present in the leaching liquor.

  1. p-type ZnS:N nanowires: Low-temperature solvothermal doping and optoelectronic properties

    International Nuclear Information System (INIS)

    Wang, Ming-Zheng; Xie, Wei-Jie; Hu, Han; Yu, Yong-Qiang; Wu, Chun-Yan; Wang, Li; Luo, Lin-Bao

    2013-01-01

    Nitrogen doped p-type ZnS nanowires (NWs) were realized using thermal decomposition of triethylamine at a mild temperature. Field-effect transistors made from individual ZnS:N NWs revealed typical p-type conductivity behavior, with a hole mobility of 3.41 cm 2 V −1 s −1 and a hole concentration of 1.67 × 10 17  cm −3 , respectively. Further analysis found that the ZnS:N NW is sensitive to UV light irradiation with high responsivity, photoconductive gain, and good spectral selectivity. The totality of this study suggests that the solvothermal doping method is highly feasible to dope one dimensional semiconductor nanostructures for optoelectronic devices application

  2. Efficiency Improvement of HIT Solar Cells on p-Type Si Wafers.

    Science.gov (United States)

    Wei, Chun-You; Lin, Chu-Hsuan; Hsiao, Hao-Tse; Yang, Po-Chuan; Wang, Chih-Ming; Pan, Yen-Chih

    2013-11-22

    Single crystal silicon solar cells are still predominant in the market due to the abundance of silicon on earth and their acceptable efficiency. Different solar-cell structures of single crystalline Si have been investigated to boost efficiency; the heterojunction with intrinsic thin layer (HIT) structure is currently the leading technology. The record efficiency values of state-of-the art HIT solar cells have always been based on n-type single-crystalline Si wafers. Improving the efficiency of cells based on p-type single-crystalline Si wafers could provide broader options for the development of HIT solar cells. In this study, we varied the thickness of intrinsic hydrogenated amorphous Si layer to improve the efficiency of HIT solar cells on p-type Si wafers.

  3. P-type Al-doped Cr-deficient CrN thin films for thermoelectrics

    Science.gov (United States)

    le Febvrier, Arnaud; Van Nong, Ngo; Abadias, Gregory; Eklund, Per

    2018-05-01

    Thermoelectric properties of chromium nitride (CrN)-based films grown on c-plane sapphire by dc reactive magnetron sputtering were investigated. In this work, aluminum doping was introduced in CrN (degenerate n-type semiconductor) by co-deposition. Under the present deposition conditions, over-stoichiometry in nitrogen (CrN1+δ) rock-salt structure is obtained. A p-type conduction is observed with nitrogen-rich CrN combined with aluminum doping. The Cr0.96Al0.04N1.17 film exhibited a high Seebeck coefficient and a sufficient power factor at 300 °C. These results are a starting point for designing p-type/n-type thermoelectric materials based on chromium nitride films, which are cheap and routinely grown on the industrial scale.

  4. In and out of the cation pumps: P-type ATPase structure revisited

    DEFF Research Database (Denmark)

    Bublitz, Maike; Poulsen, Hanne; Morth, Jens Preben

    2010-01-01

    . The marked increment during the last three years in the number of crystal structures of P-type ATPases has greatly improved our understanding of the similarities and differences of pumps with different ion specificities, since the structures of the Ca2+-ATPase, the Na+,K+-ATPase and the H+-ATPase can now......Active transport across membranes is a crucial requirement for life. P-type ATPases build up electrochemical gradients at the expense of ATP by forming and splitting a covalent phosphoenzyme intermediate, coupled to conformational changes in the transmembrane section where the ions are translocated...... be compared directly. Mechanisms for ion gating, charge neutralization and backflow prevention are starting to emerge from comparative structural analysis; and in combination with functional studies of mutated pumps this provides a framework for speculating on how the ions are bound and released as well...

  5. Enhancement of p-type mobility in tin monoxide by native defects

    KAUST Repository

    Granato, D. B.

    2013-05-31

    Transparent p-type materials with good mobility are needed to build completely transparent p-n junctions. Tin monoxide (SnO) is a promising candidate. A recent study indicates great enhancement of the hole mobility of SnO grown in Sn-rich environment [E. Fortunato et al., Appl. Phys. Lett. 97, 052105 (2010)]. Because such an environment makes the formation of defects very likely, we study defect effects on the electronic structure to explain the increased mobility. We find that Sn interstitials and O vacancies modify the valence band, inducing higher contributions of the delocalized Sn 5p orbitals as compared to the localized O 2p orbitals, thus increasing the mobility. This mechanism of valence band modification paves the way to a systematic improvement of transparent p-type semiconductors.

  6. Growth and characteristics of p-type doped GaAs nanowire

    Science.gov (United States)

    Li, Bang; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-05-01

    The growth of p-type GaAs nanowires (NWs) on GaAs (111) B substrates by metal-organic chemical vapor deposition (MOCVD) has been systematically investigated as a function of diethyl zinc (DEZn) flow. The growth rate of GaAs NWs was slightly improved by Zn-doping and kink is observed under high DEZn flow. In addition, the I–V curves of GaAs NWs has been measured and the p-type dope concentration under the II/III ratio of 0.013 and 0.038 approximated to 1019–1020 cm‑3. Project supported by the National Natural Science Foundation of China (Nos. 61376019, 61504010, 61774021) and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Nos. IPOC2017ZT02, IPOC2017ZZ01).

  7. A Density Functional Theory Study of Doped Tin Monoxide as a Transparent p-type Semiconductor

    KAUST Repository

    Bianchi Granato, Danilo

    2012-05-01

    In the pursuit of enhancing the electronic properties of transparent p-type semiconductors, this work uses density functional theory to study the effects of doping tin monoxide with nitrogen, antimony, yttrium and lanthanum. An overview of the theoretical concepts and a detailed description of the methods employed are given, including a discussion about the correction scheme for charged defects proposed by Freysoldt and others [Freysoldt 2009]. Analysis of the formation energies of the defects points out that nitrogen substitutes an oxygen atom and does not provide charge carriers. On the other hand, antimony, yttrium, and lanthanum substitute a tin atom and donate n-type carriers. Study of the band structure and density of states indicates that yttrium and lanthanum improves the hole mobility. Present results are in good agreement with available experimental works and help to improve the understanding on how to engineer transparent p-type materials with higher hole mobilities.

  8. Effect of compressive stress on stability of N-doped p-type ZnO

    International Nuclear Information System (INIS)

    Chen Xingyou; Zhang Zhenzhong; Jiang Mingming; Wang Shuangpeng; Li Binghui; Shan Chongxin; Liu Lei; Zhao Dongxu; Shen Dezhen; Yao Bin

    2011-01-01

    Nitrogen-doped p-type zinc oxide (p-ZnO:N) thin films were fabricated on a-/c-plane sapphire (a-/c-Al 2 O 3 ) by plasma-assisted molecular beam epitaxy. Hall-effect measurements show that the p-type ZnO:N on c-Al 2 O 3 degenerated into n-type after a preservation time; however, the one grown on a-Al 2 O 3 showed good stability. The conversion of conductivity in the one grown on c-Al 2 O 3 ascribed to the faster disappearance of N O and the growing N 2(O) , which is demonstrated by x-ray photoelectron spectroscopy (XPS). Compressive stress, caused by lattice misfit, was revealed by Raman spectra and optical absorption spectra, and it was regarded as the root of the instability in ZnO:N.

  9. Highly conducting p-type nanocrystalline silicon thin films preparation without additional hydrogen dilution

    Science.gov (United States)

    Patra, Chandralina; Das, Debajyoti

    2018-04-01

    Boron doped nanocrystalline silicon thin film has been successfully prepared at a low substrate temperature (250 °C) in planar inductively coupled RF (13.56 MHz) plasma CVD, without any additional hydrogen dilution. The effect of B2H6 flow rate on structural and electrical properties of the films has been studied. The p-type nc-Si:H films prepared at 5 ≤ B2H6 (sccm) ≤ 20 retains considerable amount of nanocrystallites (˜80 %) with high conductivity ˜101 S cm-1 and dominant crystallographic orientation which has been correlated with the associated increased ultra- nanocrystalline component in the network. Such properties together make the material significantly effective for utilization as p-type emitter layer in heterojunction nc-Si solar cells.

  10. Variation of minority charge carrier lifetime in high-resistance p-type silicon under irradiation

    International Nuclear Information System (INIS)

    Basheleishvili, Z.V.; Garnyk, V.S.; Gorin, S.N.; Pagava, T.A.

    1984-01-01

    The minority carrier lifetime (tau) variation was studied in the process of p-type silicon bombardment with fast 8 MeV electrons. The irradiation and all measurements were carried out at room temperature. The tau quantity was measured by the photoconductivity attenuation method at a low injection level 20% measurement error; the resistivity was measured by the four-probe method (10% error). The resistivity and minority charge carrier lifetime tau are shown to increase with the exposure dose. It is supposed that as radiation dose increases, the rearrangement of the centres responsible for reducing the lifetime occurs and results in a tau increase in the material being irradiated, however the tau value observed in the original samples is not attained. The restoration of the minority carrier lifetime in p-type high-resistance silicon with a growing exposure dose might proceed due to reduction in the free carrier concentration

  11. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei

    2009-03-11

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive atomic force microscope (AFM) in contact mode. The output voltage pulse is generated when the tip contacts the stretched side (positive piezoelectric potential side) of the NW. In contrast, the n-type ZnO NW produces negative output voltage when scanned by the AFM tip, and the output voltage pulse is generated when the tip contacts the compressed side (negative potential side) of the NW. In reference to theoretical simulation, these experimentally observed phenomena have been systematically explained based on the mechanism proposed for a nanogenerator. © 2009 American Chemical Society.

  12. CCE measurements and annealing studies on proton-irradiated p-type MCz silicon diodes

    CERN Document Server

    Hoedlmoser, H; Köhler, M; Nordlund, H

    2007-01-01

    Magnetic Czochralski (MCz) silicon has recently been investigated for the development of radiation tolerant detectors for future high-luminosity HEP experiments. A study of p-type MCz Silicon diodes irradiated with protons up to a fluence of has been performed by means of Charge Collection Efficiency (CCE) measurements as well as standard CV/IV characterizations. The changes of CCE, full depletion voltage and leakage current as a function of fluence are reported. A subsequent annealing study of the irradiated detectors shows an increase in effective doping concentration and a decrease in the leakage current, whereas the CCE remains basically unchanged. Two different series of detectors have been compared differing in the implantation dose of p-spray isolation as well as effective doping concentration (Neff) of the p-type bulk presumably due to a difference in thermal donor (TD) activation during processing. The series with the higher concentration of TDs shows a delayed reverse annealing of Neff after irradia...

  13. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    International Nuclear Information System (INIS)

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-01-01

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results

  14. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  15. Charge collection measurements with p-type Magnetic Czochralski silicon single pad detectors

    International Nuclear Information System (INIS)

    Tosi, C.; Bruzzi, M.; Macchiolo, A.; Scaringella, M.; Petterson, M.K.; Sadrozinski, H.F.-W.; Betancourt, C.; Manna, N.; Creanza, D.; Boscardin, M.; Piemonte, C.; Zorzi, N.; Borrello, L.; Messineo, A.

    2007-01-01

    The charge collected from beta source particles in single pad detectors produced on p-type Magnetic Czochralski (MCz) silicon wafers has been measured before and after irradiation with 26 MeV protons. After a 1 MeV neutron equivalent fluence of 1x10 15 cm -2 the collected charge is reduced to 77% at bias voltages below 900 V. This result is compared with previous results from charge collection measurements

  16. Guided Growth of Horizontal p-Type ZnTe Nanowires

    Science.gov (United States)

    2016-01-01

    A major challenge toward large-scale integration of nanowires is the control over their alignment and position. A possible solution to this challenge is the guided growth process, which enables the synthesis of well-aligned horizontal nanowires that grow according to specific epitaxial or graphoepitaxial relations with the substrate. However, the guided growth of horizontal nanowires was demonstrated for a limited number of materials, most of which exhibit unintentional n-type behavior. Here we demonstrate the vapor–liquid–solid growth of guided horizontal ZnTe nanowires and nanowalls displaying p-type behavior on four different planes of sapphire. The growth directions of the nanowires are determined by epitaxial relations between the nanowires and the substrate or by a graphoepitaxial effect that guides their growth along nanogrooves or nanosteps along the surface. We characterized the crystallographic orientations and elemental composition of the nanowires using transmission electron microscopy and photoluminescence. The optoelectronic and electronic properties of the nanowires were studied by fabricating photodetectors and top-gate thin film transistors. These measurements showed that the guided ZnTe nanowires are p-type semiconductors and are photoconductive in the visible range. The guided growth of horizontal p-type nanowires opens up the possibility of parallel nanowire integration into functional systems with a variety of potential applications not available by other means. PMID:27885331

  17. Doping process of p-type GaN nanowires: A first principle study

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Diao, Yu; Feng, Shu

    2017-10-01

    The process of p-type doping for GaN nanowires is investigated using calculations starting from first principles. The influence of different doping elements, sites, types, and concentrations is discussed. Results suggest that Mg is an optimal dopant when compared to Be and Zn due to its stronger stability, whereas Be atoms are more inclined to exist in the interspace of a nanowire. Interstitially-doped GaN nanowires show notable n-type conductivity, and thus, Be is not a suitable dopant, which is to be expected since systems with inner substitutional dopants are more favorable than those with surface substitutions. Both interstitial and substitutional doping affect the atomic structure near dopants and induce charge transfer between the dopants and adjacent atoms. By altering doping sites and concentrations, nanowire atomic structures remain nearly constant. Substitutional doping models show p-type conductivity, and Mg-doped nanowires with doping concentrations of 4% showing the strongest p-type conductivity. All doping configurations are direct bandgap semiconductors. This study is expected to direct the preparation of high-quality GaN nanowires.

  18. Prospects and limitations for p-type doping in boron nitride polymorphs

    Science.gov (United States)

    Weston, Leigh; van de Walle, Chris G.

    Using first-principles calculations, we examine the potential for p-type doping of BN polymorphs via substitutional impurities. Based on density functional theory with a hybrid functional, our calculations reveal that group-IV elements (C, Si) substituting at the N site result in acceptor levels that are more than 1 eV above the valence-band maximum in all of the BN polymorphs, and hence far too deep to allow for p-type doping. On the other hand, group-II elements (Be, Mg) substituting at the B site lead to shallower acceptor levels. However, for the ground-state hexagonal phase (h-BN), we show that p-type doping at the B site is inhibited by the formation of hole polarons. Our calculations reveal that hole localization is intrinsic to sp2 bonded h-BN, and this places fundamental limits on hole conduction in this material. In contrast, the sp3 bonded wurtzite (w-BN) and cubic (c-BN) polymorphs are capable of forming shallow acceptor levels. For Be dopants, the acceptor ionization energies are 0.31 eV and 0.24 eV for w-BN and c-BN, respectively; these values are only slightly larger than the ionization energy of the Mg acceptor in GaN. This work was supported by NSF.

  19. Optical and electrical properties of CuMO2 transparent p-type conductors

    Science.gov (United States)

    Draeseke, A. D.; Jayaraj, M. K.; Ulbrich, T.; Kroupp, M.; Tate, J.; Nagarajan, R.; Oblezov, A.; Sleight, A. W.

    2001-03-01

    Wide band gap oxides of the type CuMO2 with the delafossite structure are p-type conductors and many of them are transparent. Films of these p-type oxides have been grown by sputtering and thermal evaporation, and characterized electrically and optically. We present transport and optical transmission measurements for CuY_1-xCa_xO_2, CuScO_2+x and other similar materials. Conductivities are in the range 1 200 S/cm and depend on details of film preparation. The carriers are p-type as determined by thermopower measurements, and typical Seebeck coefficients are several hundred µV/K. Optical transparency varies considerably, but is about 40% at 550 nm for the highest conductivity films. Excellent transparency can be achieved at the expense of conductivity, and optimization is being studied. Band gaps derived from optical transmission are larger than 3.1 eV. Prototype all-oxide pn diodes have been fabricated. This work was partially supported by the NSF under DMR-0071727 and by the Research Corporation under RA0291.

  20. Record mobility in transparent p-type tin monoxide films and devices by phase engineering

    KAUST Repository

    Caraveo-Frescas, Jesus Alfonso

    2013-06-25

    Here, we report the fabrication of nanoscale (15 nm) fully transparent p-type SnO thin film transistors (TFT) at temperatures as low as 180 C with record device performance. Specifically, by carefully controlling the process conditions, we have developed SnO thin films with a Hall mobility of 18.71 cm2 V-1 s-1 and fabricated TFT devices with a linear field-effect mobility of 6.75 cm2 V-1 s -1 and 5.87 cm2 V-1 s-1 on transparent rigid and translucent flexible substrates, respectively. These values of mobility are the highest reported to date for any p-type oxide processed at this low temperature. We further demonstrate that this high mobility is realized by careful phase engineering. Specifically, we show that phase-pure SnO is not necessarily the highest mobility phase; instead, well-controlled amounts of residual metallic tin are shown to substantially increase the hole mobility. A detailed phase stability map for physical vapor deposition of nanoscale SnO is constructed for the first time for this p-type oxide. © 2013 American Chemical Society.

  1. Hilar accumulation of gallium-67 in patients with normal chest radiographs

    International Nuclear Information System (INIS)

    Hoshi, Hiroaki; Yamada, Hiroki; Kawahira, Kozaburo; Watanabe, Katsushi

    1982-01-01

    Gallium-67 scintigraphy is a useful screening test to detect malignant or inflammatory lesions. However, the accumulations of Gallium-67 in the normal pulmonary hilum are found in some cases. So, 277 cases with Gallium-67 scintigraphy were discussed. The hilar accumulation of Gallium-67 was classified into four grades, namely Grade 0: no Gallium-67 uptake, Grade I: low Gallium-67 uptake, Grade II: moderate Gallium-67 uptake, and Grade III: high Gallium-67 uptake. Gallium-67 uptake was found in 38 of 277 cases (14%). Thirty cases of these were estimated as Grade I (79%). Cases with Grade II were 20.3%, and only two cases were Grade III (0.7%). Gallium-67 accumulation, was bilateral in 28 cases out of 38 and cases with Gallium-67 accumulation increased with age. Twenty five of the 38 cases with Gallium-67 accumulation had such findings as suggesting old pulmonary inflammation though they had no symptoms of respiratory diseases. This study suggests that hilar Gallium-67 accumulation has no correlation with the active inflammation of the lymphnodes. (author)

  2. Quantum oscillations in the parent magnetic phase of an iron arsenide high temperature superconductor

    International Nuclear Information System (INIS)

    Sebastian, Suchitra E; Gillett, J; Lau, P H C; Lonzarich, G G; Harrison, N; Mielke, C H; Singh, D J

    2008-01-01

    We report measurements of quantum oscillations in SrFe 2 As 2 -which is an antiferromagnetic parent of the iron arsenide family of superconductors-known to become superconducting under doping and the application of pressure. The magnetic field and temperature dependences of the oscillations between 20 and 55 T in the liquid helium temperature range suggest that the electronic excitations are those of a Fermi liquid. We show that the observed Fermi surface comprising small pockets is consistent with the formation of a spin-density wave. Our measurements thus demonstrate that high T c superconductivity can occur on doping or pressurizing a conventional metallic spin-density wave state. (fast track communication)

  3. Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide.

    Science.gov (United States)

    Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders

    2018-04-12

    Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

  4. Site preference of rare earth doping in palladium-iron-arsenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stuerzer, Christine; Schulz, Anne; Johrendt, Dirk [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2014-12-15

    The solid solutions (Ca{sub 1-y}RE{sub y}Fe{sub 1-x}Pd{sub x}As){sub 10}Pd{sub z}As{sub 8} with RE = La, Ce, and Pr were synthesized by solid state methods and characterized by X-ray powder diffraction with subsequent Rietveld refinements [(CaFeAs){sub 10}Pt{sub 3}As{sub 8}-type structure (''1038 type''), P anti 1, Z = 1]. Substitution levels (Ca/RE, Fe/Pd, and Pd/□) obtained from Rietveld refinements coincide well with the nominal values according to EDS and the linear courses of the lattice parameters as expected from the ionic radii. The RE atoms favor the one out of five calcium sites, which is eightfold coordinated by arsenic. This leads to significant stabilization of the structure, and especially prevents palladium over-doping in the iron-arsenide layers as observed in the pristine compound (CaFe{sub 1-x}Pd{sub x}As){sub 10}Pd{sub z}As{sub 8}. While the stabilization energy is estimated to about 40 kJ.mol{sup -1} by electronic structure calculations, the reason for the diminished Fe/Pd substitution through RE doping is still not yet understood. We suggest that the electrons transferred from RE{sup 3+} to the (Fe{sub 1-x}Pd{sub x})As layer makes higher palladium concentrations unfavorable. Anyway the reduced palladium doping enables superconductivity with critical temperatures up to 20 K (onset) in the RE doped Pd1038 samples, which could not be obtained earlier due to palladium over-doping in the active iron-arsenide layers. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Role of Gallium and labeled leukocyte scintigraphy in AIDS patient

    International Nuclear Information System (INIS)

    Palestro, C.J.; Goldsmith, S.J.

    1995-01-01

    Because AIDS patients frequently present with minimal symptomatology, radionuclide imaging with its ability to survey the entire body, is especially valuable. Gallium-67 citrate, the most commonly performed radionuclide study for localizing infection in these patients, is most useful for detecting opportunistic infections, especially in the thorax. A negative gallium scan, particularly when the chest X-ray is unremarkable, rules strongly against pulmonary disease. A negative gallium scan in a patient with an abnormal chest X-ray and Kaposi's sarcoma, suggests that the patient's respiratory distress is related to the neoplasm. Diffuse pulmonary parenchymal uptake of gallium in the HIV (+) patient is most often associated with PCP. While there are other causes of diffuse pulmonary uptake, the more intense or heterogeneous the uptake, the more likely the patient is to have PCP. Focal pulmonary uptake is usually associated with bacterial pneumonia although PCP may occasionally present in this fashion. Lymph node uptake of gallium is usually associated with Mycob acterium avium complex, tuberculosis, or Iymphoma. When corresponding abnormalities are present on thallium scintigraphy lymphoma is likely. Gallium positive, thallium negative, studies suggest mycobacterial disease. Labeled leukocyte imaging is not useful for detecting opportunistic infections probably because of the inflammatory response incited by these organisms. Leukocyte imaging is, however, more sensitive for detecting bacterial pneumonia. In the abdomen, gallium imaging is most useful for identifying lymphadenopathy, while labeled leukocyte imaging is superior for detecting AlDS-associated colitides. In summary, radionuclide studies are valuable diagnostic modalities in AIDS. Their success can be maximized by tailoring the study to the individual's needs

  6. Electrical and optoelectronic properties of gallium nitride

    International Nuclear Information System (INIS)

    Flannery, Lorraine Barbara

    2002-01-01

    This thesis describes novel research carried out on two related topics, the electrical properties of n and p-type GaN and the use of GaN in the fabrication of UV photodetectors. The electrical properties of GaN were assessed mainly by Hall effect measurements, which play a crucial role in the determination of the concentration of shallow electrically active impurities and defects. Most of the Hall effect measurements were carried out on Si and unintentionally doped GaN layers grown on sapphire substrates using a Varian Modular Gen II MBE machine equipped with an Oxford Applied Research CARS25 RF or HD25 RF nitrogen source to supply the active nitrogen. It was necessary to consider parallel conduction in two channels to interpret the temperature dependent Hall effect characteristics of the highest purity layers. Parallel conduction was found to influence the transport properties of these layers even at room temperature and give rise to an increased compensation ratio. The impurity band was found to be located at 23 ± 7 meV below the conduction band in layers containing impurity densities less than 3.8 x 10 18 cm -3 but was found to broaden with increasing impurity content, reducing the activation energy to 5 ± 3 meV in layers containing impurity densities greater than ∼4.5 x 10 18 cm -3 . Doping studies were conducted on Mg doped GaN layers grown on sapphire substrates using the MBE and MOVPE growth techniques. The effect of the growth parameters on Mg incorporation was determined using SIMS and Hall effect measurements for the MBE samples sets. P-type conductivity was successfully demonstrated in Mg doped layers grown under nitrogen rich conditions with layer thickness greater than 0.9 μm using the CARS25 RF source. The highest hole density, p H and mobility, μ H of 9.6 x 10 17 cm -3 and 5.4 cm 2 V -1 s -1 respectively were recorded in the thickest layer grown (1.56 μm). P-type doping studies were also carried out on Mg doped GaN layers grown on GaAs (111)B

  7. Gallium a unique anti-resorptive agent in bone: Preclinical studies on its mechanisms of action

    International Nuclear Information System (INIS)

    Bockman, R.; Adelman, R.; Donnelly, R.; Brody, L.; Warrell, R.; Jones, K.W.

    1990-01-01

    The discovery of gallium as a new and unique agent for the treatment of metabolic bone disorders was in part fortuitous. Gallium is an exciting new therapeutic agent for the treatment of pathologic states characterized by accelerated bone resorption. Compared to other therapeutic metal compounds containing platinum or germanium, gallium affects its antiresorptive action without any evidence of a cytotoxic effect on bone cells. Gallium is unique amongst all therapeutically available antiresorptive agents in that it favors bone formation. 18 refs., 1 fig

  8. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    International Nuclear Information System (INIS)

    Du, Juan; Xia, Congxin; Liu, Yaming; Li, Xueping; Peng, Yuting; Wei, Shuyi

    2017-01-01

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm 2 V −1 s −1 ), which is much higher than that of MoS 2 monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm 2 V −1 s −1 ), which is higher than that of MoS 2 monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm 2 V −1 s −1 , which is much higher than that of MoS 2 monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  9. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    Energy Technology Data Exchange (ETDEWEB)

    Du, Juan [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Xia, Congxin, E-mail: xiacongxin@htu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Liu, Yaming [Henan Institute of Science and Technology, Xinxiang 453003 (China); Li, Xueping [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Peng, Yuting [Department of Physics, University of Texas at Arlington, TX 76019 (United States); Wei, Shuyi [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China)

    2017-04-15

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is much higher than that of MoS{sub 2} monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is higher than that of MoS{sub 2} monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm{sup 2} V{sup −1} s{sup −1}, which is much higher than that of MoS{sub 2} monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  10. Semiconducting p-type MgNiO:Li epitaxial films fabricated by cosputtering method

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Hun; Chun, Sung Hyun; Cho, Hyung Koun [School of Advanced Materials Science and Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2013-07-15

    Li-doped ternary Mg{sub x}Ni{sub 1-x}O thin films were deposited on (0001) Al{sub 2}O{sub 3} substrates by a radio frequency (RF) magnetron cosputtering method with MgO and NiO:Li targets. The Mg mole fraction and Li content were relatively controlled by changing RF power for the MgO target over a range of 0-300 W, while the NiO:Li target was kept at 150 W. As a result, all films were epitaxially grown on (0001) Al{sub 2}O{sub 3} substrates with the relationship of [110]{sub NiO}||[1110]{sub Al2O3}, [112]{sub NiO}||[2110]{sub Al2O3} (in-plane), and [111]{sub NiO}||[0001]{sub Al2O3} (out-of-plane), and showed p-type semiconducting properties. Furthermore, from x-ray diffraction patterns, the authors found that MgO was effectively mixed with NiO:Li without structural deformation due to low lattice mismatch (0.8%) between NiO and MgO. However, the excess Li contents degraded the crystallinity of the MgNiO films. The band-gap of films was continuously shifted from 3.66 eV (339 nm) to 4.15 eV (299 nm) by the RF power of the MgO target. A visible transmittance of more than 80% was exhibited at RF powers higher than 200 W. Ultimately, the electrical resistivity of p-type MgNiO films was improved from 7.5 to 673.5 {Omega}cm, indicating that the Li-doped MgNiO films are good candidates for transparent p-type semiconductors.

  11. Thermoelectric performance of tellurium-reduced quaternary p-type lead–chalcogenide composites

    International Nuclear Information System (INIS)

    Aminorroaya Yamini, Sima; Wang, Heng; Gibbs, Zachary M.; Pei, Yanzhong; Mitchell, David R.G.; Dou, Shi Xue; Snyder, G. Jeffrey

    2014-01-01

    Graphical abstract: - Abstract: A long-standing technological challenge to the widespread application of thermoelectric generators is obtaining high-performance thermoelectric materials from abundant elements. Intensive study on PbTe alloys has resulted in a high figure of merit for the single-phase ternary PbTe–PbSe system through band structure engineering, and the low thermal conductivity achieved due to nanostructuring leads to high thermoelectric performance for ternary PbTe–PbS compounds. Recently, the single-phase p-type quaternary PbTe–PbSe–PbS alloys have been shown to provide thermoelectric performance superior to the binary and ternary lead chalcogenides. This occurs via tuning of the band structure and from an extraordinary low thermal conductivity resulting from high-contrast atomic mass solute atoms. Here, we present the thermoelectric efficiency of nanostructured p-type quaternary PbTe–PbSe–PbS composites and compare the results with corresponding single-phase quaternary lead chalcogenide alloys. We demonstrate that the very low lattice thermal conductivity achieved is attributed to phonon scattering at high-contrast atomic mass solute atoms rather than from the contribution of secondary phases. This results in a thermoelectric efficiency of ∼1.4 over a wide temperature range (650–850 K) in a p-type quaternary (PbTe) 0.65 (PbSe) 0.1 (PbS) 0.25 composite that is lower than that of single-phase (PbTe) 0.85 (PbSe) 0.1 (PbS) 0.05 alloy without secondary phases

  12. Characteristics of accumulation of recombination centers due to irradiation of p-type Si

    International Nuclear Information System (INIS)

    Kazakevich, L.A.; Lugakov, P.F.; Filippov, I.M.

    1989-01-01

    Irradiation of Czochralski-grown p-type Si single crystals results primarily in creation of recombination-active radiation defects which give rise to a donor energy level at E v + 0.30-0.38 eV in the band gap. The ideas on the structure and mechanisms of formation of these radiation defects are continuously evolving and at present the most widely held view is that which assumes that the K centers can be carbon-oxygen-divacancy complexes or interstitial carbon-interstitial oxygen pairs. The authors investigated the recombination properties of such centers

  13. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

    Directory of Open Access Journals (Sweden)

    Rafal Pietruszka

    2014-02-01

    Full Text Available Selected properties of photovoltaic (PV structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100 are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%.

  14. P-Type Silicon Strip Sensors for the Future CMS Tracker

    CERN Document Server

    The Tracker Group of the CMS Collaboration

    2016-01-01

    The upgrade to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at CMS. Based on these results, the collaboration has chosen to use n-in-p type strip and macro-pixel sensors and focus further investigations on the optimization of that sensor type. This paper describes the main measurement results and conclusions that motivated this decision.

  15. Electroforming-free resistive switching memory effect in transparent p-type tin monoxide

    KAUST Repository

    Hota, M. K.

    2014-04-14

    We report reproducible low bias bipolar resistive switching behavior in p-type SnO thin film devices without extra electroforming steps. The experimental results show a stable resistance ratio of more than 100 times, switching cycling performance up to 180 cycles, and data retention of more than 103 s. The conduction mechanism varied depending on the applied voltage range and resistance state of the device. The memristive switching is shown to originate from a redox phenomenon at the Al/SnO interface, and subsequent formation/rupture of conducting filaments in the bulk of the SnO layer, likely involving oxygen vacancies and Sn interstitials.

  16. Transient expression of P-type ATPases in tobacco epidermal cells

    DEFF Research Database (Denmark)

    Pedas, Lisbeth Rosager; Palmgren, Michael Broberg; Lopez Marques, Rosa Laura

    2016-01-01

    Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellula...... for example protein-protein interaction studies. In this chapter, we describe the procedure to transiently express P-type ATPases in tobacco epidermal cells, with focus on subcellular localization of the protein complexes formed by P4-ATPases and their β-subunits....

  17. The feasibility of tunable p-type Mg doping in a GaN monolayer nanosheet

    International Nuclear Information System (INIS)

    Xia, Congxin; Peng, Yuting; Wei, Shuyi; Jia, Yu

    2013-01-01

    Based on density functional theory, the electronic structures, formation energy and transition energy level of a p-type Mg-doped GaN nanosheet are investigated. Numerical results show that the transition energy level decreases monotonously with increasing Mg doping concentration in Mg-doped GaN nanosheet systems, which is lower than that of the Mg-doped bulk GaN case. Moreover, the formation energy calculations indicate that Mg-doped GaN nanosheet structures can be realized under N-rich experimental growth conditions

  18. The development of p-type silicon detectors for the high radiation regions of the LHC

    International Nuclear Information System (INIS)

    Hanlon, M.D.L.

    1998-04-01

    This thesis describes the production and characterisation of silicon microstrip detectors and test structures on p-type substrates. An account is given of the production and full parameterisation of a p-type microstrip detector, incorporating the ATLAS-A geometry in a beam test. This detector is an AC coupled device incorporating a continuous p-stop isolation frame and polysilicon biasing and is typical of n-strip devices proposed for operation at the LHC. It was successfully read out using the FELix-128 analogue pipeline chip and a signal to noise (s/n) of 17±1 is reported, along with a spatial resolution of 14.6±0.2 μm. Diode test structures were fabricated on both high resistivity float zone material and on epitaxial material and subsequently irradiated with 24 GeV protons at the CERN PS up to a dose of (8.22±0.23) x 10 14 per cm 2 . An account of the measurement program is presented along with results on the changes in the effective doping concentration (N eff ) with irradiation and the changes in bulk current. Changes in the effective doping concentration and leakage current for high resistivity p-type material under irradiation were found to be similar to to that of n-type material. Values of α=(3.30±0.08) x 10 -17 A cm -1 for the leakage current parameter and g c =(1.20±0.05)x10 -2 cm -1 for the effective dopant introduction rate were found for this material. The epitaxial material did not perform better than the float zone material for the range of doses studied. Surprising results were obtained for highly irradiated p-type diodes illuminated on the ohmic side with an α-source, in that signals were observed well below the full depletion voltage. The processing that had been used to fabricate the test structures and the initial prototype that was studied in the test beam was based on the process used to fabricate devices on n-type material. Presented in this thesis are the modifications that were made to the process, which centred on the oxidation

  19. Initial results from 3D-DDTC detectors on p-type substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zoboli, A., E-mail: zoboli@disi.unitn.i [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, and INFN, Sezione di Padova (Gruppo Collegato di Trento), Via Sommarive, 14, I-38100 Povo di Trento (Italy); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38100 Povo di Trento (Italy); Bosisio, L. [Dipartimento di Fisica, Universita di Trieste, and INFN, Sezione di Trieste, Via A. Valerio, 2, I-34127 Trieste (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, and INFN, Sezione di Padova (Gruppo Collegato di Trento), Via Sommarive, 14, I-38100 Povo di Trento (Italy); Piemonte, C.; Ronchin, S.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38100 Povo di Trento (Italy)

    2010-01-11

    Owing to their superior radiation hardness compared to planar detectors, 3D detectors are one of the most promising technologies for the LHC upgrade foreseen in 2017. Fondazione Bruno Kessler has developed 3D Double-side Double-Type Column (3D-DDTC) detectors providing a technological simplifications with respect to a standard 3D process while aiming at comparable detector performance. We present selected results from the electrical characterization of 3D-DDTC structures from the second batch made on p-type substrates, supported also by TCAD simulations.

  20. Methods for enhancing P-type doping in III-V semiconductor films

    Science.gov (United States)

    Liu, Feng; Stringfellow, Gerald; Zhu, Junyi

    2017-08-01

    Methods of doping a semiconductor film are provided. The methods comprise epitaxially growing the III-V semiconductor film in the presence of a dopant, a surfactant capable of acting as an electron reservoir, and hydrogen, under conditions that promote the formation of a III-V semiconductor film doped with the p-type dopant. In some embodiments of the methods, the epitaxial growth of the doped III-V semiconductor film is initiated at a first hydrogen partial pressure which is increased to a second hydrogen partial pressure during the epitaxial growth process.

  1. Bulk and surface event identification in p-type germanium detectors

    Science.gov (United States)

    Yang, L. T.; Li, H. B.; Wong, H. T.; Agartioglu, M.; Chen, J. H.; Jia, L. P.; Jiang, H.; Li, J.; Lin, F. K.; Lin, S. T.; Liu, S. K.; Ma, J. L.; Sevda, B.; Sharma, V.; Singh, L.; Singh, M. K.; Singh, M. K.; Soma, A. K.; Sonay, A.; Yang, S. W.; Wang, L.; Wang, Q.; Yue, Q.; Zhao, W.

    2018-04-01

    The p-type point-contact germanium detectors have been adopted for light dark matter WIMP searches and the studies of low energy neutrino physics. These detectors exhibit anomalous behavior to events located at the surface layer. The previous spectral shape method to identify these surface events from the bulk signals relies on spectral shape assumptions and the use of external calibration sources. We report an improved method in separating them by taking the ratios among different categories of in situ event samples as calibration sources. Data from CDEX-1 and TEXONO experiments are re-examined using the ratio method. Results are shown to be consistent with the spectral shape method.

  2. Effect of Current Density on Thermal and Optical Properties of p-Type Porous Silicon

    International Nuclear Information System (INIS)

    Kasra Behzad; Wan Mahmood Mat Yunus; Zainal Abidin Talib; Azmi Zakaria; Afarin Bahrami

    2011-01-01

    The different parameters of the porous silicon (PSi) can be tuned by changing some parameters in preparation process. We have chosen the anodization as formation method, so the related parameters should be changed. In this study the porous silicon (PSi) layers were formed on p-type Si wafer. The samples were anodized electrically in a fixed etching time under some different current densities. The structural and optical properties of porous silicon (PSi) on silicon (Si) substrates were investigated using photoluminescence (PL) and Photoacoustic Spectroscopy (PAS). (author)

  3. Double-layered NiO photocathodes for p-type DSSCs with record IPCE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin; Qin, Peng; Gorlov, Mikhail [Center of Molecular Devices School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Stockholm (Sweden); Gibson, Elizabeth A.; Boschloo, Gerrit [Department of Physical and Analytical Chemistry, Uppsala University (Sweden); Hagfeldt, Anders [Center of Molecular Devices School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Stockholm (Sweden); Department of Physical and Analytical Chemistry, Uppsala University (Sweden); DUT-KTH Joint Education and Research Center of Molecular Devices, State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian (China); Sun, Licheng [Center of Molecular Devices School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Stockholm (Sweden); DUT-KTH Joint Education and Research Center of Molecular Devices, State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian (China)

    2010-04-18

    A way to achieve a high-efficiency dye-sensitized solar cell is to combine an n-type TiO{sub 2}-based photoanode with a p-type photocathode in a tandem configuration. The development of an efficient photocathode is, at present, the key target. We have optimized the NiO, I{sub 3}{sup -}/I{sup -} p-DSSC system to obtain record photocurrent, giving 64% incident photon-to-current conversion efficiency (IPCE) and 5.48 mAcm{sup -2} J{sub SC}. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. A boron and gallium co-doped ZnO intermediate layer for ZnO/Si heterojunction diodes

    Science.gov (United States)

    Lu, Yuanxi; Huang, Jian; Li, Bing; Tang, Ke; Ma, Yuncheng; Cao, Meng; Wang, Lin; Wang, Linjun

    2018-01-01

    ZnO (Zinc oxide)/Si (Silicon) heterojunctions were prepared by depositing n-type ZnO films on p-type single crystal Si substrates using magnetron sputtering. A boron and gallium co-doped ZnO (BGZO) high conductivity intermediate layer was deposited between aurum (Au) electrodes and ZnO films. The influence of the BGZO layer on the properties of Au/ZnO contacts and the performance of ZnO/Si heterojunctions was investigated. The results show an improvement in contact resistance by introducing the BGZO layer. Compared with the ZnO/Si heterojunction, the BGZO/ZnO/Si heterojunction exhibits a larger forward current, a smaller turn-on voltage and higher ratio of ultraviolet (UV) photo current/dark current.

  5. Realization of the Gallium Triple Point at NMIJ/AIST

    Science.gov (United States)

    Nakano, T.; Tamura, O.; Sakurai, H.

    2008-02-01

    The triple point of gallium has been realized by a calorimetric method using capsule-type standard platinum resistance thermometers (CSPRTs) and a small glass cell containing about 97 mmol (6.8 g) of gallium with a nominal purity of 99.99999%. The melting curve shows a very flat and relatively linear dependence on 1/ F in the region from 1/ F = 1 to 1/ F = 20 with a narrow width of the melting curve within 0.1 mK. Also, a large gallium triple-point cell was fabricated for the calibration of client-owned CSPRTs. The gallium triple-point cell consists of a PTFE crucible and a PTFE cap with a re-entrant well and a small vent. The PTFE cell contains 780 g of gallium from the same source as used for the small glass cell. The PTFE cell is completely covered by a stainless-steel jacket with a valve to enable evacuation of the cell. The melting curve of the large cell shows a flat plateau that remains within 0.03 mK over 10 days and that is reproducible within 0.05 mK over 8 months. The calibrated value of a CSPRT obtained using the large cell agrees with that obtained using the small glass cell within the uncertainties of the calibrations.

  6. Gallium scintigraphy in a case of septic cavernous sinus thrombosis

    International Nuclear Information System (INIS)

    Palestro, C.J.; Malat, J.; Gladstone, A.G.; Richman, A.H.

    1986-01-01

    Septic cavernous sinus thrombosis, a relatively uncommon disease entity, frequently can be fatal. Early diagnosis is imperative in order that appropriate treatment be instituted. A 59-year-old woman who was admitted to our institution with complaints of diplopia, blurred vision and fevers that developed following a tooth extraction is presented. Initial CT and lumbar puncture on the day of admission were totally normal. A repeat CT performed 48 hours after admission, on the same day as gallium imaging, demonstrated findings consistent with cavernous sinus thrombosis. Gallium imaging demonstrated intense uptake in the left cavernous sinus and left orbit as well as moderately increased activity in the right cavernous sinus and orbit, confirming infection. The patient was treated with antibiotics, and repeat CT and gallium imaging were performed ten days later, both of which demonstrated near total resolution of the disease process. Conceivably, if gallium imaging had been initiated on the day of admission it may have been the first study to demonstrate an infectious process in the cavernous sinus. Gallium imaging should be considered as a diagnostic tool in the noninvasive workup of this entity

  7. The role of gallium-67 scanning in febrile patients

    International Nuclear Information System (INIS)

    Mouratidis, B.; Lomas, F.

    1994-01-01

    The source of sepsis in febrile patients can be a difficult diagnostic problem. Gallium-67 has been utilized as a diagnostic tool in the evaluation of these patients. A retrospective review was done of 47 patients who presented with pyrexia of unknown origin (27 patients), postoperative fever (11 patients), septicaemia (4 patients) and miscellaneous sepsis (5 patients). Whole body imaging with Gallium-67 gave an overall sensitivity and specificity of 86 and 77%, respectively, which compares favourably with previous studies. The sensitivity and specificity was similar in all patient subgroups. Gallium-67 allowed for more effective and directed use of organ-specific imaging modalities, such as computed tomography, ultrasound and guided intervention, in localizing and defining the source of sepsis. Where more than one possible source of fever was present, Gallium-67 scanning correctly identified the activity of the different foci. Gallium-67 scanning should be used early in the evaluation of patients presenting with fever of uncertain origin. 9 refs., 5 tabs., 2 figs

  8. Gallium nitride at the millennial transition

    International Nuclear Information System (INIS)

    Pankovo, J.I.

    2000-01-01

    The properties of gallium nitride were uncovered in the early years of exploratory research and endowed with negative electron affinity that could be used to make efficient cold cathodes and even dynodes for electron multipliers. GaN has another property i.e. polar nature of the crystal which makes this material piezo-electric and has non-linear optical properties. The piezo-electric properties led to new piezo electric effect may cause interfacial charge. The non-uniform distribution of acceptors, there is also presence of threading and other dislocation in GaN. Defects reappear where two adjacent overgrowth merge, but the good lateral overgrow region is large enough to make lasers. Injection lasers benefit from strong electrical and optical environment. This was achieved by using quantum wells of InGaN in GaN and this can be doped with rare earth elements to exploit the atomic transition between core levels in these elements. The emission efficiency of electrically excited Er in GaN is nearly temperature incentive from 80K to room temperature. An other application of GaN is as a heterojunction emitter for a bi-polar transistor (HBT) that can operate at high temperatures. (A.B.)

  9. Investigation on gallium ions impacting monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xin; Zhao, Haiyan, E-mail: hyzhao@tsinghua.edu.cn; Yan, Dong; Pei, Jiayun [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. Chinaand Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-06-15

    In this paper, the physical phenomena of gallium (Ga{sup +}) ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC) and molecular dynamics (MD) simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga{sup +} ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga{sup +} ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm{sup 2}. Afterwards, the focused ion beam over 21.6 ion/nm{sup 2} is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.

  10. Gallium-based avalanche photodiode optical crosstalk

    International Nuclear Information System (INIS)

    Blazej, Josef; Prochazka, Ivan; Hamal, Karel; Sopko, Bruno; Chren, Dominik

    2006-01-01

    Solid-state single photon detectors based on avalanche photodiode are getting more attention in various areas of applied physics: optical sensors, quantum key distribution, optical ranging and Lidar, time-resolved spectroscopy, X-ray laser diagnostics, and turbid media imaging. Avalanche photodiodes specifically designed for single photon counting semiconductor avalanche structures have been developed on the basis of various materials: Si, Ge, GaP, GaAsP, and InGaP/InGaAs at the Czech Technical University in Prague during the last 20 years. They have been tailored for numerous applications. Trends in demand are focused on detection array construction recently. Even extremely small arrays containing a few cells are of great importance for users. Electrical crosstalk between individual gating and quenching circuits and optical crosstalk between individual detecting cells are serious limitation for array design and performance. Optical crosstalk is caused by the parasitic light emission of the avalanche which accompanies the photon detection process. We have studied in detail the optical emission of the avalanche photon counting structure in the silicon- and gallium-based photodiodes. The timing properties and spectral distribution of the emitted light have been measured for different operating conditions to quantify optical crosstalk. We conclude that optical crosstalk is an inherent property of avalanche photodiode operated in Geiger mode. The only way to minimize optical crosstalk in avalanche photodiode array is to build active quenching circuit with minimum response time

  11. Diagnosis of abdominal abscesses with 67gallium

    International Nuclear Information System (INIS)

    Noguera, E.C.; Mothe, G.A.

    1987-01-01

    Twenty six patients were studied with 67 Gallium to detect and localize the site of intra-abdominal and intraperitoneal infection. They were divided in two groups: a) with and b) without physical symptoms that could localize an abcess in the abdominal cavity. All the patients with suppuration had persistent up-take of 67 Ga in one anatomic area of the abdomen, subsequently documented by computarized axial tomography (CAT) in 58% of the cases or by laparotomy in 88% of them. Scintigraphy with 67 Ga in the patients with recent surgery not only detected focal infection in 67% of the cases but excluded subphernic collection. In 78% of patients with prolonged fever, the infection was localized. There was no false positive result. The comparison in 56% of the cases with CAT demonstrated that both techniques are 100% sensitive for the diagnosis of abdominal suppurative processes. Three of the 26 patients, after six weeks of medical treatment, were restudied with 67 Ga and CAT, showing total resolution of their previous abnormalities. It is concluded that 67 Ga scintigraphy performed as the first study in febrile patients independent of the presence or absence of physical symptoms that could localize the abdominal infection, is sensitive for the detection and localization of an abdominal abscess and that a negative result excludes it. (Author) [es

  12. Biological mechanisms of gallium-67 tumor deposition

    International Nuclear Information System (INIS)

    Okuyama, Shinichi; Takeda, Shumpei; Sato, Tachio; Takusagawa, Kimihiko; Awano, Takayuki.

    1979-01-01

    This investigation was undertaken in order to clarify the tumor deposition mechanisms of 67 Ga citrate, a ''universal tumor labeler''. An interspecies comparison of various tumors in the rat and mouse indicated that its highest deposition was in the undifferentiated cell type. Amongst the siblings of experimental tumors, cellular membrane negative charge is greater in the free-cell types than the island-formers: a short-term labeling study revealed a greater 67 Ga deposition in the free-cell types. A subcellar fractionation showed an initial association of 67 Ga with the nuclear and membrane fractions, and a later transition to the lysosomal. Hypotonic lysis revealed a paralleled release of 67 Ga and lysosomal key enzymes. Morphological abnormality of the cancer lysosomes was thought to agree with their Ga retention. This property was clinically confirmed by a scintiscoring technique. Treatment with cold gallium of tumors modified the biological parameters of tumor growth: in vitro it suppressed cell proliferation, reduced saturation density; and produced cellular pleomorphism. In vivo it increased tumor consistency by reducing central necrosis and increasing the viable cell layer thickness. Thus, 67 Ga deposition is closely related to various biological parameters of malignancy including the cellular membrane negative charge as cancer is a membrane disorder, and the lysosomal morphology and function. (author)

  13. In-plane electronic anisotropy of underdoped '122' Fe-arsenide superconductors revealed by measurements of detwinned single crystals

    International Nuclear Information System (INIS)

    Fisher, I R; Shen, Z X; Degiorgi, L

    2011-01-01

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four-fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and angle-resolved photoemission spectroscopy measurements of detwinned single crystals of underdoped Fe-arsenide superconductors in the '122' family of compounds.

  14. In-Plane Electronic Anisotropy of Underdoped ___122___ Fe-Arsenide Superconductors Revealed by Measurements of Detwinned Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Ian Randal

    2012-05-08

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and ARPES measurements of detwinned single crystals of underdoped Fe arsenide superconductors in the '122' family of compounds.

  15. Thermal oxidation of Ni films for p-type thin-film transistors

    KAUST Repository

    Jiang, Jie; Wang, Xinghui; Zhang, Qing; Li, Jingqi; Zhang, Xixiang

    2013-01-01

    p-Type nanocrystal NiO-based thin-film transistors (TFTs) are fabricated by simply oxidizing thin Ni films at temperatures as low as 400 °C. The highest field-effect mobility in a linear region and the current on-off ratio are found to be 5.2 cm2 V-1 s-1 and 2.2 × 103, respectively. X-ray diffraction, transmission electron microscopy and electrical performances of the TFTs with "top contact" and "bottom contact" channels suggest that the upper parts of the Ni films are clearly oxidized. In contrast, the lower parts in contact with the gate dielectric are partially oxidized to form a quasi-discontinuous Ni layer, which does not fully shield the gate electric field, but still conduct the source and drain current. This simple method for producing p-type TFTs may be promising for the next-generation oxide-based electronic applications. © 2013 the Owner Societies.

  16. Fullerene C70 as a p-type donor in organic photovoltaic cells

    International Nuclear Information System (INIS)

    Zhuang, Taojun; Wang, Xiao-Feng; Sano, Takeshi; Kido, Junji; Hong, Ziruo; Li, Gang; Yang, Yang

    2014-01-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C 70 , known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C 70 layer even up to 100 nm thick in PHJ cells, suggesting the superior potential of fullerene C 70 as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33 mA/cm 2 , an open circuit voltage of 0.72 V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

  17. Electronic structure and p-type doping of ZnSnN2

    Science.gov (United States)

    Wang, Tianshi; Janotti, Anderson; Ni, Chaoying

    ZnSnN2 is a promising solar-cell absorber material composed of earth abundant elements. Little is known about doping, defects, and how the valence and conduction bands in this material align with the bands in other semiconductors. Using density functional theory with the the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06), we investigate the electronic structure of ZnSnN2, its band alignment to other semiconductors, such as GaN and ZnO, the possibility of p-type doping, and the possible causes of the observed unintentional n-type conductivity. We find that the position of the valence-band maximum of ZnSnN2 is 0.55 eV higher than that of GaN, yet the conduction-band minimum is close to that in ZnO. As possible p-type dopants, we explore Li, Na, and K substituting on the Zn site. Finally, we discuss the cause of unintentional n-type conductivity by analyzing the position of the conduction-band minimum with respect to that of GaN and ZnO.

  18. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides

    Science.gov (United States)

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa1-xN/GaN superlattice structure, by modulation doping of Mg in the AlxGa1-xN barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 1018 cm-3 has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports.

  19. Valence band states in Si-based p-type delta-doped field effect transistors

    International Nuclear Information System (INIS)

    Martinez-Orozco, J C; Vlaev, Stoyan J

    2009-01-01

    We present tight-binding calculations of the hole level structure of δ-doped Field Effect Transistor in a Si matrix within the first neighbors sp 3 s* semi-empirical tight-binding model including spin. We employ analytical expressions for Schottky barrier potential and the p-type δ-doped well based on a Thomas-Fermi approximation, we consider these potentials as external ones, so in the computations they are added to the diagonal terms of the tight-binding Hamiltonian, by this way we have the possibility to study the energy levels behavior as we vary the backbone parameters in the system: the two-dimensional impurity density (p 2d ) of the p-type δ-doped well and the contact voltage (V c ). The aim of this calculation is to demonstrate that the tight-binding approximation is suitable for device characterization that permits us to propose optimal values for the input parameters involved in the device design.

  20. Wide band gap p-type windows by CBD and SILAR methods

    International Nuclear Information System (INIS)

    Sankapal, B.R.; Goncalves, E.; Ennaoui, A.; Lux-Steiner, M.Ch.

    2004-01-01

    Chemical deposition methods, namely, chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) have been used to deposit wide band gap p-type CuI and CuSCN thin films at room temperature (25 deg. C) in aqueous medium. Growth of these films requires the use of Cu (I) cations as a copper ions source. This is achieved by complexing Cu (II) ions using Na 2 S 2 O 3 . The anion sources are either KI as iodine or KSCN as thiocyanide ions for CuI and CuSCN films, respectively. The preparative parameters are optimized with the aim to use these p-type materials as windows for solar cells. Different substrates are used, namely: glass, fluorine doped tin oxide coated glass and CuInS 2 (CIS). X-ray diffraction, scanning electron microscopy, atomic force microscopy and optical absorption spectroscopy are used for structural, surface morphological and optical studies, and the results are discussed

  1. Effect of compressive stress on stability of N-doped p-type ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xingyou [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Dongnanhu Road, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang Zhenzhong; Jiang Mingming; Wang Shuangpeng; Li Binghui; Shan Chongxin; Liu Lei; Zhao Dongxu; Shen Dezhen [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Dongnanhu Road, Changchun 130033 (China); Yao Bin [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China)

    2011-08-29

    Nitrogen-doped p-type zinc oxide (p-ZnO:N) thin films were fabricated on a-/c-plane sapphire (a-/c-Al{sub 2}O{sub 3}) by plasma-assisted molecular beam epitaxy. Hall-effect measurements show that the p-type ZnO:N on c-Al{sub 2}O{sub 3} degenerated into n-type after a preservation time; however, the one grown on a-Al{sub 2}O{sub 3} showed good stability. The conversion of conductivity in the one grown on c-Al{sub 2}O{sub 3} ascribed to the faster disappearance of N{sub O} and the growing N{sub 2(O)}, which is demonstrated by x-ray photoelectron spectroscopy (XPS). Compressive stress, caused by lattice misfit, was revealed by Raman spectra and optical absorption spectra, and it was regarded as the root of the instability in ZnO:N.

  2. Wide band gap p-type windows by CBD and SILAR methods

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Goncalves, E.; Ennaoui, A.; Lux-Steiner, M.Ch

    2004-03-22

    Chemical deposition methods, namely, chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) have been used to deposit wide band gap p-type CuI and CuSCN thin films at room temperature (25 deg. C) in aqueous medium. Growth of these films requires the use of Cu (I) cations as a copper ions source. This is achieved by complexing Cu (II) ions using Na{sub 2}S{sub 2}O{sub 3}. The anion sources are either KI as iodine or KSCN as thiocyanide ions for CuI and CuSCN films, respectively. The preparative parameters are optimized with the aim to use these p-type materials as windows for solar cells. Different substrates are used, namely: glass, fluorine doped tin oxide coated glass and CuInS{sub 2} (CIS). X-ray diffraction, scanning electron microscopy, atomic force microscopy and optical absorption spectroscopy are used for structural, surface morphological and optical studies, and the results are discussed.

  3. Homogeneous Gaussian Profile P+-Type Emitters: Updated Parameters and Metal-Grid Optimization

    Directory of Open Access Journals (Sweden)

    M. Cid

    2002-10-01

    Full Text Available P+-type emitters were optimized keeping the base parameters constant. Updated internal parameters were considered. The surface recombination velocity was considered variable with the surface doping level. Passivated homogeneous emitters were found to have low emitter recombination density and high collection efficiency. A complete structure p+nn+ was analyzed, taking into account optimized shadowing and metal-contacted factors for laboratory cells as function of the surface doping level and the emitter thickness. The base parameters were kept constant to make the emitter characteristics evident. The most efficient P+-type passivated homogeneous emitters, provide efficiencies around 21% for a wide range of emitter sheet resistivity (50 -- 500 omega/ with the surface doping levels Ns=1×10(19 cm-3 and 5×10(19 cm-3. The output electrical parameters were evaluated considering the recently proposed value n i=9.65×10(9 (cm-3. A non-significant increase of 0.1% in the efficiency was obtained, validating all the conclusions obtained in this work, considering n i=1×10(10 cm-3.

  4. Synthesis and characterization of p-type boron-doped IIb diamond large single crystals

    International Nuclear Information System (INIS)

    Li Shang-Sheng; Li Xiao-Lei; Su Tai-Chao; Jia Xiao-Peng; Ma Hong-An; Huang Guo-Feng; Li Yong

    2011-01-01

    High-quality p-type boron-doped IIb diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K. The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively. The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique. The electrical properties including resistivities, Hall coefficients, Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method. The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized. With the increase of quantity of additive boron, some high-index crystal faces such as {113} gradually disappear, and some stripes and triangle pits occur on the crystal surface. This work is helpful for the further research and application of boron-doped semiconductor diamond. (cross-disciplinary physics and related areas of science and technology)

  5. Easily doped p-type, low hole effective mass, transparent oxides

    Science.gov (United States)

    Sarmadian, Nasrin; Saniz, Rolando; Partoens, Bart; Lamoen, Dirk

    2016-02-01

    Fulfillment of the promise of transparent electronics has been hindered until now largely by the lack of semiconductors that can be doped p-type in a stable way, and that at the same time present high hole mobility and are highly transparent in the visible spectrum. Here, a high-throughput study based on first-principles methods reveals four oxides, namely X2SeO2, with X = La, Pr, Nd, and Gd, which are unique in that they exhibit excellent characteristics for transparent electronic device applications - i.e., a direct band gap larger than 3.1 eV, an average hole effective mass below the electron rest mass, and good p-type dopability. Furthermore, for La2SeO2 it is explicitly shown that Na impurities substituting La are shallow acceptors in moderate to strong anion-rich growth conditions, with low formation energy, and that they will not be compensated by anion vacancies VO or VSe.

  6. The development of p-type silicon detectors for the high radiation regions of the LHC

    CERN Document Server

    Hanlon, M D L

    1998-01-01

    This thesis describes the production and characterisation of silicon microstrip detectors and test structures on p-type substrates. An account is given of the production and full parameterisation of a p-type microstrip detector, incorporating the ATLAS-A geometry in a beam test. This detector is an AC coupled device incorporating a continuous p-stop isolation frame and polysilicon biasing and is typical of n-strip devices proposed for operation at the LHC. It was successfully read out using the FELix-128 analogue pipeline chip and a signal to noise (s/n) of 17+-1 is reported, along with a spatial resolution of 14.6+-0.2 mu m. Diode test structures were fabricated on both high resistivity float zone material and on epitaxial material and subsequently irradiated with 24 GeV protons at the CERN PS up to a dose of (8.22+-0.23) x 10 sup 1 sup 4 per cm sup 2. An account of the measurement program is presented along with results on the changes in the effective doping concentration (N sub e sub f sub f) with irradiat...

  7. Use of hexamethyldisiloxane for p-type microcrystalline silicon oxycarbide layers

    Directory of Open Access Journals (Sweden)

    Goyal Prabal

    2016-01-01

    Full Text Available The use of hexamethyldisiloxane (HMDSO as an oxygen source for the growth of p-type silicon-based layers deposited by Plasma Enhanced Chemical Vapor Deposition is evaluated. The use of this source led to the incorporation of almost equivalent amounts of oxygen and carbon, resulting in microcrystalline silicon oxycarbide thin films. The layers were examined with characterisation techniques including Spectroscopic Ellipsometry, Dark Conductivity, Fourier Transform Infrared Spectroscopy, Secondary Ion Mass Spectrometry and Transmission Electron Microscopy to check material composition and structure. Materials studies show that the refractive indices of the layers can be tuned over the range from 2.5 to 3.85 (measured at 600 nm and in-plane dark conductivities over the range from 10-8 S/cm to 1 S/cm, suggesting that these doped layers are suitable for solar cell applications. The p-type layers were tested in single junction amorphous silicon p-i-n type solar cells.

  8. Valence band states in Si-based p-type delta-doped field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Orozco, J C; Vlaev, Stoyan J, E-mail: jcmover@correo.unam.m [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico)

    2009-05-01

    We present tight-binding calculations of the hole level structure of delta-doped Field Effect Transistor in a Si matrix within the first neighbors sp{sup 3}s* semi-empirical tight-binding model including spin. We employ analytical expressions for Schottky barrier potential and the p-type delta-doped well based on a Thomas-Fermi approximation, we consider these potentials as external ones, so in the computations they are added to the diagonal terms of the tight-binding Hamiltonian, by this way we have the possibility to study the energy levels behavior as we vary the backbone parameters in the system: the two-dimensional impurity density (p{sub 2d}) of the p-type delta-doped well and the contact voltage (V{sub c}). The aim of this calculation is to demonstrate that the tight-binding approximation is suitable for device characterization that permits us to propose optimal values for the input parameters involved in the device design.

  9. P-type zinc oxide spinels: application to transparent conductors and spintronics

    International Nuclear Information System (INIS)

    Stoica, Maria; S Lo, Cynthia

    2014-01-01

    We report on the electronic and optical properties of two theoretically predicted stable spinel compounds of the form ZnB 2 O 4 , where B = Ni or Cu; neither compound has been previously synthesized, so we compare them to the previously studied p-type ZnCo 2 O 4 spinel. These new materials exhibit spin polarization, which is useful for spintronics applications, and broad conductivity maxima near the valence band edge that indicate good p-type dopability. We show that 3d electrons on the octahedrally coordinated Zn atom fall deep within the valence band and do not contribute significantly to the electronic structure near the band edge of the material, while the O 2p and tetrahedrally coordinated B 3d electrons hybridize broadly in the shallow valence states, resulting in increasing curvature (i.e., decreased electron effective mass) of valence bands near the band edge. In particular, ZnCu 2 O 4 exhibits high electrical conductivities in the p-doping region near the valence band edge that, at σ=2×10 4  S cm −1 , are twice the maximum found for ZnCo 2 O 4 , a previously synthesized compound in this class of materials. This material also exhibits ferromagnetism in all of its most stable structures, which makes it a good candidate for further study as a dilute magnetic semiconductor. (paper)

  10. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    Science.gov (United States)

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  11. DFT plus U studies of Cu doping and p-type compensation in crystalline and amorphous ZnS

    NARCIS (Netherlands)

    Pham, Hieu H.; Barkema, Gerard T.|info:eu-repo/dai/nl/101275080; Wang, Lin-Wang

    2015-01-01

    Zinc sulfide is an excellent candidate for the development of a p-type transparent conducting material that has great demands in solar energy and optoelectronic applications. Doping with Cu is one potential way to make ZnS p-type while preserving its optical transparency for the solar spectrum;

  12. Liquid gallium jet-plasma interaction studies in ISTTOK tokamak

    International Nuclear Information System (INIS)

    Gomes, R.B.; Fernandes, H.; Silva, C.; Sarakovskis, A.; Pereira, T.; Figueiredo, J.; Carvalho, B.; Soares, A.; Duarte, P.; Varandas, C.; Lielausis, O.; Klyukin, A.; Platacis, E.; Tale, I.; Alekseyv, A.

    2009-01-01

    Liquid metals have been pointed out as a suitable solution to solve problems related to the use of solid walls submitted to high power loads allowing, simultaneously, an efficient heat exhaustion process from fusion devices. The most promising candidate materials are lithium and gallium. However, lithium has a short liquid state temperature range when compared with gallium. To explore further this property, ISTTOK tokamak is being used to test the interaction of a free flying liquid gallium jet with the plasma. ISTTOK has been successfully operated with this jet without noticeable discharge degradation and no severe effect on the main plasma parameters or a significant plasma contamination by liquid metal. Additionally the response of an infrared sensor, intended to measure the jet surface temperature increase during its interaction with the plasma, has been studied. The jet power extraction capability is extrapolated from the heat flux profiles measured in ISTTOK plasmas.

  13. Gallium-67 imaging with low collimators and energy weighted acquisition

    International Nuclear Information System (INIS)

    Hamill, J.J.; DeVito, R.P.

    1990-01-01

    This paper reports that the medium and high energy collimators used in 67 Ga imaging have poorer resolution than low-energy collimators, such as the LEAP. The low energy collimators could be used for gallium imaging if the background under the 93 and 185 keV peaks could be reduced without degrading the signal-to-noise ratio unacceptably. energy weighted acquisition provides a means of accomplishing this background reduction. The authors have developed weighing functions for gallium imaging through LEAP and high resolution collimators. The resolution of the low energy collimators is realized while the background is comparable to, or better than, the background in normal, energy-window imaging with the medium energy collimator. The pixel noise is somewhat greater than the Poisson noise in normal gallium imaging, and some noise correlations, or noise texture, is introduced

  14. The Russian-American Gallium solar neutrino Experiment (SAGE)

    International Nuclear Information System (INIS)

    Bowles, T.J.

    1994-01-01

    The Russian-American Gallium Experiment (SAGE) began measurements of the integral flux of solar neutrinos using 30 tons of metallic gallium as the target in January 1990. The mass of the gallium was increased to 57 tons in September 1991 and SAGE began to count the decay of 71 Ge using both the K and L peaks in September 1992. The results indicate a deficit of about 40% of the flux predicted by the Standard Solar Model. The chemical extraction and counting techniques used by SAGE are presented, with particular attention on backgrounds. The present status, results, and future plans of SAGE are presented, along with a discussion of the possible physics implications

  15. Gallium scan in recurrent Hodgkin's disease in children

    International Nuclear Information System (INIS)

    Yeh, S.D.; Benua, R.S.; Tan, C.T.

    1979-01-01

    In 18 of 88 children with biopsy proven and previously untreated Hodgkin's disease, recurrence developed during a period from four to 53 months after therapy (median period, 22 months). In 16 patients in whom gallium scans were performed, 21 positive gallium scans were obtained during 26 episodes of recurrence. Abnormalities were noted in half of them during a period from one to 10 months prior to physical, laboratory, radiographic or histologic confirmation of recurrence (median period about 5 months). We have concluded that the gallium scan is very useful in initial workup and is sensitive in detecting early recurrence in children with Hodgkin's disease. Such scans are indicated when there is clinical suspicion of recurrence, when other modalities are unavailable or when the results of other studies are equivocal

  16. Surface Passivation of CIGS Solar Cells Using Gallium Oxide

    KAUST Repository

    Garud, Siddhartha

    2018-02-27

    This work proposes gallium oxide grown by plasma-enhanced atomic layer deposition, as a surface passivation material at the CdS buffer interface of Cu(In,Ga)Se2 (CIGS) solar cells. In preliminary experiments, a metal-insulator-semiconductor (MIS) structure is used to compare aluminium oxide, gallium oxide, and hafnium oxide as passivation layers at the CIGS-CdS interface. The findings suggest that gallium oxide on CIGS may show a density of positive charges and qualitatively, the least interface trap density. Subsequent solar cell results with an estimated 0.5 nm passivation layer show an substantial absolute improvement of 56 mV in open-circuit voltage (VOC), 1 mA cm−2 in short-circuit current density (JSC), and 2.6% in overall efficiency as compared to a reference (with the reference showing 8.5% under AM 1.5G).

  17. Gallium-67 scanning in patients with malignant pleural mesothelioma

    International Nuclear Information System (INIS)

    Nakano, Takashi; Maeda, Juichiro; Iwahashi, Noriaki; Tamura, Shinsuke; Hada, Toshikazu; Higashino, Kazuya

    1990-01-01

    The findings of gallium-67 scans in eleven patients with malignant pleural mesothelioma were reviewed and compared to those of chest CT findings. All patients had an abnormal thoracic Ga-67 accumulation. Six out of 11 showed a diffuse accumulation over the entire involved hemithorax and a localized uptake was shown in 5. A marked diffuse thickening of pleura in the absence of adequate gallium accumulation was observed in one patient. Two out of 11 had a reduction of gallium uptake after having combination chemotherapy. These results suggest that a diffusely increased uptake over the entire involved hemithorax is the most characteristic finding of Ga-67 scan in malignant pleural mesothelioma, and that Ga-67 scans may be helpful as a valuable indicator of the proper therapy. However, the superiority of Ga-67 scan to thoracic CT as a means of determining the extent of disease process could not be verified. (author)

  18. Layer-by-layer composition and structure of silicon subjected to combined gallium and nitrogen ion implantation for the ion synthesis of gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, D. S.; Mikhaylov, A. N.; Belov, A. I.; Vasiliev, V. K.; Guseinov, D. V.; Okulich, E. V. [Nizhny Novgorod State University (Russian Federation); Shemukhin, A. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Surodin, S. I.; Nikolitchev, D. E.; Nezhdanov, A. V.; Pirogov, A. V.; Pavlov, D. A.; Tetelbaum, D. I., E-mail: tetelbaum@phys.unn.ru [Nizhny Novgorod State University (Russian Federation)

    2016-02-15

    The composition and structure of silicon surface layers subjected to combined gallium and nitrogen ion implantation with subsequent annealing have been studied by the X-ray photoelectron spectroscopy, Rutherford backscattering, electron spin resonance, Raman spectroscopy, and transmission electron microscopy techniques. A slight redistribution of the implanted atoms before annealing and their substantial migration towards the surface during annealing depending on the sequence of implantations are observed. It is found that about 2% of atoms of the implanted layer are replaced with gallium bonded to nitrogen; however, it is impossible to detect the gallium-nitride phase. At the same time, gallium-enriched inclusions containing ∼25 at % of gallium are detected as candidates for the further synthesis of gallium-nitride inclusions.

  19. Laser spectroscopy of gallium isotopes using the ISCOOL RFQ cooler

    CERN Multimedia

    Blaum, K; Kowalska, M; Ware, T; Procter, T J

    2007-01-01

    We propose to study the radioisotopes of gallium (Z=31) by collinear laser spectroscopy using the ISCOOL RFQ ion cooler. The proposed measurements on $^{62-83}$Ga will span both neutron-deficient and neutron-rich isotopes. Of key interest is the suggested development of a proton-skin in the neutron-deficient isotopes. The isotope shifts measured by laser spectroscopy will be uniquely sensitive to this feature. The measurements will also provide a wealth of new information on the gallium nuclear spins, static moments and nuclear charge radii.

  20. Status of the Soviet-American gallium experiment

    International Nuclear Information System (INIS)

    Anosov, O.L.; Faizov, E.L.; Gavrin, V.N.; Kalikhov, A.V.; Knodel, T.V.; Knyshenko, I.I.; Kornoukhov, V.N.; Mirmov, I.N.; Ostrinsky, A.V.; Pshukov, A.M.; Shikhin, A.A.; Timofeyev, P.V.; Veretenkin, E.P.; Vermul, V.M.; Zatsepin, G.T.; Cherry, M.L.; Cleveland, B.T.; Davis, R. Jr.; Lande, K.; Kouzes, R.T.

    1993-01-01

    A radiochemical 71 Ga- 71 Ge experiment to determine the primary flux of neutrinos from the Sun began measurements of the solar neutrino flux at the Baksan Neutrino Observatory in 1990. The number of 71 Ge atoms extracted from 30 tons of gallium in 1990 and from 57 tons of gallium in 1991 was measured in twelve runs during the period of January 1990 to December 1991. The combined 1990 and 1991 data sets give a value of 58 + 17/ - 24 (stat.) ± 14 (syst.) SNU. This is to be compared with 132 SNU predicted by the Standard Solar Model. 2 tabs, 1 fig, 14 refs

  1. Early diagnosis of disc-space infection using gallium-67

    International Nuclear Information System (INIS)

    Norris, S.; Ehrlich, M.G.; Keim, D.E.; Guiterman, H.; McKusick, K.A.

    1978-01-01

    A 4-year-old boy had had progressive central lumbar pain and hamstring spasm. He had a normal lumbar-spine x-ray except for minimal L-5, S1 spondylolysis, but gave an abnormal gallium-67 scan in the region of the low lumbar spine. Eight weeks following intensive antibiotic therapy, confirmation of the diagnosis of disc-space infection was established by roentgenographic studies that demonstrated narrowing of the L 4 to 5 intervertebral disc space. A technetium-99m diphosphonate bone scan, performed concurrently with the gallium-67 study, was normal

  2. Leaching of gallium from gaiter granite, eastern desert, Egypt

    International Nuclear Information System (INIS)

    Zahran, M.A.; Mahmoud, KH.F.; Mahdy, M.A.; Abd El-Hamid, A.M.

    2006-01-01

    Preliminary leaching tests of gallium from some Egyptian granite rocks such as those of Gabal Gattar area was investigated by using 8 M HCl acid and sodium perchlorate as oxidant. To achieve the optimum leaching conditions, the factors affecting the leaching efficiency as the acid type and concentration, oxidant type and amount, leaching temperature, agitation time, solid / liquid ratio and the effect of grain size were studied. The complete chemical analysis of the collected samples was firstly carried out to determine the chemical features of the Gattarian granite. More than 97% of gallium content was leached when applying these optimum leaching conditions

  3. Latest results from the Soviet-American gallium experiment

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Anosov, O.L.; Faizov, E.L.; Kalikhov, A.V.; Knodel, T.V.; Knyshenko, I.I.; Kornoukhov, V.N.; Mirmov, I.N.; Ostrinsky, A.V.; Pshukov, A.M.; Shikhin, A.A.; Timofeyev, P.V.; Veretenkin, E.P.; Vermul, V.M.; Zatsepin, G.T.; Bowles, T.J.; Elliott, S.R.; Nico, J.S.; O'Brien, H.A.; Wark, D.L.; Wilkerson, J.F.; Cleveland, B.T.; Davis, R. Jr.; Lande, K.; Cherry, M.L.; Kouzes, R.T.

    1992-01-01

    A radiochemical 71 Ga- 71 Ge experiment to determine the primary flux of neutrinos from the Sun began measurements of the solar neutrino flux at the Baksan Neutrino Observatory in 1990. The number of 71 Ge atoms extracted from 30 tons of gallium in 1990 and from 57 tons of gallium in 1991 was measured in twelve runs during the period of January 1990 to December 1991. The combined 1990 and 1991 data sets give a value of 58+17/-24 (stat)±14 (syst) SNU. This is to be compared with 132 SNU predicted by the Standard Solar Model

  4. First results from the Soviet-American Gallium Experiment

    International Nuclear Information System (INIS)

    Abazov, A.I.; Abdurashitov, D.N.; Anosov, O.L.; Eroshkina, L.A.; Faizov, E.L.; Gavrin, V.N.; Kalikhov, A.V.; Knodel, T.V.; Knyshenko, I.I.; Kornoukhov, V.N.; Mezentseva, S.A.; Mirmov, I.N.; Ostrinsky, A.I.; Petukhov, V.V.; Pshukov, A.M.; Revzin, N.Y.; Shikhin, A.A.; Timofeyev, P.V.; Veretenkin, E.P.; Vermul, V.M.; Zakharov, Y.; Zatsepin, G.T.; Zhandarov, V.I.; Davis, R. Jr.; Lande, K.; Cherry, M.L.; Kouzes, R.T.

    1990-01-01

    The Soviet-American Gallium Experiment is the first experiment able to measure the dominant flux of low energy p-p solar neutrinos. Four extractions made during January to May 1990 from 30 tons of gallium have been counted and indicate that the flux is consistent with 0 SNU and is less than 72 SNU (68% CL) and less than 138 SNU (95% CL). This is to be compared with the flux of 132 SNU predicted by the Standard Solar Model. 10 refs., 4 figs., 1 tab

  5. Computer-assisted sequential quantitative analysis of gallium scans in pulmonary sarcoidosis

    International Nuclear Information System (INIS)

    Rohatgi, P.K.; Bates, H.R.; Noss, R.W.

    1985-01-01

    Fifty-one sequential gallium citrate scans were performed in 22 patients with biopsy-proven sarcoidosis. A computer-assisted quantitative analysis of these scans was performed to obtain a gallium score. The changes in gallium score were correlated with changes in serum angiotensin converting enzyme (SACE) activity and objective changes in clinical status. There was a good concordance between changes in gallium score, SACE activity and clinical assessment in patients with sarcoidosis, and changes in gallium index were slightly superior to SACE index in assessing activity of sarcoidosis. (author)

  6. The Soviet-American gallium experiment (SAGE)

    International Nuclear Information System (INIS)

    Garvey, G.T.

    1989-01-01

    The Soviet-American Gallium Experiment (SAGE) undertaking is a multi-institutional collaboration among scientists from the Institute for Nuclear Research, Moscow (INR), Los Alamos National Laboratory (LANL), and several US universities. It's purpose is to measure the number of low-energy electron neutrinos emitted from the Sun that arrive at this planet. As such, it is an extremely important experiment, touching on fundamental physics issues as well as solar dynamics. In contrast to the strategic overviews, plans, and hopes for intentional collaboration presented earlier today, SAGE is an ongoing working effort with high hopes of producing the first measurement of the Sun's low-energy flux. There are several international physics collaborations involving US and Soviet scientists at the large accelerator installations throughout the world. As the scale of research gets ever larger, requiring ever more resources and then larger collaborations. Much physics research lies solely in the realm of basic research so that governments feel easier about collaborations. Contacts between the US and USSR scientists interested in nuclear and particle physics goes back to the nineteen fifties and have continued with only minor interruptions since then. Over the past two decades the principal oversight of these activities has been through the Joint Coordinating Committee on the Fundamental Properties of Matter, supported by the DOE in the US and the State Committee for Atomic Energy in the USSR. The Academies of Science of both countries have been very helpful and supportive. Each venture has some distinguishing features; in the case of SAGE, the unique aspects are the collaboration between Soviet scientists and scientists at a DOE weapons laboratory and the fact that the experiment is carried out in a remote region of the USSR. The particular problems caused are discussed. 3 refs., 3 figs

  7. Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Fan, J. C.; Zhu, C. Y.; Fung, S.; To, C. K.; Yang, B.; Beling, C. D.; Ling, C. C.; Zhong, Y. C.; Wong, K. S.; Xie, Z.; Brauer, G.; Skorupa, W.; Anwand, W.

    2009-01-01

    As-doped ZnO films were grown by the radio frequency magnetron sputtering method. As the substrate temperature during growth was raised above ∼400 deg. C, the films changed from n type to p type. Hole concentration and mobility of ∼6x10 17 cm -3 and ∼6 cm 2 V -1 s -1 were achieved. The ZnO films were studied by secondary ion mass spectroscopy, x-ray photoelectron spectroscopy (XPS), low temperature photoluminescence (PL), and positron annihilation spectroscopy (PAS). The results were consistent with the As Zn -2V Zn shallow acceptor model proposed by Limpijumnong et al. [Phys. Rev. Lett. 92, 155504 (2004)]. The results of the XPS, PL, PAS, and thermal studies lead us to suggest a comprehensive picture of the As-related shallow acceptor formation.

  8. Highly conductive p-type amorphous oxides from low-temperature solution processing

    International Nuclear Information System (INIS)

    Li Jinwang; Tokumitsu, Eisuke; Koyano, Mikio; Mitani, Tadaoki; Shimoda, Tatsuya

    2012-01-01

    We report solution-processed, highly conductive (resistivity 1.3-3.8 mΩ cm), p-type amorphous A-B-O (A = Bi, Pb; B = Ru, Ir), processable at temperatures (down to 240 °C) that are compatible with plastic substrates. The film surfaces are smooth on the atomic scale. Bi-Ru-O was analyzed in detail. A small optical bandgap (0.2 eV) with a valence band maximum (VBM) below but very close to the Fermi level (binding energy E VBM = 0.04 eV) explains the high conductivity and suggests that they are degenerated semiconductors. The conductivity changes from three-dimensional to two-dimensional with decreasing temperature across 25 K.

  9. Hydrogen diffusion at moderate temperatures in p-type Czochralski silicon

    International Nuclear Information System (INIS)

    Huang, Y.L.; Ma, Y.; Job, R.; Ulyashin, A.G.

    2004-01-01

    In plasma-hydrogenated p-type Czochralski silicon, rapid thermal donor (TD) formation is achieved, resulting from the catalytic support of hydrogen. The n-type counter doping by TD leads to a p-n junction formation. A simple method for the indirect determination of the diffusivity of hydrogen via applying the spreading resistance probe measurements is presented. Hydrogen diffusion in silicon during both plasma hydrogenation and post-hydrogenation annealing is investigated. The impact of the hydrogenation duration, annealing temperature, and resistivity of the silicon wafers on the hydrogen diffusion is discussed. Diffusivities of hydrogen are determined in the temperature range 270-450 deg. C. The activation energy for the hydrogen diffusion is deduced to be 1.23 eV. The diffusion of hydrogen is interpreted within the framework of a trap-limited diffusion mechanism. Oxygen and hydrogen are found to be the main traps

  10. Nanoscale Cross-Point Resistive Switching Memory Comprising p-Type SnO Bilayers

    KAUST Repository

    Hota, Mrinal Kanti

    2015-02-23

    Reproducible low-voltage bipolar resistive switching is reported in bilayer structures of p-type SnO films. Specifically, a bilayer homojunction comprising SnOx (oxygen-rich) and SnOy (oxygen-deficient) in nanoscale cross-point (300 × 300 nm2) architecture with self-compliance effect is demonstrated. By using two layers of SnO film, a good memory performance is obtained as compared to the individual oxide films. The memory devices show resistance ratio of 103 between the high resistance and low resistance states, and this difference can be maintained for up to 180 cycles. The devices also show good retention characteristics, where no significant degradation is observed for more than 103 s. Different charge transport mechanisms are found in both resistance states, depending on the applied voltage range and its polarity. The resistive switching is shown to originate from the oxygen ion migration and subsequent formation/rupture of conducting filaments.

  11. Ge-intercalated graphene: The origin of the p-type to n-type transition

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-09-01

    Recently huge interest has been focussed on Ge-intercalated graphene. In order to address the effect of Ge on the electronic structure, we study Ge-intercalated free-standing C 6 and C 8 bilayer graphene, bulk C 6Ge and C 8Ge, as well as Ge-intercalated graphene on a SiC(0001) substrate, by density functional theory. In the presence of SiC(0001), there are three ways to obtain n-type graphene: i) intercalation between C layers; ii) intercalation at the interface to the substrate in combination with Ge deposition on the surface; and iii) cluster intercalation. All other configurations under study result in p-type states irrespective of the Ge coverage. We explain the origin of the different doping states and establish the conditions under which a transition occurs. © Copyright EPLA, 2012.

  12. n/p-Type changeable semiconductor TiO{sub 2} prepared from NTA

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiuye; Wang Xiaodong; Jin Zhensheng, E-mail: zhenshengjin@henu.edu.cn; Yang Dagang; Zhang Shunli; Guo Xinyong; Yang Jianjun; Zhang Zhijun [Henan University, Key Laboratory of Special Functional Materials (China)

    2007-10-15

    A novel kind of nano-sized TiO{sub 2} (anatase) was obtained by high-temperature (400-700 deg. C) dehydration of nanotube titanic acid (H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2}, NTA). The high-temperature (400-700 deg. C) dehydrated nanotube titanic acids (HD-NTAs) with a unique defect structure exhibited a p-type semiconductor behavior under visible-light irradiation ({lambda}{>=} 420nm, E{sub photon}=2.95 eV), whereas exhibited an n-type semiconductor behavior irradiated with UV light ({lambda}{>=} 365nm, E{sub photon}=3.40 eV)

  13. Ultrafast carrier dynamics in a p-type GaN wafer under different carrier distributions

    Science.gov (United States)

    Fang, Yu; Yang, Junyi; Yang, Yong; Wu, Xingzhi; Xiao, Zhengguo; Zhou, Feng; Song, Yinglin

    2016-02-01

    The dependence of the carrier distribution on photoexcited carrier dynamics in a p-type Mg-doped GaN (GaN:Mg) wafer were systematically measured by femtosecond transient absorption (TA) spectroscopy. The homogeneity of the carrier distribution was modified by tuning the wavelength of the UV pulse excitation around the band gap of GaN:Mg. The TA kinetics appeared to be biexponential for all carrier distributions, and only the slower component decayed faster as the inhomogeneity of the carrier distribution increased. It was concluded that the faster component (50-70 ps) corresponded to the trap process of holes by the Mg acceptors, and the slower component (150-600 ps) corresponded to the combination of non-radiative surface recombination and intrinsic carrier recombination via dislocations. Moreover, the slower component increased gradually with the incident fluence due to the saturation of surface states.

  14. Thermodynamic analysis of Mg-doped p-type GaN semiconductor

    International Nuclear Information System (INIS)

    Li Jingbo; Liang Jingkui; Rao Guanghui; Zhang Yi; Liu Guangyao; Chen Jingran; Liu Quanlin; Zhang Weijing

    2006-01-01

    A thermodynamic modeling of Mg-doped p-type GaN was carried out to describe the thermodynamic behaviors of native defects, dopants (Mg and H) and carriers in GaN. The formation energies of charged component compounds in a four-sublattice model were defined as functions of the Fermi-level based on the results of the first-principles calculations and adjusted to fit experimental data. The effect of the solubility of Mg on the low doping efficiency of Mg in GaN and the role of H in the Mg-doping MOCVD process were discussed. The modeling provides a thermodynamic approach to understand the doping process of GaN semiconductors

  15. Investigation on the structural characterization of pulsed p-type porous silicon

    Science.gov (United States)

    Wahab, N. H. Abd; Rahim, A. F. Abd; Mahmood, A.; Yusof, Y.

    2017-08-01

    P-type Porous silicon (PS) was sucessfully formed by using an electrochemical pulse etching (PC) and conventional direct current (DC) etching techniques. The PS was etched in the Hydrofluoric (HF) based solution at a current density of J = 10 mA/cm2 for 30 minutes from a crystalline silicon wafer with (100) orientation. For the PC process, the current was supplied through a pulse generator with 14 ms cycle time (T) with 10 ms on time (Ton) and pause time (Toff) of 4 ms respectively. FESEM, EDX, AFM, and XRD have been used to characterize the morphological properties of the PS. FESEM images showed that pulse PS (PPC) sample produces more uniform circular structures with estimated average pore sizes of 42.14 nm compared to DC porous (PDC) sample with estimated average size of 16.37nm respectively. The EDX spectrum for both samples showed higher Si content with minimal presence of oxide.

  16. Computation On dP Type power System Stabilizer Using Fuzzy Logic

    International Nuclear Information System (INIS)

    Iskandar, M.A.; Irwan, R.; Husdi; Riza; Mardhana, E.; Triputranto, A.

    1997-01-01

    Power system stabilizers (PSS) are widely applied in power generators to damp power oscillation caused by certain disturbances in order to increase the power supply capacity. PSS design is often suffered from the difficulty on setting periodically its parameters, which are gain and compensators, in order to have an optimal damping characteristic. This paper proposes a methode to determine parameters of dP type PSS by implementing fuzzy logic rules in a computer program,to obtain the appropriate characteristics of synchronous torque and damping torque. PSS with the calculated parameters is investigated on a simulation using a non-linear electric power system of a thermal generator connected to infinite bus system model. Simulation results show that great improvement in damping characteristic and enhancement of stability margin of electric power system are obtained by using the proposed PSS

  17. A low-energy ion source for p-type doping in MBE

    International Nuclear Information System (INIS)

    Park, R.M.; Stanley, C.R.; Clampitt, R.

    1980-01-01

    A compact low-energy ion cell has been developed for use as a source of acceptor impurities for the growth of p-type semiconductor material in ultra-high vacuum by molecular beam epitaxy. A flux of either zinc or cadmium atoms is emitted under molecular effusion conditions and partially ionised in the orifice of the cell by electron bombardment. The design provides for control of both the ion energy and current at constant cell temperature. (100)InP has been grown by MBE in a flux of 1 keV Zn ions. The surface morphology and crystal structure show no degradation when compared with (100)InP grown without the Zn ions present. (author)

  18. Producing p-type conductivity in self-compensating semiconductor material

    International Nuclear Information System (INIS)

    Vechten, J.A. van; Woodall, J.M.

    1981-01-01

    This relates to compound type semiconductor materials that exhibit self-compensated n-type conductivity. The process described imparts p-type conductivity to a body of normally n-conductivity self-compensated compound semiconductor material by bombarding it with charged particles, either electrons, protons or ions. Other possible steps include introducing an acceptor impurity and applying a coating onto the crystal body. This technique will allow new semiconductor structures to be made. For example, there are some compound semiconductor materials that exhibit n-conductivity only that have energy gap widths that would permit electrical to light conversion at frequency and colours not readily achieved in semiconductor devices. (U.K.)

  19. Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering

    Science.gov (United States)

    Fan, J. C.; Zhu, C. Y.; Fung, S.; Zhong, Y. C.; Wong, K. S.; Xie, Z.; Brauer, G.; Anwand, W.; Skorupa, W.; To, C. K.; Yang, B.; Beling, C. D.; Ling, C. C.

    2009-10-01

    As-doped ZnO films were grown by the radio frequency magnetron sputtering method. As the substrate temperature during growth was raised above ˜400 °C, the films changed from n type to p type. Hole concentration and mobility of ˜6×1017 cm-3 and ˜6 cm2 V-1 s-1 were achieved. The ZnO films were studied by secondary ion mass spectroscopy, x-ray photoelectron spectroscopy (XPS), low temperature photoluminescence (PL), and positron annihilation spectroscopy (PAS). The results were consistent with the AsZn-2VZn shallow acceptor model proposed by Limpijumnong et al. [Phys. Rev. Lett. 92, 155504 (2004)]. The results of the XPS, PL, PAS, and thermal studies lead us to suggest a comprehensive picture of the As-related shallow acceptor formation.

  20. Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes.

    Science.gov (United States)

    Cao, Xuan; Cao, Yu; Zhou, Chongwu

    2016-01-26

    Flexible thin-film transistors based on semiconducting single-wall carbon nanotubes are promising for flexible digital circuits, artificial skins, radio frequency devices, active-matrix-based displays, and sensors due to the outstanding electrical properties and intrinsic mechanical strength of carbon nanotubes. Nevertheless, previous research effort only led to nanotube thin-film transistors with the smallest bending radius down to 1 mm. In this paper, we have realized the full potential of carbon nanotubes by making ultraflexible and imperceptible p-type transistors and circuits with a bending radius down to 40 μm. In addition, the resulted transistors show mobility up to 12.04 cm(2) V(-1) S(-1), high on-off ratio (∼10(6)), ultralight weight (transistors and circuits have great potential to work as indispensable components for ultraflexible complementary electronics.

  1. Determination of the refractive index of n+- and p-type porous Si samples

    International Nuclear Information System (INIS)

    Setzu, S.; Romestain, R.; Chamard, V.

    2004-01-01

    Photochemical etching of porous Si layers has been shown to be able to create micrometer or submicrometer-scale lateral gratings very promising for photonic applications. However, the reduced size of this lateral periodicity hinders standard measurements of refractive index variations. Therefore accurate characterizations of such gratings are usually difficult. In this paper we address this problem by reproducing on a larger scale (millimeter) the micrometer scale light-induced refractive index variations associated to the lateral periodicity. Using this procedure we perform standard X-ray and optical reflectivity measurements on our samples. One can then proceed to the determination of light-induced variations of porosity and refractive index. We present results for p-type samples, where the photo-dissolution can only be realized after the formation of the porous layer, as well as for n + -type samples, where light action can only be effective during the formation of the porous layer

  2. Membrane Anchoring and Ion-Entry Dynamics in P-type ATPase Copper Transport

    DEFF Research Database (Denmark)

    Grønberg, Christina; Sitsel, Oleg; Lindahl, Erik

    2016-01-01

    Cu(+)-specific P-type ATPase membrane protein transporters regulate cellular copper levels. The lack of crystal structures in Cu(+)-binding states has limited our understanding of how ion entry and binding are achieved. Here, we characterize the molecular basis of Cu(+) entry using molecular-dynamics...... simulations, structural modeling, and in vitro and in vivo functional assays. Protein structural rearrangements resulting in the exposure of positive charges to bulk solvent rather than to lipid phosphates indicate a direct molecular role of the putative docking platform in Cu(+) delivery. Mutational analyses...... and simulations in the presence and absence of Cu(+) predict that the ion-entry path involves two ion-binding sites: one transient Met148-Cys382 site and one intramembranous site formed by trigonal coordination to Cys384, Asn689, and Met717. The results reconcile earlier biochemical and x-ray absorption data...

  3. Novel method of separating macroporous arrays from p-type silicon substrate

    International Nuclear Information System (INIS)

    Peng Bobo; Wang Fei; Liu Tao; Yang Zhenya; Wang Lianwei; Fu, Ricky K. Y.; Chu, Paul K.

    2012-01-01

    This paper presents a novel method to fabricate separated macroporous silicon using a single step of photo-assisted electrochemical etching. The method is applied to fabricate silicon microchannel plates in 100 mm p-type silicon wafers, which can be used as electron multipliers and three-dimensional Li-ion microbatteries. Increasing the backside illumination intensity and decreasing the bias simultaneously can generate additional holes during the electrochemical etching which will create lateral etching at the pore tips. In this way the silicon microchannel can be separated from the substrate when the desired depth is reached, then it can be cut into the desired shape by using a laser cutting machine. Also, the mechanism of lateral etching is proposed. (semiconductor materials)

  4. Reduced thermal conductivity due to scattering centers in p-type SiGe alloys

    International Nuclear Information System (INIS)

    Beaty, J.S.; Rolfe, J.L.; Vandersande, J.; Fleurial. J.P.

    1992-01-01

    This paper reports that a theoretical model has been developed that predicts that the addition of ultra-fine, inert, phonon-scattering centers to SiGe thermoelectric material will reduce its thermal conductivity and improve its figure-of-merit. To investigate this prediction, ultra-fine particulates (20 Angstrom to 200 Angstrom) of boron nitride have been added to boron doped, p-type, 80/20 SiGe. All previous SiGe samples produced from ultra-fine SiGe powder without additions had lower thermal conductivities than standard SiGe, but high temperature (1525 K) heat treatment increased their thermal conductivity back to the value for standard SiGe. Transmission Electron Microscopy has been used to confirm the presence of occluded particulates and X-ray diffraction has been used to determine the composition to be BN

  5. Thermo-chemical properties and electrical resistivity of Zr-based arsenide chalcogenides

    Directory of Open Access Journals (Sweden)

    A. Schlechte, R. Niewa, M. Schmidt, G. Auffermann, Yu. Prots, W. Schnelle, D. Gnida, T. Cichorek, F. Steglich and R. Kniep

    2007-01-01

    Full Text Available Ternary phases in the systems Zr–As–Se and Zr–As–Te were studied using single crystals of ZrAs1.40(1Se0.50(1 and ZrAs1.60(2Te0.40(1 (PbFCl-type of structure, space group P4/nmm as well as ZrAs0.70(1Se1.30(1 and ZrAs0.75(1Te1.25(1 (NbPS-type of structure, space group Immm. The characterization covers chemical compositions, crystal structures, homogeneity ranges and electrical resistivities. At 1223 K, the Te-containing phases can be described with the general formula ZrAsxTe2−x, with 1.53(1≤x≤1.65(1 (As-rich and 0.58(1≤x≤0.75(1 (Te-rich. Both phases are located directly on the tie-line between ZrAs2 and ZrTe2, with no indication for any deviation. Similar is true for the Se-rich phase ZrAsxSe2−x with 0.70(1≤x≤0.75(1. However, the compositional range of the respective As-rich phase ZrAsx−ySe2−x (0.03(1≤y≤0.10(1; 1.42(1≤x≤1.70(1 is not located on the tie-line ZrAs2–ZrSe2, and exhibits a triangular region of existence with intrinsic deviation of the composition towards lower non-metal contents. Except for ZrAs0.75Se1.25, from the homogeneity range of the Se-rich phase, all compounds under investigation show metallic characteristics of electrical resistivity at temperatures >20 K. Related uranium and thorium arsenide selenides display a typical magnetic field-independent rise of the resistivity towards lower temperatures, which has been explained by a non-magnetic Kondo effect. However, a similar observation has been made for ZrAs1.40Se0.50, which, among the Zr-based arsenide chalcogenides, is the only system with a large concentration of intrinsic defects in the anionic substructure.

  6. P-type CuxS thin films: Integration in a thin film transistor structure

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Parreira, P.; Lavareda, G.; Brogueira, P.; Amaral, A.

    2013-01-01

    Cu x S thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu 2 S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of Cu x S films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 °C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show Cu x S films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the Cu x S films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of Cu x S surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of Cu x S films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the Cu x S material. - Highlights: • Surface properties of annealed Cu x S films. • Variation of conductivity with annealing temperatures of Cu x S films. • Application of evaporated Cu x S films in a thin film transistor (TFT) structure. • Determination of Cu x S p-type characteristic from TFT behaviour

  7. Uptake of gallium-67 citrate in clean surgical incisions after colorectal surgery

    International Nuclear Information System (INIS)

    Lin Wanyu; Wang Shyhjen; Tsai Shihchuan; Chao Tehsin

    2001-01-01

    Non-specific accumulation of gallium-67 citrate (gallium) in uncomplicated surgical incisions is not uncommon. It is important to know the normal pattern of gallium uptake at surgical incision sites in order to properly interpret the gallium scan when investigating possible wound infection in patients who have undergone abdominal surgery. We studied 42 patients without wound infection after colorectal surgery and performed gallium scans within 40 days after surgery. Patients were divided into three groups according to the interval between the operation and the scan. In group A (26 patients) gallium scan was performed within 7 days after surgery, in group B (8 patients) between 8 and 14 days after surgery, and in group C (8 patients) between 15 and 40 days after surgery. Our data showed that in group A, 61.5% had gallium accumulation at the surgical incision site. In group B, 50% had accumulation of gallium at the surgical incision site, while in group C only one patient (12.5%) showed gallium uptake. It is concluded that the incidence of increased gallium uptake at clean surgical incision sites is high after colorectal surgery. Nuclear medicine physicians should bear in mind the high incidence of non-specific gallium uptake at such sites during the interpretation of possible wound infection in patients after colorectal surgery. (orig.)

  8. Gallium-67 uptake by the thyroid associated with progressive systemic sclerosis

    International Nuclear Information System (INIS)

    Sjoberg, R.J.; Blue, P.W.; Kidd, G.S.

    1989-01-01

    Although thyroidal uptake of gallium-67 has been described in several thyroid disorders, gallium-67 scanning is not commonly used in the evaluation of thyroid disease. Thyroidal gallium-67 uptake has been reported to occur frequently with subacute thyroiditis, anaplastic thyroid carcinoma, and thyroid lymphoma, and occasionally with Hashimoto's thyroiditis and follicular thyroid carcinoma. A patient is described with progressive systemic sclerosis who, while being scanned for possible active pulmonary involvement, was found incidentally to have abnormal gallium-67 uptake only in the thyroid gland. Fine needle aspiration cytology of the thyroid revealed Hashimoto's thyroiditis. Although Hashimoto's thyroiditis occurs with increased frequency in patients with progressive systemic sclerosis, thyroidal uptake of gallium-67 associated with progressive systemic sclerosis has not, to our knowledge, been previously described. Since aggressive thyroid malignancies frequently are imaged by gallium-67 scintigraphy, fine needle aspiration cytology of the thyroid often is essential in the evaluation of thyroidal gallium-67 uptake

  9. Seeded growth of boron arsenide single crystals with high thermal conductivity

    Science.gov (United States)

    Tian, Fei; Song, Bai; Lv, Bing; Sun, Jingying; Huyan, Shuyuan; Wu, Qi; Mao, Jun; Ni, Yizhou; Ding, Zhiwei; Huberman, Samuel; Liu, Te-Huan; Chen, Gang; Chen, Shuo; Chu, Ching-Wu; Ren, Zhifeng

    2018-01-01

    Materials with high thermal conductivities are crucial to effectively cooling high-power-density electronic and optoelectronic devices. Recently, zinc-blende boron arsenide (BAs) has been predicted to have a very high thermal conductivity of over 2000 W m-1 K-1 at room temperature by first-principles calculations, rendering it a close competitor for diamond which holds the highest thermal conductivity among bulk materials. Experimental demonstration, however, has proved extremely challenging, especially in the preparation of large high quality single crystals. Although BAs crystals have been previously grown by chemical vapor transport (CVT), the growth process relies on spontaneous nucleation and results in small crystals with multiple grains and various defects. Here, we report a controllable CVT synthesis of large single BAs crystals (400-600 μm) by using carefully selected tiny BAs single crystals as seeds. We have obtained BAs single crystals with a thermal conductivity of 351 ± 21 W m-1 K-1 at room temperature, which is almost twice as conductive as previously reported BAs crystals. Further improvement along this direction is very likely.

  10. Wurtzite gallium phosphide has a direct-band gap

    NARCIS (Netherlands)

    Assali, S.; Zardo, I.; Plissard, S.; Verheijen, M.A.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2013-01-01

    Gallium Phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the emission efficiency. We report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong

  11. Amorphous gallium oxide grown by low-temperature PECVD

    KAUST Repository

    Kobayashi, Eiji; Boccard, Mathieu; Jeangros, Quentin; Rodkey, Nathan; Vresilovic, Daniel; Hessler-Wyser, Aï cha; Dö beli, Max; Franta, Daniel; De Wolf, Stefaan; Morales-Masis, Monica; Ballif, Christophe

    2018-01-01

    demonstrate the growth of hydrogenated amorphous gallium oxide (a-GaO:H) thin-films by plasma-enhanced chemical vapor deposition (PECVD) at temperatures below 200 °C. In this way, conformal films are deposited at high deposition rates, achieving high broadband

  12. Targeting Gallium to Cancer Cells through the Folate Receptor

    Directory of Open Access Journals (Sweden)

    Nerissa Viola-Villegas

    2008-01-01

    Full Text Available The development of gallium(III compounds as anti-cancer agents for both treatment and diagnosis is a rapidly developing field of research. Problems remain in exploring the full potential of gallium(III as a safe and successful therapeutic agent or as an imaging agent. One of the major issues is that gallium(III compounds have little tropism for cancer cells. We have combined the targeting properties of folic acid (FA with long chain liquid polymer poly(ethylene glycol (PEG 'spacers’. This FA-PEG unit has been coupled to the gallium coordination complex of 1,4,7,10-tetraazacyclo-dodecane-N, N′, N′, N′′-tetraacetic acid (DOTA through amide linkages for delivery into target cells overexpressing the folate receptor (FR. In vitro cytotoxicity assays were conducted against a multi-drug resistant ovarian cell line (A2780/AD that overexpresses the FR and contrasted against a FR free Chinese hamster ovary (CHO cell line. Results are rationalized taking into account stability studies conducted in RPMI 1640 media and HEPES buffer at pH 7.4.

  13. Gallium uptake in benign tumor of liver: case report

    International Nuclear Information System (INIS)

    Belanger, M.A.; Beauchamp, J.M.; Neitzschman, H.R.

    1975-01-01

    A case of positive tracer localization in a benign tumor of the liver on a 67 Ga-citrate scan is reported. The authors were unable to find any previous reports of positive localization of gallium in this type of liver tumor. (U.S.)

  14. Gallium Nitride MMICs for mm-Wave Power Operation

    NARCIS (Netherlands)

    Quay, R.; Maroldt, S.; Haupt, C.; Heijningen, M. van; Tessmann, A.

    2009-01-01

    In this paper a Gallium Nitride MMIC technology for high-power amplifiers between 27 GHz and 101 GHz based on 150 nm- and 100 nm-gate technologies is presented. The GaN HEMT MMICs are designed using coplanar waveguide transmission-line-technology on 3-inch semi-insulating SiC substrates. The

  15. Gallium determination with Rodamina B: a simple method

    International Nuclear Information System (INIS)

    Queiroz, R.R.U. de.

    1981-01-01

    A simple method for determining gallium with Rhodamine B, by the modification of the method proposed by Onishi and Sandell. The complex (RH) GaCl 4 is extracted with a mixture benzene-ethylacetate (3:1 V/V), from an aqueous medium 6 M in hydrochloric acid. The interference of foreign ions is studied. (C.G.C.) [pt

  16. Gallium67 scintigraphy in fibrinous pericarditis associated with bacterial endocarditis

    International Nuclear Information System (INIS)

    Martin, P.; Verhas, M.; Devriendt, J.; Goffin, Y.

    1982-01-01

    An 80-year-old man presented with pyrexia, progressive cardiac failure and inflammation. A diagnosis of pericarditisd associated with bacterial endocarditis was suggested from Gallium 67 scintigraphy and confirmed at autpsy. This case of fibrinous pericarditis without effusion could not be diagnosed by echography or routine cardiopulmonary scintigraphy. (orig.)

  17. Targeting Gallium to Cancer Cells through the Folate Receptor

    Directory of Open Access Journals (Sweden)

    Nerissa Viola-Villegas

    2008-01-01

    Full Text Available The development of gallium(III compounds as anti-cancer agents for both treatment and diagnosis is a rapidly developing field of research. Problems remain in exploring the full potential of gallium(III as a safe and successful therapeutic agent or as an imaging agent. One of the major issues is that gallium(III compounds have little tropism for cancer cells. We have combined the targeting properties of folic acid (FA with long chain liquid polymer poly(ethylene glycol (PEG ‘spacers’. This FA-PEG unit has been coupled to the gallium coordination complex of 1,4,7,10-tetraazacyclo-dodecane-N,N′,N′′,N′′′-tetraacetic acid (DOTA through amide linkages for delivery into target cells overexpressing the folate receptor (FR. In vitro cytotoxicity assays were conducted against a multi-drug resistant ovarian cell line (A2780/AD that overexpresses the FR and contrasted against a FR free Chinese hamster ovary (CHO cell line. Results are rationalized taking into account stability studies conducted in RPMI 1640 media and HEPES buffer at pH 7.4.

  18. Band Engineering Small Bandgap p-Type Semiconductors: Investigations of their Optical and Photoelectrochemical Properties

    Science.gov (United States)

    Zoellner, Brandon

    Mixed-metal oxides containing Mn(II), Cu(I), Ta(V), Nb(V), and V(V) were investigated for their structures and properties as new p-type semiconductors and in the potential applications involving the photocatalytic conversion of water into hydrogen and oxygen. Engineering of the bandgaps was achieved by combining metal cations that have halffilled (Mn 3d5) or filled (Cu 3d10) d-orbitals together with metal cations that have empty (V/Nb/Ta 3/4/5 d0) d-orbitals. The research described herein focuses on the synthesis, optical, electronic, and photocatalytic properties of the metal-oxide semiconductors MnV2O6, Cu3VO 4, CuNb1-xTaxO3, and Cu5(Ta1-xNbx)11O30. Powder X-ray diffraction was used to probe their phase purity as well as atomic-level crystallographic details, i.e. shifts of lattice parameters, chemical compositions, and changes in local bonding environments. Optical measurements revealed visible-light bandgap sizes of ˜1.17 eV (Cu3VO4), ˜1.45 eV (MnV2O6), ˜1.89-1.97 eV (CuNb1-xTa xO3), and ˜1.97-2.50 eV (Cu5(Ta1-xNb x)11O30). The latter two were found to systematically vary as a function of composition. Electrochemical impedance spectroscopy measurements of MnV2O6 and Cu3VO 4 provided the first experimental characterization of the energetic positions of the valence and conduction bands with respect to the water oxidation and reduction potentials, as well as confirmed the p-type nature of each semiconductor. The valence and conduction band energies were found to be suitable for driving either one or both of the water-splitting half reaction (i.e. 2H+ → H2 and 2H2O → O2 + 4H+). Photoelectrochemical measurements on polycrystalline films of the Cu(I)-based semiconductors under visible-light irradiation produced cathodic currents indicative of p-type semiconductor character and chemical reduction at their surfaces in the electrolyte solution. The stability of the photocurrents was increased by the addition of CuO oxide particles either externally deposited or

  19. Self- and zinc diffusion in gallium antimonide

    International Nuclear Information System (INIS)

    Nicols, Samuel Piers

    2002-01-01

    The technological age has in large part been driven by the applications of semiconductors, and most notably by silicon. Our lives have been thoroughly changed by devices using the broad range of semiconductor technology developed over the past forty years. Much of the technological development has its foundation in research carried out on the different semiconductors whose properties can be exploited to make transistors, lasers, and many other devices. While the technological focus has largely been on silicon, many other semiconductor systems have applications in industry and offer formidable academic challenges. Diffusion studies belong to the most basic studies in semiconductors, important from both an application as well as research standpoint. Diffusion processes govern the junctions formed for device applications. As the device dimensions are decreased and the dopant concentrations increased, keeping pace with Moore's Law, a deeper understanding of diffusion is necessary to establish and maintain the sharp dopant profiles engineered for optimal device performance. From an academic viewpoint, diffusion in semiconductors allows for the study of point defects. Very few techniques exist which allow for the extraction of as much information of their properties. This study focuses on diffusion in the semiconductor gallium antimonide (GaSb). As will become clear, this compound semiconductor proves to be a powerful one for investigating both self- and foreign atom diffusion. While the results have direct applications for work on GaSb devices, the results should also be taken in the broader context of III-V semiconductors. Results here can be compared and contrasted to results in systems such as GaAs and even GaN, indicating trends within this common group of semiconductors. The results also have direct importance for ternary and quaternary semiconductor systems used in devices such as high speed InP/GaAsSb/InP double heterojunction bipolar transistors (DHBT

  20. Gallium Oxide Nanostructures for High Temperature Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chintalapalle, Ramana V. [Univ. of Texas, El Paso, TX (United States)

    2015-04-30

    Gallium oxide (Ga2O3) thin films were produced by sputter deposition by varying the substrate temperature (Ts) in a wide range (Ts=25-800 °C). The structural characteristics and electronic properties of Ga2O3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga2O3 films. XRD and SEM analyses indicate that the Ga2O3 films grown at lower temperatures were amorphous while those grown at Ts≥500 oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga2O3 films at Ts=300-800 °C. The electronic structure determination indicated that the nanocrystalline Ga2O3films exhibit a band gap of ~5 eV. Tungsten (W) incorporated Ga2O3 films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. No secondary phase formation was observed in W-incorporated Ga2O3 films. W-induced effects were significant on the structure and electronic properties of Ga2O3 films. The band gap of Ga2O3 films without W-incorporation was ~5 eV. Oxygen sensor characteristics evaluated using optical and electrical methods indicate a faster response in W-doped Ga2O3 films compared to intrinsic Ga2O3 films. The results demonstrate the applicability of both intrinsic and W-doped Ga-oxide films for oxygen sensor application at temperatures ≥700 °C.

  1. Defect studies in copper-based p-type transparent conducting oxides

    Science.gov (United States)

    Ameena, Fnu

    Among other intrinsic open-volume defects, copper vacancy (VCu) has been theoretically identified as the major acceptor in p-type Cu-based semiconducting transparent oxides, which has potential as low-cost photovoltaic absorbers in semi-transparent solar cells. A series of positron annihilation experiments with pure Cu, Cu2O, and CuO presented strong presence of VCu and its complexes in the copper oxides. The lifetime data also showed that the density of VCu was becoming higher as the oxidation state of Cu increased which was consistent with the decrease in the formation energy of VCu. Doppler broadening measurements further indicated that electrons with low momentum made more contribution to the contributed as pure Cu oxidizes to copper oxides. The metastable defects are known to be generated in Cu2O upon illumination and it has been known to affect the performance of Cu2O-based hetero-junctions used in solar cells. The metastable effect was studied using positron annihilation lifetime spectroscopy and its data showed the change in the defect population upon light exposure and the minimal effect of light-induced electron density increase in the bulk of materials to the average lifetime of the positrons. The change in the defect population is concluded to be related to the dissociation and association of VCu -- V Cu complexes. For example, the shorter lifetime under light was ascribed to the annihilation with smaller size vacancies, which explains the dissociation of the complexes with light illumination. Doppler broadening of the annihilation was independent of light illumination, which suggested that the chemical nature of the defects remained without change upon their dissociation and association -- only the size distribution of copper vacancies varied. The delafossite metal oxides, CuMIIIO2 are emerging wide-bandgap p-type semiconductors. In this research, the formation energies of structural vacancies are calculated using Van Vechten cavity model as an attempt

  2. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho; Han, Hyemi; Seo, Jooyeok; Song, Myeonghun; Kim, Hwajeong; Anthopoulos, Thomas D.; McCulloch, Iain; Bradley, Donal D C; Kim, Youngkyoo

    2016-01-01

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  3. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho

    2016-11-18

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  4. Flexible substrate compatible solution processed P-N heterojunction diodes with indium-gallium-zinc oxide and copper oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Ishan; Deepak, E-mail: saboo@iitk.ac.in

    2017-04-15

    Highlights: • Both n and p-type semiconductors are solution processed. • Temperature compatibility with flexible substrates such as polyimide. • Compatibility of p-type film (CuO) on n-type film (IZO). • Diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. • Construction of band alignment using XPS. - Abstract: Printed electronics on flexible substrates requires low temperature and solution processed active inks. With n-type indium-gallium-zinc oxide (IGZO) based electronics maturing for thin film transistor (TFT), we here demonstrate its heterojunction diode with p-copper oxide, prepared by sol-gel method and processed at temperatures compatible with polyimide substrates. The phase obtained for copper oxide is CuO. When coated on n-type oxide, it is prone to develop morphological features, which are minimized by annealing treatment. Diodes of p-CuO films with IGZO are of poor quality due to its high resistivity while, conducting indium-zinc oxide (IZO) films yielded good diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. A detailed measurement at the interface by X-ray photoelectron spectroscopy and optical absorption ascertained the band alignment to be of staggered type. Consistently, the current in the diode is established to be due to electrons tunnelling from n-IZO to p-CuO.

  5. DFT study on the adsorption of diethyl, ethyl methyl, and dimethyl ethers on the surface of gallium doped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Shokuhi Rad, Ali, E-mail: a.shokuhi@gmail.com [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Sani, Emad; Binaeian, Ehsan [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Peyravi, Majid; Jahanshahi, Mohsen [Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2017-04-15

    Highlights: • Adsorption of three ether molecules on the surface of Ga-doped graphene has been investigated. • High degree of adsorption for all analytes is found. • Ga-doped graphene shows p-type semiconductor property upon adsorption of ether molecules. - Abstract: In this study, we used density functional theory (DFT) to search on the adsorption properties of three important compounds of ether family; diethyl ether (DEE), ethyl methyl ether (EME), and dimethyl ether (DME) on the surface of Gallium doped graphene (GaG). We used three functionals (B3LYP, wb97xd, and MPW1PW91) for optimization and calculation of adsorption energy. After fully optimization, we scrutinized on the charge allocations on the adsorbed ethers as well as GaG (at the area of interaction) based on natural bond orbitals (NBO). Besides, we have calculated the amount of charge transfer upon adsorption of each analyte. We revel that GaG is an ideal adsorbent for chemisorption of all above-mentioned ethers. There is a little difference between the values of adsorption; −123.5, −120, and −118.3 kJ/mol (based on wb97xd) for DEE, EME, and DME, respectively. We found significant changes in the electronic structure of both adsorbent and adsorbate upon adsorption. Moreover, results of charge analyses confirm GaG is a p-type semiconductor.

  6. DFT study on the adsorption of diethyl, ethyl methyl, and dimethyl ethers on the surface of gallium doped graphene

    International Nuclear Information System (INIS)

    Shokuhi Rad, Ali; Sani, Emad; Binaeian, Ehsan; Peyravi, Majid; Jahanshahi, Mohsen

    2017-01-01

    Highlights: • Adsorption of three ether molecules on the surface of Ga-doped graphene has been investigated. • High degree of adsorption for all analytes is found. • Ga-doped graphene shows p-type semiconductor property upon adsorption of ether molecules. - Abstract: In this study, we used density functional theory (DFT) to search on the adsorption properties of three important compounds of ether family; diethyl ether (DEE), ethyl methyl ether (EME), and dimethyl ether (DME) on the surface of Gallium doped graphene (GaG). We used three functionals (B3LYP, wb97xd, and MPW1PW91) for optimization and calculation of adsorption energy. After fully optimization, we scrutinized on the charge allocations on the adsorbed ethers as well as GaG (at the area of interaction) based on natural bond orbitals (NBO). Besides, we have calculated the amount of charge transfer upon adsorption of each analyte. We revel that GaG is an ideal adsorbent for chemisorption of all above-mentioned ethers. There is a little difference between the values of adsorption; −123.5, −120, and −118.3 kJ/mol (based on wb97xd) for DEE, EME, and DME, respectively. We found significant changes in the electronic structure of both adsorbent and adsorbate upon adsorption. Moreover, results of charge analyses confirm GaG is a p-type semiconductor.

  7. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes.

    Science.gov (United States)

    Roques, Magali; Wall, Richard J; Douglass, Alexander P; Ramaprasad, Abhinay; Ferguson, David J P; Kaindama, Mbinda L; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S; Wheatley, Sally P; Yamano, Hiroyuki; Holder, Anthony A; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-11-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  8. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    KAUST Repository

    Roques, Magali; Wall, Richard J.; Douglass, Alexander P.; Ramaprasad, Abhinay; Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, ‍ Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  9. Growth of antimony doped P-type zinc oxide nanowires for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong Lin; Pradel, Ken

    2016-09-27

    In a method of growing p-type nanowires, a nanowire growth solution of zinc nitrate (Zn(NO.sub.3).sub.2), hexamethylenetetramine (HMTA) and polyethylenemine (800 M.sub.w PEI) is prepared. A dopant solution to the growth solution, the dopant solution including an equal molar ration of sodium hydroxide (NaOH), glycolic acid (C.sub.2H.sub.4O.sub.3) and antimony acetate (Sb(CH.sub.3COO).sub.3) in water is prepared. The dopant solution and the growth solution combine to generate a resulting solution that includes antimony to zinc in a ratio of between 0.2% molar to 2.0% molar, the resulting solution having a top surface. An ammonia solution is added to the resulting solution. A ZnO seed layer is applied to a substrate and the substrate is placed into the top surface of the resulting solution with the ZnO seed layer facing downwardly for a predetermined time until Sb-doped ZnO nanowires having a length of at least 5 .mu.m have grown from the ZnO seed layer.

  10. Determination of Hot-Carrier Distribution Functions in Uniaxially Stressed p-Type Germanium

    DEFF Research Database (Denmark)

    Christensen, Ove

    1973-01-01

    This paper gives a description of an experimental determination of distribution functions in k→ space of hot holes in uniaxially compressed germanium. The hot-carrier studies were made at 85°K at fields up to 1000 V/cm and uniaxial stresses up to 11 800 kg/cm2. The field and stress were always in...... probabilities with stress. A model based on the nonparabolicity of the upper p3 / 2 level is proposed for the negative differential conductivity in stressed p-type Ge....... function has been assumed. The parameters of the distribution function are then fitted to the experimental modulation. The calculation of absorption was performed numerically, using a four-band k→·p→ model. This model was checked for consistency by comparing with piezoabsorption measurements performed...... in thermal equilibrium. The average carrier energy calculated from the distribution function shows a fast increase with stress and almost saturates when the strain splitting of the two p3 / 2 levels reaches the optical-phonon energy. This saturation is interpreted in terms of the change in scattering...

  11. p-type doping by platinum diffusion in low phosphorus doped silicon

    Science.gov (United States)

    Ventura, L.; Pichaud, B.; Vervisch, W.; Lanois, F.

    2003-07-01

    In this work we show that the cooling rate following a platinum diffusion strongly influences the electrical conductivity in weakly phosphorus doped silicon. Diffusions were performed at the temperature of 910 °C in the range of 8 32 hours in 0.6, 30, and 60 Ωrm cm phosphorus doped silicon samples. Spreading resistance profile analyses clearly show an n-type to p-type conversion under the surface when samples are cooled slowly. On the other hand, a compensation of the phosphorus donors can only be observed when samples are quenched. One Pt related acceptor deep level at 0.43 eV from the valence band is assumed to be at the origin of the type conversion mechanism. Its concentration increases by lowering the applied cooling rate. A complex formation with fast species such as interstitial Pt atoms or intrinsic point defects is expected. In 0.6 Ωrm cm phosphorus doped silicon, no acceptor deep level in the lower band gap is detected by DLTS measurement. This removes the opportunity of a pairing between phosphorus and platinum and suggests the possibility of a Fermi level controlled complex formation.

  12. Beryllium doped p-type GaN grown by metal-organic chemical vapor depostion

    International Nuclear Information System (INIS)

    Al-Tahtamouni, T.M.; Sedhain, A.; Lin, J.Y.; Jiang, H.X.

    2010-01-01

    The authors report on the growth of Be-doped p-type GaN epilayers by metal-organic chmical vapor deposition (MOCVD). The electrical and optical properties of the Be-doped GaN epilayers were studied by Hall-effect measurements and photoluminescence (PL) spectroscopy. The PL spectra of Be-doped GaN epilayers ethibited two emission lines at 3.36 and 2.71 eV, which were obsent in undoped epilayers. The transition at 3.36 eV was at 3.36 and 2.71eV, which were absent in undoped epilayers. The transition at 3.36 eV was assigned to the transition of free electrons to the neutral Be acceptor Be d eg.. The transition at 2.71 eV was assigned to the transition of electrons bound to deep level donors to the Be d eg. acceptors. Three independent measurements: (a) resistivity vs. temperature, (b) PL peak positions between Be doped and undoped GaN and (c) activation energy of 2.71 eV transition all indicate that the Be energy level is between 120 and 140 meV above the valence band. This is about 20-40 meV shallower than the Mg energy level (160 meV) in GaN. It is thus concluded that Be could be an excellent acceptor dopant in nitride materials. (authors).

  13. Site preference of Mg acceptors and improvement of p-type doping efficiency in nitride alloys.

    Science.gov (United States)

    Park, Ji-Sang; Chang, K J

    2013-06-19

    We perform first-principles density functional calculations to investigate the effect of Al and In on the formation energy and acceptor level of Mg in group-III nitride alloys. Our calculations reveal a tendency for the Mg dopants to prefer to occupy the lattice sites surrounded with Al atoms, whereas hole carriers are generated in In- or Ga-rich sites. The separation of the Mg dopants and hole carriers is energetically more favourable than a random distribution of dopants, being attributed to the local bonding effect of weak In and strong Al potentials in alloys. As a consequence, the Mg acceptor level, which represents the activation energy of Mg, tends to decrease with increasing numbers of Al next-nearest neighbours, whereas it increases as the number of In next-nearest neighbours increases. Based on the results, we suggest that the incorporation of higher Al and lower In compositions will improve the p-type doping efficiency in quaternary alloys, in comparison with GaN or AlGaN ternary alloys with similar band gaps.

  14. Porous silicon damage enhanced phosphorus and aluminium gettering of p-type Czochralski silicon

    International Nuclear Information System (INIS)

    Hassen, M.; Ben Jaballah, A.; Hajji, M.; Rahmouni, H.; Selmi, A.; Ezzaouia, H.

    2005-01-01

    In this work, porous silicon damage (PSD) is presented as a simple sequence for efficient external purification techniques. The method consists of using thin nanoporous p-type silicon on both sides of the silicon substrates with randomly hemispherical voids. Then, two main sample types are processed. In the first type, thin aluminium layers (≥1 μm) are thermally evaporated followed by photo-thermal annealing treatments in N 2 atmosphere at one of several temperatures ranging between 600 and 800 deg. C. In the second type, phosphorus is continually diffused in N 2 /O 2 ambient in a solid phase from POCl 3 solution during heating at one of several temperatures ranging between 750 and 1000 deg. C for 1 h. Hall Effect and Van Der Pauw methods prove the existence of an optimum temperature in the case of phosphorus gettering at 900 deg. C yielding a Hall mobility of about 982 cm 2 V -1 s -1 . However, in the case of aluminium gettering, there is no gettering limit in the as mentioned temperature range. Metal/Si Schottky diodes are elaborated to clarify these improvements. In this study, we demonstrate that enhanced metal solubility model cannot explain the gettering effect. The solid solubility of aluminium is higher than that of P atoms in silicon; however, the device yield confirms the effectiveness of phosphorus as compared to aluminium

  15. A Proposed Method for Improving the Performance of P-Type GaAs IMPATTs

    Directory of Open Access Journals (Sweden)

    H. A. El-Motaafy

    2012-07-01

    Full Text Available A special waveform is proposed and assumed to be the optimum waveform for p-type GaAs IMPATTs. This waveform is deduced after careful and extensive study of the performance of these devices. The results presented here indicate the superiority of the performance of the IMPATTs driven by the proposed waveform over that obtained when the same IMPATTs are driven by the conventional sinusoidal waveform. These results are obtained using a full-scale computer simulation program that takes fully into account all the physical effects pertinent to IMPATT operation.  In this paper, it is indicated that the superiority of the proposed waveform is attributed to its ability to reduce the bad effects that usually degrade the IMPATT performance such as the space-charge effect and the drift-velocity dropping below saturation effect. The superiority is also attributed to the ability of the proposed waveform to improve the phase relationship between the terminal voltage and the induced current.Key Words: Computer-Aided Design, GaAs IMPATT, Microwave Engineering

  16. Visible luminescence in photo-electrochemically etched p-type porous silicon: Effect of illumination wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M.; Hamadeh, H., E-mail: scientific@aec.org.sy [Department of Physics, Atomic Energy Commission of Syria (AECS), P.O. Box 6091 Damascus (Syrian Arab Republic)

    2009-08-31

    The effect of low power density of {approx} 5 {mu}W/cm{sup 2} monochromatic light of different wavelengths on the visible photoluminescence (PL) properties of photo-electrochemically formed p-type porous silicon (PS) has been investigated. Two-peak PL 'red' and 'green' is resolved in PS samples etched under blue-green wavelength illumination; 480, 533 and 580 nm. It is found that the weight of 'green' PL has maxima for the sample illuminated with 533 nm wavelength. Whereas, PL spectra of PS prepared under the influence of red illumination or in dark does not exhibit 'green' PL band, but shows considerable enhancement in the 'red' PL peak intensity. Fourier transform infrared (FTIR) spectroscopic analysis reveals the relationship between the structures of chemical bonding in PS and the observed PL behavior. In particular, the PL efficiency is highly affected by the alteration of the relative content of hydride, oxide and hydroxyl species. Moreover, relative content of hydroxyl group with respect to oxide bonding is seen to have strong relationship to the blue PL. Although, the estimated energy gap value of PS samples shows a considerable enlargement with respect to that of bulk c-Si, the FTIR, low temperature PL and Raman measurements and analysis have inconsistency with quantum confinement of PS.

  17. Visible luminescence in photo-electrochemically etched p-type porous silicon: Effect of illumination wavelength

    International Nuclear Information System (INIS)

    Naddaf, M.; Hamadeh, H.

    2010-01-01

    The effect of low power density of ∼5 μWcm - 2 monochromatic light of different wavelengths on the visible photoluminescence (PL) properties of photo-electrochemically formed p-type porous silicon (PS) has been investigated. Tow peak PL red and green is resolved in PS samples etched under blue-green wavelength illumination; 480,533 and 580 nm. It is found that the weight of green PL has maxima for the sample illuminated with 533 nm wavelength whereas, PL spectra of PS prepared under the influence of red illumination or in dark does not exhibit green PL band, but shows considerable enhancement in the red PL peak intensity. Fourier transform infrared (FTIR) spectroscopic analysis reveals the relationship between the structures of chemical bonding in PS and the observed PL behavior. In particular, the PL efficiency is highly affected by the alteration of the relative content of hydride, oxide and hydroxyl species. Moreover, relative content of hydroxyl group with respect to oxide bonding is seen to have strong relationship to the blue PL. Although, the estimated energy gap value of PS samples shows a considerable enlargement with respect to that of bulk c-Si, the FTIR, low temperature PL and Raman measurements and analysis have inconsistency with quantum confinement of PS. (author)

  18. Visible luminescence in photo-electrochemically etched p-type porous silicon: Effect of illumination wavelength

    International Nuclear Information System (INIS)

    Naddaf, M.; Hamadeh, H.

    2009-01-01

    The effect of low power density of ∼ 5 μW/cm 2 monochromatic light of different wavelengths on the visible photoluminescence (PL) properties of photo-electrochemically formed p-type porous silicon (PS) has been investigated. Two-peak PL 'red' and 'green' is resolved in PS samples etched under blue-green wavelength illumination; 480, 533 and 580 nm. It is found that the weight of 'green' PL has maxima for the sample illuminated with 533 nm wavelength. Whereas, PL spectra of PS prepared under the influence of red illumination or in dark does not exhibit 'green' PL band, but shows considerable enhancement in the 'red' PL peak intensity. Fourier transform infrared (FTIR) spectroscopic analysis reveals the relationship between the structures of chemical bonding in PS and the observed PL behavior. In particular, the PL efficiency is highly affected by the alteration of the relative content of hydride, oxide and hydroxyl species. Moreover, relative content of hydroxyl group with respect to oxide bonding is seen to have strong relationship to the blue PL. Although, the estimated energy gap value of PS samples shows a considerable enlargement with respect to that of bulk c-Si, the FTIR, low temperature PL and Raman measurements and analysis have inconsistency with quantum confinement of PS.

  19. Temperature dependence of magnetoresistance in neutron-irradiated and unirradiated high resistivity p-type silicon

    International Nuclear Information System (INIS)

    Yildirim, M.; Efeoglu, H.; Abay, B.; Yogurtcu, Y.K.

    1996-01-01

    The temperature dependence of the transverse magnetoresistance in irradiated and unirradiated p-type Si is studied in the range from 120 to 290 K. The magnetoresistance coefficients for the unirradiated left angle 001 right angle and left angle 1 anti 10 right angle samples increases with decreasing sample temperature in the range from 160 to 290 K, however, this behavior is reversed below 160 K. It is proposed that this reversal is due to the double injection effect. The magnetoresistance coefficient for the irradiated left angle 001 right angle sample increases with decreasing sample temperature in the range of 120 to 290 K and is greater than that for the unirradiated left angle 001 right angle sample. This result can be explained by increased scattering due to the increased number of defects produced by irradiation. On the other hand, the magnetoresistance coefficient for the unirradiated left angle 1 anti 10 right angle sample is found to be greater than that of the unirradiated left angle 001 right angle sample. (orig.)

  20. P-TYPE PLANET–PLANET SCATTERING: KEPLER CLOSE BINARY CONFIGURATIONS

    International Nuclear Information System (INIS)

    Gong, Yan-Xiang

    2017-01-01

    A hydrodynamical simulation shows that a circumbinary planet will migrate inward to the edge of the disk cavity. If multiple planets form in a circumbinary disk, successive migration will lead to planet–planet scattering (PPS). PPS of Kepler -like circumbinary planets is discussed in this paper. The aim of this paper is to answer how PPS affects the formation of these planets. We find that a close binary has a significant influence on the scattering process. If PPS occurs near the unstable boundary of a binary, about 10% of the systems can be completely destroyed after PPS. In more than 90% of the systems, there is only one planet left. Unlike the eccentricity distribution produced by PPS in a single star system, the surviving planets generally have low eccentricities if PPS take place near the location of the currently found circumbinary planets. In addition, the ejected planets are generally the innermost of two initial planets. The above results depend on the initial positions of the two planets. If the initial positions of the planets are moved away from the binary, the evolution tends toward statistics similar to those around single stars. In this process, the competition between the planet–planet force and the planet-binary force makes the eccentricity distribution of surviving planets diverse. These new features of P-type PPS will deepen our understanding of the formation of these circumbinary planets.

  1. Experimental verification of temperature coefficients of resistance for uniformly doped P-type resistors in SOI

    Science.gov (United States)

    Olszacki, M.; Maj, C.; Bahri, M. Al; Marrot, J.-C.; Boukabache, A.; Pons, P.; Napieralski, A.

    2010-06-01

    Many today's microsystems like strain-gauge-based piezoresistive pressure sensors contain doped resistors. If one wants to predict correctly the temperature impact on the performance of such devices, the accurate data about the temperature coefficients of resistance (TCR) are essential. Although such data may be calculated using one of the existing mobility models, our experiments showed that we can observe the huge mismatch between the calculated and measured values. Thus, in order to investigate the TCR values, a set of the test structures that contained doped P-type resistors was fabricated. As the TCR value also depends on the doping profile shape, we decided to use the very thin, 340 nm thick SOI wafers in order to fabricate the quasi-uniformly doped silicon layers ranging from 2 × 1017 at cm-3 to 1.6 × 1019 at cm-3. The results showed that the experimental data for the first-order TCR are quite far from the calculated ones especially over the doping range of 1018-1019 at cm-3 and quite close to the experimental ones obtained by Bullis about 50 years ago for bulk silicon. Moreover, for the first time, second-order coefficients that were not very consistent with the calculations were obtained.

  2. TSC measurements on proton-irradiated p-type Si-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Donegani, Elena; Fretwurst, Eckhart; Garutti, Erika; Junkes, Alexandra [University of Hamburg (Germany)

    2016-07-01

    Thin n{sup +}p Si sensors are potential candidates for coping with neutron equivalent fluences up to 2.10{sup 16} n{sub eq}/cm{sup 2} and an ionizing dose in the order of a few MGy, which are expected e.g. for the HL-LHC upgrade. The aim of the present work is to provide experimental data on radiation-induced defects in order to: firstly, get a deeper understanding of the properties of hadron induced defects, and secondly develop a radiation damage model based on microscopic measurements. Therefore, the outcomes of Thermally Stimulated Current measurements on 200 μm thick Float-Zone (FZ) and Magnetic Czochralski (MCz) diodes will be shown, as a results of irradiation with 23 MeV protons and isothermal annealing. The samples were irradiated in the fluence range (0.3-1).10{sup 14} n{sub eq}/cm{sup 2}, so that the maximal temperature at which the TSC signal is still sharply distinguishable from the dark current is 200 K. In particular, special focus will be given to the defect introduction rate and to the issue of boron removal in p-type silicon. Annealing studies allow to distinguish which defects mainly contribute to the leakage current and which to the space charge, and thus correlate microscopic defects properties with macroscopic sensor properties.

  3. Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2009-04-01

    Full Text Available In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors.

  4. Properties of p-type amorphous silicon carbide window layers prepared using boron trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Gandia, J J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Gutierrez, M T [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Carabe, J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain)

    1993-03-01

    One set (A) of undoped and three sets (B, C and D) of doped hydrogenated amorphous silicon carbide samples have been made in the framework of a research plan for obtaining high quality p-type window layers by radiofrequency glow discharge of silane-based gas mixtures. The samples of sets A and B were made using different RF-power-density to mass-flow ratios for various methane percentages in the gas mixture. The best carbon incorporation in the amorphous silicon lattice was obtained at the highest RF-power density. The properties of sets C and D, prepared using different RF-power densities and silane and methane proportions have been analysed as functions of the concentration of boron trifluoride with respect to silane. In both cases, the optical gap E[sub G], after a slight initial decrease, remains at a value of approximately 2.1 eV without quenching in the doping ranges covered. The best conductivity obtained is 2x10[sup -7] ([Omega] cm)[sup -1]. IR spectra allow to associate these features with the structural quality of the films. (orig.)

  5. Technology development of p-type microstrip detectors with radiation hard p-spray isolation

    International Nuclear Information System (INIS)

    Pellegrini, G.; Fleta, C.; Campabadal, F.; Diez, S.; Lozano, M.; Rafi, J.M.; Ullan, M.

    2006-01-01

    A technology for the fabrication of p-type microstrip silicon radiation detectors using p-spray implant isolation has been developed at CNM-IMB. The p-spray isolation has been optimized in order to withstand a gamma irradiation dose up to 50 Mrad (Si), which represents the ionization radiation dose expected in the middle region of the SCT-Atlas detector of the future Super-LHC during 10 years of operation. The best technological options for the p-spray implant were found by using a simulation software package and dedicated calibration runs. Using the optimized technology, detectors have been fabricated in the Clean Room facility of CNM-IMB, and characterized by reverse current and capacitance measurements before and after irradiation. The average full depletion voltage measured on the non-irradiated detectors was V FD =41±3 V, while the leakage current density for the microstrip devices at V FD +20 V was 400 nA/cm 2

  6. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    KAUST Repository

    Roques, Magali

    2015-11-13

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  7. Reinventing a p-type doping process for stable ZnO light emitting devices

    Science.gov (United States)

    Xie, Xiuhua; Li, Binghui; Zhang, Zhenzhong; Shen, Dezhen

    2018-06-01

    A tough challenge for zinc oxide (ZnO) as the ultraviolet optoelectronics materials is realizing the stable and reliable p-type conductivity. Self-compensation, coming from native donor-type point defects, is a big obstacle. In this work, we introduce a dynamic N doping process with molecular beam epitaxy, which is accomplished by a Zn, N-shutter periodic switch (a certain time shift between them for independent optimization of surface conditions). During the epitaxy, N adatoms are incorporated under the condition of (2  ×  2)  +  Zn vacancies reconstruction on a Zn-polar surface, at which oxygen vacancies (V O), the dominating compensating donors, are suppressed. With the p-ZnO with sufficient holes surviving, N concentration ~1  ×  1019 cm‑3, is employed in a p-i-n light emitting devices. Significant ultraviolet emission of electroluminescence spectra without broad green band (related to V O) at room-temperature are demonstrated. The devices work incessantly without intentional cooling for over 300 h at a luminous intensity reduction of one order of magnitude under the driving of a 10 mA continuous current, which are the demonstration for p-ZnO stability and reliability.

  8. Experimental verification of temperature coefficients of resistance for uniformly doped P-type resistors in SOI

    International Nuclear Information System (INIS)

    Olszacki, M; Maj, C; Al Bahri, M; Marrot, J-C; Boukabache, A; Pons, P; Napieralski, A

    2010-01-01

    Many today's microsystems like strain-gauge-based piezoresistive pressure sensors contain doped resistors. If one wants to predict correctly the temperature impact on the performance of such devices, the accurate data about the temperature coefficients of resistance (TCR) are essential. Although such data may be calculated using one of the existing mobility models, our experiments showed that we can observe the huge mismatch between the calculated and measured values. Thus, in order to investigate the TCR values, a set of the test structures that contained doped P-type resistors was fabricated. As the TCR value also depends on the doping profile shape, we decided to use the very thin, 340 nm thick SOI wafers in order to fabricate the quasi-uniformly doped silicon layers ranging from 2 × 10 17 at cm −3 to 1.6 × 10 19 at cm −3 . The results showed that the experimental data for the first-order TCR are quite far from the calculated ones especially over the doping range of 10 18 –10 19 at cm −3 and quite close to the experimental ones obtained by Bullis about 50 years ago for bulk silicon. Moreover, for the first time, second-order coefficients that were not very consistent with the calculations were obtained.

  9. Inkjet-printed p-type nickel oxide thin-film transistor

    Science.gov (United States)

    Hu, Hailong; Zhu, Jingguang; Chen, Maosheng; Guo, Tailiang; Li, Fushan

    2018-05-01

    High-performance inkjet-printed nickel oxide thin-film transistors (TFTs) with Al2O3 high-k dielectric have been fabricated using a sol-gel precursor ink. The "coffee ring" effect during the printing process was facilely restrained by modifying the viscosity of the ink to control the outward capillary flow. The impacts on the device performance was studied in detail in consideration of annealing temperature of the nickel oxide film and the properties of dielectric layer. The optimized switching ability of the device were achieved at an annealing temperature of 280 °C on a 50-nm-thick Al2O3 dielectric layer, with a hole mobility of 0.78 cm2/V·s, threshold voltage of -0.6 V and on/off current ratio of 5.3 × 104. The as-printed p-type oxide TFTs show potential application in low-cost, large-area complementary electronic devices.

  10. Experimental study of the organic light emitting diode with a p-type silicon anode

    International Nuclear Information System (INIS)

    Ma, G.L.; Xu, A.G.; Ran, G.Z.; Qiao, Y.P.; Zhang, B.R.; Chen, W.X.; Dai, L.; Qin, G.G.

    2006-01-01

    We have fabricated and studied an organic light emitting diode (OLED) with a p-type silicon anode and a SiO 2 buffer layer between the anode and the organic layers which emits light from a semitransparent top Yb/Au cathode. The luminance of the OLED is up to 5600 cd/m 2 at 17 V and 1800 mA/cm 2 , the current efficiency is 0.31 cd/A. Both its luminance and current efficiency are much higher than those of the OLEDs with silicon as the anodes reported previously. The enhancement of the luminance and efficiency can be attributed to an improved balance between the hole- and electron-injection through two efficient ways: 1) restraining the hole-injection by inserting an ultra-thin SiO 2 buffer layer between the Si anode and the organic layers; and 2) enhancing the electron-injection by using a low work function, low optical reflectance and absorption semitransparent Yb/Au cathode

  11. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    Science.gov (United States)

    Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei. PMID:26565797

  12. Fabrication and simulation of single crystal p-type Si nanowire using SOI technology

    International Nuclear Information System (INIS)

    Dehzangi, Arash; Larki, Farhad; Naseri, Mahmud G.; Navasery, Manizheh; Majlis, Burhanuddin Y.; Razip Wee, Mohd F.; Halimah, M.K.; Islam, Md. Shabiul; Md Ali, Sawal H.; Saion, Elias

    2015-01-01

    Highlights: • Single crystal silicon nanowire is fabricated on Si on insulator substrate, using atomic force microscope (AFM) nanolithography and KOH + IPA chemical wet etching. • Some of major parameters in fabrication process, such as writing speed and applied voltage along with KOH etching depth are investigated, and then the I–V characteristic of Si nanowires is measured. • For better understanding of the charge transmission through the nanowire, 3D-TCAD simulation is performed to simulate the Si nanowires with the same size of the fabricated ones, and variation of majority and minority carriers, hole quasi-Fermi level and generation/recombination rate are investigated. - Abstract: Si nanowires (SiNWs) as building blocks for nanostructured materials and nanoelectronics have attracted much attention due to their major role in device fabrication. In the present work a top-down fabrication approach as atomic force microscope (AFM) nanolithography was performed on Si on insulator (SOI) substrate to fabricate a single crystal p-type SiNW. To draw oxide patterns on top of the SOI substrate local anodic oxidation was carried out by AFM in contact mode. After the oxidation procedure, an optimized solution of 30 wt.% KOH with 10 vol.% IPA for wet etching at 63 °C was applied to extract the nanostructure. The fabricated SiNW had 70–85 nm full width at half maximum width, 90 nm thickness and 4 μm length. The SiNW was simulated using Sentaurus 3D software with the exact same size of the fabricated device. I–V characterization of the SiNW was measured and compared with simulation results. Using simulation results variation of carrier's concentrations, valence band edge energy and recombination generation rate for different applied voltage were investigated

  13. Fabrication and simulation of single crystal p-type Si nanowire using SOI technology

    Energy Technology Data Exchange (ETDEWEB)

    Dehzangi, Arash, E-mail: arashd53@hotmail.com [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Larki, Farhad [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Naseri, Mahmud G. [Department of Physics, Faculty of Science, Malayer University, Malayer, Hamedan (Iran, Islamic Republic of); Navasery, Manizheh [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Majlis, Burhanuddin Y.; Razip Wee, Mohd F. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Halimah, M.K. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Islam, Md. Shabiul; Md Ali, Sawal H. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Saion, Elias [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2015-04-15

    Highlights: • Single crystal silicon nanowire is fabricated on Si on insulator substrate, using atomic force microscope (AFM) nanolithography and KOH + IPA chemical wet etching. • Some of major parameters in fabrication process, such as writing speed and applied voltage along with KOH etching depth are investigated, and then the I–V characteristic of Si nanowires is measured. • For better understanding of the charge transmission through the nanowire, 3D-TCAD simulation is performed to simulate the Si nanowires with the same size of the fabricated ones, and variation of majority and minority carriers, hole quasi-Fermi level and generation/recombination rate are investigated. - Abstract: Si nanowires (SiNWs) as building blocks for nanostructured materials and nanoelectronics have attracted much attention due to their major role in device fabrication. In the present work a top-down fabrication approach as atomic force microscope (AFM) nanolithography was performed on Si on insulator (SOI) substrate to fabricate a single crystal p-type SiNW. To draw oxide patterns on top of the SOI substrate local anodic oxidation was carried out by AFM in contact mode. After the oxidation procedure, an optimized solution of 30 wt.% KOH with 10 vol.% IPA for wet etching at 63 °C was applied to extract the nanostructure. The fabricated SiNW had 70–85 nm full width at half maximum width, 90 nm thickness and 4 μm length. The SiNW was simulated using Sentaurus 3D software with the exact same size of the fabricated device. I–V characterization of the SiNW was measured and compared with simulation results. Using simulation results variation of carrier's concentrations, valence band edge energy and recombination generation rate for different applied voltage were investigated.

  14. Field-induced surface passivation of p-type silicon by using AlON films

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.N.; Parm, I.O.; Dhungel, S.K.; Jang, K.S.; Jeong, S.W.; Yoo, J.; Hwang, S.H.; Yi, J. [School of Information and Communication Engineering, Sungkyunkwan University, 300 Chunchun dong, Jangan-gu, Suwon-440746 (Korea)

    2008-02-15

    In the present work, we report on the evidence for a high negative charge density in aluminum oxynitride (AlON) coating on silicon. A comparative study was carried out on the composition and electrical properties of AlON and aluminum nitride (AlN). AlON films were deposited on p-type Si (1 0 0) substrate by RF magnetron sputtering using a mixture of argon and oxygen gases at substrate temperature of 300 C. The electrical properties of the AlON, AlN films were studied through capacitance-voltage (C-V) characteristics of metal-insulator-semiconductor (MIS) using the films as insulating layers. The flatband voltage shift V{sub FB} observed for AlON is around 4.5 V, which is high as compared to the AlN thin film. Heat treatment caused the V{sub FB} reduction to 3 V, but still the negative charge density was observed to be very high. In the AlN film, no fixed negative charge was observed at all. The XRD spectrum of AlON shows the major peaks of AlON (2 2 0) and AlN (0 0 2), located at 2{theta} value of 32.96 and 37.8 , respectively. The atomic percentage of Al, N in AlN film was found to be 42.5% and 57.5%, respectively. Atomic percentages of Al, N and O in EDS of AlON film are 20.21%, 27.31% and 52.48%, respectively. (author)

  15. Host and Pathogen Copper-Transporting P-Type ATPases Function Antagonistically during Salmonella Infection.

    Science.gov (United States)

    Ladomersky, Erik; Khan, Aslam; Shanbhag, Vinit; Cavet, Jennifer S; Chan, Jefferson; Weisman, Gary A; Petris, Michael J

    2017-09-01

    Copper is an essential yet potentially toxic trace element that is required by all aerobic organisms. A key regulator of copper homeostasis in mammalian cells is the copper-transporting P-type ATPase ATP7A, which mediates copper transport from the cytoplasm into the secretory pathway, as well as copper export across the plasma membrane. Previous studies have shown that ATP7A-dependent copper transport is required for killing phagocytosed Escherichia coli in a cultured macrophage cell line. In this investigation, we expanded on these studies by generating Atp7a LysMcre mice, in which the Atp7a gene was specifically deleted in cells of the myeloid lineage, including macrophages. Primary macrophages isolated from Atp7a LysMcre mice exhibit decreased copper transport into phagosomal compartments and a reduced ability to kill Salmonella enterica serovar Typhimurium compared to that of macrophages isolated from wild-type mice. The Atp7a LysMcre mice were also more susceptible to systemic infection by S Typhimurium than wild-type mice. Deletion of the S Typhimurium copper exporters, CopA and GolT, was found to decrease infection in wild-type mice but not in the Atp7a LysMcre mice. These studies suggest that ATP7A-dependent copper transport into the phagosome mediates host defense against S Typhimurium, which is counteracted by copper export from the bacteria via CopA and GolT. These findings reveal unique and opposing functions for copper transporters of the host and pathogen during infection. Copyright © 2017 American Society for Microbiology.

  16. Inkjet Printing NiO-Based p-Type Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Brisse, R; Faddoul, R; Bourgeteau, T; Tondelier, D; Leroy, J; Campidelli, S; Berthelot, T; Geffroy, B; Jousselme, B

    2017-01-25

    Fabrication at low cost of transparent p-type semiconductors with suitable electronic properties is essential toward the scalability of many electronic devices, especially for photovoltaic and photocatalytic applications. In this context, the synthesis of mesoporous NiO films through inkjet printing of a sol-gel ink was investigated for the first time. Nickel chloride and Pluronic F-127, used as nickel oxide precursor and pore-forming agent, respectively, were formulated in a water/ethanol mixture to prepare a jettable ink for Dimatix printer. Multilayer NiO films were formed, and different morphologies could be obtained by playing on the interlayer thermal treatment. At low temperature (30 °C), a porous nanoparticulate-nanofiber dual-pore structure was observed. On the other hand, with a high temperature treatment (450 °C), nanoparticulate denser films without any dual structure were obtained. The mechanism for NiO formation during the final sintering step, investigated by means of X-ray photolectron spectroscopy, shows that a Ni(OH) 2 species is an intermediate between NiCl 2 and NiO. The different morphologies and thicknesses of the NiO films were correlated to their performance in a p-DSSC configuration, using a new push-pull dye (so-called "RBG-174") and an iodine-based electrolyte. Moreover, the positive impact of a nanometric NiO x layer deposited by spin-coating and introduced between FTO and the NiO mesoporous network is highlighted in the present work. The best results were obtained with NiO x /four layer-NiO mesoporous photocathodes of 860 nm, with a current density at the short circuit of 3.42 mA cm -2 (irradiance of 100 mW cm -2 spectroscopically distributed following AM 1.5).

  17. P-type thin films transistors with solution-deposited lead sulfide films as semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo-Castillo, A.; Salas-Villasenor, A.; Mejia, I. [Department of Materials Science and Engineering, The University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Aguirre-Tostado, S. [Centro de Investigacion en Materiales Avanzados, S. C. Alianza Norte 202, Parque de Investigacion e Innovacion Tecnologica, Apodaca, Nuevo Leon, C.P. 666000 (Mexico); Gnade, B.E. [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Quevedo-Lopez, M.A., E-mail: mxq071000@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States)

    2012-01-31

    In this paper we demonstrate p-type thin film transistors fabricated with lead sulfide (PbS) as semiconductor deposited by chemical bath deposition methods. Crystallinity and morphology of the resulting PbS films were characterized using X-ray diffraction, atomic force microscopy and scanning electron microscopy. Devices were fabricated using photolithographic processes in a bottom gate configuration with Au as source and drain top contacts. Field effect mobility for as-fabricated devices was {approx} 0.09 cm{sup 2} V{sup -1} s{sup -1} whereas the mobility for devices annealed at 150 Degree-Sign C/h in forming gas increased up to {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Besides the thermal annealing, the entire fabrications process was maintained below 100 Degree-Sign C. The electrical performance of the PbS-thin film transistors was studied before and after the 150 Degree-Sign C anneal as well as a function of the PbS active layer thicknesses. - Highlights: Black-Right-Pointing-Pointer Thin film transistors with PbS as semiconductor deposited by chemical bath deposition. Black-Right-Pointing-Pointer Photolithography-based thin film transistors with PbS films at low temperatures. Black-Right-Pointing-Pointer Electron mobility for anneal-PbS devices of {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Black-Right-Pointing-Pointer Highest mobility reported in thin film transistors with PbS as the semiconductor.

  18. Preparation of gallium-68 radiopharmaceuticals for positron tomography. Progress report, November 1, 1978-October 31, 1979

    International Nuclear Information System (INIS)

    Welch, M.J.

    1978-06-01

    Although the germanium-gallium generator is probably the only source of positron-emitting radionuclides that would enable the wide application of positron tomography, the generator system in use suffers from several major disadvantages. The most important of these is that the generator is eluted with EDTA, and EDTA forms a very strong chelate with gallium. In order to produce radiopharmaceuticals other than gallium-68 EDTA it is necessary to break the stable EDTA complex and remove all the EDTA. A new generator system using a solvent extraction system which will produce gallium-68 8-hydroxyquinoline, a weak chelate has been developed. Using this agent, several gallium-68 radiopharmaceuticals have been synthesized and tested in vitro and in vivo. Attempts have been made using polarographic and chromatographic techniques to investigate the stability of gallium-68 complexes with a series of cryptates

  19. Angiotensin-I-converting enzyme and gallium scan in noninvasive evaluation of sarcoidosis

    International Nuclear Information System (INIS)

    Nosal, A.; Schleissner, L.A.; Mishkin, F.S.; Lieberman, J.

    1979-01-01

    Angiotensin-converting enzyme assays and gallium-scan results were obtained from 27 patients with biopsy-proven, clinically active sarcoidosis. Twenty-three of these patients had elevated converting enzyme levels, and 22 had positive gallium-scan results. Three of four patients with normal or borderline-elevated levels of angiotensin-converting enzyme also had positive gallium-scan results. Of 156 nonsarcoid patients (pulmonary and other diseases), 27 were found to have elevated serum converting enzyme levels, and 25 of these had negative gallium-scan results. These results indicate that the combination of an assay of angiotensin-converting enzyme and gallium scan increases diagnostic specificity from 83% to 99% without sacrificing sensitivity. It was concluded that the concurrent use of angiotensin-converting enzyme assay and gallium scan is of value in the diagnosis of sarcoidosis

  20. Angiotensin-I-converting enzyme and gallium scan in noninvasive evaluation of sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Nosal, A. (Harbor General Hospital, Torrance, CA); Schleissner, L.A.; Mishkin, F.S.; Lieberman, J.

    1979-03-01

    Angiotensin-converting enzyme assays and gallium-scan results were obtained from 27 patients with biopsy-proven, clinically active sarcoidosis. Twenty-three of these patients had elevated converting enzyme levels, and 22 had positive gallium-scan results. Three of four patients with normal or borderline-elevated levels of angiotensin-converting enzyme also had positive gallium-scan results. Of 156 nonsarcoid patients (pulmonary and other diseases), 27 were found to have elevated serum converting enzyme levels, and 25 of these had negative gallium-scan results. These results indicate that the combination of an assay of angiotensin-converting enzyme and gallium scan increases diagnostic specificity from 83% to 99% without sacrificing sensitivity. It was concluded that the concurrent use of angiotensin-converting enzyme assay and gallium scan is of value in the diagnosis of sarcoidosis.