WorldWideScience

Sample records for p-selectin sialylated ligands

  1. Targeting P-selectin glycoprotein ligand-1/P-selectin interactions as a novel therapy for metabolic syndrome.

    Science.gov (United States)

    Patel, Madhukar S; Miranda-Nieves, David; Chen, Jiaxuan; Haller, Carolyn A; Chaikof, Elliot L

    2017-05-01

    Obesity-induced insulin resistance and metabolic syndrome continue to pose an important public health challenge worldwide as they significantly increase the risk of type 2 diabetes and atherosclerotic cardiovascular disease. Advances in the pathophysiologic understanding of this process has identified that chronic inflammation plays a pivotal role. In this regard, given that both animal models and human studies have demonstrated that the interaction of P-selectin glycoprotein ligand-1 (PSGL-1) with P-selectin is not only critical for normal immune response but also is upregulated in the setting of metabolic syndrome, PSGL-1/P-selectin interactions provide a novel target for preventing and treating resultant disease. Current approaches of interfering with PSGL-1/P-selectin interactions include targeted antibodies, recombinant immunoglobulins that competitively bind P-selectin, and synthetic molecular therapies. Experimental models as well as clinical trials assessing the role of these modalities in a variety of diseases have continued to contribute to the understanding of PSGL-1/P-selectin interactions and have demonstrated the difficulty in creating clinically relevant therapeutics. Most recently, however, computational simulations have further enhanced our understanding of the structural features of PSGL-1 and related glycomimetics, which are responsible for high-affinity selectin interactions. Leveraging these insights for the design of next generation agents has thus led to development of a promising synthetic method for generating PSGL-1 glycosulfopeptide mimetics for the treatment of metabolic syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Evolutionary conservation of P-selectin glycoprotein ligand-1 primary structure and function

    Directory of Open Access Journals (Sweden)

    Schapira Marc

    2007-09-01

    Full Text Available Abstract Background P-selectin glycoprotein ligand-1 (PSGL-1 plays a critical role in recruiting leukocytes in inflammatory lesions by mediating leukocyte rolling on selectins. Core-2 O-glycosylation of a N-terminal threonine and sulfation of at least one tyrosine residue of PSGL-1 are required for L- and P-selectin binding. Little information is available on the intra- and inter-species evolution of PSGL-1 primary structure. In addition, the evolutionary conservation of selectin binding site on PSGL-1 has not been previously examined in detail. Therefore, we performed multiple sequence alignment of PSGL-1 amino acid sequences of 14 mammals (human, chimpanzee, rhesus monkey, bovine, pig, rat, tree-shrew, bushbaby, mouse, bat, horse, cat, sheep and dog and examined mammalian PSGL-1 interactions with human selectins. Results A signal peptide was predicted in each sequence and a propeptide cleavage site was found in 9/14 species. PSGL-1 N-terminus is poorly conserved. However, each species exhibits at least one tyrosine sulfation site and, except in horse and dog, a T [D/E]PP [D/E] motif associated to the core-2 O-glycosylation of a N-terminal threonine. A mucin-like domain of 250–280 amino acids long was disclosed in all studied species. It lies between the conserved N-terminal O-glycosylated threonine (Thr-57 in human and the transmembrane domain, and contains a central region exhibiting a variable number of decameric repeats (DR. Interspecies and intraspecies polymorphisms were observed. Transmembrane and cytoplasmic domain sequences are well conserved. The moesin binding residues that serve as adaptor between PSGL-1 and Syk, and are involved in regulating PSGL-1-dependent rolling on P-selectin are perfectly conserved in all analyzed mammalian sequences. Despite a poor conservation of PSGL-1 N-terminal sequence, CHO cells co-expressing human glycosyltransferases and human, bovine, pig or rat PSGL-1 efficiently rolled on human L- or P-selectin

  3. Cancer cell–derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo

    Science.gov (United States)

    Thomas, Grace M.; Panicot-Dubois, Laurence; Lacroix, Romaric; Dignat-George, Françoise; Lombardo, Dominique

    2009-01-01

    Recent publications have demonstrated the presence of tissue factor (TF)–bearing microparticles (MPs) in the blood of patients suffering from cancer. However, whether these MPs are involved in thrombosis remains unknown. We show that pancreatic and lung cancer cells produce MPs that express active TF and P-selectin glycoprotein ligand 1 (PSGL-1). Cancer cell–derived MPs aggregate platelets via a TF-dependent pathway. In vivo, cancer cell–derived MPs, but not their parent cells, infused into a living mouse accumulate at the site of injury and reduce tail bleeding time and the time to occlusion of venules and arterioles. This thrombotic state is also observed in mice developing tumors. In such mice, the amount of circulating platelet-, endothelial cell–, and cancer cell–derived MPs is increased. Endogenous cancer cell–derived MPs shed from the growing tumor are able to accumulate at the site of injury. Infusion of a blocking P-selectin antibody abolishes the thrombotic state observed after injection of MPs or in mice developing a tumor. Collectively, our results indicate that cancer cell–derived MPs bearing PSGL-1 and TF play a key role in thrombus formation in vivo. Targeting these MPs could be of clinical interest in the prevention of thrombosis and to limit formation of metastasis in cancer patients. PMID:19667060

  4. Quantitative Characterization of E-selectin Interaction with Native CD44 and P-selectin Glycoprotein Ligand-1 (PSGL-1) Using a Real Time Immunoprecipitation-based Binding Assay

    KAUST Repository

    Abu Samra, Dina Bashir Kamil; Al Kilani, Alia; Hamdan, Samir; Sakashita, Kosuke; Gadhoum, Samah Z.; Merzaban, Jasmeen

    2015-01-01

    Selectins (E-, P-, and L-selectins) interact with glycoprotein ligands to mediate the essential tethering/rolling step in cell transport and delivery that captures migrating cells from the circulating flow. In this work, we developed a real time immunoprecipitation assay on a surface plasmon resonance chip that captures native glycoforms of two well known E-selectin ligands (CD44/hematopoietic cell E-/L-selectin ligand and P-selectin glycoprotein ligand-1) from hematopoietic cell extracts. Here we present a comprehensive characterization of their binding to E-selectin. We show that both ligands bind recombinant monomeric E-selectin transiently with fast on- and fast off-rates, whereas they bind dimeric E-selectin with remarkably slow onand off-rates. This binding requires the sialyl Lewis x sugar moiety to be placed on both O- and N-glycans, and its association, but not dissociation, is sensitive to the salt concentration. Our results suggest a mechanism through which monomeric selectins mediate initial fast on and fast off kinetics to help capture cells out of the circulating shear flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to significantly slow rolling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Quantitative Characterization of E-selectin Interaction with Native CD44 and P-selectin Glycoprotein Ligand-1 (PSGL-1) Using a Real Time Immunoprecipitation-based Binding Assay

    KAUST Repository

    Abu Samra, Dina Bashir Kamil

    2015-06-29

    Selectins (E-, P-, and L-selectins) interact with glycoprotein ligands to mediate the essential tethering/rolling step in cell transport and delivery that captures migrating cells from the circulating flow. In this work, we developed a real time immunoprecipitation assay on a surface plasmon resonance chip that captures native glycoforms of two well known E-selectin ligands (CD44/hematopoietic cell E-/L-selectin ligand and P-selectin glycoprotein ligand-1) from hematopoietic cell extracts. Here we present a comprehensive characterization of their binding to E-selectin. We show that both ligands bind recombinant monomeric E-selectin transiently with fast on- and fast off-rates, whereas they bind dimeric E-selectin with remarkably slow onand off-rates. This binding requires the sialyl Lewis x sugar moiety to be placed on both O- and N-glycans, and its association, but not dissociation, is sensitive to the salt concentration. Our results suggest a mechanism through which monomeric selectins mediate initial fast on and fast off kinetics to help capture cells out of the circulating shear flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to significantly slow rolling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. An Analysis of Trafficking Receptors Shows that CD44 and P-Selectin Glycoprotein Ligand-1 Collectively Control the Migration of Activated Human T-Cells

    KAUST Repository

    Ali, Amal J.

    2017-05-03

    Selectins guide the traffic of activated T-cells through the blood stream by mediating their tethering and rolling onto inflamed endothelium, in this way acting as beacons to help navigate them to sites of inflammation. Here, we present a comprehensive analysis of E-selectin ligands expressed on activated human T-cells. We identified several novel glycoproteins that function as E-selectin ligands. Specifically, we compared the role of P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, known E-selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein carries a binding epitope identifying it as hematopoietic cell E- and/or L-selectin ligand (HCELL). Furthermore, by knocking down these ligands individually or together in primary activated human T-cells, we demonstrated that CD44/HCELL, and not CD43, cooperates with PSGL-1 as a major E-selectin ligand. Additionally, we demonstrated the relevance of our findings to chronic autoimmune disease, by showing that CD44/HCELL and PSGL-1, but not CD43, from T-cells isolated from psoriasis patients, bind E-selectin.

  7. Modification of P-selectin glycoprotein ligand-1 with a natural killer cell-restricted sulfated lactosamine creates an alternate ligand for L-selectin

    Science.gov (United States)

    André, Pascale; Spertini, Olivier; Guia, Sophie; Rihet, Pascal; Dignat-George, Françoise; Brailly, Hervé; Sampol, José; Anderson, Paul J.; Vivier, Eric

    2000-01-01

    Natural killer (NK) cells are components of the innate immune system that can recognize and kill virally infected cells, tumor cells, and allogeneic cells without prior sensitization. NK cells also elaborate cytokines (e.g., interferon-γ and tumor necrosis factor-α) and chemokines (e.g., macrophage inflammatory protein-1α) that promote the acquisition of antigen-specific immunity. NK cell differentiation is accompanied by the cell surface expression of a mucin-like glycoprotein bearing an NK cell-restricted keratan sulfate-related lactosamine carbohydrate, the PEN5 epitope. Here, we report that PEN5 is a post-translational modification of P-selectin glycoprotein ligand-1 (PSGL-1). The PEN5 epitope creates on PSGL-1 a unique binding site for L-selectin, which is independent of PSGL-1 tyrosine sulfation. On the surface of NK cells, the expression of PEN5 is coordinated with the disappearance of L-selectin and the up-regulation of Killer cell Ig-like Receptors (KIR). These results indicate that NK cell differentiation is accompanied by the acquisition of a unique carbohydrate, PEN5, that can serve as part of a combination code to deliver KIR+ NK cells to specific tissues. PMID:10725346

  8. An Analysis of Trafficking Receptors Shows that CD44 and P-Selectin Glycoprotein Ligand-1 Collectively Control the Migration of Activated Human T-Cells

    KAUST Repository

    Ali, Amal J.; AbuElela, Ayman; Merzaban, Jasmeen

    2017-01-01

    -selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein

  9. Using affinity capillary electrophoresis and computational models for binding studies of heparinoids with p-selectin and other proteins.

    Science.gov (United States)

    Mozafari, Mona; Balasupramaniam, Shantheya; Preu, Lutz; El Deeb, Sami; Reiter, Christian G; Wätzig, Hermann

    2017-06-01

    A fast and precise affinity capillary electrophoresis (ACE) method has been developed and applied for the investigation of the binding interactions between P-selectin and heparinoids as potential P-selectin inhibitors in the presence and absence of calcium ions. Furthermore, model proteins and vitronectin were used to appraise the binding behavior of P-selectin. The normalized mobility ratios (∆R/R f ), which provided information about the binding strength and the overall charge of the protein-ligand complex, were used to evaluate the binding affinities. It was found that P-selectin interacts more strongly with heparinoids in the presence of calcium ions. P-selectin was affected by heparinoids at the concentration of 3 mg/L. In addition, the results of the ACE experiments showed that among other investigated proteins, albumins and vitronectin exhibited strong interactions with heparinoids. Especially with P-selectin and vitronectin, the interaction may additionally induce conformational changes. Subsequently, computational models were applied to interpret the ACE experiments. Docking experiments explained that the binding of heparinoids on P-selectin is promoted by calcium ions. These docking models proved to be particularly well suited to investigate the interaction of charged compounds, and are therefore complementary to ACE experiments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Differing patterns of P-selectin expression in lung injury

    DEFF Research Database (Denmark)

    Bless, N M; Tojo, S J; Kawarai, H

    1998-01-01

    Using two models of acute lung inflammatory injury in rats (intrapulmonary deposition of immunoglobulin G immune complexes and systemic activation of complement after infusion of purified cobra venom factor), we have analyzed the requirements and patterns for upregulation of lung vascular P......-selectin. In the immune complex model, upregulation of P-selectin was defined by Northern and Western blot analysis of lung homogenates, by immunostaining of lung tissue, and by vascular fixation of 125I-labeled anti-P-selectin. P-selectin protein was detected by 1 hour (long before detection of mRNA) and expression......-selectin was dependent on an intact complement system, and the presence of blood neutrophils was susceptible to the antioxidant dimethyl sulfoxide and required C5a but not tumor necrosis factor alpha. In contrast, in the cobra venom factor model, upregulation of P-selectin, which is C5a dependent, was also dimethyl...

  11. Biomechanics of P-selectin PSGL-1 bonds: Shear threshold and integrin-independent cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhihua; Goldsmith, Harry L.; MacIntosh, Fiona A.; Shankaran, Harish; Neelamegham, Sriram

    2006-03-01

    Platelet-leukocyte adhesion may contribute to thrombosis and inflammation. We examined the heterotypic interaction between unactivated neutrophils and either thrombin receptor activating peptide (TRAP) stimulated platelets or P-selectin bearing beads (Ps-beads) in suspension. Cone-plate viscometers were used to apply controlled shear rates from 14-3000/s. Platelet-neutrophil and bead-neutrophil adhesion analysis was performed using both flow cytometry and high-speed videomicroscopy. We observed that while blocking antibodies against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1) alone inhibited platelet-neutrophil adhesion by ~60% at 140/s, these reagents completely blocked adhesion at 3000/s. Anti-Mac-1 alone did not alter platelet-neutrophil adhesion rates at any shear rate, though in synergy with selectin antagonists it abrogated cell binding. Unstimulated neutrophils avidly bound Ps-beads and activated platelets in an integrin-independent manner, suggesting that purely selectin-dependent cell adhesion is possible. In support of this, antagonists against P-selectin or PSGL-1 dissociated previously formed platelet-neutrophil and Ps-bead neutrophil aggregates under shear in a variety of experimental systems, including in assays performed with whole blood. In studies where medium viscosity and shear rate were varied, a subtle shear threshold for P-selectin PSGL-1 binding was also noted at shear rates<100/s and at force loading rates of ~300pN/sec. Results are discussed in light of biophysical computations that characterize the collision between unequal size particles in linear shear flow. Overall, our studies reveal an integrin-independent regime for cell adhesion that may be physiologically relevant.

  12. TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity

    Science.gov (United States)

    Angiari, Stefano; Donnarumma, Tiziano; Rossi, Barbara; Dusi, Silvia; Pietronigro, Enrica; Zenaro, Elena; Della Bianca, Vittorina; Toffali, Lara; Piacentino, Gennj; Budui, Simona; Rennert, Paul; Xiao, Sheng; Laudanna, Carlo; Casasnovas, Jose M.; Kuchroo, Vijay K.; Constantin, Gabriela

    2014-01-01

    SUMMARY Selectins play a central role in leukocyte trafficking by mediating tethering and rolling on vascular surfaces. Here we have reported that T cell immunoglobulin and mucin domain 1 (TIM-1) is a P-selectin ligand. We have shown that human and murine TIM-1 binds to P-selectin, and that TIM-1 mediates tethering and rolling of T helper-1 (Th1) and Th17, but not Th2 and regulatory T cells on P-selectin. Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling in thrombin-activated mesenteric venules and inflamed brain microcirculation. Inhibition of TIM-1 had no effect on naive T cell homing, but reduced T cell recruitment in a skin hypersensitivity model and blocked experimental autoimmune encephalomyelitis. Uniquely, the TIM-1 IgV domain was also required for P-selectin binding. Our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease. PMID:24703780

  13. Raised soluble P-selectin moderately accelerates atherosclerotic plaque progression.

    Directory of Open Access Journals (Sweden)

    Kevin J Woollard

    Full Text Available Soluble P-selectin (sP-selectin, a biomarker of inflammatory related pathologies including cardiovascular and peripheral vascular diseases, also has pro-atherosclerotic effects including the ability to increase leukocyte recruitment and modulate thrombotic responses in vivo. The current study explores its role in progressing atherosclerotic plaque disease. Apoe-/- mice placed on a high fat diet (HFD were given daily injections of recombinant dimeric murine P-selectin (22.5 µg/kg/day for 8 or 16 weeks. Saline or sE-selectin injections were used as negative controls. In order to assess the role of sP-selectin on atherothrombosis an experimental plaque remodelling murine model, with sm22α-hDTR Apoe-/- mice on a HFD in conjunction with delivery of diphtheria toxin to induce targeted vascular smooth muscle apoptosis, was used. These mice were similarly given daily injections of sP-selectin for 8 or 16 weeks. While plaque mass and aortic lipid content did not change with sP-selectin treatment in Apoe-/- or SM22α-hDTR Apoe-/- mice on HFD, increased plasma MCP-1 and a higher plaque CD45 content in Apoe-/- HFD mice was observed. As well, a significant shift towards a more unstable plaque phenotype in the SM22α-hDTR Apoe-/- HFD mice, with increased macrophage accumulation and lower collagen content, leading to a lower plaque stability index, was observed. These results demonstrate that chronically raised sP-selectin favours progression of an unstable atherosclerotic plaque phenotype.

  14. P-selectin in preterm infants suffering necrotizing enterocolitis ...

    African Journals Online (AJOL)

    All neonates were subjected to perinatal history, clinical examination, routine investigations (CBC, plain X-ray and abdominal ultrasonography (US), arterial blood gases and serum bicarbonate, serum sodium, CRP and blood culture), and measurement of blood P-selectin by direct immunofluorescent staining. Results: ...

  15. Reduced blood brain barrier breakdown in P-selectin deficient mice following transient ischemic stroke: a future therapeutic target for treatment of stroke

    Directory of Open Access Journals (Sweden)

    Petterson Jodie

    2010-02-01

    Full Text Available Abstract Background The link between early blood- brain barrier (BBB breakdown and endothelial cell activation in acute stroke remain poorly defined. We hypothesized that P-selectin, a mediator of the early phase of leukocyte recruitment in acute ischemia is also a major contributor to early BBB dysfunction following stroke. This was investigated by examining the relationship between BBB alterations following transient ischemic stroke and expression of cellular adhesion molecule P-selectin using a combination of magnetic resonance molecular imaging (MRMI, intravital microscopy and immunohistochemistry. MRMI was performed using the contrast, gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA conjugated to Sialyl Lewis X (Slex where the latter is known to bind to activated endothelium via E- or P selectins. Middle cerebral artery occlusion was induced in male C57/BL 6 wild-type (WT mice and P-selectin-knockout (KO mice. At 24 hours following middle cerebral artery occlusion, T1 maps were acquired prior to and following contrast injection. In addition to measuring P- and E-selectin expression in brain homogenates, alterations in BBB function were determined immunohistochemically by assessing the extravasation of immunoglobulin G (IgG or staining for polymorphonuclear (PMN leukocytes. In vivo assessment of BBB dysfunction was also investigated optically using intravital microscopy of the pial circulation following the injection of Fluorescein Isothiocyanate (FITC-dextran (MW 2000 kDa. Results MRI confirmed similar infarct sizes and T1 values at 24 hours following stroke for both WT and KO animals. However, the blood to brain transfer constant for Gd DTPA (Kgd demonstrated greater tissue extravasation of Gd DTPA in WT animals than KO mice (P 1 stroke -Δ T1 contralateral control cortex, decreased significantly in the Gd-DTPA(sLeX group compared to Gd-DTPA, indicative of sLeX mediated accumulation of the targeted contrast agent. Regarding BBB

  16. Protein mobilities and P-selectin storage in Weibel-Palade bodies.

    Science.gov (United States)

    Kiskin, Nikolai I; Hellen, Nicola; Babich, Victor; Hewlett, Lindsay; Knipe, Laura; Hannah, Matthew J; Carter, Tom

    2010-09-01

    Using fluorescence recovery after photobleaching (FRAP) we measured the mobilities of EGFP-tagged soluble secretory proteins in the endoplasmic reticulum (ER) and in individual Weibel-Palade bodies (WPBs) at early (immature) and late (mature) stages in their biogenesis. Membrane proteins (P-selectin, CD63, Rab27a) were also studied in individual WPBs. In the ER, soluble secretory proteins were mobile; however, following insertion into immature WPBs larger molecules (VWF, Proregion, tPA) and P-selectin became immobilised, whereas small proteins (ssEGFP, eotaxin-3) became less mobile. WPB maturation led to further decreases in mobility of small proteins and CD63. Acute alkalinisation of mature WPBs selectively increased the mobilities of small soluble proteins without affecting larger molecules and the membrane proteins. Disruption of the Proregion-VWF paracrystalline core by prolonged incubation with NH(4)Cl rendered P-selectin mobile while VWF remained immobile. FRAP of P-selectin mutants revealed that immobilisation most probably involves steric entrapment of the P-selectin extracellular domain by the Proregion-VWF paracrystal. Significantly, immobilisation contributed to the enrichment of P-selectin in WPBs; a mutation of P-selectin preventing immobilisation led to a failure of enrichment. Together these data shed new light on the transitions that occur for soluble and membrane proteins following their entry and storage into post-Golgi-regulated secretory organelles.

  17. Plasma substance P and soluble P-selectin as biomarkers of β ...

    African Journals Online (AJOL)

    Samia A. Ebeid

    2013-09-19

    Sep 19, 2013 ... logic disorder that causes hemolytic anemia because of the de- creased or absent .... AMs), sE-selectin, sP-selectin in sickle cell patients compared to healthy individuals. .... with childhood sickle cell · vasoocclusive crises.

  18. P-selectin targeting to secretory lysosomes of Rbl-2H3 cells

    OpenAIRE

    Kaur, J.; Cutler, D. F.

    2002-01-01

    The biogenesis of secretory lysosomes, which combine characteristics of both lysosomes and secretory granules, is currently of high interest. In particular, it is not clear whether delivery of membrane proteins to the secretory lysosome requires lysosomal, secretory granule, or some novel targeting determinants. Heterologous expression of P-selectin has established that this membrane protein contains targeting signals for both secretory granules and lysosomes. P-selectin is therefore an ideal...

  19. P-Selectin: An Unpredicted Factor for Deep Vein Thrombosis after Total Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Dongquan Shi

    2014-01-01

    Full Text Available Introduction. Deep vein thrombosis (DVT is a severe complication after total hip arthroplasty (THA. It leads to acute pulmonary embolism, a life-threatening disease. P-selectin is a 140-kDa transmembrane glycoprotein. Elevated P-selectin was associated with 1.7-fold increase in the risk of venous thrombosis. Materials and Methods. To confirm the association, a total of 91 subjects who received primary total hip arthroplasty using lateral approach performed by one skilled orthopedic surgeon were studied. All the patients were consecutively enrolled at the Center of Diagnosis and Treatment for Joint Diseases, Drum Tower Hospital affiliated to the Medical School of Nanjing University from 2010 to 2012. All the subjects received venography 3–5 days after operation. We measured P-selectin by means of a highly sensitive sandwich ELISA technique and a commercially available test reagent set. Results. No significant association was detected between P-selectin and DVT (all P  values>0.05. ΔsP-selectin was correlated with weight, APTT after operation, history of DVT, and diagnosis of primary disease ( P values were 0.03, 0.03, 0.04, and 0.02, resp.. Conclusion. P-selectin may not be a predicted factor for deep vein thrombosis after total hip arthroplasty.

  20. Structure and function of the selectin ligand PSGL-1

    Directory of Open Access Journals (Sweden)

    Cummings R.D.

    1999-01-01

    Full Text Available P-selectin glycoprotein ligand-1 (PSGL-1 is a dimeric mucin-like 120-kDa glycoprotein on leukocyte surfaces that binds to P- and L-selectin and promotes cell adhesion in the inflammatory response. The extreme amino terminal extracellular domain of PSGL-1 is critical for these interactions, based on site-directed mutagenesis, blocking monoclonal antibodies, and biochemical analyses. The current hypothesis is that for high affinity interactions with P-selectin, PSGL-1 must contain O-glycans with a core-2 branched motif containing the sialyl Lewis x antigen (NeuAca2®3Galß1®4[Fuca1®3]GlcNAcß1®R. In addition, high affinity interactions require the co-expression of tyrosine sulfate on tyrosine residues near the critical O-glycan structure. This review addresses the biochemical evidence for this hypothesis and the evidence that PSGL-1 is an important in vivo ligand for cell adhesion.

  1. Targeting Selectins and Their Ligands in Cancer

    Directory of Open Access Journals (Sweden)

    Alessandro eNatoni

    2016-04-01

    Full Text Available Aberrant glycosylation is a hallmark of cancer cells with increased evidence pointing to a role in tumor progression. In particular, aberrant sialylation of glycoproteins and glycolipids have been linked to increased immune cell evasion, drug evasion, drug resistance, tumor invasiveness, and vascular dissemination leading to metastases. Hypersialylation of cancer cells is largely the result of overexpression of sialyltransferases. Humans differentially express twenty different sialyltransferases in a tissue-specific manner, each of which catalyze the attachment of sialic acids via different glycosidic linkages (2-3; 2-6 or 2-8 to the underlying glycan chain. One important mechanism whereby overexpression of sialyltransferases contributes to an enhanced metastatic phenotype is via the generation of selectin ligands. Selectin ligand function requires the expression of sialyl-Lewis X and its structural-isomer sialyl-Lewis A, which are synthesized by the combined action of alpha 1-3-fucosyltransferases, 2-3-sialyltransferases, 1-4-galactosyltranferases, and N-acetyl--glucosaminyltransferases. The α2-3-sialyltransferases ST3Gal4 and ST3Gal6 are critical to the generation of functional E- and P-selectin ligands and overexpression of these sialyltransferases have been linked to increased risk of metastatic disease in solid tumors and poor outcome in multiple myeloma. Thus, targeting selectins and their ligands as well as the enzymes involved in their generation, in particular sialyltransferases, could be beneficial to many cancer patients. Potential strategies include sialyltransferase inhibition and the use of selectin antagonists, such as glycomimetic drugs and antibodies. Here, we review ongoing efforts to optimize the potency and selectivity of sialyltransferase inhibitors, including the potential for targeted delivery approaches, as well as evaluate the potential utility of selectin inhibitors, which are now in early clinical

  2. Role of Soluble P-Selectin Among Type 2 Diabetic Patients with and ...

    African Journals Online (AJOL)

    Egyptian Journal of Biochemistry and Molecular Biology ... The levels of glucose, HbA1c, total cholesterol, triacylglycerol, LDL-c, hsCRP and sP-selectin level were significantly higher in the diabetic group with coronary artery disease than in the control group and the diabetic group without coronary artery disease. The level ...

  3. Serum concentrations of soluble (s)L- and (s)P-selectins in women with ovarian cancer.

    Science.gov (United States)

    Majchrzak-Baczmańska, Dominika B; Głowacka, Ewa; Wilczyński, Miłosz; Malinowski, Andrzej

    2018-03-01

    The aim of the study was to compare serum concentration of soluble L- and P-selectins in women with ovarian cancer (OC) and healthy controls, and to investigate sL- and sP-selectin levels with regard to clinical and pathological parameters. Correlation analysis was used to measure the following: sL- and sP-selectin concentration and Ca125; sP-selectin and platelet concentrations; and sL-selectin and serum leukocyte levels in women with OC. The study included 29 patients with OC and 23 healthy controls. Serum concentrations of sL- and sP-selectins were measured in all subjects. Routine diagnostic tests: CBC and USG (both groups) and Ca125 (study group) were performed. Significantly higher serum concentrations of sL- and sP-selectins were found in the study group as compared to controls. Lower levels of serum sL-selectin were observed in women with poorly-differentiated OC (G3) and advanced stages of the disease (FIGO III, IV), but the results were statistically insignificant. No statistically significant relationship was detected between sP-selectin serum concentration in women with OC and tumour differentiation, histological type, and stage of the disease. No significant correlation was found between sL- and sP-selectins and Ca125 levels. A weak correlation was found between serum concentration of sP-selectin in women with OC and platelet count. No statistically significant correlation was observed between sL-selectin concentration and serum leukocyte levels in women with OC. The analysis of sL- and sP-selectin concentrations may be a useful tool in the diagnosis of OC. The levels of sL-selectin decrease with disease progression.

  4. A Panel of Recombinant Mucins Carrying a Repertoire of Sialylated O-Glycans Based on Different Core Chains for Studies of Glycan Binding Proteins

    Directory of Open Access Journals (Sweden)

    Reeja Maria Cherian

    2015-08-01

    Full Text Available Sialylated glycans serve as key elements of receptors for many viruses, bacteria, and bacterial toxins. The microbial recognition and their binding specificity can be affected by the linkage of the terminal sugar residue, types of underlying sugar chains, and the nature of the entire glycoconjugate. Owing to the pathobiological significance of sialylated glycans, we have engineered Chinese hamster ovary (CHO cells to secrete mucin-type immunoglobulin-fused proteins carrying terminal α2,3- or α2,6-linked sialic acid on defined O-glycan core saccharide chains. Besides stably expressing P-selectin glycoprotein ligand-1/mouse immunoglobulin G2b cDNA (PSGL-1/mIgG2b, CHO cells were stably transfected with plasmids encoding glycosyltransferases to synthesize core 2 (GCNT1, core 3 (B3GNT6, core 4 (GCNT1 and B3GNT6, or extended core 1 (B3GNT3 chains with or without the type 1 chain-encoding enzyme B3GALT5 and ST6GAL1. Western blot and liquid chromatography-mass spectrometry analysis confirmed the presence of core 1, 2, 3, 4, and extended core 1 chains carrying either type 1 (Galb3GlcNAc or type 2 (Galb4GlcNAc outer chains with or without α2,6-linked sialic acids. This panel of recombinant mucins carrying a repertoire of sialylated O-glycans will be important tools in studies aiming at determining the fine O-glycan binding specificity of sialic acid-specific microbial adhesins and mammalian lectins.

  5. Protein mobilities and P-selectin storage in Weibel–Palade bodies

    OpenAIRE

    Kiskin, Nikolai I.; Hellen, Nicola; Babich, Victor; Hewlett, Lindsay; Knipe, Laura; Hannah, Matthew J.; Carter, Tom

    2010-01-01

    Using fluorescence recovery after photobleaching (FRAP) we measured the mobilities of EGFP-tagged soluble secretory proteins in the endoplasmic reticulum (ER) and in individual Weibel–Palade bodies (WPBs) at early (immature) and late (mature) stages in their biogenesis. Membrane proteins (P-selectin, CD63, Rab27a) were also studied in individual WPBs. In the ER, soluble secretory proteins were mobile; however, following insertion into immature WPBs larger molecules (VWF, Proregion, tPA) and P...

  6. Sulfated Hexasaccharides Attenuate Metastasis by Inhibition of P-selectin and Heparanase1

    Science.gov (United States)

    Borsig, Lubor; Vlodavsky, Israel; Ishai-Michaeli, Rivka; Torri, Giangiacomo; Vismara, Elena

    2011-01-01

    Development of compounds that target both heparanase and selectins is emerging as a promising approach for cancer therapy. Selectins are vascular cell adhesion molecules that mediate tumor cell interactions with platelets, leukocytes, and the vascular endothelium. Heparanase is an endoglycosidase that degrades heparan sulfate in the tumor microenvironment, cell surfaces, and vessel wall. Acting together, these molecules facilitate tumor cell arrest, extravasation, and metastasis. Here, we report the preparation of novel semisynthetic sulfated tri mannose C-C-linked dimers (STMCs) endowed with heparanase and selectin inhibitory activity. The P-selectin specificity of the STMC was defined by the anomeric linkage of the C-C bond. This STMC hexasaccharide is an effective inhibitor of P-selectin in vivo. We show that selective inhibition of heparanase attenuates metastasis in B16-BL6 melanoma cells, expressing high levels of this endoglycosidase, but has no effect on the metastasis of MC-38 carcinoma cells that express little or no heparanase activity. P-selectin-specific STMC attenuated metastasis in both animal models, indicating that inhibition of tumor cell interaction with the vascular endothelium is critical for cancer dissemination. Thus, the small size, the stability of the C-C bond, and the chemically defined structure of the newly generated STMCs make them superior to heparin derivatives and signify STMCs as valuable candidates for further evaluation. PMID:21532885

  7. Sulfated Hexasaccharides Attenuate Metastasis by Inhibition of P-selectin and Heparanase

    Directory of Open Access Journals (Sweden)

    Lubor Borsig

    2011-05-01

    Full Text Available Development of compounds that target both heparanase and selectins is emerging as a promising approach for cancer therapy. Selectins are vascular cell adhesion molecules that mediate tumor cell interactions with platelets, leukocytes, and the vascular endothelium. Heparanase is an endoglycosidase that degrades heparan sulfate in the tumor microenvironment, cell surfaces, and vessel wall. Acting together, these molecules facilitate tumor cell arrest, extravasation, and metastasis. Here, we report the preparation of novel semisynthetic sulfated tri mannose C-C-linked dimers (STMCs endowed with heparanase and selectin inhibitory activity. The P-selectin specificity of the STMC was defined by the anomeric linkage of the C-C bond. This STMC hexasaccharide is an effective inhibitor of P-selectin in vivo. We show that selective inhibition of heparanase attenuates metastasis in B16-BL6 melanoma cells, expressing high levels of this endoglycosidase, but has no effect on the metastasis of MC-38 carcinoma cells that express little or no heparanase activity. P-selectin-specific STMC attenuated metastasis in both animal models, indicating that inhibition of tumor cell interaction with the vascular endothelium is critical for cancer dissemination. Thus, the small size, the stability of the C-C bond, and the chemically defined structure of the newly generated STMCs make them superior to heparin derivatives and signify STMCs as valuable candidates for further evaluation.

  8. Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. II. Tether flow terminated by P-selectin dissociation from PSGL-1.

    Science.gov (United States)

    Heinrich, Volkmar; Leung, Andrew; Evans, Evan

    2005-03-01

    We have used a biomembrane force probe decorated with P-selectin to form point attachments with PSGL-1 receptors on a human neutrophil (PMN) in a calcium-containing medium and then to quantify the forces experienced by the attachment during retraction of the PMN at fixed speed. From first touch to final detachment, the typical force history exhibited the following sequence of events: i), an initial linear-elastic displacement of the PMN surface, ii), an abrupt crossover to viscoplastic flow that signaled membrane separation from the interior cytoskeleton and the beginning of a membrane tether, and iii), the final detachment from the probe tip most often by one precipitous step of P-selectin:PSGL-1 dissociation. Analyzing the initial elastic response and membrane unbinding from the cytoskeleton in our companion article I, we focus in this article on the regime of tether extrusion that nearly always occurred before release of the extracellular adhesion bond at pulling speeds > or =1 microm/s. The force during tether growth appeared to approach a plateau at long times. Examined over a large range of pulling speeds up to 150 microm/s, the plateau force exhibited a significant shear thinning as indicated by a weak power-law dependence on pulling speed, f(infinity) = 60 pN(nu(pull)/microm/s)(0.25). Using this shear-thinning response to describe the viscous element in a nonlinear Maxwell-like fluid model, we show that a weak serial-elastic component with a stiffness of approximately 0.07 pN/nm provides good agreement with the time course of the tether force approach to the plateau under constant pulling speed.

  9. The hemostatic agent ethamsylate enhances P-selectin membrane expression in human platelets and cultured endothelial cells.

    Science.gov (United States)

    Alvarez-Guerra, Miriam; Hernandez, Maria Rosa; Escolar, Ginés; Chiavaroli, Carlo; Garay, Ricardo P; Hannaert, Patrick

    2002-09-15

    Ethamsylate possesses antihemorrhagic properties, but whether or not it directly activates blood platelets is unclear. Here we investigated the platelet activation potential of ethamsylate, by measuring membrane P-selectin expression with flow cytometry in human whole blood and also by immunofluorescence imaging of isolated human platelets. Moreover, we measured membrane P-selectin expression in the SV40-transformed aortic rat endothelial cell line (SVAREC) and 14C-ethamsylate membrane binding and/or uptake in platelets and endothelial cells. Whole blood flow cytometry showed a modest, but statistically significant increase by ethamsylate in the percentage of platelets expressing P-selectin (from 2% to 4-5%, p ethamsylate tested (1 microM), with maximal enhancement of P-selectin expression (75-90%) at 10 microM ethamsylate. Similar results were obtained in SVAREC endothelial cells. 14C-ethamsylate specifically bound to platelets and endothelial cell membranes, without significant uptake into the cell interior. In conclusion, ethamsylate enhances membrane P-selectin expression in human platelets and in cultured endothelial cells. Ethamsylate specifically binds to some protein receptor in platelet and endothelial cell membranes, receptor which can signal for membrane P-selectin expression. These results support the view that ethamsylate acts on the first step of hemostasis, by improving platelet adhesiveness and restoring capillary resistance. Copyright 2002 Elsevier Science Ltd.

  10. Aqueous extract of Rabdosia rubescens leaves: forming nanoparticles, targeting P-selectin, and inhibiting thrombosis

    Directory of Open Access Journals (Sweden)

    Wang Y

    2015-11-01

    Full Text Available Yuji Wang,1 Jingcheng Tang,1 Haimei Zhu,1 Xueyun Jiang,1 Jiawang Liu,1 Wenyun Xu,1 Haiping Ma,1 Qiqi Feng,1 Jianhui Wu,1 Ming Zhao,1,2 Shiqi Peng1 1Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China; 2Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan Abstract: The hot water extract of Rabdosia rubescens was traditionally used as an antithrombotic medicine. To explore its antithrombotic utility and mechanism, we carried out a series of in vitro and in vivo assays in this study. In vitro platelet aggregation assay showed that the half maximal inhibitory concentration values of aqueous extract of R. rubescens leaves (AERL inhibiting platelet aggregation induced by thrombin, arachidonic acid, adenosine diphosphate, and platelet-activating factor ranged from 0.12 mg/mL to 1.43 mg/mL. The minimal effective oral dose of AERL inhibiting the rats from forming thrombus was 25 mg/kg. Both in vitro and in vivo actions were correlated with AERL concentration-dependently inhibiting sP-selectin release. In water, AERL formed nanoparticles, and their size depended on the concentration. Docking the five nucleotides, 21 phenolic acids, and four diterpenoids identified by high-performance liquid chromatography–photodiode array detector/(-electrospray ionization-tandem mass spectrometry analysis into the active site of P-selectin, rosmarinic acid was predicted to be the antithrombotic ingredient of AERL. In flow cytometry analysis, 1 µM of rosmarinic acid effectively inhibited sP-selectin release in arachidonic acid-activated platelets. In a rat model, 5 mg/kg of oral rosmarinic acid effectively inhibited thrombosis. Keywords: R. rubescens, sP-selectin

  11. Clinical significance of changes of serum of P-selectin, CEA and TSGF levels after operation in patients with rectal cancer

    International Nuclear Information System (INIS)

    Wang Zhizhong; Huang Jin

    2007-01-01

    Objective: To study the clinical significance of postoperative changes of serum P-selectin, CEA and TSGF levels in patients with rectal cancer. Methods: Serum CEA (with RIA), P-selectin (with ELISA), and TSGF (with biochemistry levels were determined) in 32 patients with rectal cancer both before and after operation as well as in 30 controls. Results: Before operation, the serum P-selectin, CEA and TSGF levels were significantly higher than those in controls (P < 0.01), Twenty -two of the 30 patients underwent operative therapy showed no sign of recurrence at one year and their serum P-selectin, CEA and TSGF levels dropped to within normal range. Hower in the 8 patients with recurrence, the serum levels of P-selectin, CEA and TSGF remained abnormally high. Conclusion: Serum P-selectin, CEA and TSGF levels were closely related to the diseases process of rectal cancer and were of prognostic values. (authors)

  12. E-selectin: sialyl Lewis, a dependent adhesion of colon cancer cells, is inhibited differently by antibodies against E-selectin ligands.

    Science.gov (United States)

    Srinivas, U; Påhlsson, P; Lundblad, A

    1996-09-01

    Recent studies have demonstrated that selectins, a new family of cell-adhesion molecules with similar domain structures, mediate the adhesion of peripheral blood cells to interleukin-1 (IL-1)-activated endothelium. In the present study the authors evaluated the role of E-selectin-Sialyl Lewis x (SLe(x))/ Sialyl Lewis a (SLe(a)) interaction in mediating in vitro adhesion of two colon cancer cell lines, HT-29 and COLO 201, to human umbilical cord endothelial cells (HUVEC). Colon cancer cell lines had a strong expression of blood group-related carbohydrate epitopes as evaluated by fluorescence-activated cell sorter (FACS) analysis. It was established that adhesion of HT-29 and COLO 201 cells to IL-1 stimulated HUVEC was calcium dependent and could be inhibited by a monoclonal antibody directed against E-selectin. Prior incubation of cells with two different antibodies directed against SLe(x) and antibodies directed against related Lewis epitopes, Le(x) and Le(a), had no significant effect on adhesion. Three antibodies directed against SLe(a) differed in their capacity to inhibit the adhesion of HT-29 and COLO 201 cells to HUVEC. Only one antibody directed against the SLe(a) structure was effective in inhibiting adhesion of both COLO 201 and HT-29 cells. The difference could not be attributed to titre, the type or number of glycoproteins, or to a difference in the amount of SLe(a) present on individual proteins, suggesting that presence and right presentation of SLe(a) epitope might be important for adhesion of colon cancer cells. Finally, in the in vitro system used, adhesion of HT-29 and COLO 201 cells to activated HUVEC is mediated predominantly by E-selectin/SLe(a) interaction. SLe(x) and related epitopes, Le(x) and Le(a), seem to have limited relevance for colon cancer cell recognition of E-selectin.

  13. Isolation and characterization of N-feruloyltyramine as the P-selectin expression suppressor from garlic (Allium sativum)

    Science.gov (United States)

    Because garlic (Allium sativum) is believed to have positive health effects on cardiovascular disease, the screening of isolated fractions from a garlic extract against cardiovascular disease related-processes should help identify active compounds. Both P-selectin expression suppressing activity ag...

  14. Effect of thrombopoietin receptor agonists on markers of coagulation and P-selectin in patients with immune thrombocytopenia

    DEFF Research Database (Denmark)

    Garabet, Lamya; Ghanima, Waleed; Monceyron Jonassen, Christine

    2018-01-01

    patients in cohort 1. Significantly higher levels of F1+2, D-dimer, and PAI-1 were found in ITP patients before TPO-RA treatment and in patients on long-term TPO-RA treatment than in controls. Pre-treatment levels of sP-selectin did not differ from controls. Analysis of longitudinal trends showed...... an increase in platelet count, sP-selectin, and PAI-1 after initiation of TPO-RA, followed by gradual decline. Platelet count and sP-selectin remained at higher levels throughout the study, whereas PAI-1 did not. Levels of other studied parameters did not show significant changes after initiation of treatment....... Expression of SELP was up-regulated after initiation of TPO-RA, while the expression of SERPINE1 showed no significant changes. In conclusion, elevated pre-treatment levels of F1+2, D-dimer and PAI-1 are compatible with ITP being an intrinsically pro-thrombotic condition. After TPO-RA treatment, there were...

  15. Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Ikuko, E-mail: nakamuri@riken.jp [RIKEN Center for Molecular Imaging Science, Kobe (Japan); Department of Cardiovascular Medicine, Saga University, Saga (Japan); Hasegawa, Koki [RIKEN Center for Molecular Imaging Science, Kobe (Japan); Department of Pathology and Experimental Medicine, Kumamoto University, Kumamoto (Japan); Wada, Yasuhiro [RIKEN Center for Molecular Imaging Science, Kobe (Japan); Hirase, Tetsuaki; Node, Koichi [Department of Cardiovascular Medicine, Saga University, Saga (Japan); Watanabe, Yasuyoshi, E-mail: yywata@riken.jp [RIKEN Center for Molecular Imaging Science, Kobe (Japan)

    2013-03-29

    Highlights: ► P-selectin regulates leukocyte recruitment as an early stage event of atherogenesis. ► We developed an antibody-based molecular imaging probe targeting P-selectin for PET. ► This is the first report on successful PET imaging for delineation of P-selectin. ► P-selectin is a candidate target for atherosclerotic plaque imaging by clinical PET. -- Abstract: Background: Sensitive detection and qualitative analysis of atherosclerotic plaques are in high demand in cardiovascular clinical settings. The leukocyte–endothelial interaction mediated by an adhesion molecule P-selectin participates in arterial wall inflammation and atherosclerosis. Methods and results: A {sup 64}Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid conjugated anti-P-selectin monoclonal antibody ({sup 64}Cu-DOTA-anti-P-selectin mAb) probe was prepared by conjugating an anti-P-selectin monoclonal antibody with DOTA followed by {sup 64}Cu labeling. Thirty-six hours prior to PET and CT fusion imaging, 3 MBq of {sup 64}Cu-DOTA-anti-P-selectin mAb was intravenously injected into low density lipoprotein receptor-deficient Ldlr-/- mice. After a 180 min PET scan, autoradiography and biodistribution of {sup 64}Cu-DOTA-anti-P-selectin monoclonal antibody was examined using excised aortas. In Ldlr-/- mice fed with a high cholesterol diet for promotion of atherosclerotic plaque development, PET and CT fusion imaging revealed selective and prominent accumulation of the probe in the aortic root. Autoradiography of aortas that demonstrated probe uptake into atherosclerotic plaques was confirmed by Oil red O staining for lipid droplets. In Ldlr-/- mice fed with a chow diet to develop mild atherosclerotic plaques, probe accumulation was barely detectable in the aortic root on PET and CT fusion imaging. Probe biodistribution in aortas was 6.6-fold higher in Ldlr-/- mice fed with a high cholesterol diet than in those fed with a normal chow diet. {sup 64}Cu-DOTA-anti-P-selectin m

  16. The influence of propofol on P-selectin expression and nitric oxide production in re-oxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Reperfusion injury is characterized by free radical production and endothelial inflammation. Neutrophils mediate much of the end-organ injury that occurs, requiring P-selectin-mediated neutrophil-endothelial adhesion, and this is associated with decreased endothelial nitric oxide production. Propofol has antioxidant properties in vitro which might abrogate this inflammation. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia and then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg\\/l or propofol 5 microg\\/l for 4 h after re-oxygenation and were then examined for P-selectin expression and supernatant nitric oxide concentrations for 24 h. P-selectin was determined by flow cytometry, and culture supernatant nitric oxide was measured as nitrite. RESULTS: In saline-treated cells, a biphasic increase in P-selectin expression was demonstrated at 30 min (P = 0.01) and 4 h (P = 0.023) after re-oxygenation. Propofol and Diprivan prevented these increases in P-selectin expression (P < 0.05). Four hours after re-oxygenation, propofol decreased endothelial nitric oxide production (P = 0.035). CONCLUSION: This is the first study to demonstrate an effect of propofol upon endothelial P-selectin expression. Such an effect may be important in situations of reperfusion injury such as cardiac transplantation and coronary artery bypass surgery. We conclude that propofol attenuates re-oxygenation-induced endothelial inflammation in vitro.

  17. Molecular evaluation of thrombosis using X-ray phase contrast imaging with microbubbles targeted to P-selectin in mice

    International Nuclear Information System (INIS)

    Tang, Rongbiao; Chai, Wei-Min; Yan, Fuhua; Chen, Ke-Min; Yang, Guo-Yuan

    2016-01-01

    X-ray phase contrast imaging (PCI) provides excellent image contrast by utilizing the phase shift. The introduction of microbubbles into tissues can cause a phase shift to make microbubbles visibly identified on PCI. In this study, we assessed the feasibility of targeted microbubble-based PCI for the detection of thrombosis. The absorption and phase contrast images of P-selectin-targeted microbubbles (MB P ) were obtained and compared in vitro. MB P , control IgG-targeted microbubbles (MB C ), and unbound microbubbles (MB U ) were tested for binding specificity on thrombi expressing P-selectin. MB P were used as molecular PCI probes to evaluate P-selectin expression in a mouse model of arteriovenous shunt thrombosis that was created using PE tubes in the bypass outside of the mouse body. PCI clearly showed the microbubbles not viewable via absorption contrast imaging (ACI). In vitro attachment of MB P (91.60 ± 11.63) to thrombi was significantly higher than attachment of MB C (17.80 ± 4.02, P < 0.001) or MB U (9.80 ± 2.59, P < 0.001). In the mouse model of arteriovenous shunt thrombosis, the binding affinity of MB P (15.50 ± 6.25) was significantly greater than that of MB C (0.50 ± 0.84, P < 0.001) or MB U (0.33 ± 0.52, P < 0.001). Our results indicate that molecular PCI may be considered as a novel and promising imaging modality for the investigation of thrombosis. (orig.)

  18. Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. I. Membrane separation from the cytoskeleton

    DEFF Research Database (Denmark)

    Evans, Evan; Heinrich, Volkmar; Leung, Andrew

    2005-01-01

    to final detachment, the typical force history exhibited the following sequence of events: i), an initial linear-elastic displacement of the PMN surface, ii), an abrupt crossover to viscoplastic flow that signaled membrane separation from the interior cytoskeleton and the beginning of a membrane tether......, and iii), the final detachment from the probe tip by usually one precipitous step of P-selectin:PSGL-1 dissociation. In this first article I, we focus on the initial elastic response and its termination by membrane separation from the cytoskeleton, initiating tether formation. Quantifying membrane...

  19. Lipid raft-associated β-adducin is required for PSGL-1-mediated neutrophil rolling on P-selectin.

    Science.gov (United States)

    Xu, Tingshuang; Liu, Wenai; Yang, Chen; Ba, Xueqing; Wang, Xiaoguang; Jiang, Yong; Zeng, Xianlu

    2015-02-01

    Lipid rafts, a liquid-ordered plasma membrane microdomain, are related to cell-surface receptor function. PSGL-1, a major surface receptor protein for leukocyte, also acts as a signaling receptor in leukocyte rolling. To investigate the role of lipid raft in PSGL-1 signaling in human neutrophils, we quantitatively analyzed lipid raft proteome of human promyelocytic leukemia cell line HL-60 cells and identified a lipid raft-associated protein β-adducin. PSGL-1 ligation induced dissociation of the raft-associated protein β-adducin from lipid rafts and actin, as well as phosphorylation of β-adducin, indicating a transient uncoupling of lipid rafts from the actin cytoskeleton. Knockdown of β-adducin greatly attenuated HL-60 cells rolling on P-selectin. We also showed that Src kinase is crucial for PSGL-1 ligation-induced β-adducin phosphorylation and relocation. Taken together, these results show that β-adducin is a pivotal lipid raft-associated protein in PSGL-1-mediated neutrophil rolling on P-selectin. © Society for Leukocyte Biology.

  20. Molecular Characterization of the Interactions between Vascular Selectins and Glycoprotein Ligands on Human Hematopoietic Stem/Progenitor Cells

    KAUST Repository

    Abusamra, Dina

    2016-12-01

    The human bone marrow vasculature constitutively expresses both E-selectin and P-selectin where they interact with the cell-surface glycan moiety, sialyl Lewis x, on circulating hematopoietic stem/progenitor cells (HSPCs) to mediate the essential tethering/rolling step. Although several E-selectin glycoprotein ligands (E-selLs) have been identified, the importance of each E-selL on human HSPCs is debatable and requires additional methodologies to advance their specific involvement. The first objective was to fill the knowledge gap in the in vitro characterization of the mechanisms used by selectins to mediate the initial step in the HSPCs homing by developing a real time immunoprecipitation-based assay on a surface plasmon resonance chip. This novel assay bypass the difficulties of purifying ligands, enables the use of natively glycosylated forms of selectin ligands from any model cell of interest and study its binding affinities under flow. We provide the first comprehensive quantitative binding kinetics of two well-documented ligands, CD44 and PSGL-1, with E-selectin. Both ligands bind monomeric E-selectin transiently with fast on- and off-rates while they bind dimeric E-selectin with remarkably slow on- and off-rates with the on-rate, but not the off-rate, is dependent on salt concentration. Thus, suggest a mechanism through which monomeric selectins mediate initial fast-on and -off binding to capture the circulating cells out of shear-flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to slow rolling significantly. The second objective is to fully identify and characterize E/P-selectin ligand candidates expressed on CD34+ HSPCs which cause enhanced migration after intravenous transplantation compared to their CD34- counterparts. CD34 is widely recognized marker of human HSPCs but its natural ligand and function on these cells remain elusive. Proteomics identified CD34 as an E-selL candidate on human HSPCs, whose binding to E

  1. Serum Levels of Soluble P-Selectin Are Increased and Associated With Disease Activity in Patients With Behçet's Syndrome

    Directory of Open Access Journals (Sweden)

    Yusuf Turkoz

    2005-01-01

    Full Text Available Behçet's syndrome (BS is a relapsing, chronic, inflammatory disease characterized by endothelial dysfunction, atherothromboembogenesis, and leukocytoclastic vasculitis with complex immunologic molecular interactions. Generalized derangements of the lymphocyte and neutrophil populations, activated monocytes, and increased PMNLs motility with upregulated cell surface molecules such as ICAM-1, VCAM-1, and E-selectin, which are found on the endothelial cells, leukocytes, and platelets, have all been demonstrated during the course of BS. Our aim is to investigate the association of serum concentrations of soluble P-selectin in patients with BS, and to evaluate whether disease activity has an effect on their blood levels. This multicenter study included 31 patients with BS (15 men and 16 women and 20 age- and sex-matched healthy control volunteers (11 men and nine women. Neutrophil count, erythrocyte sedimentation rate, and acute-phase reactants as well as soluble P-selectin levels were determined. The mean age and sex distributions were similar (P>.05 between BS patients (35 years and control volunteers (36 years. Serum levels of soluble P-selectin in patients with BS (399 ± 72 ng/mL were significantly (P<.001 higher when compared with control subjects (164±40   ng/mL. In addition, active BS patients (453±37 ng/mL had significantly (P<.001 elevated levels of soluble P-selectin than those in inactive period (341±52 ng/mL. This study clearly demonstrated that serum soluble P-selectin levels are increased in BS patients when compared with control subjects, suggesting a modulator role for soluble P-selectin during the course of platelet activation and therefore, atherothrombogenesis formation in BS, especially in active disease.

  2. Novel association of soluble intercellular adhesion molecule 1 and soluble P-selectin with the ABO blood group in a Chinese population.

    Science.gov (United States)

    Zhang, Wenjing; Xu, Qun; Zhuang, Yunlong; Chen, Yuanfeng

    2016-08-01

    Recent studies have reported that the ABO gene can affect circulating expression levels of soluble intercellular adhesion molecule 1 (sICAM-1) and soluble P-selectin (sP-selectin) in Caucasians. However, several factors may affect the association, including the distribution and variations of the ABO gene, ethnic diversity and the inflammatory response status. The aim of the present study was to investigate this issue in Asian subjects of various blood groups. A total of 800 blood samples were randomly selected from healthy blood donors. The ABO blood groups were examined using standard serological tests, and ABO genotypes of group A and group AB specimens were analyzed. Plasma concentrations of sICAM-1 and sP-selectin were detected by standard enzyme-linked immunosorbent assays. In healthy Chinese individuals, blood group A was detected to be significantly associated with lower circulating expression levels of sICAM-1 and sP-selectin, compared with group O. Individuals with ≥1 A1 allele had significantly lower expression levels of sICAM-1 and sP-selectin compared with all other ABO groups. The data indicate the significant association of ABO blood group antigens with sICAM-1 and sP-selectin expression levels in a healthy Chinese population, independent of the specific variations and distributions of ABO blood groups among ethnic populations. This result provides evidence for the previously unidentified role of ABO blood group antigens in the regulation of the inflammatory adhesion process. Accordingly, it can be proposed that ABO blood groups may require consideration when soluble adhesion molecules are identified as predictors for cardiovascular disease.

  3. Relationship between Platelet PPARs, cAMP Levels, and P-Selectin Expression: Antiplatelet Activity of Natural Products

    Directory of Open Access Journals (Sweden)

    Eduardo Fuentes

    2013-01-01

    Full Text Available Platelets are no longer considered simply as cells participating in thrombosis. In atherosclerosis, platelets are regulators of multiple processes, with the recruitment of inflammatory cells towards the lesion sites, inflammatory mediators release, and regulation of endothelial function. The antiplatelet therapy has been used for a long time in an effort to prevent and treat cardiovascular diseases. However, limited efficacy in some patients, drug resistance, and side effects are limitations of current antiplatelet therapy. In this context, a large number of natural products (polyphenols, terpenoids, alkaloids, and fatty acids have been reported with antiplatelet activity. In this sense, the present paper describes mechanisms of antiplatelet action of natural products on platelet P-selectin expression through cAMP levels and its role as peroxisome proliferator-activated receptors agonists.

  4. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    International Nuclear Information System (INIS)

    Wang, Yi; Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing

    2011-01-01

    Highlights: → Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. → Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. → P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. → Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the regulation of foam

  5. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi, E-mail: wangyi2004a@126.com [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China); Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China)

    2011-08-05

    Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the

  6. Indomethacin induced gastropathy in CD18, intercellular adhesion molecule 1, or P-selectin deficient mice

    Science.gov (United States)

    Morise, Z; Granger, D; Fuseler, J; Anderson, D; Grisham, M

    1999-01-01

    BACKGROUND—Neutrophil-endothelial cell interactions are thought to play a critical role in the pathophysiology of non-steroidal anti-inflammatory drug (NSAID) induced gastropathy.
AIMS—To optimise a mouse model of NSAID induced gastropathy and to evaluate the importance of adhesion molecules using adhesion molecule deficient mice.
METHODS—Gastropathy was induced in C57BL/6 mice or their adhesion molecule deficient counterparts via oral administration of indomethacin (20 mg/kg). Lesion scores, mucosal permeability, and histopathology were used to assess gastric mucosal injury.
RESULTS—Intragastric administration of indomethacin induced linear haemorrhagic mucosal lesions, primarily in the corpus of the stomach that were first observed at six hours. These lesions continued to develop over the next six hours with maximal lesion scores and mucosal permeabilities at 12 hours. When indomethacin was administered to mice deficient in CD18, intercellular adhesion molecule 1 (ICAM-1), or P-selectin, there were significant decreases in lesion scores compared with their C57BL/6 controls. In addition, mucosal permeabilities were found to be significantly lower in CD18 or ICAM-1 deficient mice observed at 12 hours.
CONCLUSION—Certain leucocyte and endothelial cell adhesion molecules are important determinants for full expression of indomethacin induced gastropathy. It is proposed that this modification of the mouse model may be useful for the investigation of other pathophysiological mechanisms of NSAID induced gastropathy.


Keywords: indomethacin; gastropathy; cyclooxygenase; intercellular adhesion molecule; VCAM; vascular cell adhesion molecule; P-selectin PMID:10486359

  7. DEFINITION OF ACTIVATED THROMBOCYTE NUMBER WITH ANTIBODIES FOR ACTIVATED FIBRINOGEN AND P-SELECTIN IN PATIENTS WITH ESSENTIAL THROMBOCYTHEMIA AND ANTIAGGREGATION DRUG EFFECT

    Directory of Open Access Journals (Sweden)

    Samo Zver

    2004-12-01

    Full Text Available Background. Essential thrombocythemia (ET is a chronic myeloproliferative disease with a platelet count within the range of 400–2000 × 109/L. Higher percentage of platelets in the circulation of patients with ET express also activation markers on their membranes. Two of such markers are P-selectin and activated fibrinogen on platelet membranes. Because of frequent thrombembolic and also bleeding related complications, treatment of ET is mandatory. Patients whose platelet count is less than 1000 × 109/L and who did not suffer any thrombembolic complication during the course of the disease, are ussually treated with an antiaggregation drug, acetylsalicylic acid 100 mg/daily orally. Clopidogrel is an adenosyn-di-phosphate (ADP receptor antagonist in platelets. There is no routine clinical data about clopidogrel treatment in the patients with ET and only sporadic case reports can be find in the literature.Patients and methods. In our clinical study we compared antiaggregational effects of acetylsalicylic acid and clopidogrel, by measuring the P-selectin level and activated fibrinogen expression on platelet membranes.There were 35 ET patients included, within the age range between 21 and 78 years and with platelet counts within 451–952 × 109/L. None of the patients did suffer any thrombembolic complication during the course of the disease. During the sequential 14 day periods, patients received acetylsalicylic acid 100 mg/daily orally, followed by clopidogrel 75 mg/daily orally and ultimativelly, together acetylsalicylic acid 100 mg/daily orally plus clopidogrel 75 mg/daily orally. After each fourteen days period the level of P-selectin and activated fibrinogen activated platelets were determined with monoclonal antibodies on flow cytometer. Statistical evaluation was calculated on the difference of average values between the two small, independent pair groups with the t-test.Results. When the patients stopped with acetylsalicylic acid and

  8. Divalent cations and the protein surface co-ordinate the intensity of human platelet adhesion and P-selectin surface expression.

    Science.gov (United States)

    Whiss, P A; Andersson, R G G

    2002-07-01

    At sites of blood vessel injury, platelets adhere to exposed vessel components, such as collagen, or immobilized fibrinogen derived from plasma or activated platelets. The divalent cations Mg(2+) and Ca(2+) are essential for platelet adhesion and activation, but Mg(2+) can also inhibit platelet activation. The present study evaluates, by an enzymatic method, the effects of various divalent cations on the adhesion of isolated human platelets to collagen, fibrinogen, albumin or plastic in vitro. By enzyme-linked immunosorbent assay, platelet surface expression of P-selectin was measured to estimate the state of activation on adherence. Mg(2+) increased platelet adhesion exclusively to collagen and fibrinogen at physiologically relevant concentrations. At higher concentrations, the adhesion declined. Ca(2+) induced a weak adhesion only to fibrinogen at physiological doses and a peak of increased adhesion to all protein-coated surfaces at 10 mmol/l. Mn(2+) elicited dose-dependent adhesion only to collagen and fibrinogen. Zn(2+), Ni(2+) and Cu(2+) increased the adhesion of platelets independently of the surface. Ca(2+) dose-dependently inhibited adhesion elicited by Mg(2+) to collagen and fibrinogen. No other combination of divalent cations elicited such an effect. Mg(2+)-dependent platelet adhesion to collagen and Ca(2+)-dependent adhesion to fibrinogen increased P-selectin expression. Thus, the present study shows that the outcome of the platelet adhesion depends on the surface and the access of divalent cations, which co-ordinate the intensity of platelet adhesion and P-selectin surface expression.

  9. Gene deletion of P-Selectin and ICAM-1 does not inhibit neutrophil infiltration into peritoneal cavity following cecal ligation-puncture

    Directory of Open Access Journals (Sweden)

    Hess Karen

    2004-07-01

    Full Text Available Abstract Background Neutrophil infiltration is one of the critical cellular components of an inflammatory response during peritonitis. The adhesion molecules, P-selectin and intercellular adhesion molecule (ICAM-1, mediate neutrophil-endothelial cell interactions and the subsequent neutrophil transendothelial migration during the inflammatory response. Despite very strong preclinical data, recent clinical trials failed to show a protective effect of anti-adhesion therapy, suggesting that the length of injury might be a critical factor in neutrophil infiltration. Therefore, the objective of this study was to determine the role of P-selectin and ICAM-1 in neutrophil infiltration into the peritoneal cavity during early and late phases of peritonitis. Methods Peritonitis was induced in both male wild-type and P-selectin/ICAM-1 double deficient (P/I null mice by cecal ligation-puncture (CLP. Peripheral blood and peritoneal lavage were collected at 6 and 24 hours after CLP. The total leukocyte and neutrophil contents were determined, and neutrophils were identified with the aid of in situ immunohistochemical staining. Comparisons between groups were made by applying ANOVA and student t-test analysis. Results CLP induced a severe inflammatory response associated with a significant leukopenia in both wild-type and P/I null mice. Additionally, CLP caused a significant neutrophil infiltration into the peritoneal cavity that was detected in both groups of mice. However, neutrophil infiltration in the P/I null mice at 6 hours of CLP was significantly lower than the corresponding wild-type mice, which reached a similar magnitude at 24 hours of CLP. In contrast, in peritonitis induced by intraperitoneal inoculation of 2% glycogen, no significant difference in neutrophil infiltration was observed between the P/I null and wild-type mice at 6 hours of peritonitis. Conclusions The data suggest that alternative adhesion pathway(s independent of P-selectin and ICAM

  10. CXC-chemokine regulation and neutrophil trafficking in hepatic ischemia-reperfusion injury in P-selectin/ICAM-1 deficient mice

    Directory of Open Access Journals (Sweden)

    Crockett Elahé T

    2007-05-01

    Full Text Available Abstract Background Neutrophil adhesion and migration are critical in hepatic ischemia and reperfusion injury (I/R. P-selectin and the intercellular adhesion molecule (ICAM-1 can mediate neutrophil-endothelial cell interactions, neutrophil migration, and the interactions of neutrophils with hepatocytes in the liver. Despite very strong preclinical data, recent clinical trials failed to show a protective effect of anti-adhesion therapy in reperfusion injury, indicating that the length of injury might be a critical factor in neutrophil infiltration. Therefore, the aim of this study was to assess the role of P-selectin and ICAM-1 in neutrophil infiltration and liver injury during early and late phases of liver I/R. Methods Adult male wild-type and P-selectin/ICAM-1-deficient (P/I null mice underwent 90 minutes of partial liver ischemia followed by various periods of reperfusion (6, 15 h, and a survival study. Liver injury was assessed by plasma level of alanine aminotransferase (ALT and histopathology. The plasma cytokines, TNF-α, IL-6, MIP-2 and KC, were measured by ELISA. Results Reperfusion caused significant hepatocellular injury in both wild-type and P/I null mice as was determined by plasma ALT levels and liver histopathology. The injury was associated with a marked neutrophil infiltration into the ischemic livers of both wild-type and P/I null mice. Although the levels of ALT and neutrophil infiltration were slightly lower in the P/I null mice compared with the wild-type mice the differences were not statistically significant. The plasma cytokine data of TNF-α and IL-6 followed a similar pattern to ALT data, and no significant difference was found between the wild-type and P/I null groups. In contrast, a significant difference in KC and MIP-2 chemokine levels was observed between the wild-type and P/I null mice. Additionally, the survival study showed a trend towards increased survival in the P/I null group. Conclusion While ICAM-1 and P-selectin

  11. VEGF controls lung Th2 inflammation via the miR-1–Mpl (myeloproliferative leukemia virus oncogene)–P-selectin axis

    Science.gov (United States)

    Vasavada, Hema; Zhang, Jian-ge; Ahangari, Farida; Niu, Naiqian; Liu, Qing; Lee, Chun Geun; Cohn, Lauren

    2013-01-01

    Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF–miR-1–Mpl–P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma. PMID:24043765

  12. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis.

    Science.gov (United States)

    Takyar, Seyedtaghi; Vasavada, Hema; Zhang, Jian-ge; Ahangari, Farida; Niu, Naiqian; Liu, Qing; Lee, Chun Geun; Cohn, Lauren; Elias, Jack A

    2013-09-23

    Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF-miR-1-Mpl-P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma.

  13. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    International Nuclear Information System (INIS)

    Nygaard, Gyrid; Herfindal, Lars; Kopperud, Reidun; Aragay, Anna M.; Holmsen, Holm; Døskeland, Stein Ove; Kleppe, Rune; Selheim, Frode

    2014-01-01

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation

  14. Long-term impact of radiation on plasma concentrations of cytokines (IL-1 and IL-6) and adhesion molecules (ICAM-1 and P-selectin) in Chernobyl clean-up workers from Latvia

    International Nuclear Information System (INIS)

    Kurjane, N.; Kirsfinks, M.; Hagina, E.; Socnevs, A.

    2001-01-01

    Study was undertaken to evaluate plasma concentrations of interleukin-1beta (IL-1), interleukin-6 (IL-6), and adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and P-selectin in persons who participated in the clean-up work of the Chernobyl NPP explosion aftereffects. 40 Chernobyl clean-up workers suffering from most common neurological diseases - polyneuropathy and encephalopathy, and 40 healthy blood donors were analyzed for plasma levels of IL-6, IL1-β, sICAM-1 and sP-selectin 13 years after the accident. The documented external radiation dosage to the investigated Chernobyl clean-up workers was exposed from 0,009 to 0,28 Gy. Significantly elevated plasma concentrations of IL-6 and P-selectin but not of IL-1β were found in Chernobyl clean-up labourers as compared to those in healthy blood donors. (p<0.01). There was no obvious association of cytokine and adhesion molecule levels with radiation doses, as individuals working in the Chernobyl area in 1986 at a time when the external radiation exposure was higher revealed similar plasma concentrations if compared to those of a later period of time (1987-1990). (authors)

  15. Levels of sP-selectin and hs-CRP Decrease with Dietary Intervention with Selenium and Coenzyme Q10 Combined: A Secondary Analysis of a Randomized Clinical Trial

    Science.gov (United States)

    Lindahl, Tomas L.; Svensson, Erland

    2015-01-01

    Background/Objectives Inflammation and oxidative stress are central in many disease states. The major anti-oxidative enzymes contain selenium. The selenium intake in Europe is low, and supplementation with selenium and coenzyme Q10, important anti-oxidants, was evaluated in a previous study. The aim of this study was to evaluate response on the inflammatory biomarkers C-reactive protein, and sP-selectin, and their possible impact on cardiovascular mortality. Subjects/Methods 437 elderly individuals were included in the study. Clinical examination, echocardiography, electrocardiography and blood samples were drawn. The intervention time was 48 months, and median follow-up was 5.2 years. The effects on inflammation/atherosclerosis were evaluated through analyses of CRP and sP-selectin. Evaluations of the effect of the intervention was performed using repeated measures of variance. All mortality was registered, and endpoints of mortality were assessed by Kaplan-Meier plots. Results The placebo group showed a CRP level of 4.8 ng/mL at the start, and 5.1 ng/mL at the study end. The active supplementation group showed a CRP level of 4.1 ng/mL at the start, and 2.1 ng/mL at the study end. SP-selectin exhibited a level of 56.6 mg/mL at the start in the placebo group and 72.3 mg/mL at the study end, and in the active group the corresponding figures were 55.9 mg/mL and 58.0 mg/mL. A significantly smaller increase was demonstrated through repeated measurements of the two biomarkers in those on active supplementation. Active supplementation showed an effect on the CRP and sP-selectin levels, irrespective of the biomarker levels. Reduced cardiovascular mortality was demonstrated in both those with high and low levels of CRP and sP-selectin in the active supplementation group. Conclusion CRP and sP-selectin showed significant changes reflecting effects on inflammation and atherosclerosis in those given selenium and coenzyme Q10 combined. A reduced cardiovascular mortality could

  16. Levels of sP-selectin and hs-CRP Decrease with Dietary Intervention with Selenium and Coenzyme Q10 Combined: A Secondary Analysis of a Randomized Clinical Trial.

    Directory of Open Access Journals (Sweden)

    Urban Alehagen

    Full Text Available Inflammation and oxidative stress are central in many disease states. The major anti-oxidative enzymes contain selenium. The selenium intake in Europe is low, and supplementation with selenium and coenzyme Q10, important anti-oxidants, was evaluated in a previous study. The aim of this study was to evaluate response on the inflammatory biomarkers C-reactive protein, and sP-selectin, and their possible impact on cardiovascular mortality.437 elderly individuals were included in the study. Clinical examination, echocardiography, electrocardiography and blood samples were drawn. The intervention time was 48 months, and median follow-up was 5.2 years. The effects on inflammation/atherosclerosis were evaluated through analyses of CRP and sP-selectin. Evaluations of the effect of the intervention was performed using repeated measures of variance. All mortality was registered, and endpoints of mortality were assessed by Kaplan-Meier plots.The placebo group showed a CRP level of 4.8 ng/mL at the start, and 5.1 ng/mL at the study end. The active supplementation group showed a CRP level of 4.1 ng/mL at the start, and 2.1 ng/mL at the study end. SP-selectin exhibited a level of 56.6 mg/mL at the start in the placebo group and 72.3 mg/mL at the study end, and in the active group the corresponding figures were 55.9 mg/mL and 58.0 mg/mL. A significantly smaller increase was demonstrated through repeated measurements of the two biomarkers in those on active supplementation. Active supplementation showed an effect on the CRP and sP-selectin levels, irrespective of the biomarker levels. Reduced cardiovascular mortality was demonstrated in both those with high and low levels of CRP and sP-selectin in the active supplementation group.CRP and sP-selectin showed significant changes reflecting effects on inflammation and atherosclerosis in those given selenium and coenzyme Q10 combined. A reduced cardiovascular mortality could be demonstrated in the active group

  17. Selected immunological changes in patients with Goeckerman's therapy TNF-alpha, sE-selectin, sP-selectin, sICAM-1 and IL-8

    Energy Technology Data Exchange (ETDEWEB)

    Borska, L.; Fiala, Z.; Krejsek, J.; Andrys, C.; Vokurkova, D.; Hamakova, K.; Kremlacek, J.; Ettler, K. [Charles University, Hradec Kralove (Czech Republic). Faculty of Medicine

    2006-07-01

    Psoriasis is one of the most frequent inflammatory skin diseases in which abnormal individual immune reactivity plays an important role. The aim of the present study was to describe selected immunological changes, concerning pro-inflammatory cytokines (TNF-alpha, IL-8) and adhesion molecules (sE-selectin, sP-selectin, sICAM-1), in 56 patients cured by Goeckerman's therapy (GT). GT includes dermal application of crude coal tar (containing polycyclic aromatic hydrocarbons) and exposure to UV radiation.

  18. Electron Detachment Dissociation (EDD) of Fluorescently Labeled Sialylated Oligosaccharides

    Science.gov (United States)

    Zhou, Wen; Håkansson, Kristina

    2012-01-01

    We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared to IRMPD. Neutral losses and satellite ions such as C – 2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared to 2-AA labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag. PMID:22120881

  19. Quantitative enzymatic production of sialylated galactooligosaccharides with an engineered sialidase from Trypanosoma rangeli

    DEFF Research Database (Denmark)

    Zeuner, Birgitte; Holck, Jesper; Perna, Valentina

    2016-01-01

    Sialylated galactooligosaccharides (GOS) represent a potential infant formula ingredient, which is believed to contribute with a combination of the beneficial properties of the prebiotic GOS as well as of sialylated human milk oligosaccharides. Sialylated GOS do not exist in natural milk, but can...

  20. Polymorphisms of the P-selectin gene and risk of myocardial infarction in men and women in the ECTIM extension study. Etude cas-temoin de l'infarctus myocarde.

    Science.gov (United States)

    Kee, F; Morrison, C; Evans, A E; McCrum, E; McMaster, D; Dallongeville, J; Nicaud, V; Poirier, O; Cambien, F

    2000-11-01

    Studies in animal models and humans implicate cell adhesion molecules in atherogenesis but their role in mediating the risk of myocardial infarction is unclear. The ECTIM (étude cas-temoin de l'infarctus myocarde) extension study was established to determine whether a previously implicated polymorphism of the P-selectin gene was associated with myocardial infarction risk in men and women in Belfast and Glasgow. PATIENTS AND STUDY SETTING: 696 cases with a recent myocardial infarction and 561 age matched controls (both male and female) were recruited into a case-control study in MONICA project areas of Belfast and Glasgow. Demographic and lifestyle information was collected by interview administered questionnaire, and each subject was examined and provided a blood sample for DNA extraction. The polymerase chain reaction (PCR) was used to amplify regions encompassing the P-selectin Thr-->Pro (A/C) polymorphism at position 715. Genotype odds ratios for myocardial infarction were estimated by logistic regression adjusted for population, age, and sex. There was no significant association between conventional risk factors (such as hypercholesterolaemia, increased body mass index, or raised blood pressure) and either the rare or the common Pro(715) allele of the P-selectin gene in controls. Overall, comparing Pro(715)/Pro(715) and Pro(715)/Thr(715) with Thr(715)/Thr(715), with adjustment for centre, age, and sex, the odds ratio was 0.78 (95% confidence interval 0.60 to 1.00) (p = 0.054), indicating a "protective" effect of the less common Pro(715) allele. There was no significant heterogeneity in odds ratios between men and women either in this sample or when combined with the original ECTIM subjects. In a large population based study in two regions of the UK, we have been able to corroborate the earlier ECTIM findings of a lower frequency of the Thr/Pro(715) polymorphism in subjects with myocardial infarction. An apparently "protective effect" of similar magnitude also

  1. HLA class I antibodies trigger increased adherence of monocytes to endothelial cells by eliciting an increase in endothelial P-selectin and, depending on subclass, by engaging FcγRs.

    Science.gov (United States)

    Valenzuela, Nicole M; Mulder, Arend; Reed, Elaine F

    2013-06-15

    Ab-mediated rejection (AMR) of solid organ transplants is characterized by intragraft macrophages. It is incompletely understood how donor-specific Ab binding to graft endothelium promotes monocyte adhesion, and what, if any, contribution is made by the Fc region of the Ab. We investigated the mechanisms underlying monocyte recruitment by HLA class I (HLA I) Ab-activated endothelium. We used a panel of murine mAbs of different subclasses to crosslink HLA I on human aortic, venous, and microvascular endothelial cells and measured the binding of human monocytic cell lines and peripheral blood monocytes. Both anti-HLA I murine (m)IgG1 and mIgG2a induced endothelial P-selectin, which was required for monocyte adhesion to endothelium irrespective of subclass. mIgG2a but not mIgG1 could bind human FcγRs. Accordingly, HLA I mIgG2a but not mIgG1 treatment of endothelial cells significantly augmented recruitment, predominantly through FcγRI, and, to a lesser extent, FcγRIIa. Moreover, HLA I mIgG2a promoted firm adhesion of monocytes to ICAM-1 through Mac-1, which may explain the prominence of monocytes during AMR. We confirmed these observations using human HLA allele-specific mAbs and IgG purified from transplant patient sera. HLA I Abs universally elicit endothelial exocytosis leading to monocyte adherence, implying that P-selectin is a putative therapeutic target to prevent macrophage infiltration during AMR. Importantly, the subclass of donor-specific Ab may influence its pathogenesis. These results imply that human IgG1 and human IgG3 should have a greater capacity to trigger monocyte infiltration into the graft than IgG2 or IgG4 due to enhancement by FcγR interactions.

  2. HLA class I antibodies trigger increased adherence of monocytes to endothelial cells by eliciting an increase in endothelial P-selectin and, depending on subclass, by engaging FcγRs1

    Science.gov (United States)

    Valenzuela, Nicole M; Mulder, Arend; Reed, Elaine F

    2013-01-01

    Antibody-mediated rejection of solid organ transplants is characterized by intragraft macrophages. It is incompletely understood how donor specific antibody binding to graft endothelium promotes monocyte adhesion, and what, if any, contribution is made by the Fc region of the antibody. We investigated the mechanisms underlying monocyte recruitment by HLA class I antibody-activated endothelium. We used a panel of murine monoclonal antibodies of different subclasses to crosslink HLA I on human aortic, venous and microvascular endothelial cells, and measured the binding of human monocytic cell lines and peripheral blood monocytes. Both anti-HLA I murine IgG1 and mIgG2a induced endothelial P-selectin, which was required for monocyte adhesion to endothelium irrespective of subclass. Mouse IgG2a but not mIgG1 could bind human FcγRs. Accordingly, HLA I mIgG2a but not mIgG1 treatment of endothelial cells significantly augmented recruitment, predominantly through FcγRI, and, to a lesser extent, FcγRIIa. Moreover, HLA I mIgG2a promoted firm adhesion of monocytes to ICAM-1 through Mac-1, which may explain the prominence of monocytes during antibody mediated rejection. We confirmed these observations using human HLA allele specific monoclonal antibodies and IgG purified from transplant patient sera. HLA I antibodies universally elicit endothelial exocytosis leading to monocyte adherence, implying that P-selectin is a putative therapeutic target to prevent macrophage infiltration during antibody-mediated rejection. Importantly, the subclass of donor specific antibody may influence its pathogenesis. These results imply that hIgG1 and hIgG3 should have a greater capacity to trigger monocyte infiltration into the graft than IgG2 or IgG4 due to enhancement by FcγR interactions. PMID:23690477

  3. Expression of Lewisa, Sialyl Lewisa, Lewisx, Sialyl Lewisx, Antigens as Prognostic Factors in Patients with Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Tohru Nakagoe

    2000-01-01

    Full Text Available BACKGROUND: Altered expression of blood group-related carbohydrate antigens such as sialyl Lewis (Lex antigen in tumours is associated with tumour progression behaviour and subsequent prognosis. However, the prognostic value of the expression of Le-related antigens in colorectal tumours remains unclear.

  4. Sialylation regulates myofibroblast differentiation of human skin fibroblasts.

    Science.gov (United States)

    Sasaki, Norihiko; Itakura, Yoko; Toyoda, Masashi

    2017-04-18

    Fibroblasts are key players in maintaining skin homeostasis and in orchestrating physiological tissue repair and skin regeneration. Dysfunctions in fibroblasts that occur with aging and the senescent process lead to the delayed healing observed in elderly people. The molecular mechanisms leading to fibroblast dysfunction during aging and the senescent process have not yet been clarified. Previously, changes in patterns of glycosylation were observed in fibroblasts in aging and the senescent process, but the effect of these changes on the function of fibroblasts has not been well documented. Here, we investigated whether changes in glycosylation during the process to senescence may have functional effects on fibroblasts. The changes in cell surface glycans on skin fibroblasts during the process to senescence were examined in early-passage (EP) and late-passage (LP) skin fibroblasts by fluorescence-activated cell sorting analysis using lectins. The contributors to the changes in cell surface glycans were examined by real-time polymerase chain reaction or Western blot analysis. The effects of changes in glycosylation on proliferation, migration, induction of cellular senescence, and myofibroblast differentiation induced by transforming growth factor (TGF)-β1 stimulation were examined in EP fibroblasts. The changes in glycosylation were performed by GalNAc-α-O-benzyl or sialidase treatment. A decrease in sialylation of glycoproteins and an increase in sialidase NEU1 were observed in LP fibroblasts. The reduction of sialylation did not have any effect on proliferation, migration, or induction of cellular senescence. On the other hand, myofibroblast differentiation was inhibited by the reduction of sialylation, indicating that sialylation is important for myofibroblast differentiation. The localization of CD44 in lipid rafts, which is required for myofibroblast differentiation, was inhibited by the reduction of sialylation. Furthermore, reduced myofibroblast

  5. Electron detachment dissociation of fluorescently labeled sialylated oligosaccharides.

    Science.gov (United States)

    Zhou, Wen; Håkansson, Kristina

    2011-12-01

    We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared with infrared multiphoton dissociation. Neutral losses and satellite ions such as C-2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA-labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared with 2-AA-labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Immunologic changes in TNF-alpha, sE-selectin, sP-selectin, sICAM-1, and IL-8 in pediatric patients treated for psoriasis with the Goeckerman regimen

    Energy Technology Data Exchange (ETDEWEB)

    Borska, L.; Fiala, Z.; Krejsek, J.; Andrys, C.; Vokurkova, D.; Hamakova, K.; Kremlacek, J.; Ettler, K. [Charles University of Prague, Hradec Kralove (Czech Republic). Faculty of Medicine

    2007-11-15

    Psoriasis is a chronic inflammatory skin disease which is often manifested during childhood. The present study investigated changes in the serum levels of proinflammatory cytokines and soluble forms of adhesion molecules in children with psoriasis. The observed patient group of 26 children was treated with the Goeckerman regimen. This therapy combines dermal application of crude coal tar with ultraviolet radiation. The Psoriasis Area Severity Index decreased significantly after treatment by with the Goeckerman regimen (p < 0.001). Serum levels of the proinflammatory cytokine TNF-alpha and adhesion molecules sICAM-1, sP-selectin and sE-selectin decreased after the Goeckerman regimen. The TNF-alpha and sICAM-1 decreased significantly (p < 0.05). Our findings support the complex role of these immune parameters in the immunopathogenesis of psoriasis in children. The serum level of IL-8 increased after the Goeckerman regimen. This fact indicates that the chemokine pathway of IL-8 activity could be modulated by this treatment, most likely by polycyclic aromatic hydrocarbons.

  7. Expression and Purification of Glycosyltransferases in Pichia Pastoris: Towards Improving the Migration of Stem Cells by Enhancing Surface Expression of Sialyl Lewis X

    KAUST Repository

    Al-Amoodi, Asma S.

    2017-05-01

    Recruitment of circulating cells towards target sites is primarily dependent on E-selectin receptor/ligand adhesive interactions. Glycosyltransferase (GTs) are involved in the creation of E-selectin ligands. A sialofucosylated terminal tetrasaccharide like glycan structure known as sialyl Lewis x (sLex), is the most recognized ligand by selectins. This structure is found on the surface of cancer cells and leukocytes but is often absent on the surface of many adult stem cell populations. In order to synthesize sLex, GTs must be endogenously expressed and remain active within the cells. Generally, these stem cells express terminal sialylated lactosamine structures on their glycoproteins which require the addition of alpha-(1,3)-fucose to be converted into an E-selectin ligand. There are a number of fucosyltransferases (FUTs) that are able to modify terminal lactosamine structures to create sLex such as FUT6. In this work we focused on expressing and purifying active recombinant FUTs as a tool to help create sLex structures on the surface of adult stem cells in order to enhance their migration.

  8. Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase

    DEFF Research Database (Denmark)

    Holck, Jesper; Larsen, Dorte Møller; Michalak, Malwina

    2014-01-01

    Bifidobacterium strains in single culture fermentations. The trans-sialidase also catalysed the transfer of sialic acid from CGMP to galacto-oligosaccharides (GOS) and to the human milk oligosaccharide (HMO) backbone lacto-N-tetraose (LNT) to produce 3′-sialyl-GOS, including doubly sialylated GOS products, and 3...

  9. Structures of the Streptococcus sanguinis SrpA Binding Region with Human Sialoglycans Suggest Features of the Physiological Ligand.

    Science.gov (United States)

    Loukachevitch, Lioudmila V; Bensing, Barbara A; Yu, Hai; Zeng, Jie; Chen, Xi; Sullam, Paul M; Iverson, T M

    2016-10-11

    Streptococcus sanguinis is a leading cause of bacterial infective endocarditis, a life-threatening infection of heart valves. S. sanguinis binds to human platelets with high avidity, and this adherence is likely to enhance virulence. Previous studies suggest that a serine-rich repeat adhesin termed SrpA mediates the binding of S. sanguinis to human platelets via its interaction with sialoglycans on the receptor GPIbα. However, in vitro binding assays with SrpA and defined sialoglycans failed to identify specific high-affinity ligands. To improve our understanding of the interaction between SrpA and human platelets, we determined cocrystal structures of the SrpA sialoglycan binding region (SrpA BR ) with five low-affinity ligands: three sialylated trisaccharides (sialyl-T antigen, 3'-sialyllactose, and 3'-sialyl-N-acetyllactosamine), a sialylated tetrasaccharide (sialyl-Lewis X ), and a sialyl galactose disaccharide component common to these sialoglyans. We then combined structural analysis with mutagenesis to further determine whether our observed interactions between SrpA BR and glycans are important for binding to platelets and to better map the binding site for the physiological receptor. We found that the sialoglycan binding site of SrpA BR is significantly larger than the sialoglycans cocrystallized in this study, which suggests that binding of SrpA to platelets either is multivalent or occurs via a larger, disialylated glycan.

  10. Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44.

    Science.gov (United States)

    Hidalgo, Andrés; Peired, Anna J; Wild, Martin; Vestweber, Dietmar; Frenette, Paul S

    2007-04-01

    The selectins and their ligands are required for leukocyte extravasation during inflammation. Several glycoproteins have been suggested to bind to E-selectin in vitro, but the complete identification of its physiological ligands has remained elusive. Here, we showed that E-selectin ligand-1 (ESL-1), P-selectin glycoprotein ligand-1 (PSGL-1), and CD44 encompassed all endothelial-selectin ligand activity on neutrophils by using gene- and RNA-targeted loss of function. PSGL-1 played a major role in the initial leukocyte capture, whereas ESL-1 was critical for converting initial tethers into steady slow rolling. CD44 controlled rolling velocity and mediated E-selectin-dependent redistribution of PSGL-1 and L-selectin to a major pole on slowly rolling leukocytes through p38 signaling. These results suggest distinct and dynamic contributions of these three glycoproteins in selectin-mediated neutrophil adhesion and signaling.

  11. ST6GalNAc-I controls expression of sialyl-Tn antigen in gastrointestinal tissues

    DEFF Research Database (Denmark)

    Marcos, Nuno T; Bennett, Eric Paul; Gomes, Joana

    2011-01-01

    -Tn biosynthesis. We developed novel monoclonal antibodies specific for ST6GalNAc-I and evaluated its expression in gastrointestinal tissues. ST6GalNAc-I was detected in normal colon mucosa co-localized with O-acetylated sialyl-Tn. Expression was largely unaltered in colorectal adenocarcinomas. In contrast, we......NAc-I as the major enzyme controlling the expression of cancer-associated sialyl-Tn antigen in gastrointestinal tissues....

  12. ST6GalNAc-I controls expression of sialyl-Tn antigen in gastrointestinal tissues

    DEFF Research Database (Denmark)

    Marcos, Nuno T; Bennett, Eric P; Gomes, Joana

    2011-01-01

    Sialyl-Tn is a simple mucin-type carbohydrate antigen aberrantly expressed in gastrointestinal adenocarcinomas and in the precursor lesion intestinal metaplasia. Sialyl-Tn tumour expression is an independent indicator of poor prognosis. We have previously shown in vitro that ST6GalNAc-I and ST6GalNAc......-II sialyltransferases can synthesize sialyl-Tn. The aim of the present study was to establish whether ST6GalNAc-I is the major enzyme responsible for the expression of sialyl-Tn. We used a model of CHO-ldlD cells producing only MUC1-Tn glycoform and showed that ST6GalNAc-I is the key-enzyme leading to sialyl......-Tn biosynthesis. We developed novel monoclonal antibodies specific for ST6GalNAc-I and evaluated its expression in gastrointestinal tissues. ST6GalNAc-I was detected in normal colon mucosa co-localized with O-acetylated sialyl-Tn. Expression was largely unaltered in colorectal adenocarcinomas. In contrast, we...

  13. A Pasteurella multocida sialyltransferase displaying dual trans-sialidase activities for production of 3′-sialyl and 6′-sialyl glycans

    DEFF Research Database (Denmark)

    Guo, Yao; Jers, Carsten; Meyer, Anne S.

    2014-01-01

    /Kmvalue for the enzyme using 3-sialyllactose as the donor for 6-sialyllactose synthesis at pH 5.4 and 40◦Cwas determined to be 23.22 ± 0.7 M−1s−1. Moreover, the enzyme was capable of catalyzing the synthesisof both 3- and 6-sialylated galactooligosaccharides, when galactooligosaccharides served as acceptors....

  14. Lectin binding assays for in-process monitoring of sialylation in protein production.

    Science.gov (United States)

    Xu, Weiduan; Chen, Jianmin; Yamasaki, Glenn; Murphy, John E; Mei, Baisong

    2010-07-01

    Many therapeutic proteins require appropriate glycosylation for their biological activities and plasma half life. Coagulation factor VIII (FVIII) is a glycoprotein which has extensive post-translational modification by N-linked glycosylation. The terminal sialic acid in the N-linked glycans of FVIII is required for maximal circulatory half life. The extent of FVIII sialylation can be determined by high pH anion-exchange chromatography coupled with a pulse electrochemical detector (HPAEC-PED), but this requires a large amount of purified protein. Using FVIII as a model, the objective of the present study was to develop assays that enable detection and prediction of sialylation deficiency at an early stage in the process and thus prevent downstream product quality excursions. Lectin ECA (Erythrina Cristagalli) binds to unsialylated Galbeta1-4 GlcNAc and the ECA-binding level (i.e., terminal Gal(beta1-4) exposure) is inversely proportional to the level of sialylation. By using ECA, a cell-based assay was developed to measure the global sialylation profile in FVIII producing cells. To examine the Galbeta1-4 exposure on the FVIII molecule in bioreactor tissue culture fluid (TCF), an ELISA-based ECA-FVIII binding assay was developed. The ECA-binding specificity in both assays was assessed by ECA-specific sugar inhibitors and neuraminidase digestion. The ECA-binding specificity was also independently confirmed by a ST3GAL4 siRNA knockdown experiment. To establish the correlation between Galbeta1-4 exposure and the HPAEC-PED determined FVIII sialylation value, the FVIII containing bioreactor TCF and the purified FVIII samples were tested with ECA ELISA binding assay. The results indicated an inverse correlation between ECA binding and the corresponding HPAEC-PED sialylation value. The ECA-binding assays are cost effective and can be rapidly performed, thereby making them effective for in-process monitoring of protein sialylation.

  15. Glycoproteins and sialyl transferase of human B lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Lui, S.W.L.; Ng, M.H.

    1980-01-01

    We used two radiolabeling methods to study glycoproteins on the surface of lymphoblastoid cells. One of the methods affects tritiation of residues which are oxidized with galactose oxidase and the other causes tritiation of neuraminic acid residues. This approach was shown to allow a better resolution of cell surface glycoproteins than if either method were used alone. Glycoproteins of B 1 - 19 cells which harbor the Epstein-Barr virus genomes were compared with those of its parental cell line, BJAB, which does not harbor the viral genomes. These studies did not reveal a unique viral protein. A 28,000 mol. wt. glycoprotein was found to be the most prominent neuraminic acidlabeled product of B 1 - 19 cells and also of the two other cell lines, Raji and Ly38, which harbor the EBV genomes. A similar molecular weight species from BJAB cells identified by galactose oxidase labeling might be deficient in neuraminic acid residues as it was poorly labeled by the periodate oxidation method. The neuraminic acid content and level of sialyl transferase of BJAB cells were found to be lower than those of the other cell lines studied. (auth.)

  16. N-glycan sialylation in a silkworm-baculovirus expression system.

    Science.gov (United States)

    Suganuma, Masatoshi; Nomura, Tsuyoshi; Higa, Yukiko; Kataoka, Yukiko; Funaguma, Shunsuke; Okazaki, Hironobu; Suzuki, Takeo; Fujiyama, Kazuhito; Sezutsu, Hideki; Tatematsu, Ken-Ichiro; Tamura, Toshiki

    2018-02-09

    A silkworm-baculovirus system is particularly effective for producing recombinant proteins, including glycoproteins. However, N-glycan structures in silkworm differ from those in mammals. Glycoproteins in silkworm are secreted as pauci-mannose type N-glycans without sialic acid or galactose residues. Sialic acid on N-glycans plays important roles in protein functions. Therefore, we developed pathways for galactosylation and sialylation in silkworm. Sialylated N-glycans on proteins were successfully produced in silkworm by co-expressing galactosyltransferase and sialyltransferase and providing an external supply of a sialylation-related substrate. α2,3/α2,6 Sialylation to N-glycans was controlled by changing the type of sialyltransferase expressed in silkworm. Furthermore, the co-expression of N-acetylglucosaminyltransferase II facilitated the formation of additional di-sialylated N-glycan structures. Our results provide new information on the control of N-glycosylation in silkworm. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Fucosylated but not sialylated milk oligosaccharides diminish colon motor contractions.

    Directory of Open Access Journals (Sweden)

    John Bienenstock

    Full Text Available Human milk oligosaccharides (HMO are being studied by different groups exploring a broad range of potential beneficial effects to the breastfed infant. Many of these effects have been attributed to a growth promotion effect on certain gut organisms such as bifidobacteria. Additionally, evidence indicates that HMO are able to directly promote positive changes in gut epithelium and immune responses under certain conditions. This study utilizes a standardized ex vivo murine colon preparation to examine the effects of sialylated, fucosylated and other HMO on gut motor contractions. Only the fucosylated molecules, 2'FL and 3'FL, decreased contractility in a concentration dependent fashion. On the basis of IC50 determinations 3'FL was greater than 2 times more effective than 2'FL. The HMO 3'SL and 6'SL, lacto-N-neotetraose (LNnT, and galactooligosaccharides (GOS elicited no effects. Lactose was used as a negative control. Fucosylation seems to underlie this functional regulation of gut contractility by oligosaccharides, and L-fucose, while it was also capable of reducing contractility, was substantially less effective than 3'FL and 2'FL. These results suggest that specific HMO are unlikely to be having these effects via bifidogenesis, but though direct action on neuronally dependent gut migrating motor complexes is likely and fucosylation is important in providing this function, we cannot conclusively shown that this is not indirectly mediated. Furthermore they support the possibility that fucosylated sugars and fucose might be useful as therapeutic or preventative adjuncts in disorders of gut motility, and possibly also have beneficial central nervous system effects.

  18. Chemo-enzymatic synthesis of Neu5Gc-containing sialylated lactulose

    African Journals Online (AJOL)

    The sialic acid modification on cell surface glycoproteins and glycolipids plays a crucial role in many biological processes, including cell adhesion, antigen recognition and signal transduction [17]. Studies have shown that sialylated glycans have a good prospect in food, especially the developing nervous system in.

  19. Rational Design of a New Trypanosoma rangeli Trans-Sialidase for Efficient Sialylation of Glycans

    DEFF Research Database (Denmark)

    Jers, Carsten; Michalak, Malwina; Larsen, Dorte Møller

    2014-01-01

    This paper reports rational engineering of Trypanosoma rangeli sialidase to develop an effective enzyme for a potentially important type of reactivity: production of sialylated prebiotic glycans. The Trypanosoma cruzi trans-sialidase and the homologous T. rangeli sialidase has previously been use...

  20. Analysis and functional consequences of increased Fab-sialylation of intravenous immunoglobulin (IVIG) after lectin fractionation.

    Science.gov (United States)

    Käsermann, Fabian; Boerema, David J; Rüegsegger, Monika; Hofmann, Andreas; Wymann, Sandra; Zuercher, Adrian W; Miescher, Sylvia

    2012-01-01

    It has been proposed that the anti-inflammatory effects of intravenous immunoglobulin (IVIG) might be due to the small fraction of Fc-sialylated IgG. In this study we biochemically and functionally characterized sialic acid-enriched IgG obtained by Sambucus nigra agglutinin (SNA) lectin fractionation. Two main IgG fractions isolated by elution with lactose (E1) or acidified lactose (E2) were analyzed for total IgG, F(ab')(2) and Fc-specific sialic acid content, their pattern of specific antibodies and anti-inflammatory potential in a human in vitro inflammation system based on LPS- or PHA-stimulated whole blood. HPLC and LC-MS testing revealed an increase of sialylated IgG in E1 and more substantially in the E2 fraction. Significantly, the increased amount of sialic acid residues was primarily found in the Fab region whereas only a minor increase was observed in the Fc region. This indicates preferential binding of the Fab sialic acid to SNA. ELISA analyses of a representative range of pathogen and auto-antigens indicated a skewed antibody pattern of the sialylated IVIG fractions. Finally, the E2 fraction exerted a more profound anti-inflammatory effect compared to E1 or IVIG, evidenced by reduced CD54 expression on monocytes and reduced secretion of MCP-1 (CCL2); again these effects were Fab- but not Fc-dependent. Our results show that SNA fractionation of IVIG yields a minor fraction (approx. 10%) of highly sialylated IgG, wherein the sialic acid is mainly found in the Fab region. The tested anti-inflammatory activity was associated with Fab not Fc sialylation.

  1. Analysis and functional consequences of increased Fab-sialylation of intravenous immunoglobulin (IVIG after lectin fractionation.

    Directory of Open Access Journals (Sweden)

    Fabian Käsermann

    Full Text Available It has been proposed that the anti-inflammatory effects of intravenous immunoglobulin (IVIG might be due to the small fraction of Fc-sialylated IgG. In this study we biochemically and functionally characterized sialic acid-enriched IgG obtained by Sambucus nigra agglutinin (SNA lectin fractionation. Two main IgG fractions isolated by elution with lactose (E1 or acidified lactose (E2 were analyzed for total IgG, F(ab'(2 and Fc-specific sialic acid content, their pattern of specific antibodies and anti-inflammatory potential in a human in vitro inflammation system based on LPS- or PHA-stimulated whole blood. HPLC and LC-MS testing revealed an increase of sialylated IgG in E1 and more substantially in the E2 fraction. Significantly, the increased amount of sialic acid residues was primarily found in the Fab region whereas only a minor increase was observed in the Fc region. This indicates preferential binding of the Fab sialic acid to SNA. ELISA analyses of a representative range of pathogen and auto-antigens indicated a skewed antibody pattern of the sialylated IVIG fractions. Finally, the E2 fraction exerted a more profound anti-inflammatory effect compared to E1 or IVIG, evidenced by reduced CD54 expression on monocytes and reduced secretion of MCP-1 (CCL2; again these effects were Fab- but not Fc-dependent. Our results show that SNA fractionation of IVIG yields a minor fraction (approx. 10% of highly sialylated IgG, wherein the sialic acid is mainly found in the Fab region. The tested anti-inflammatory activity was associated with Fab not Fc sialylation.

  2. Quantitative and qualitative characterization of human cancer-associated serum glycoprotein antigens expressing epitopes consisting of sialyl or sialyl-fucosyl type 1 chain.

    Science.gov (United States)

    Kannagi, R; Kitahara, A; Itai, S; Zenita, K; Shigeta, K; Tachikawa, T; Noda, A; Hirano, H; Abe, M; Shin, S

    1988-07-01

    The levels of carbohydrate antigens having epitopes consisting of type 1 chain (R----Gal beta 1----GlcNAc beta 1----3Gal beta 1----R) in the sera of patients with various malignant and nonmalignant disorders have been investigated with the use of three monoclonal antibodies, N-19-9, FH-7, and FH-9. Serum levels of 2----3 sialylated Lea antigen and 2----6 sialylated Lea antigen, defined respectively by antibodies N-19-9 and FH-7, were found to be frequently high in patients with cancer of the digestive system, particularly pancreatic cancer. High levels of 2----3,2----6 disialylated Lc4 antigen, defined by antibody FH-9, were less frequent in cancer patients when compared with the other two antigens. In patients with nonmalignant disorders, especially renal and autoimmune diseases, serum levels of the two type 1 chain antigens defined by FH-7 and FH-9 were more frequently high than that defined by N-19-9. Molecular weights and other general biochemical characteristics of serum mucin carrying the type 1 chain determinants were not significantly different in cancer patients as compared with patients with nonmalignant disorders. However, the degree of glycosylation of the antigen, as assessed by its solubility in perchloric acid, showed significant differences; i.e., the mucin antigen carrying 2----6 sialylated Lea determinant in the sera of patients with nonmalignant disorders had the highest carbohydrate/protein ratio, followed by the mucin carrying the same determinant in the sera of cancer patients. Mucin antigen carrying 2----3 sialylated Lea antigen or 2----3, 2----6 disialylated Lc4 antigen in cancer patients had the lowest carbohydrate/protein ratio among the four groups tested. Thus, the carbohydrate/protein ratio in the type 1 chain mucin antigens in sera of normal subjects is higher than that in sera of cancer patients (P less than 0.05). This finding is in contrast to previous findings on the mucin antigens carrying the type 2 chain determinant (R. Kannagi

  3. Sialylation of lipooligosaccharides is dispensable for the virulence of Haemophilus ducreyi in humans.

    Science.gov (United States)

    Spinola, Stanley M; Li, Wei; Fortney, Kate R; Janowicz, Diane M; Zwickl, Beth; Katz, Barry P; Munson, Robert S

    2012-02-01

    Sialylated glycoconjugates on the surfaces of mammalian cells play important roles in intercellular communication and self-recognition. The sialic acid preferentially expressed in human tissues is N-acetylneuraminic acid (Neu5Ac). In a process called molecular mimicry, many bacterial pathogens decorate their cell surface glycolipids with Neu5Ac. Incorporation of Neu5Ac into bacterial glycolipids promotes bacterial interactions with host cell receptors called Siglecs. These interactions affect bacterial adherence, resistance to serum killing and phagocytosis, and innate immune responses. Haemophilus ducreyi, the etiologic agent of chancroid, expresses lipooligosaccharides (LOS) that are highly sialylated. However, an H. ducreyi sialyltransferase (lst) mutant, whose LOS contain reduced levels of Neu5Ac, is fully virulent in human volunteers. Recently, a second sialyltransferase gene (Hd0053) was discovered in H. ducreyi, raising the possibility that Hd0053 compensated for the loss of lst during human infection. CMP-Neu5Ac is the obligate nucleotide sugar donor for all bacterial sialyltransferases; LOS derived from an H. ducreyi CMP-Neu5Ac synthetase (neuA) mutant has no detectable Neu5Ac. Here, we compared an H. ducreyi neuA mutant to its wild-type parent in several models of pathogenesis. In human inoculation experiments, the neuA mutant formed papules and pustules at rates that were no different than those of its parent. When grown in media with and without Neu5Ac supplementation, the neuA mutant and its parent had similar phenotypes in bactericidal, macrophage uptake, and dendritic cell activation assays. Although we cannot preclude a contribution of LOS sialylation to ulcerative disease, these data strongly suggest that sialylation of LOS is dispensable for H. ducreyi pathogenesis in humans.

  4. Dual modifications strategy to quantify neutral and sialylated N-glycans simultaneously by MALDI-MS.

    Science.gov (United States)

    Zhou, Hui; Warren, Peter G; Froehlich, John W; Lee, Richard S

    2014-07-01

    Differences in ionization efficiency among neutral and sialylated glycans prevent direct quantitative comparison by their respective mass spectrometric signals. To overcome this challenge, we developed an integrated chemical strategy, Dual Reactions for Analytical Glycomics (DRAG), to quantitatively compare neutral and sialylated glycans simultaneously by MALDI-MS. Initially, two glycan samples to be compared undergo reductive amination with 2-aminobenzoic acid and 2-(13)[C6]-aminobenzoic acid, respectively. The different isotope-incorporated glycans are then combined and subjected to the methylamidation of the sialic acid residues in one mixture, homogenizing the ionization responses for all neutral and sialylated glycans. By this approach, the expression change of relevant glycans between two samples is proportional to the ratios of doublet signals with a static 6 Da mass difference in MALDI-MS and the change in relative abundance of any glycan within samples can also be determined. The strategy was chemically validated using well-characterized N-glycans from bovine fetuin and IgG from human serum. By comparing the N-glycomes from a first morning (AM) versus an afternoon (PM) urine sample obtained from a single donor, we further demonstrated the ability of DRAG strategy to measure subtle quantitative differences in numerous urinary N-glycans.

  5. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin: distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones

    International Nuclear Information System (INIS)

    Green, E.D.; Baenziger, J.U.

    1988-01-01

    The asparagine-linked oligosaccharides on the pituitary glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) consist of a heterogeneous array of neutral, sulfated, sialylated, and sulfated/sialylated structures. In this study, the authors determined the relative quantities of the various asparagine-linked oligosaccharides on LH, FSH, and TSH from these three animal species. The proportions of sulfated versus sialylated oligosaccharides varied markedly among the different hormones. Both hormone- and animal species-specific differences in the types and distributions of sulfated, sialylated, and sulfated/sialylated structures were evident. In particular, LH and FSH, which are synthesized in the same pituitary cell and bear α-subunits with the identical amino acid sequence, contained significantly different distributions of sulfated and sialylated oligosaccharides. For all three animal species, the ratio of sialylated to sulfated oligosaccharides differed by >10-fold for LH and FSH, with sulfated structures dominating on LH and sialylated structures on FSH. Sialylated oligosaccharides were also heterogeneous with respect to sialic acid linkage (α2,3 versus α2,6). The differences in oligosaccharide structures among the various pituitary glycoprotein hormones as well as among the various glycosylation sites within a single hormone support the hypothesis that glycosylation may serve important functional roles in the expression and/or regulation of hormone bioactivity

  6. Sialylation of Porphyromonas gingivalis LPS and its effect on bacterial-host interactions.

    Science.gov (United States)

    Zaric, Svetislav S; Lappin, Mark J; Fulton, Catherine R; Lundy, Fionnuala T; Coulter, Wilson A; Irwin, Christopher R

    2017-04-01

    Porphyromonas gingivalis produces different LPS isoforms with significant structural variations of their lipid A and O-antigen moieties that can affect its pro-inflammatory and bone-resorbing potential. We show here, for the first time, that P. gingivalis LPS isolated from W83 strain is highly sialylated and possesses significantly reduced inflammatory potential compared with less sialylated ATCC 33277 strain LPS. Nevertheless, the reduction in the endotoxin activity is not mediated by the presence of sialic acid LPS moieties as the sialic acid-free LPS produced by the mutant W83 strain exhibits a similar inflammatory potential to the wild type strain. Furthermore, our findings suggest that the interaction between the sialic acid LPS moieties and the inhibitory CD33 receptor is prevented by endogenously expressed sialic acid on the surface of THP-1 cells that cannot be out-competed by sialic acid containing P. gingivalis LPS. The present study also highlights the importance of endogenous sialic acid as a 'self-associated molecular pattern' and CD33 receptors in modulation of innate immune response as human gingival fibroblasts, which do not express CD33 receptors, and desialylated THP-1 cells have both been found to have much higher spontaneous IL-8 production than naïve THP-1 cells.

  7. The influence of maternal smoking on transferrin sialylation and fetal biometric parameters.

    Science.gov (United States)

    Wrześniak, Marta; Królik, Małgorzata; Kepinska, Marta; Milnerowicz, Halina

    2016-10-01

    Transferrin is a glycosylated protein responsible for transporting iron, an essential metal responsible for proper fetal development. Tobacco is a heavily used xenobiotic having a negative impact on the human body and pregnancy outcomes. Aims of this study was to examine the influence of tobacco smoking on transferrin sialic acid residues and their connection with fetal biometric parameters in women with iron-deficiency. The study involved 173 samples from pregnant women, smokers and non-smokers, iron deficient and not. Transferrin sialylation was determined by capillary electrophoresis. The cadmium (Cd) level was measured by atomic absorption and the sialic acid concentration by the resorcinol method. Women with iron deficiencies who smoked gave birth earlier than non-smoking, non-iron-deficient women. The Cd level, but not the cotinine level, was positively correlated with transferrin sialylation in the blood of iron-deficient women who smoked; 3-, 4-, 5- and 6-sialoTf correlated negatively with fetal biometric parameters in the same group. It has been shown the relationship between Cd from tobacco smoking and fetal biometric parameters observed only in the iron deficient group suggests an additive effect of these two factors, and indicate that mothers with anemia may be more susceptible to Cd toxicity and disturbed fetal development. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Targeting aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion, migration, and in vivo tumor growth

    NARCIS (Netherlands)

    Bull, C.; Boltje, T.J.; Wassink, M.; Graaf, A.M.A. de; Delft, F.L. van; Brok, M.H.M.G.M. den; Adema, G.J.

    2013-01-01

    Cancer cells decorate their surface with a dense layer of sialylated glycans by upregulating the expression of sialyltransferases and other glycogenes. Although sialic acids play a vital role in many biologic processes, hypersialylation in particular has been shown to contribute to cancer cell

  9. Transferrin Sialylation in Smoking and Non-Smoking Pregnant Women with Intrauterine Growth Restriction.

    Science.gov (United States)

    Wrześniak, Marta; Kepinska, Marta; Bizoń, Anna; Milnerowicz-Nabzdyk, Ewa; Milnerowicz, Halina

    2015-01-01

    Transferrin (Tf) is a glycosylated protein responsible for transporting iron. Various sialylation levels of Tf are observed during physiological and pathological processes. We studied if the changes in iron stores as well as tobacco smoke may have an impact on foetal development and in consequence lead to intrauterine growth restriction (IUGR). In the third trimester of pregnancy, lower levels of 4-sialoTf isoform and higher levels of 5-sialoTf were observed in the serum of non-smoking women with IUGR in comparison to the control group. On the day of labour, level of 2-sialoTf was significantly lower and level of 3-sialo was Tf higher in the serum of non-smoking women. Level of 4-sialo was found lower in the serum of smoking women with IUGR than in the control group. The observed changes may suggest a connection between iron stores, transport of iron to the foetus and foetal development.

  10. Immunization of breast cancer patients using a synthetic sialyl-Tn glycoconjugate plus Detox adjuvant.

    Science.gov (United States)

    MacLean, G D; Reddish, M; Koganty, R R; Wong, T; Gandhi, S; Smolenski, M; Samuel, J; Nabholtz, J M; Longenecker, B M

    1993-01-01

    We have synthesized various formulations that have potential for active specific immunotherapy (ASI) of human cancers. Sialyl-Tn (STn) is a potentially important target structure for ASI because its expression on mucins is a strong, independent predictor of poor prognosis, suggesting that it may have functional significance in the metastatic process. In this first pilot study of synthetic sialyl-Tn hapten conjugated to keyhole limpet hemocyanin (STn-KLH), with Detox adjuvant, toxicity and humoral immunogenicity were assessed in 12 patients with metastatic breast cancer. Toxicity was minimal, restricted to local cutaneous reactions (apart from transient nausea and vomiting following single low-dose cyclophosphamide treatment). Using STn-conjugated human serum albumin in a solid-phase enzyme-linked immunosorbent assay, it was shown that all patients developed IgM and IgG specific for the synthetic STn hapten. Following immunization, most patients were shown to develop increased titres of complement-mediated cytotoxic antibodies, partially inhibited by synthetic STn hapten, but not by the related TF hapten. We also detected IgM and IgG antibodies reactive with natural STn determinants expressed on ovine submaxillary mucin, the STn specificity of this reactivity being confirmed by hapten inhibition. Evaluation of clinical efficacy in a small pilot study is difficult. Five patients are alive 12 or more months after entry, and another 4 patients are alive 6 or more months after entry into the study. All 3 patients with known widespread bulky disease progressed despite ASI, 2 having died from widespread cancer. Two patients had partial responses, each lasting 6 months. While several patients had disease stability for 3-10 months, 1 patient with pulmonary metastases remains stable 15 months after entry into the program.

  11. Antibody-based enzyme-linked lectin assay (ABELLA) for the sialylated recombinant human erythropoietin present in culture supernatant.

    Science.gov (United States)

    Kim, Hyoung Jin; Lee, Seung Jae; Kim, Hong-Jin

    2008-11-04

    The terminal sialic acid of human erythropoietin (hEPO) is essential for in vivo activity. The current resorcinol and HPLC methods for analyzing alpha2,3-linked sialic acid require more than a microgram of purified rhEPO, and purification takes a great deal of time and labor. In this study, we assessed the use of an antibody-based enzyme-linked lectin assay (ABELLA) for analyzing non-purified recombinant hEPO (rhEPO). The major problem of this method was the high background due to terminal sialylation of components of the assay (antibody and bovine serum albumin) other than rhEPO. To solve this problem, we used a monoclonal antibody (Mab 287) to capture the rhEPO, and oxidized the bovine serum albumin used for blocking with meta-periodate. The sialic acid content of non-purified rhEPO measured by ABELLA was similar to that obtained by the resorcinol method on purified rhEPO. ABELLA has advantages such as adaptability and need for minimal amounts of rhEPO (40 ng/ml). Our observations suggest that ABELLA should reduce the time and labor needed to improve culture conditions so as to increase protein sialylation, and also facilitate the study of sialylation mechanisms.

  12. Novel anti-Sialyl-Tn monoclonal antibodies and antibody-drug conjugates demonstrate tumor specificity and anti-tumor activity.

    Science.gov (United States)

    Prendergast, Jillian M; Galvao da Silva, Ana Paula; Eavarone, David A; Ghaderi, Darius; Zhang, Mai; Brady, Dane; Wicks, Joan; DeSander, Julie; Behrens, Jeff; Rueda, Bo R

    Targeted therapeutics that can differentiate between normal and malignant tumor cells represent the ideal standard for the development of a successful anti-cancer strategy. The Sialyl-Thomsen-nouveau antigen (STn or Sialyl-Tn, also known as CD175s) is rarely seen in normal adult tissues, but it is abundantly expressed in many types of human epithelial cancers. We have identified novel antibodies that specifically target with high affinity the STn glycan independent of its carrier protein, affording the potential to recognize a wider array of cancer-specific sialylated proteins. A panel of murine monoclonal anti-STn therapeutic antibodies were generated and their binding specificity and efficacy were characterized in vitro and in in vivo murine cancer models. A subset of these antibodies were conjugated to monomethyl auristatin E (MMAE) to generate antibody-drug conjugates (ADCs). These ADCs demonstrated in vitro efficacy in STn-expressing cell lines and significant tumor growth inhibition in STn-expressing tumor xenograft cancer models with no evidence of overt toxicity.

  13. Sialylated Autoantigen-Reactive IgG Antibodies Attenuate Disease Development in Autoimmune Mouse Models of Lupus Nephritis and Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Yannic C. Bartsch

    2018-06-01

    Full Text Available Pro- and anti-inflammatory effector functions of IgG antibodies (Abs depend on their subclass and Fc glycosylation pattern. Accumulation of non-galactosylated (agalactosylated; G0 IgG Abs in the serum of rheumatoid arthritis and systemic lupus erythematosus (SLE patients reflects severity of the diseases. In contrast, sialylated IgG Abs are responsible for anti-inflammatory effects of the intravenous immunoglobulin (pooled human serum IgG from healthy donors, administered in high doses (2 g/kg to treat autoimmune patients. However, whether low amounts of sialylated autoantigen-reactive IgG Abs can also inhibit autoimmune diseases is hardly investigated. Here, we explore whether sialylated autoantigen-reactive IgG Abs can inhibit autoimmune pathology in different mouse models. We found that sialylated IgG auto-Abs fail to induce inflammation and lupus nephritis in a B cell receptor (BCR transgenic lupus model, but instead are associated with lower frequencies of pathogenic Th1, Th17 and B cell responses. In accordance, the transfer of small amounts of immune complexes containing sialylated IgG Abs was sufficient to attenuate the development of nephritis. We further showed that administration of sialylated collagen type II (Col II-specific IgG Abs attenuated the disease symptoms in a model of Col II-induced arthritis and reduced pathogenic Th17 cell and autoantigen-specific IgG Ab responses. We conclude that sialylated autoantigen-specific IgG Abs may represent a promising tool for treating pathogenic T and B cell immune responses in autoimmune diseases.

  14. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation

    DEFF Research Database (Denmark)

    Yin, Bojiao; Gao, Yuan; Chung, Cheng-yu

    2015-01-01

    Sialic acid, a terminal residue on complex N-glycans, and branching or antennarity can play key roles in both the biological activity and circulatory lifetime of recombinant glycoproteins of therapeutic interest. In order to examine the impact of glycosyltransferase expression on the N-glycosylat......Sialic acid, a terminal residue on complex N-glycans, and branching or antennarity can play key roles in both the biological activity and circulatory lifetime of recombinant glycoproteins of therapeutic interest. In order to examine the impact of glycosyltransferase expression on the N...... increased by 26%. The increase in sialic acid content was further verified by detailed profiling of the N-glycan structures using mass spectra (MS) analysis. In order to enhance antennarity/branching, UDP-N-acetylglucosamine: α-1,3-D-mannoside β1,4-N-acetylglucosaminyltransferase (GnTIV/Mgat4) and UDP...... a mean for enhancing both N-glycan branching complexity and sialylation with opportunities to generate tailored complex N-glycan structures on therapeutic glycoproteins in the future....

  15. Changes in the sialylation and sulfation of secreted thyrotropin in congenital hypothyroidism

    International Nuclear Information System (INIS)

    Gyves, P.W.; Gesundheit, N.; Thotakura, N.R.; Stannard, B.S.; DeCherney, G.S.; Weintraub, B.D.

    1990-01-01

    The authors have examined the oligosaccharide structure of secreted thyrotropin (TSH) in perinatal and mature rats with congenital primary hypothyroidism. Rat pituitaries from euthyroid control animals and those rendered hypothyroid by methimazole treatment were incubated with [ 3 H]glucosamine in vitro. Secreted TSH was purified, and oligosaccharides were enzymatically released and characterized by anion-exchange HPLC. In perinatal hypothyroid animals compared with control animals, oligosaccharides from TSH α and β subunits contained more species with three or more negative charges. Moreover, perinatal hypothyroid animals demonstrated a dramatic increase in the ratio of sialylated to sulfated species within oligosaccharides of the same negative charge. In mature hypothyroid 9-week-old animals compared with control animals, changes were less pronounced, suggesting that endocrine regulation of oligosaccharide structure is dependent upon the maturational state of the animal. Together, these data provide direct evidence and characterization of specific changes in the structure of a secreted pituitary glycoprotein hormone occurring as a result of in vivo endocrine alterations during early development. Moreover, they provide a potential structural basis to explain the delayed clearance of both TSH and the gonadotropins with end-organ deficiency, which may have important implications for the in vivo biological activities of these hormones

  16. Synthesis and Functional Characterization of Novel Sialyl LewisX Mimic-Decorated Liposomes for E-selectin-Mediated Targeting to Inflamed Endothelial Cells.

    Science.gov (United States)

    Chantarasrivong, Chanikarn; Ueki, Akiharu; Ohyama, Ryutaro; Unga, Johan; Nakamura, Shinya; Nakanishi, Isao; Higuchi, Yuriko; Kawakami, Shigeru; Ando, Hiromune; Imamura, Akihiro; Ishida, Hideharu; Yamashita, Fumiyoshi; Kiso, Makoto; Hashida, Mitsuru

    2017-05-01

    Sialyl LewisX (sLeX) is a natural ligand of E-selectin that is overexpressed by inflamed and tumor endothelium. Although sLeX is a potential ligand for drug targeting, synthesis of the tetrasaccharide is complicated with many reaction steps. In this study, structurally simplified novel sLeX analogues were designed and linked with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (DSPE-PEG) for E-selectin-mediated liposomal delivery. The sLeX structural simplification strategies include (1) replacement of the Gal-GlcNAc disaccharide unit with lactose to reduce many initial steps and (2) substitution of neuraminic acid with a negatively charged group, i.e., 3'-sulfo, 3'-carboxymethyl (3'-CM), or 3'-(1-carboxy)ethyl (3'-CE). While all the liposomes developed were similar in particle size and charge, the 3'-CE sLeX mimic liposome demonstrated the highest uptake in inflammatory cytokine-treated human umbilical vein endothelial cells (HUVECs), being even more potent than native sLeX-decorated liposomes. Inhibition studies using antiselectin antibodies revealed that their uptake was mediated primarily by overexpressed E-selectin on inflamed HUVECs. Molecular dynamics simulations were performed to gain mechanistic insight into the E-selectin binding differences among native and mimic sLeX. The terminally branched methyl group of the 3'-CE sLeX mimic oriented and faced the bulk hydrophilic solution during E-selectin binding. Since this state is entropically unfavorable, the 3'-CE sLeX mimic molecule might be pushed toward the binding pocket of E-selectin by a hydrophobic effect, leading to a higher probability of hydrogen-bond formation than native sLeX and the 3'-CM sLeX mimic. This corresponded with the fact that the 3'-CE sLeX mimic liposome exhibited much greater uptake than the 3'-CM sLeX mimic liposome.

  17. PANP is a novel O-glycosylated PILR{alpha} ligand expressed in neural tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kogure, Amane [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); Shiratori, Ikuo [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Wang, Jing [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); Lanier, Lewis L. [Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143 (United States); Arase, Hisashi, E-mail: arase@biken.osaka-u.ac.jp [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); JST CREST, Saitama 332-0012 (Japan)

    2011-02-18

    Research highlights: {yields} A Novel molecule, PANP, was identified to be a PILR{alpha} ligand. {yields} Sialylated O-glycan structures on PANP were required for PILR{alpha} recognition. {yields} Transcription of PANP was mainly observed in neural tissues. {yields} PANP seems to be involved in immune regulation as a ligand for PILR{alpha}. -- Abstract: PILR{alpha} is an immune inhibitory receptor possessing an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic domain enabling it to deliver inhibitory signals. Binding of PILR{alpha} to its ligand CD99 is involved in immune regulation; however, whether there are other PILR{alpha} ligands in addition to CD99 is not known. Here, we report that a novel molecule, PILR-associating neural protein (PANP), acts as an additional ligand for PILR{alpha}. Transcription of PANP was mainly observed in neural tissues. PILR{alpha}-Ig fusion protein bound cells transfected with PANP and the transfectants stimulated PILR{alpha} reporter cells. Specific O-glycan structures on PANP were found to be required for PILR recognition of this ligand. These results suggest that PANP is involved in immune regulation as a ligand of the PILR{alpha}.

  18. Blood Plasma-Derived Anti-Glycan Antibodies to Sialylated and Sulfated Glycans Identify Ovarian Cancer Patients.

    Science.gov (United States)

    Pochechueva, Tatiana; Chinarev, Alexander; Schoetzau, Andreas; Fedier, André; Bovin, Nicolai V; Hacker, Neville F; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2016-01-01

    Altered levels of naturally occurring anti-glycan antibodies (AGA) circulating in human blood plasma are found in different pathologies including cancer. Here the levels of AGA directed against 22 negatively charged (sialylated and sulfated) glycans were assessed in high-grade serous ovarian cancer (HGSOC, n = 22) patients and benign controls (n = 31) using our previously developed suspension glycan array (SGA). Specifically, the ability of AGA to differentiate between controls and HGSOC, the most common and aggressive type of ovarian cancer with a poor outcome was determined. Results were compared to CA125, the commonly used ovarian cancer biomarker. AGA to seven glycans that significantly (P<0.05) differentiated between HGSOC and control were identified: AGA to top candidates SiaTn and 6-OSulfo-TF (both IgM) differentiated comparably to CA125. The area under the curve (AUC) of a panel of AGA to 5 glycans (SiaTn, 6-OSulfo-TF, 6-OSulfo-LN, SiaLea, and GM2) (0.878) was comparable to CA125 (0.864), but it markedly increased (0.985) when combined with CA125. AGA to SiaTn and 6-OSulfo-TF were also valuable predictors for HGSOC when CA125 values appeared inconclusive, i.e. were below a certain threshold. AGA-glycan binding was in some cases isotype-dependent and sensitive to glycosidic linkage switch (α2-6 vs. α2-3), to sialylation, and to sulfation of the glycans. In conclusion, plasma-derived AGA to sialylated and sulfated glycans including SiaTn and 6-OSulfo-TF detected by SGA present a valuable alternative to CA125 for differentiating controls from HGSOC patients and for predicting the likelihood of HGSOC, and may be potential HGSOC tumor markers.

  19. Fraction A of armadillo submandibular glycoprotein and its desialylated product as sialyl-Tn and Tn receptors for lectins.

    Science.gov (United States)

    Wu, A M; Shen, F; Herp, A; Song, S C; Wu, J H

    1995-02-27

    Fraction A of the armadillo submandibular glycoprotein (ASG-A) is one of the simplest glycoproteins among mammalian salivary mucins. The carbohydrate side chains of this mucous glycoprotein have one-third of the NeuAc alpha 2-->6GalNAc (sialyl-Tn) sequence and two thirds of Tn (GalNAc alpha-->Ser/Thr) residues. Those of the desialylated product (ASG-Tn) are almost exclusively unsubstituted GalNAc residues (Tn determinant). When the binding properties of these glycoproteins were tested by a precipitin assay with Gal, GalNAc and GlcNAc specific lectins, it was found that ASG-Tn reacted strongly with all of the Tn-active lectins and completely precipitated Vicia villosa (VVL both B4 and mixture of A and B), Maclura pomifera (MPA), and Artocarpus integrifolia (jacalin) lectins. However, it precipitated poorly or negligibly with Ricinus communis (RCA1); Dolichos biflorus (DBA); Viscum album, ML-I; Arachis hypogaea (PNA), and Triticum vulgaris (WGA). The reactivity of ASG-A (sialyl-Tn) was as active as that of ASG-Tn with MPA and less or slightly less active than that of ASG-Tn with VVL-A+B, VVL-B4, HPA, WFA, and jacalin, as one-third of its Tn was sialylated. These findings indicate that ASG-A and its desialylated product (ASG-Tn) are highly useful reagents for the differentiation of Tn, T (Gal beta 1-->3GalNAc), A (GalNAc alpha 1-->3Gal) or Gal specific lectins and monoclonal antibodies against such epitopes.

  20. UPLC-MS/MS based diagnostics for epithelial ovarian cancer using fully sialylated C4-binding protein.

    Science.gov (United States)

    Tanabe, Kazuhiro; Matsuo, Koji; Miyazawa, Masaki; Hayashi, Masaru; Ikeda, Masae; Shida, Masako; Hirasawa, Takeshi; Sho, Ryuichiro; Mikami, Mikio

    2018-05-01

    Serum levels of fully sialylated C4-binding protein (FS-C4BP) are remarkably elevated in patients with epithelial ovarian cancer (EOC) and can be used as a marker to distinguish ovarian clear cell carcinoma from endometrioma. This study aimed to develop a stable, robust and reliable liquid chromatography-hybrid mass spectrometry (UPLC-MS/MS) based diagnostic method that would generalize FS-C4BP as a clinical EOC biomarker. Glycopeptides derived from 20 μL of trypsin-digested serum glycoprotein were analyzed via UPLC equipped with an electrospray ionization time-of-flight mass spectrometer. This UPLC-MS/MS-based diagnostic method was optimized for FS-C4BP and validated using sera from 119 patients with EOC and 127 women without cancer. A1958 (C4BP peptide with two fully sialylated biantennary glycans) was selected as a marker of FS-C4BP because its level in serum was highest among FS-C4BP family members. Preparation and UPLC-MS/MS were optimized for A1958, and performance and robustness were significantly improved relative to our previous method. An area under the curve analysis of the FS-C4BP index receiver operating characteristic curve revealed that the ratio between A1958 and A1813 (C4BP peptide with two partially sialylated biantennary glycans) reached 85%. A combination of the FS-C4BP index and carbohydrate antigen-125 levels further enhanced the sensitivity and specificity. © 2017 The Authors. Biomedical Chromatography published by John Wiley & Sons Ltd.

  1. Coordinated and unique functions of the E-selectin ligand ESL-1 during inflammatory and hematopoietic recruitment in mice.

    Science.gov (United States)

    Sreeramkumar, Vinatha; Leiva, Magdalena; Stadtmann, Anika; Pitaval, Christophe; Ortega-Rodríguez, Inés; Wild, Martin K; Lee, Brendan; Zarbock, Alexander; Hidalgo, Andrés

    2013-12-05

    Beyond its well-established roles in mediating leukocyte rolling, E-selectin is emerging as a multifunctional receptor capable of inducing integrin activation in neutrophils, and of regulating various biological processes in hematopoietic precursors. Although these effects suggest important homeostatic contributions of this selectin in the immune and hematologic systems, the ligands responsible for transducing these effects in different leukocyte lineages are not well defined. We have characterized mice deficient in E-selectin ligand-1 (ESL-1), or in both P-selectin glycoprotein-1 (PSGL-1) and ESL-1, to explore and compare the contributions of these glycoproteins in immune and hematopoietic cell trafficking. In the steady state, ESL-1 deficiency resulted in a moderate myeloid expansion that became more prominent when both glycoproteins were eliminated. During inflammation, PSGL-1 dominated E-selectin binding, rolling, integrin activation, and extravasation of mature neutrophils, but only the combined deficiency in PSGL-1 and ESL-1 completely abrogated leukocyte recruitment. Surprisingly, we find that the levels of ESL-1 were strongly elevated in hematopoietic progenitor cells. These elevations correlated with a prominent function of ESL-1 for E-selectin binding and for migration of hematopoietic progenitor cells into the bone marrow. Our results uncover dominant roles for ESL-1 in the immature compartment, and a functional shift toward PSGL-1 dependence in mature neutrophils.

  2. Pro-inflammatory State in Monoclonal Gammopathy of Undetermined Significance and in Multiple Myeloma Is Characterized by Low Sialylation of Pathogen-Specific and Other Monoclonal Immunoglobulins

    Directory of Open Access Journals (Sweden)

    Adrien Bosseboeuf

    2017-10-01

    Full Text Available Multiple myeloma (MM and its pre-cancerous stage monoclonal gammopathy of undetermined significance (MGUS allow to study immune responses and the chronology of inflammation in the context of blood malignancies. Both diseases are characterized by the production of a monoclonal immunoglobulin (mc Ig which for subsets of MGUS and MM patients targets pathogens known to cause latent infection, a major cause of inflammation. Inflammation may influence the structure of both polyclonal (pc Ig and mc Ig produced by malignant plasma cells via the sialylation of Ig Fc fragment. Here, we characterized the sialylation of purified mc and pc IgGs from 148 MGUS and MM patients, in comparison to pc IgGs from 46 healthy volunteers. The inflammatory state of patients was assessed by the quantification in serum of 40 inflammation-linked cytokines, using Luminex technology. While pc IgGs from MGUS and MM patients showed heterogeneity in sialylation level, mc IgGs from both MGUS and MM patients exhibited a very low level of sialylation. Furthermore, mc IgGs from MM patients were less sialylated than mc IgGs from MGUS patients (p < 0.01, and mc IgGs found to target an infectious pathogen showed a lower level of sialylation than mc IgGs of undetermined specificity (p = 0.048. Regarding inflammation, 14 cytokines were similarly elevated with a p value < 0.0001 in MGUS and in MM compared to healthy controls. MM differed from MGUS by higher levels of HGF, IL-11, RANTES and SDF-1-α (p < 0.05. MGUS and MM patients presenting with hyposialylated pc IgGs had significantly higher levels of HGF, IL-6, tumor necrosis factor-α, TGF-β1, IL-17, and IL-33 compared to patients with hyper-sialylated pc IgGs (p < 0.05. In MGUS and in MM, the degree of sialylation of mc and pc IgGs and the levels of four cytokines important for the anti-microbial response were correlated, either positively (IFN-α2, IL-13 or negatively (IL-17, IL-33. Thus in MGUS as in MM

  3. Analysis of glycoprotein E-selectin ligANDs on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells

    KAUST Repository

    Merzaban, Jasmeen S.

    2011-06-09

    Although well recognized that expression of E-selectin on marrow microvessels mediates osteotropism of hematopoietic stem/progenitor cells (HSPCs), our knowledge regarding the cognate E-selectin ligand(s) on HSPCs is incomplete. Flow cytometry using E-selectin-Ig chimera (E-Ig) shows that human marrow cells enriched for HSPCs (CD34+ cells) display greater E-selectin binding than those obtained from mouse (lin-/Sca-1+/c-kit+ [LSK] cells). To define the relevant glycoprotein E-selectin ligands, lysates from human CD34+ and KG1a cells and from mouse LSK cells were immunoprecipitated using E-Ig and resolved byWestern blot using E-Ig. In both human and mouse cells, E-selectin ligand reactivity was observed at ∼ 120- to 130-kDa region, which contained two E-selectin ligands, the P-selectin glycoprotein ligand- 1 glycoform "CLA," and CD43. Human, but not mouse, cells displayed a prominent ∼ 100-kDa band, exclusively comprising the CD44 glycoform "HCELL."E-Ig reactivity was most prominent on CLA in mouse cells and on HCELL in human cells. To further assess HCELL\\'s contribution to E-selectin adherence, complementary studies were performed to silence (via CD44 siRNA) or enforce its expression (via exoglycosylation). Under physiologic shear conditions, CD44/HCELL-silenced human cells showed striking decreases (> 50%) in E-selectin binding. Conversely, enforced HCELL expression of LSK cells profoundly increased E-selectin adherence, yielding > 3-fold more marrow homing in vivo. These data define the key glycoprotein E-selectin ligands of human and mouse HSPCs, unveiling critical species-intrinsic differences in both the identity and activity of these structures. © 2011 by The American Society of Hematology.

  4. Staining of E-selectin ligands on paraffin-embedded sections of tumor tissue.

    Science.gov (United States)

    Carrascal, Mylène A; Talina, Catarina; Borralho, Paula; Gonçalo Mineiro, A; Henriques, Ana Raquel; Pen, Cláudia; Martins, Manuela; Braga, Sofia; Sackstein, Robert; Videira, Paula A

    2018-05-02

    The E-selectin ligands expressed by cancer cells mediate adhesion of circulating cancer cells to endothelial cells, as well as within tissue microenvironments important for tumor progression and metastasis. The identification of E-selectin ligands within cancer tissue could yield new biomarkers for patient stratification and aid in identifying novel therapeutic targets. The determinants of selectin ligands consist of sialylated tetrasaccharides, the sialyl Lewis X and A (sLe X and sLe A ), displayed on protein or lipid scaffolds. Standardized procedures for immunohistochemistry make use of the antibodies against sLe X and/or sLe A . However, antibody binding does not define E-selectin binding activity. In this study, we developed an immunohistochemical staining technique, using E-selectin-human Ig Fc chimera (E-Ig) to characterize the expression and localization of E-selectin binding sites on paraffin-embedded sections of different cancer tissue. E-Ig successfully stained cancer cells with high specificity. The E-Ig staining show high reactivity scores in colon and lung adenocarcinoma and moderate reactivity in triple negative breast cancer. Compared with reactivity of antibody against sLe X/A , the E-Ig staining presented higher specificity to cancer tissue with better defined borders and less background. The E-Ig staining technique allows the qualitative and semi-quantitative analysis of E-selectin binding activity on cancer cells. The development of accurate techniques for detection of selectin ligands may contribute to better diagnostic and better understanding of the molecular basis of tumor progression and metastasis.

  5. Characterization of sialylated and fucosylated glycopeptides of beta2-glycoprotein I by a combination of HILIC LC and MALDI MS/MS

    DEFF Research Database (Denmark)

    Kondo, Akira; Thaysen-Andersen, Morten; Hjernø, Karin

    2010-01-01

    were characterized using MALDI quadrupole TOF MS/MS. A total of 23 glycan structures, including sialylated bi- and tri-antennary complex type glycans, were characterized at three N-glycosylation sites, namely Asn-143, Asn-174 and Asn-234, of beta2-GPI. Further exploration of the complementary nature...

  6. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin: structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones

    International Nuclear Information System (INIS)

    Green, E.D.; Baenziger, J.U.

    1988-01-01

    The authors have elucidated the structures of the anionic asparagine-linked oligosaccharides present on the glycoprotein hormones lutropin (luteinizing hormone), follitropin (follicle-stimulating hormone), and thyrotropin (thyroid-stimulating hormone). Purified hormones, isolated from bovine, ovine, and human pituitaries, were digested with N-glycanase, and the released oligosaccharides were reduced with NaB[ 3 H] 4 . The 3 H-labeled oligosaccharides from each hormone were then fractionated by anion-exchange high performance liquid chromatography (HPLC) into populations differing in the number of sulfate and/or sialic acid moieties. The sulfated, sialylated, and sulfated/sialylated structures, which together comprised 67-90% of the asparagine-linked oligosaccharides on the pituitary glycoprotein hormones, were highly heterogeneous and displayed hormone- as well as animal species-specific features. A previously uncharacterized dibranched oligosaccharide, bearing one residue each of sulfate and sialic acid, was found on all of the hormones except bovine lutropin. In this study, they describe the purification and detailed structural characterizations of the sulfated, sialylated, and sulfated/sialylated oligosaccharides found on lutropin, follitropin, and thyrotropin from several animal species

  7. LpMab-12 Established by CasMab Technology Specifically Detects Sialylated O-Glycan on Thr52 of Platelet Aggregation-Stimulating Domain of Human Podoplanin.

    Directory of Open Access Journals (Sweden)

    Yukinari Kato

    Full Text Available Podoplanin (PDPN, also known as Aggrus, possesses three tandem repeat of platelet aggregation-stimulating (PLAG domains in its N-terminus. Among the PLAG domains, sialylated O-glycan on Thr52 of PLAG3 is essential for the binding to C-type lectin-like receptor-2 (CLEC-2 and the platelet-aggregating activity of human PDPN (hPDPN. Although various anti-hPDPN monoclonal antibodies (mAbs have been generated, no specific mAb has been reported to target the epitope containing glycosylated Thr52. We recently established CasMab technology to develop mAbs against glycosylated membrane proteins. Herein, we report the development of a novel anti-glycopeptide mAb (GpMab, LpMab-12. LpMab-12 detected endogenous hPDPN by flow cytometry. Immunohistochemical analyses also showed that hPDPN-expressing lymphatic endothelial and cancer cells were clearly labeled by LpMab-12. The minimal epitope of LpMab-12 was identified as Asp49-Pro53 of hPDPN. Furthermore, LpMab-12 reacted with the synthetic glycopeptide of hPDPN, corresponding to 38-54 amino acids (hpp3854: 38-EGGVAMPGAEDDVVTPG-54, which carries α2-6 sialylated N-acetyl-D-galactosamine (GalNAc on Thr52. LpMab-12 did not recognize non-sialylated GalNAc-attached glycopeptide, indicating that sialylated GalNAc on Thr52 is necessary for the binding of LpMab-12 to hPDPN. Thus, LpMab-12 could serve as a new diagnostic tool for determining whether hPDPN possesses the sialylation on Thr52, a site-specific post-translational modification critical for the hPDPN association with CLEC-2.

  8. Treatment response in Kawasaki disease is associated with sialylation levels of endogenous but not therapeutic intravenous immunoglobulin G.

    Directory of Open Access Journals (Sweden)

    Shohei Ogata

    Full Text Available Although intravenous immunoglobulin (IVIG is highly effective in Kawasaki disease (KD, mechanisms are not understood and 10-20% of patients are treatment-resistant, manifesting a higher rate of coronary artery aneurysms. Murine models suggest that α2-6-linked sialic acid (α2-6Sia content of IVIG is critical for suppressing inflammation. However, pro-inflammatory states also up-regulate endogenous levels of β-galactoside:α2-6 sialyltransferase-I (ST6Gal-I, the enzyme that catalyzes addition of α2-6Sias to N-glycans. We asked whether IVIG failures correlated with levels of α2-6Sia on infused IVIG or on the patient's own endogenous IgG.We quantified levels of α2-6Sia in infused IVIG and endogenous IgG from 10 IVIG-responsive and 10 resistant KD subjects using multiple approaches. Transcript levels of ST6GAL1, in patient whole blood and B cell lines were evaluated by RT-PCR. Plasma soluble (sST6Gal-I levels were measured by ELISA.There was no consistent difference in median sialylation levels of infused IVIG between groups. However, α2-6Sia levels in endogenous IgG, ST6GAL1 transcript levels, and ST6Gal-I protein in serum from IVIG-resistant KD subjects were lower than in responsive subjects at both pre-treatment and one-year time points (p <0.001, respectively.Our data indicate sialylation levels of therapeutic IVIG are unrelated to treatment response in KD. Rather, lower sialylation of endogenous IgG and lower blood levels of ST6GALI mRNA and ST6Gal-I enzyme predict therapy resistance. These differences were stable over time, suggesting a genetic basis. Because IVIG-resistance increases risk of coronary artery aneurysms, our findings have important implications for the identification and treatment of such individuals.

  9. Identification of a carbohydrate-based endothelial ligand for a lymphocyte homing receptor

    International Nuclear Information System (INIS)

    Imai, Y.; Singer, M.S.; Fennie, C.; Lasky, L.A.; Rosen, S.D.

    1991-01-01

    Lymphocyte attachment to high endothelial venules within lymph nodes is mediated by the peripheral lymph node homing receptor (pnHR), originally defined on mouse lymphocytes by the MEL-14 mAb. The pnHR is a calcium-dependent lectin-like receptor, a member of the LEC-CAM family of adhesion proteins. Here, using a soluble recombinant form of the homing receptor, we have identified an endothelial ligand for the pnHR as an ∼ 50-kD sulfated, fucosylated, and sialylated glycoprotein, which we designate Sgp50 (sulfated glycoprotein of 50 kD). Recombinant receptor binding to this lymph node-specific glycoprotein requires calcium and is inhibitable by specific carbohydrates and by MEL-14 mAb. Sialylation of the component is required for binding. Additionally, the glycoprotein is precipitated by MECA-79, an adhesion-blocking mAb reactive with lymph node HEV. A related glycoprotein of ∼ 90 kD (designated as Sgp90) is also identified

  10. Human surfactant protein A2 gene mutations impair dimmer/trimer assembly leading to deficiency in protein sialylation and secretion.

    Directory of Open Access Journals (Sweden)

    Yi Song

    Full Text Available Surfactant protein A2 (SP-A2 plays an essential role in surfactant metabolism and lung host defense. SP-A2 mutations in the carbohydrate recognition domain have been related to familial pulmonary fibrosis and can lead to a recombinant protein secretion deficiency in vitro. In this study, we explored the molecular mechanism of protein secretion deficiency and the subsequent biological effects in CHO-K1 cells expressing both wild-type and several different mutant forms of SP-A2. We demonstrate that the SP-A2 G231V and F198S mutants impair the formation of dimmer/trimer SP-A2 which contributes to the protein secretion defect. A deficiency in sialylation, but not N-linked glycosylation, is critical to the observed dimmer/trimer impairment-induced secretion defect. Furthermore, both mutant forms accumulate in the ER and form NP-40-insoluble aggregates. In addition, the soluble mutant SP-A2 could be partially degraded through the proteasome pathway but not the lysosome or autophagy pathway. Intriguingly, 4-phenylbutyrate acid (4-PBA, a chemical chaperone, alleviates aggregate formation and partially rescued the protein secretion of SP-A2 mutants. In conclusion, SP-A2 G231V and F198S mutants impair the dimmer/trimer assembly, which contributes to the protein sialylation and secretion deficiency. The intracellular protein mutants could be partially degraded through the proteasome pathway and also formed aggregates. The treatment of the cells with 4-PBA resulted in reduced aggregation and rescued the secretion of mutant SP-A2.

  11. Sialylation potentials of the silkworm, Bombyx mori; B. mori possesses an active α2,6-sialyltransferase.

    Science.gov (United States)

    Kajiura, Hiroyuki; Hamaguchi, Yuichi; Mizushima, Hiroki; Misaki, Ryo; Fujiyama, Kazuhito

    2015-12-01

    N-Glycosylation is an important post-translational modification in most secreted and membrane-bound proteins in eukaryotic cells. However, the insect N-glycosylation pathway and the potentials contributing to the N-glycan synthesis are still unclear because most of the studies on these subjects have focused on mammals and plants. Here, we identified Bombyx mori sialyltransferase (BmST), which is a Golgi-localized glycosyltransferase and which can modify N-glycans. BmST was ubiquitously expressed in different organs and in various stages of development and localized at the Golgi. Biochemical analysis using Sf9-expressed BmST revealed that BmST encoded α2,6-sialyltransferase and transferred N-acetylneuraminic acid (NeuAc) to the nonreducing terminus of Galβ1-R, but exhibited the highest activity toward GalNAcβ1,4-GlcNAc-R. Unlike human α2,6-sialyltransferase, BmST required the post-translational modification, especially N-glycosylation, for its full activity. N-Glycoprotein analysis of B. mori fifth instar larvae revealed that high-mannose-type structure was predominant and GlcNAc-linked and fucosylated structures were observed but endogenous galactosyl-, N-acetylgalactosaminyl- and sialyl-N-glycoproteins were undetectable under the standard analytical approach. These results indicate that B. mori genome encodes an α2,6-sialyltransferase, but further investigations of the sialylation potentials are necessary. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Treatment response in Kawasaki disease is associated with sialylation levels of endogenous but not therapeutic intravenous immunoglobulin G.

    Science.gov (United States)

    Ogata, Shohei; Shimizu, Chisato; Franco, Alessandra; Touma, Ranim; Kanegaye, John T; Choudhury, Biswa P; Naidu, Natasha N; Kanda, Yutaka; Hoang, Long T; Hibberd, Martin L; Tremoulet, Adriana H; Varki, Ajit; Burns, Jane C

    2013-01-01

    Although intravenous immunoglobulin (IVIG) is highly effective in Kawasaki disease (KD), mechanisms are not understood and 10-20% of patients are treatment-resistant, manifesting a higher rate of coronary artery aneurysms. Murine models suggest that α2-6-linked sialic acid (α2-6Sia) content of IVIG is critical for suppressing inflammation. However, pro-inflammatory states also up-regulate endogenous levels of β-galactoside:α2-6 sialyltransferase-I (ST6Gal-I), the enzyme that catalyzes addition of α2-6Sias to N-glycans. We asked whether IVIG failures correlated with levels of α2-6Sia on infused IVIG or on the patient's own endogenous IgG. We quantified levels of α2-6Sia in infused IVIG and endogenous IgG from 10 IVIG-responsive and 10 resistant KD subjects using multiple approaches. Transcript levels of ST6GAL1, in patient whole blood and B cell lines were evaluated by RT-PCR. Plasma soluble (s)ST6Gal-I levels were measured by ELISA. There was no consistent difference in median sialylation levels of infused IVIG between groups. However, α2-6Sia levels in endogenous IgG, ST6GAL1 transcript levels, and ST6Gal-I protein in serum from IVIG-resistant KD subjects were lower than in responsive subjects at both pre-treatment and one-year time points (p treatment response in KD. Rather, lower sialylation of endogenous IgG and lower blood levels of ST6GALI mRNA and ST6Gal-I enzyme predict therapy resistance. These differences were stable over time, suggesting a genetic basis. Because IVIG-resistance increases risk of coronary artery aneurysms, our findings have important implications for the identification and treatment of such individuals.

  13. Reduction of dinitrogen ligands

    International Nuclear Information System (INIS)

    Richards, R.L.

    1983-01-01

    Processes of dinitrogen ligand reduction in complexes of transition metals are considered. The basic character of the dinitrogen ligand is underlined. Data on X-ray photoelectronic spectroscopy and intensities of bands ν (N 2 ) in IR-spectra of nitrogen complexes are given. The mechanism of protonation of an edge dinitrogen ligand is discussed. Model systems and mechanism of nitrogenogenase are compared

  14. Ligands in PSI structures

    International Nuclear Information System (INIS)

    Kumar, Abhinav; Chiu, Hsiu-Ju; Axelrod, Herbert L.; Morse, Andrew; Elsliger, Marc-André; Wilson, Ian A.; Deacon, Ashley

    2010-01-01

    A survey of the types and frequency of ligands that are bound to PSI structures is analyzed as well as their utility in functional annotation of previously uncharacterized proteins. Approximately 65% of PSI structures report some type of ligand(s) that is bound in the crystal structure. Here, a description is given of how such ligands are handled and analyzed at the JCSG and a survey of the types, variety and frequency of ligands that are observed in the PSI structures is also compiled and analyzed, including illustrations of how these bound ligands have provided functional clues for annotation of proteins with little or no previous experimental characterization. Furthermore, a web server was developed as a tool to mine and analyze the PSI structures for bound ligands and other identifying features

  15. Molecular Characterization of the Interactions between Vascular Selectins and Glycoprotein Ligands on Human Hematopoietic Stem/Progenitor Cells

    KAUST Repository

    Abu Samra, Dina Bashir Kamil

    2016-01-01

    The first objective was to fill the knowledge gap in the in vitro characterization of the mechanisms used by selectins to mediate the initial step in the HSPCs homing by developing a real time immunoprecipitation-based assay on a surface plasmon resonance chip. This novel assay bypass the difficulties of purifying ligands, enables the use of natively glycosylated forms of selectin ligands from any model cell of interest and study its binding affinities under flow. We provide the first comprehensive quantitative binding kinetics of two well-documented ligands, CD44 and PSGL-1, with E-selectin. Both ligands bind monomeric E-selectin transiently with fast on- and off-rates while they bind dimeric E-selectin with remarkably slow on- and off-rates with the on-rate, but not the off-rate, is dependent on salt concentration. Thus, suggest a mechanism through which monomeric selectins mediate initial fast-on and -off binding to capture the circulating cells out of shear-flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to slow rolling significantly. The second objective is to fully identify and characterize E/P-selectin ligand candidates expressed on CD34+ HSPCs which cause enhanced migration after intravenous transplantation compared to their CD34- counterparts. CD34 is widely recognized marker of human HSPCs but its natural ligand and function on these cells remain elusive. Proteomics identified CD34 as an E-selL candidate on human HSPCs, whose binding to E-selectin was confirmed using some static and flow-based assays. E-selectin binds to CD34 with an affinity comparable to the well-described E-selLs CD44/HCELL and PSGL-1. CD34 knockdown resulted in faster-rolling velocities compared to control cells especially at and above three dyne/cm2. CD34 is the first selectin ligand since PSGL-1 reported to bind E-/P-/L-selectins and likely plays a key role in directing the migration of human HSPCs to the bone marrow.

  16. Improvement of trans-sialylation versus hydrolysis activity of an engineered sialidase from Trypanosoma rangeli by use of co-solvents

    DEFF Research Database (Denmark)

    Zeuner, Birgitte; Riisager, Anders; Mikkelsen, Jørn Dalgaard

    2014-01-01

    hexafluorophosphate), were examined as co-solvents for the improvement of the synthesis versus hydrolysis ratio in the trans-sialylation of lactose, catalysed by an engineered sialidase from Trypanosoma rangeli. The use of 25 % (v/v) t-butanol as co-solvent significantly increased 3'-sialyllactose production by 40...... % from 1.04 ± 0.09 to 1.47 ± 0.01 mM. The synthesis versus hydrolysis ratio increased correspondingly by 1.2-times. 1-2.5 % (v/v) EAN or [C2OHMIm][PF6] improved the synthesis versus hydrolysis ratio up to 2.5-times but simultaneously decreased the 3'-sialyllactose yield, probably due to enzyme...... inactivation caused by the ionic liquid. [MMIm][MeSO4] had a detrimental effect on the trans-sialylation yield and on the ratio between synthesis and hydrolysis....

  17. Effect of Bcl-xL overexpression on sialylation of Fc-fusion protein in recombinant Chinese hamster ovary cell cultures.

    Science.gov (United States)

    Lee, Jong Hyun; Kim, Yeon-Gu; Lee, Gyun Min

    2015-01-01

    The sialic acid of glycoproteins secreted by recombinant Chinese hamster ovary (rCHO) cells can be impaired by sialidase under culture conditions which promote the extracellular accumulation of this enzyme. To investigate the effect of Bcl-xL overexpression on the sialylation of glycoproteins produced in rCHO cell culture, two rCHO cell lines producing the same Fc-fusion protein, which were derived from DUKX-B11 and DG44, respectively, were engineered to have regulated Bcl-xL overexpression using the Tet-off system. For both cell lines, Bcl-xL overexpression improved cell viability and extended culture longevity in batch cultures. As a result, a maximum Fc-fusion protein titer increased by Bcl-xL overexpression though the extent of titer enhancement differed between the two cell lines. With Bcl-xL overexpression, the sialylation of Fc-fusion protein, which was assessed by isoelectric focusing gel and sialic acid content analyses, decreased more slowly toward the end of batch cultures. This was because Bcl-xL overexpression delayed the extracellular accumulation of sialidase activity by reducing cell lysis during batch cultures. Taken together, Bcl-xL overexpression in rCHO cell culture increased Fc-fusion protein production and also reduced the impairment of sialylation of Fc-fusion protein by maintaining high viability during batch cultures. © 2015 American Institute of Chemical Engineers.

  18. Distinctive and Complementary MS2 Fragmentation Characteristics for Identification of Sulfated Sialylated N-Glycopeptides by nanoLC-MS/MS Workflow

    Science.gov (United States)

    Kuo, Chu-Wei; Guu, Shih-Yun; Khoo, Kay-Hooi

    2018-04-01

    High sensitivity identification of sulfated glycans carried on specific sites of glycoproteins is an important requisite for investigation of molecular recognition events involved in diverse biological processes. However, aiming for resolving site-specific glycosylation of sulfated glycopeptides by direct LC-MS2 sequencing is technically most challenging. Other than the usual limiting factors such as lower abundance and ionization efficiency compared to analysis of non-glycosylated peptides, confident identification of sulfated glycopeptides among the more abundant non-sulfated glycopeptides requires additional considerations in the selective enrichment and detection strategies. Metal oxide has been applied to enrich phosphopeptides and sialylated glycopeptides, but its use to capture sulfated glycopeptides has not been investigated. Likewise, various complementary MS2 fragmentation modes have yet to be tested against sialylated and non-sialylated sulfoglycopeptides due to limited appropriate sample availability. In this study, we have investigated the feasibility of sequencing tryptic sulfated N-glycopeptide and its MS2 fragmentation characteristics by first optimizing the enrichment methods to allow efficient LC-MS detection and MS2 analysis by a combination of CID, HCD, ETD, and EThcD on hybrid and tribrid Orbitrap instruments. Characteristic sulfated glyco-oxonium ions and direct loss of sulfite from precursors were detected as evidences of sulfate modification. It is anticipated that the technical advances demonstrated in this study would allow a feasible extension of our sulfoglycomic analysis to sulfoglycoproteomics. [Figure not available: see fulltext.

  19. Schiff base ligand

    Indian Academy of Sciences (India)

    Unknown

    Low-temperature stoichiometric Schiff base reaction in air in 3 : 1 mole ratio between benz- aldehyde and triethylenetetramine (trien) in methanol yields a novel tetraaza µ-bis(bidentate) acyclic ligand L. It was .... electrochemical work was performed as reported in ..... change in ligand shape through change in oxidation.

  20. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  1. Primary structure determination of five sialylated oligosaccharides derived from bronchial- mucus glycoproteins of patients suffering from cystic fibrosis. The occurrence of the NeuAcα(2→3)Galα(1→4)[Fucα(1→3)]GlcNAcα(1→.) structural element revealed by 500-MHz 1H NMR spectroscopy

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Lamblin, G.; Boersma, A.; Klein, A.; Roussel, P.; Halbeek, H. van

    1984-01-01

    The structure of sialylated carbohydrate units of bronchial mucins obtained from cystic fibrosis patients was investigated by 500-MHz 1H NMR spectroscopy in conjunction with sugar analysis. After subjecting the mucins to alkaline borohydride degradation, sialylated oligosaccharide-alditols were

  2. Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau.

    Science.gov (United States)

    Starbuck, Kristen; Al-Alem, Linah; Eavarone, David A; Hernandez, Silvia Fatima; Bellio, Chiara; Prendergast, Jillian M; Stein, Jenna; Dransfield, Daniel T; Zarrella, Bianca; Growdon, Whitfield B; Behrens, Jeff; Foster, Rosemary; Rueda, Bo R

    2018-05-01

    Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn + cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo , depleting STn + tumor cells. In summary, STn + cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn + CSC and STn + non-CSC populations.

  3. Interaction of hamster submaxillary sialyl-Tn and Tn glycoproteins with Gal, GalNAc and GlcNAc specific lectins.

    Science.gov (United States)

    Wu, A M; Shen, F; Herp, A; Wu, J H

    1994-04-01

    Hamster submaxillary glycoprotein (HSM), one of the simplest glycoproteins among mammalian salivary mucins, is composed of approximately equivalent amounts of protein, hexosamine and sialic acid. The Thr and Ser residues in the protein core account for more than half of all of the amino acid residues, while Lys, Glu, Pro and Ala are the major components of the remaining portion of amino acids. The carbohydrate side chains of this mucous glycoprotein have mainly the NeuAc-GalNAc-(sialyl-Tn) sequence (HSM), and those of the desialylated product (HSM-Tn) are almost exclusively unsubstituted GalNAc residues (Tn determinants). The binding properties of sialyl-Tn (HSM) and asialo-HSM (HSM-Tn) glycoproteins were tested by precipitin assay with Gal, GalNAc and GlcNAc specific lectins. The HSM-Tn completely precipitated Vicia villosa (VVL both B4 and mixture of A and B), Maclura pomifera (MPL), and Artocarpus integrifolia (Jacalin) lectins; less than 2 micrograms of HSM-Tn were required for precipitating 50% of 5.0-6.3 micrograms lectin nitrogen added. HSM-Tn also reacted well with Helix pomatia lectin (HPL), Wistaria floribunda lectin (WFL) and Abrus precatorius agglutinin (APA) and precipitated in each case over 81% of the lectin nitrogen added. The reactivity of HSM-Tn with other lectins (Ricinus communis, RCA1; Dolichol biflorus, DBL; Viscum album, ML-I; Arachis hypogaea, PNA, and Triticum vulgaris, WGA) was weak or negligible. The activity of sialyl-Tn (HSM) was more restricted; HSM reacted well with Jacalin, moderately with MPL and VVL-B4, but was inactive or only weakly with the other lectins used. These findings indicate that HSM and its desialylated product (HSM-Tn) are highly useful reagents for the differentiation of Tn and T/Gal specific lectins and for anti-T, Tn and Af monoclonal antibodies.

  4. P-selectin- and heparanase-dependent antimetastatic activity of non-anticoagulant heparins.

    Science.gov (United States)

    Hostettler, Nina; Naggi, Annamaria; Torri, Giangiacomo; Ishai-Michaeli, Riva; Casu, Benito; Vlodavsky, Israel; Borsig, Lubor

    2007-11-01

    Vascular cell adhesion molecules, P- and L-selectins, facilitate metastasis of cancer cells in mice by mediating interactions with platelets, endothelium, and leukocytes. Heparanase is an endoglycosidase that degrades heparan sulfate of extracellular matrix, thereby promoting tumor invasion and metastasis. Heparin is known to efficiently attenuate metastasis in different tumor models. Here we identified modified, nonanticoagulant species of heparin that specifically inhibit selectin-mediated cell-cell interactions, heparanase enzymatic activity, or both. We show that selective inhibition of selectin interactions or heparanase with specific heparin derivatives in mouse models of MC-38 colon carcinoma and B16-BL6 melanoma attenuates metastasis. Selectin-specific heparin derivatives attenuated metastasis of MC-38 carcinoma, but heparanase-specific derivatives had no effect, in accordance with the virtual absence of heparanase activity in these cells. Heparin derivatives had no further effect on metastasis in mice deficient in P- and L-selectin, indicating that selectins are the primary targets of heparin antimetastatic activity. Selectin-specific and heparanase-specific derivatives attenuated metastasis of B16-BL6 melanomas to a similar extent. When mice were injected with a derivative containing both heparanase and selectin inhibitory activity, no additional attenuation of metastasis could be observed. Thus, selectin-specific heparin derivatives efficiently attenuated metastasis of both tumor cell types whereas inhibition of heparanase led to reduction of metastasis only in tumor cells producing heparanase.

  5. Early Dynamics of P-selectin and Interleukin 6 Predicts Outcomes in Ischemic Stroke

    DEFF Research Database (Denmark)

    Pusch, Gabriella; Debrabant, Birgit; Molnar, Tihamer

    2015-01-01

    with acute ischemic stroke (6, 24, and 72 hours after onset); (2) compared with 44 patients with asymptomatic severe (≥70%) carotid stenosis and 66 patients with Parkinson disease; and (3) we applied multiple regression methods, relating biological biomarkers combined with demographic data and comorbidities......BACKGROUND: Thromboinflammatory molecules connect the prothrombotic state, endothelial dysfunction, and systemic/local inflammation in the acute phase of ischemic stroke. METHODS: We prospectively investigated (1) serial changes in the levels of thromboinflammatory biomarkers in 76 patients...... hours were higher in patients with large-artery versus lacunar stroke. High concentration of IL-6, monocyte chemotactic protein 1, and S100B at 6 hours were associated with poststroke infections; high concentration of IL-6, S100B, and high-sensitivity C-reactive protein (hsCRP) correlated with death...

  6. The prognostic significance of Galectin-3 and P-Selectin in ...

    African Journals Online (AJOL)

    Bladder carcinoma is one of the most common malignancies in urology. The most common type of the bladder cancer is transitional cell carcinoma (TCC). TCC of bladder has a recurrence rate of more than 50%. Therefore, it is important to find some indicators that can predict for recurrence or the development of metastasis.

  7. The loss of luteal progesterone production in women is associated with a galectin switch via α2,6-sialylation of glycoconjugates.

    Science.gov (United States)

    Nio-Kobayashi, Junko; Boswell, Lyndsey; Amano, Maho; Iwanaga, Toshihiko; Duncan, W Colin

    2014-12-01

    Luteal progesterone is fundamental for reproduction, but the molecular regulation of the corpus luteum (CL) in women remains unclear. Galectin-1 and galectin-3 bind to the sugar chains on cells to control key biological processes including cell function and fate. The expression and localization of LGALS1 and LGALS3 were analyzed by quantitative PCR and histochemical analysis, with special reference to α2,6-sialylation of glycoconjugates in carefully dated human CL collected across the menstrual cycle and after exposure to human chorionic gonadotrophin (hCG) in vivo. The effects of hCG and prostaglandin E2 on the expression of galectins and an α2,6-sialyltransferase 1 (ST6GAL1) in granulosa lutein cells were analyzed in vitro. Galectin-1 was predominantly localized to healthy granulosa lutein cells and galectin-3 was localized to macrophages and regressing granulosa lutein cells. Acute exposure to luteotrophic hormones (hCG and prostaglandin E2) up-regulated LGALS1 expression (P progesterone synthesis. Luteotrophic hormones differentially regulate galectin-1 and galectin-3/α2,6-sialylation in granulosa lutein cells, suggesting a novel galectin switch regulated by luteotrophic stimuli during luteolysis and luteal rescue.

  8. Sialyl Lewis x expression in canine malignant mammary tumours: correlation with clinicopathological features and E-Cadherin expression

    International Nuclear Information System (INIS)

    Pinho, Salomé S; Matos, Augusto JF; Lopes, Célia; Marcos, Nuno T; Carvalheira, Júlio; Reis, Celso A; Gärtner, Fátima

    2007-01-01

    Sialyl Lewis x (sLe x ) antigen is a carbohydrate antigen that is considered not only a marker for cancer but also implicated functionally in the malignant behaviour of cancer cells. Overexpression of sLe x is associated with enhanced progression and metastases of many types of cancer including those of the mammary gland. Canine mammary tumours can invade and give rise to metastases via either lymphatic or blood vessels. E-Cadherin is specifically involved in epithelial cell-to-cell adhesion. In cancer, E-Cadherin underexpression is one of the alterations that characterizes the invasive phenotype and is considered an invasion/tumour suppressor gene. Partial or complete loss of E-Cadherin expression correlates with poor prognosis in canine malignant mammary cancer. The aim of this study was to analyse the sLe x expression in canine malignant mammary tumours and to evaluate if the presence of sLe x correlates with the expression of E-Cadherin and with clinicopathological features. Fifty-three cases of canine mammary carcinomas were analysed immunohistochemically using monoclonal antibodies against sLe x (IgM) and E-Cadherin (IgG). The clinicopathological data were then assessed to determine whether there was a correlation with sLe x tumour expression. Double labelled immunofluorescence staining was performed to analyse the combined expression of sLe x and E-Cadherin. sLe x expression was consistently demonstrated in all cases of canine mammary carcinomas with different levels of expression. We found a significant relationship between the levels of sLe x expression and the presence of lymph node metastases. We also demonstrated that when E-Cadherin expression was increased sLe x was reduced and vice-versa. The combined analysis of both adhesion molecules revealed an inverse relationship. In the present study we demonstrate the importance of sLe x in the malignant phenotype of canine malignant mammary tumours. Our results support the use of sLe x as a prognostic tumour

  9. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...

  10. Cleavage of ST6Gal I by Radiation-Induced BACE1 Inhibits Golgi-Anchored ST6Gal I-Mediated Sialylation of Integrin β1 and Migration in Colon Cancer Cells

    International Nuclear Information System (INIS)

    Lee, Minyoung; Park, Jung-Jin; Ko, Young-Gyu; Lee, Yun-Sil

    2012-01-01

    Previously, we found that β-galactoside α2,6-sialyltransferase (ST6Gal I), an enzyme that adds sialic acids to N-linked oligosaccharides of glycoproteins and is frequently overexpressed in cancer cells, is up-regulated by ionizing radiation (IR) and cleaved to a form possessing catalytic activity comparable to that of the Golgi-localized enzyme. Moreover, this soluble form is secreted into the culture media. Induction of ST6Gal I significantly increased the migration of colon cancer cells via sialylation of integrin β1. Here, we further investigated the mechanisms underlying ST6Gal I cleavage, solubilization and release from cells, and addressed its functions, focusing primarily on cancer cell migration. We performed immunoblotting and lectin affinity assay to analyze the expression of ST6 Gal I and level of sialylated integrin β1. After ionizing radiation, migration of cells was measured by in vitro migration assay. α2, 6 sialylation level of cell surface was analyzed by flow cytometry. Cell culture media were concentrated and then analyzed for soluble ST6Gal I levels using an α2, 6 sialyltransferase sandwich ELISA. We found that ST6Gal I was cleaved by BACE1 (β-site amyloid precursor protein-cleaving enzyme), which was specifically overexpressed in response to IR. The soluble form of ST6Gal I, which also has sialyltransferase enzymatic activity, was cleaved from the Golgi membrane and then released into the culture media. Both non-cleaved and cleaved forms of ST6Gal I significantly increased colon cancer cell migration in a sialylation-dependent manner. The pro-migratory effect of the non-cleaved form of ST6Gal I was dependent on integrin β1 sialylation, whereas that of the cleaved form of ST6Gal I was not, suggesting that other intracellular sialylated molecules apart from cell surface molecules such as integrin β1 might be involved in mediating the pro-migratory effects of the soluble form of ST6Gal I. Moreover, production of soluble form ST6Gal I by

  11. P53 and cancer-associated sialylated glycans are surrogate markers of cancerization of the bladder associated with Schistosoma haematobium infection.

    Directory of Open Access Journals (Sweden)

    Júlio Santos

    2014-12-01

    Full Text Available Bladder cancer is a significant health problem in rural areas of Africa and the Middle East where Schistosoma haematobium is prevalent, supporting an association between malignant transformation and infection by this blood fluke. Nevertheless, the molecular mechanisms linking these events are poorly understood. Bladder cancers in infected populations are generally diagnosed at a late stage since there is a lack of non-invasive diagnostic tools, hence enforcing the need for early carcinogenesis markers.Forty-three formalin-fixed paraffin-embedded bladder biopsies of S. haematobium-infected patients, consisting of bladder tumours, tumour adjacent mucosa and pre-malignant/malignant urothelial lesions, were screened for bladder cancer biomarkers. These included the oncoprotein p53, the tumour proliferation rate (Ki-67>17%, cell-surface cancer-associated glycan sialyl-Tn (sTn and sialyl-Lewisa/x (sLea/sLex, involved in immune escape and metastasis. Bladder tumours of non-S. haematobium etiology and normal urothelium were used as controls. S. haematobium-associated benign/pre-malignant lesions present alterations in p53 and sLex that were also found in bladder tumors. Similar results were observed in non-S. haematobium associated tumours, irrespectively of their histological nature, denoting some common molecular pathways. In addition, most benign/pre-malignant lesions also expressed sLea. However, proliferative phenotypes were more prevalent in lesions adjacent to bladder tumors while sLea was characteristic of sole benign/pre-malignant lesions, suggesting it may be a biomarker of early carcionogenesis associated with the parasite. A correlation was observed between the frequency of the biomarkers in the tumor and adjacent mucosa, with the exception of Ki-67. Most S. haematobium eggs embedded in the urothelium were also positive for sLea and sLex. Reinforcing the pathologic nature of the studied biomarkers, none was observed in the healthy urothelium

  12. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player in the f......Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player...... in the formation of memory. Hence, ligands affecting AMPARs are highly important for the study of the structure and function of this receptor, and in this regard polyamine-based ligands, particularly polyamine toxins, are unique as they selectively block Ca2+ -permeable AMPARs. Indeed, endogenous intracellular...

  13. Radiobiology with DNA ligands

    International Nuclear Information System (INIS)

    Weinreich, R.; Argentini, M.; Guenther, I.; Koziorowski, J.; Larsson, B.; Nievergelt-Egido, M.C.; Salt, C.; Wyer, L.; Dos Santos, D.F.; Hansen, H.J.

    1997-01-01

    The paper deals with the following topics: labelling of DNA ligands and other tumour-affinic compounds with 4.15-d 124 I, radiotoxicity of Hoechst 33258 and 33342 and of iodinated Hoechst 33258 in cell cultures, preparation of 76 Br-, 123 I-, and 221 At-labelled 5-halo-2'-deoxyuridine, chemical syntheses of boron derivatives of Hoechst 33258.III., Gadolinium neutron capture therapy

  14. Expression and Purification of Glycosyltransferases in Pichia Pastoris: Towards Improving the Migration of Stem Cells by Enhancing Surface Expression of Sialyl Lewis X

    KAUST Repository

    Al-Amoodi, Asma S.

    2017-01-01

    Recruitment of circulating cells towards target sites is primarily dependent on E-selectin receptor/ligand adhesive interactions. Glycosyltransferase (GTs) are involved in the creation of E-selectin ligands. A sialofucosylated terminal

  15. Transforming growth factor beta receptor 2 (TGFBR2 changes sialylation in the microsatellite unstable (MSI Colorectal cancer cell line HCT116.

    Directory of Open Access Journals (Sweden)

    Jennifer Lee

    Full Text Available Aberrant glycosylation is a common feature of many malignancies including colorectal cancers (CRCs. About 15% of CRC show the microsatellite instability (MSI phenotype that is associated with a high frequency of biallelic frameshift mutations in the A10 coding mononucleotide microsatellite of the transforming growth factor beta receptor 2 (TGFBR2 gene. If and how impaired TGFBR2 signaling in MSI CRC cells affects cell surface glycan pattern is largely unexplored. Here, we used the TGFBR2-deficient MSI colon carcinoma cell line HCT116 as a model system. Stable clones conferring doxycycline (dox-inducible expression of a single copy wildtype TGFBR2 transgene were generated by recombinase-mediated cassette exchange (RMCE. In two independent clones, dox-inducible expression of wildtype TGFBR2 protein and reconstitution of its signaling function was shown. Metabolic labeling experiments using the tritiated sialic acid precursor N-acetyl-D-mannosamine (ManNAc revealed a significant decline (∼30% of its incorporation into newly synthesized sialoglycoproteins in a TGFBR2-dependent manner. In particular, we detected a significant decrease of sialylated ß1-integrin upon reconstituted TGFBR2 signaling which did not influence ß1-integrin protein turnover. Notably, TGFBR2 reconstitution did not affect the transcript levels of any of the known human sialyltransferases when examined by real-time RT- PCR analysis. These results suggest that reconstituted TGFBR2 signaling in an isogenic MSI cell line model system can modulate sialylation of cell surface proteins like ß1-integrin. Moreover, our model system will be suitable to uncover the underlying molecular mechanisms of altered MSI tumor glycobiology.

  16. A randomised phase II study of sialyl-Tn and DETOX-B adjuvant with or without cyclophosphamide pretreatment for the active specific immunotherapy of breast cancer.

    Science.gov (United States)

    Miles, D W; Towlson, K E; Graham, R; Reddish, M; Longenecker, B M; Taylor-Papadimitriou, J; Rubens, R D

    1996-10-01

    Studies in animal models of mouse mammary carcinoma have shown that ovine submaxillary mucin, which carries multiple sialyl-Tn (STn) epitopes, is effective in stimulating an immune response and inhibiting tumour growth. In similar studies using carbohydrate antigens, pretreatment with low-dose cyclophosphamide has been shown to be important in modulating the immune response to antigen possibly by inhibiting suppresser T-cell activity. In a clinical trial assessing the efficacy and toxicity of synthetic STn, patients with metastatic breast cancer were randomised to receive 100 micrograms STn linked to keyhole limpet haemocyanin (KLH) with DETOX-B adjuvant given by subcutaneous injection at weeks 0, 2, 5 and 9 with or without low-dose cyclophosphamide (CTX, 300 mg m-2) pretreatment, 3 days before the start of immunotherapy. Patients with responding or stable disease after the first four injections were eligible to receive STn-KLH at 4 week intervals. The main toxicity noted was the development of subcutaneous granulomata at injection sites. Of 23 patients randomised, 18 received four injections, 5 patients having developed progressive disease during the initial 12 week period. Two minor responses were noted in the 18 patients who received four active specific immunotherapy (ASI) injections and a further five patients had stable disease. Six patients continued ASI at 4 week intervals and a partial response was noted in a patient who had previously had stable disease. All patients developed IgG and IgM responses to sialyl-Tn and levels of IgM antibodies were significantly higher in those patients who were pretreated with CTX. Measurable tumour responses have been recorded following ASI with STn-KLH plus DETOX and the immunomodulatory properties of low-dose CTX have been confirmed.

  17. Profiling and characterization of sialylated N-glycans by 2D-HPLC (HIAX/PGC) with online orbitrap MS/MS and offline MSn.

    Science.gov (United States)

    Hanneman, Andrew J S; Strand, James; Huang, Chi-Ting

    2014-02-01

    Glycosylation is a critical parameter used to evaluate protein quality and consistency. N-linked glycan profiling is fundamental to the support of biotherapeutic protein manufacturing from early stage process development through drug product commercialization. Sialylated glycans impact the serum half-life of receptor-Fc fusion proteins (RFPs), making their quality and consistency a concern during the production of fusion proteins. Here, we describe an analytical approach providing both quantitative profiling and in-depth mass spectrometry (MS)-based structural characterization of sialylated RFP N-glycans. Aiming to efficiently link routine comparability studies with detailed structural characterization, an integrated workflow was implemented employing fluorescence detection, online positive and negative ion tandem mass spectrometry (MS/MS), and offline static nanospray ionization-sequential mass spectrometry (NSI-MS(n)). For routine use, high-performance liquid chromatography profiling employs established fluorescence detection of 2-aminobenzoic acid derivatives (2AA) and hydrophilic interaction anion-exchange chromatography (HIAX) charge class separation. Further characterization of HIAX peak fractions is achieved by online (-) ion orbitrap MS/MS, offering the advantages of high mass accuracy and data-dependent MS/MS. As required, additional characterization uses porous graphitized carbon in the second chromatographic dimension to provide orthogonal (+) ion MS/MS spectra and buffer-free liquid chromatography peak eluants that are optimum for offline (+)/(-) NSI-MS(n) investigations to characterize low-abundance species and specific moieties including O-acetylation and sulfation. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Bexarotene ligand pharmaceuticals.

    Science.gov (United States)

    Hurst, R E

    2000-12-01

    Bexarotene (LGD-1069), from Ligand, was the first retinoid X receptor (RXR)-selective, antitumor retinoid to enter clinical trials. The company launched the drug for the treatment of cutaneous T-cell lymphoma (CTCL), as Targretin capsules, in the US in January 2000 [359023]. The company filed an NDA for Targretin capsules in June 1999, and for topical gel in December 1999 [329011], [349982] specifically for once-daily oral administration for the treatment of patients with early-stage CTCL who have not tolerated other therapies, patients with refractory or persistent early stage CTCL and patients with refractory advanced stage CTCL. The FDA approved Targretin capsules at the end of December 1999 for once-daily oral treatment of all stages of CTCL in patients refractory to at least one prior systemic therapy, at an initial dose of 300 mg/m2/day. After an NDA was submitted in December 1999 for Targretin gel, the drug received Priority Review status for use as a treatment of cutaneous lesions in patients with stage IA, IB or IIA CTCL [354836]. The FDA issued an approvable letter in June 2000, and granted marketing clearance for CTCL in the same month [370687], [372768], [372769], [373279]. Ligand had received Orphan Drug designation for this indication [329011]. At the request of the FDA, Ligand agreed to carry out certain post-approval phase IV and pharmacokinetic studies [351604]. The company filed an MAA with the EMEA for Targretin Capsules to treat lymphoma in November 1999 [348944]. The NDA for Targretin gel is based on a multicenter phase III trial that was conducted in the US, Canada, Europe and Australia involving 50 patients and a multicenter phase I/II clinical program involving 67 patients. Targretin gel was evaluated for the treatment of patients with early stage CTCL (IA-IIA) who were refractory to, intolerant to, or reached a response plateau for at least 6 months on at least two prior therapies. Efficacy results exceeded the protocol-defined response

  19. Ligand Depot: a data warehouse for ligands bound to macromolecules.

    Science.gov (United States)

    Feng, Zukang; Chen, Li; Maddula, Himabindu; Akcan, Ozgur; Oughtred, Rose; Berman, Helen M; Westbrook, John

    2004-09-01

    Ligand Depot is an integrated data resource for finding information about small molecules bound to proteins and nucleic acids. The initial release (version 1.0, November, 2003) focuses on providing chemical and structural information for small molecules found as part of the structures deposited in the Protein Data Bank. Ligand Depot accepts keyword-based queries and also provides a graphical interface for performing chemical substructure searches. A wide variety of web resources that contain information on small molecules may also be accessed through Ligand Depot. Ligand Depot is available at http://ligand-depot.rutgers.edu/. Version 1.0 supports multiple operating systems including Windows, Unix, Linux and the Macintosh operating system. The current drawing tool works in Internet Explorer, Netscape and Mozilla on Windows, Unix and Linux.

  20. Metal-ligand interactions

    Science.gov (United States)

    Ervin, Kent M.

    Experimental studies of the interactions of small transition-metal cluster anions with carbonyl ligands are reviewed and compared with neutral and cationic clusters. Under thermal conditions, the reaction rates of transition-metal clusters with carbon monoxide are measured as a function of cluster size. Saturation limits for carbon monoxide addition can be related to the geometric structures of the clusters. Both energy-resolved threshold collision-induced dissociation experiments and time-resolved photodissociation experiments are used to measure metal-carbonyl binding energies. For platinum and palladium trimer anions, the carbonyl binding energies are assigned to different geometric binding sites. Platinum and palladium cluster anions catalyse the oxidation of carbon monoxide to carbon dioxide in a full catalytic cycle at thermal energies.

  1. Melatonin: functions and ligands.

    Science.gov (United States)

    Singh, Mahaveer; Jadhav, Hemant R

    2014-09-01

    Melatonin is a chronobiotic substance that acts as synchronizer by stabilizing bodily rhythms. Its synthesis occurs in various locations throughout the body, including the pineal gland, skin, lymphocytes and gastrointestinal tract (GIT). Its synthesis and secretion is controlled by light and dark conditions, whereby light decreases and darkness increases its production. Thus, melatonin is also known as the 'hormone of darkness'. Melatonin and analogs that bind to the melatonin receptors are important because of their role in the management of depression, insomnia, epilepsy, Alzheimer's disease (AD), diabetes, obesity, alopecia, migraine, cancer, and immune and cardiac disorders. In this review, we discuss the mechanism of action of melatonin in these disorders, which could aid in the design of novel melatonin receptor ligands. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Macrocyclic G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, M C; Ulven, Trond

    2010-01-01

    are macrocyclic structures which have been modeled after the natural product telomestatin or from porphyrin-based ligands discovered in the late 1990s. These two structural classes of G-quadruplex ligands are reviewed here with special attention to selectivity and structure-activity relationships, and with focus...

  3. Two novel mixed-ligand complexes containing organosulfonate ligands.

    Science.gov (United States)

    Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun

    2008-07-01

    The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.

  4. Correcting ligands, metabolites, and pathways

    NARCIS (Netherlands)

    Ott, M.A.; Vriend, G.

    2006-01-01

    BACKGROUND: A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases,

  5. A functional glycoproteomics approach identifies CD13 as a novel E-selectin ligand in breast cancer.

    Science.gov (United States)

    Carrascal, M A; Silva, M; Ferreira, J A; Azevedo, R; Ferreira, D; Silva, A M N; Ligeiro, D; Santos, L L; Sackstein, R; Videira, P A

    2018-05-17

    The glycan moieties sialyl-Lewis-X and/or -A (sLe X/A ) are the primary ligands for E-selectin, regulating subsequent tumor cell extravasation into distant organs. However, the nature of the glycoprotein scaffolds displaying these glycans in breast cancer remains unclear and constitutes the focus of the present investigation. We isolated glycoproteins that bind E-selectin from the CF1_T breast cancer cell line, derived from a patient with ductal carcinoma. Proteins were identified using bottom-up proteomics approach by nanoLC-orbitrap LTQ-MS/MS. Data were curated using bioinformatics tools to highlight clinically relevant glycoproteins, which were validated by flow cytometry, Western blot, immunohistochemistry and in-situ proximity ligation assays in clinical samples. We observed that the CF1_T cell line expressed sLe X , but not sLe A and the E-selectin reactivity was mainly on N-glycans. MS and bioinformatics analysis of the targeted glycoproteins, when narrowed down to the most clinically relevant species in breast cancer, identified CD44 glycoprotein (HCELL) and CD13 as key E-selectin ligands. Additionally, the co-expression of sLe X -CD44 and sLe X -CD13 was confirmed in clinical breast cancer tissue samples. Both CD44 and CD13 glycoforms display sLe X in breast cancer and bind E-selectin, suggesting a key role in metastasis development. Such observations provide a novel molecular rationale for developing targeted therapeutics. While HCELL expression in breast cancer has been previously reported, this is the first study indicating that CD13 functions as an E-selectin ligand in breast cancer. This observation supports previous associations of CD13 with metastasis and draws attention to this glycoprotein as an anti-cancer target. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Identification of the homing molecules that escort pluripotent stem cells-derived hematopoietic stem cells to their niches and human activated T-cells to inflammatory sites.

    KAUST Repository

    Ali, Amal

    2017-12-01

    Hematopoietic cells exploit the multistep paradigm of cell migration to ultimately enable them to perform their function. This process is dictated by the ability of adhesion molecules on the circulating hematopoietic cells to find their counter-receptors on endothelial cells. Of those molecules, the selectin family and their respective ligands induce the initial transient interactions between circulating cells and the opposing endothelium. In this thesis, I focused on studying E-selectin mediated cellular migration in two hematopoietic cell types, namely human hematopoietic stem and progenitor cells (HSPCs) and human T-lymphocytes. HSPCs derived from pluripotent sources theoretically offers a novel, unlimited source for hematopoietic stem cell transplantation therapy. In vitro pluripotent stem cell derived- hematopoietic stem/progenitor cells (ES/iPS-HSPCs) behave much like somatic HSPCs in that they exhibit clonal expansion and multilineage hematopoietic capacity. However, unlike somatic sources, ES/iPS-HSPCs do not give rise to effective hematopoietic repopulation, which may be due to insufficient HSPCs homing to the bone marrow. HSPCs exploit E- and P-selectin to home and engraft into bone marrow niches. Thus, one of my objectives in this thesis was to study the expression of E-selectin ligands associated with ES/iPS-HSPCs. I showed that ES/iPS-HSPCs lack functional E-selectin ligand(s). In an effort to enhance the interaction between Eselectin and ES/iPS-HSPCs, we decorated the cell surface with sialyl-Lewis x (sLex) using the ex-vivo glycan engineering technology. However, this decoration did not improve the engraftment capacity of ES/iPS-HSPCs, in vivo. Induction of E-selectin expression during inflammation is key to recruitment of immune cells and therefore I also focused on analyzing the expression of E-selectin ligands on activated human T-cells. I identified several novel glycoproteins that may function as E-selectin ligands. Specifically, I compared the

  7. Synthesis of the O-linked hexasaccharide containing b-D-Galp-(1→2)- D-Galf in Trypanosoma cruzi mucins. Differences on sialylation by trans-sialidase of the two constituent hexasaccharides

    OpenAIRE

    Agusti, Rosalia; Giorgi, María Eugenia; Mendoza, Veronica Maria; Kashiwagi, Gustavo Adolfo; Muchnik, Rosa; Gallo, Carola

    2017-01-01

    The hexasaccharide b-D-Galp-(1?2)-[b-D-Galp-(1?3)]-b-D-Galp-(1?6)-[b-D-Galp(1?2)-b-D-Galf(1?4)]- D-GlcNAc (10) and its b-D-Galf-(1?2)-b-D-Galf containing isomer (7) are the largest carbohydrates in mucins of some strains of Trypanosoma cruzi. The terminal b-D-Galp units are sites of sialylation by the parasite trans-sialidase. Hexasaccharide 10 was chemically synthesized for the first time by a [3+3] nitrilium based convergent approach, using the trichloroacetimidate method of glycosylation. ...

  8. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng; Huang, Jianhua Z; Gao, Xin

    2014-01-01

    Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction

  9. Rosetta Ligand docking with flexible XML protocols.

    Science.gov (United States)

    Lemmon, Gordon; Meiler, Jens

    2012-01-01

    RosettaLigand is premiere software for predicting how a protein and a small molecule interact. Benchmark studies demonstrate that 70% of the top scoring RosettaLigand predicted interfaces are within 2Å RMSD from the crystal structure [1]. The latest release of Rosetta ligand software includes many new features, such as (1) docking of multiple ligands simultaneously, (2) representing ligands as fragments for greater flexibility, (3) redesign of the interface during docking, and (4) an XML script based interface that gives the user full control of the ligand docking protocol.

  10. Crystallization of protein–ligand complexes

    International Nuclear Information System (INIS)

    Hassell, Anne M.; An, Gang; Bledsoe, Randy K.; Bynum, Jane M.; Carter, H. Luke III; Deng, Su-Jun J.; Gampe, Robert T.; Grisard, Tamara E.; Madauss, Kevin P.; Nolte, Robert T.; Rocque, Warren J.; Wang, Liping; Weaver, Kurt L.; Williams, Shawn P.; Wisely, G. Bruce; Xu, Robert; Shewchuk, Lisa M.

    2007-01-01

    Methods presented for growing protein–ligand complexes fall into the categories of co-expression of the protein with the ligands of interest, use of the ligands during protein purification, cocrystallization and soaking the ligands into existing crystals. Obtaining diffraction-quality crystals has long been a bottleneck in solving the three-dimensional structures of proteins. Often proteins may be stabilized when they are complexed with a substrate, nucleic acid, cofactor or small molecule. These ligands, on the other hand, have the potential to induce significant conformational changes to the protein and ab initio screening may be required to find a new crystal form. This paper presents an overview of strategies in the following areas for obtaining crystals of protein–ligand complexes: (i) co-expression of the protein with the ligands of interest, (ii) use of the ligands during protein purification, (iii) cocrystallization and (iv) soaks

  11. -Pincer Ligand Family through Ligand Post-Modification

    KAUST Repository

    Huang, Mei-Hui; Hu, Jinsong; Huang, Kuo-Wei

    2017-01-01

    A series of air-stable nickel complexes containing triazine-based PN3P-pincer ligands were synthesized and fully characterized. Complex 3 contains a de-aromatized central triazine ring from the deprotonation of one of the N–H arms. With a post-modification strategy, the Me-PN3P*NiCl complex (3) could be converted into a new class of diimine–traizine PN3P-pincer nickel complexes.

  12. -Pincer Ligand Family through Ligand Post-Modification

    KAUST Repository

    Huang, Mei-Hui

    2017-10-02

    A series of air-stable nickel complexes containing triazine-based PN3P-pincer ligands were synthesized and fully characterized. Complex 3 contains a de-aromatized central triazine ring from the deprotonation of one of the N–H arms. With a post-modification strategy, the Me-PN3P*NiCl complex (3) could be converted into a new class of diimine–traizine PN3P-pincer nickel complexes.

  13. Reactivity of halide and pseudohalide ligands

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    Reactivity of halide and pseudohalide (cyanide, azide, thiocyanate, cyanate) ligands tending to form bridge bonds in transition metal (Re, Mo, W) complexes is considered. Complexes where transition metal salts are ligands of other, complex-forming ion, are described. Transformation of innerspheric pseudohalide ligands is an important way of directed synthesis of these metal coordination compounds

  14. Tyrosine sulfation of the amino terminus of PSGL-1 is critical for enterovirus 71 infection.

    Directory of Open Access Journals (Sweden)

    Yorihiro Nishimura

    Full Text Available Enterovirus 71 (EV71 is one of the major causative agents of hand, foot, and mouth disease, a common febrile disease in children; however, EV71 has been also associated with various neurological diseases including fatal cases in large EV71 outbreaks particularly in the Asia Pacific region. Recently we identified human P-selectin glycoprotein ligand-1 (PSGL-1 as a cellular receptor for entry and replication of EV71 in leukocytes. PSGL-1 is a sialomucin expressed on the surface of leukocytes, serves as a high affinity counterreceptor for selectins, and mediates leukocyte rolling on the endothelium. The PSGL-1-P-selectin interaction requires sulfation of at least one of three clustered tyrosines and an adjacent O-glycan expressing sialyl Lewis x in an N-terminal region of PSGL-1. To elucidate the molecular basis of the PSGL-1-EV71 interaction, we generated a series of PSGL-1 mutants and identified the post-translational modifications that are critical for binding of PSGL-1 to EV71. We expressed the PSGL-1 mutants in 293T cells and the transfected cells were assayed for their abilities to bind to EV71 by flow cytometry. We found that O-glycosylation on T57, which is critical for PSGL-1-selectin interaction, is not necessary for PSGL-1 binding to EV71. On the other hand, site-directed mutagenesis at one or more potential tyrosine sulfation sites in the N-terminal region of PSGL-1 significantly impaired PSGL-1 binding to EV71. Furthermore, an inhibitor of sulfation, sodium chlorate, blocked the PSGL-1-EV71 interaction and inhibited PSGL-1-mediated viral replication of EV71 in Jurkat T cells in a dose-dependent manner. Thus, the results presented in this study reveal that tyrosine sulfation, but not O-glycosylation, in the N-terminal region of PSGL-1 may facilitate virus entry and replication of EV71 in leukocytes.

  15. Selectins mediate small cell lung cancer systemic metastasis.

    Directory of Open Access Journals (Sweden)

    Franziska Heidemann

    Full Text Available Metastasis formation is the major reason for the extremely poor prognosis in small cell lung cancer (SCLC patients. The molecular interaction partners regulating metastasis formation in SCLC are largely unidentified, however, from other tumor entities it is known that tumor cells use the adhesion molecules of the leukocyte adhesion cascade to attach to the endothelium at the site of the future metastasis. Using the human OH-1 SCLC line as a model, we found that these cells expressed E- and P-selectin binding sites, which could be in part attributed to the selectin binding carbohydrate motif sialyl Lewis A. In addition, protein backbones known to carry these glycotopes in other cell lines including PSGL-1, CD44 and CEA could be detected in in vitro and in vivo grown OH1 SCLC cells. By intravital microscopy of murine mesenterial vasculature we could capture SCLC cells while rolling along vessel walls demonstrating that SCLC cells mimic leukocyte rolling behavior in terms of selectin and selectin ligand interaction in vivo indicating that this mechanism might indeed be important for SCLC cells to seed distant metastases. Accordingly, formation of spontaneous distant metastases was reduced by 50% when OH-1 cells were xenografted into E-/P-selectin-deficient mice compared with wild type mice (p = 0.0181. However, as metastasis formation was not completely abrogated in selectin deficient mice, we concluded that this adhesion cascade is redundant and that other molecules of this cascade mediate metastasis formation as well. Using several of these adhesion molecules as interaction partners presumably make SCLC cells so highly metastatic.

  16. Ligand-regulated peptide aptamers.

    Science.gov (United States)

    Miller, Russell A

    2009-01-01

    The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.

  17. Ligand binding by PDZ domains

    DEFF Research Database (Denmark)

    Chi, Celestine N.; Bach, Anders; Strømgaard, Kristian

    2012-01-01

    , for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well...... as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context....

  18. Bitopic Ligands and Metastable Binding Sites

    DEFF Research Database (Denmark)

    Fronik, Philipp; Gaiser, Birgit I; Sejer Pedersen, Daniel

    2017-01-01

    of orthosteric binding sites. Bitopic ligands have been employed to address the selectivity problem by combining (linking) an orthosteric ligand with an allosteric modulator, theoretically leading to high-affinity subtype selective ligands. However, it remains a challenge to identify suitable allosteric binding...... that have been reported to date, this type of bitopic ligands would be composed of two identical pharmacophores. Herein, we outline the concept of bitopic ligands, review metastable binding sites, and discuss their potential as a new source of allosteric binding sites....

  19. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  20. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Directory of Open Access Journals (Sweden)

    Stéphanie Pérot

    Full Text Available Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely

  1. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Science.gov (United States)

    Pérot, Stéphanie; Regad, Leslie; Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A; Villoutreix, Bruno O; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket

  2. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  3. Development of immobilized ligands for actinide separations

    International Nuclear Information System (INIS)

    Paine, R.T.

    1994-01-01

    Primary goals during this grant period were to (1) synthesize new bifunctional chelating ligands, (2) characterize the structural features of the Ln and An coordination complexes formed by these ligands, (3) use structural data to iteratively design new classes of multifunctional ligands, and (4) explore additional routes for attachment of key ligands to solid supports that could be useful for chromatographic separations. Some highlights of recently published work as well as a summary of submitted, unpublished and/or still in progress research are outlined

  4. Macrocyclic ligands for uranium complexation

    International Nuclear Information System (INIS)

    Potts, K.T.

    1991-04-01

    A highly preorganized 24-macrocycle containing biuret, thiobiuret and pyridine subunits has been prepared by high dilution ring-closure procedures. Intermediate products to this macrocycle have been utilized to extend this synthetic route to include further representatives where solubility and stability will be influenced by substituent variation. A 1:1 complex has been formed from uranyl acetate and a quinquepyridine derivative, this representing a new type of ligand for the uranyl ion. A very convenient synthetic procedure that will allow the incorporation of these macrocycles into polymeric systems has been developed for the introduction of a vinyl substituent into the 4-position of the pyridine ring. Using triflate, vinyltributyltin and Pd 0 chemistry, this procedure should make a variety of substituted 4-vinylpyridines available for the first time. 3 refs

  5. Chemical Synthesis and Evaluation of a Disialic Acid-Containing Dextran Polymer as an Inhibitor for the Interaction between Siglec 7 and Its Ligand.

    Science.gov (United States)

    Yamaguchi, Sho; Yoshimura, Atsushi; Yasuda, Yu; Mori, Airi; Tanaka, Hiroshi; Takahashi, Takashi; Kitajima, Ken; Sato, Chihiro

    2017-07-04

    A new sialic acid (Sia)-containing glycopolymer-a fluorescent probe with high-density disialic acid (diSia) on the surface of polysaccharide dextran (diSia-Dex)-was synthesized as a key molecule to regulate the Sia recognition lectins, Siglecs, that are involved in the immune system. According to our original methods, diSia was synthesized by α-selective sialylation, and a dextran template possessing terminal acetylenes and amino groups was prepared. A diSia and a fluorescent molecule were subsequently introduced to surface-modified dextran by Hüisgen reaction and amidation, respectively. The modulatory activity of Siglec7 was evaluated by using synthetic probes. DiSia-Dex showed high binding avidity toward Siglec7, with a K D value of 5.87×10 -10  m, and a high inhibitory activity for the interaction between Siglec7 and a ligand (GD3), with a IC 50 value of 1.0 nm. Notably, diSia-Dex was able to release Siglec7 from the pre-existing Siglec7-GD3 complex, possibly due to its unique properties of a slow dissociation rate and a high association rate. Together, these data show that diSia-Dex can be widely applicable as a modulator of Siglec7 functions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. CXCR4 Ligands : The Next Big Hit?

    NARCIS (Netherlands)

    Walenkamp, Annemiek M. E.; Lapa, Constantin; Herrmann, Ken; Wester, Hans-Juergen

    2017-01-01

    The G protein-coupled protein receptor C-X-C chemokine receptor 4 (CXCR4) is an attractive target for cancer diagnosis and treatment, as it is overexpressed in many solid and hematologic cancers. Binding of its ligand, C-X-C chemokine ligand 12 (CXCL12), results in receptor internalization and

  7. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  8. Autocrine signal transmission with extracellular ligand degradation

    Science.gov (United States)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-03-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand-receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers.

  9. Organotellurium ligands – designing and complexation reactions

    Indian Academy of Sciences (India)

    Unknown

    membered rings it is negative and ~30 ppm only. Keywords. Organotellurium ligands; hybrid telluroether; platinum metal complexes; tellurium-125 NMR. 1. Introduction. Tellurium is the noblest metalloid which may act as a Lewis acid as well as Lewis base. The ligand chemistry of tellurium, which acts as a 'soft' donor, was ...

  10. Correcting ligands, metabolites, and pathways

    Directory of Open Access Journals (Sweden)

    Vriend Gert

    2006-11-01

    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and

  11. Autocrine signal transmission with extracellular ligand degradation

    International Nuclear Information System (INIS)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-01-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand–receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers

  12. Radiation induced ligand loss from cobalt complexes

    International Nuclear Information System (INIS)

    Funston, A. M.; McFadyen, W.D.; Tregloan, P.A.

    2000-01-01

    Full text: Due to the rapid nature of ligand dissociation from cobalt(II) complexes the study of the rate of ligand dissociation necessitates the use of a technique such as pulse radiolysis. This allows the rapid reduction of the corresponding cobalt(III) complex by a reducing radical, such as the aquated electron, to form the cobalt(II) complex. However, to date, no systematic study of either the mechanism of reduction or the influence of the electronic structure on the rate of ligand dissociation has been carried out. In order to understand these processes more fully the mechanism of reduction of a range of related cobalt(III) complexes by the aquated electron and the subsequent rate of ligand dissociation from the resulting cobalt(II) complexes is being investigated. It has been found that a number of processes are observed following the initial rapid reaction of the cobalt(III) complex with the aquated electron. Ultimately ligand loss is observed. Depending upon the complex, the initial processes observed may include the formation of coordinated radicals and electron transfer within the complex. For complexes containing aromatic ligands such as 2,2'-bipyridine, 1,10-phenanthroline and dipyrido[3,2-a:2',3'-c]phenazine the formation of a coordinated radical is observed as the initial reduction step. The kinetics of ligand dissociation of these complexes has been determined. The loss of monodentate ligands is fast and has been indistinguishable from the reduction processes when aromatic ligands are also present in the complex. However, for diamine chelates and diimine chelates spectra of the transient species can be resolved

  13. Labeled receptor ligands for spect

    International Nuclear Information System (INIS)

    Kung, H.F.

    1989-01-01

    Receptor specific imaging agents for single photon emission computed tomography (SPECT) can potentially be useful in the understanding of basic biochemistry and pharmacology of receptors. SPECT images may also provide tools for evaluation of density and binding kinetics of a specific receptor, information important for diagnosis and patient management. Basic requirements for receptor imaging agents are: (a) they are labeled with short-lived isotopes, (b) they show high selectivity and specific uptake, (c) they exhibit high target/background ratio, and (d) they can be modeled to obtain quantitative information. Several good examples of CNS receptor specific ligands labeled with I-123 have been developed, including iodoQNB, iodoestrogen iodobenzadiazepine, iodobenazepine, iodobenzamides for muscarinic, estrogen benzadiazepine, D-1 and D-2 dopamine receptors. With the advent of newer and faster SPECT imaging devices, it may be feasible to quantitate the receptor density by in vivo imaging techniques. These new brain imaging agents can provide unique diagnostic information, which may not be available through other imaging modalities, such as CT and MRI

  14. A Versatile Dinucleating Ligand Containing Sulfonamide Groups

    DEFF Research Database (Denmark)

    Sundberg, Jonas; Witt, Hannes; Cameron, Lisa

    2014-01-01

    ligand can be prepared in aqueous solutions using only divalent metal ions. Two of the copper(II) complexes, [Cu2(psmp)(OH)] and [Cu2(psmp)(OAc)2]-, demonstrate the anticipated 1:2 ligand/metal stoichiometry and show that the dimetallic binding site created for exogenous ligands possesses high inherent...... of antiferromagnetic coupling. This is corroborated computationally by broken-symmetry density functional theory, which for isotropic modeling of the coupling predicts an antiferromagnetic coupling strength of J = 70.5 cm-1....

  15. mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation.

    Science.gov (United States)

    Levy, Oren; Zhao, Weian; Mortensen, Luke J; Leblanc, Sarah; Tsang, Kyle; Fu, Moyu; Phillips, Joseph A; Sagar, Vinay; Anandakumaran, Priya; Ngai, Jessica; Cui, Cheryl H; Eimon, Peter; Angel, Matthew; Lin, Charles P; Yanik, Mehmet Fatih; Karp, Jeffrey M

    2013-10-03

    Mesenchymal stem cells (MSCs) are promising candidates for cell-based therapy to treat several diseases and are compelling to consider as vehicles for delivery of biological agents. However, MSCs appear to act through a seemingly limited "hit-and-run" mode to quickly exert their therapeutic impact, mediated by several mechanisms, including a potent immunomodulatory secretome. Furthermore, MSC immunomodulatory properties are highly variable and the secretome composition following infusion is uncertain. To determine whether a transiently controlled antiinflammatory MSC secretome could be achieved at target sites of inflammation, we harnessed mRNA transfection to generate MSCs that simultaneously express functional rolling machinery (P-selectin glycoprotein ligand-1 [PSGL-1] and Sialyl-Lewis(x) [SLeX]) to rapidly target inflamed tissues and that express the potent immunosuppressive cytokine interleukin-10 (IL-10), which is not inherently produced by MSCs. Indeed, triple-transfected PSGL-1/SLeX/IL-10 MSCs transiently increased levels of IL-10 in the inflamed ear and showed a superior antiinflammatory effect in vivo, significantly reducing local inflammation following systemic administration. This was dependent on rapid localization of MSCs to the inflamed site. Overall, this study demonstrates that despite the rapid clearance of MSCs in vivo, engineered MSCs can be harnessed via a "hit-and-run" action for the targeted delivery of potent immunomodulatory factors to treat distant sites of inflammation.

  16. Detection of site specific glycosylation in proteins using flow cytometry†

    Science.gov (United States)

    Jayakumar, Deepak; Marathe, Dhananjay D.; Neelamegham, Sriram

    2009-01-01

    We tested the possibility that it is possible to express unique peptide probes on cell surfaces and detect site-specific glycosylation on these peptides using flow cytometry. Such development can enhance the application of flow cytometry to detect and quantify post-translational modifications in proteins. To this end, the N-terminal section of the human leukocyte glycoprotein PSGL-1 (P-selectin glycoprotein ligand-1) was modified to contain a poly-histidine tag followed by a proteolytic cleavage site. Amino acids preceding the cleavage site have a single O-linked glycosylation site. The recombinant protein called PSGL-1 (HT) was expressed on the surface of two mammalian cell lines, CHO and HL-60, using a lentiviral delivery approach. Results demonstrate that the N-terminal portion of PSGL-1 (HT) can be released from these cells by protease, and the resulting peptide can be readily captured and detected using cytometry-bead assays. Using this strategy, the peptide was immunoprecipitated onto beads bearing mAbs against either the poly-histidine sequence or the human PSGL-1. The carbohydrate epitope associated with the released peptide was detected using HECA-452 and CSLEX-1, monoclonal antibodies that recognize the sialyl Lewis-X epitope. Finally, the peptide released from cells could be separated and enriched using nickel chelate beads. Overall, such an approach that combines recombinant protein expression with flow cytometry, may be useful to quantify changes in site-specific glycosylation for basic science and clinical applications. PMID:19735085

  17. An Automated Micro-Total Immunoassay System for Measuring Cancer-Associated α2,3-linked Sialyl N-Glycan-Carrying Prostate-Specific Antigen May Improve the Accuracy of Prostate Cancer Diagnosis

    Directory of Open Access Journals (Sweden)

    Tomokazu Ishikawa

    2017-02-01

    Full Text Available The low specificity of the prostate-specific antigen (PSA for early detection of prostate cancer (PCa is a major issue worldwide. The aim of this study to examine whether the serum PCa-associated α2,3-linked sialyl N-glycan-carrying PSA (S2,3PSA ratio measured by automated micro-total immunoassay systems (μTAS system can be applied as a diagnostic marker of PCa. The μTAS system can utilize affinity-based separation involving noncovalent interaction between the immunocomplex of S2,3PSA and Maackia amurensis lectin to simultaneously determine concentrations of free PSA and S2,3PSA. To validate quantitative performance, both recombinant S2,3PSA and benign-associated α2,6-linked sialyl N-glycan-carrying PSA (S2,6PSA purified from culture supernatant of PSA cDNA transiently-transfected Chinese hamster ovary (CHO-K1 cells were used as standard protein. Between 2007 and 2016, fifty patients with biopsy-proven PCa were pair-matched for age and PSA levels, with the same number of benign prostatic hyperplasia (BPH patients used to validate the diagnostic performance of serum S2,3PSA ratio. A recombinant S2,3PSA- and S2,6PSA-spiked sample was clearly discriminated by μTAS system. Limit of detection of S2,3PSA was 0.05 ng/mL and coefficient variation was less than 3.1%. The area under the curve (AUC for detection of PCa for the S2,3PSA ratio (%S2,3PSA with cutoff value 43.85% (AUC; 0.8340 was much superior to total PSA (AUC; 0.5062 using validation sample set. Although the present results are preliminary, the newly developed μTAS platform for measuring %S2,3PSA can achieve the required assay performance specifications for use in the practical and clinical setting and may improve the accuracy of PCa diagnosis. Additional validation studies are warranted.

  18. Ligand based pharmacophore modelling of anticancer histone ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... The study was carried out using the software Ligand Scout (version .... Computer Science, for his great help and support. We are also grateful to Faculty of Engineering and applied. Sciences, Mohammad .... Aided Mol. Design ...

  19. Synthesis and characterization β-ketoamine ligands

    Science.gov (United States)

    Zaid, Nurzati Amani Mohamed; Hassan, Nur Hasyareeda; Karim, Nurul Huda Abd

    2018-04-01

    β-ketoamine ligands are important members of heterodonor ligand because of their ease of preparation and modification of both steric and/or electronic effects. Complexes with β-ketoamine has received much less attention and there has been no study about this complex with β-ketoamine in ionic liquid reported. Two type of β-ketoamine ligands which are 4-amino-3-pentene-2-onato (A) and 3-amino-2-butenoic acid methyl ester (B) have been synthesized in this work. The resulting compound formed was characterized using standard spectroscopic and structural techniques which includes 1H and 13C, NMR spectroscopy and FTIR spectroscopy. The 1H and 13C NMR spectrum displayed all the expected signals with correct integration and multiplicity. And it is proved that there are some differences between two ligands as observed in NMR and FTIR spectrum.

  20. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Clouse, Katherine N; Goodrich, Jennifer S

    2006-01-01

    ...) activity has been associated with an increased prognosis of breast cancer. During cogenesis in Drosophila melanogaster local Egfr activation by the spatially-restricted TGFalpha-like ligand Gurken (Grk...

  1. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Goodrich, Jennifer S

    2005-01-01

    ...) activity has been associated with an increased prognosis of breast cancer. During oogenesis in Drosophila melanogaster, local EGFR activation by the spatially restricted TGF alpha-like ligand, Gurken (Grk...

  2. Cell-specific targeting by heterobivalent ligands.

    Science.gov (United States)

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  3. Semiconductor Quantum Dots with Photoresponsive Ligands.

    Science.gov (United States)

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  4. Designer TGFβ superfamily ligands with diversified functionality.

    Directory of Open Access Journals (Sweden)

    George P Allendorph

    Full Text Available Transforming Growth Factor--beta (TGFβ superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs, and Bone Morphogenetic Proteins (BMPs, are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer, to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values.

  5. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  6. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.

    2016-06-22

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  7. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.; Ustbas, Burcin; Harkness, Kellen M.; Coskun, Hikmet; Joshi, Chakra Prasad; Besong, Tabot M.D.; Stellacci, Francesco; Bakr, Osman; Akbulut, Ozge

    2016-01-01

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  8. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.

    Science.gov (United States)

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard

    2014-09-01

    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Expression of nociceptive ligands in canine osteosarcoma.

    Science.gov (United States)

    Shor, S; Fadl-Alla, B A; Pondenis, H C; Zhang, X; Wycislo, K L; Lezmi, S; Fan, T M

    2015-01-01

    Canine osteosarcoma (OS) is associated with localized pain as a result of tissue injury from tumor infiltration and peritumoral inflammation. Malignant bone pain is caused by stimulation of peripheral pain receptors, termed nociceptors, which reside in the localized tumor microenvironment, including the periosteal and intramedullary bone cavities. Several nociceptive ligands have been determined to participate directly or indirectly in generating bone pain associated with diverse skeletal abnormalities. Canine OS cells actively produce nociceptive ligands with the capacity to directly or indirectly activate peripheral pain receptors residing in the bone tumor microenvironment. Ten dogs with appendicular OS. Expression of nerve growth factor, endothelin-1, and microsomal prostaglandin E synthase-1 was characterized in OS cell lines and naturally occurring OS samples. In 10 dogs with OS, circulating concentrations of nociceptive ligands were quantified and correlated with subjective pain scores and tumor volume in patients treated with standardized palliative therapies. Canine OS cells express and secrete nerve growth factor, endothelin-1, and prostaglandin E2. Naturally occurring OS samples uniformly express nociceptive ligands. In a subset of OS-bearing dogs, circulating nociceptive ligand concentrations were detectable but failed to correlate with pain status. Localized foci of nerve terminal proliferation were identified in a minority of primary bone tumor samples. Canine OS cells express nociceptive ligands, potentially permitting active participation of OS cells in the generation of malignant bone pain. Specific inhibitors of nociceptive ligand signaling pathways might improve pain control in dogs with OS. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  10. Immobilisation of ligands by radio-derivatized polymers; Immobilisering av ligander med radioderiverte polymerer

    Energy Technology Data Exchange (ETDEWEB)

    Varga, J.M.; Fritsch, P.

    1995-01-30

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs.

  11. A General Ligand Design for Gold Catalysis allowing Ligand-Directed Anti Nucleophilic Attack of Alkynes

    Science.gov (United States)

    Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming

    2014-01-01

    Most homogenous gold catalyses demand ≥0.5 mol % catalyst loading. Due to the high cost of gold, these reactions are unlikely to be applicable in medium or large scale applications. Here we disclose a novel ligand design based on the privileged biphenyl-2-phosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3’ position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogeneous gold catalysis considering the spatial challenge of using ligand to reach antiapproaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalyzing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding. PMID:24704803

  12. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng

    2014-12-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands\\' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  13. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng; Zheng, Bin; Huang, Kuo-Wei

    2014-01-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  14. Effects of PPARγ ligands on vascular tone.

    Science.gov (United States)

    Salomone, Salvatore; Drago, Filippo

    2012-06-01

    Peroxisome Proliferator-Activated Receptor γ (PPARγ), originally described as a transcription factor for genes of carbohydrate and lipid metabolism, has been more recently studied in the context of cardiovascular pathophysiology. Here, we review the available data on PPARγ ligands as modulator of vascular tone. PPARγ ligands include: thiazolidinediones (used in the treatment of type 2 diabetes mellitus), glitazars (bind and activate both PPARγ and PPARα), and other experimental drugs (still in development) that exploit the chemistry of thiazolidinediones as a scaffold for PPARγ-independent pharmacological properties. In this review, we examine both short (mostly from in vitro data)- and long (mostly from in vivo data)-term effects of PPARγ ligands that extend from PPARγ-independent vascular effects to PPARγ-dependent gene expression. Because endothelium is a master regulator of vascular tone, we have attempted to differentiate between endothelium-dependent and endothelium-independent effects of PPARγ ligands. Based on available data, we conclude that PPARγ ligands appear to influence vascular tone in different experimental paradigms, most often in terms of vasodilatation (potentially increasing blood flow to some tissues). These effects on vascular tone, although potentially beneficial, must be weighed against specific cardiovascular warnings that may apply to some drugs, such as rosiglitazone.

  15. LIBRA: LIgand Binding site Recognition Application.

    Science.gov (United States)

    Hung, Le Viet; Caprari, Silvia; Bizai, Massimiliano; Toti, Daniele; Polticelli, Fabio

    2015-12-15

    In recent years, structural genomics and ab initio molecular modeling activities are leading to the availability of a large number of structural models of proteins whose biochemical function is not known. The aim of this study was the development of a novel software tool that, given a protein's structural model, predicts the presence and identity of active sites and/or ligand binding sites. The algorithm implemented by ligand binding site recognition application (LIBRA) is based on a graph theory approach to find the largest subset of similar residues between an input protein and a collection of known functional sites. The algorithm makes use of two predefined databases for active sites and ligand binding sites, respectively, derived from the Catalytic Site Atlas and the Protein Data Bank. Tests indicate that LIBRA is able to identify the correct binding/active site in 90% of the cases analyzed, 90% of which feature the identified site as ranking first. As far as ligand binding site recognition is concerned, LIBRA outperforms other structure-based ligand binding sites detection tools with which it has been compared. The application, developed in Java SE 7 with a Swing GUI embedding a JMol applet, can be run on any OS equipped with a suitable Java Virtual Machine (JVM), and is available at the following URL: http://www.computationalbiology.it/software/LIBRAv1.zip. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Dockomatic - automated ligand creation and docking.

    Science.gov (United States)

    Bullock, Casey W; Jacob, Reed B; McDougal, Owen M; Hampikian, Greg; Andersen, Tim

    2010-11-08

    The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user friendly Graphical User Interface (GUI) application that eases and automates the creation and management of AutoDock jobs for high throughput screening of ligand to receptor interactions. DockoMatic allows the user to invoke and manage AutoDock jobs on a single computer or cluster, including jobs for evaluating secondary ligand interactions. It also automates the process of collecting, summarizing, and viewing results. In addition, DockoMatic automates creation of peptide ligand .pdb files from strings of single-letter amino acid abbreviations. DockoMatic significantly reduces the complexity of managing multiple AutoDock jobs by facilitating ligand and AutoDock job creation and management.

  17. Dockomatic - automated ligand creation and docking

    Directory of Open Access Journals (Sweden)

    Hampikian Greg

    2010-11-01

    Full Text Available Abstract Background The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user friendly Graphical User Interface (GUI application that eases and automates the creation and management of AutoDock jobs for high throughput screening of ligand to receptor interactions. Results DockoMatic allows the user to invoke and manage AutoDock jobs on a single computer or cluster, including jobs for evaluating secondary ligand interactions. It also automates the process of collecting, summarizing, and viewing results. In addition, DockoMatic automates creation of peptide ligand .pdb files from strings of single-letter amino acid abbreviations. Conclusions DockoMatic significantly reduces the complexity of managing multiple AutoDock jobs by facilitating ligand and AutoDock job creation and management.

  18. Ligand identification using electron-density map correlations

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Adams, Paul D.; Moriarty, Nigel W.; Cohn, Judith D.

    2007-01-01

    An automated ligand-fitting procedure is applied to (F o − F c )exp(iϕ c ) difference density for 200 commonly found ligands from macromolecular structures in the Protein Data Bank to identify ligands from density maps. A procedure for the identification of ligands bound in crystal structures of macromolecules is described. Two characteristics of the density corresponding to a ligand are used in the identification procedure. One is the correlation of the ligand density with each of a set of test ligands after optimization of the fit of that ligand to the density. The other is the correlation of a fingerprint of the density with the fingerprint of model density for each possible ligand. The fingerprints consist of an ordered list of correlations of each the test ligands with the density. The two characteristics are scored using a Z-score approach in which the correlations are normalized to the mean and standard deviation of correlations found for a variety of mismatched ligand-density pairs, so that the Z scores are related to the probability of observing a particular value of the correlation by chance. The procedure was tested with a set of 200 of the most commonly found ligands in the Protein Data Bank, collectively representing 57% of all ligands in the Protein Data Bank. Using a combination of these two characteristics of ligand density, ranked lists of ligand identifications were made for representative (F o − F c )exp(iϕ c ) difference density from entries in the Protein Data Bank. In 48% of the 200 cases, the correct ligand was at the top of the ranked list of ligands. This approach may be useful in identification of unknown ligands in new macromolecular structures as well as in the identification of which ligands in a mixture have bound to a macromolecule

  19. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first...... example of a cationic terminal carbide complex, [RuC(Cl)(CH3CN)(PCy3)2]+, is described and characterized by NMR, MS, X-ray crystallography, and computational studies. The experimentally observed irregular variation of the carbide 13C chemical shift is shown to be accurately reproduced by DFT, which also...... demonstrates that details of the coordination geometry affect the carbide chemical shift equally as much as variations in the nature of the auxiliary ligands. Furthermore, the kinetics of formation of the sqaure pyramidal dicyano complex, trans-[RuC(CN)2(PCy3)2], from RuC has been examined and the reaction...

  20. Characteristic molecular vibrations of adenosine receptor ligands.

    Science.gov (United States)

    Chee, Hyun Keun; Yang, Jin-San; Joung, Je-Gun; Zhang, Byoung-Tak; Oh, S June

    2015-02-13

    Although the regulation of membrane receptor activation is known to be crucial for molecular signal transduction, the molecular mechanism underlying receptor activation is not fully elucidated. Here we study the physicochemical nature of membrane receptor behavior by investigating the characteristic molecular vibrations of receptor ligands using computational chemistry and informatics methods. By using information gain, t-tests, and support vector machines, we have identified highly informative features of adenosine receptor (AdoR) ligand and corresponding functional amino acid residues such as Asn (6.55) of AdoR that has informative significance and is indispensable for ligand recognition of AdoRs. These findings may provide new perspectives and insights into the fundamental mechanism of class A G protein-coupled receptor activation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Supramolecular architectures constructed using angular bipyridyl ligands

    International Nuclear Information System (INIS)

    Barnett, Sarah Ann

    2003-01-01

    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO 3 ) 2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO 3 ) 2 and Zn(NO 3 ) 2 . Whereas Zn(NO 3 ) 2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO 3 ) 2 , including the first example of a doubly parallel interpenetrated 4.8 2 net. 4,7-phenanthroline, was reacted with various metal(ll) nitrates as well as cobalt(ll) and copper(ll) halides. The ability of 4,7-phenanthroline to act as both a N-donor ligand and a hydrogen bond acceptor has been discussed. Reactions of CuSCN with pyrimidine yield an unusual three-dimensional structure in which polymeric propagation is not a result of ligand bridging. The reaction of CuSCN with dpt yielded structural supramolecular isomers. (author)

  2. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    Science.gov (United States)

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  3. Interaction of calreticulin with CD40 ligand, TRAIL and Fas ligand

    DEFF Research Database (Denmark)

    Duus, K; Pagh, R T; Holmskov, U

    2007-01-01

    is utilized by many other functionally diverse molecules and in this work the interaction of calreticulin with C1q and structurally similar molecules was investigated. In addition to C1q and MBL, CD40 ligand (CD40L), tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) were...... found to bind calreticulin strongly. A low level or no binding was observed for adiponectin, tumour necrosis factor-alpha (TNF-alpha), CD30L, surfactant protein-A and -D and collagen VIII. The interaction with calreticulin required a conformational change in CD40L, TRAIL and FasL and showed the same...

  4. Crystallization and preliminary X-ray diffraction studies of the carbohydrate-recognition domain of SIGN-R1, a receptor for microbial polysaccharides and sialylated antibody on splenic marginal zone macrophages

    International Nuclear Information System (INIS)

    Silva-Martin, Noella; Schauer, Joseph D.; Park, Chae Gyu; Hermoso, Juan A.

    2009-01-01

    The carbohydrate-recognition domain of the SIGN-R1 receptor from M. musculus has been crystallized by the hanging-drop vapour-diffusion method. A native data set has been collected to 1.87 Å resolution. SIGN-R1, or CD209b, is a mouse C-type lectin receptor that is expressed at high levels on macrophages in lymphoid tissues, especially within the marginal zone of the spleen. SIGN-R1 can bind and mediate the uptake of various microbial polysaccharides, including dextrans, lipopolysaccharides and pneumococcal capsular polysaccharides. It has been shown that SIGN-R1 mediates the clearance of encapsulated pneumococcus, complement fixation via binding C1q independent of antibody and innate resistance to pneumococcal infection. Recently, SIGN-R1 has also been demonstrated to bind sialylated antibody and mediate its activity to suppress autoimmunity. The carbohydrate-recognition domain (CRD) of SIGN-R1 has been cloned and overexpressed in a soluble secretory form in mammalian Chinese hamster ovary (CHO) cells. The CRD protein of SIGN-R1 was purified from CHO cell-culture supernatant and concentrated for crystallization using the hanging-drop vapour-diffusion method at 291 K. Crystals grew from a mixture of 2 M ammonium sulfate in 0.1 M bis-tris pH 5.5. Single crystals, which belonged to the monoclinic space group C2 with unit-cell parameters a = 146.72, b = 92.77, c = 77.06 Å, β = 121.66°, allowed the collection of a full X-ray data set to a maximum resolution of 1.87 Å

  5. Crystallization and preliminary X-ray diffraction studies of the carbohydrate-recognition domain of SIGN-R1, a receptor for microbial polysaccharides and sialylated antibody on splenic marginal zone macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Martin, Noella [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física ‘Rocasolano’, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid (Spain); Schauer, Joseph D.; Park, Chae Gyu [Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Hermoso, Juan A., E-mail: xjuan@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física ‘Rocasolano’, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid (Spain)

    2009-12-01

    The carbohydrate-recognition domain of the SIGN-R1 receptor from M. musculus has been crystallized by the hanging-drop vapour-diffusion method. A native data set has been collected to 1.87 Å resolution. SIGN-R1, or CD209b, is a mouse C-type lectin receptor that is expressed at high levels on macrophages in lymphoid tissues, especially within the marginal zone of the spleen. SIGN-R1 can bind and mediate the uptake of various microbial polysaccharides, including dextrans, lipopolysaccharides and pneumococcal capsular polysaccharides. It has been shown that SIGN-R1 mediates the clearance of encapsulated pneumococcus, complement fixation via binding C1q independent of antibody and innate resistance to pneumococcal infection. Recently, SIGN-R1 has also been demonstrated to bind sialylated antibody and mediate its activity to suppress autoimmunity. The carbohydrate-recognition domain (CRD) of SIGN-R1 has been cloned and overexpressed in a soluble secretory form in mammalian Chinese hamster ovary (CHO) cells. The CRD protein of SIGN-R1 was purified from CHO cell-culture supernatant and concentrated for crystallization using the hanging-drop vapour-diffusion method at 291 K. Crystals grew from a mixture of 2 M ammonium sulfate in 0.1 M bis-tris pH 5.5. Single crystals, which belonged to the monoclinic space group C2 with unit-cell parameters a = 146.72, b = 92.77, c = 77.06 Å, β = 121.66°, allowed the collection of a full X-ray data set to a maximum resolution of 1.87 Å.

  6. Ligand Exchange Kinetics of Environmentally Relevant Metals

    Energy Technology Data Exchange (ETDEWEB)

    Panasci, Adele Frances [Univ. of California, Davis, CA (United States)

    2014-07-15

    The interactions of ground water with minerals and contaminants are of broad interest for geochemists but are not well understood. Experiments on the molecular scale can determine reaction parameters (i.e. rates of ligand exchange, activation entropy, activation entropy, and activation volume) that can be used in computations to gain insight into reactions that occur in natural groundwaters. Experiments to determine the rate of isotopic ligand exchange for three environmentally relevant metals, rhodium (Rh), iron (Fe), and neptunium (Np), are described. Many environmental transformations of metals (e.g. reduction) in soil occur at trivalent centers, Fe(III) in particular. Contaminant ions absorb to mineral surfaces via ligand exchange, and the reversal of this reaction can be dangerous, releasing contaminants into the environment. Ferric iron is difficult to study spectroscopically because most of its complexes are paramagnetic and are generally reactive toward ligand exchange; therefore, Rh(III), which is diamagnetic and less reactive, was used to study substitution reactions that are analogous to those that occur on mineral oxide surfaces. Studies on both Np(V) and Np(VI) are important in their own right, as 237Np is a radioactive transuranic element with a half-life of 2 million years.

  7. Ligand iron catalysts for selective hydrogenation

    Science.gov (United States)

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  8. Programmed Death-Ligand 1 Immunohistochemistry Testing

    DEFF Research Database (Denmark)

    Büttner, Reinhard; Gosney, John R; Skov, Birgit Guldhammer

    2017-01-01

    Purpose Three programmed death-1/programmed death-ligand 1 (PD-L1) inhibitors are currently approved for treatment of non-small-cell lung cancer (NSCLC). Treatment with pembrolizumab in NSCLC requires PD-L1 immunohistochemistry (IHC) testing. Nivolumab and atezolizumab are approved without PD-L1...

  9. Versatile phosphite ligands based on silsesquioxane backbones

    NARCIS (Netherlands)

    van der Vlugt, JI; Ackerstaff, J; Dijkstra, TW; Mills, AM; Kooijman, H; Spek, AL; Meetsma, A; Abbenhuis, HCL; Vogt, D

    Silsesquioxanes are employed as ligand backbones for the synthesis of novel phosphite compounds with 3,3'-5,5'-tetrakis(tert-butyl)-2,2'-di-oxa-1,1'-biphenyl substituents. Both mono- and bidentate phosphites are prepared in good yields. Two types of silsesquioxanes are employed as starting

  10. Ammonia formation by metal-ligand cooperative hydrogenolysis of a nitrido ligand

    Science.gov (United States)

    Askevold, Bjorn; Nieto, Jorge Torres; Tussupbayev, Samat; Diefenbach, Martin; Herdtweck, Eberhardt; Holthausen, Max C.; Schneider, Sven

    2011-07-01

    Bioinspired hydrogenation of N2 to ammonia at ambient conditions by stepwise nitrogen protonation/reduction with metal complexes in solution has experienced remarkable progress. In contrast, the highly desirable direct hydrogenation with H2 remains difficult. In analogy to the heterogeneously catalysed Haber-Bosch process, such a reaction is conceivable via metal-centred N2 splitting and unprecedented hydrogenolysis of the nitrido ligands to ammonia. We report the synthesis of a ruthenium(IV) nitrido complex. The high nucleophilicity of the nitrido ligand is demonstrated by unusual N-C coupling with π-acidic CO. Furthermore, the terminal nitrido ligand undergoes facile hydrogenolysis with H2 at ambient conditions to produce ammonia in high yield. Kinetic and quantum chemical examinations of this reaction suggest cooperative behaviour of a phosphorus-nitrogen-phosphorus pincer ligand in rate-determining heterolytic hydrogen splitting.

  11. Dynamic ligand-based pharmacophore modeling and virtual ...

    Indian Academy of Sciences (India)

    Five ligand-based pharmacophore models were generated from 40 different .... the Phase module of the Schrodinger program.35 Each model consisted of six types of ... ligand preparation included the OPLS_2005 force field and to retain the ...

  12. Substrate coated with receptor and labelled ligand for assays

    International Nuclear Information System (INIS)

    1980-01-01

    Improvements in the procedures for assaying ligands are described. The assay consists of a polystyrene tube on which receptors are present for both the ligand to be assayed and a radioactively labelled form of the ligand. The receptors on the bottom portion of the tube are also coated with labelled ligands, thus eliminating the necessity for separate addition of the labelled ligand and sample during an assay. Examples of ligands to which this method is applicable include polypeptides, nucleotides, nucleosides and proteins. Specific examples are given in which the ligand to be assayed is digoxin, the labelled form of the ligand is 3-0-succinyl digoxyigenin tyrosine ( 125 I) and the receptor is digoxin antibody. (U.K.)

  13. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    Science.gov (United States)

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

  14. AutoSite: an automated approach for pseudo-ligands prediction—from ligand-binding sites identification to predicting key ligand atoms

    Science.gov (United States)

    Ravindranath, Pradeep Anand; Sanner, Michel F.

    2016-01-01

    Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702

  15. A response calculus for immobilized T cell receptor ligands

    DEFF Research Database (Denmark)

    Andersen, P S; Menné, C; Mariuzza, R A

    2001-01-01

    determine the level of T cell activation. When fitted to T cell responses against purified ligands immobilized on plastic surfaces, the 2D-affinity model adequately simulated changes in cellular activation as a result of varying ligand affinity and ligand density. These observations further demonstrated...

  16. Fullerenes as a new type of ligands for transition metals

    International Nuclear Information System (INIS)

    Sokolov, V.I.

    2007-01-01

    Fullerenes are considered as ligands in transition metal π-complexes. The following aspects are discussed: metals able to form π-complexes with fullerenes (Zr, V, Ta, Mo, W, Re, Ru, etc.); haptic numbers; homo- and hetero ligand complexes; ligand compatibility with fullerenes for different metals, including fullerenes with a disturbed structure of conjugation [ru

  17. New pinene-derived pyridines as bidentate chiral ligands

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Stewart-Liddon, A.; Teplý, Filip; Kobr, L.; Muir, K. W.; Haigh, D.; Kočovský, P.

    2008-01-01

    Roč. 64, č. 18 (2008), s. 4011-4025 ISSN 0040-4020 Institutional research plan: CEZ:AV0Z40550506 Keywords : chiral ligands * transition metal catalysis * asymmetric catalysis * pyridine ligands * oxazoline ligands Subject RIV: CC - Organic Chemistry Impact factor: 2.897, year: 2008

  18. Sigma-2 receptor ligands QSAR model dataset

    Directory of Open Access Journals (Sweden)

    Antonio Rescifina

    2017-08-01

    Full Text Available The data have been obtained from the Sigma-2 Receptor Selective Ligands Database (S2RSLDB and refined according to the QSAR requirements. These data provide information about a set of 548 Sigma-2 (σ2 receptor ligands selective over Sigma-1 (σ1 receptor. The development of the QSAR model has been undertaken with the use of CORAL software using SMILES, molecular graphs and hybrid descriptors (SMILES and graph together. Data here reported include the regression for σ2 receptor pKi QSAR models. The QSAR model was also employed to predict the σ2 receptor pKi values of the FDA approved drugs that are herewith included.

  19. Metal-ligand cooperative activation of nitriles by a ruthenium complex with a de-aromatized PNN pincer ligand

    NARCIS (Netherlands)

    Eijsink, Linda E; Perdriau, Sébastien C P; de Vries, Johannes G; Otten, Edwin

    2016-01-01

    The pincer complex (PNN)RuH(CO), with a de-aromatized pyridine in the ligand backbone, is shown to react with nitriles in a metal-ligand cooperative manner. This leads to the formation of a series of complexes with new Ru-N(nitrile) and C(ligand)-C(nitrile) bonds. The initial nitrile cycloaddition

  20. EGFR Activation by Spatially Restricted Ligands

    Science.gov (United States)

    2006-06-01

    the level of ligand production, that result in human breast cancer. We have integrated genetic and biochemical methods to study (1) the effects of a...and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Genes Dev 12, 2711-2723...findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision

  1. Selective oxoanion separation using a tripodal ligand

    Energy Technology Data Exchange (ETDEWEB)

    Custelcean, Radu; Moyer, Bruce A.; Rajbanshi, Arbin

    2016-02-16

    The present invention relates to urea-functionalized crystalline capsules self-assembled by sodium or potassium cation coordination and by hydrogen-bonding water bridges to selectively encapsulate tetrahedral divalent oxoanions from highly competitive aqueous alkaline solutions and methods using this system for selective anion separations from industrial solutions. The method involves competitive crystallizations using a tripodal tris(urea) functionalized ligand and, in particular, provides a viable approach to sulfate separation from nuclear wastes.

  2. Determination of ligand binding modes in weak protein–ligand complexes using sparse NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Biswaranjan; Williams, Martin L.; Doak, Bradley C.; Vazirani, Mansha; Ilyichova, Olga [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia); Wang, Geqing [La Trobe University, La Trobe Institute for Molecular Bioscience (Australia); Bermel, Wolfgang [Bruker Biospin GmbH (Germany); Simpson, Jamie S.; Chalmers, David K. [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia); King, Glenn F. [The University of Queensland, Institute for Molecular Bioscience (Australia); Mobli, Mehdi, E-mail: m.mobli@uq.edu.au [The University of Queensland, Centre for Advanced Imaging (Australia); Scanlon, Martin J., E-mail: martin.scanlon@monash.edu [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia)

    2016-11-15

    We describe a general approach to determine the binding pose of small molecules in weakly bound protein–ligand complexes by deriving distance constraints between the ligand and methyl groups from all methyl-containing residues of the protein. We demonstrate that using a single sample, which can be prepared without the use of expensive precursors, it is possible to generate high-resolution data rapidly and obtain the resonance assignments of Ile, Leu, Val, Ala and Thr methyl groups using triple resonance scalar correlation data. The same sample may be used to obtain Met {sup ε}CH{sub 3} assignments using NOESY-based methods, although the superior sensitivity of NOESY using [U-{sup 13}C,{sup 15}N]-labeled protein makes the use of this second sample more efficient. We describe a structural model for a weakly binding ligand bound to its target protein, DsbA, derived from intermolecular methyl-to-ligand nuclear Overhauser enhancements, and demonstrate that the ability to assign all methyl resonances in the spectrum is essential to derive an accurate model of the structure. Once the methyl assignments have been obtained, this approach provides a rapid means to generate structural models for weakly bound protein–ligand complexes. Such weak complexes are often found at the beginning of programs of fragment based drug design and can be challenging to characterize using X-ray crystallography.

  3. The value of flow cytometric analysis of platelet glycoprotein expression of CD34+ cells measured under conditions that prevent P-selectin-mediated binding of platelets

    NARCIS (Netherlands)

    Dercksen, M. W.; Weimar, I. S.; Richel, D. J.; Breton-Gorius, J.; Vainchenker, W.; Slaper-Cortenbach, C. M.; Pinedo, H. M.; von dem Borne, A. E.; Gerritsen, W. R.; van der Schoot, C. E.

    1995-01-01

    In the present study, we show by adhesion assays and ultrastructural studies that platelets can bind to CD34+ cells from human blood and bone marrow and that this interaction interferes with the accurate detection of endogenously expressed platelet glycoproteins (GPs). The interaction between these

  4. Regulation of the O-glycan-type Sialyl-Lewis X (sLex) Bio-synthesis Pathway during Cell Transformation Programs: Epithelial-Mesenchymal Transition (EMT) and Molecular Subtypes in Breast Carcinoma and Human T Cell Activation

    KAUST Repository

    AbuElela, Ayman

    2017-12-01

    During tumor progression and development of distant metastases, a subset of cancer cells undergoes transformation programs, such as epithelial-mesenchymal transition (EMT), to acquire enhanced migratory attributes to commence the metastatic cascade with the intension of achieving an active cell adhesion molecule-mediated organ-specific homing. Similarly, naive T cells reform the assemblage of their surface adhesion molecules during differentiation to activated T cells in order to successfully home to sites of inflammation and other extra-lymphoid organs for surveillance purposes. Sialyl-Lewis X (sLex) is well-known for mediating the homing of epithelial circulating tumor cellss (CTCs) and activated T cells to target sites through the interaction with endothelial selectins. Since glycan structures are not directly encoded by the genome, their expression is dependent on the glycosyltransferase (GT) expression and activity. Yet, the modulation of GTs during breast cancer transformation and in different molecular subtypes is still unknown. In addition, although the regulation of GTs during T cell activation is well-understood, the regulation at the epigenetic level is lacking. O-glycan-type sLex expression and E-selectin binding under static and flow conditions varies among molecular subtypes of breast cancer and upon the induction of EMT which is linked to the expression patterns of GTs. GTs displayed a significant prognostic value of in the association with the patients\\' survival profiles and in the ability to predict the breast cancer molecular subtypes from the expression data of a random patient sample. Also, GTs were able to differentiate between tumor and their normal counterparts as well as cancer types and glioblastoma subtypes. On the other hand, we studied the regulation of GTs in human CD4+ memory T cells compared to the naive cells at the epigenetic level. Memory T cell subsets demonstrated differential chromatin accessibility and histone marks within

  5. ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites.

    Science.gov (United States)

    Konc, Janez; Janežič, Dušanka

    2014-07-01

    The ProBiS-ligands web server predicts binding of ligands to a protein structure. Starting with a protein structure or binding site, ProBiS-ligands first identifies template proteins in the Protein Data Bank that share similar binding sites. Based on the superimpositions of the query protein and the similar binding sites found, the server then transposes the ligand structures from those sites to the query protein. Such ligand prediction supports many activities, e.g. drug repurposing. The ProBiS-ligands web server, an extension of the ProBiS web server, is open and free to all users at http://probis.cmm.ki.si/ligands. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Spectrophotometric method for determination of bifunctional macrocyclic ligands in macrocyclic ligand-protein conjugates

    International Nuclear Information System (INIS)

    Dadachova, E.; Chappell, L.L.; Brechbiel, M.W.

    1999-01-01

    A simple spectrophotometric assay for determination of bifunctional polyazacarboxylate-macrocyclic ligands of different sizes that are conjugated to proteins has been developed for: 12-membered macrocycle DOTA (2-[4-nitrobenzyl]-1, 4, 7, 10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and analogs, the 15-membered PEPA macrocycle (2-[4-nitrobenzyl]-1,4,7,10,13-pentaazacyclopentadecane-N,N',N'',N''',N'''' -pentaacetic acid), and the large 18-membered macrocycle HEHA (1,4,7,10,13,16-hexaazacyclooctadecane-N,N',N'',N''',N''''-hexaacetic acid). The method is based on titration of the blue-colored 1:1 Pb(II)-Arsenazo III (AAIII) complex with the polyazacarboxylate macrocyclic ligand in the concentration range of 0-2.5 μM, wherein color change occurring upon transchelation of the Pb(II) from the AAIII to the polyazamacrocyclic ligand is monitored at 656 nm. The assay is performed at ambient temperature within 20 min without any interfering interaction between the protein and Pb(II)-AA(III) complex. Thus, this method also provides a ligand-to-protein ratio (L/P ratio) that reflects the effective number of ligands per protein molecule available to radiolabeling. The method is not suitable for 14-membered TETA macrocycle (2-[4-nitrobenzyl]-1, 4, 8, 11-tetraazacyclotetradecane N,N',N'',N'''-tetraacetic acid) because of low stability constant of Pb(II)-TETA complex. The method is rapid, simple and may be customized for other polyazacarboxylate macrocyclic ligands

  7. Soluble Siglec-5 associates to PSGL-1 and displays anti-inflammatory activity

    Science.gov (United States)

    Pepin, Marion; Mezouar, Soraya; Pegon, Julie; Muczynski, Vincent; Adam, Frédéric; Bianchini, Elsa P.; Bazaa, Amine; Proulle, Valerie; Rupin, Alain; Paysant, Jerome; Panicot-Dubois, Laurence; Christophe, Olivier D.; Dubois, Christophe; Lenting, Peter J.; Denis, Cécile V.

    2016-01-01

    Interactions between endothelial selectins and the leukocyte counter-receptor PSGL1 mediates leukocyte recruitment to inflammation sites. PSGL1 is highly sialylated, making it a potential ligand for Siglec-5, a leukocyte-receptor that recognizes sialic acid structures. Binding assays using soluble Siglec-5 variants (sSiglec-5/C4BP and sSiglec-5/Fc) revealed a dose- and calcium-dependent binding to PSGL1. Pre-treatment of PSGL1 with sialidase reduced Siglec-5 binding by 79 ± 4%. In confocal immune-fluorescence assays, we observed that 50% of Peripheral Blood Mononuclear Cells (PBMCs) simultaneously express PSGL1 and Siglec-5. Duolink-proximity ligation analysis demonstrated that PSGL1 and Siglec-5 are in close proximity (<40 nm) in 31 ± 4% of PBMCs. In vitro perfusion assays revealed that leukocyte-rolling over E- and P-selectin was inhibited by sSiglec-5/Fc or sSiglec-5/C4BP, while adhesion onto VCAM1 was unaffected. When applied to healthy mice (0.8 mg/kg), sSiglec-5/C4BP significantly reduced the number of rolling leukocytes under basal conditions (10.9 ± 3.7 versus 23.5 ± 9.3 leukocytes/field/min for sSiglec-5/C4BP-treated and control mice, respectively; p = 0.0093). Moreover, leukocyte recruitment was inhibited over a 5-h observation period in an in vivo model of TNFalpha-induced inflammation following injection sSiglec-5/C4BP (0.8 mg/kg). Our data identify PSGL1 as a ligand for Siglec-5, and soluble Siglec-5 variants appear efficient in blocking PSGL1-mediated leukocyte rolling and the inflammatory response in general. PMID:27892504

  8. Ligand cluster-based protein network and ePlatton, a multi-target ligand finder.

    Science.gov (United States)

    Du, Yu; Shi, Tieliu

    2016-01-01

    Small molecules are information carriers that make cells aware of external changes and couple internal metabolic and signalling pathway systems with each other. In some specific physiological status, natural or artificial molecules are used to interact with selective biological targets to activate or inhibit their functions to achieve expected biological and physiological output. Millions of years of evolution have optimized biological processes and pathways and now the endocrine and immune system cannot work properly without some key small molecules. In the past thousands of years, the human race has managed to find many medicines against diseases by trail-and-error experience. In the recent decades, with the deepening understanding of life and the progress of molecular biology, researchers spare no effort to design molecules targeting one or two key enzymes and receptors related to corresponding diseases. But recent studies in pharmacogenomics have shown that polypharmacology may be necessary for the effects of drugs, which challenge the paradigm, 'one drug, one target, one disease'. Nowadays, cheminformatics and structural biology can help us reasonably take advantage of the polypharmacology to design next-generation promiscuous drugs and drug combination therapies. 234,591 protein-ligand interactions were extracted from ChEMBL. By the 2D structure similarity, 13,769 ligand emerged from 156,151 distinct ligands which were recognized by 1477 proteins. Ligand cluster- and sequence-based protein networks (LCBN, SBN) were constructed, compared and analysed. For assisting compound designing, exploring polypharmacology and finding possible drug combination, we integrated the pathway, disease, drug adverse reaction and the relationship of targets and ligand clusters into the web platform, ePlatton, which is available at http://www.megabionet.org/eplatton. Although there were some disagreements between the LCBN and SBN, communities in both networks were largely the same

  9. Towards ligand docking including explicit interface water molecules.

    Directory of Open Access Journals (Sweden)

    Gordon Lemmon

    Full Text Available Small molecule docking predicts the interaction of a small molecule ligand with a protein at atomic-detail accuracy including position and conformation the ligand but also conformational changes of the protein upon ligand binding. While successful in the majority of cases, docking algorithms including RosettaLigand fail in some cases to predict the correct protein/ligand complex structure. In this study we show that simultaneous docking of explicit interface water molecules greatly improves Rosetta's ability to distinguish correct from incorrect ligand poses. This result holds true for both protein-centric water docking wherein waters are located relative to the protein binding site and ligand-centric water docking wherein waters move with the ligand during docking. Protein-centric docking is used to model 99 HIV-1 protease/protease inhibitor structures. We find protease inhibitor placement improving at a ratio of 9:1 when one critical interface water molecule is included in the docking simulation. Ligand-centric docking is applied to 341 structures from the CSAR benchmark of diverse protein/ligand complexes [1]. Across this diverse dataset we see up to 56% recovery of failed docking studies, when waters are included in the docking simulation.

  10. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.

    2012-03-27

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind to the nanocrystal surface in the form of lead oleate. The Wulff construction predicts the thermodynamic equilibrium shape of the PbSe nanocrystals. The equilibrium shape is a function of the ligand surface coverage, which can be controlled by changing the concentration of oleic acid during synthesis. The different binding energy of the ligand on the {100} and {111} facets results in different equilibrium ligand coverages on the facets, and a transition in the equilibrium shape from octahedral to cubic is predicted when increasing the ligand concentration during synthesis. © 2012 American Chemical Society.

  11. Prediction of GPCR-Ligand Binding Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Sangmin Seo

    2018-01-01

    Full Text Available We propose a novel method that predicts binding of G-protein coupled receptors (GPCRs and ligands. The proposed method uses hub and cycle structures of ligands and amino acid motif sequences of GPCRs, rather than the 3D structure of a receptor or similarity of receptors or ligands. The experimental results show that these new features can be effective in predicting GPCR-ligand binding (average area under the curve [AUC] of 0.944, because they are thought to include hidden properties of good ligand-receptor binding. Using the proposed method, we were able to identify novel ligand-GPCR bindings, some of which are supported by several studies.

  12. Mixed ligand chelates of rare earths in aqueous solution

    International Nuclear Information System (INIS)

    Lakhani, S.U.; Thakur, G.S.; Sangal, S.P.

    1981-01-01

    Mixed ligand chelates of the 1:1 trivalent lanthanoids-EDTA, HEDTA and NTA chelates-1, 2-Dihydroxybenzene (Pyrocatechol) have been investigated at 35degC and 0.2 M ionic strength maintained by NaC10 4 . The formation of mixed ligand chelates has been found in all cases. The formation of mixed ligand chelates with EDTA shows the coordination number of lanthanoids to be eight, while the mixed ligand chelates with HEDTA and NTA shows the coordination number to be seven and six respectively. The stability constants of mixed ligand chelates are smaller than the binary complexes. The order of stability constants with respect to primary ligands follows the order NTA>HEDTA>EDTA. With respect to metal ions the stability constants increases with the decrease in ionic radii such as Gd< Er< Yb. (author)

  13. New ' Bucky- ligands'. Potentially Monoanionic Terdentate Diamino Aryl Pincer Ligands Anchored to C60

    NARCIS (Netherlands)

    Koten, G. van; Meijer, M.D.; Gossage, R.A.; Jastrzebski, J.T.B.H.

    1998-01-01

    Two new methanofullerenes have been prepared by the reaction of C{6}{0} with diazo substituted, potentially monoanionic, terdentate diamino aryl ligands, yielding a mixture of the open valence [5, 6]- and closed valence [6,6]-isomers. Single isomers of the pure [6,6]-methanofullerenes were obtained

  14. LASSO-ligand activity by surface similarity order: a new tool for ligand based virtual screening.

    Science.gov (United States)

    Reid, Darryl; Sadjad, Bashir S; Zsoldos, Zsolt; Simon, Aniko

    2008-01-01

    Virtual Ligand Screening (VLS) has become an integral part of the drug discovery process for many pharmaceutical companies. Ligand similarity searches provide a very powerful method of screening large databases of ligands to identify possible hits. If these hits belong to new chemotypes the method is deemed even more successful. eHiTS LASSO uses a new interacting surface point types (ISPT) molecular descriptor that is generated from the 3D structure of the ligand, but unlike most 3D descriptors it is conformation independent. Combined with a neural network machine learning technique, LASSO screens molecular databases at an ultra fast speed of 1 million structures in under 1 min on a standard PC. The results obtained from eHiTS LASSO trained on relatively small training sets of just 2, 4 or 8 actives are presented using the diverse directory of useful decoys (DUD) dataset. It is shown that over a wide range of receptor families, eHiTS LASSO is consistently able to enrich screened databases and provides scaffold hopping ability.

  15. LASSO—ligand activity by surface similarity order: a new tool for ligand based virtual screening

    Science.gov (United States)

    Reid, Darryl; Sadjad, Bashir S.; Zsoldos, Zsolt; Simon, Aniko

    2008-06-01

    Virtual Ligand Screening (VLS) has become an integral part of the drug discovery process for many pharmaceutical companies. Ligand similarity searches provide a very powerful method of screening large databases of ligands to identify possible hits. If these hits belong to new chemotypes the method is deemed even more successful. eHiTS LASSO uses a new interacting surface point types (ISPT) molecular descriptor that is generated from the 3D structure of the ligand, but unlike most 3D descriptors it is conformation independent. Combined with a neural network machine learning technique, LASSO screens molecular databases at an ultra fast speed of 1 million structures in under 1 min on a standard PC. The results obtained from eHiTS LASSO trained on relatively small training sets of just 2, 4 or 8 actives are presented using the diverse directory of useful decoys (DUD) dataset. It is shown that over a wide range of receptor families, eHiTS LASSO is consistently able to enrich screened databases and provides scaffold hopping ability.

  16. New synthetic routes toward enantiopure nitrogen donor ligands

    OpenAIRE

    Sala, Xavier; Rodríguez, Anna M.; Rodríguez, Montserrat; Romero, Isabel; Parella, Teodor; Zelewsky, Alexander von; Llobet, Antoni; Benet-Buchholz, Jordi

    2008-01-01

    New polypyridylic chiral ligands, having either C₃ or lower symmetry, have been prepared via a de novo construction of the pyridine nucleus by means of Kröhnke methodology in the key step. The chiral moieties of these ligands originate from the monoterpen chiral pool, namely (-)-α-pinene ((-)-14, (-)-15) and (-)-myrtenal ((-)-9, (-)-10). Extension of the above-mentioned asymmetric synthesis procedure to the preparation of enantiopure derivatives of some commonly used polypyridylic ligands has...

  17. Selectivity in ligand recognition of G-quadruplex loops.

    Science.gov (United States)

    Campbell, Nancy H; Patel, Manisha; Tofa, Amina B; Ghosh, Ragina; Parkinson, Gary N; Neidle, Stephen

    2009-03-03

    A series of disubstituted acridine ligands have been cocrystallized with a bimolecular DNA G-quadruplex. The ligands have a range of cyclic amino end groups of varying size. The crystal structures show that the diagonal loop in this quadruplex results in a large cavity for these groups, in contrast to the steric constraints imposed by propeller loops in human telomeric quadruplexes. We conclude that the nature of the loop has a significant influence on ligand selectivity for particular quadruplex folds.

  18. Singular Value Decomposition and Ligand Binding Analysis

    Directory of Open Access Journals (Sweden)

    André Luiz Galo

    2013-01-01

    Full Text Available Singular values decomposition (SVD is one of the most important computations in linear algebra because of its vast application for data analysis. It is particularly useful for resolving problems involving least-squares minimization, the determination of matrix rank, and the solution of certain problems involving Euclidean norms. Such problems arise in the spectral analysis of ligand binding to macromolecule. Here, we present a spectral data analysis method using SVD (SVD analysis and nonlinear fitting to determine the binding characteristics of intercalating drugs to DNA. This methodology reduces noise and identifies distinct spectral species similar to traditional principal component analysis as well as fitting nonlinear binding parameters. We applied SVD analysis to investigate the interaction of actinomycin D and daunomycin with native DNA. This methodology does not require prior knowledge of ligand molar extinction coefficients (free and bound, which potentially limits binding analysis. Data are acquired simply by reconstructing the experimental data and by adjusting the product of deconvoluted matrices and the matrix of model coefficients determined by the Scatchard and McGee and von Hippel equation.

  19. Spectrochemical study on different ligand neodymium complexes

    International Nuclear Information System (INIS)

    Khomenko, V.S.; Lozinskij, M.O.; Fialkov, Yu.A.; Krasovskaya, L.I.; Rasshinina, T.A.; AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1986-01-01

    A series of new adducts of neodymium complexes with 1, 1, 1, 5, 5, 5-hexafluoropentadione - 2, 4 and 2-heptafluoropropoxy-1, 1, 1, 2-tetrafluoro-5-phenylpentadione-3, 5: Nd(HFPTFPhPD) 3 x2H 2 O, Nd(HFPTFPhPD) 3 xDipy, Nd(HFPTFPhPD) 3 xPhen, Nd(HFPTFPhPD) 3 xDphen, Nd(HFA) 3 x2H 2 O, Nd(HFA) 3 xDipy, Nd(HFA) 3 xPhen, Nd(HFA) 3 xDphen, have been synthesized. Ways of their fragmentation under electron impact are established. Bond strength of additional ligands with central atom in the complexes studied is evaluated. Data on decomposition mechanisms of bicharged ions have been obtained for the first time. Addition of bis-heterocycles to neodymium three-ligand complexes changes the properties of the complexes - their thermal stability and photochemical stability increase, in certain cases their volatility increases

  20. Novel Somatostatin Receptor Ligands Therapies for Acromegaly

    Directory of Open Access Journals (Sweden)

    Rosa Maria Paragliola

    2018-03-01

    Full Text Available Surgery is considered the treatment of choice in acromegaly, but patients with persistent disease after surgery or in whom surgery cannot be considered require medical therapy. Somatostatin receptor ligands (SRLs octreotide (OCT, lanreotide, and the more recently approved pasireotide, characterized by a broader receptor ligand binding profile, are considered the mainstay in the medical management of acromegaly. However, in the attempt to offer a more efficacious and better tolerated medical approach, recent research has been aimed to override some limitations related to the use of currently approved drugs and novel SRLs therapies, with potential attractive features, have been proposed. These include both new formulation of older molecules and new molecules. Novel OCT formulations are aimed in particular to improve patients’ compliance and to reduce injection discomfort. They include an investigational ready-to-use subcutaneous depot OCT formulation (CAM2029, delivered via prefilled syringes and oral OCT that uses a “transient permeability enhancer” technology, which allows for OCT oral absorption. Another new delivery system is a long-lasting OCT implant (VP-003, which provide stable doses of OCT throughout a period of several months. Finally, a new SRL DG3173 (somatoprim seems to be more selective for GH secretion, suggesting possible advantages in the presence of hyperglycemia or diabetes. How much these innovations will actually be beneficial to acromegaly patients in real clinical practice remains to be seen.

  1. Crystallization of bi-functional ligand protein complexes.

    Science.gov (United States)

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Superior serum half life of albumin tagged TNF ligands

    International Nuclear Information System (INIS)

    Mueller, Nicole; Schneider, Britta; Pfizenmaier, Klaus; Wajant, Harald

    2010-01-01

    Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined by ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.

  3. Spectra of fluorinated rare earth. beta. -diketonates with added ligands

    Energy Technology Data Exchange (ETDEWEB)

    Khomenko, V.S.; Lozinskij, M.O.; Fialkov, Yu.A.; Rasshinina, T.A.; Krasovskaya, L.I. (AN Belorusskoj SSR, Minsk. Inst. Fiziki; AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1984-01-01

    Different-ligand rare earth complexes are synthesized. Fluorated ..beta..-diketones, triethylphosphine oxide and trifluoracetic acid are used as active ligands. Mass-spectra of low and high resolution are taken at the energy of ionizing electrons of 70 eV, as well as luminescence spectra of complexes. Fragmentation ways of complexes decomposition under electron shock are studied. A series of changing the bound strength of additional ligands with europium in mixed complexes is determined. It is shown that the introduction of additional ligands can purposefully change physical and chemical properties of complexes.

  4. Implicit ligand theory for relative binding free energies

    Science.gov (United States)

    Nguyen, Trung Hai; Minh, David D. L.

    2018-03-01

    Implicit ligand theory enables noncovalent binding free energies to be calculated based on an exponential average of the binding potential of mean force (BPMF)—the binding free energy between a flexible ligand and rigid receptor—over a precomputed ensemble of receptor configurations. In the original formalism, receptor configurations were drawn from or reweighted to the apo ensemble. Here we show that BPMFs averaged over a holo ensemble yield binding free energies relative to the reference ligand that specifies the ensemble. When using receptor snapshots from an alchemical simulation with a single ligand, the new statistical estimator outperforms the original.

  5. Calculating the mean time to capture for tethered ligands and its effect on the chemical equilibrium of bound ligand pairs.

    Science.gov (United States)

    Shen, Lu; Decker, Caitlin G; Maynard, Heather D; Levine, Alex J

    2016-09-01

    We present here the calculation of the mean time to capture of a tethered ligand to the receptor. This calculation is then used to determine the shift in the partitioning between (1) free, (2) singly bound, and (3) doubly bound ligands in chemical equilibrium as a function of the length of the tether. These calculations are used in the research article Fibroblast Growth Factor 2 Dimer with Superagonist in vitro Activity Improves Granulation Tissue Formation During Wound Healing (Decker et al., in press [1]) to explain quantitatively how changes in polymeric linker length in the ligand dimers modifies the efficacy of these molecules relative to that of free ligands.

  6. Role of ligands in permanganate oxidation of organics.

    Science.gov (United States)

    Jiang, Jin; Pang, Su-Yan; Ma, Jun

    2010-06-01

    We previously demonstrated that several ligands such as phosphate, pyrophosphate, EDTA, and humic acid could significantly enhance permanganate oxidation of triclosan (one phenolic biocide), which was explained by the contribution of ligand-stabilized reactive manganese intermediates in situ formed upon permanganate reduction. To further understand the underlying mechanism, we comparatively investigated the influence of ligands on permanganate oxidation of bisphenol A (BPA, one phenolic endocrine-disrupting chemical), carbamazepine (CBZ, a pharmaceutical containing the olefinic group), and methyl p-tolyl sulfoxide (TMSO, a typical oxygen-atom acceptor). Selected ligands exerted oxidation enhancement for BPA but had negligible influence for CBZ and TMSO. This was mainly attributed to the effects of identified Mn(III) complexes, which would otherwise disproportionate spontaneously in the absence of ligands. The one-electron oxidant Mn(III) species exhibited no reactivity toward CBZ and TMSO for which the two-electron oxygen donation may be the primary oxidation mechanism but readily oxidized BPA. The latter case was a function of pH, the complexing ligand, and the molar [Mn(III)]:[ligand] ratio, generally consistent with the patterns of ligand-affected permanganate oxidation. Moreover, the combination of the one-electron reduction of Mn(III) (Mn(III) + e(-) -->Mn(II)) and the Mn(VII)/Mn(II) reaction in excess ligands (Mn(VII) + 4Mn(II) ----> (ligands) 5Mn(III)) suggested a catalytic role of the Mn(III)/Mn(II) pair in permanganate oxidation of some phenolics in the presence of ligands.

  7. Synthesis and complexation of acyclic dithiolate ligands

    International Nuclear Information System (INIS)

    Ashford, L.

    1999-11-01

    Four approaches to ring substituted and unsubstituted N,N'-bis(o-mercaptobenzyliden)propylenediaminate ligands are described using N,N-dimethylcarbamate as a thiolate protecting group. Of the four basic methods, substitution, reduction, rearrangement and oxidation, the latter two successfully synthesise the aldehyde precursor. Rearrangement of the thiocarbamoyl group to the protected thiophenol is shown to be facilitated by a para-nitro substiuent. Ni(II) and Cu(II) complexes of N,N'-bis(p-nitro-o-mercaptobenzyliden)-propylenediaminate are synthesised by reaction of 2-formyl-4-nitro-N,N-dimethylcarbamoyI thiophenol, [Ni(OAc) 2 ].4(H 2 O) and 1,3-diaminopropane. The para-unsubstituted Ni(II) complex, Nickel-[N,N'-bis(o-mercaptobenzyliden) propylenediaminate] is prepared via reaction of the aldehyde, 2-formyl-N,N-dimethylcarbamoyl thiophenol with [Ni(OAc) 2 ].4(H 2 O) and 1,3-diaminopropane. The analogous carbamoyl-protected amine ligands, N,N'-dimethyl-N.N'-di[2-(N'',N''-dimethylcarbamyl)mercapto] benzyl-1,3-propane-diamine and N,N'-dimethyl-N,N'-di[2-(N'',N''-dimethylcarbamyl)mercapto] benzyl-1,2-ethane-diamine are also studied. The tertiary-butyl-protected diimine ligand, N,N'-bis-(o-mercaptobenzylidene)-propylenediaminate is prepared from 2-(tert-butylsulfanyl)benzaldehyde and 1,3-diaminopropane. Reaction with [Ni(H 2 O) 6 ]Cl 2 gives Nickel-[N,N'-bis(o-mercaptobenzyliden)-propylenediaminate], the crystal structure showing a distorted square-planar Ni(II) centre. Reaction with ZnCl 2 gives Zinc-[N,N'-bis(o-mercaptobenzyliden)propylenediaminate]dichloride. The crystal structure shows the thiolate donors remain protected and uncoordinated. The Zn(II) ion is coordinated by two imine donors and two chloride ions in a tetrahedral environment. In reactions with Ag(I) and Hg(II), N,N'-bis-(o-mercaptobenzylidene)-propylenediaminate acts as a reductant giving the free metals. Structural data and NMR and IR spectroscopic data for Nickel

  8. Radiation sensitization by an iodine-labelled DNA ligand

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R F; Murray, V; D' Cunha, G; Pardee, M; Haigh, A; Hodgson, G S [Peter MacCallum Cancer Inst., Melbourne (Australia); Kampouris, E; Kelly, D P [Melbourne Univ., Parkville (Australia)

    1990-05-01

    An iodinated DNA ligand, iodoHoechst 33258, which binds in the minor groove of DNA, enhances DNA strand breakage and cell killing by UV-A irradiation. The sites of UV-induced strand breaks reflect the known sequence specificity of the ligand. (author).

  9. Identifying Marine Copper-Binding Ligands in Seawater

    Science.gov (United States)

    Whitby, H.; Hollibaugh, J. T.; Maldonado, M. T.; Ouchi, S.; van den Berg, S. M.

    2016-02-01

    Complexation reactions are important because they affect the bioavailability of trace metals such as copper and iron. For example, organic complexation can determine whether copper is a limiting or a toxic micronutrient at natural levels. Copper competes with iron for complexing ligands, and when iron is limiting, copper can also substitute for iron in some metabolic pathways. The speciation of copper can be measured using complexing capacity titrations, which provide the concentration of individual ligand classes (L1, L2 etc.) and the complex stabilities (log K). Using methods recently developed in our laboratory, we show that the ligands within these classes can be measured independently of titrations, thus confirming the titration method and simultaneously identifying the ligands within each class. Thiols were identified as the L1 ligand class and humic compounds as the weaker L2 class in samples from coastal Georgia, USA, collected monthly from April to December. Log K values of the ligand complexes were consistent with values expected for thiols and humic substances. Recent results from culture studies and from samples collected along Line P, a coastal - oceanic transect in the HNLC region of the NE subarctic Pacific, will be presented in comparison to the estuarine results. This comparison will help to broaden our perspective on copper complexation and the ligands responsible, furthering our understanding of ligand sources and life cycles.

  10. Some new IIB group complexes of an imidazolidine ligand ...

    Indian Academy of Sciences (India)

    The spectral data indicate that the ligand is coordinated to zinc(II) as a bidentate ligand in imidazolidine form but it binds to ..... confirmed by determination of the minimum inhibitory ...... Yue F, Gang L, Xiu-Mei T, Ji-De W and Wei W 2008. Chin.

  11. Mixed-Ligand Complexes Of Nickel (II) With 2-Acetylpyridine ...

    African Journals Online (AJOL)

    The preparation and spectral properties of five nickel (II) mixed-ligands complexes (Ni [2-Actsc.Y]CI2), derived from 2-acetylpyridinethiosermicarbazones and some nitrogen/sulphur monodentate ligands such as thiophene, ammonia, picoline, pyridine and aniline are described. The complexes have been characterized on ...

  12. Synthesis of meta-substituted monodentate phosphinite ligands and ...

    Indian Academy of Sciences (India)

    SATEJ S DESHMUKH

    from organic synthesis, phosphinite ligands find appli- cations in a variety of ... thesis of meta-substituted phosphinite ligands is rarely reported.18 This is most ... 1.9 μm; mobile phase used, 90% methanol + 10% water +. 0.1% formic acid) ...

  13. The Evaluation of Novel Camphor-derived Pyridyl Ligands as ...

    African Journals Online (AJOL)

    NJD

    2009-03-03

    Mar 3, 2009 ... The structures of the copper (II) complexes of the ligands were calculated using ONIOM density functional theory and the results suggest that chiral induction to the alkene functional group is indeed lacking. This explains the moderate experimental selectivities obtained. KEYWORDS. Camphor ligands ...

  14. The Evaluation of Novel Camphor-derived Pyridyl Ligands as ...

    African Journals Online (AJOL)

    The structures of the copper (II) complexes of the ligands were calculated using ONIOM density functional theory and the results suggest that chiral induction to the alkene functional group is indeed lacking. This explains the moderate experimental selectivities obtained. Keywords: Camphor ligands, asymmetric catalysis, ...

  15. THERMODYNAMICS OF PROTEIN-LIGAND INTERACTIONS AND THEIR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Rummi Devi Saini

    2017-11-01

    Full Text Available Physiological processes are controlled mainly by intermolecular recognition mechanisms which involve protein–protein and protein–ligand interactions with a high specificity and affinity to form a specific complex. Proteins being an important class of macromolecules in biological systems, it is important to understand their actions through binding to other molecules of proteins or ligands. In fact, the binding of low molecular weight ligands to proteins plays a significant role in regulating biological processes such as cellular metabolism and signal transmission. Therefore knowledge of the protein–ligand interactions and the knowledge of the mechanisms involved in the protein-ligand recognition and binding are key in understanding biology at molecular level which will facilitate the discovery, design, and development of drugs. In this review, the mechanisms involved in protein–ligand binding, the binding kinetics, thermodynamic concepts and binding driving forces are discussed. Thermodynamic mechanisms involved in a few important protein-ligand binding are described. Various spectroscopic, non-spectroscopic and computational method for analysis of protein–ligand binding are also discussed.

  16. Polymerization catalysts containing electron-withdrawing amide ligands

    Science.gov (United States)

    Watkin, John G.; Click, Damon R.

    2002-01-01

    The present invention describes methods of making a series of amine-containing organic compounds which are used as ligands for group 3-10 and lanthanide metal compounds. The ligands have electron-withdrawing groups bonded to them. The metal compounds, when combined with a cocatalyst, are catalysts for the polymerization of olefins.

  17. Mixed ligand chelate therapy for plutonium and cadmium poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, J; Derr, S K [Hope Coll., Holland, MI (USA)

    1978-09-28

    Some experiments with mice are described in which complete removal of tissue deposits of /sup 239/Pu and prevention of mortality in animals given lethal doses of Cd were achieved using a mixed ligand chelate treatment (MLC). The mixed ligand consisted of diethylenetriaminepentaacetic acid and salicylic acid.

  18. Immobilisation of ligands by radio-derivatized polymers

    International Nuclear Information System (INIS)

    Varga, J.M.; Fritsch, P.

    1995-01-01

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs

  19. Correcting binding parameters for interacting ligand-lattice systems

    Science.gov (United States)

    Hervy, Jordan; Bicout, Dominique J.

    2017-07-01

    Binding of ligands to macromolecules is central to many functional and regulatory biological processes. Key parameters characterizing ligand-macromolecule interactions are the stoichiometry, inducing the number of ligands per macromolecule binding site, and the dissociation constant, quantifying the ligand-binding site affinity. Both these parameters can be obtained from analyses of classical saturation experiments using the standard binding equation that offers the great advantage of mathematical simplicity but becomes an approximation for situations of interest when a ligand binds and covers more than one single binding site on the macromolecule. Using the framework of car-parking problem with latticelike macromolecules where each ligand can cover simultaneously several consecutive binding sites, we showed that employing the standard analysis leads to underestimation of binding parameters, i.e., ligands appear larger than they actually are and their affinity is also greater than it is. Therefore, we have derived expressions allowing to determine the ligand size and true binding parameters (stoichiometry and dissociation constant) as a function of apparent binding parameters retrieved from standard saturation experiments.

  20. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.; Baumgardner, William J.; Choi, Joshua J.; Hanrath, Tobias; Hennig, Richard G.

    2012-01-01

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind

  1. Lanthanide(III) complexes with tridentate Schiff base ligand ...

    African Journals Online (AJOL)

    The X-ray study reveals isotopic Nd/Sm binuclear structures were each metal ion is nine-coordinated in the same fashion. Both metal centers have distorted tricapped trigonal prism geometry, with the Schiff base acting as tridentate ligand. The DPPH· radical scavenging effects of the Schiff base ligand and its Ln(III) ...

  2. Models of protein-ligand crystal structures: trust, but verify.

    Science.gov (United States)

    Deller, Marc C; Rupp, Bernhard

    2015-09-01

    X-ray crystallography provides the most accurate models of protein-ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein-ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein-ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein-ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein-ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein-ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein-ligand models for their computational and biological studies, and we provide an overview of how this can be achieved.

  3. Ligand Binding Domain Protein in Tetracycline-Inducible Expression

    African Journals Online (AJOL)

    Purpose: To investigate tetracycline-inducible expression system for producing clinically usable, highquality liver X receptor ligand-binding domain recombinant protein. Methods: In this study, we have expressed and purified the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a tetracycline ...

  4. Novel peptide ligand with high binding capacity for antibody purification

    DEFF Research Database (Denmark)

    Lund, L. N.; Gustavsson, P. E.; Michael, R.

    2012-01-01

    Small synthetic ligands for protein purification have become increasingly interesting with the growing need for cheap chromatographic materials for protein purification and especially for the purification of monoclonal antibodies (mAbs). Today, Protein A-based chromatographic resins are the most...... commonly used capture step in mAb down stream processing; however, the use of Protein A chromatography is less attractive due to toxic ligand leakage as well as high cost. Whether used as an alternative to the Protein A chromatographic media or as a subsequent polishing step, small synthetic peptide...... ligands have an advantage over biological ligands; they are cheaper to produce, ligand leakage by enzymatic degradation is either eliminated or significantly reduced, and they can in general better withstand cleaning in place (CIP) conditions such as 0.1 M NaOH. Here, we present a novel synthetic peptide...

  5. Identification and characterization of PPARα ligands in the hippocampus.

    Science.gov (United States)

    Roy, Avik; Kundu, Madhuchhanda; Jana, Malabendu; Mishra, Rama K; Yung, Yeni; Luan, Chi-Hao; Gonzalez, Frank J; Pahan, Kalipada

    2016-12-01

    Peroxisome proliferator-activated receptor-α (PPARα) regulates hepatic fatty acid catabolism and mediates the metabolic response to starvation. Recently we found that PPARα is constitutively activated in nuclei of hippocampal neurons and controls plasticity via direct transcriptional activation of CREB. Here we report the discovery of three endogenous PPARα ligands-3-hydroxy-(2,2)-dimethyl butyrate, hexadecanamide, and 9-octadecenamide-in mouse brain hippocampus. Mass spectrometric detection of these compounds in mouse hippocampal nuclear extracts, in silico interaction studies, time-resolved FRET analyses, and thermal shift assay results clearly indicated that these three compounds served as ligands of PPARα. Site-directed mutagenesis studies further revealed that PPARα Y464 and Y314 are involved in binding these hippocampal ligands. Moreover, these ligands activated PPARα and upregulated the synaptic function of hippocampal neurons. These results highlight the discovery of hippocampal ligands of PPARα capable of modulating synaptic functions.

  6. Ligand Electron Density Shape Recognition Using 3D Zernike Descriptors

    Science.gov (United States)

    Gunasekaran, Prasad; Grandison, Scott; Cowtan, Kevin; Mak, Lora; Lawson, David M.; Morris, Richard J.

    We present a novel approach to crystallographic ligand density interpretation based on Zernike shape descriptors. Electron density for a bound ligand is expanded in an orthogonal polynomial series (3D Zernike polynomials) and the coefficients from this expansion are employed to construct rotation-invariant descriptors. These descriptors can be compared highly efficiently against large databases of descriptors computed from other molecules. In this manuscript we describe this process and show initial results from an electron density interpretation study on a dataset containing over a hundred OMIT maps. We could identify the correct ligand as the first hit in about 30 % of the cases, within the top five in a further 30 % of the cases, and giving rise to an 80 % probability of getting the correct ligand within the top ten matches. In all but a few examples, the top hit was highly similar to the correct ligand in both shape and chemistry. Further extensions and intrinsic limitations of the method are discussed.

  7. Automated identification of crystallographic ligands using sparse-density representations

    International Nuclear Information System (INIS)

    Carolan, C. G.; Lamzin, V. S.

    2014-01-01

    A novel procedure for identifying ligands in macromolecular crystallographic electron-density maps is introduced. Density clusters in such maps can be rapidly attributed to one of 82 different ligands in an automated manner. A novel procedure for the automatic identification of ligands in macromolecular crystallographic electron-density maps is introduced. It is based on the sparse parameterization of density clusters and the matching of the pseudo-atomic grids thus created to conformationally variant ligands using mathematical descriptors of molecular shape, size and topology. In large-scale tests on experimental data derived from the Protein Data Bank, the procedure could quickly identify the deposited ligand within the top-ranked compounds from a database of candidates. This indicates the suitability of the method for the identification of binding entities in fragment-based drug screening and in model completion in macromolecular structure determination

  8. The affinity of the uranyl ion for nitrogen donor ligands

    International Nuclear Information System (INIS)

    Jarvis, N.V.; De Sousa, A.S.; Hancock, R.D.

    1992-01-01

    Established ligand design principles are used to predict the solution chemistry of UO 2 2+ with nitrogen donor ligands which do not contain carboxylate donors. pK a 's of the nitrogen donors are lowered by addition of hydroxylalkyl groups causing UO 2 2+ to have a greater affinity for these ligands than for hydroxide. Potentiometric studies using the ligands N,N,N',N',N''-pentakis(2-hydroxypropyl)-1,4,7-triazaheptane; N,N,N',N',N''-pentakis(2-hydroxyethyl)-1,4,7-triazaheptane; N,N,N',N'-tetrakis(2-hydroxypropyl)1,2-diaminoethane, N,N,N',N'-tetrakis(2-hydroxyethyl)-trans-1,2-diaminocyclohexane; 1,4,8,11-tetrakis(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane and N,N-bis(2-hydroxyethyl)glycine with UO 2 2+ showed that UO 2 2+ has a considerable aqueous solution chemistry with these ligands. (orig.)

  9. Regulation mechanisms of the FLT3-ligand after irradiation

    International Nuclear Information System (INIS)

    Prat-Lepesant, M.

    2005-06-01

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  10. Cellular trafficking of quantum dot-ligand bioconjugates and their induction of changes in normal routing of unconjugated ligands

    DEFF Research Database (Denmark)

    Tekle, Christina; van Deurs, Bo; Sandvig, Kirsten

    2008-01-01

    Can quantum dots (Qdots) act as relevant intracellular probes to investigate routing of ligands in live cells? The intracellular trafficking of Qdots that were coupled to the plant toxin ricin, Shiga toxin, or the ligand transferrin (Tf) was studied by confocal fluorescence microscopy. The Tf...

  11. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    Science.gov (United States)

    Hupp, Joseph T [Northfield, IL; Mulfort, Karen L [Chicago, IL; Snurr, Randall Q [Evanston, IL; Bae, Youn-Sang [Evanston, IL

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  12. Regulation mechanisms of the FLT3-ligand after irradiation; Mecanismes de regulation du FLT3-ligand apres irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Prat-Lepesant, M

    2005-06-15

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  13. Effects of electrostatic interactions on ligand dissociation kinetics

    Science.gov (United States)

    Erbaş, Aykut; de la Cruz, Monica Olvera; Marko, John F.

    2018-02-01

    We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-Hückel (DH) (or implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level and by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD) (acceleration of unbinding by free ligands in solution) explicit-ion simulations lead to unbinding at lower free-ligand concentrations. Our simulations predict a variety of FD regimes as a function of free-ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where nonelectrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.

  14. Database of ligand-induced domain movements in enzymes

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-03-01

    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do

  15. Calculation of protein-ligand binding affinities.

    Science.gov (United States)

    Gilson, Michael K; Zhou, Huan-Xiang

    2007-01-01

    Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.

  16. Constitutive and ligand-induced TCR degradation

    DEFF Research Database (Denmark)

    von Essen, Marina; Bonefeld, Charlotte Menné; Siersma, Volkert

    2004-01-01

    Modulation of TCR expression levels is a central event during T cell development and activation, and it probably plays an important role in adjusting T cell responsiveness. Conflicting data have been published on down-regulation and degradation rates of the individual TCR subunits, and several di...... to the lysosomes. Similar results were obtained in studies of primary human Vbeta8+ T cells stimulated with superantigen. Based on these results, the simplest model for TCR internalization, sorting, and degradation is proposed.......Modulation of TCR expression levels is a central event during T cell development and activation, and it probably plays an important role in adjusting T cell responsiveness. Conflicting data have been published on down-regulation and degradation rates of the individual TCR subunits, and several...... divergent models for TCR down-regulation and degradation have been suggested. The aims of this study were to determine the rate constants for constitutive and ligand-induced TCR degradation and to determine whether the TCR subunits segregate or are processed as an intact unit during TCR down...

  17. The coordination chemistry of macrocyclic ligands II

    International Nuclear Information System (INIS)

    Klimes, J.; Knoechel, A.; Rudolph, G.

    1977-01-01

    Compounds of UO 2 (NO 3 ) 2 .6H 2 0 or Th(NO 3 ) 4 .5H 2 0 with five selected crown ethers were prepared according to the method described in Knoeckel et al., Inorg.Nucl.Chem.Lett.; 11:787 (1975). The products were characterized by chemical analysis, NMR, IR and Raman spectroscopy. The results are analyzed and discussed. It is shown that the NO 3 groups remain free after combination, and the H 2 0 groups form the bonds to the polyether. It is concluded that the polyether molecule is attached to two units of UO 2 (NO 3 ) 2 .2H 2 0 (or Th(NO 3 ) 4 .3H 2 0), one each side of the polyether. This would be contrary to the assumption in previous publications, that the U0 2 2+ and Th 4+ ions were coordinated inside the macrocyclic ligand structure. The present hypothesis, however, agrees with a recently published x-ray structure for the uranium compound. In view of the new proposed structure it is suggested that the compounds should be regarded as adducts rather than complexes. (U.K.)

  18. Complexes of technetium with polyhydric ligands

    International Nuclear Information System (INIS)

    Hwang, L.L.Y.; Ronca, N.; Solomon, N.A.; Steigman, J.

    1985-01-01

    Polyhydric complexes of Tc(V) show absorption bands near 500 nm, with molar absorptivity coefficients of about 100. The shorter-chain compounds like ethylene glycol produce complexes which quickly disproportionate to Tc(IV) (as TcO 2 ) and Tc(VII) (as TcO 4 - ) on acidification. The longer-chain ligands like mannitol and gluconate do not. However, while the mannitol complex shows no change in spectrum from pH 12 to pH 3, the gluconate and glucoheptonate compounds show a definite spectral change on acidification, starting at pH 5. Electrophoresis similarity showed a change in mobility with pH for Tc-glucoheptonate, but none for Tc-mannitol. It was concluded that the carboxylic acid group of glucoheptonate was not binding the technetium. In 25 molal choline chloride the glucoheptonate-Tc mole ratio was 1:1 or less. A similar result emerged from a similar experiment in methylcellosolve as solvent. (author)

  19. Electrolytic formation of technetium complexes with π-acceptor ligands

    International Nuclear Information System (INIS)

    Cerda, F.; Kremer, C.; Gambino, D.; Kremer, E.

    1994-01-01

    Electrolytic reduction of pertechnetate was performed in aqueous solution containing π-acceptor ligands. Cyanide and 1,10-phenanthroline were the selected ligands. In both cases, electrolyses produced a cathodic TcO 2 deposit and soluble Tc complexes. When cyanide was the ligand, the complexes formed were [Tc(CN) 6 ] 5- and [TcO 2 (CN) 4 ] 3- . When working with the amine, [Tc(phen) 3 ] 2+ and another positively charged species were found after reaction. Results are compared with previous studies with amines, and the usefulness of the electrolytic route to obtain Tc complexes is evaluated. (author) 11 refs.; 2 figs.; 1 tab

  20. Synthesis and study of new oxazoline-based ligands

    OpenAIRE

    Tilliet, Mélanie

    2008-01-01

    This thesis deals with the study of oxazoline-based ligands in metal-catalyzed asymmetric reactions. The first part describes the synthesis of six new bifunctinal pyridine-bis(oxazoline) ligands and their applications in asymmetric metal-catalysis. These ligands, in addition to a Lewis acid coordination site, are equipped with a Lewis basic part in the 4-position of the oxazoline rings. Dual activation by means of this system was probed in cyanide addition to aldehydes. The second part is con...

  1. NKG2D and its ligands in cancer.

    Science.gov (United States)

    Dhar, Payal; Wu, Jennifer D

    2018-04-01

    NKG2D is an activating immune receptor expressed by NK and effector T cells. Induced expression of NKG2D ligand on tumor cell surface during oncogenic insults renders cancer cells susceptible to immune destruction. In advanced human cancers, tumor cells shed NKG2D ligand to produce an immune soluble form as a means of immune evasion. Soluble NKG2D ligands have been associated with poor clinical prognosis in cancer patients. Harnessing NKG2D pathway is considered a viable avenue in cancer immunotherapy over recent years. In this review, we will discuss the progress and perspectives. Copyright © 2018. Published by Elsevier Ltd.

  2. Staphylococcal superantigen-like 5 activates platelets and supports platelet adhesion under flow conditions, which involves glycoprotein Ib alpha and alpha(IIb)beta(3)

    NARCIS (Netherlands)

    De Haas, C. J. C.; Weeterings, C.; Vughs, M. M.; De Groot, P. G.; Van Strijp, J. A.; Lisman, T.

    2009-01-01

    Objectives: Staphylococcal superantigen-like 5 (SSL5) is an exoprotein secreted by Staphylococcus aureus that has been shown to inhibit neutrophil rolling over activated endothelial cells via a direct interaction with P-selectin glycoprotein ligand 1 (PSGL-1). Methods and Results: When purified

  3. Entangled zinc-ditetrazolate frameworks involving in situ ligand synthesis and topological modulation by various secondary N-donor ligands

    International Nuclear Information System (INIS)

    Li Yunwu; Chen Weilin; Wang Yonghui; Li Yangguang; Wang Enbo

    2009-01-01

    The introduction of various secondary N-donor ligands into an in situ ditetrazolate-ligand synthesis system of terephthalonitrile, NaN 3 and ZnCl 2 led to the formation of three new entangled frameworks Zn(pdtz)(4,4'-bipy).3H 2 O (1), [Zn(pdtz)(bpp)] 2 .3H 2 O (2) and Zn(pdtz) 0.5 (N 3 )(2,2'-bipy) (3) (4,4'-bipy=4,4'-bipyridine; bpp=1,3-bis(4-pyridyl)propane; 2,2'-bipy=2,2'-bipyridine; H 2 pdtz=5,5'-1,4-phenylene-ditetrazole). The formation of pdtz 2- ligand involves the Sharpless [2+3] cycloaddition reaction between terephthalonitrile and NaN 3 in the presence of Zn 2+ ion as a Lewis-acid catalyst under hydrothermal conditions. Compound 1 exhibits a fivefold interpenetrating 3D framework based on the diamondoid topology. Compound 2 displays a twofold parallel interpenetrating framework based on the wavelike individual network. Compound 3 possesses a 2D puckered network. These new Zn-ditetrazolate frameworks are highly dependent on the modulation of different secondary N-donor ligands. Their luminescent properties were investigated. - Graphical abstract: Three new entangled frameworks were prepared by an in situ ditetrazolate-ligand synthesis system assisted with various auxiliary N-donor ligands. The entangled structures can be modulated by different secondary ligands.

  4. Formation of mixed ligand complexes of UO22+ involving some nitrogen and oxygen donor ligands

    International Nuclear Information System (INIS)

    Singh, Mamta; Ram Nayan

    1996-01-01

    The complexation reactions of UO 2 2+ ion with nitrogen and oxygen donor ligands, 1-amino-2-naphthol-4-sulphonic acid, o-aminophenol (ap), 2-hydroxybenzoic acid (sa), 3-carboxy-4-hydroxybenzenesulphonic acid (ss) and 1,2-dihydroxybenzene (ca) have been investigated in aqueous solution employing the pH-titration technique. Analysis of the experimental data recorded at 25 degC and at an ionic strength of 0.10 M KNO 3 indicates formation of binary, hydroxo and ternary complexes of uranium. Formation constant values of the existing species have been evaluated and the results have been discussed. (author). 21 refs., 2 figs., 2 tabs

  5. Cytotoxicity of an 125I-labelled DNA ligand

    International Nuclear Information System (INIS)

    Karagiannis, T.C.; Lobachevsky, P.N.; Martin, R.F.

    2000-01-01

    The subcellular distribution and cytotoxicity of a DNA-binding ligand [ 125 I]-Hoechst 33258 following incubation of K562 cells with the drug was investigated. The ability of a radical scavenger, dimethyl sulphoxide, to protect cells from the 125 I-decay induced cell death was also studied. Three different concentrations and specific activities of the drug were used to provide different ligand : DNA binding ratios. The results demonstrated a trend toward improved delivery of the ligand to the nucleus and to chromatin at higher ligand concentrations, with concomitant increased sensitivity to 125 I-decay induced cytotoxicity and decreased protection by dimethyl sulphoxide. This correlation of radiobiological parameters with subcellular drug distribution is consistent with the classical dogma that attributes cytotoxicity to DNA double-stranded breakage in the vicinity of the site of decay, where the high LET nature of the damage confers minimal sensitivity to radical scavenging

  6. Epibatidine-derivatives: ligands for the neuronal nicotinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Westera, G.; Patt, J.T.; Jankowski, K.; Bertrand, D.; Spang, J.; Schubiger, P.A.

    1997-01-01

    Epibatidine, isolated from the Ecuadorian frog Epipedobates tricolar, has been synthesized. 11 C-N-methyl derivate is investigated as useful nicotinergic receptor ligand by electrophysiological methods and in vivo mice experiments. (author) 2 figs., 7 refs

  7. PET and Hormone Receptor Ligands in Breast Cancer

    National Research Council Canada - National Science Library

    Gemignani, Mary

    2006-01-01

    .... To investigate this further, this project's objectives are: To evaluate the use of estrogen-like ligands labeled with positron emitters in preoperatively determining the ER status of breast cancer using PET...

  8. Unique advantages of organometallic supporting ligands for uranium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Diaconescu, Paula L. [Univ. of California, Los Angeles, CA (United States); Garcia, Evan [Univ. of California, Los Angeles, CA (United States)

    2014-05-31

    The objective of our research project was to study the reactivity of uranium complexes supported by ferrocene-based ligands. In addition, this research provides training of graduate students as the next generation of actinide scientists.

  9. Unique advantages of organometallic supporting ligands for uranium complexes

    International Nuclear Information System (INIS)

    Diaconescu, Paula L.; Garcia, Evan

    2014-01-01

    The objective of our research project was to study the reactivity of uranium complexes supported by ferrocene-based ligands. In addition, this research provides training of graduate students as the next generation of actinide scientists.

  10. Ligand Binding Domain Protein in Tetracycline-Inducible Expression ...

    African Journals Online (AJOL)

    binding domain proteins in E. coli using a tetracycline inducible system. To allow for ... development of molecular ligands with improved therapeutic windows. Keywords: Nuclear receptor ..... functional recombinant cannabinoid receptor CB2 in ...

  11. related apoptosis-inducing ligand in transplastomic tobacco

    African Journals Online (AJOL)

    -inducing ligand (sTRAIL) can, as the whole length TRAIL protein, bind with its receptors and specifically induce the apoptosis of cancer cells; therefore, it has been developed as a potential therapeutic agent for various cancer treatments.

  12. Dysprosium complexes with the tetraphenylporphyrin macrocyclic ligand

    International Nuclear Information System (INIS)

    Martinez M, V.; Padilla, J.; Ramirez, F.M.

    1992-04-01

    In this report, the results obtained on the synthesis, characterization and study of the chemical behavior of dysprosium complex with the acetylacetone chelating agent (Hacac) and the tetraphenylporphyrin macrocyclic ligand (H 2 TFP) are given. Based on the literature but according to our necessities and interest, the appropriate methodology settled down from the synthesis of prime matters until the obtaining and characterization of the products. The acetyl acetonate complex was obtained of mono hydrated dysprosium [Dy(acac) 3 . H 2 0] and trihydrated [Dy(acac) 3 .3 H 2 0], the mono tetra phenyl porphyrinate [Dy(TFP)(acac). 2 ac] the double sandwich of the dysprosium porphyrinate [Dy(TFP) 2 ] and the triple sandwich of the dysprosium porphyrinate [Dy(TFP) 3 . 2 TCB] (TCB = trichlorobenzene). Its were characterized by their melting points, solubility, IR, UV, TGA and DTA both first and besides the techniques already mentioned for NMR'H, RPE and Magnetic susceptibility the three last complexes. From the spectroscopic point of view, IR and RPE its suggested the existence of a complex of inverse mixed valence [Dy(TFP) 2- (TFP) 1- ] for the Dy(TFP) 2 as a result of the existence of the free radical (TFP' 1- and that it was not in none of the other porphyrin compounds. In the NMR'H spectra of the compounds were not observed signals in the region from 0 to 10 ppm that which shows that the dysprosium complexes in special those of the porphyrin type are highly paramagnetic and its could be used as displacement reagents, creators of images and contrast agents of great utility in these days in studies of NMR, technique today by today used in medical diagnoses. (Author)

  13. Tetrapyrroles as Endogenous TSPO Ligands in Eukaryotes and Prokaryotes: Comparisons with Synthetic Ligands

    Directory of Open Access Journals (Sweden)

    Leo Veenman

    2016-06-01

    Full Text Available The 18 kDa translocator protein (TSPO is highly 0conserved in eukaryotes and prokaryotes. Since its discovery in 1977, numerous studies established the TSPO’s importance for life essential functions. For these studies, synthetic TSPO ligands typically are applied. Tetrapyrroles present endogenous ligands for the TSPO. Tetrapyrroles are also evolutionarily conserved and regulate multiple functions. TSPO and tetrapyrroles regulate each other. In animals TSPO-tetrapyrrole interactions range from effects on embryonic development to metabolism, programmed cell death, response to stress, injury and disease, and even to life span extension. In animals TSPOs are primarily located in mitochondria. In plants TSPOs are also present in plastids, the nuclear fraction, the endoplasmic reticulum, and Golgi stacks. This may contribute to translocation of tetrapyrrole intermediates across organelles’ membranes. As in animals, plant TSPO binds heme and protoporphyrin IX. TSPO-tetrapyrrole interactions in plants appear to relate to development as well as stress conditions, including salt tolerance, abscisic acid-induced stress, reactive oxygen species homeostasis, and finally cell death regulation. In bacteria, TSPO is important for switching from aerobic to anaerobic metabolism, including the regulation of photosynthesis. As in mitochondria, in bacteria TSPO is located in the outer membrane. TSPO-tetrapyrrole interactions may be part of the establishment of the bacterial-eukaryote relationships, i.e., mitochondrial-eukaryote and plastid-plant endosymbiotic relationships.

  14. A new class of modular chiral ligands with fluxional groups.

    Science.gov (United States)

    Sibi, Mukund P; Zhang, Ruzhou; Manyem, Shankar

    2003-08-06

    In ligand design for asymmetric catalysis, the usual norm is to derive the face shielding elements from a chiral source. New ligands in which the face shielding is determined by fluxional groups are introduced. Their design, modular synthesis, and experiments to demonstrate the significance of the fluxional groups are discussed. The advantage is that the fluxional groups, introduced at a later stage, allow for simple tuning of the face shielding group.

  15. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2015-05-21

    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.

  16. Ligand-promoted protein folding by biased kinetic partitioning.

    Science.gov (United States)

    Hingorani, Karan S; Metcalf, Matthew C; Deming, Derrick T; Garman, Scott C; Powers, Evan T; Gierasch, Lila M

    2017-04-01

    Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems.

  17. Ligand assisted cleavage of uranium oxo-clusters

    Energy Technology Data Exchange (ETDEWEB)

    Nocton, Gregory; Pecaut, Jacques; Mazzanti, Marinella [Laboratoire de Reconnaissance Ionique et Chimie de Coordination, Service de Chimie Inorganique et Biologique, UMR-E 3 CEA-UJF, CEA/DSM/INAC, CEA-Grenoble, 38054 Grenoble, Cedex 09 (France); Filinchuk, Yaroslav [Swiss Norwegian Beam Lines (SNBL) at the European Synchrotron Radiation Facility (ESRF), rue Jules Horowitz, 38043 Grenoble (France)

    2010-07-01

    Dibenzoylmethanate replaces the bridging triflate ligands in uranium triflate poly-oxo-clusters and cleaves the U{sub 12}O{sub 20} core yielding the new [U{sub 6}O{sub 4}(OH){sub 4}({eta}-dbm){sub 12}] dibenzoylmethanate (dbm{sup -}) cluster which slowly dissociates into a monomeric complex. This reactivity demonstrates the importance of bridging ligands in stabilizing uranium poly-oxo-clusters. (authors)

  18. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa; Burlakov, Victor M.; Besong, Tabot M.D.; Joshi, Chakra Prasad; AbdulHalim, L; Black, David; Whetten, Robert; Goriely, Alain; Bakr, Osman

    2015-01-01

    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.

  19. Models of protein–ligand crystal structures: trust, but verify

    Science.gov (United States)

    Deller, Marc C.

    2015-01-01

    X-ray crystallography provides the most accurate models of protein–ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein–ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein–ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein–ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein–ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein–ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein–ligand models for their computational and biological studies, and we provide an overview of how this can be achieved. PMID:25665575

  20. Metallogel formation in aqueous DMSO by perfluoroalkyl decorated terpyridine ligands.

    Science.gov (United States)

    Tatikonda, Rajendhraprasad; Bhowmik, Sandip; Rissanen, Kari; Haukka, Matti; Cametti, Massimo

    2016-08-09

    Terpyridine based ligands 1 and 2, decorated with a C8F17 perfluorinated tag, are able to form stable thermoreversible gels in the presence of several d-block metal chloride salts. The gel systems obtained have been characterized by NMR, X-ray diffraction, electron microscopies and Tgel experiments in order to gain insights into the observed different behaviour of the two similar ligands, also in terms of the effect of additional common anionic species.

  1. Prediction of ligand effects in platinum-amyloid-β coordination.

    Science.gov (United States)

    Turner, Matthew; Deeth, Robert J; Platts, James A

    2017-08-01

    Ligand field molecular mechanics (LFMM) and semi-empirical Parametric Model 7 (PM7) methods are applied to a series of six Pt II -Ligand systems binding to the N-terminal domain of the amyloid-β (Aβ) peptide. Molecular dynamics using a combined LFMM/Assisted Model Building with Energy Refinement (AMBER) approach is used to explore the conformational freedom of the peptide fragment, and identifies favourable platinum binding modes and peptide conformations for each ligand investigated. Platinum coordination is found to depend on the nature of the ligand, providing evidence that binding mode may be controlled by suitable ligand design. Boltzmann populations at 310K indicate that each Pt-Aβ complex has a small number of thermodynamically accessible states. Ramachandran maps are constructed for the sampled Pt-Aβ conformations and secondary structural analysis of the obtained complex structures is performed and contrasted with the free peptide; coordination of these platinum complexes disrupts existing secondary structure in the Aβ peptide and promotes formation of ligand-specific turn-type secondary structure. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Ligand recognition by RAR and RXR receptors: binding and selectivity.

    Science.gov (United States)

    Sussman, Fredy; de Lera, Angel R

    2005-10-06

    Fundamental biological functions, most notably embriogenesis, cell growth, cell differentiation, and cell apoptosis, are in part regulated by a complex genomic network that starts with the binding (and activation) of retinoids to their cognate receptors, members of the superfamily of nuclear receptors. We have studied ligand recognition of retinoic receptors (RXRalpha and RARgamma) using a molecular-mechanics-based docking method. The protocol used in this work is able to rank the affinity of pairs of ligands for a single retinoid receptor, the highest values corresponding to those that adapt better to the shape of the binding site and generate the optimal set of electrostatic and apolar interactions with the receptor. Moreover, our studies shed light onto some of the energetic contributions to retinoid receptor ligand selectivity. In this regard we show that there is a difference in polarity between the binding site regions that anchor the carboxylate in RAR and RXR, which translates itself into large differences in the energy of interaction of both receptors with the same ligand. We observe that the latter energy change is canceled off by the solvation energy penalty upon binding. This energy compensation is borne out as well by experiments that address the effect of site-directed mutagenesis on ligand binding to RARgamma. The hypothesis that the difference in binding site polarity might be exploited to build RXR-selective ligands is tested with some compounds having a thiazolidinedione anchoring group.

  3. Predicting Efficient Antenna Ligands for Tb(III) Emission

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Amanda P.S.; Xu, Jide; Raymond, Kenneth

    2008-10-06

    A series of highly luminescent Tb(III) complexes of para-substituted 2-hydroxyisophthalamide ligands (5LI-IAM-X) has been prepared (X = H, CH{sub 3}, (C=O)NHCH{sub 3}, SO{sub 3}{sup -}, NO{sub 2}, OCH{sub 3}, F, Cl, Br) to probe the effect of substituting the isophthalamide ring on ligand and Tb(III) emission in order to establish a method for predicting the effects of chromophore modification on Tb(III) luminescence. The energies of the ligand singlet and triplet excited states are found to increase linearly with the {pi}-withdrawing ability of the substituent. The experimental results are supported by time-dependent density functional theory (TD-DFT) calculations performed on model systems, which predict ligand singlet and triplet energies within {approx}5% of the experimental values. The quantum yield ({Phi}) values of the Tb(III) complex increases with the triplet energy of the ligand, which is in part due to the decreased non-radiative deactivation caused by thermal repopulation of the triplet. Together, the experimental and theoretical results serve as a predictive tool that can be used to guide the synthesis of ligands used to sensitize lanthanide luminescence.

  4. The affinity plutonium(IV) for nitrogen donor ligands

    International Nuclear Information System (INIS)

    Jarvis, N.V.; Hancock, R.D.

    1994-01-01

    Established ligand design principles are used to predict the solution chemistry of Pu(IV) with nitrogen donor ligands which do not contain carboxylate donors. pK a 's of the nitrogen donors are lowered by addition of hydroxyalkyl groups causing Pu(IV) to have a greater affinity for these ligands than for hydroxide. Potentiometric studies using the ligands N,N,N'N',N''-pentakis(2-hydroxypropyl)-1,4,7-triazaheptane; N,N,N',N',N''-pentakis(2-hydroxyethyl)-1,4,7-triazaheptane; N,N,N',N',N'-tetrakis(2-hydroxyethyl)-1,2-diaminoethane; N,N,N',N'-tetrakis(2-hydroxyethyl)-trans-1,2-diaminocyclohexane; 1,4,8,11-tetrakis(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane and N,N-bis(2-hydroxyethyl)glycine with Pu(IV) showed that Pu(IV) has a considerable aqueous solution chemistry with these ligands. Data were processed by the ESTA library of programs and stability constants for all the systems are reported. Implications for selective ligand design for Pu(IV) are discussed. (orig.)

  5. A Ferrocene-Based Catecholamide Ligand: the Consequences of Ligand Swivel for Directed Supramolecular Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Mugridge, Jeffrey; Fiedler, Dorothea; Raymond, Kenneth

    2010-02-04

    A ferrocene-based biscatecholamide ligand was prepared and investigated for the formation of metal-ligand supramolecular assemblies with different metals. Reaction with Ge(IV) resulted in the formation of a variety of Ge{sub n}L{sub m} coordination complexes, including [Ge{sub 2}L{sub 3}]{sup 4-} and [Ge{sub 2}L{sub 2}({mu}-OMe){sub 2}]{sup 2-}. The ligand's ability to swivel about the ferrocenyl linker and adopt different conformations accounts for formation of many different Ge{sub n}L{sub m} species. This study demonstrates why conformational ligand rigidity is essential in the rational design and directed self-assembly of supramolecular complexes.

  6. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    International Nuclear Information System (INIS)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-01-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL 2 (H 2 O) 2 ] n ·2nH 2 O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H 2 adbc), terephthalic acid (H 2 tpa), thiophene-2,5-dicarboxylic acid (H 2 tdc) and 1,4-benzenedithioacetic acid (H 2 bdtc), four 3D structures [Co 2 L 2 (adbc)] n ·nH 2 O (2), [Co 2 L 2 (tpa)] n (3), [Co 2 L 2 (tdc)] n (4), [Co 2 L 2 (bdtc)(H 2 O)] n (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions

  7. Quantitative analysis of protein-ligand interactions by NMR.

    Science.gov (United States)

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  8. Biotechnological Fluorescent Ligands of the Bradykinin B1 Receptor: Protein Ligands for a Peptide Receptor.

    Directory of Open Access Journals (Sweden)

    Xavier Charest-Morin

    Full Text Available The bradykinin (BK B1 receptor (B1R is a peculiar G protein coupled receptor that is strongly regulated to the point of being inducible in immunopathology. Limited clinical evidence suggests that its expression in peripheral blood mononuclear cells is a biomarker of active inflammatory states. In an effort to develop a novel imaging/diagnostic tool, we report the rational design and testing of a fusion protein that is a ligand of the human B1R but not likely to label peptidases. This ligand is composed of a fluorescent protein (FP (enhanced green FP [EGFP] or mCherry prolonged at its N-terminus by a spacer peptide and a classical peptide agonist or antagonist (des-Arg9-BK, [Leu8]des-Arg9-BK, respectively. The design of the spacer-ligand joint peptide was validated by a competition assay for [3H]Lys-des-Arg9-BK binding to the human B1R applied to 4 synthetic peptides of 18 or 19 residues. The labeling of B1R-expressing cells with EGFP or mCherry fused with 7 of such peptides was performed in parallel (microscopy. Both assays indicated that the best design was FP-(Asn-Glyn-Lys-des-Arg9-BK; n = 15 was superior to n = 5, suggesting benefits from minimizing steric hindrance between the FP and the receptor. Cell labeling concerned mostly plasma membranes and was inhibited by a B1R antagonist. EGFP-(Asn-Gly15-Lys-des-Arg9-BK competed for the binding of [3H]Lys-des-Arg9-BK to human recombinant B1R, being only 10-fold less potent than the unlabeled form of Lys-des-Arg9-BK to do so. The fusion protein did not label HEK 293a cells expressing recombinant human BK B2 receptors or angiotensin converting enzyme. This study identifies a modular C-terminal sequence that can be adapted to protein cargoes, conferring high affinity for the BK B1R, with possible applications in diagnostic cytofluorometry, histology and drug delivery (e.g., in oncology.

  9. Essential role of conformational selection in ligand binding.

    Science.gov (United States)

    Vogt, Austin D; Pozzi, Nicola; Chen, Zhiwei; Di Cera, Enrico

    2014-02-01

    Two competing and mutually exclusive mechanisms of ligand recognition - conformational selection and induced fit - have dominated our interpretation of ligand binding in biological macromolecules for almost six decades. Conformational selection posits the pre-existence of multiple conformations of the macromolecule from which the ligand selects the optimal one. Induced fit, on the other hand, postulates the existence of conformational rearrangements of the original conformation into an optimal one that are induced by binding of the ligand. In the former case, conformational transitions precede the binding event; in the latter, conformational changes follow the binding step. Kineticists have used a facile criterion to distinguish between the two mechanisms based on the dependence of the rate of relaxation to equilibrium, kobs, on the ligand concentration, [L]. A value of kobs decreasing hyperbolically with [L] has been seen as diagnostic of conformational selection, while a value of kobs increasing hyperbolically with [L] has been considered diagnostic of induced fit. However, this simple conclusion is only valid under the rather unrealistic assumption of conformational transitions being much slower than binding and dissociation events. In general, induced fit only produces values of kobs that increase with [L] but conformational selection is more versatile and is associated with values of kobs that increase with, decrease with or are independent of [L]. The richer repertoire of kinetic properties of conformational selection applies to kinetic mechanisms with single or multiple saturable relaxations and explains the behavior of nearly all experimental systems reported in the literature thus far. Conformational selection is always sufficient and often necessary to account for the relaxation kinetics of ligand binding to a biological macromolecule and is therefore an essential component of any binding mechanism. On the other hand, induced fit is never necessary and

  10. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    , and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops D and E....... At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes...... in the inner beta-sheet and pre-M1 domain that may be important for activation, desensitization, or both. In contrast, most labeled residues in loops C and F yielded fluorescence changes identical in magnitude for glycine and strychnine. A notable exception was H201C in loop C. This labeled residue responded...

  11. Microassay for measurement of binding of radiolabelled ligands to cell surface molecules

    International Nuclear Information System (INIS)

    Woof, J.M.; Burton, D.R.

    1988-01-01

    An improved technique for measuring the binding of radiolabelled ligands to cell surface molecules has been developed by modification of a procedure using centrifugation through a water-immiscible oil to separate free and cell-bound ligand. It maximises the percentage of ligand bound since cell-bound and free ligand can be separated easily and reproducibly even when very small reaction volumes are used. This permits low levels of ligand radiolabelling and relatively low numbers of cells to be used

  12. Using chemical shift perturbation to characterise ligand binding.

    Science.gov (United States)

    Williamson, Mike P

    2013-08-01

    Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by

  13. The chemistry of separations ligand degradation by organic radical cations

    International Nuclear Information System (INIS)

    Mezyk, S.P.; Horne, G.P.; Mincher, B.J.; Zalupski, P.R.; Cook, A.R.; Wishart, J.F.

    2016-01-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R"."+), carbon-centered radicals (R".), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R"."+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  14. New synthetic routes toward enantiopure nitrogen donor ligands.

    Science.gov (United States)

    Sala, Xavier; Rodríguez, Anna M; Rodríguez, Montserrat; Romero, Isabel; Parella, Teodor; von Zelewsky, Alexander; Llobet, Antoni; Benet-Buchholz, Jordi

    2006-12-08

    New polypyridylic chiral ligands, having either C3 or lower symmetry, have been prepared via a de novo construction of the pyridine nucleus by means of Kröhnke methodology in the key step. The chiral moieties of these ligands originate from the monoterpen chiral pool, namely (-)-alpha-pinene ((-)-14, (-)-15) and (-)-myrtenal ((-)-9, (-)-10). Extension of the above-mentioned asymmetric synthesis procedure to the preparation of enantiopure derivatives of some commonly used polypyridylic ligands has been achieved through a new aldehyde building block ((-)-16). As an example, the synthesis of a chiral derivative of N,N-bis(2-pyridylmethyl)ethylamine (bpea) ligand, (-)-19, has been performed to illustrate the viability of the method. The coordinative ability of the ligands has been tested through the synthesis and characterization of complexes [Mn((-)-19)Br2], (-)-20, and [RuCl((-)-10)(bpy)](BF4), (-)-21. Some preliminary results related to the enantioselective catalytic epoxidation of styrene with the ruthenium complex are also presented.

  15. A grand unified model for liganded gold clusters

    Science.gov (United States)

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi

    2016-12-01

    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.

  16. Receptor-ligand binding sites and virtual screening.

    Science.gov (United States)

    Hattotuwagama, Channa K; Davies, Matthew N; Flower, Darren R

    2006-01-01

    Within the pharmaceutical industry, the ultimate source of continuing profitability is the unremitting process of drug discovery. To be profitable, drugs must be marketable: legally novel, safe and relatively free of side effects, efficacious, and ideally inexpensive to produce. While drug discovery was once typified by a haphazard and empirical process, it is now increasingly driven by both knowledge of the receptor-mediated basis of disease and how drug molecules interact with receptors and the wider physiome. Medicinal chemistry postulates that to understand a congeneric ligand series, or set thereof, is to understand the nature and requirements of a ligand binding site. Likewise, structural molecular biology posits that to understand a binding site is to understand the nature of ligands bound therein. Reality sits somewhere between these extremes, yet subsumes them both. Complementary to rules of ligand design, arising through decades of medicinal chemistry, structural biology and computational chemistry are able to elucidate the nature of binding site-ligand interactions, facilitating, at both pragmatic and conceptual levels, the drug discovery process.

  17. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Neale, Nathan R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carroll, Gerard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Limpens, Rens [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-16

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups - alkyls, amides, and alkoxides - on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative to alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands - not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals - are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.

  18. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands.

    Science.gov (United States)

    Carroll, Gerard M; Limpens, Rens; Neale, Nathan R

    2018-05-09

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups-alkyls, amides, and alkoxides-on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative to alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands-not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals-are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.

  19. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  20. The chemistry of separations ligand degradation by organic radical cations

    Energy Technology Data Exchange (ETDEWEB)

    Mezyk, S.P.; Horne, G.P. [California State University at Long Beach, Long Beach, CA 90840 (United States); Mincher, B.J.; Zalupski, P.R. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Cook, A.R.; Wishart, J.F. [Chemistry Department, Brookhaven National Laboratory, New York, 11973 (United States)

    2016-07-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R{sup .+}), carbon-centered radicals (R{sup .}), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R{sup .+} as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  1. The affinity of the uranyl ion for nitrogen donor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, N.V. (Atomic Energy Corp. of South Africa Ltd., Pretoria (South Africa). Dept. of Process Technology); De Sousa, A.S.; Hancock, R.D. (Univ. of the Witwatersrand, Johannesburg (South Africa). Centre for Molecular Design)

    1992-01-01

    Established ligand design principles are used to predict the solution chemistry of UO[sub 2][sup 2+] with nitrogen donor ligands which do not contain carboxylate donors. pK[sub a]'s of the nitrogen donors are lowered by addition of hydroxylalkyl groups causing UO[sub 2][sup 2+] to have a greater affinity for these ligands than for hydroxide. Potentiometric studies using the ligands N,N,N',N',N''-pentakis(2-hydroxypropyl)-1,4,7-triazaheptane; N,N,N',N',N''-pentakis(2-hydroxyethyl)-1,4,7-triazaheptane; N,N,N',N'-tetrakis(2-hydroxypropyl)1,2-diaminoethane, N,N,N',N'-tetrakis(2-hydroxyethyl)-trans-1,2-diaminocyclohexane; 1,4,8,11-tetrakis(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane and N,N-bis(2-hydroxyethyl)glycine with UO[sub 2][sup 2+] showed that UO[sub 2][sup 2+] has a considerable aqueous solution chemistry with these ligands. (orig.).

  2. Selective extraction of trivalent actinides with hard-soft mixed donor ligands: role of intra-ligand synergism

    International Nuclear Information System (INIS)

    Ghanty, Tapan K.

    2016-01-01

    In recent years, considerable attention has been given to understand the coordination chemistry of trivalent lanthanide (Ln) and actinide (An) with various ligands because of its close link with the nuclear waste management processes. It is well known that lanthanide-actinide separation is a challenging and difficult task because of very similar chemical properties of these two series of ions, which are associated with similar ionic radii and coordination numbers. Recently, we have introduced a new concept, 'intra-ligand synergism', where hard donor atom, such as, oxygen preferentially binds to trivalent actinides (An(III)) as compared to the valence iso-electronic trivalent lanthanides (Ln(III)) in presence of another soft donor centre. In the present work, the conventional concept of selective complexation of actinides with soft donor ligands (either S or N donor) has been modified through exploiting this concept, and thereby the higher selectivity of 1,10-phenanthroline-2,9-dicarboxylamide (PDAM) based ligands, namely PDAM and its isobutyl and decyl derivatives towards Am(III) ion has been predicted theoretically through density functional calculations. Subsequently, several such amide derivatives have been synthesized to optimize the solubility of the ligands in organic phase. Finally, solvent extraction experiments have been carried out to validate the theoretical prediction on the selectivity of oxygen donor ligands towards Am(III) as compared to Eu(III), and a maximum separation factor of about 51 has been achieved experimentally using 2,9-bis(N-decylaminocarbonyl)-1,10-phenanthroline ligand. The separation factor is increased with the decrease in pH, which is very interesting since extraction of the Am 3+ ion is considered to be important under highly acidic conditions from the nuclear waste management point of view. (author)

  3. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    International Nuclear Information System (INIS)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei

    2015-01-01

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H_2ndc) or 4,4′-(hydroxymethylene)dibenzoic acid (H_2hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd_2(2,6-ndc)_2(bpp)(DMF)]·2DMF (1) and [Cd_3(hmdb)_3(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process. - Graphical abstract: Compound 1 exhibits a 3D self-penetrating 6-connected framework based on dinuclear cluster, and 2 displays an infinite 3D ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster. The flexible 1,3-bis(4-pyridyl)propane ligand displays different conformations in 1 and 2, which successfully controlled by size-matching mixed ligands during the self-assembly process.

  4. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei, E-mail: hanlei@nbu.edu.cn

    2015-12-15

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H{sub 2}ndc) or 4,4′-(hydroxymethylene)dibenzoic acid (H{sub 2}hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd{sub 2}(2,6-ndc){sub 2}(bpp)(DMF)]·2DMF (1) and [Cd{sub 3}(hmdb){sub 3}(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process. - Graphical abstract: Compound 1 exhibits a 3D self-penetrating 6-connected framework based on dinuclear cluster, and 2 displays an infinite 3D ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster. The flexible 1,3-bis(4-pyridyl)propane ligand displays different conformations in 1 and 2, which successfully controlled by size-matching mixed ligands during the self-assembly process.

  5. Designing multiple ligands - medicinal chemistry strategies and challenges.

    Science.gov (United States)

    Morphy, Richard; Rankovic, Zoran

    2009-01-01

    It has been widely recognised over the recent years that parallel modulation of multiple biological targets can be beneficial for treatment of diseases with complex etiologies such as cancer asthma, and psychiatric disease. In this article, current strategies for the generation of ligands with a specific multi-target profile (designed multiple ligands or DMLs) are described and a number of illustrative example are given. Designing multiple ligands is frequently a challenging endeavour for medicinal chemists, with the need to appropriately balance affinity for 2 or more targets whilst obtaining physicochemical and pharmacokinetic properties that are consistent with the administration of an oral drug. Given that the properties of DMLs are influenced to a large extent by the proteomic superfamily to which the targets belong and the lead generation strategy that is pursued, an early assessment of the feasibility of any given DML project is essential.

  6. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    Science.gov (United States)

    Bhatt, Nikunj B; Pandya, Darpan N; Xu, Jide; Tatum, David; Magda, Darren; Wadas, Thaddeus J

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  7. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    Directory of Open Access Journals (Sweden)

    Nikunj B Bhatt

    Full Text Available The development of bifunctional chelators (BFCs for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2 as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  8. Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, V V

    2005-04-26

    NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

  9. Lanthanide and actinide complexation studies with tetradentate 'N' donor ligands

    International Nuclear Information System (INIS)

    Bhattacharyya, A.; Mohapatra, M.; Mohapatra, P.K.; Rawat, N.; Tomar, B.S.; Gadly, T.; Ghosh, S.K.; Manna, D.; Ghanty, T.K.

    2014-01-01

    Because of their similar charge and chemical behaviour separation of trivalent actinides and lanthanides is an important and challenging task in nuclear fuel cycle. Soft (S,N) donor ligands show selectivity towards the trivalent actinides over the lanthanides. Out of various 'N' donor ligands studied, bis(1,2,4)triazinyl bipyridine (BTBP) and bis(1,2,4)triazinyl phenanthroline (BTPhen) were found to be most promising. In order to understand the separation behaviour of these ligands, their complexation studies with these 'f' block elements are essential. In the present work, complexation studies of various lanthanide ions (La 3+ , Eu 3+ and Er 3+ ) was studied with ethyl derivatives of BTBP (C 2 BTBP) and BTBPhen (C 2 BTPhen) and pentyl derivative of BTBP (C 5 BTBP) in acetonitrile medium using UV-Vis spectrophotometry, fluorescence spectroscopy and solution calorimetry. Computational studies were also carried out to understand the experimental results

  10. Analytical developments for screening of lanthanides/ligands interactions

    International Nuclear Information System (INIS)

    Varenne, F.

    2012-01-01

    This work investigates the potential of hyphenated capillary electrophoresis and inductively coupled mass spectrometry to classify different ligands according to their europium binding affinity in a hydro-organic medium. On the one hand, this method enables to evaluate the affinity of phosphorus-containing ligands in less than two hours and using less than 15 ng of ligand. On the other hand, complexation constants could be determined. The results are in excellent agreement with the values obtained by spectrophotometric titrations.Moreover, a library of copolymers for solid/liquid extraction of europium is investigated. The extraction protocol enables to classify copolymers according to their europium affinity in a hydro-organic medium. This screening requires 60 mg of copolymers. For the most promising recognition properties and selectivity La 3+ /Eu 3+ /Lu 3+ are evaluated. (author)

  11. Xanthene and Xanthone Derivatives as G-Quadruplex Stabilizing Ligands

    Directory of Open Access Journals (Sweden)

    Alessandro Altieri

    2013-10-01

    Full Text Available Following previous studies on anthraquinone and acridine-based G-quadruplex ligands, here we present a study of similar aromatic cores, with the specific aim of increasing G-quadruplex binding and selectivity with respect to duplex DNA. Synthesized compounds include two and three-side chain xanthone and xanthene derivatives, as well as a dimeric “bridged” form. ESI and FRET measurements suggest that all the studied molecules are good G-quadruplex ligands, both at telomeres and on G-quadruplex forming sequences of oncogene promoters. The dimeric compound and the three-side chain xanthone derivative have been shown to represent the best compounds emerging from the different series of ligands presented here, having also high selectivity for G-quadruplex structures with respect to duplex DNA. Molecular modeling simulations are in broad agreement with the experimental data.

  12. Ligands Exchange Process on Gold Nanoparticles in Acetone Solution

    Science.gov (United States)

    Hu, C. L.; Mu, Y. Y.; Bian, Z. C.; Luo, Z. H.; Luo, K.; Huang, A. Z.

    2018-05-01

    The ligands exchange process on gold nanoparticles (GNPs) was proceeded by using hydrophobic group (PPh3) and hydrophilic group (THPO) in acetone solution. The FTIR and XPS results demonstrated that part of THPO was replaced by PPh3 which was dissolved in polar solution (acetone); the results were in accordance with the electrochemical analysis where the differential capacity decreased with increasing exchange time. After 12 h, the exchange process terminated and the final ratio of PPh3 and THPO was about 1.4: 1. This ratio remained unchanged although the PPh3 and THPO modified GNPs re-dispersed in the PPh3 acetone solution demonstrating the stable adsorption of both ligands after exchanging for 12 h. The TEM images showed that the gold nanoparticles were self-assembled from scattered to arranged morphology due to the existence of hydrophilic and hydrophobic ligands and led to Janus gold nanoparticles.

  13. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding.

    Science.gov (United States)

    Lin, Ying-Ting

    2013-04-30

    A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.

  14. Systematic study of ligand structures of metal oxide EUV nanoparticle photoresists

    KAUST Repository

    Jiang, Jing

    2015-03-19

    Ligand stabilized metal oxide nanoparticle resists are promising candidates for EUV lithography due to their high sensitivity for high-resolution patterning and high etching resistance. As ligand exchange is responsible for the patterning mechanism, we systematically studied the influence of ligand structures of metal oxide EUV nanoparticles on their sensitivity and dissolution behavior. ZrO2 nanoparticles were protected with various aromatic ligands with electron withdrawing and electron donating groups. These nanoparticles have lower sensitivity compared to those with aliphatic ligands suggesting the structures of these ligands is more important than their pka on resist sensitivity. The influence of ligand structure was further studied by comparing the nanoparticles’ solubility for a single type ligand to mixtures of ligands. The mixture of nanoparticles showed improved pattern quality. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  15. Spectroscopic study of cadmium (II) complexes with heterocyclic dithiocarbamate ligands

    International Nuclear Information System (INIS)

    Garcia-Fontan, S.; Rodriguez-Seoane, P.; Casas, J.S.; Sordo, J.; Jones, M.M.

    1993-01-01

    Cadmium(II) dithiocarbamates [Cd(dtc) 2 ] (dtc=4-carboxamidopiperidine-1-carbodithioate, morpholine-1-carbodithioate or 4-(2-hydroxyethyl)piperazine-1-carbodithioate) and [Cd(dtc) 2 ].H 2 O (dtc=4-hydroxypiperidine-1-carbodithioate} have been prepared and characterized by thermal analysis and IR and NMR ( 13 C, 113 Cd) spectrometry. Two of these ligands have previously been shown capable of removing cadmium from its aged in vivo storage sites. The use of solid state 13 C NMR measurements to establish the coordination mode of the dithiocarbomate ligands is also examined and the difficulties which arise are discussed. (orig.)

  16. Contrasting roles for TLR ligands in HIV-1 pathogenesis.

    Directory of Open Access Journals (Sweden)

    Beda Brichacek

    2010-09-01

    Full Text Available The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs. Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs 5 and 9, we examined their effect on human immunodeficiency virus (HIV-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist treatment enhanced replication of CC chemokine receptor 5 (CCR 5-tropic and CXC chemokine receptor 4 (CXCR4-tropic HIV-1, treatment with oligodeoxynucleotide (ODN M362 (TLR9 agonist suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention.

  17. Designer ligands: The search for metal ion selectivity

    Directory of Open Access Journals (Sweden)

    Perry T. Kaye

    2011-03-01

    Full Text Available The paper reviews research conducted at Rhodes University towards the development of metal-selective ligands. The research has focused on the rational design, synthesis and evaluation of novel ligands for use in the formation of copper complexes as biomimetic models of the metalloenzyme, tyrosinase, and for the selective extraction of silver, nickel and platinum group metal ions in the presence of contaminating metal ions. Attention has also been given to the development of efficient, metal-selective molecular imprinted polymers.

  18. Introducing various ligands into superhalogen anions reduces their electronic stabilities

    Science.gov (United States)

    Smuczyńska, Sylwia; Skurski, Piotr

    2008-02-01

    The vertical electron detachment energies (VDE) of six NaX2- anions (where X = F, Cl, Br) were calculated at the OVGF level with the 6-311++G(3df) basis sets. In all the cases studied the VDE exceeds the electron affinity of chlorine atom and thus those species were classified as superhalogen anions. The largest vertical binding energy was found for the NaF2- system (6.644 eV). The strong VDE dependence on the ligand type, ligand-central atom distance, and the character of the highest occupied molecular orbital (HOMO) was observed and discussed.

  19. Long ligands reinforce biological adhesion under shear flow

    Science.gov (United States)

    Belyaev, Aleksey V.

    2018-04-01

    In this work, computer modeling has been used to show that longer ligands allow biological cells (e.g., blood platelets) to withstand stronger flows after their adhesion to solid walls. A mechanistic model of polymer-mediated ligand-receptor adhesion between a microparticle (cell) and a flat wall has been developed. The theoretical threshold between adherent and non-adherent regimes has been derived analytically and confirmed by simulations. These results lead to a deeper understanding of numerous biophysical processes, e.g., arterial thrombosis, and to the design of new biomimetic colloid-polymer systems.

  20. Force loading explains spatial sensing of ligands by cells

    Science.gov (United States)

    Oria, Roger; Wiegand, Tina; Escribano, Jorge; Elosegui-Artola, Alberto; Uriarte, Juan Jose; Moreno-Pulido, Cristian; Platzman, Ilia; Delcanale, Pietro; Albertazzi, Lorenzo; Navajas, Daniel; Trepat, Xavier; García-Aznar, José Manuel; Cavalcanti-Adam, Elisabetta Ada; Roca-Cusachs, Pere

    2017-12-01

    Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin-ligand bonds are separated by more than a few tens of nanometres. It has thus been suggested that a crosslinking ‘adaptor’ protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model, in which individual integrin-ECM bonds—the molecular clutches—respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds

  1. Glucagon-like peptide-1 receptor ligand interactions: structural cross talk between ligands and the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Graham M West

    Full Text Available Activation of the glucagon-like peptide-1 receptor (GLP-1R in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM. Like other class B G protein-coupled receptors (GPCRs, the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R. In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands.

  2. A Guided Inquiry Activity for Teaching Ligand Field Theory

    Science.gov (United States)

    Johnson, Brian J.; Graham, Kate J.

    2015-01-01

    This paper will describe a guided inquiry activity for teaching ligand field theory. Previous research suggests the guided inquiry approach is highly effective for student learning. This activity familiarizes students with the key concepts of molecular orbital theory applied to coordination complexes. Students will learn to identify factors that…

  3. Oxahelicene NHC ligands in the asymmetric synthesis of nonracemic helicenes

    Czech Academy of Sciences Publication Activity Database

    Gay Sánchez, Isabel; Šámal, Michal; Nejedlý, Jindřich; Karras, Manfred; Klívar, Jiří; Rybáček, Jiří; Buděšínský, Miloš; Bednárová, Lucie; Seidlerová, Beata; Stará, Irena G.; Starý, Ivo

    2017-01-01

    Roč. 53, č. 31 (2017), s. 4370-4373 ISSN 1359-7345 R&D Projects: GA ČR(CZ) GA14-29667S Institutional support: RVO:61388963 Keywords : helicene-based NHC ligands * enantioselective [2+2+2] cycloisomerisation Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 6.319, year: 2016

  4. Molecular dynamics simulations suggest ligand's binding to nicotinamidase/pyrazinamidase.

    Science.gov (United States)

    Zhang, Ji-Long; Zheng, Qing-Chuan; Li, Zheng-Qiang; Zhang, Hong-Xing

    2012-01-01

    The research on the binding process of ligand to pyrazinamidase (PncA) is crucial for elucidating the inherent relationship between resistance of Mycobacterium tuberculosis and PncA's activity. In the present study, molecular dynamics (MD) simulation methods were performed to investigate the unbinding process of nicotinamide (NAM) from two PncA enzymes, which is the reverse of the corresponding binding process. The calculated potential of mean force (PMF) based on the steered molecular dynamics (SMD) simulations sheds light on an optimal binding/unbinding pathway of the ligand. The comparative analyses between two PncAs clearly exhibit the consistency of the binding/unbinding pathway in the two enzymes, implying the universality of the pathway in all kinds of PncAs. Several important residues dominating the pathway were also determined by the calculation of interaction energies. The structural change of the proteins induced by NAM's unbinding or binding shows the great extent interior motion in some homologous region adjacent to the active sites of the two PncAs. The structure comparison substantiates that this region should be very important for the ligand's binding in all PncAs. Additionally, MD simulations also show that the coordination position of the ligand is displaced by one water molecule in the unliganded enzymes. These results could provide the more penetrating understanding of drug resistance of M. tuberculosis and be helpful for the development of new antituberculosis drugs.

  5. Molecular dynamics simulations suggest ligand's binding to nicotinamidase/pyrazinamidase.

    Directory of Open Access Journals (Sweden)

    Ji-Long Zhang

    Full Text Available The research on the binding process of ligand to pyrazinamidase (PncA is crucial for elucidating the inherent relationship between resistance of Mycobacterium tuberculosis and PncA's activity. In the present study, molecular dynamics (MD simulation methods were performed to investigate the unbinding process of nicotinamide (NAM from two PncA enzymes, which is the reverse of the corresponding binding process. The calculated potential of mean force (PMF based on the steered molecular dynamics (SMD simulations sheds light on an optimal binding/unbinding pathway of the ligand. The comparative analyses between two PncAs clearly exhibit the consistency of the binding/unbinding pathway in the two enzymes, implying the universality of the pathway in all kinds of PncAs. Several important residues dominating the pathway were also determined by the calculation of interaction energies. The structural change of the proteins induced by NAM's unbinding or binding shows the great extent interior motion in some homologous region adjacent to the active sites of the two PncAs. The structure comparison substantiates that this region should be very important for the ligand's binding in all PncAs. Additionally, MD simulations also show that the coordination position of the ligand is displaced by one water molecule in the unliganded enzymes. These results could provide the more penetrating understanding of drug resistance of M. tuberculosis and be helpful for the development of new antituberculosis drugs.

  6. Chelating ligands: enhancers of quality and purity of biogas ...

    African Journals Online (AJOL)

    The quality of biogas depends largely on the percentage of methane and hydrogen sulphide gas present. High concentration of hydrogen sulphide results in low quality biogas. This work employed the use of chelating ligands in scrubbing hydrogen sulphide gas while improving the yield of methane gas. Experimental ...

  7. GluR2 ligand-binding core complexes

    DEFF Research Database (Denmark)

    Kasper, C; Lunn, M-L; Liljefors, T

    2002-01-01

    X-ray structures of the GluR2 ligand-binding core in complex with (S)-Des-Me-AMPA and in the presence and absence of zinc ions have been determined. (S)-Des-Me-AMPA, which is devoid of a substituent in the 5-position of the isoxazolol ring, only has limited interactions with the partly hydrophobic...

  8. Synthesis of symmetrical and non-symmetrical bivalent neurotransmitter ligands

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Andersen, Jacob; Thygesen, Mikkel Boas

    2016-01-01

    A novel procedure for synthesis of bivalent neurotransmitter ligands was developed by reacting O-benzyl protected N-nosylated dopamine and serotonin with alkyl- or PEG-linked diols under Fukuyama-Mitsunobu conditions in the presence of DIAD/PPh3 generating three different bivalent neurotransmitte...

  9. Lanthanide(III) Complexes with Tridentate Schiff Base Ligand ...

    African Journals Online (AJOL)

    Lanthanide complexes, hydrazino, antioxidant activity, X-ray structure. 1. Introduction ... measured using a Johnson Matthey scientific magnetic suscepti- bility balance. 2.1. .... of the ligand and that the nitrogen atom supporting this proton is not involved in the ... 4f-electrons are not involved in the coordination. These facts.

  10. The thermodynamic principles of ligand binding in chromatography and biology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2007-01-01

    the general thermodynamic principles of ligand binding. Models of the multi-component adsorption in ion-exchange and hydrophobic chromatography, HIC and RPLC, are developed. The parameters in the models have a well-defined physical significance. The models are compared to the Langmuir model...

  11. Optimal Overlay of Ligands with Flexible Bonds Using Differential Evolution

    DEFF Research Database (Denmark)

    Kristensen, Thomas Greve; Pedersen, Christian Storm

    2009-01-01

    might improve the quality of the search by taking all of these into account. This can be done by generating a meta-structure which summarizes the active ligands and use this meta-structure for querying the database. In this paper we propose a method for making such a meta-structure by making a multiple...

  12. Ligand-mediated adhesive mechanics of two static, deformed spheres.

    Science.gov (United States)

    Sircar, Sarthok; Nguyen, Giang; Kotousov, Andrei; Roberts, Anthony J

    2016-10-01

    A self-consistent model is developed to investigate attachment/detachment kinetics of two static, deformable microspheres with irregular surface and coated with flexible binding ligands. The model highlights how the microscale binding kinetics of these ligands as well as the attractive/repulsive potential of the charged surface affects the macroscale static deformed configuration of the spheres. It is shown that in the limit of smooth, neutrally charged surface (i.e., the dimensionless inverse Debye length, [Formula: see text]), interacting via elastic binders (i.e., the dimensionless stiffness coefficient, [Formula: see text]) the adhesion mechanics approaches the regime of application of the JKR theory, and in this particular limit, the contact radius, R c , scales with the particle radius, R, according to the scaling law, [Formula: see text]. We show that static, deformed, highly charged, ligand-coated surface of micro-spheres exhibit strong adhesion. Normal stress distribution within the contact area adjusts with the binder stiffness coefficient, from a maximum at the center to a maximum at the periphery of the region. Although reported in some in vitro experiments involving particle adhesion, until now a physical interpretation for this variation of the stress distribution for deformable, charged, ligand-coated microspheres is missing. Surface roughness results in a diminished adhesion with a distinct reduction in the pull-off force, larger separation gap, weaker normal stress and limited area of adhesion. These results are in agreement with the published experimental findings.

  13. Synergistic Effects of PPARγ Ligands and Retinoids in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Masahito Shimizu

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the nuclear receptor superfamily. The activation of PPARs by their specific ligands is regarded as one of the promising strategies to inhibit cancer cell growth. However, recent clinical trials targeting several common cancers showed no beneficial effect when PPAR ligands are used as a monotherapy. Retinoid X receptors (RXRs, which play a critical role in normal cell proliferation as a master regulator for nuclear receptors, preferentially form heterodimers with PPARs. A malfunction of RXRα due to phosphorylation by the Ras/MAPK signaling pathway is associated with the development of certain types of human malignancies. The activation of PPARγ/RXR heterodimer by their respective ligands synergistically inhibits cell growth, while inducing apoptosis in human colon cancer cells when the phosphorylation of RXRα was inhibited. We herein review the synergistic antitumor effects produced by the combination of the PPAR, especially PPARγ, ligands plus other agents, especially retinoids, in a variety of human cancers. We also focus on the phosphorylation of RXRα because the inhibition of RXRα phosphorylation and the restoration of its physiological function may activate PPAR/RXR heterodimer and, therefore, be a potentially effective and critical strategy for the inhibition of cancer cell growth.

  14. (II) complexes containing isocyanide and labile nitrile ligands

    African Journals Online (AJOL)

    A new ruthenium(II) complex containing both acetonitrile and propionitrile moieties as coordinating ligands has been prepared. The treatment of the polymer [{RuCl2(COD)}x], (COD = cycloocta-1,5-diene) (1) with a mixture of acetonitrile and propionitrile under reflux produced a new precursor ...

  15. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jérôme

    2012-12-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  16. Biosensors engineered from conditionally stable ligand-binding domains

    Science.gov (United States)

    Church, George M.; Feng, Justin; Mandell, Daniel J.; Baker, David; Fields, Stanley; Jester, Benjamin Ward; Tinberg, Christine Elaine

    2017-09-19

    Disclosed is a biosensor engineered to conditionally respond to the presence of specific small molecules, the biosensors including conditionally stable ligand-binding domains (LBDs) which respond to the presence of specific small molecules, wherein readout of binding is provided by reporter genes or transcription factors (TFs) fused to the LBDs.

  17. The Ligand Substitution Reactions of Hydrophobic Vitamin B ...

    African Journals Online (AJOL)

    NJD

    Vitamin B. 12. Derivatives. Reaction of Cobyric Acid. Heptapropyl Ester with Heterocyclic N-donor Ligands. Mohamed S.A. .... RESEARCH ARTICLE. M.S.A. Hamza ..... neutralized with NaHCO3 and treated with excess KCN to give. DCCbs-Pr.

  18. Fluorescent ligands for studying neuropeptide receptors by confocal microscopy

    Directory of Open Access Journals (Sweden)

    A. Beaudet

    1998-11-01

    Full Text Available This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.

  19. Tissue distribution of the death ligand TRAIL and its receptors

    NARCIS (Netherlands)

    Spierings, DC; de Vries, EG; Vellenga, E; van den Heuvel, FA; Koornstra, JJ; Wesseling, J; Hollema, H; de Jong, S

    Recombinant human (rh) TNF-related apoptosis-inducing ligand (TRAIL) harbors potential as an anticancer agent. RhTRAIL induces apoptosis via the TRAIL receptors TRAIL-R1 and TRAIL-R2 in tumors and is non-toxic to nonhuman primates. Because limited data are available about TRAIL receptor

  20. Synthesis and evaluation of potential ligands for nuclear waste processing

    NARCIS (Netherlands)

    Iqbal, M.

    2012-01-01

    The research presented in this thesis deals with the synthesis and evaluation of new potential ligands for the complexation of actinide and lanthanide ions either for their extraction from bulk radioactive waste or their stripping from an extracted organic phase for final processing of the waste. In

  1. Development and Application of Ligand-Exchange Reaction Method ...

    African Journals Online (AJOL)

    Purpose: This paper presents an improved kinetic-spectrophotometric procedure for determining clonazepam (CZP) in pharmaceutical formulations and human serum. Methods: The method is based on ligand-exchange reaction. The reaction was followed spectrophotometrically by measuring the rate of change of ...

  2. Amidinate Ligands in Zinc coordination sphere: Synthesis and ...

    Indian Academy of Sciences (India)

    Amidinate Ligands in Zinc coordination sphere: Synthesis and structural diversity. SRINIVAS ANGA, INDRANI BANERJEE and TARUN K PANDA. ∗. Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502 285,. Sangareddy, Telangana, India e-mail: tpanda@iith.ac.in. MS received 25 February 2016; ...

  3. synthesis and spectra characterization of mixed- ligand complexes

    African Journals Online (AJOL)

    BARTH EKWUEME

    The Schiff base ligand, N-Propylidene-2-methylpyridylamine was obtained from the condensation of 2- aminomethypyridine and propanal.Also, its complexes with Cu(II),Ni(II),Zn(II),Co(II) .... determined with Thomas–Hoover capillary melting apparatus. RESULTS AND DISCUSSION. N-propylidene-2-methylpyridylamine ...

  4. Redox Potentials of Ligands and Complexes – a DFT Approach

    African Journals Online (AJOL)

    NICO

    A review of the limited literature concerned with theoretical ways to predict experimentally measured redox potentials of ligands and ... electrode surface, over-potentials and high solvent resistance, ... A correlation coefficient of 0.969 in the linear relation with ... of E0' were performed in two steps, i.e. calculation of the free.

  5. Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, Douglas R; Ohodnicki, Paul R; Kail, Brian W; Matranga, Christopher

    2011-01-01

    Ligand stabilization can influence the surface chemistry of Cu oxide nanoparticles (NPs) and provide unique product distributions for electrocatalytic methanol (MeOH) oxidation and CO{sub 2} reduction reactions. Oleic acid (OA) stabilized Cu{sub 2}O and CuO NPs promote the MeOH oxidation reaction with 88% and 99.97% selective HCOH formation, respectively. Alternatively, CO{sub 2} is the only reaction product detected for bulk Cu oxides and Cu oxide NPs with no ligands or weakly interacting ligands. We also demonstrate that OA stabilized Cu oxide NPs can reduce CO{sub 2} into CO with a {approx}1.7-fold increase in CO/H{sub 2} production ratios compared to bulk Cu oxides. The OA stabilized Cu oxide NPs also show 7.6 and 9.1-fold increases in CO/H{sub 2} production ratios compared to weakly stabilized and non-stabilized Cu oxide NPs, respectively. Our data illustrates that the presence and type of surface ligand can substantially influence the catalytic product selectivity of Cu oxide NPs.

  6. QSAR ligand dataset for modelling mutagenicity, genotoxicity, and rodent carcinogenicity

    Directory of Open Access Journals (Sweden)

    Davy Guan

    2018-04-01

    Full Text Available Five datasets were constructed from ligand and bioassay result data from the literature. These datasets include bioassay results from the Ames mutagenicity assay, Greenscreen GADD-45a-GFP assay, Syrian Hamster Embryo (SHE assay, and 2 year rat carcinogenicity assay results. These datasets provide information about chemical mutagenicity, genotoxicity and carcinogenicity.

  7. Designer Ligands. Part 13. Synthesis and Catalytic Activity of ...

    African Journals Online (AJOL)

    Copper(I), copper(II), cobalt(II) and zinc(II) complexes of a macrocyclic, multidentate Schiff-base ligand have been prepared and, with the exception of the zinc(II) complex, have been shown to exhibit biomimetic catecholase activity. Keywords: Copper(II);Cobalt(II); Zinc(II); Biomimetic complexes; Catecholase activity

  8. Fas Ligand Expression in Lynch Syndrome-Associated Colorectal Tumours

    NARCIS (Netherlands)

    Koornstra, Jan J.; de Jong, Steven; Boersma-van Eck, Wietske; Zwart, Nynke; Hollema, Harry; de Vries, Elisabeth G. E.; Kleibeuker, Jan H.

    Fas Ligand (FasL) expression by cancer cells may contribute to tumour immune escape via the Fas counterattack against tumour-infiltrating lymphocytes (TILs). Whether this plays a role in colorectal carcinogenesis in Lynch syndrome was examined studying FasL expression, tumour cell apoptosis and

  9. Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems ...

    African Journals Online (AJOL)

    Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems. ... method has been used to study heavy metal interaction in model lake water in KNO3 ... is of no consequential effect because in its normal state, the [OH-] of the lake water is ...

  10. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jé rô me; Bricout, Hervé ; Tilloy, Sé bastien; Fihri, Aziz; Len, Christophe; Hapiot, Fré dé ric; Monflier, É ric

    2012-01-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  11. Iron(III) complexes of certain tetradentate phenolate ligands as ...

    Indian Academy of Sciences (India)

    non-heme iron enzymes, which catalyse the oxidative cleavage of catechols to cis, cis-muconic acids with the incorporation of ... nature of heterocyclic rings of the ligands and the methyl substituents on them regulate the electronic spectral features .... and simple substitution reactions.19,21 The complexes of [H2(L5)] and ...

  12. Trapping of palindromic ligands within native transthyretin prevents amyloid formation

    Science.gov (United States)

    Kolstoe, Simon E.; Mangione, Palma P.; Bellotti, Vittorio; Taylor, Graham W.; Tennent, Glenys A.; Deroo, Stéphanie; Morrison, Angus J.; Cobb, Alexander J. A.; Coyne, Anthony; McCammon, Margaret G.; Warner, Timothy D.; Mitchell, Jane; Gill, Raj; Smith, Martin D.; Ley, Steven V.; Robinson, Carol V.; Wood, Stephen P.; Pepys, Mark B.

    2010-01-01

    Transthyretin (TTR) amyloidosis is a fatal disease for which new therapeutic approaches are urgently needed. We have designed two palindromic ligands, 2,2'-(4,4'-(heptane-1,7-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic acid (mds84) and 2,2'-(4,4'-(undecane-1,11-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic acid (4ajm15), that are rapidly bound by native wild-type TTR in whole serum and even more avidly by amyloidogenic TTR variants. One to one stoichiometry, demonstrable in solution and by MS, was confirmed by X-ray crystallographic analysis showing simultaneous occupation of both T4 binding sites in each tetrameric TTR molecule by the pair of ligand head groups. Ligand binding by native TTR was irreversible under physiological conditions, and it stabilized the tetrameric assembly and inhibited amyloidogenic aggregation more potently than other known ligands. These superstabilizers are orally bioavailable and exhibit low inhibitory activity against cyclooxygenase (COX). They offer a promising platform for development of drugs to treat and prevent TTR amyloidosis. PMID:21059958

  13. Plant twitter: ligands under 140 amino acids enforcing stomatal patterning.

    Science.gov (United States)

    Rychel, Amanda L; Peterson, Kylee M; Torii, Keiko U

    2010-05-01

    Stomata are an essential land plant innovation whose patterning and density are under genetic and environmental control. Recently, several putative ligands have been discovered that influence stomatal density, and they all belong to the epidermal patterning factor-like family of secreted cysteine-rich peptides. Two of these putative ligands, EPF1 and EPF2, are expressed exclusively in the stomatal lineage cells and negatively regulate stomatal density. A third, EPFL6 or CHALLAH, is also a negative regulator of density, but is expressed subepidermally in the hypocotyl. A fourth, EPFL9 or STOMAGEN, is expressed in the mesophyll tissues and is a positive regulator of density. Genetic evidence suggests that these ligands may compete for the same receptor complex. Proper stomatal patterning is likely to be an intricate process involving ligand competition, regional specificity, and communication between tissue layers. EPFL-family genes exist in the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii, and rice, Oryza sativa, and their sequence analysis yields several genes some of which are related to EPF1, EPF2, EPFL6, and EPFL9. Presence of these EPFL family members in the basal land plants suggests an exciting hypothesis that the genetic components for stomatal patterning originated early in land plant evolution.

  14. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation

    KAUST Repository

    Tang, Jiang

    2011-09-18

    Colloidal-quantum-dot (CQD) optoelectronics offer a compelling combination of solution processing and spectral tunability through quantum size effects. So far, CQD solar cells have relied on the use of organic ligands to passivate the surface of the semiconductor nanoparticles. Although inorganic metal chalcogenide ligands have led to record electronic transport parameters in CQD films, no photovoltaic device has been reported based on such compounds. Here we establish an atomic ligand strategy that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films. Both time-resolved infrared spectroscopy and transient device characterization indicate that the scheme leads to a shallower trap state distribution than the best organic ligands. Solar cells fabricated following this strategy show up to 6% solar AM1.5G power-conversion efficiency. The CQD films are deposited at room temperature and under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll fabrication. © 2011 Macmillan Publishers Limited. All rights reserved.

  15. : Recyclable, ligand free palladium(II) catalyst for Heck reaction

    Indian Academy of Sciences (India)

    well as heterogeneous palladium catalysts, generated from either palladium(0) compounds or palladium(II) acetate or chloride salts.6 Several ligands such as phosphines, phoshites, carbenes, thioethers have been successfully employed for this reaction.7 However, homogeneous catalysis results in problems of recovery.

  16. Group 4 Metal Complexes of Chelating Cyclopentadienyl-ketimide Ligands

    Czech Academy of Sciences Publication Activity Database

    Večeřa, M.; Varga, Vojtěch; Císařová, I.; Pinkas, Jiří; Kucharczyk, P.; Sedlařík, V.; Lamač, Martin

    2016-01-01

    Roč. 35, č. 5 (2016), s. 785-798 ISSN 0276-7333 R&D Projects: GA ČR(CZ) GA14-08531S; GA MŠk(CZ) LO1504 Institutional support: RVO:61388955 Keywords : group 4 metal complexes * cyclopentadienyl-ketimide ligands * metallocenes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.862, year: 2016

  17. Identification of VDR Antagonists among Nuclear Receptor Ligands Using Virtual Screening

    Directory of Open Access Journals (Sweden)

    Kelly Teske

    2014-04-01

    Full Text Available Herein, we described the development of two virtual screens to identify new vitamin D receptor (VDR antagonists among nuclear receptor (NR ligands. Therefore, a database of 14330 nuclear receptor ligands and their NR affinities was assembled using the online available “Binding Database.” Two different virtual screens were carried out in conjunction with a reported VDR crystal structure applying a stringent and less stringent pharmacophore model to filter docked NR ligand conformations. The pharmacophore models were based on the spatial orientation of the hydroxyl functionalities of VDR's natural ligands 1,25(OH2D3 and 25(OH2D3. The first virtual screen identified 32 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. All but nordihydroguaiaretic acid (NDGA are VDR ligands, which inhibited the interaction between VDR and coactivator peptide SRC2-3 with an IC50 value of 15.8 μM. The second screen identified 162 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. More than half of these ligands were developed to bind VDR followed by ERα/β ligands (26%, TRα/β ligands (7%, and LxRα/β ligands (7%. The binding between VDR and ERα ligand H6036 as well as TRα/β ligand triiodothyronine and a homoserine analog thereof was confirmed by fluorescence polarization.

  18. Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes

    International Nuclear Information System (INIS)

    Riener, Christian K.; Kienberger, Ferry; Hahn, Christoph D.; Buchinger, Gerhard M.; Egwim, Innocent O.C.; Haselgruebler, Thomas; Ebner, Andreas; Romanin, Christoph; Klampfl, Christian; Lackner, Bernd; Prinz, Heino; Blaas, Dieter; Hinterdorfer, Peter; Gruber, Hermann J.

    2003-01-01

    Single molecule recognition force microscopy (SMRFM) is a versatile atomic force microscopy (AFM) method to probe specific interactions of cognitive molecules on the single molecule level. It allows insights to be gained into interaction potentials and kinetic barriers and is capable of mapping interaction sites with nm positional accuracy. These applications require a ligand to be attached to the AFM tip, preferably by a distensible poly(ethylene glycol) (PEG) chain between the measuring tip and the ligand molecule. The PEG chain greatly facilitates specific binding of the ligand to immobile receptor sites on the sample surface. The present study contributes to tip-PEG-ligand tethering in three ways: (i) a convenient synthetic route was found to prepare NH 2 -PEG-COOH which is the key intermediate for long heterobifunctional crosslinkers; (ii) a variety of heterobifunctional PEG derivatives for tip-PEG-ligand linking were prepared from NH 2 -PEG-COOH; (iii) in particular, a new PEG crosslinker with one thiol-reactive end and one terminal nitrilotriacetic acid (NTA) group was synthesized and successfully used to tether His 6 -tagged protein molecules to AFM tips via noncovalent NTA-Ni 2+ -His 6 bridges. The new crosslinker was applied to link a recombinant His 6 -tagged fragment of the very-low density lipoprotein receptor to the AFM tip whereupon specific docking to the capsid of human rhinovirus particles was observed by force microscopy. In a parallel study, the specific interaction of the small GTPase Ran with the nuclear import receptor importin β1 was studied in detail by SMRFM, using the new crosslinker to link His 6 -tagged Ran to the measuring tip [Nat. Struct. Biol. (2003), 10, 553-557

  19. Organic ligand-induced dissolution kinetics of antimony trioxide

    Institute of Scientific and Technical Information of China (English)

    Xingyun Hu; Mengchang He

    2017-01-01

    The influence of low-molecular-weight dissolved organic matter (LMWDOM) on the dissolution rate of Sb2O3 was investigated.Some representative LMWDOMs with carboxyl,hydroxyl,hydrosulfuryl and amidogen groups occurring naturally in the solution were chosen,namely oxalic acid,citric acid,tartaric acid,EDTA,salicylic acid,phthalandione,glycine,thiolactic acid,xylitol,glucose and catechol.These LMWDOMs were dissolved in inert buffers at pH =3.7,6.6 and 8.6 and added to powdered Sb2O3 in a stirred,thermostatted reactor (25℃).The addition of EDTA,tartaric acid,thiolactic acid,citric acid and oxalic acid solutions at pH 3.7 and catechol at pH 8.6 increased the rate of release of antimony.In the 10 mmol/L thiolactic acid solution,up to 97% by mass of the antimony was released after 120 min reaction.There was no effect on the dissolution of Sb2O3 for the other ligands.A weak correlation between dissolution rate with the dissociation constant of ligands and the stability of the dissolved complex was also found.All the results showed that the extent of the promoting effect of ligands on the dissolution of Sb2O3 was not determined by the stability of the dissolved complex,but by the dissociation constant of ligands and detachment rate of surface chelates from the mineral surface.This study can not only help in further understanding the effect of individual low-molecular-weight organic ligands,but also provides a reference to deduce the effect of natural organic matters with oxygen-bearing functional groups on the dissolution of antimony oxide minerals.

  20. Organic ligand-induced dissolution kinetics of antimony trioxide.

    Science.gov (United States)

    Hu, Xingyun; He, Mengchang

    2017-06-01

    The influence of low-molecular-weight dissolved organic matter (LMWDOM) on the dissolution rate of Sb 2 O 3 was investigated. Some representative LMWDOMs with carboxyl, hydroxyl, hydrosulfuryl and amidogen groups occurring naturally in the solution were chosen, namely oxalic acid, citric acid, tartaric acid, EDTA, salicylic acid, phthalandione, glycine, thiolactic acid, xylitol, glucose and catechol. These LMWDOMs were dissolved in inert buffers at pH=3.7, 6.6 and 8.6 and added to powdered Sb 2 O 3 in a stirred, thermostatted reactor (25°C). The addition of EDTA, tartaric acid, thiolactic acid, citric acid and oxalic acid solutions at pH3.7 and catechol at pH8.6 increased the rate of release of antimony. In the 10mmol/L thiolactic acid solution, up to 97% by mass of the antimony was released after 120min reaction. There was no effect on the dissolution of Sb 2 O 3 for the other ligands. A weak correlation between dissolution rate with the dissociation constant of ligands and the stability of the dissolved complex was also found. All the results showed that the extent of the promoting effect of ligands on the dissolution of Sb 2 O 3 was not determined by the stability of the dissolved complex, but by the dissociation constant of ligands and detachment rate of surface chelates from the mineral surface. This study can not only help in further understanding the effect of individual low-molecular-weight organic ligands, but also provides a reference to deduce the effect of natural organic matters with oxygen-bearing functional groups on the dissolution of antimony oxide minerals. Copyright © 2016. Published by Elsevier B.V.

  1. Structural and Electrochemical Consequences of [Cp*] Ligand Protonation.

    Science.gov (United States)

    Peng, Yun; Ramos-Garcés, Mario V; Lionetti, Davide; Blakemore, James D

    2017-09-05

    There are few examples of the isolation of analogous metal complexes bearing [η 5 -Cp*] and [η 4 -Cp*H] (Cp* = pentamethylcyclopentadienyl) complexes within the same metal/ligand framework, despite the relevance of such structures to catalytic applications. Recently, protonation of Cp*Rh(bpy) (bpy = 2,2'-bipyridyl) has been shown to yield a complex bearing the uncommon [η 4 -Cp*H] ligand, rather than generating a [Rh III -H] complex. We now report the purification and isolation of this protonated species, as well as characterization of analogous complexes of 1,10-phenanthroline (phen). Specifically, reaction of Cp*Rh(bpy) or Cp*Rh(phen) with 1 equiv of Et 3 NH + Br - affords rhodium compounds bearing endo-η 4 -pentamethylcyclopentadiene (η 4 -Cp*H) as a ligand. NMR spectroscopy and single-crystal X-ray diffraction studies confirm protonation of the Cp* ligand, rather than formation of metal hydride complexes. Analysis of new structural data and electronic spectra suggests that phen is significantly reduced in Cp*Rh(phen), similar to the case of Cp*Rh(bpy). Backbonding interactions with olefinic motifs are activated by formation of [η 4 -Cp*H]; protonation of [Cp*] stabilizes the low-valent metal center and results in loss of reduced character on the diimine ligands. In accord with these changes in electronic structure, electrochemical studies reveal a distinct manifold of redox processes that are accessible in the [Cp*H] complexes in comparison with their [Cp*] analogues; these processes suggest new applications in catalysis for the complexes bearing endo-η 4 -Cp*H.

  2. Specific ability of sulfur-ligands on removal of 203Hg-labeled organomercury from hemoglobin in comparison with nitrogen-ligands

    International Nuclear Information System (INIS)

    Hojo, Yasuji; Sugiura, Yukio; Tanaka, Hisashi

    1975-01-01

    Removal of 203 Hg-labeled organomercurials, bound to sulfhydryl groups of hemoglobin, by various chelating agents was investigated by the use of equilibrium dialysis. Organomercurials employed were chlormerodrin, methylmercury, ethylmercury and phenylmercury compounds. Higher and more specific effects of the sulfur-ligands, such as penicillamine and glutathione, on removal of organomercurial were found as compared with those of the nitrogen-ligands such as EDTA, glycine and polymethylenediamines. Linear correlation was observed between the degree of organomercury elimination from hemoglobin and the stability constant (log K 1 ) of 1:1 organomercury complex in both the sulfur- and nitrogen-ligand systems and at the same value of log K 1 , the elimination-effect of sulfur-ligands was extremely greater than that of the nitrogen-ligands. The relationship between the average percentage of removal and the Taft's polar substituent constant of organic moiety of the metal was also linear among the organomercury compounds other than chlormerodrin. The average removal percentage by sulfur-ligands increased in the order, ethylmercury>methylmercury>phenylmercury, while that of the nitrogen-ligands was not different among the organomercurials investigated. In addition, direct ligand-exchange reaction between hemoglobin-SH and the ligand coordinating-atom (S or N) against organomercurials rather than Ssub(N2) reaction via the ternary complex, hemoglobin-S-RHg-ligand, is postulated. (auth.)

  3. The utilization of BSA-modified chip on the investigation of ligand ...

    African Journals Online (AJOL)

    Administrator

    2009-12-15

    Dec 15, 2009 ... investigation of ligand/protein interaction with surface plasma resonance ... for immobilizing proteins or low-molecular-weight ligands to dextran ..... contamination in dynamic aqueous environments using optical sensors. Anal.

  4. Ligand flexibility and framework rearrangement in a new family of porous metal-organic frameworks

    DEFF Research Database (Denmark)

    Hawxwell, Samuel M; Espallargas, Guillermo Mínguez; Bradshaw, Darren

    2007-01-01

    Ligand flexibility permits framework rearrangement upon evacuation and gas uptake in a new family of porous MOFs.......Ligand flexibility permits framework rearrangement upon evacuation and gas uptake in a new family of porous MOFs....

  5. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions.

    Science.gov (United States)

    Lipinski, Christopher A

    2016-06-01

    The rule of five (Ro5), based on physicochemical profiles of phase II drugs, is consistent with structural limitations in protein targets and the drug target ligands. Three of four parameters in Ro5 are fundamental to the structure of both target and drug binding sites. The chemical structure of the drug ligand depends on the ligand chemistry and design philosophy. Two extremes of chemical structure and design philosophy exist; ligands constructed in the medicinal chemistry synthesis laboratory without input from natural selection and natural product (NP) metabolites biosynthesized based on evolutionary selection. Exceptions to Ro5 are found mostly among NPs. Chemistry chameleon-like behavior of some NPs due to intra-molecular hydrogen bonding as exemplified by cyclosporine A is a strong contributor to NP Ro5 outliers. The fragment derived, drug Navitoclax is an example of the extensive expertise, resources, time and key decisions required for the rare discovery of a non-NP Ro5 outlier. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Iron and Zinc Complexes of Bulky Bis-Imidazole Ligands : Enzyme Mimicry and Ligand-Centered Redox Activity

    NARCIS (Netherlands)

    Folkertsma, E.

    2016-01-01

    The research described in this thesis is directed to the development of cheap and non-toxic iron-based homogeneous catalysts, using enzyme models and redox non-innocent ligands. Inspired by nature, the first approach focuses on the synthesis of structural models of the active site of non-heme iron

  7. Synthesis of novel '4+1' Tc(III)/Re(III) mixed-ligand complexes with dendritically modified ligands

    International Nuclear Information System (INIS)

    Gniazdowska, E.; Kuenstler, J.U.; Stephan, H.; Pietzsch, H.J.

    2006-01-01

    Coordination chemistry of technetium and rhenium attracts a considerable interest due to the nuclear medicine applications of their radionuclides. Inert, so-called '3+1' or '4+1' technetium/rhenium mixed-ligand complexes open a new way to application of 99 mTc/ 188 Re labeled compounds in tumor diagnosis and therapy. In the presented paper, authors describe the synthesis and study of novel 99 mTc/ 188 Re complexes with dendritically functionalized tetradentate (tripodal chelator 2,2',2''-nitrilotris(ethanethiol), NS 3 and carboxyl group-bearing ligand, NS 3 (COOH) 3 ) and monodentate (dendritically modified isocyanide, CN-R(COOMe) 3 and isocyanide-modified peptide, CN-GGY) ligands. To verify the identity of the prepared n.c.a. complexes, non-radioactive analogous '4+1' Re compounds were synthesized. The experimental data show that a dendritic modification of the tetradentate/monodentate ligands changes the complex lipophilicity and does not influence its stability

  8. The synthesis, structures and characterisation of new mixed-ligand manganese and iron complexes with tripodal, tetradentate ligands

    NARCIS (Netherlands)

    van Gorkum, R.; Berding, J.; Mills, A.M.; Kooijman, H.; Tooke, D.M.; Spek, A.L.; Mutikainen, I.; Turpeinen, U.; Reedijk, J.; Bouwman, E.

    2008-01-01

    The preparation of new manganese and iron complexes with the general formula [M(tripod)(anion)] is described, where M = FeIII or MnIII, “tripod” is a dianionic tetradentate tripodal ligand and the anion is a chelating β-diketonate, 8-oxyquinoline or acetate. The synthesis of this type of complexes

  9. One ligand capable of in situ reaction in a mixed-ligand system with two new different frameworks

    KAUST Repository

    Wang, Xiaofang; Wang, Runwei; Liu, Xiaofang; Zhu, Pinwen; Qiu, Shilun

    2017-01-01

    The in situ ligand 2,3-pyrazinedicarboxylic acid (2,3-H2pzdc) mixed with 1,1′-(1,4-butanediyl)bis(benzimidazole) (bbbi) is used to form two coordination polymers ([Cd(2,3-pzdc)(bbbi)] (1) and [Cd2Cl3(2-pzc)(bbbi)2] (2)) under hydrothermal conditions

  10. Synthesis and characterization ligand tris-(2-thiosalicylamidoethyl)amine and its iron complexes and indium

    International Nuclear Information System (INIS)

    Guerra-Garcia, Pedro Pablo; Valle Bourrouet, Grettel

    2006-01-01

    The synthesis of coordination chemistry ligand tris-(2-tiosalicilamidoetil)amine is presented within the framework of study of tripod ligands, the corresponding complexes of iron and indium. Also, its spectroscopic characterization by proton magnetic resonance is showed; so the influence of ligand on a redox active metal and an inactive is compared. Electrochemical methods have been used. The presence of sulfur atoms modifies the redox and magnetic behavior of iron ion (III), as has been found in other similar ligands [es

  11. Gene Duplication of the zebrafish kit ligand and partitioning of melanocyte development functions to kit ligand a.

    Directory of Open Access Journals (Sweden)

    Keith A Hultman

    2007-01-01

    Full Text Available The retention of particular genes after the whole genome duplication in zebrafish has given insights into how genes may evolve through partitioning of ancestral functions. We examine the partitioning of expression patterns and functions of two zebrafish kit ligands, kit ligand a (kitla and kit ligand b (kitlb, and discuss their possible coevolution with the duplicated zebrafish kit receptors (kita and kitb. In situ hybridizations show that kitla mRNA is expressed in the trunk adjacent to the notochord in the middle of each somite during stages of melanocyte migration and later expressed in the skin, when the receptor is required for melanocyte survival. kitla is also expressed in other regions complementary to kita receptor expression, including the pineal gland, tail bud, and ear. In contrast, kitlb mRNA is expressed in brain ventricles, ear, and cardinal vein plexus, in regions generally not complementary to either zebrafish kit receptor ortholog. However, like kitla, kitlb is expressed in the skin during stages consistent with melanocyte survival. Thus, it appears that kita and kitla have maintained congruent expression patterns, while kitb and kitlb have evolved divergent expression patterns. We demonstrate the interaction of kita and kitla by morpholino knockdown analysis. kitla morphants, but not kitlb morphants, phenocopy the null allele of kita, with defects for both melanocyte migration and survival. Furthermore, kitla morpholino, but not kitlb morpholino, interacts genetically with a sensitized allele of kita, confirming that kitla is the functional ligand to kita. Last, we examine kitla overexpression in embryos, which results in hyperpigmentation caused by an increase in the number and size of melanocytes. This hyperpigmentation is dependent on kita function. We conclude that following genome duplication, kita and kitla have maintained their receptor-ligand relationship, coevolved complementary expression patterns, and that

  12. O-fucosylation of the notch ligand mDLL1 by POFUT1 is dispensable for ligand function.

    Directory of Open Access Journals (Sweden)

    Julia Müller

    Full Text Available Fucosylation of Epidermal Growth Factor-like (EGF repeats by protein O-fucosyltransferase 1 (POFUT1 in vertebrates, OFUT1 in Drosophila is pivotal for NOTCH function. In Drosophila OFUT1 also acts as chaperone for Notch independent from its enzymatic activity. NOTCH ligands are also substrates for POFUT1, but in Drosophila OFUT1 is not essential for ligand function. In vertebrates the significance of POFUT1 for ligand function and subcellular localization is unclear. Here, we analyze the importance of O-fucosylation and POFUT1 for the mouse NOTCH ligand Delta-like 1 (DLL1. We show by mass spectral glycoproteomic analyses that DLL1 is O-fucosylated at the consensus motif C²XXXX(S/TC³ (where C² and C³ are the second and third conserved cysteines within the EGF repeats found in EGF repeats 3, 4, 7 and 8. A putative site with only three amino acids between the second cysteine and the hydroxy amino acid within EGF repeat 2 is not modified. DLL1 proteins with mutated O-fucosylation sites reach the cell surface and accumulate intracellularly. Likewise, in presomitic mesoderm cells of POFUT1 deficient embryos DLL1 is present on the cell surface, and in mouse embryonic fibroblasts lacking POFUT1 the same relative amount of overexpressed wild type DLL1 reaches the cell surface as in wild type embryonic fibroblasts. DLL1 expressed in POFUT1 mutant cells can activate NOTCH, indicating that POFUT1 is not required for DLL1 function as a Notch ligand.

  13. Screening of ligands for the Ullmann synthesis of electron-rich diaryl ethers.

    Science.gov (United States)

    Otto, Nicola; Opatz, Till

    2012-01-01

    In the search for new ligands for the Ullmann diaryl ether synthesis, permitting the coupling of electron-rich aryl bromides at relatively low temperatures, 56 structurally diverse multidentate ligands were screened in a model system that uses copper iodide in acetonitrile with potassium phosphate as the base. The ligands differed largely in their performance, but no privileged structural class could be identified.

  14. Micro-flow synthesis and structural analysis of sterically crowded diimine ligands with five aryl rings

    Directory of Open Access Journals (Sweden)

    Shinichiro Fuse

    2013-11-01

    Full Text Available Sterically crowded diimine ligands with five aryl rings were prepared in one step in good yields using a micro-flow technique. X-ray crystallographic analysis revealed the detailed structure of the bulky ligands. The nickel complexes prepared from the ligands exerted high polymerization activity in the ethylene homopolymerization and copolymerization of ethylene with polar monomers.

  15. Redox non-innocent ligands: versatile new tools to control catalytic reactions

    NARCIS (Netherlands)

    Lyaskovskyy, V.; de Bruin, B.

    2012-01-01

    In this (tutorial overview) perspective we highlight the use of "redox non-innocent" ligands in catalysis. Two main types of reactivity in which the redox non-innocent ligand is involved can be specified: (A) The redox active ligand participates in the catalytic cycle only by accepting/donating

  16. Flow Cytometry-Based Bead-Binding Assay for Measuring Receptor Ligand Specificity

    NARCIS (Netherlands)

    Sprokholt, Joris K.; Hertoghs, Nina; Geijtenbeek, Teunis B. H.

    2016-01-01

    In this chapter we describe a fluorescent bead-binding assay, which is an efficient and feasible method to measure interaction between ligands and receptors on cells. In principle, any ligand can be coated on fluorescent beads either directly or via antibodies. Binding between ligand-coated beads

  17. Design, Testing and Kinetic Analysis of Bulky Monodentate Phosphorus Ligands in the Mizoroki-Heck Reaction

    NARCIS (Netherlands)

    Dodds, Deborah L.; Boele, Maarten D. K.; van Strijdonck, Gino P. F.; de Vries, Johannes G.; van Leeuwen, Piet W. N. M.; Kamer, Paul C. J.

    A series of new monodentate phosphane ligands 2 have been evaluated in the MizorokiHeck arylation reaction of iodobenzene and styrene and compared with our previously reported ligands, 1, 3 and 4. The concept of rational ligand design is discussed, and we describe how the performance of this new

  18. Phosphorus ligand imaging with two-photon fluorescence spectroscopy: towards rational catalyst immobilization

    NARCIS (Netherlands)

    Marras, F.; Kluwer, A.M.; Siekierzycka, J.R.; Vozza, A.; Brouwer, A.M.; Reek, J.N.H.

    2010-01-01

    Spotless catalysts: Ligand immobilization was studied by two-photon fluorescence microscopy with a fluorescent nixantphos ligand as probe (see picture). In the immobilization process ligand aggregates form in solution and are deposited on the support, where they appear as bright spots in

  19. DMPD: Endogenous ligands of Toll-like receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15178705 Endogenous ligands of Toll-like receptors. Tsan MF, Gao B. J Leukoc Biol. ...2004 Sep;76(3):514-9. Epub 2004 Jun 3. (.png) (.svg) (.html) (.csml) Show Endogenous ligands of Toll-like re...ceptors. PubmedID 15178705 Title Endogenous ligands of Toll-like receptors. Authors Tsan MF, Gao B. Publicat

  20. Covalent Coupling of Nanoparticles with Low-Density Functional Ligands to Surfaces via Click Chemistry

    NARCIS (Netherlands)

    Rianasari, I.; de Jong, Machiel Pieter; Huskens, Jurriaan; van der Wiel, Wilfred Gerard

    2013-01-01

    We demonstrate the application of the 1,3-dipolar cycloaddition (“click‿ reaction) to couple gold nanoparticles (Au NPs) functionalized with low densities of functional ligands. The ligand coverage on the citrate-stabilized Au NPs was adjusted by the ligand:Au surface atom ratio, while maintaining

  1. Oxovanadium(IV) complexes with tridentate dibasic schiff base ligands and 2-(2'-pyridyl) benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, R N; Chakravortty, V; Dash, K C [Utkal Univ., Bhubaneswar (India). Dept. of Chemistry

    1991-05-01

    The present work deals with the monomeric, six-coordinated mixed-ligand complexes of oxovanadium(IV) with dibasic tridentate schiff base ligands(ONO donor set) and the bidentate chelating ligand 2-(2'-pyridyl)benzimidazole (PBH) containing N{sub 2} donor set. (author). 1 tab., 22 refs.

  2. Nickel speciation and complexation kinetics in freshwater by ligand exchange and DPCSV

    NARCIS (Netherlands)

    Han Bin Xue,; Jansen, S.; Prasch, A.; Sigg, L.

    2001-01-01

    A technique of ligand exchange with DMG (dimethylglyoxime) and DPCSV was applied to determine Ni speciation in lake, river, and groundwater samples. The working conditions related to ligand-exchange equilibrium were optimized, and the ligand-exchange kinetics were examined. The observed

  3. Ligand-free, protein-bound technetium-99m. Evidence for tumour localisation

    International Nuclear Information System (INIS)

    Jakovljevic, A.C.; Pojer, P.M.

    1984-11-01

    An hypothesis that cations accumulate in tumours independent of ligand is tested. A preparation of technetium-99m known to be ligand-free (that is, the technetium is protein bound and no other ligand is injected) has been shown to accumulate in a T-cell lymphoma

  4. Interactions between alkaline earth cations and oxo ligands. DFT study of the affinity of the Mg²+ cation for phosphoryl ligands.

    Science.gov (United States)

    da Costa, Leonardo Moreira; de Mesquita Carneiro, José Walkimar; Paes, Lilian Weitzel Coelho

    2011-08-01

    DFT (B3LYP/6-31+G(d)) calculations of Mg(2+) affinities for a set of phosphoryl ligands were performed. Two types of ligands were studied: a set of trivalent [O = P(R)] and a set of pentavalent phosphoryl ligands [O = P(R)(3)] (R = H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either bound directly to the phosphorus atom or to the para position of a phenyl ring. The affinity of the Mg(2+) cation for the ligands was quantified by means of the enthalpy for the substitution of one water molecule in the [Mg(H(2)O)(6)](2+) complex for a ligand. The enthalpy of substitution was correlated with electronic and geometric parameters. Electron-donor groups increase the interaction between the cation and the ligand, while electron-acceptor groups decrease the interaction enthalpy.

  5. Importance of the pharmacological profile of the bound ligand in enrichment on nuclear receptors: toward the use of experimentally validated decoy ligands.

    Science.gov (United States)

    Lagarde, Nathalie; Zagury, Jean-François; Montes, Matthieu

    2014-10-27

    The evaluation of virtual ligand screening methods is of major importance to ensure their reliability. Taking into account the agonist/antagonist pharmacological profile should improve the quality of the benchmarking data sets since ligand binding can induce conformational changes in the nuclear receptor structure and such changes may vary according to the agonist/antagonist ligand profile. We indeed found that splitting the agonist and antagonist ligands into two separate data sets for a given nuclear receptor target significantly enhances the quality of the evaluation. The pharmacological profile of the ligand bound in the binding site of the target structure was also found to be an additional critical parameter. We also illustrate that active compound data sets for a given pharmacological activity can be used as a set of experimentally validated decoy ligands for another pharmacological activity to ensure a reliable and challenging evaluation of virtual screening methods.

  6. The cholinergic ligand binding material of axonal membranes

    International Nuclear Information System (INIS)

    Mautner, H.G.; Coronado, R.; Jumblatt, J.E.

    1986-01-01

    Choline acetyltransferase and acetylcholinesterase, the enzymes responsible for the synthesis and hydrolysis of ACh, are present in nerve fibers. In crustacean peripheral nerves, release of ACh from cut nerve fibers has been demonstrated. Previously closed membrane vesicles have been prepared from lobster walking leg nerve plasma membrane and saturable binding of cholinergic agonsist and antagonists to such membranes have been demonstrated. This paper studies this axonal cholinergic binding material, and elucidates its functions. The binding of tritium-nicotine to lobster nerve plasma membranes was antagonized by a series of cholinergic ligands as well as by a series of local anesthetics. This preparation was capable of binding I 125-alpha-bungarotoxin, a ligand widely believed to be a specific label for nicotinic ACh receptor. The labelling of 50 K petide band with tritium-MBTA following disulfide reduction is illustrated

  7. Derivatized Pentadentate Macrocyclic Ligands and Their Transition Metal Complexes

    Directory of Open Access Journals (Sweden)

    Muhammad S. Khan

    2002-06-01

    Full Text Available The reaction of the pendant hydroxyethyl group in the planar pentadentate macrocyclic ligand,1,11-bis(2’-hydroxyethyl-4,8;12,16;17,21-trinitrilo-1,2,10,11-tetraazacyclohenicosa- 2,4,6,9,12,14,18,20-octaene (L2, derived from the condensation of 2,6-pyridinedialdehyde with 6,6’-bis(2’ hydroxyethylhydrazino -2,2’-bipyridine (L1, has been investigated. Esterification reactions are facile, and the reaction of the hydroxyethyl-substituted macrocycle with thionyl chloride yields a chloroethyl derivative. Metal complexes of the new derivatized macrocyclic ligands L3-6having general formula ML3-6X2.nH2O (M = Mn, Fe, Co, Ni, Cu, Zn are readily prepared.

  8. Programmed death-1 & its ligands: promising targets for cancer immunotherapy.

    Science.gov (United States)

    Shrimali, Rajeev K; Janik, John E; Abu-Eid, Rasha; Mkrtichyan, Mikayel; Khleif, Samir N

    2015-01-01

    Novel strategies for cancer treatment involving blockade of immune inhibitors have shown significant progress toward understanding the molecular mechanism of tumor immune evasion. The preclinical findings and clinical responses associated with programmed death-1 (PD-1) and PD-ligand pathway blockade seem promising, making these targets highly sought for cancer immunotherapy. In fact, the anti-PD-1 antibodies, pembrolizumab and nivolumab, were recently approved by the US FDA for the treatment of unresectable and metastatic melanoma resistant to anticytotoxic T-lymphocyte antigen-4 antibody (ipilimumab) and BRAF inhibitor. Here, we discuss strategies of combining PD-1/PD-ligand interaction inhibitors with other immune checkpoint modulators and standard-of-care therapy to break immune tolerance and induce a potent antitumor activity, which is currently a research area of key scientific pursuit.

  9. Soluble NKG2D ligands: prevalence, release, and functional impact.

    Science.gov (United States)

    Salih, Helmut Rainer; Holdenrieder, Stefan; Steinle, Alexander

    2008-05-01

    Natural Killer (NK) cells are capable to recognize and eliminate malignant cells. Anti-tumor responses of NK cells are promoted by the tumor-associated expression of cell stress-inducible ligands of the activating NK receptor NKG2D. Current evidence suggests that established tumors subvert NKG2D-mediated tumor immunosurveillance by releasing NKG2D ligands (NKG2DL). Release of NKG2DL has been observed in a broad variety of human tumor entities and is thought to interfere with NKG2D-mediated tumor immunity in several ways. Further, levels of soluble NKG2DL (sNKG2DL) were also found to be elevated under various non-malignant conditions, although the functional implications remain largely unclear. Here we review and discuss the available data on the prevalence, release, functional impact, and potential clinical value of sNKG2DL.

  10. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao; Goto, Yasutomo; Maegawa, Yoshifumi; Inagaki, Shinji, E-mail: inagaki@mosk.tytlabs.co.jp [Toyota Central R and D Laboratories, Inc., Nagakute, Aichi 480-1192 (Japan); Japan Science and Technology Agency (JST)/ACT-C, Nagakute, Aichi, 480-1192 (Japan); Ohsuna, Tetsu [Toyota Central R and D Laboratories, Inc., Nagakute, Aichi 480-1192 (Japan)

    2014-11-01

    We report the synthesis of organosilica nanotubes containing 2,2′-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2′-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce{sup 4+}, due to the ready access of reactants to the active sites in the nanotubes.

  11. MULTIDENTATE TEREPHTHALAMIDATE AND HYDROXYPYRIDONATE LIGANDS: TOWARDS NEW ORALLY ACTIVE CHELATORS

    Energy Technology Data Exchange (ETDEWEB)

    Abergel, Rebecca J.; Raymond, Kenneth N.

    2011-07-13

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  12. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    2014-11-01

    Full Text Available We report the synthesis of organosilica nanotubes containing 2,2′-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2′-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce4+, due to the ready access of reactants to the active sites in the nanotubes.

  13. Ligand Access Channels in Cytochrome P450 Enzymes: A Review

    Directory of Open Access Journals (Sweden)

    Philippe Urban

    2018-05-01

    Full Text Available Quantitative structure-activity relationships may bring invaluable information on structural elements of both enzymes and substrates that, together, govern substrate specificity. Buried active sites in cytochrome P450 enzymes are connected to the solvent by a network of channels exiting at the distal surface of the protein. This review presents different in silico tools that were developed to uncover such channels in P450 crystal structures. It also lists some of the experimental evidence that actually suggest that these predicted channels might indeed play a critical role in modulating P450 functions. Amino acid residues at the entrance of the channels may participate to a first global ligand recognition of ligands by P450 enzymes before they reach the buried active site. Moreover, different P450 enzymes show different networks of predicted channels. The plasticity of P450 structures is also important to take into account when looking at how channels might play their role.

  14. Sampling and energy evaluation challenges in ligand binding protein design.

    Science.gov (United States)

    Dou, Jiayi; Doyle, Lindsey; Jr Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L; Baker, David

    2017-12-01

    The steroid hormone 17α-hydroxylprogesterone (17-OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17-OHP containing an extended, nonpolar, shape-complementary binding pocket for the four-ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17-OHP with micromolar affinity. A co-crystal structure of one of the designs revealed that 17-OHP is rotated 180° around a pseudo-two-fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same "flipped" orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two-fold symmetry of the molecule. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  15. Identification and characterization of PPAR? ligands in the hippocampus

    OpenAIRE

    Roy, Avik; Kundu, Madhuchhanda; Jana, Malabendu; Mishra, Rama K.; Yung, Yeni; Luan, Chi-Hao; Gonzalez, Frank J.; Pahan, Kalipada

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPAR?) regulates hepatic fatty acid catabolism and mediates the metabolic response to starvation. Recently, we have found that PPAR? is constitutively activated in nuclei of hippocampal neurons and controls plasticity via direct transcriptional activation of CREB. Here, three endogenous ligands of PPAR?, 3-hydroxy-(2,2)-dimethyl butyrate, hexadecanamide, and 9-octadecenamide were discovered in mouse brain hippocampus. Mass spectrometric detect...

  16. Ligand pose and orientational sampling in molecular docking.

    Directory of Open Access Journals (Sweden)

    Ryan G Coleman

    Full Text Available Molecular docking remains an important tool for structure-based screening to find new ligands and chemical probes. As docking ambitions grow to include new scoring function terms, and to address ever more targets, the reliability and extendability of the orientation sampling, and the throughput of the method, become pressing. Here we explore sampling techniques that eliminate stochastic behavior in DOCK3.6, allowing us to optimize the method for regularly variable sampling of orientations. This also enabled a focused effort to optimize the code for efficiency, with a three-fold increase in the speed of the program. This, in turn, facilitated extensive testing of the method on the 102 targets, 22,805 ligands and 1,411,214 decoys of the Directory of Useful Decoys-Enhanced (DUD-E benchmarking set, at multiple levels of sampling. Encouragingly, we observe that as sampling increases from 50 to 500 to 2000 to 5000 to 20,000 molecular orientations in the binding site (and so from about 1×10(10 to 4×10(10 to 1×10(11 to 2×10(11 to 5×10(11 mean atoms scored per target, since multiple conformations are sampled per orientation, the enrichment of ligands over decoys monotonically increases for most DUD-E targets. Meanwhile, including internal electrostatics in the evaluation ligand conformational energies, and restricting aromatic hydroxyls to low energy rotamers, further improved enrichment values. Several of the strategies used here to improve the efficiency of the code are broadly applicable in the field.

  17. Can mixed ligand therapy completely remove plutonium from the body

    Energy Technology Data Exchange (ETDEWEB)

    Volf, V [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Inst. fuer Genetik und Toxikologie von Spaltstoffen

    1980-08-01

    Results of experiments to determine the effects of mixed ligand chelate treatment on tissue levels of /sup 238/Pu in rats after injection of /sup 238/Pu citrate are presented and discussed. It is concluded that when attempting to remove Pu from the body there seems to be no reason for combining Ca-DTPA, the present chelate of choice, with catechol or Tiron, or with salicylate and its derivatives.

  18. Multiscale simulations of ligand adsorption and exchange on gold nanoparticles.

    Science.gov (United States)

    Gao, Hui-Min; Liu, Hong; Qian, Hu-Jun; Jiao, Gui-Sheng; Lu, Zhong-Yuan

    2018-01-17

    We have developed a multiscale model that combines first-principles methods with atomistic and mesoscopic simulations to explore the molecular structures and packing density of the ligands present on the gold nanoparticle (AuNP) surface, as well as the adsorption/exchange reaction kinetics of cetyltrimethylammonium bromide (CTAB)/PEG-SH ligands on different facets of gold, namely, Au(111), Au(100), and Au(110). Our model predicts that on clean gold surfaces, CTAB adsorption is diffusion limited. Specifically, CTAB has the preferentially higher adsorption rate and coverage density on Au(100) and Au(110) surfaces, forming a more compact layer with respect to that on the Au(111) surface, which could result in greater growth of gold nanoparticles along the (111) direction. As opposed to CTAB adsorption, the exchange reaction between PEG-SH with CTAB shows no selectivity to different crystal faces, and the reaction process follows Langmuir diffusion kinetics. Kinetic analysis reveals that, in water, the exchange reaction is zeroth order with respect to the concentration of an incoming PEG-SH, indicative of a dissociative exchange mechanism. The observed rate constant decreases exponentially with the PEG-SH chain length, consistent with a diffusion process for the free PEG-SH in water. In particular, we show that the exchange efficiency increases as the chain rigidness and size of the incoming ligand and/or steric bulk of the initial protecting ligand shell are decreased. Our objectives are to provide a model to assess the kinetics and thermodynamics of the adsorption/exchange reaction process, and we expect that these findings will have important implications for routine surface characterization of AuNPs.

  19. Ligand mobility modulates immunological synapse formation and T cell activation.

    Directory of Open Access Journals (Sweden)

    Chih-Jung Hsu

    Full Text Available T cell receptor (TCR engagement induces clustering and recruitment to the plasma membrane of many signaling molecules, including the protein tyrosine kinase zeta-chain associated protein of 70 kDa (ZAP70 and the adaptor SH2 domain-containing leukocyte protein of 76 kDa (SLP76. This molecular rearrangement results in formation of the immunological synapse (IS, a dynamic protein array that modulates T cell activation. The current study investigates the effects of apparent long-range ligand mobility on T cell signaling activity and IS formation. We formed stimulatory lipid bilayers on glass surfaces from binary lipid mixtures with varied composition, and characterized these surfaces with respect to diffusion coefficient and fluid connectivity. Stimulatory ligands coupled to these surfaces with similar density and orientation showed differences in their ability to activate T cells. On less mobile membranes, central supramolecular activation cluster (cSMAC formation was delayed and the overall accumulation of CD3ζ at the IS was reduced. Analysis of signaling microcluster (MC dynamics showed that ZAP70 MCs exhibited faster track velocity and longer trajectories as a function of increased ligand mobility, whereas movement of SLP76 MCs was relatively insensitive to this parameter. Actin retrograde flow was observed on all surfaces, but cell spreading and subsequent cytoskeletal contraction were more pronounced on mobile membranes. Finally, increased tyrosine phosphorylation and persistent elevation of intracellular Ca(2+ were observed in cells stimulated on fluid membranes. These results point to ligand mobility as an important parameter in modulating T cell responses.

  20. Nanoparticle-based receptors mimic protein-ligand recognition

    OpenAIRE

    Riccardi, Laura; Gabrielli, Luca; Sun, Xiaohuan; Biasi, Federico De; Rastrelli, Federico; Mancin, Fabrizio; De Vivo, Marco

    2017-01-01

    Summary The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the...

  1. Sampling protein motion and solvent effect during ligand binding

    Science.gov (United States)

    Limongelli, Vittorio; Marinelli, Luciana; Cosconati, Sandro; La Motta, Concettina; Sartini, Stefania; Mugnaini, Laura; Da Settimo, Federico; Novellino, Ettore; Parrinello, Michele

    2012-01-01

    An exhaustive description of the molecular recognition mechanism between a ligand and its biological target is of great value because it provides the opportunity for an exogenous control of the related process. Very often this aim can be pursued using high resolution structures of the complex in combination with inexpensive computational protocols such as docking algorithms. Unfortunately, in many other cases a number of factors, like protein flexibility or solvent effects, increase the degree of complexity of ligand/protein interaction and these standard techniques are no longer sufficient to describe the binding event. We have experienced and tested these limits in the present study in which we have developed and revealed the mechanism of binding of a new series of potent inhibitors of Adenosine Deaminase. We have first performed a large number of docking calculations, which unfortunately failed to yield reliable results due to the dynamical character of the enzyme and the complex role of the solvent. Thus, we have stepped up the computational strategy using a protocol based on metadynamics. Our approach has allowed dealing with protein motion and solvation during ligand binding and finally identifying the lowest energy binding modes of the most potent compound of the series, 4-decyl-pyrazolo[1,5-a]pyrimidin-7-one. PMID:22238423

  2. Protein-Ligand Empirical Interaction Components for Virtual Screening.

    Science.gov (United States)

    Yan, Yuna; Wang, Weijun; Sun, Zhaoxi; Zhang, John Z H; Ji, Changge

    2017-08-28

    A major shortcoming of empirical scoring functions is that they often fail to predict binding affinity properly. Removing false positives of docking results is one of the most challenging works in structure-based virtual screening. Postdocking filters, making use of all kinds of experimental structure and activity information, may help in solving the issue. We describe a new method based on detailed protein-ligand interaction decomposition and machine learning. Protein-ligand empirical interaction components (PLEIC) are used as descriptors for support vector machine learning to develop a classification model (PLEIC-SVM) to discriminate false positives from true positives. Experimentally derived activity information is used for model training. An extensive benchmark study on 36 diverse data sets from the DUD-E database has been performed to evaluate the performance of the new method. The results show that the new method performs much better than standard empirical scoring functions in structure-based virtual screening. The trained PLEIC-SVM model is able to capture important interaction patterns between ligand and protein residues for one specific target, which is helpful in discarding false positives in postdocking filtering.

  3. MIPs are ancestral ligands for the sex peptide receptor.

    Science.gov (United States)

    Kim, Young-Joon; Bartalska, Katarina; Audsley, Neil; Yamanaka, Naoki; Yapici, Nilay; Lee, Ju-Youn; Kim, Yong-Chul; Markovic, Milica; Isaac, Elwyn; Tanaka, Yoshiaki; Dickson, Barry J

    2010-04-06

    Upon mating, females of many animal species undergo dramatic changes in their behavior. In Drosophila melanogaster, postmating behaviors are triggered by sex peptide (SP), which is produced in the male seminal fluid and transferred to female during copulation. SP modulates female behaviors via sex peptide receptor (SPR) located in a small subset of internal sensory neurons that innervate the female uterus and project to the CNS. Although required for postmating responses only in these female sensory neurons, SPR is expressed broadly in the CNS of both sexes. Moreover, SPR is also encoded in the genomes of insects that lack obvious SP orthologs. These observations suggest that SPR may have additional ligands and functions. Here, we identify myoinhibitory peptides (MIPs) as a second family of SPR ligands that is conserved across a wide range of invertebrate species. MIPs are potent agonists for Drosophila, Aedes, and Aplysia SPRs in vitro, yet are unable to trigger postmating responses in vivo. In contrast to SP, MIPs are not produced in male reproductive organs, and are not required for postmating behaviors in Drosophila females. We conclude that MIPs are evolutionarily conserved ligands for SPR, which are likely to mediate functions other than the regulation of female reproductive behaviors.

  4. Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets.

    Science.gov (United States)

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Camproux, Anne-Claude; Petitjean, Michel

    2017-11-01

    We analyzed 78 binding pockets of the human urokinase plasminogen activator (uPA) catalytic domain extracted from a data set of crystallized uPA-ligand complexes. These binding pockets were computed with an original geometric method that does NOT involve any arbitrary parameter, such as cutoff distances, angles, and so on. We measured the deviation from convexity of each pocket shape with the pocket convexity index (PCI). We defined a new pocket descriptor called distributional sphericity coefficient (DISC), which indicates to which extent the protein atoms of a given pocket lie on the surface of a sphere. The DISC values were computed with the freeware PCI. The pocket descriptors and their high correspondences with ligand descriptors are crucial for polypharmacology prediction. We found that the protein heavy atoms lining the urokinases binding pockets are either located on the surface of their convex hull or lie close to this surface. We also found that the radii of the urokinases binding pockets and the radii of their ligands are highly correlated (r = 0.9).

  5. Evolution of ligand specificity in vertebrate corticosteroid receptors

    Directory of Open Access Journals (Sweden)

    Deitcher David L

    2011-01-01

    Full Text Available Abstract Background Corticosteroid receptors include mineralocorticoid (MR and glucocorticoid (GR receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear. Results We used up to seven steroids (including aldosterone, cortisol and 11-deoxycorticosterone [DOC] to compare the ligand specificity of the ligand binding domains of corticosteroid receptors between a mammal (Mus musculus and the midshipman fish (Porichthys notatus, a teleost model for steroid regulation of neural and behavioral plasticity. Variation in mineralocorticoid sensitivity was considered in a broader phylogenetic context by examining the aldosterone sensitivity of MR and GRs from the distantly related daffodil cichlid (Neolamprologus pulcher, another teleost model for neurobehavioral plasticity. Both teleost species had a single MR and duplicate GRs. All MRs were sensitive to DOC, consistent with the hypothesis that DOC was the initial ligand of the ancestral MR. Variation in GR steroid-specificity corresponds to nine identified amino acid residue substitutions rather than phylogenetic relationships based on receptor sequences. Conclusion The mineralocorticoid sensitivity of duplicate GRs in teleosts is highly labile in the context of their evolutionary phylogeny, a property that likely led to neo-functionalization and maintenance of two GRs.

  6. Reactivity of monoolefin ligand in transition metal complexes

    International Nuclear Information System (INIS)

    Rybinskaya, M.I.

    1978-01-01

    The main tendencies in the coordinated olefin ligand property changes are discussed in the transition metal complexes in comparison with free olefins. The review includes the papers published from 1951 up to 1976. It has been shown that in complexes with transition metal cations olefin π-base acquires the ability to react with nucleophylic reagents. Olefin π-acids in complexes with zero valent metals are easily subjected to electrophylic reagent action. At coordination with transition metal cations the olefin properties are generally preserved, while in the zero-valent metal complexes the nonsaturated ligand acquires the properties of a saturated compounds. The ability of transition metal cations in complexes to intensify reactions of nucleophylic bimolecular substitution of vinyl halogen is clearly detected in contrast to the zero valent metal complexes. It has been shown that investigations of the coordinated olefin ligand reactivity give large possibilities in the further development of the organic synthesis. Some reactions are taken as the basis of important industrial processes

  7. [Supercomputer investigation of the protein-ligand system low-energy minima].

    Science.gov (United States)

    Oferkin, I V; Sulimov, A V; Katkova, E V; Kutov, D K; Grigoriev, F V; Kondakova, O A; Sulimov, V B

    2015-01-01

    The accuracy of the protein-ligand binding energy calculations and ligand positioning is strongly influenced by the choice of the docking target function. This work demonstrates the evaluation of the five different target functions used in docking: functions based on MMFF94 force field and functions based on PM7 quantum-chemical method accounting or without accounting the implicit solvent model (PCM, COSMO or SGB). For these purposes the ligand positions corresponding to the minima of the target function and the experimentally known ligand positions in the protein active site (crystal ligand positions) were compared. Each function was examined on the same test-set of 16 protein-ligand complexes. The new parallelized docking program FLM based on Monte Carlo search algorithm was developed to perform the comprehensive low-energy minima search and to calculate the protein-ligand binding energy. This study demonstrates that the docking target function based on the MMFF94 force field can be used to detect the crystal or near crystal positions of the ligand by the finding the low-energy local minima spectrum of the target function. The importance of solvent accounting in the docking process for the accurate ligand positioning is also shown. The accuracy of the ligand positioning as well as the correlation between the calculated and experimentally determined protein-ligand binding energies are improved when the MMFF94 force field is substituted by the new PM7 method with implicit solvent accounting.

  8. Automated ligand fitting by core-fragment fitting and extension into density

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Klei, Herbert; Adams, Paul D.; Moriarty, Nigel W.; Cohn, Judith D.

    2006-01-01

    An automated ligand-fitting procedure has been developed and tested on 9327 ligands and (F o − F c )exp(iϕ c ) difference density from macromolecular structures in the Protein Data Bank. A procedure for fitting of ligands to electron-density maps by first fitting a core fragment of the ligand to density and then extending the remainder of the ligand into density is presented. The approach was tested by fitting 9327 ligands over a wide range of resolutions (most are in the range 0.8-4.8 Å) from the Protein Data Bank (PDB) into (F o − F c )exp(iϕ c ) difference density calculated using entries from the PDB without these ligands. The procedure was able to place 58% of these 9327 ligands within 2 Å (r.m.s.d.) of the coordinates of the atoms in the original PDB entry for that ligand. The success of the fitting procedure was relatively insensitive to the size of the ligand in the range 10–100 non-H atoms and was only moderately sensitive to resolution, with the percentage of ligands placed near the coordinates of the original PDB entry for fits in the range 58–73% over all resolution ranges tested

  9. Identification and Biological Activity of Synthetic Macrophage Inducible C-Type Lectin Ligands

    Directory of Open Access Journals (Sweden)

    Chriselle D. Braganza

    2018-01-01

    Full Text Available The macrophage inducible C-type lectin (Mincle is a pattern recognition receptor able to recognize both damage-associated and pathogen-associated molecular patterns, and in this respect, there has been much interest in determining the scope of ligands that bind Mincle and how structural modifications to these ligands influence ensuing immune responses. In this review, we will present Mincle ligands of known chemical structure, with a focus on ligands that have been synthetically prepared, such as trehalose glycolipids, glycerol-based ligands, and 6-acylated glucose and mannose derivatives. The ability of the different classes of ligands to influence the innate, and consequently, the adaptive, immune response will be described, and where appropriate, structure–activity relationships within each class of Mincle ligands will be presented.

  10. Organic iron (III) complexing ligands during an iron enrichment experiment in the western subarctic North Pacific

    Science.gov (United States)

    Kondo, Yoshiko; Takeda, Shigenobu; Nishioka, Jun; Obata, Hajime; Furuya, Ken; Johnson, William Keith; Wong, C. S.

    2008-06-01

    Complexation of iron (III) with natural organic ligands was investigated during a mesoscale iron enrichment experiment in the western subarctic North Pacific (SEEDS II). After the iron infusions, ligand concentrations increased rapidly with subsequent decreases. While the increases of ligands might have been partly influenced by amorphous iron colloids formation (12-29%), most in-situ increases were attributable to the Dilution of the fertilized patch may have contributed to the rapid decreases of the ligands. During the bloom decline, ligand concentration increased again, and the high concentrations persisted for 10 days. The conditional stability constant was not different between inside and outside of the fertilized patch. These results suggest that the chemical speciation of the released iron was strongly affected by formation of the ligands; the production of ligands observed during the bloom decline will strongly impact the iron cycle and bioavailability in the surface water.

  11. EXAFS Studies of Some Copper(II) Mixed-Ligand Complexes

    International Nuclear Information System (INIS)

    Joshi, S. K.; Katare, R. K.; Shrivastava, B. D.

    2007-01-01

    X-ray K-absorption spectroscopic studies have been carried out on copper (II) mixed-ligand complexes with glutamic acid and aspartic acid as the primary ligands, where as water, pyridine, imidazole and benz-imidazole have been used as secondary ligands. Chemical shifts obtained from the X-ray absorption data have indicated that the glutamic acid complexes are more ionic as compared to their corresponding aspartic acid complexes having similar secondary ligands. Further, we have estimated the average metal-ligand bond distances from the from structure data. For the different complexes studied under the present investigation, the studies reveal that the bonding parameter α1 decreases with the increase in the percentage covalency of the metal-ligand bond. Thus, the bonding parameter α1 may be used for the estimation of percentage covalency of the metal-ligand bond in other similar complexes

  12. One ligand capable of in situ reaction in a mixed-ligand system with two new different frameworks

    KAUST Repository

    Wang, Xiaofang

    2017-12-24

    The in situ ligand 2,3-pyrazinedicarboxylic acid (2,3-H2pzdc) mixed with 1,1′-(1,4-butanediyl)bis(benzimidazole) (bbbi) is used to form two coordination polymers ([Cd(2,3-pzdc)(bbbi)] (1) and [Cd2Cl3(2-pzc)(bbbi)2] (2)) under hydrothermal conditions. Complex 1 was obtained in the absence of in situ reaction and 2 was synthesized with 2,3-H2pzdc in situ generating 2-pyrazinecarboxylate (2-pzc−). The structural details reveal that 1 has a 3D framework with dia topology, and 2 is a 2D layer structure and develops a 3D supramolecular structure via strong π⋯π stacking interactions. The ligand effects were compared for the two frameworks. In addition, fluorescence properties and thermal stabilities of 1 and 2 in the solid were studied.

  13. New functionalized β-diketiminate ligands and f elements

    International Nuclear Information System (INIS)

    Dulong, Florian

    2013-01-01

    β-diketiminate ligands have received increased interest in coordination chemistry, especially for homogeneous catalysis. Their successful applications arise from an easy and fine tuning of the ligand electronic and geometric properties. However, these modifications are limited to the introduction of neutral donors (ethers or amines), on the nitrogen substituents of the β-diketiminate skeleton. The main focus of this research project is to overcome this limitation by synthesizing new β-diketiminate ligands functionalized by one or two anionic aryl-oxide groups, and to study their coordination chemistry with lanthanide and actinide ions. Access to these species relies on a fine understanding of the mechanism underlying their formation, and the sensitivity of the β-di-iminium skeleton towards nucleophiles (phenols) has been identified as the limiting side reaction in the synthetic route. Addition of reactants in well defined order allowed the formation of two new N-aryl-oxy-β-diketiminate dianions on a multi-gram scale. The two ligands differ by their steric bulk and exhibit different coordination behaviors towards lanthanides and actinide ions, which were rationalized on geometric considerations. The reactivity of three of these new complexes has been investigated. A Ce(III) N-aryl-oxy-β-diketiminate complex exhibits interesting reduction properties, due to the shift of its oxidation potential to negative values by its coordination environment. A Th(IV) complex presents a vacant coordination site, which has been probed with different Lewis bases, emphasizing two spatial arrangements ruled by inter-ligand repulsion. It has been compared to its U(IV) analogue, which can be oxidized to a rare terminal mono-oxo uranium(VI) species. The latter was reversibly reduced to its U(V) and U(IV) derivatives, creating the first series of terminal mono-oxo uranium complexes with three successive oxidation states. These compounds represent an opportunity to better understand

  14. Chiral ligand-protected gold nanoclusters: Considering the optical activity from a viewpoint of ligand dissymmetric field

    Directory of Open Access Journals (Sweden)

    Hiroshi Yao

    2016-10-01

    Full Text Available Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and characterizations of atomically precise gold nanoclusters protected by achiral thiolates, atomic level origins of their chirality have been unveiled. On the other hand, chirality or optical activity in metal nanoclusters can also be introduced via the surface chiral ligands, which should be universal for the nanosystems. This tutorial review presents some optically-active metal (gold nanoclusters protected by chiral thiolates or phosphines, and their chiroptical (or circular dichroism; CD properties are discussed mostly from a viewpoint of the ligand dissymmetric field scheme. The examples are the gold nanoclusters protected by (R-/(S-2-phenylpropane-1-thiol, (R-/(S-mercaptosuccinic acid, phenylboronate-D/L-fructose complexes, phosphine sulfonate-ephedrinium ion pairs, or glutathione. Some methodologies for versatile asymmetric transformation and chiroptical controls of the nanocluster compounds are also described. In the dissymmetric field model as the origin of optical activity, the chiroptical responses of the gold nanoclusters are strongly associated with coupled oscillator and/or CD stealing mechanisms based on the concept of induced CD (ICD derived from a perturbation theory, so on this basis, some characteristic features of the observed CD responses of chiral ligand-protected gold nanoclusters are presented in detail. We believe that various kinds of origins of chirality found in ligand-protected gold nanoclusters may provide models for understanding those of

  15. A web server for analysis, comparison and prediction of protein ligand binding sites.

    Science.gov (United States)

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  16. Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP)

    Science.gov (United States)

    Snyder, David A.; Chantova, Mihaela; Chaudhry, Saadia

    2015-06-01

    NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase.

  17. Virtual Ligand Screening Using PL-PatchSurfer2, a Molecular Surface-Based Protein-Ligand Docking Method.

    Science.gov (United States)

    Shin, Woong-Hee; Kihara, Daisuke

    2018-01-01

    Virtual screening is a computational technique for predicting a potent binding compound for a receptor protein from a ligand library. It has been a widely used in the drug discovery field to reduce the efforts of medicinal chemists to find hit compounds by experiments.Here, we introduce our novel structure-based virtual screening program, PL-PatchSurfer, which uses molecular surface representation with the three-dimensional Zernike descriptors, which is an effective mathematical representation for identifying physicochemical complementarities between local surfaces of a target protein and a ligand. The advantage of the surface-patch description is its tolerance on a receptor and compound structure variation. PL-PatchSurfer2 achieves higher accuracy on apo form and computationally modeled receptor structures than conventional structure-based virtual screening programs. Thus, PL-PatchSurfer2 opens up an opportunity for targets that do not have their crystal structures. The program is provided as a stand-alone program at http://kiharalab.org/plps2 . We also provide files for two ligand libraries, ChEMBL and ZINC Drug-like.

  18. Magnetic ligand fishing as a targeting tool for HPLC-HRMS-SPE-NMR: α-glucosidase inhibitory ligands and alkylresorcinol glycosides from Eugenia catharinae

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Brighente, Inês M. C.; Moaddel, Ruin

    2015-01-01

    A bioanalytical platform combining magnetic ligand fishing for α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR for structural identification of α-glucosidase inhibitory ligands, both directly from crude plant extracts, is presented. Magnetic beads with N-terminus-coupled α-glucosidase we...

  19. Amino propynyl benzoic acid building block in rigid spacers of divalent ligands binding to the Syk SH2 domains with equally high affinity as the natural ligand

    NARCIS (Netherlands)

    Dekker, Frank J; de Mol, Nico J; Fischer, Marcel J E; Liskamp, Rob M J; Dekker, Frank

    2003-01-01

    The construction of rigid spacers composed of amino propynyl benzoic acid building blocks is described. These spacers were used to link two phosphopeptide ligand sites towards obtaining divalent ligands with a high affinity for Syk tandem SH2 domains, which are important in signal transduction. The

  20. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Directory of Open Access Journals (Sweden)

    Jarosław Poznański

    Full Text Available Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  1. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Science.gov (United States)

    Poznański, Jarosław; Poznańska, Anna; Shugar, David

    2014-01-01

    Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  2. Distinct Iron-binding Ligands in the Upper Water Column at Station ALOHA

    Science.gov (United States)

    Bundy, R.; Boiteau, R.; Repeta, D.

    2016-02-01

    The distribution and chemical properties of iron-binding organic ligands at station ALOHA were examined using a combination of solid phase extraction (SPE) followed by high pressure liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). HPLC-ICPMS ligand measurements were complemented by competitive ligand exchange adsorptive cathodic stripping voltammetry (CLE-ACSV) analysis using salicylaldoxime as the added ligand. By HPLC-ICPMS, we find enhanced concentrations of distinct naturally-occurring polar iron-binding ligands present at the surface and in the chlorophyll maximum. Lower concentrations were found in the subsurface, where a suite of non-polar ligands was detected. Siderophores were present at the deepest depths sampled at station ALOHA, down to 400m. Incubation studies provided evidence for the production of iron-binding ligands associated with nutrient amended phytoplankton growth in surface waters, and as a result of microbial particle remineralization in the subsurface water column. Ligands classes identified via SPE were then compared to CLE-ACSV ligand measurements, as well as the conditional stability constants measured from model polar and non-polar siderophores, yielding insight to the sources of iron-binding ligands throughout the water column at station ALOHA.

  3. Differential expression of VEGF ligands and receptors in prostate cancer.

    Science.gov (United States)

    Woollard, David J; Opeskin, Kenneth; Coso, Sanja; Wu, Di; Baldwin, Megan E; Williams, Elizabeth D

    2013-05-01

    Prostate cancer disseminates to regional lymph nodes, however the molecular mechanisms responsible for lymph node metastasis are poorly understood. The vascular endothelial growth factor (VEGF) ligand and receptor family have been implicated in the growth and spread of prostate cancer via activation of the blood vasculature and lymphatic systems. The purpose of this study was to comprehensively examine the expression pattern of VEGF ligands and receptors in the glandular epithelium, stroma, lymphatic vasculature and blood vessels in prostate cancer. The localization of VEGF-A, VEGF-C, VEGF-D, VEGF receptor (VEGFR)-1, VEGFR-2, and VEGFR-3 was examined in cancerous and adjacent benign prostate tissue from 52 subjects representing various grades of prostate cancer. Except for VEGFR-2, extensive staining was observed for all ligands and receptors in the prostate specimens. In epithelial cells, VEGF-A and VEGFR-1 expression was higher in tumor tissue compared to benign tissue. VEGF-D and VEGFR-3 expression was significantly higher in benign tissue compared to tumor in the stroma and the endothelium of lymphatic and blood vessels. In addition, the frequency of lymphatic vessels, but not blood vessels, was lower in tumor tissue compared with benign tissue. These results suggest that activation of VEGFR-1 by VEGF-A within the carcinoma, and activation of lymphatic endothelial cell VEGFR-3 by VEGF-D within the adjacent benign stroma may be important signaling mechanisms involved in the progression and subsequent metastatic spread of prostate cancer. Thus inhibition of these pathways may contribute to therapeutic strategies for the management of prostate cancer. Copyright © 2012 Wiley Periodicals, Inc.

  4. The Search for Covalently Ligandable Proteins in Biological Systems

    Directory of Open Access Journals (Sweden)

    Syed Lal Badshah

    2016-09-01

    Full Text Available This commentary highlights the recent article published in Nature, June 2016, titled: “Proteome-wide covalent ligand discovery in native biological systems”. They screened the whole proteome of different human cell lines and cell lysates. Around 700 druggable cysteines in the whole proteome were found to bind the electrophilic fragments in both active and inactive states of the proteins. Their experiment and computational docking results agreed with one another. The usefulness of this study in terms of bringing a change in medicinal chemistry is highlighted here.

  5. Mixed-ligand complexes of dioxouranium(VI)

    International Nuclear Information System (INIS)

    Ahuja, Renu; Dwivedi, K.

    1995-01-01

    A number of mixed ligand complexes of UO 2 2+ ion have been studied with aminopolycarboxylic acids, such as ethylenediaminetetraacetic acid with coordination number (CN) = 6, nitrilotriacetic acid with CN = 4 and iminodiacetic acid with CN = 3. Ethyleneglycol-bis-2-aminoethylether tetraacetic acid (EGTA) is an octadentate aminopolycarboxylic acid and forms stable binary complexes with many metal ions at low pH. In this paper the results obtained for the study of 1:1:1 UO 2 VI -EGTA-aspartic acid/glutamic acid systems are studied. (author). 7 refs., 1 fig., 1 tab

  6. Doping Control Via Molecularly Engineered Surface Ligand Coordination

    KAUST Repository

    Yuan, Mingjian; Zhitomirsky, David; Adinolfi, Valerio; Voznyy, Oleksandr; Kemp, Kyle W.; Ning, Zhijun; Lan, Xinzheng; Xu, Jixian; Kim, Jin Young; Dong, Haopeng; Sargent, Edward H.

    2013-01-01

    A means to control the net doping of a CQD solid is identified via the design of the bidentate ligand crosslinking the material. The strategy does not rely on implementing different atmospheres at different steps in device processing, but instead is a robust strategy implemented in a single processing ambient. We achieve an order of magnitude difference in doping that allows us to build a graded photovoltaic device and maintain high current and voltage at maximum power-point conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mixed ligand lanthanide complexes with dipivaloylmethane and acetic acid

    International Nuclear Information System (INIS)

    Lyu Fehnkhua; Kuz'mina, N.P.; Mazo, G.N.; Martynenko, L.I.

    1995-01-01

    Methods of elemental, X-ray phase, thermal analyses and infrared spectroscopy were used to characterize solid products, formed in MDpm 3 -HAcet-H-hexane systems (M = Pr, Nd, Eu, Gd, Ho, Er, Yb, HDpm -dipivaloylmethane, HAcet - acetic acid). It was established that prepared mixed ligand complexes (MLC) had MDpm 2 Acet composition for all studied rare earths. Differenced in properties of cerium and yttrium rare earths are manifested in processes of MLC thermal dissociation, proceeding at low pressure and 170 deg C. 6 refs., 4 tabs

  8. Novel types of tripodal CMPO ligands: synthesis and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Janczewski, D. [Twente Univ., Enschede (Netherlands). Lab. of Supramolecular Chemistry and Technology; Inst. of Materials Research and Engineering, Research Link (Singapore); Rawdanowicz, M.; Reinhoudt, D.N.; Verboom, W. [Twente Univ., Enschede (Netherlands). Lab. of Supramolecular Chemistry and Technology; Hill, C.; Martinez, I. [Commissariat a l' Energie Atomique, CEA-Valrho, DRCP/SCPS/LCSE, Bagnols-sur-Ceze (France)

    2008-07-01

    Novel tripodal CMPO ligands having either aryl groups at the N-atom or alkyl groups at the CMPO methylene bridge were prepared in good yields. In the latter case one alkyl group per CMPO moiety was selectively introduced. Extraction studies with Am{sup 3+} and Eu{sup 3+} show that there is an influence of the electronic character of the aryl groups on the extraction. Alkylation of the CMPO methylene group gives rise to a considerable decrease of the D-values (about 100-1000 times), dependent on the bulkiness of the alkyl substituent. (orig.)

  9. Overview of Stabilizing Ligands for Biocompatible Quantum Dot Nanocrystals

    Directory of Open Access Journals (Sweden)

    Aaron Clapp

    2011-11-01

    Full Text Available Luminescent colloidal quantum dots (QDs possess numerous advantages as fluorophores in biological applications. However, a principal challenge is how to retain the desirable optical properties of quantum dots in aqueous media while maintaining biocompatibility. Because QD photophysical properties are directly related to surface states, it is critical to control the surface chemistry that renders QDs biocompatible while maintaining electronic passivation. For more than a decade, investigators have used diverse strategies for altering the QD surface. This review summarizes the most successful approaches for preparing biocompatible QDs using various chemical ligands.

  10. Ligand-directed profiling of organelles with internalizing phage libraries

    Science.gov (United States)

    Dobroff, Andrey S.; Rangel, Roberto; Guzman-Roja, Liliana; Salmeron, Carolina C.; Gelovani, Juri G.; Sidman, Richard L.; Bologa, Cristian G.; Oprea, Tudor I.; Brinker, C. Jeffrey; Pasqualini, Renata; Arap, Wadih

    2015-01-01

    Phage display is a resourceful tool to, in an unbiased manner, discover and characterize functional protein-protein interactions, to create vaccines, and to engineer peptides, antibodies, and other proteins as targeted diagnostic and/or therapeutic agents. Recently, our group has developed a new class of internalizing phage (iPhage) for ligand-directed targeting of organelles and/or to identify molecular pathways within live cells. This unique technology is suitable for applications ranging from fundamental cell biology to drug development. Here we describe the method for generating and screening the iPhage display system, and explain how to select and validate candidate internalizing homing peptide. PMID:25640897

  11. Rapid, radiochemical-ligand binding assay for methotrexate

    International Nuclear Information System (INIS)

    Caston, J.D.

    1976-01-01

    A radiochemical ligand binding assay for methotrexate is provided. A binder factor comprising a partially purified dihydrofolic acid reductase preparation is employed. The binder factor is conveniently prepared by homogenizing a factor containing animal organ such as liver, and extracting with isotonic saline and ammonium sulfate. A binder cofactor, NADPH 2 , is also employed in the binding reaction. The procedure contemplates both direct and sequential assay techniques, and it is not interfered with by vast excesses of many natural folate derivatives. 12 claims, 6 drawing figures

  12. Ligands specify estrogen receptor alpha nuclear localization and degradation

    Directory of Open Access Journals (Sweden)

    Caze-Subra Stéphanie

    2010-12-01

    Full Text Available Abstract Background The estrogen receptor alpha (ERα is found predominately in the nucleus, both in hormone stimulated and untreated cells. Intracellular distribution of the ERα changes in the presence of agonists but the impact of different antiestrogens on the fate of ERα is a matter of debate. Results A MCF-7 cell line stably expressing GFP-tagged human ERα (SK19 cell line was created to examine the localization of ligand-bound GFP-ERα. We combined digitonin-based cell fractionation analyses with fluorescence and immuno-electron microscopy to determine the intracellular distribution of ligand-bound ERα and/or GFP-ERα. Using fluorescence- and electron microscopy we demonstrate that both endogenous ERα and GFP-ERα form numerous nuclear focal accumulations upon addition of agonist, 17β-estradiol (E2, and pure antagonists (selective estrogen regulator disruptor; SERD, ICI 182,780 or RU58,668, while in the presence of partial antagonists (selective estrogen regulator modulator; SERM, 4-hydroxytamoxifen (OHT or RU39,411, diffuse nuclear staining persisted. Digitonin based cell fractionation analyses confirmed that endogenous ERα and GFP-ERα predominantly reside in the nuclear fraction. Overall ERα protein levels were reduced after estradiol treatment. In the presence of SERMs ERα was stabilized in the nuclear soluble fraction, while in the presence of SERDs protein levels decreased drastically and the remaining ERα was largely found in a nuclear insoluble fraction. mRNA levels of ESR1 were reduced compared to untreated cells in the presence of all ligands tested, including E2. E2 and SERDs induced ERα degradation occurred in distinct nuclear foci composed of ERα and the proteasome providing a simple explanation for ERα sequestration in the nucleus. Conclusions Our results indicate that chemical structure of ligands directly affect the nuclear fate and protein turnover of the estrogen receptor alpha independently of their impact on

  13. Ligand-protected gold clusters: the structure, synthesis and applications

    International Nuclear Information System (INIS)

    Pichugina, D A; Kuz'menko, N E; Shestakov, A F

    2015-01-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Au n with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au 15 and Au 25 ) and on anchorage to a support surface (Au 25 /SiO 2 , Au 20 /C, Au 10 /FeO x ) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR) n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters M x Au n L m (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR) x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active

  14. Coordination Networks Based on Boronate and Benzoxaborolate Ligands

    Directory of Open Access Journals (Sweden)

    Saad Sene

    2016-05-01

    Full Text Available Despite the extensive range of investigations on boronic acids (R-B(OH2, some aspects of their reactivity still need to be explored. This is the case for the coordination chemistry of boronate anions (R-B(OH3−, which has only recently been started to be studied. The purpose of this review is to summarize some of the key features of boronate ligands (and of their cyclic derivatives, benzoxaborolates in materials: (i coordination properties; (ii spectroscopic signatures; and (iii emerging applications.

  15. Ligand-protected gold clusters: the structure, synthesis and applications

    Science.gov (United States)

    Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.

    2015-11-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.

  16. Doping Control Via Molecularly Engineered Surface Ligand Coordination

    KAUST Repository

    Yuan, Mingjian

    2013-08-05

    A means to control the net doping of a CQD solid is identified via the design of the bidentate ligand crosslinking the material. The strategy does not rely on implementing different atmospheres at different steps in device processing, but instead is a robust strategy implemented in a single processing ambient. We achieve an order of magnitude difference in doping that allows us to build a graded photovoltaic device and maintain high current and voltage at maximum power-point conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Trapping of palindromic ligands within native transthyretin prevents amyloid formation

    OpenAIRE

    Kolstoe, Simon E.; Mangione, Palma P.; Bellotti, Vittorio; Taylor, Graham W.; Tennent, Glenys A.; Deroo, Stéphanie; Morrison, Angus J.; Cobb, Alexander J. A.; Coyne, Anthony; McCammon, Margaret G.; Warner, Timothy D.; Mitchell, Jane; Gill, Raj; Smith, Martin D.; Ley, Steven V.

    2010-01-01

    Transthyretin (TTR) amyloidosis is a fatal disease for which new therapeutic approaches are urgently needed. We have designed two palindromic ligands, 2,2'-(4,4'-(heptane-1,7-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic acid (mds84) and 2,2'-(4,4'-(undecane-1,11-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic acid (4ajm15), that are rapidly bound by native wild-type TTR in whole serum and even more avidly by amyloidogenic TTR variants. One to one...

  18. Structural basis for AMPA receptor activation and ligand selectivity

    DEFF Research Database (Denmark)

    Hogner, A; Kastrup, Jette Sandholm Jensen; Jin, R

    2002-01-01

    Glutamate is the principal excitatory neurotransmitter within the mammalian CNS, playing an important role in many different functions in the brain such as learning and memory. In this study, a combination of molecular biology, X-ray structure determinations, as well as electrophysiology...... with Br-HIBO and ACPA have allowed us to explain the molecular mechanism behind this selectivity and to identify key residues for ligand recognition. The agonists induce the same degree of domain closure as AMPA, except for Br-HIBO, which shows a slightly lower degree of domain closure. An excellent...

  19. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.; Bealing, Clive R.; Bian, Kaifu; Hughes, Kevin J.; Zhang, Wenyu; Smilgies, Detlef-M.; Hennig, Richard G.; Engstrom, James R.; Hanrath, Tobias

    2011-01-01

    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  20. In vitro evaluation of biodegradable microspheres with surface-bound ligands.

    Science.gov (United States)

    Keegan, Mark E; Royce, Sara M; Fahmy, Tarek; Saltzman, W Mark

    2006-02-21

    Protein ligands were conjugated to the surface of biodegradable microspheres. These microsphere-ligand conjugates were then used in two in vitro model systems to evaluate the effect of conjugated ligands on microsphere behavior. Microsphere retention in agarose columns was increased by ligands on the microsphere surface specific for receptors on the agarose matrix. In another experiment, conjugating the lectin Ulex europaeus agglutinin 1 to the microsphere surface increased microsphere adhesion to Caco-2 monolayers compared to control microspheres. This increase in microsphere adhesion was negated by co-administration of l-fucose, indicating that the increase in adhesion is due to specific interaction of the ligand with carbohydrate receptors on the cell surface. These results demonstrate that the ligands conjugated to the microspheres maintain their receptor binding activity and are present on the microsphere surface at a density sufficient to target the microspheres to both monolayers and three-dimensional matrices bearing complementary receptors.

  1. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.

    2011-03-09

    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  2. Charge-Transfer Effects in Ligand Exchange Reactions of Au25 Monolayer-Protected Clusters.

    Science.gov (United States)

    Carducci, Tessa M; Blackwell, Raymond E; Murray, Royce W

    2015-04-16

    Reported here are second-order rate constants of associative ligand exchanges of Au25L18 nanoparticles (L = phenylethanethiolate) of various charge states, measured by proton nuclear magnetic resonance at room temperature and below. Differences in second-order rate constants (M(-1) s(-1)) of ligand exchange (positive clusters ∼1.9 × 10(-5) versus negative ones ∼1.2 × 10(-4)) show that electron depletion retards ligand exchange. The ordering of rate constants between the ligands benzeneselenol > 4-bromobenzene thiol > benzenethiol reveals that exchange is accelerated by higher acidity and/or electron donation capability of the incoming ligand. Together, these observations indicate that partial charge transfer occurs between the nanoparticle and ligand during the exchange and that this is a rate-determining effect in the process.

  3. Water oxidation catalyzed by mononuclear ruthenium complexes with a 2,2'-bipyridine-6,6'-dicarboxylate (bda) ligand: how ligand environment influences the catalytic behavior.

    Science.gov (United States)

    Staehle, Robert; Tong, Lianpeng; Wang, Lei; Duan, Lele; Fischer, Andreas; Ahlquist, Mårten S G; Sun, Licheng; Rau, Sven

    2014-02-03

    A new water oxidation catalyst [Ru(III)(bda)(mmi)(OH2)](CF3SO3) (2, H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; mmi = 1,3-dimethylimidazolium-2-ylidene) containing an axial N-heterocyclic carbene ligand and one aqua ligand was synthesized and fully characterized. The kinetics of catalytic water oxidation by 2 were measured using stopped-flow technique, and key intermediates in the catalytic cycle were probed by density functional theory calculations. While analogous Ru-bda water oxidation catalysts [Ru(bda)L2] (L = pyridyl ligands) are supposed to catalyze water oxidation through a bimolecular coupling pathway, our study points out that 2, surprisingly, undergoes a single-site water nucleophilic attack (acid-base) pathway. The diversion of catalytic mechanisms is mainly ascribed to the different ligand environments, from nonaqua ligands to an aqua ligand. Findings in this work provide some critical proof for our previous hypothesis about how alternation of ancillary ligands of water oxidation catalysts influences their catalytic efficiency.

  4. New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation

    OpenAIRE

    Knoll, Jessica D.; Albani, Bryan A.; Turro, Claudia

    2015-01-01

    Uncovering the factors that govern the electronic structure of Ru(II)–polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and 1O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field (3LF) state proceeds through thermal population from the vibrationally cooled triplet meta...

  5. Screening of ligands for the Ullmann synthesis of electron-rich diaryl ethers

    Directory of Open Access Journals (Sweden)

    Nicola Otto

    2012-07-01

    Full Text Available In the search for new ligands for the Ullmann diaryl ether synthesis, permitting the coupling of electron-rich aryl bromides at relatively low temperatures, 56 structurally diverse multidentate ligands were screened in a model system that uses copper iodide in acetonitrile with potassium phosphate as the base. The ligands differed largely in their performance, but no privileged structural class could be identified.

  6. New L-Serine Derivative Ligands as Cocatalysts for Diels-Alder Reaction

    Science.gov (United States)

    Sousa, Carlos A. D.; Rodríguez-Borges, José E.; Freire, Cristina

    2013-01-01

    New L-serine derivative ligands were prepared and tested as cocatalyst in the Diels-Alder reactions between cyclopentadiene (CPD) and methyl acrylate, in the presence of several Lewis acids. The catalytic potential of the in situ formed complexes was evaluated based on the reaction yield. Bidentate serine ligands showed good ability to coordinate medium strength Lewis acids, thus boosting their catalytic activity. The synthesis of the L-serine ligands proved to be highly efficient and straightforward. PMID:24383009

  7. Selective high-affinity polydentate ligands and methods of making such

    Energy Technology Data Exchange (ETDEWEB)

    Denardo, Sally J.; Denardo, Gerald L.; Balhorn, Rodney L.

    2018-02-06

    This invention provides novel polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each bind different region son the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  8. New chiral ligands in asymmetric catalysis. Application in stabilization of metal nanoparticles

    OpenAIRE

    Axet Martí, M. Rosa

    2006-01-01

    Thesis M. Rosa AxetThis thesis deals with the development and application of diphosphite ligands derived from carbohydrates to rhodium-catalysed asymmetric hydroformylation and hydrogenation reactions. The use of various carbohydrate derivative ligands as stabilisers of metal nanoparticles is also studied. The synthesis and the characterisation of the series of diphosphite ligands are described in Chapter 2. The results of the asymmetric hydroformylation of styrene and related vinyl arenes ar...

  9. Gut microbiota regulates NKG2D ligand expression on intestinal epithelial cells

    DEFF Research Database (Denmark)

    Hansen, Camilla Hartmann Friis; Holm, Thomas L.; Krych, Lukasz

    2013-01-01

    Intestinal epithelial cells (IECs) are one of a few cell types in the body with constitutive surface expression of natural killer group 2 member D (NKG2D) ligands, although the magnitude of ligand expression by IECs varies. Here, we investigated whether the gut microbiota regulates the NKG2D ligand...... expression is kept in check by an intestinal regulatory immune milieu induced by members of the gut microbiota, for example A. muciniphila....

  10. Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site.

    Science.gov (United States)

    Abe, Yukiko; Nakagawa, Osamu; Yamaguchi, Rie; Sasaki, Shigeki

    2012-06-01

    DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A modular approach to neutral P,N-ligands: synthesis and coordination chemistry

    Directory of Open Access Journals (Sweden)

    Vladislav Vasilenko

    2016-04-01

    Full Text Available We report the modular synthesis of three different types of neutral κ2-P,N-ligands comprising an imine and a phosphine binding site. These ligands were reacted with rhodium, iridium and palladium metal precursors and the structures of the resulting complexes were elucidated by means of X-ray crystallography. We observed that subtle changes of the ligand backbone have a significant influence on the binding geometry und coordination properties of these bidentate P,N-donors.

  12. Effect of urea on protein-ligand association.

    Science.gov (United States)

    Stepanian, Lora; Son, Ikbae; Chalikian, Tigran V

    2017-12-01

    We combine experimental and theoretical approaches to investigate the influence of a cosolvent on a ligand-protein association event. We apply fluorescence measurements to determining the affinity of the inhibitor tri-N-acetylglucosamine [(GlcNAc) 3 ] for lysozyme at urea concentrations ranging from 0 to 8M. Notwithstanding that, at room temperature and neutral pH, lysozyme retains its native conformation up to the solubility limit of urea, the affinity of (GlcNAc) 3 for the protein steadily decreases as the concentration of urea increases. We analyze the urea dependence of the binding free energy within the framework of a simplified statistical thermodynamics-based model that accounts for the excluded volume effect and direct solute-solvent interactions. The analysis reveals that the detrimental action of urea on the inhibitor-lysozyme binding originates from competition between the free energy contributions of the excluded volume effect and direct solute-solvent interactions. The free energy contribution of direct urea-solute interactions narrowly overcomes the excluded volume contribution thereby resulting in urea weakening the protein-ligand association. More broadly, the successful application of the simple model employed in this work points to the possibility of its use in quantifying the stabilizing/destabilizing action of individual cosolvents on biochemical folding and binding reactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Synthesis and binding studies of Alzheimer ligands on solid support.

    Science.gov (United States)

    Rzepecki, Petra; Geib, Nina; Peifer, Manuel; Biesemeier, Frank; Schrader, Thomas

    2007-05-11

    Aminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form. Hexa- and octapeptide pendants with internal di- and tetrapeptide bridges are now amenable in high yields to combinatorial synthesis of compound libraries for high-throughput screening purposes. Solid-phase peptide synthesis (SPPS) on an acid-resistant PAM allows us, after PMB deprotection, to subject the free aminopyrazole binding sites in an immobilized state to on-bead assays with fluorescence-labeled peptides. From the fluorescence emission intensity decrease, individual binding constants can be calculated via reference curves by simple application of the law of mass action. Gratifyingly, host/guest complexation can be monitored quantitatively even for those ligands, which are almost insoluble in water.

  14. Computational multiscale modeling in protein--ligand docking.

    Science.gov (United States)

    Taufer, Michela; Armen, Roger; Chen, Jianhan; Teller, Patricia; Brooks, Charles

    2009-01-01

    In biological systems, the binding of small molecule ligands to proteins is a crucial process for almost every aspect of biochemistry and molecular biology. Enzymes are proteins that function by catalyzing specific biochemical reactions that convert reactants into products. Complex organisms are typically composed of cells in which thousands of enzymes participate in complex and interconnected biochemical pathways. Some enzymes serve as sequential steps in specific pathways (such as energy metabolism), while others function to regulate entire pathways and cellular functions [1]. Small molecule ligands can be designed to bind to a specific enzyme and inhibit the biochemical reaction. Inhibiting the activity of key enzymes may result in the entire biochemical pathways being turned on or off [2], [3]. Many small molecule drugs marketed today function in this generic way as enzyme inhibitors. If research identifies a specific enzyme as being crucial to the progress of disease, then this enzyme may be targeted with an inhibitor, which may slow down or reverse the progress of disease. In this way, enzymes are targeted from specific pathogens (e.g., virus, bacteria, fungi) for infectious diseases [4], [5], and human enzymes are targeted for noninfectious diseases such as cardiovascular disease, cancer, diabetes, and neurodegenerative diseases [6].

  15. Non-conventional Frizzled ligands and Wnt receptors.

    Science.gov (United States)

    Hendrickx, Marijke; Leyns, Luc

    2008-05-01

    The Wnt family of secreted signaling factors plays numerous roles in embryonic development and in stem cell biology. In the adult, Wnt signaling is involved in tissue homeostasis and mutations that lead to the overexpression of Wnt can be linked to cancer. Wnt signaling is transduced intracellularly by the Frizzled (Fzd) family of receptors. In the canonical pathway, accumulation of beta-catenin and the subsequent formation of a complex with T cell factors (TCF) or lymphoid enhancing factors (Lef) lead to target gene activation. The identification of Ryk as an alternative Wnt receptor and the discovery of the novel Fzd ligands Norrie disease protein (NDP) and R-Spondin, changed the traditional view of Wnts binding to Fzd receptors. Mouse R-Spondin cooperates with Wnt signaling and Low density lipoprotein (LDL) receptor related protein (LRP) to activate beta-catenin dependent gene expression and is involved in processes such as limb and placental development in the mouse. NDP is the product of the Norrie disease gene and controls vascular development in the retina, inner ear and in the female reproductive system during pregnancy. In this review a functional overview of the interactions of the different Wnt and non-Wnt ligands with the Fzd receptors is given as well as a survey of Wnts binding to Ryk and we discuss the biological significance of these interactions.

  16. Partitioning-separation of metal ions using heterocyclic ligands

    International Nuclear Information System (INIS)

    Hudson, M.J.; Drew, M.G.B.; Iveson, P.B.; Russell, M.L.

    2001-01-01

    Some guidelines are proposed for the effective design of heterocyclic ligands for partitioning because there is no doubt that the correct design of a molecular extractant is required for the effective separation of metal ions such as actinides(III) from lanthanides(III). Heterocyclic ligands with aromatic ring systems have a rich chemistry, which is only now becoming sufficiently well understood in relation to the partitioning process. The synthesis, characterisation and structures of some chosen molecules will be introduced in order to illustrate some important features. For example, the molecule N-carboxy-butyl-2-amino-4,6-di (2-pyridyl)-1,3,5-triazine (BADPTZ), which is an effective solvent extraction reagent for actinides and lanthanides, has been synthesised, characterised and its interaction with lanthanide ions studied. The interesting and important features of this molecule will be compared with those of other heterocyclic molecules such as 2,6-bis(5-butyl-1,2,4-triazole-3-yl) pyridine (DBTZP), which is a candidate molecule for the commercial separation of actinides and lanthanide elements. (author)

  17. Synthesis of Copper Nanoparticles Coated with Nitrogen Ligands

    Directory of Open Access Journals (Sweden)

    Rubén Sierra-Ávila

    2014-01-01

    Full Text Available The synthesis of copper nanoparticles was studied by wet chemical methods using copper sulfate pentahydrate (CuSO4·5H2O and nitrogen ligands allylamine (AAm and polyallylamine (PAAm as stabilizers. The results suggest that the use of these ligands leads to the exclusive formation of metallic copper nanoparticles (Cu-NPs. The use of partially crosslinked polyallylamine (PAAmc leads to nanoparticles (NPs with low yields and high coating content, while linear PAAm leads to NPs with high yields and low coating content. The chemical composition of the particles was determined by XRD and average particle diameters were determined by the Debye-Scherrer equation. TGA analysis provided evidence of the content and thermal stability of the coating on the nanoparticles and PAAm. The morphology, particle size distribution, and presence of PAAm coating were observed through TEM. The use of AAm in the synthesis of NPs could be a good alternative to reduce costs. By using TGA, TEM, and DSC techniques, it was determined that synthesized NPs with AAm presented a coating with similar characteristics to NPs with PAAm, suggesting that AAm underwent polymerization during the synthesis.

  18. RigFit: a new approach to superimposing ligand molecules.

    Science.gov (United States)

    Lemmen, C; Hiller, C; Lengauer, T

    1998-09-01

    If structural knowledge of a receptor under consideration is lacking, drug design approaches focus on similarity or dissimilarity analysis of putative ligands. In this context the mutual ligand superposition is of utmost importance. Methods that are rapid enough to facilitate interactive usage, that allow to process sets of conformers and that enable database screening are of special interest here. The ability to superpose molecular fragments instead of entire molecules has proven to be helpful too. The RIGFIT approach meets these requirements and has several additional advantages. In three distinct test applications, we evaluated how closely we can approximate the observed relative orientation for a set of known crystal structures, we employed RIGFIT as a fragment placement procedure, and we performed a fragment-based database screening. The run time of RIGFIT can be traded off against its accuracy. To be competitive in accuracy with another state-of-the-art alignment tool, with which we compare our method explicitly, computing times of about 6 s per superposition on a common day workstation are required. If longer run times can be afforded the accuracy increases significantly. RIGFIT is part of the flexible superposition software FLEXS which can be accessed on the WWW [http:/(/)cartan.gmd.de/FlexS].

  19. Technetium labeling of dextran incorporating cysteamine as a ligand

    International Nuclear Information System (INIS)

    Matsunaga, Kazuhisa; Hara, Kazumichi; Imamura, Takeshi; Fujioka, Toshihiro; Takata, Jiro; Karube, Yoshiharu

    2005-01-01

    Introduction: Technetium-99m-labeled dextran is a useful imaging agent for procedures such as angiocardiography and lymphoscintigraphy. To improve the availability of 99m Tc-labeled dextran, we designed a cysteamine ligand system for dextran labeling. Methods: Cysteamine derivatized dextran was synthesized as follows. Dextran was oxidized with sodium periodate, coupled with cysteamine and reduced with sodium borohydride to provide the desired amine ligand. The cysteamine-dextran conjugate was then labeled with reduced 99m Tc. Whole-body scintigraphy and biodistribution were examined following injection of the 99m Tc-labeled cysteamine-conjugated dextran ( 99m Tc-cysteamine-dextran) in ICR mice. Lymphoscintigraphy was performed after intradermal injection of 99m Tc-cysteamine-dextran in SD rats. Results: The cysteamine-derived dextran was easily labeled with reduced 99m Tc in greater than 96% yield. 99m Tc-cysteamine-dextran has a higher chelation stability against diethylenetriamine pentaacetic acid (DTPA) than the 99m Tc-dextran. Axillary lymph nodes were clearly visible after intradermal injection of 99m Tc-cysteamine-dextran in rats. Conclusion: These results suggest that 99m Tc-cysteamine-dextran is available for lymphoscintigraphy. This methodology could expand the usage of 99m Tc-labeled dextran, particularly for diagnostic purposes

  20. Reactions of diiron m-aminocarbyne complexes containing nitrile ligands

    Directory of Open Access Journals (Sweden)

    Busetto Luigi

    2003-01-01

    Full Text Available The acetonitrile ligand in the mu-aminocarbyne complexes [Fe2{mu-CN(MeR}(mu-CO(CO(NCMe(Cp2][SO 3CF3] (R = Me, 2a, CH2Ph, 2b, Xyl, 2c (Xyl = 2,6-Me2C6H3 is readily displaced by halides and cyanide anions affording the corresponding neutral species [Fe2{mu-CN(MeR}(mu-CO(CO(X(Cp2 ] (X = Br, I, CN. Complexes 2 undergo deprotonation and rearrangement of the coordinated MeCN upon treatment with organolithium reagents. Trimethylacetonitrile, that does not contain acidic alpha hydrogens has been used in place of MeCN to form the complexes [Fe2{mu-CN(MeR}(mu-CO(CO(NCCMe3 (Cp2][SO3CF3] (7a-c. Attempts to replace the nitrile ligand in 3 with carbon nucleophiles (by reaction with RLi failed, resulting in decomposition products. However the reaction of 7c with LiCºCTol (Tol = C6H4Me, followed by treatment with HSO3CF3, yielded the imino complex [Fe2{mu-CN(MeXyl}(mu-CO(CO {N(HC(CºCC6H4Me-4CMe3}(Cp 2][SO3CF3 ] (8, obtained via acetilyde addition at the coordinated NCCMe3.

  1. Characterization of Selectin Ligands on Hematopoietic Stem Cells

    KAUST Repository

    Mahmood, Hanan

    2013-05-18

    Successful bone marrow (BM) transplantation requires the homing of the transplanted hematopoietic stem/progenitor cells (HSPCs) to their bone marrow niche, where they undergo differentiation to form mature cells that are eventually released into the peripheral blood. However, the survival rate of patients receiving BM transplants is poor since many of the transplanted HSPCs do not make it to their BM niches in the recipient’s body. Since the availability of HSPCs from traditional sources is limited, transplanting more number of HSPCs is not a solution to this problem. This study aims to characterize the adhesion molecules mediating cell migration in order to better understand the adhesion mechanisms of HSCs with the bone marrow endothelium. This will aid in developing future tools to improve the clinical transplantation of HSPCs. This study also aims to understand the factors that influence HSPC proliferation in the bone marrow niche. E-selectin plays an important role in the process of homing; however, its ligands on HSPCs are not well characterized. We used western blotting and immunoprecipitation to show that endomucin is expressed on HSPCs and plays a role in the binding of HSPCs to E-selectin. We also studied the effect of recombinant E-selectin on the expression of a newly characterized E-selectin ligand in our lab, CD34, in HSPCs. This will provide us insight into novel roles for endomucin and E-selectin and help us to understand the factors influencing HSPC migration to BM endothelium.

  2. Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition.

    Science.gov (United States)

    Riccardi, Laura; Gabrielli, Luca; Sun, Xiaohuan; De Biasi, Federico; Rastrelli, Federico; Mancin, Fabrizio; De Vivo, Marco

    2017-07-13

    The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which could explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs.

  3. Synthesis, spectral, thermal and biological studies of mixed ligand complexes with newly prepared Schiff base and 1,10-phenanthroline ligands

    Science.gov (United States)

    Abd El-Halim, Hanan F.; Mohamed, Gehad G.; Khalil, Eman A. M.

    2017-10-01

    A series of mixed ligand complexes were prepared from the Schiff base (L1) as a primary ligand, prepared by condensation of oxamide and furan-2-carbaldehyde, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. The Schiff base ligand and its mixed ligand chelates were characterized based on elemental analysis, IR, 1H NMR, thermal analysis, UV-Visible, mass, molar conductance, magnetic moment. X-ray diffraction, solid reflectance and ESR also have been studied. The mixed ligand complexes were found to have the formulae of [M(L1) (1,10-phen)]Clm.nH2O (M = Cr(III) and Fe(III) (m = 3) (n = 0); M = Mn(II), Cu(II) and Cd(II) (m = 2) (n = 0); and M = Co(II) (m = 2) (n = 1), Ni(II) (m = 2) (n = 2) and Zn(II) (m = 2) (n = 3)) and that the geometrical structure of the complexes were octahedral. The parameters of thermodynamic using Coats-Redfern and Horowitz-Metzger equations were calculated. The synthesized Schiff base ligand, 1,10-phenanthroline ligand and Their mixed ligand complexes were also investigated for their antibacterial and antifungal activity against bacterial species (Gram-Ve bacteria: Pseudomonas aeruginosa and Escherichia coli) and (Gram + Ve bacteria: Bacillus subtilis and Streptococcus pneumonia) and fungi (Aspergillus fumigates and Candida albicans). The anticancer activity of the new compounds had been tested against breast (MFC7) and colon (HCT-116) cell lines. The results showed high activity for the synthesized compounds.

  4. Mixed-ligand Pt(II) dithione-dithiolato complexes: influence of the dicyanobenzodithiolato ligand on the second-order NLO properties.

    Science.gov (United States)

    Espa, Davide; Pilia, Luca; Marchiò, Luciano; Artizzu, Flavia; Serpe, Angela; Mercuri, Maria Laura; Simão, Dulce; Almeida, Manuel; Pizzotti, Maddalena; Tessore, Francesca; Deplano, Paola

    2012-03-28

    The mixed-ligand dithiolene complex [Pt(Bz(2)pipdt)(dcbdt)] (1) bearing the two ligands Bz(2)pipdt = 1,4-dibenzyl-piperazine-3,2-dithione and dcbdt = dicyanobenzodithiolato, has been synthesized, characterized and studied to evaluate its second-order optical nonlinearity. The dithione/dithiolato character of the two ligands gives rise to an asymmetric distribution of the charge in the molecule. This is reflected by structural data showing that in the C(2)S(2)PtS(2)C(2) dithiolene core the four sulfur atoms define a square-planar coordination environment of the metal where the Pt-S bond distances involving the two ligands are similar, while the C-S bond distances in the C(2)S(2) units exhibit a significant difference in Bz(2)pipdt (dithione) and dcbdt (dithiolato). 1 shows a moderately strong absorption peak in the visible region, which can be related to a HOMO-LUMO transition, where the dcbdt ligand (dithiolato) contributes mostly to the HOMO, and the Bz(2)pipdt one (dithione) mostly to the LUMO. Thus this transition has ligand-to-ligand charge transfer (CT) character with some contribution of the metal and undergoes negative solvatochromism and molecular quadratic optical nonlinearity (μβ(0) = -1296 × 10(-48) esu), which was determined by the EFISH (electric-field-induced second-harmonic generation) technique and compared with the values of similar complexes on varying the dithiolato ligand (mnt = maleonitriledithiolato, dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato). Theoretical calculations help to elucidate the role of the dithiolato ligands in affecting the molecular quadratic optical nonlinearity of these complexes.

  5. Quantitation of species differences in albumin–ligand interactions for bovine, human and rat serum albumins using fluorescence spectroscopy: A test case with some Sudlow's site I ligands

    International Nuclear Information System (INIS)

    Poór, Miklós; Li, Yin; Matisz, Gergely; Kiss, László; Kunsági-Máté, Sándor; Kőszegi, Tamás

    2014-01-01

    Albumin, the most abundant plasma protein is an approximately 67 kDa sized water-soluble macromolecule. Since several drugs and xenobiotics circulate in the blood at least partially in albumin-bound form, albumin plays a key role in the pharmacokinetics/toxicokinetics of these chemicals. Most of the drugs and xenobiotics are Sudlow's site I ligands. In numerous studies, bovine serum albumin (BSA) is used for modeling albumin–ligand interactions and the results are extrapolated to human serum albumin (HSA). Furthermore, only limited information is available related to albumin–ligand interactions of different albumin species. Therefore, in our study, we have focused on the quantification of differences between bovine, human and rat serum albumin (RSA) using four Sudlow's site I ligands (luteolin, ochratoxin A, phenylbutazone and warfarin). Interactions were analyzed by fluorescence spectroscopy. Stability constants as well as competing capacities of the ligands were determined, and thermodynamic study was also performed. Our results highlight that there could be major differences between BSA, HSA and RSA in their ligand binding properties. Based on our observations we emphasize that in molecular aspects BSA behaves considerably differently from HSA or from albumins of other species therefore, it is strongly recommended to apply at least some confirmatory measurements when data obtained from other species are attempted to be extrapolated to HSA. -- Highlights: • Albumin–ligand interactions of human, bovine and rat albumins were studied. • Four Sudlow's site I ligands were tested by fluorescence spectroscopy. • Substantial differences were found in stability constants among albumin complexes. • Competing capacity of ligands showed major differences in the studied species. • Data obtained for BSA cannot be directly extrapolated to human albumin

  6. Ultrafast dynamics of ligand and substrate interaction in endothelial nitric oxide synthase under Soret excitation.

    Science.gov (United States)

    Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S

    2016-01-01

    Ultrafast transient absorption spectroscopy of endothelial NOS oxygenase domain (eNOS-oxy) was performed to study dynamics of ligand or substrate interaction under Soret band excitation. Photo-excitation dissociates imidazole ligand in 4ps. The eNOS-oxy without additive is partially bound with water molecule, thus its photoexcited dynamics also shows ligand dissociation in <800fs. Then it followed by vibrational cooling coupled with charge transfer in 4.8ps, and recombination of ligand to distal side of heme in 12ps. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Ligand deconstruction: Why some fragment binding positions are conserved and others are not

    Science.gov (United States)

    Kozakov, Dima; Hall, David R.; Jehle, Stefan; Luo, Lingqi; Ochiana, Stefan O.; Jones, Elizabeth V.; Pollastri, Michael; Allen, Karen N.; Whitty, Adrian; Vajda, Sandor

    2015-01-01

    Fragment-based drug discovery (FBDD) relies on the premise that the fragment binding mode will be conserved on subsequent expansion to a larger ligand. However, no general condition has been established to explain when fragment binding modes will be conserved. We show that a remarkably simple condition can be developed in terms of how fragments coincide with binding energy hot spots—regions of the protein where interactions with a ligand contribute substantial binding free energy—the locations of which can easily be determined computationally. Because a substantial fraction of the free energy of ligand binding comes from interacting with the residues in the energetically most important hot spot, a ligand moiety that sufficiently overlaps with this region will retain its location even when other parts of the ligand are removed. This hypothesis is supported by eight case studies. The condition helps identify whether a protein is suitable for FBDD, predicts the size of fragments required for screening, and determines whether a fragment hit can be extended into a higher affinity ligand. Our results show that ligand binding sites can usefully be thought of in terms of an anchor site, which is the top-ranked hot spot and dominates the free energy of binding, surrounded by a number of weaker satellite sites that confer improved affinity and selectivity for a particular ligand and that it is the intrinsic binding potential of the protein surface that determines whether it can serve as a robust binding site for a suitably optimized ligand. PMID:25918377

  8. Residue preference mapping of ligand fragments in the Protein Data Bank.

    Science.gov (United States)

    Wang, Lirong; Xie, Zhaojun; Wipf, Peter; Xie, Xiang-Qun

    2011-04-25

    The interaction between small molecules and proteins is one of the major concerns for structure-based drug design because the principles of protein-ligand interactions and molecular recognition are not thoroughly understood. Fortunately, the analysis of protein-ligand complexes in the Protein Data Bank (PDB) enables unprecedented possibilities for new insights. Herein, we applied molecule-fragmentation algorithms to split the ligands extracted from PDB crystal structures into small fragments. Subsequently, we have developed a ligand fragment and residue preference mapping (LigFrag-RPM) algorithm to map the profiles of the interactions between these fragments and the 20 proteinogenic amino acid residues. A total of 4032 fragments were generated from 71 798 PDB ligands by a ring cleavage (RC) algorithm. Among these ligand fragments, 315 unique fragments were characterized with the corresponding fragment-residue interaction profiles by counting residues close to these fragments. The interaction profiles revealed that these fragments have specific preferences for certain types of residues. The applications of these interaction profiles were also explored and evaluated in case studies, showing great potential for the study of protein-ligand interactions and drug design. Our studies demonstrated that the fragment-residue interaction profiles generated from the PDB ligand fragments can be used to detect whether these fragments are in their favorable or unfavorable environments. The algorithm for a ligand fragment and residue preference mapping (LigFrag-RPM) developed here also has the potential to guide lead chemistry modifications as well as binding residues predictions.

  9. Self-assembly of heteroleptic dinuclear metallosupramolecular kites from multivalent ligands via social self-sorting

    Directory of Open Access Journals (Sweden)

    Christian Benkhäuser

    2015-05-01

    Full Text Available A Tröger's base-derived racemic bis(1,10-phenanthroline ligand (rac-1 and a bis(2,2'-bipyridine ligand with a central 1,3-diethynylbenzene unit 2 were synthesized. Each of these ligands acts as a multivalent entity for the binding of two copper(I ions. Upon coordination to the metal ions these two ligands undergo selective self-assembly into heteroleptic dinuclear metallosupramolecular kites in a high-fidelity social self-sorting manner as evidenced by NMR spectroscopy and mass spectrometry.

  10. PPARγ and Its Ligands: Potential Antitumor Agents in the Digestive System.

    Science.gov (United States)

    Shu, Linjing; Huang, Renhuan; Wu, Songtao; Chen, Zhaozhao; Sun, Ke; Jiang, Yan; Cai, Xiaoxiao

    2016-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a versatile member of the ligand-activated nuclear hormone receptor superfamily of transcription factors, with expression in several different cell lines, especially in the digestive system. After being activated by its ligand, PPARγ can suppress the growth of oral, esophageal, gastric, colorectal, liver, biliary, and pancreatic tumor cells, suggesting that PPARγ ligand is a potential anticancer agent in PPARγ-expressing tumors. This review highlights key advances in understanding the effects of PPARγ ligands in the treatment of tumors in the digestive system.

  11. Narcissistic self-sorting in self-assembled cages of rare Earth metals and rigid ligands.

    Science.gov (United States)

    Johnson, Amber M; Wiley, Calvin A; Young, Michael C; Zhang, Xing; Lyon, Yana; Julian, Ryan R; Hooley, Richard J

    2015-05-04

    Highly selective, narcissistic self-sorting can be achieved in the formation of self-assembled cages of rare earth metals with multianionic salicylhydrazone ligands. The assembly process is highly sensitive to the length of the ligand and the coordination geometry. Most surprisingly, high-fidelity sorting is possible between ligands of identical coordination angle and geometry, differing only in a single functional group on the ligand core, which is not involved in the coordination. Supramolecular effects allow discrimination between pendant functions as similar as carbonyl or methylene groups in a complex assembly process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Spectra of fluorinated rare earth β-diketonates with added ligands

    International Nuclear Information System (INIS)

    Khomenko, V.S.; Lozinskij, M.O.; Fialkov, Yu.A.; Rasshinina, T.A.; Krasovskaya, L.I.; AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1984-01-01

    Different-ligand rare earth complexes are synthesized. Fluorated β-diketones, triethylphosphine oxide and trifluoracetic acid are used as active ligands. Mass-spectra of low and high resolution are taken at the energy of ionizing electrons of 70 eV, as well as luminescence spectra of complexes. Fragmentation ways of complexes decomposition under electron shock are studied. A series of changing the bound strength of additional ligands with europium in mixed complexes is determined. It is shown that the introduction of additional ligands can purposefully change physical and chemical properties of complexes

  13. Luteolin, a flavonoid, inhibits CD40 ligand expression by activated human basophils.

    Science.gov (United States)

    Hirano, Toru; Arimitsu, Junsuke; Higa, Shinji; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Kawase, Ichiro; Tanaka, Toshio

    2006-01-01

    We have previously shown that flavonoids such as luteolin, apigenin and fisetin inhibit interleukin 4 and interleukin 13 production. In this study, we investigated whether luteolin can suppress CD40 ligand expression by basophils. A human basophilic cell line, KU812, was stimulated with A23187 and phorbol myristate acetate (PMA) with or without various concentrations of luteolin or other flavonoids for 12 h, and CD40 ligand expression was analyzed by FACS. The effect of luteolin on CD40 ligand mRNA expression was studied by semiquantitative reverse transcription PCR analysis. In addition, CD40 ligand expression was also measured in purified basophils that had been stimulated for 12 h with A23187 plus PMA with or without various concentrations of luteolin. CD40 ligand expression by KU812 cells was enhanced noticeably in response to A23187 and even more strikingly augmented by A23187 plus PMA. The expression was significantly suppressed by 10 or 30 microM of luteolin, whereas myricetin failed to inhibit. Reverse transcription PCR analyses demonstrated that luteolin inhibited CD40 ligand mRNA expression by stimulated KU812 cells. Of the six flavonoids examined, luteolin, apigenin, fisetin and quercetin at 30 microM showed a significant inhibitory effect on CD40 ligand expression. The incubation of purified basophils with A23187 plus PMA significantly enhanced CD40 ligand expression, and the presence of luteolin again had an inhibitory effect. Luteolin inhibits CD40 ligand expression by activated basophils.

  14. Ligand deconstruction: Why some fragment binding positions are conserved and others are not.

    Science.gov (United States)

    Kozakov, Dima; Hall, David R; Jehle, Stefan; Jehle, Sefan; Luo, Lingqi; Ochiana, Stefan O; Jones, Elizabeth V; Pollastri, Michael; Allen, Karen N; Whitty, Adrian; Vajda, Sandor

    2015-05-19

    Fragment-based drug discovery (FBDD) relies on the premise that the fragment binding mode will be conserved on subsequent expansion to a larger ligand. However, no general condition has been established to explain when fragment binding modes will be conserved. We show that a remarkably simple condition can be developed in terms of how fragments coincide with binding energy hot spots--regions of the protein where interactions with a ligand contribute substantial binding free energy--the locations of which can easily be determined computationally. Because a substantial fraction of the free energy of ligand binding comes from interacting with the residues in the energetically most important hot spot, a ligand moiety that sufficiently overlaps with this region will retain its location even when other parts of the ligand are removed. This hypothesis is supported by eight case studies. The condition helps identify whether a protein is suitable for FBDD, predicts the size of fragments required for screening, and determines whether a fragment hit can be extended into a higher affinity ligand. Our results show that ligand binding sites can usefully be thought of in terms of an anchor site, which is the top-ranked hot spot and dominates the free energy of binding, surrounded by a number of weaker satellite sites that confer improved affinity and selectivity for a particular ligand and that it is the intrinsic binding potential of the protein surface that determines whether it can serve as a robust binding site for a suitably optimized ligand.

  15. Quantitative chemogenomics: machine-learning models of protein-ligand interaction.

    Science.gov (United States)

    Andersson, Claes R; Gustafsson, Mats G; Strömbergsson, Helena

    2011-01-01

    Chemogenomics is an emerging interdisciplinary field that lies in the interface of biology, chemistry, and informatics. Most of the currently used drugs are small molecules that interact with proteins. Understanding protein-ligand interaction is therefore central to drug discovery and design. In the subfield of chemogenomics known as proteochemometrics, protein-ligand-interaction models are induced from data matrices that consist of both protein and ligand information along with some experimentally measured variable. The two general aims of this quantitative multi-structure-property-relationship modeling (QMSPR) approach are to exploit sparse/incomplete information sources and to obtain more general models covering larger parts of the protein-ligand space, than traditional approaches that focuses mainly on specific targets or ligands. The data matrices, usually obtained from multiple sparse/incomplete sources, typically contain series of proteins and ligands together with quantitative information about their interactions. A useful model should ideally be easy to interpret and generalize well to new unseen protein-ligand combinations. Resolving this requires sophisticated machine-learning methods for model induction, combined with adequate validation. This review is intended to provide a guide to methods and data sources suitable for this kind of protein-ligand-interaction modeling. An overview of the modeling process is presented including data collection, protein and ligand descriptor computation, data preprocessing, machine-learning-model induction and validation. Concerns and issues specific for each step in this kind of data-driven modeling will be discussed. © 2011 Bentham Science Publishers

  16. Adsorption of hairy particles with mobile ligands: Molecular dynamics and density functional study

    Science.gov (United States)

    Borówko, M.; Sokołowski, S.; Staszewski, T.; Pizio, O.

    2018-01-01

    We study models of hairy nanoparticles in contact with a hard wall. Each particle is built of a spherical core with a number of ligands attached to it and each ligand is composed of several spherical, tangentially jointed segments. The number of segments is the same for all ligands. Particular models differ by the numbers of ligands and of segments per ligand, but the total number of segments is constant. Moreover, our model assumes that the ligands are tethered to the core in such a manner that they can "slide" over the core surface. Using molecular dynamics simulations we investigate the differences in the structure of a system close to the wall. In order to characterize the distribution of the ligands around the core, we have calculated the end-to-end distances of the ligands and the lengths and orientation of the mass dipoles. Additionally, we also employed a density functional approach to obtain the density profiles. We have found that if the number of ligands is not too high, the proposed version of the theory is capable to predict the structure of the system with a reasonable accuracy.

  17. Stability Constants of Mixed Ligand Complexes of Transition Metal(II Ions with Salicylidene-4-methoxyaniline as Primary Ligand and 5-Bromosalicylidene-4-nitroaniline as Secondary Ligand

    Directory of Open Access Journals (Sweden)

    N. G. Nadkarni

    2011-01-01

    Full Text Available Binary and ternary complexes of the type M-Y and M-X-Y [M = Mn(II, Ni(II, Cu(II and Zn(II; X = salicylidene-4-methoxyaniline and Y=5-bromosalicylidene-4-nitroaniline] have been examined pH-metrically at 27±0.5 °C and at constant ionic strength, μ= 0.1 M (KCl in 75 : 25(v/v 1,4-dioxne-water medium. The stability constants for binary (M-Y and ternary (M-X-Y systems were calculated. The relative stability (Δ log KT values of the ternary complexes with corresponding binary complexes for all the metal(II ions in the present study found to be negative indicating that ternary 1:1:1 (M-X-Y complexes are less stable than binary 1:1 (M-Y complexes. In the ternary system studied, the order of stability constants of mixed ligand complexes with respect to the metal ions was found to be Cu(II > NI(II > Mn(II > Zn(II; which is same as in the corresponding binary (M-Y systems.

  18. Engineering cofactor and ligand binding in an artificial neuroglobin

    Science.gov (United States)

    Zhang, Lei

    HP-7 is one artificial mutated oxygen transport protein, which operates via a mechanism akin to human neuroglobin and cytoglobin. This protein destabilizes one of two heme-ligating histidine residues by coupling histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Replacement of these glutamate residues with alanine, which has a neutral hydrophobicity, slows gaseous ligand binding 22-fold, increases the affinity of the distal histidine ligand by a factor of thirteen, and decreases the binding affinity of carbon monoxide, a nonreactive oxygen analogue, three-fold. Paradoxically, it also decreases heme binding affinity by a factor of three in the reduced state and six in the oxidized state. Application of a two-state binding model, in which an initial pentacoordinate binding event is followed by a protein conformational change to hexacoordinate, provides insight into the mechanism of this seemingly counterintuitive result: the initial pentacoordinate encounter complex is significantly destabilized by the loss of the glutamate side chains, and the increased affinity for the distal histidine only partially compensates. These results point to the importance of considering each oxidation and conformational state in the design of functional artificial proteins. We have also examined the effects these mutations have on function. The K d of the nonnreactive oxygen analogue carbon monoxide (CO) is only decreased three-fold, despite the large increase in distal histidine affinity engendered by the 22-fold decrease in the histidine ligand off-rate. This is a result of the four-fold increase in affinity for CO binding to the pentacoordinate state. Oxygen binds to HP7 with a Kd of 117 µM, while the mutant rapidly oxidizes when exposed to oxygen. EPR analysis of both ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation causes a

  19. Abundance of Flt3 and its ligand in astrocytic tumors

    Directory of Open Access Journals (Sweden)

    Eßbach C

    2013-05-01

    Full Text Available C Eßbach,1 N Andrae,1 D Pachow,1 J-P Warnke,2 A Wilisch-Neumann,1 E Kirches,1 C Mawrin11Department of Neuropathology, Otto-von-Guericke University, Magdeburg, 2Department of Neurosurgery, Paracelsus Hospital, Zwickau, GermanyBackground: Molecular targeted therapies for astrocytic tumors are the subject of growing research interest, due to the limited response of these tumors, especially glioblastoma multiforme, to conventional chemotherapeutic regimens. Several of these approaches exploit the inhibition of receptor tyrosine kinases. To date, it has not been elucidated if fms-like tyrosine kinase-3 (Flt3 and its natural ligand (Flt3L are expressed in astrocytic tumors, although some of the clinically intended small-molecule receptor tyrosine kinase inhibitors affect Flt3, while others do not. More importantly, the recent proof of principle for successful stimulation of the immune system against gliomas in preclinical models via local Flt3L application requires elucidation of this receptor tyrosine kinase pathway in these tumors in more detail. This therapy is based on recruitment of Flt3-positive dendritic cells, but may be corroborated by activity of this signaling pathway in glioma cells.Methods: Receptor and ligand expression was analyzed by real-time polymerase chain reaction in 31 astrocytic tumors (six diffuse and 11 anaplastic astrocytomas, 14 glioblastomas derived from patients of both genders and in glioblastoma cell lines. The two most common activating mutations of the Flt3 gene, ie, internal tandem duplication and D835 point mutation, were assessed by specific polymerase chain reaction.Results: A relatively high abundance of Flt3L mRNA (4%–6% of the reference, β2 microglobulin could be demonstrated in all tumor samples. Flt3 expression could generally be demonstrated by 40 specific polymerase chain reaction cycles and gel electrophoresis in 87% of the tumors, including all grades, although the small quantities of the receptor did

  20. Ligand and proton exchange dynamics in recombinant human myoglobin mutants.

    Science.gov (United States)

    Lambright, D G; Balasubramanian, S; Boxer, S G

    1989-05-05

    Site-specific mutants of human myoglobin have been prepared in which lysine 45 is replaced by arginine (K45R) and aspartate 60 by glutamate (D60E), in order to examine the influence of these residues and their interaction on the dynamics of the protein. These proteins were studied by a variety of methods, including one and two-dimensional proton nuclear magnetic resonance spectroscopy, exchange kinetics for the distal and proximal histidine NH protons as a function of pH in the met cyano forms, flash photolysis of the CO forms, and ligand replacement kinetics. The electronic absorption and proton nuclear magnetic resonance spectra of the CO forms of these proteins are virtually identical, indicating that the structure of the heme pocket is unaltered by these mutations. There are, however, substantial changes in the dynamics of both CO binding and proton exchange for the mutant K45R, whereas the mutant D60E exhibits behavior indistinguishable from the reference human myoglobin. K45R has a faster CO bimolecular recombination rate and slower CO off-rate relative to the reference. The kinetics for CO binding are independent of pH (6.5 to 10) as well as ionic strength (0 to 1 M-NaCl). The exchange rate for the distal histidine NH is substantially lower for K45R than the reference, whereas the proximal histidine NH exchange rate is unaltered. The exchange behavior of the human proteins is similar to that reported for a comparison of the exchange rates for myoglobins having lysine at position 45 with sperm whale myoglobin, which has arginine at this position. This indicates that the differences in exchange rates reflects largely the Lys----Arg substitution. The lack of a simple correlation for the CO kinetics with this substitution means that these are sensitive to other factors as well. Specific kinetic models, whereby substitution of arginine for lysine at position 45 can affect ligand binding dynamics, are outlined. These experiments demonstrate that a relatively