WorldWideScience

Sample records for p-selectin coated substrate

  1. Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets.

    Science.gov (United States)

    Bachelet, Laure; Bertholon, Isabelle; Lavigne, Damien; Vassy, Roger; Jandrot-Perrus, Martine; Chaubet, Frédéric; Letourneur, Didier

    2009-02-01

    P-selectin is an adhesion receptor expressed on activated platelets and endothelial cells. Its natural ligand, P-selectin glycoprotein ligand-1, is expressed on leucocytes and the P-selectin/PSGL-1 interaction is involved in leukocyte rolling. We have compared the interaction of P-selectin with several low molecular weight polysaccharides: fucoidan, heparin and dextran sulfate. Binding assays were obtained from the interaction of the polysaccharides with Sialyl Lewis X and PSGL-1 based constructs onto microtiter plates coated with P-selectin. SELDI TOF mass spectrometry was performed with anionic chips arrays coated with P-selectin in the absence or in the presence of polysaccharides. Kd were obtained from surface plasmon resonance experiments with immobilized P-selectin constructs, polysaccharides being injected in the mobile phase. Human whole blood flow cytometry experiments were performed with fluorescein isothiocyanate labelled polysaccharides with or without platelets activators. The fucoidan prevented P-selectin binding to Sialyl Lewis X with an IC(50) of 20 nM as compared to 400 nM for heparin and affinity for immobilized P-selectin with a KD of 1.2 nM, two orders of magnitude greater than the K(D) of the other polysaccharides. Mass spectrometry evidenced the formation of a complex between P-selectin and fucoidan. The intensity of the fucoidan binding to platelets was dependent on the level of platelet activation. Competition between fucoidan and an anti P-selectin antibody demonstrated the specificity of the interaction. Low molecular weight fucoidan is a promising therapeutic agent of natural origin for biomedical applications.

  2. Bromelain decreases neutrophil interactions with P-selectin, but not E-selectin, in vitro by proteolytic cleavage of P-selectin glycoprotein ligand-1.

    Directory of Open Access Journals (Sweden)

    Jessica M Banks

    Full Text Available Stem bromelain, a cysteine protease isolated from pineapples, is a natural anti-inflammatory treatment, yet its mechanism of action remains unclear. Curious as to whether bromelain might affect selectin-mediated leukocyte rolling, we studied the ability of bromelain-treated human neutrophils to tether to substrates presenting immobilized P-selectin or E-selectin under shear stress. Bromelain treatment attenuated P-selectin-mediated tethering but had no effect on neutrophil recruitment on E-selectin substrates. Flow cytometric analysis of human neutrophils, using two antibodies against distinct epitopes within the P-selectin glycoprotein ligand-1 (PSGL-1 active site, revealed that bromelain cleaves PSGL-1 to remove one of two sites required for P-selectin binding, while leaving the region required for E-selectin binding intact. These findings suggest one molecular mechanism by which bromelain may exert its anti-inflammatory effects is via selective cleavage of PSGL-1 to reduce P-selectin-mediated neutrophil recruitment.

  3. Bromelain decreases neutrophil interactions with P-selectin, but not E-selectin, in vitro by proteolytic cleavage of P-selectin glycoprotein ligand-1.

    Science.gov (United States)

    Banks, Jessica M; Herman, Christine T; Bailey, Ryan C

    2013-01-01

    Stem bromelain, a cysteine protease isolated from pineapples, is a natural anti-inflammatory treatment, yet its mechanism of action remains unclear. Curious as to whether bromelain might affect selectin-mediated leukocyte rolling, we studied the ability of bromelain-treated human neutrophils to tether to substrates presenting immobilized P-selectin or E-selectin under shear stress. Bromelain treatment attenuated P-selectin-mediated tethering but had no effect on neutrophil recruitment on E-selectin substrates. Flow cytometric analysis of human neutrophils, using two antibodies against distinct epitopes within the P-selectin glycoprotein ligand-1 (PSGL-1) active site, revealed that bromelain cleaves PSGL-1 to remove one of two sites required for P-selectin binding, while leaving the region required for E-selectin binding intact. These findings suggest one molecular mechanism by which bromelain may exert its anti-inflammatory effects is via selective cleavage of PSGL-1 to reduce P-selectin-mediated neutrophil recruitment.

  4. Differing patterns of P-selectin expression in lung injury

    DEFF Research Database (Denmark)

    Bless, N M; Tojo, S J; Kawarai, H

    1998-01-01

    -selectin. In the immune complex model, upregulation of P-selectin was defined by Northern and Western blot analysis of lung homogenates, by immunostaining of lung tissue, and by vascular fixation of 125I-labeled anti-P-selectin. P-selectin protein was detected by 1 hour (long before detection of mRNA) and expression...

  5. CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells.

    Science.gov (United States)

    Aigner, S; Sthoeger, Z M; Fogel, M; Weber, E; Zarn, J; Ruppert, M; Zeller, Y; Vestweber, D; Stahel, R; Sammar, M; Altevogt, P

    1997-05-01

    P-selectin (CD62P) is a Ca2+-dependent endogenous lectin that can be expressed by vascular endothelium and platelets. The major ligand for P-selectin on leukocytes is P-selectin glycoprotein ligand-1 (PSGL-1). P-selectin can also bind to carcinoma cells, but the nature of the ligand(s) on these cells is unknown. Here we investigated the P-selectin binding to a breast and a small cell lung carcinoma cell line that are negative for PSGL-1. We report that CD24, a mucin-type glycosylphosphatidylinositol-linked cell surface molecule on human neutrophils, pre B lymphocytes, and many tumors can promote binding to P-selectin. Latex beads coated with purified CD24 from the two carcinoma cell lines but also neutrophils could bind specifically to P-selectin-IgG. The binding was dependent on divalent cations and was abolished by treatment with O-sialoglycoprotein endopeptidase but not endoglycosidase F or sialidase. The beads were stained with a monoclonal antibody (MoAb) to CD57 (HNK-1 carbohydrate epitope) but did not react with MoAbs against the sialylLe(x/a) epitope. The carcinoma cells and CD24-beads derived from these cells could bind to activated platelets or P-selectin transfected Chinese hamster ovary cells (P-CHO) in a P-selectin-dependent manner and this binding was blocked by soluble CD24. Transfection of human adenocarcinoma cells with CD24 enhanced the P-selectin-dependent binding to activated platelets. Treatment of the carcinoma cells or the CD24 transfectant with phosphatidylinositol-specific phospholipase C reduced CD24 expression and P-selectin-IgG binding concomitantly. These results establish a role of CD24 as a novel ligand for P-selectin on tumor cells. The CD24/P-selectin binding pathway could be important in the dissimination of tumor cells by facilitating the interaction with platelets or endothelial cells.

  6. Differing Patterns of P-Selectin Expression in Lung Injury

    Science.gov (United States)

    Bless, Nicolas M.; Tojo, Shinichiro J.; Kawarai, Hiroko; Natsume, Yasuhiro; Lentsch, Alex B.; Padgaonkar, Vaishalee A.; Czermak, Boris J.; Schmal, Hagen; Friedl, Hans P.; Ward, Peter A.

    1998-01-01

    Using two models of acute lung inflammatory injury in rats (intrapulmonary deposition of immunoglobulin G immune complexes and systemic activation of complement after infusion of purified cobra venom factor), we have analyzed the requirements and patterns for upregulation of lung vascular P-selectin. In the immune complex model, upregulation of P-selectin was defined by Northern and Western blot analysis of lung homogenates, by immunostaining of lung tissue, and by vascular fixation of 125I-labeled anti-P-selectin. P-selectin protein was detected by 1 hour (long before detection of mRNA) and expression was sustained for the next 7 hours, in striking contrast to the pattern of P-selectin expression in the cobra venom factor model, in which upregulation was very transient (within the 1st hour). In the immune complex model, injury and neutrophil accumulation were P-selectin dependent. Upregulation of P-selectin was dependent on an intact complement system, and the presence of blood neutrophils was susceptible to the antioxidant dimethyl sulfoxide and required C5a but not tumor necrosis factor α. In contrast, in the cobra venom factor model, upregulation of P-selectin, which is C5a dependent, was also dimethyl sulfoxide sensitive but neutrophil independent. Different mechanisms that may explain why upregulation of lung vascular P-selectin is either transient or sustained are discussed. PMID:9777942

  7. Coated substrate apparatus and method

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Zhenan; Diao, Ying; Mannsfeld, Stefan Christian Bernhardt; Tee, Chee-Keong; Becerril-Garcia, Hector A.; Zhou, Yan

    2018-01-09

    A coated substrate is formed with aligned objects such as small molecules, macromolecules and nanoscale particulates, such as inorganic, organic or inorganic/organic hybrid materials. In accordance with one or more embodiments, an apparatus or method involves an applicator having at least one surface patterned with protruded or indented features, and a coated substrate including a solution-based layer of objects having features and morphology attributes arranged as a function of the protruded or indented features.

  8. P-selectin in preterm infants suffering necrotizing enterocolitis ...

    African Journals Online (AJOL)

    Objective: To study P-selectin, a possible cause of NEC, in the blood of preterm infants. Study design: Twenty-four consecutive preterms, clinically suspected or proven to have NEC, were enrolled in this pilot study. Their weight ranged from 1 to 2.3 Kg (mean ±SD: 1.7±0.5 Kg), age ranged from 2 to 21 days (mean ±SD: ...

  9. Role of Soluble P-Selectin Among Type 2 Diabetic Patients with and ...

    African Journals Online (AJOL)

    ROC curve analysis for hsCRP and sP-selectin indicated that, sP-selectin had higher sensitivity and specificity than hsCRP in diabetic patient with coronary artery disease. In conclusion, measurement of soluble P-selectin seems more helpful marker of impending coronary artery insult in diabetic patients and had higher ...

  10. P-selectin, carcinoma metastasis and heparin: novel mechanistic connections with therapeutic implications

    Directory of Open Access Journals (Sweden)

    Varki A.

    2001-01-01

    Full Text Available Metastasis is a multistep cascade initiated when malignant cells penetrate the tissue surrounding the primary tumor and enter the bloodstream. Classic studies indicated that blood platelets form complexes around tumor cells in the circulation and facilitate metastases. In other work, the anticoagulant drug heparin diminished metastasis in murine models, as well is in preliminary human studies. However, attempts to follow up the latter observation using vitamin K antagonists failed, indicating that the primary mechanism of heparin action was unrelated to its anticoagulant properties. Other studies showed that the overexpression of sialylated fucosylated glycans in human carcinomas is associated with a poor prognosis. We have now brought all these observations together into one mechanistic explanation, which has therapeutic implications. Carcinoma cells expressing sialylated fucosylated mucins can interact with platelets, leukocytes and endothelium via the selectin family of cell adhesion molecules. The initial organ colonization of intravenously injected carcinoma cells is attenuated in P-selectin-deficient mice, in mice receiving tumor cells pretreated with O-sialoglycoprotease (to selectively remove mucins from cell surfaces, or in mice receiving a single dose of heparin prior to tumor cell injection. In each case, we found that formation of a platelet coating on cancer cells was impeded, allowing increased access of leukocytes to the tumor cells. Several weeks later, all animals showed a decrease in the extent of established metastasis, indicating a long-lasting effect of the short-term intervention. The absence of obvious synergism amongst the three treatments suggests that they all act via a common pathway. Thus, a major mechanism of heparin action in cancer may be inhibition of P-selectin-mediated platelet coating of tumor cells during the initial phase of the metastatic process. We therefore suggest that heparin use in cancer be re

  11. P-selectin glycoprotein ligand-1 in T cells.

    Science.gov (United States)

    Abadier, Michael; Ley, Klaus

    2017-05-01

    We review P-selectin glycoprotein ligand-1 (PSGL-1) as a selectin and chemokine-binding adhesion molecule. PSGL-1 is widely studied in neutrophils. Here, we focus on T cells, because PSGL-1 was recently described as a major immunomodulatory molecule during viral infection. PSGL-1 also plays a crucial role in T-cell homeostasis by binding to lymphoid chemokines, and can induce tolerance by enhancing the functions of regulatory T cells. PSGL-1 was originally described as a leukocyte ligand for P-selectin, but it is actually a ligand for all selectins (P-, L- and E-selectin), binds chemokines, activates integrins and profoundly affects T-cell biology. It has been shown recently that PSGL-1 can modulate T cells during viral infection by acting as a negative regulator for T-cell functions. Absence of PSGL-1 promotes effector CD4 and CD8 T-cell differentiation and prevents T-cell exhaustion. Consistent with this, tumor growth was significantly reduced in PSGL-1-deficient mice because of an enhanced number of effector T cells together with reduced levels of inhibitory receptors that induce T-cell exhaustion. PSGL-1 is the best-studied selectin ligand and has become a posterchild of versatility in leukocyte adhesion, inflammation and immunology. The direct involvement of PSGL-1 in T-cell biology suggests that it might be a drug target. Indeed, PSGL-1 has been tested in some clinical trials and recently, PSGL-1 blockers were proposed as a potential cotherapy in cancer immunotherapy.

  12. Plasma substance P and soluble P-selectin as biomarkers of β ...

    African Journals Online (AJOL)

    Samia A. Ebeid

    2013-09-19

    Sep 19, 2013 ... Abstract Background: Hypercoagulability in thalassemia especially in thalassemia major has emerged as a complication of the disease. There is evidence of increased platelet aggregation and increased proportion of platelets expressing P-selectin in thalassemia. P-selectin is a cell adhesion molecule ...

  13. Plasma substance P and soluble P-selectin as biomarkers of β ...

    African Journals Online (AJOL)

    Background: Hypercoagulab ility in thalassemia especially in thalassemia major has emerged as a complication of the disease. There is evidence of increased platelet aggregation and increased proportion of platelets expressing P-selectin in thalassemia. P-selectin is a cell adhesion molecule which plays a key role in ...

  14. Fetal wound healing using a genetically modified murine model: the contribution of P-selectin

    Science.gov (United States)

    During early gestation, fetal wounds heal with paucity of inflammation and absent scar formation. P-selectin is an adhesion molecule that is important for leukocyte recruitment to injury sites. We used a murine fetal wound healing model to study the specific contribution of P-selectin to scarless wo...

  15. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets.

    Science.gov (United States)

    Palabrica, T; Lobb, R; Furie, B C; Aronovitz, M; Benjamin, C; Hsu, Y M; Sajer, S A; Furie, B

    1992-10-29

    The glycoprotein P-selectin is a cell adhesion molecule of stimulated platelets and endothelial cells, which mediates the interaction of these cells with neutrophils and monocytes. It is a membrane component of cell storage granules, and is a member of the selectin family which includes E-selectin and L-selectin. P-selectin recognizes both lineage-specific carbohydrate ligands on monocytes and neutrophils, including the Lewis x antigen, sialic acid, and a protein component. In inflammation and thrombosis, P-selectin may mediate the interaction of leukocytes with platelets bound in the region of tissue injury and with stimulated endothelium. To evaluate the role of P-selectin in platelet-leukocyte adhesion in vivo, the accumulation of leukocytes within an experimental thrombus was explored in an arteriovenous shunt model in baboons. A Dacron graft implanted within an arteriovenous shunt is thrombogenic, accumulating platelets and fibrin within its lumen. These bound platelets express P-selectin. Here we show that antibody inhibition of leukocyte binding to P-selectin expressed on platelets immobilized on the graft blocks leukocyte accumulation and inhibits the deposition of fibrin within the thrombus. These results indicate that P-selectin is an important adhesion molecule on platelets, mediating platelet-leukocyte binding in vivo, that the presence of leukocytes in thrombi is mediated by P-selectin, and that these leukocytes promote fibrin deposition.

  16. Value of plasma P-selectin for vascular complications in liver transplantation.

    Science.gov (United States)

    Fábrega, E; Casafont, F; Merino, J; de la Peña, J; Crespo, J; Amado, J A; Pons-Romero, F

    1996-06-01

    Recent data suggest that plasma P-selectin, an adhesion molecule, may be a clinically useful marker for thrombosis. Hepatic vessel thrombosis is one of the most serious complications following liver transplantation. To assess the contribution of the soluble P-selectin to this complication, we measured plasma P-selectin levels in 32 orthotopic liver transplantations, pre-, intra-, and post-operatively. We found that levels of circulating P-selectin were not different between cirrhotic patients and healthy subjects. Of the 32 patients, 8 had vascular complications. We found a significant increase in the plasma P-selectin concentration in the thrombotic group in early postoperative period compared with the non-thrombotic group (p < 0.002). It measurement may facilitate the diagnosis of thrombosis in the early postoperative period after liver transplantation, and therefore the management of these patients.

  17. Clinical and genetic correlates of soluble P-selectin in the community.

    Science.gov (United States)

    Lee, D S; Larson, M G; Lunetta, K L; Dupuis, J; Rong, J; Keaney, J F; Lipinska, I; Baldwin, C T; Vasan, R S; Benjamin, E J

    2008-01-01

    P-selectin is a cell adhesion molecule that is involved in atherogenesis, and soluble concentrations of this biomarker reflect cardiovascular risk. However, the clinical correlates and genetic characterization of soluble P-selectin have not been clearly elucidated. To describe clinical and genetic correlates of circulating P-selectin in the community. In Framingham Heart Study Offspring (European descent) and Omni (ethnic/racial minority) participants, we examined the association of cardiovascular risk factors with soluble P-selectin concentrations. In Offspring participants, we evaluated heritability, linkage and association of 29 SELP single-nucleotide polymorphisms (SNPs) with adjusted P-selectin concentrations. In multivariable analysis of 3,690 participants (54% women, mean age 60 +/- 10 years), higher log-transformed P-selectin concentrations were inversely associated with female sex and hormone replacement therapy, and positively associated with age, ethnic/racial minority status, cigarette smoking, waist circumference, systolic blood pressure, fasting glucose, and total/high-density lipoprotein cholesterol and triglyceride concentrations. Clinical factors explained 10.4% of the interindividual variability in P-selectin concentrations. In 571 extended pedigrees (n = 1,841) with >or= 2 phenotyped members per family, multivariable-adjusted heritability was 45.4 +/- 5.8%. Among the SELP SNPs examined, a non-synonymous SNP (rs6136) encoding a threonine-to-proline substitution at position 715 was highly significantly associated with decreased P-selectin concentrations (P = 5.2 x 10(-39)), explaining 9.7% of variation after adjustment for clinical factors. Multiple clinical factors and an SNP in the SELP gene were significantly associated with circulating P-selectin concentrations. One SNP in SELP explained significant variation in circulating P-selectin concentrations, even after accounting for known clinical correlates.

  18. CD63 is an essential cofactor to leukocyte recruitment by endothelial P-selectin.

    Science.gov (United States)

    Doyle, Emily L; Ridger, Victoria; Ferraro, Francesco; Turmaine, Mark; Saftig, Paul; Cutler, Daniel F

    2011-10-13

    The activation of endothelial cells is critical to initiating an inflammatory response. Activation induces the fusion of Weibel-Palade Bodies (WPB) with the plasma membrane, thus transferring P-selectin and VWF to the cell surface, where they act in the recruitment of leukocytes and platelets, respectively. CD63 has long been an established component of WPB, but the functional significance of its presence within an organelle that acts in inflammation and hemostasis was unknown. We find that ablating CD63 expression leads to a loss of P-selectin-dependent function: CD63-deficient HUVECs fail to recruit leukocytes, CD63-deficient mice exhibit a significant reduction in both leukocyte rolling and recruitment and we show a failure of leukocyte extravasation in a peritonitis model. Loss of CD63 has a similar phenotype to loss of P-selectin itself, thus CD63 is an essential cofactor to P-selectin.

  19. Differential localization of P-selectin and von Willebrand factor during megakaryocyte maturation

    DEFF Research Database (Denmark)

    Zingariello, M; Fabucci, M E; Bosco, D

    2010-01-01

    Willebrand factor are two proteins present in the alpha-granules that recognize P-selectin glycoprotein ligand on neutrophils and collagen in the subendothelial matrix. These proteins may play an important role in determining the differential release of the alpha-granule contents in response to external....... These observations support the hypothesis that P-selectin and von Willebrand factor may ensure differential release of the alpha-granule content in response to external stimuli....

  20. Assembly of multimeric von Willebrand factor directs sorting of P-selectin

    NARCIS (Netherlands)

    Hop, C.; Guilliatt, A.; Daly, M.; de Leeuw, H. P.; Brinkman, H. J.; Peake, I. R.; van Mourik, J. A.; Pannekoek, H.

    2000-01-01

    We designed a model system to study the role of von Willebrand factor (vWF) in the sorting of P-selectin and the biogenesis of Weibel-Palade body (WPB)-like organelles. For that purpose, a human epithelial cell line (T24) that synthesizes P-selectin mRNA, but which is devoid of vWF mRNA synthesis

  1. Peptides from multiple regions of the lectin domain of P-selectin inhibiting neutrophil adhesion.

    Science.gov (United States)

    Heavner, G A; Falcone, M; Kruszynski, M; Epps, L; Mervic, M; Riexinger, D; McEver, R P

    1993-11-01

    The selectins are a family of three structurally related glycoproteins that are integral components of leukocyte adhesion to the vascular endothelium. Their involvement in the recruitment and extravasation of neutrophils is critical in mounting an inflammatory reaction. The carbohydrate nature of the selectin ligands suggests that the binding regions of the selectins are contained within the lectin-like domains of the selectins. The synthesis and evaluation for inhibition of selectin binding of overlapping peptides of the lectin and adjacent EGF-like domains of P-selectin have been used to identify small peptides that completely inhibit P-selectin-dependent neutrophil adhesion. These peptides span a region of more than 100 amino acids and may define the carbohydrate recognition domain of P-selectin.

  2. Melanoma cell metastasis via P-selectin-mediated activation of acid sphingomyelinase in platelets.

    Science.gov (United States)

    Becker, Katrin Anne; Beckmann, Nadine; Adams, Constantin; Hessler, Gabriele; Kramer, Melanie; Gulbins, Erich; Carpinteiro, Alexander

    2017-01-01

    Metastatic dissemination of cancer cells is one of the hallmarks of malignancy and accounts for approximately 90 % of human cancer deaths. Within the blood vasculature, tumor cells may aggregate with platelets to form clots, adhere to and spread onto endothelial cells, and finally extravasate to form metastatic colonies. We have previously shown that sphingolipids play a central role in the interaction of tumor cells with platelets; this interaction is a prerequisite for hematogenous tumor metastasis in at least some tumor models. Here we show that the interaction between melanoma cells and platelets results in rapid and transient activation and secretion of acid sphingomyelinase (Asm) in WT but not in P-selectin-deficient platelets. Stimulation of P-selectin resulted in activation of p38 MAPK, and inhibition of p38 MAPK in platelets prevented the secretion of Asm after interaction with tumor cells. Intravenous injection of melanoma cells into WT mice resulted in multiple lung metastases, while in P-selectin-deficient mice pulmonary tumor metastasis and trapping of tumor cells in the lung was significantly reduced. Pre-incubation of tumor cells with recombinant ASM restored trapping of B16F10 melanoma cells in the lung in P-selectin-deficient mice. These findings indicate a novel pathway in tumor metastasis, i.e., tumor cell mediated activation of P-selectin in platelets, followed by activation and secretion of Asm and in turn release of ceramide and tumor metastasis. The data suggest that p38 MAPK acts downstream from P-selectin and is necessary for the secretion of Asm.

  3. Role of Soluble P-Selectin Among Type 2 Diabetic Patients with and ...

    African Journals Online (AJOL)

    Type 2 diabetes mellitus (T2DM) is associated with a marked increase in the risk of coronary heart disease. Platelets play a significant role in coronary artery disease (CAD). P-selectin is a component of the platelet granule membrane that is expressed on the platelet surface membrane and shed into the plasma as ...

  4. Early Dynamics of P-selectin and Interleukin 6 Predicts Outcomes in Ischemic Stroke

    DEFF Research Database (Denmark)

    Pusch, Gabriella; Debrabant, Birgit; Molnar, Tihamer

    2015-01-01

    to poststroke infection, death, and functional outcome, and assessed the ability of the models to predict each outcome. RESULTS: Interleukin 6 (IL-6) levels and change of IL-6 concentrations by 72 hours correlated with the size of tissue damage indicated by S100B titers. Levels of IL-6 and P-selectin at 72...

  5. Association between circulating levels of P-selectins and burden of ...

    African Journals Online (AJOL)

    We tested the hypothesis that, in the acute phase of ST-segment elevation myocardial infarction (STEMI), the circulating level of P-selectin (PS) is predictive of angiographic morphologic features that indicate burden of thrombus formation in the infarct-related artery (IRA). One hundred and ninety-five consecutive patients ...

  6. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    Science.gov (United States)

    Branagan, Daniel J [Idaho Falls, ID; Hyde, Timothy A [Idaho Falls, ID; Fincke, James R [Los Alamos, NM

    2008-03-11

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  7. Spectroscopic ellipsometry characterization of coatings on biaxially anisotropic polymeric substrates

    Science.gov (United States)

    Hilfiker, James N.; Pietz, Brandon; Dodge, Bill; Sun, Jianing; Hong, Nina; Schoeche, Stefan

    2017-11-01

    Spectroscopic ellipsometry characterization of coatings on polymeric substrates can be challenging due to the substrate optical anisotropy. We compare four characterization strategies for thin coating layers on anisotropic polymeric substrates with regard to accuracy of the resulting layer thickness and coating optical constants. Each strategy differs in measured data type, model construction, implementation complexity, and inherent capabilities and sensitivity to the coating properties. Best practices and limitations are discussed for each strategy.

  8. Evolutionary conservation of P-selectin glycoprotein ligand-1 primary structure and function

    Directory of Open Access Journals (Sweden)

    Schapira Marc

    2007-09-01

    Full Text Available Abstract Background P-selectin glycoprotein ligand-1 (PSGL-1 plays a critical role in recruiting leukocytes in inflammatory lesions by mediating leukocyte rolling on selectins. Core-2 O-glycosylation of a N-terminal threonine and sulfation of at least one tyrosine residue of PSGL-1 are required for L- and P-selectin binding. Little information is available on the intra- and inter-species evolution of PSGL-1 primary structure. In addition, the evolutionary conservation of selectin binding site on PSGL-1 has not been previously examined in detail. Therefore, we performed multiple sequence alignment of PSGL-1 amino acid sequences of 14 mammals (human, chimpanzee, rhesus monkey, bovine, pig, rat, tree-shrew, bushbaby, mouse, bat, horse, cat, sheep and dog and examined mammalian PSGL-1 interactions with human selectins. Results A signal peptide was predicted in each sequence and a propeptide cleavage site was found in 9/14 species. PSGL-1 N-terminus is poorly conserved. However, each species exhibits at least one tyrosine sulfation site and, except in horse and dog, a T [D/E]PP [D/E] motif associated to the core-2 O-glycosylation of a N-terminal threonine. A mucin-like domain of 250–280 amino acids long was disclosed in all studied species. It lies between the conserved N-terminal O-glycosylated threonine (Thr-57 in human and the transmembrane domain, and contains a central region exhibiting a variable number of decameric repeats (DR. Interspecies and intraspecies polymorphisms were observed. Transmembrane and cytoplasmic domain sequences are well conserved. The moesin binding residues that serve as adaptor between PSGL-1 and Syk, and are involved in regulating PSGL-1-dependent rolling on P-selectin are perfectly conserved in all analyzed mammalian sequences. Despite a poor conservation of PSGL-1 N-terminal sequence, CHO cells co-expressing human glycosyltransferases and human, bovine, pig or rat PSGL-1 efficiently rolled on human L- or P-selectin

  9. Platelet and endothelial cell P-selectin are required for host defense against Klebsiella pneumoniae-induced pneumosepsis.

    Science.gov (United States)

    de Stoppelaar, S F; Van't Veer, C; Roelofs, J J T H; Claushuis, T A M; de Boer, O J; Tanck, M W T; Hoogendijk, A J; van der Poll, T

    2015-06-01

    Sepsis is associated with activation of platelets and endothelial cells accompanied by enhanced P-selectin surface expression. Both platelet- and endothelial P-selectin have been associated with leukocyte recruitment and induction of inflammatory alterations. Klebsiella (K.) pneumoniae is a common human sepsis pathogen, particularly in the context of pneumonia. Wild-type (WT) and P-selectin-deficient (Selp(-/-) ) mice or bone marrow chimeric mice were infected with K. pneumoniae via the airways to induce pneumosepsis. Mice were sacrificed during early (12 h after infection) or late-stage (44 h) sepsis for analyses, or followed in a survival study. Selp(-/-) mice displayed 10-1000-fold higher bacterial burdens in the lungs, blood and distant organs during late-stage sepsis. P-selectin deficiency did not influence leukocyte recruitment to the lungs, but was associated with decreased platelet-monocyte complexes and increased cytokine release. Bone marrow transfer studies revealed a role for both platelet and endothelial cell P-selectin as mice deficient in platelet or endothelial cell P-selectin displayed an intermediate phenotype in bacterial loads and survival compared with full wild-type or full knockout control mice. Both platelet and endothelial cell P-selectin contribute to host defense during Klebsiella pneumosepsis. © 2015 International Society on Thrombosis and Haemostasis.

  10. Protective effects of oligosaccharides in P-selectin-dependent lung injury.

    Science.gov (United States)

    Mulligan, M S; Paulson, J C; De Frees, S; Zheng, Z L; Lowe, J B; Ward, P A

    1993-07-08

    Neutrophil recruitment into tissues is a multistep process involving sequential engagement of adhesion molecules, including selectins (E,P,L), which are reactive with oligosaccharides, and the family of beta 2 integrins which are reactive with endothelial intercellular adhesion molecules. These processes result in the initial rolling of leukocytes along the endothelial surfaces, followed by the firm attachment of leukocytes to the endothelium. The intravenous infusion of cobra venom factor into rats results in acute lung injury that is neutrophil-dependent, oxygen radical mediated and P-selectin-dependent. Here we report that infusion of sialyl-Lewis X, a ligand for P-selectin, dramatically reduced lung injury and diminished the tissue accumulation of neutrophils, whereas irrelevant oligosaccharides had no such effects. These results suggest that sialyl-Lewis X carbohydrates may be used as a new strategy for anti-inflammatory therapy.

  11. Glycopeptide Analogues of PSGL-1 Inhibit P-Selectin In Vitro and In Vivo

    OpenAIRE

    Krishnamurthy, Venkata R.; Sardar, Mohammed Y. R.; Yu, Ying; Song, Xuezheng; Haller, Carolyn; Dai, Erbin; Wang, Xiacong; Hanjaya-Putra, Donny; Sun, Lijun; Morikis, Vasilios; Simon, Scott I.; Woods, Robert; Cummings, Richard D.; Chaikof, Elliot L.

    2015-01-01

    Blockade of P-selectin/PSGL-1 interactions holds significant potential for treatment of disorders of innate immunity, thrombosis, and cancer. Current inhibitors remain limited due to low binding affinity or by the recognized disadvantages inherent to chronic administration of antibody therapeutics. Here we report an efficient approach for generating glycosulfopeptide mimics of N-terminal PSGL-1 through development of a stereoselective route for multi-gram scale synthesis of the C2 O-glycan bu...

  12. Sulfated Hexasaccharides Attenuate Metastasis by Inhibition of P-selectin and Heparanase

    Directory of Open Access Journals (Sweden)

    Lubor Borsig

    2011-05-01

    Full Text Available Development of compounds that target both heparanase and selectins is emerging as a promising approach for cancer therapy. Selectins are vascular cell adhesion molecules that mediate tumor cell interactions with platelets, leukocytes, and the vascular endothelium. Heparanase is an endoglycosidase that degrades heparan sulfate in the tumor microenvironment, cell surfaces, and vessel wall. Acting together, these molecules facilitate tumor cell arrest, extravasation, and metastasis. Here, we report the preparation of novel semisynthetic sulfated tri mannose C-C-linked dimers (STMCs endowed with heparanase and selectin inhibitory activity. The P-selectin specificity of the STMC was defined by the anomeric linkage of the C-C bond. This STMC hexasaccharide is an effective inhibitor of P-selectin in vivo. We show that selective inhibition of heparanase attenuates metastasis in B16-BL6 melanoma cells, expressing high levels of this endoglycosidase, but has no effect on the metastasis of MC-38 carcinoma cells that express little or no heparanase activity. P-selectin-specific STMC attenuated metastasis in both animal models, indicating that inhibition of tumor cell interaction with the vascular endothelium is critical for cancer dissemination. Thus, the small size, the stability of the C-C bond, and the chemically defined structure of the newly generated STMCs make them superior to heparin derivatives and signify STMCs as valuable candidates for further evaluation.

  13. Influence of the laser pre-quenched substrate on an electroplated chromium coating/steel substrate

    Science.gov (United States)

    Chen, Xuejun; Yan, Qian; Ma, Qian

    2017-05-01

    The chromium coatings were electroplated onto a laser pre-quenched steel substrate to improve the interfacial adhesion properties of chromium coating/steel substrate system. The influence of laser pre-treatment on the substrate, coating as well as interface was investigated by using microstructure characterization, hardness testing, tensile testing and finite element analysis. An apparent boundary line instead of an interlayer was identified between chromium coating/pre-quenched steel substrate. The Vickers hardness and yield strength of steel substrate were significantly improved after laser pre-quenching. The fracture toughness of chromium coating was increased by about 28.6% compared to the un-treated counterpart. The energy release rate for an interfacial crack in the chromium coating/laser-quenched substrate was smaller than that in the untreated specimen. These results may help understand the life prolongation mechanism for the laser pre-quenched chromium/coated steel parts.

  14. Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. II. Tether flow terminated by P-selectin dissociation from PSGL-1.

    Science.gov (United States)

    Heinrich, Volkmar; Leung, Andrew; Evans, Evan

    2005-03-01

    We have used a biomembrane force probe decorated with P-selectin to form point attachments with PSGL-1 receptors on a human neutrophil (PMN) in a calcium-containing medium and then to quantify the forces experienced by the attachment during retraction of the PMN at fixed speed. From first touch to final detachment, the typical force history exhibited the following sequence of events: i), an initial linear-elastic displacement of the PMN surface, ii), an abrupt crossover to viscoplastic flow that signaled membrane separation from the interior cytoskeleton and the beginning of a membrane tether, and iii), the final detachment from the probe tip most often by one precipitous step of P-selectin:PSGL-1 dissociation. Analyzing the initial elastic response and membrane unbinding from the cytoskeleton in our companion article I, we focus in this article on the regime of tether extrusion that nearly always occurred before release of the extracellular adhesion bond at pulling speeds > or =1 microm/s. The force during tether growth appeared to approach a plateau at long times. Examined over a large range of pulling speeds up to 150 microm/s, the plateau force exhibited a significant shear thinning as indicated by a weak power-law dependence on pulling speed, f(infinity) = 60 pN(nu(pull)/microm/s)(0.25). Using this shear-thinning response to describe the viscous element in a nonlinear Maxwell-like fluid model, we show that a weak serial-elastic component with a stiffness of approximately 0.07 pN/nm provides good agreement with the time course of the tether force approach to the plateau under constant pulling speed.

  15. In Vivo Tracking of Platelets: Circulating Degranulated Platelets Rapidly Lose Surface P-Selectin but Continue to Circulate and Function

    National Research Council Canada - National Science Library

    Michelson, A

    1995-01-01

    To examine the hypothesis that surface P-selectin-positive (degranulated) platelets are rapidly cleared from the circulation, we developed novel methods for tracking of platelets and measurement of platelet function in vivo...

  16. The Effect of Substrate Topography on Coating Cathodic Delamination

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Sørensen, Per A.; Kiil, Søren

    2011-01-01

    This article describes the effect of steel substrate topography on coating cathodic delamination. The study showed that the surface preparation can be used to control and minimize the rate of cathodic delamination. The coating should have maximum wetting properties so that substrates with high...

  17. Levels of platelet-derived microparticles and soluble p-selectin in patients of acute myocardial infarction (case control study).

    Science.gov (United States)

    Hameed, Aisha; Rubab, Zille; Abbas Rizvi, Syed Khizar; Hussain, Shabbir; Latif, Waqas; Mohsin, Shahida

    2017-07-01

    TTo measure levels of platelet-derived microparticles and soluble P-selectin in patients of acute myocardial infarction and their comparison with healthy controls. This case-control study was conducted in Department of Haematology, University of Health Sciences Lahore from April to September 2013, and comprised patients of acute myocardial infarction in group 1 and healthy controls in group 2. Platelet-derived microparticles and soluble P-selectin were measured by enzyme-linked immunosorbent assay. SPSS21 was used for data analysis. Of the 80 participants, 50(62.5%) were patients and 30(37.5%) were controls. The mean levels of platelet-derived microparticles and soluble P-selectin were significantly higher in group 1 compared to group 2 (45.70±10.30 vs 10.60±0.96, and 51.46±9.30 vs 9.16±1.04, respectively) (pderived microparticles and soluble P-selectin in three intervals after acute myocardial infarction (p>0.05). Although levels of platelet-derived microparticles and soluble P-selectin did not correlate to creatinekinase-myocardial band levels (p>0.05), but there was a trend of significant correlation with cardiac troponin T (pderived microparticles and soluble P-selectin can be used as novel early diagnostic marker of acute myocardial infarction.

  18. Tyrosine sulfation of native mouse Psgl-1 is required for optimal leukocyte rolling on P-selectin in vivo.

    Directory of Open Access Journals (Sweden)

    Andrew D Westmuckett

    Full Text Available We recently demonstrated that tyrosine sulfation is an important contributor to monocyte recruitment and retention in a mouse model of atherosclerosis. P-selectin glycoprotein ligand-1 (Psgl-1 is tyrosine-sulfated in mouse monocyte/macrophages and its interaction with P-selectin is important in monocyte recruitment in atherosclerosis. However, whether tyrosine sulfation is required for the P-selectin binding function of mouse Psgl-1 is unknown. Here we test the function of native Psgl-1 expressed in leukocytes lacking endogenous tyrosylprotein sulfotransferase (TPST activity.Psgl-1 function was assessed by examining P-selectin dependent leukocyte rolling in post-capillary venules of C57BL6 mice transplanted with hematopoietic progenitors from wild type (WT → B6 or Tpst1;Tpst2 double knockout mice (Tpst DKO → B6 which lack TPST activity. We observed that rolling flux fractions were lower and leukocyte rolling velocities were higher in Tpst DKO → B6 venules compared to WT → B6 venules. Similar results were observed on immobilized P-selectin in vitro. Finally, Tpst DKO leukocytes bound less P-selectin than wild type leukocytes despite equivalent surface expression of Psgl-1.These findings provide direct and convincing evidence that tyrosine sulfation is required for optimal function of mouse Psgl-1 in vivo and suggests that tyrosine sulfation of Psgl-1 contributes to the development of atherosclerosis.

  19. Development of Polymer Microcapsules Functionalized with Fucoidan to Target P-Selectin Overexpressed in Cardiovascular Diseases.

    Science.gov (United States)

    Li, Bo; Juenet, Maya; Aid-Launais, Rachida; Maire, Murielle; Ollivier, Véronique; Letourneur, Didier; Chauvierre, Cédric

    2017-02-01

    New tools for molecular imaging and targeted therapy for cardiovascular diseases are still required. Herein, biodegradable microcapsules (MCs) made of polycyanoacrylate and polysaccharide and functionalized with fucoidan (Fuco-MCs) are designed as new carriers to target arterial thrombi overexpressing P-selectin. Physicochemical characterizations demonstrated that microcapsules have a core-shell structure and that fucoidan is present onto the surface of Fuco-MCs. Furthermore, their sizes range from 2 to 6 µm and they are stable on storage over 30 d at 4 °C. Flow cytometry experiments evidenced the binding of Fuco-MCs for human activated platelets as compared to MCs (mean fluorescence intensity: 12 008 vs. 9, p microcapsules reveal excellent compatibility with 3T3 cells in cytotoxicity assay. One hour after intravenous injection of microcapsules, histological analysis revealed that Fuco-MCs are localized in the rat abdominal aortic aneurysm thrombotic wall and that the binding in the healthy aorta is low. In conclusion, these microcapsules appear as promising carriers for targeting of tissues characterized by P-selectin overexpression and for their molecular imaging or treatment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. COMPARISON OF SOL-GEL SILICATE COATINGS ON Ti SUBSTRATE

    Directory of Open Access Journals (Sweden)

    DIANA HORKAVCOVÁ

    2012-12-01

    Full Text Available The objective of the submitted work was to prepare and to characterize two types of silicate coatings prepared by the sol-gel method using the dip-coating technique on a titanium substrate. Efforts have been made to use mechanical properties of bio-inert titanium and bioactive properties of a silicate layer enriched with an admixture of compounds identified below. The first group consisted of silicate coatings containing silver, brushite and monetite. The other group of silicate coatings contained calcium nitrate and triethyl phosphate. Mechanically and chemically treated titanium substrates were dipped into sols and dried and fired. Silicate coatings from the first group were also chemically treated in 10 mol.l-1 solution of sodium hydroxide. All coatings were measured to determine their adhesive and bioactive properties and furthermore the antibacterial properties were tested in the case of first group. Surfaces of the coated substrates were investigated after the firing and after the individual tests with optical and electron microscopy and X-ray microdiffraction. A tape test demonstrated excellent adhesive property of all coatings to the substrate, classified with degree 5. A static in vitro test demonstrated bioactivity of nearly all the coatings. The basic silicate coating from the first group and one type of coating from the second group were identified as inert. Antibacterial properties of silicate coatings containing silver showed to be different when tested against Escherichia coli bacteria. A complete inhibition of the growth of bacteria under our experimental conditions was observed for the coating containing silver and monetite and a partial inhibition of the growth of bacteria for coatings containing silver and silver in combination with brushite.

  1. Interleukin-2 regulatory effect on P-selectin and interleukin-8 production in patients with chronic renal failure.

    Science.gov (United States)

    Abou-Shousha, Seham A; Youssef, Amany I

    2006-01-01

    Patients with chronic renal failure (CRF) show a clinical state of immunodysfunction that occurs in both humoral and cellular immunity as well as inflammatory response. In this study, we investigated the mononuclear-endothelial cells (MCs/ECs) interaction and the possible protective role of IL-2 as the main T lymphocyte activator in CRF patients. The levels of soluble P-selectin (sP-selectin) and interleukin-8 (IL-8) as the two main mediators of MCs/ECs interaction were measured in IL-2 supplemented and non-supplemented peripheral blood mononuclear cells (PBMCs) supernatant of CRF patients. The obtained results were correlated with those of sex and age matched controls. Significantly higher levels of sP-selectin and IL-8 were detected in both IL-2 supplemented and non-supplemented PBMCs culture supernatant of CRF patients than controls (P = 0.000). Those levels were significantly lower in IL-2 supplemented PBMCs culture supernatant than non-supplemented ones of both CRF (P = 0.000) (for both mediators) and normal control groups (P = 0.01, P= 0.04 for sP-selectin and IL-8 respectively). The higher sP-selectin in CRF indicates impairment of MCs/ECs interaction that may be resulted from blockade of P-selectin receptors on PBMCs by P-selectin molecules shedded from ECs to plasma and bind to PBMCs in vivo. The elevated IL-8 level in PBMCs of CRF reflect the imbalance of Thl/Th2 ratio and subsequent impairment of cellular immunity in those patients. The lower level of both sP-selectin and IL-8 in IL-2 supplemented PBMCs supernatant than in non-supplemented one seemed to be due to the IL-2 induced proliferation of Th1 lymphocytes yielding newly in vitro formed T cells which do not carry P-selectin as well as relative increase of Th1/Th2 ratio in both normal and CRF groups. Thus, IL-2 may improve the MCs/ECs interaction and correct the Th1/Th2 ratio in CRF providing a novel promising therapeutic approach to improve the immuno-pathological condition of those patients.

  2. Contribution of the CR domain to P-selectin lectin domain allostery by regulating the orientation of the EGF domain.

    Directory of Open Access Journals (Sweden)

    Shouqin Lü

    Full Text Available The allostery of P-selectin has been studied extensively with a focus on the Lec and EGF domains, whereas the contribution of the CR domain remains unclear. Here, molecular dynamics simulations (MDS combined with homology modeling were preformed to investigate the impact of the CR domain on P-selectin allostery. The results indicated that the CR domain plays a role in the allosteric dynamics of P-selectin in two ways. First, the CR1 domain tends to stabilize the low affinity of P-selectin during the equilibration processes with the transition inhibition from the S1 to S1' state by restraining the extension of the bent EGF orientation, or with the relaxation acceleration of the S2 state by promoting the bending of the extended EGF orientation. Second, the existence of CR domain increases intramolecular extension prior to complex separation, increasing the time available for the allosteric shift during forced dissociation with a prolonged bond duration. These findings further our understanding of the structure-function relationship of P-selectin with the enriched micro-structural bases of the CR domain.

  3. Microstructure of WC/C coatings deposited on steel substrates

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Carvalho, N.J.M.; Brebbia, CA

    2001-01-01

    Electron microscopy, including scanning (SEM), transmission (TEM) and high-resolution (HRTEM) were employed to characterise slightly different tungsten carbide/carbon coatings deposited onto steel substrates. Complementary techniques, such as X-ray diffraction (XRD), Auger electron spectroscopy

  4. Coating-substrate-simulations applied to HFQ® forming tools

    Directory of Open Access Journals (Sweden)

    Leopold Jürgen

    2015-01-01

    Full Text Available In this paper a comparative analysis of coating-substrate simulations applied to HFQTM forming tools is presented. When using the solution heat treatment cold die forming and quenching process, known as HFQTM, for forming of hardened aluminium alloy of automotive panel parts, coating-substrate-systems have to satisfy unique requirements. Numerical experiments, based on the Advanced Adaptive FE method, will finally present.

  5. Effect of substrate on the results of measuring coating thickness according to radiation scattered by substrate

    Energy Technology Data Exchange (ETDEWEB)

    Nedavnij, O.I.; Khripunov, L.Z. (Tomskij Politekhnicheskij Inst. (USSR). Nauchno-Issledovatel' skij Inst. Ehlektronnoj Introskopii)

    1984-01-01

    The effect of a substrate on the results of measuring tantalum coating thickness in two-layer compositions according to gamma radiation scattered by the substrate is studied. It is shown that by means of an albedo-radiometer realizing the physical model absorber-scatterer one can determine the thickness (application uniformity) of tantalum coatings up to 150-300 ..mu..m depending on the substrate material (plexiglas, aluminium, iron, copper). In case of testing coatings on substrates of alloys and high-alloy steels in order to ensure high accuracy of measurement it is expedient with the above albedo-radiometer to determine the value of the backscattered radiation flux for the substrate before coating application.

  6. Coating-Substrate Systems for Thermomechanically Durable Turbine Airfoils

    Science.gov (United States)

    2015-06-30

    Technical Report 4. TITLE AND SUBTITLE Coating - Substrate Systems for Thermomechanically Durable Turbine Airfoils 6. AUTHOR(S) Dr. Tresa Pollock 3...Thermomechanically Durable Turbine Airfoils Final Report ONRGrant#N00014-l 1-1-0616 Technical Contact (Principal Investigator) Tresa M. Pollock Materials...Substrate Systems for Thermomechanically Durable Turbine Airfoils 1. Summary In the severe operating environments encountered in Naval ship

  7. TITANIA-COATINGS ON STRONGLY PASSIVATED SUBSTRATES

    OpenAIRE

    Haenni, W.; Hintermann, H.; Morel, D.; Simmen, A.

    1989-01-01

    Titanium oxide can be deposited by pyrolysis of the corresponding alkoxide on metallic substrates after their preoxidation by water-vapor. To improve adhesion, the natural oxide film has first to be removed mechanically and/or chemically from the strongly passivated substrates, such as aluminium, titanium, alloys thereof, stainless steel and super-alloys. To completely remove the oxide film on AISI 316L stainless steel and similar alloys, chemical vapor etching is necessary. The preoxidation ...

  8. P-Selectin (CD62P) Expression in Liver Tissue of Biliary Atresia: A New Perspective in Etiopathogenesis.

    Science.gov (United States)

    Sira, Mostafa M; Sira, Ahmad M; Ehsan, Nermine A; Mosbeh, Asmaa

    2015-11-01

    The etiology of biliary atresia (BA) is still elusive. Inflammation plays a key role in bile duct and liver injury. The recruitment and accumulation of inflammatory cells is largely dependent on adhesion molecules. We aimed to investigate P-selectin (CD62P) expression in liver tissue in patients with BA compared with other neonatal cholestatic disorders. The study included 63 infants with neonatal cholestasis in 2 groups: BA group (n = 32) and non-BA group (n = 31) with non-BA cholestatic disorders as controls. Demographic, clinical, laboratory, ultrasonographic, and histopathological parameters were collected. P-selectin immunostaining was performed. Immunostaining in bile duct epithelium, cellular infiltrate, and vascular endothelial cells were scored as positive or negative. The frequency of P-selectin-positive endothelium, platelets, and bile duct epithelium was significantly higher in the BA group (72%, 72%, and 63%, respectively) than in the non-BA group (32%, 16%, and 13%, respectively) with P of 0.002, thrombocytosis versus 25% in the controls (P = 0.001 for both). The significant expression of P-selectin in endothelium, platelets, and bile duct epithelium in patients with BA suggests a potential role for this adhesion molecule in the pathogenesis of this devastating neonatal hepatic disorder. It further suggests that platelets in BA are activated and may have a role in the inflammatory process in BA.

  9. Role of H1 receptors and P-selectin in histamine-induced leukocyte rolling and adhesion in postcapillary venules.

    Science.gov (United States)

    Asako, H; Kurose, I; Wolf, R; DeFrees, S; Zheng, Z L; Phillips, M L; Paulson, J C; Granger, D N

    1994-04-01

    The objective of this study was to define the nature, magnitude, and mechanisms of histamine-induced leukocyte-endothelial cell interactions in postcapillary venules of the rat mesentery using intravital microscopic techniques. Superfusion of the mesentery with histamine (10(-7)-10(-5) M) resulted in a dose-related increase in the number of rolling leukocytes, a reduction in rolling velocity, and an increased clearance of FITC-labeled rat albumin from blood to superfusate. The histamine-induced recruitment of rolling leukocytes and increased albumin clearance were prevented by histamine H1 (hydroxyzine, diphenhydramine) but not H2 (cimetidine) receptor antagonists. Because histamine induces expression of the adhesion molecule P-selectin in cultured endothelial cells, a monoclonal antibody directed against rat P-selectin and soluble sialyl-LewisX oligosaccharide (the carbohydrate ligand to P-selectin) were also tested as inhibitors. Both were effective in preventing the histamine-induced recruitment of rolling leukocytes, but neither agent attenuated the increased albumin clearance. These observations suggest that (a) histamine recruits rolling leukocytes and increases albumin leakage in postcapillary venules via H1 receptor activation, (b) histamine-induced recruitment of rolling leukocytes is mediated in part by P-selectin expressed on the endothelial cell surface, and (c) the histamine-induced vascular albumin leakage is unrelated to leukocyte-endothelial cell adhesion. Our results are consistent with the view that histamine may act as a mediator of acute inflammatory reactions.

  10. Isolation and characterization of N-feruloyltyramine as the P-selectin expression suppressor from garlic (Allium sativum)

    Science.gov (United States)

    Because garlic (Allium sativum) is believed to have positive health effects on cardiovascular disease, the screening of isolated fractions from a garlic extract against cardiovascular disease related-processes should help identify active compounds. Both P-selectin expression suppressing activity ag...

  11. Microstructure of vapor deposited coatings on curved substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., P.O. Box 400745, Charlottesville, Virginia 22904 (United States)

    2015-09-15

    Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness.

  12. The significance of diminished sTWEAK and P-selectin content in platelets of patients with pulmonary arterial hypertension.

    Science.gov (United States)

    Kazimierczyk, Remigiusz; Błaszczak, Piotr; Kowal, Krzysztof; Jasiewicz, Małgorzata; Knapp, Małgorzata; Szpakowicz, Anna; Ptaszyńska-Kopczyńska, Katarzyna; Sobkowicz, Bożena; Waszkiewicz, Ewa; Grzywna, Ryszard; Musial, Włodzimierz J; Kamiński, Karol A

    2017-12-01

    Pulmonary arterial hypertension (PAH) is a progressive disease characterized by proliferative changes in pulmonary arteries. There is growing evidence suggesting that soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) and P-selectin could be involved in PAH development and progression. Here we investigate whether circulating platelets may be a source of sTWEAK and contribute to diminished availability of sTWEAK and P-selectin in PAH patients. We have prospectively enrolled two independent study groups of stable patients with confirmed PAH and age matched controls: derivation (10 PAH; 15 controls) and validation (20 PAH; 12 controls). P-selectin and sTWEAK concentrations were measured in platelet-poor plasma and platelet lysate. To avoid procedural bias, in each group we employed different protocols for platelet isolation. Consistently, both in derivation and validation groups PAH patients presented significantly lower sTWEAK content in platelets than control group with no significant differences in plasma levels. Similarly, patients presented comparable to controls plasma P-selectin concentrations and lower concentration in platelet lysate. Kaplan-Meier analysis revealed that patients with low platelet sTWEAK/total protein concentration ratio had more frequently detoriation of PAH in the follow-up (16.51 ± 3.32 months), log-rank test, p = .03. Patients diagnosed with pulmonary arterial hypertension present diminished sTWEAK and P-selectin storage capacity in platelets. Thrombocytes appear to be a major source of sTWEAK that could be released upon local injury and its decreased availability could have an impact on pathophysiology and prognosis in PAH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of Nanosilica Filled Polyurethane Composite Coating on Polypropylene Substrate

    Directory of Open Access Journals (Sweden)

    Yern Chee Ching

    2013-01-01

    Full Text Available Acrylic based polyurethane (PU coatings with various amounts of nanosilica contents were prepared using solution casting method. The nanosilica (SiO2 particles used are around 16 nm in diameter. The friction and wear test was conducted using the reciprocating wear testing machine. The tests were performed at rotary speed of 100 rpm and 200 rpm with load of 0.1 kg to 0.4 kg under 1 N interval. The effect of the PU/nano-SiO2 composite coating on friction and wear behavior of polypropylene substrate was investigated and compared. The worn surface of coating film layer after testing was investigated by using an optical microscope. The introduction of PU/nanosilica composite coating containing 3 wt% of nano-SiO2 content gives the lowest friction coefficient and wear rate to PP substrate. Both the friction and wear rate of PP substrate coated with >3 wt% of nano-SiO2 filled PU coating would increase with the increasing of applied load and sliding time.

  14. The use of surface immobilization of P-selectin glycoprotein ligand-1 on mesenchymal stem cells to facilitate selectin mediated cell tethering and rolling

    Science.gov (United States)

    Lo, Chi Y.; Antonopoulos, Aristotelis; Dell, Anne; Haslam, Stuart M.; Lee, Techung; Neelamegham, Sriram

    2013-01-01

    Mesenchymal stem/stromal cells (MSCs) are an important candidate for cell-based therapy since they can be easily isolated and expanded, secrete beneficial paracrine factors, and differentiate into multiple lineages. Since the endothelium at sites of injury and inflammation often express adhesion molecules belonging to the selectin family, methods to endow MSCs with selectin-ligands can enhance the efficacy of cell delivery and tissue engraftment. Here, we describe a construct 19Fc[FUT7+], where the first 19 amino acids of the pan-selectin ligand PSGL-1 (P-selectin glycoprotein ligand-1) was fused to a human IgG1. When expressed in HEK293T cells over-expressing the α(1,3)fucosyltransferase FUT7, 19Fc[FUT7+] is decorated by a core-2 sialyl Lewis-X sialofucosylated O-glycan. The non-covalent coupling of this protein onto MSC surface using palmitated protein G (PPG) enhanced cell binding to E- and P-selectin under hydrodynamic shear, without altering MSC multipotency. MSCs functionalized with 19Fc[FUT7+] were captured/tethered onto stimulated endothelial cell monolayers at wall shear stresses up to 4 dyn/cm2. Once captured, the cells rolled robustly up to the highest shear stress tested, 10 dyn/cm2. Unlike previous work where MSCs could only be captured onto selectin-bearing substrates at low or no-flow conditions, the current work presents a ‘glycan engineering’ strategy to enable leukocyte-like capture and rolling. PMID:23891082

  15. Protective amorphous carbon coatings on glass substrates

    Directory of Open Access Journals (Sweden)

    Kaspars Silins

    2017-11-01

    Full Text Available Thick amorphous carbon films were deposited by the Magnets-in-Motion (M-M rf linear hollow cathode at varying acetylene contents in Ar in a hybrid PVD/PE-CVD process directly on glass substrates. The hollow cathode plates manufactured from graphite were used as the PVD target. The measurements show that the films can reach thickness of up to 50 μm at deposition rates of up to 2.5 μm/min. Scratch test measurements confirm that well adhering films several μm thick can be achieved at C2H2 contents of up to 0.5%.

  16. Comparative characterization of Cu–Ni substrates for coated conductors

    DEFF Research Database (Denmark)

    Tian, H.; Suo, H.L.; Wulff, Anders Christian

    2014-01-01

    Three Cu100xNix alloys, with x = 23, 33 and 45 at.%Ni, have been evaluated for use as substrates for coated conductors on the basis of measurements of their microstructure, crystallographic texture and hardness. It is found that high-temperature annealing after heavy rolling generates strong cube...

  17. Assessment of Automotive Coatings Used on Different Metallic Substrates

    Directory of Open Access Journals (Sweden)

    W. Bensalah

    2014-01-01

    Full Text Available Four epoxy primers commonly used in the automotive industry were applied by gravity pneumatic spray gun over metallic substrates, specifically, steel, electrogalvanized steel, hot-dip galvanized steel, and aluminum. A two-component polyurethane resin was used as topcoat. To evaluate the performance of the different coating systems, the treated panels were submitted to mechanical testing using Persoz hardness, impact resistance, cupping, lattice method, and bending. Tribological properties of different coating systems were conducted using pin on disc machine. Immersion tests were carried out in 5% NaCl and immersion tests in 3% NaOH solutions. Results showed which of the coating systems is more suitable for each substrate in terms of mechanical, tribological, and anticorrosive performance.

  18. Patchy silica-coated silver nanowires as SERS substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hunyadi Murph, Simona E.; Murphy, Catherine J.

    2013-05-08

    We report a class of core-shell nanomaterials that can be used as efficient surface-enhancement Raman scattering (SERS) substrates. The core consists of silver nanowires, prepared through a chemical reduction process, that are used to capture 4- mercaptobenzoic acid (4-MBA), a model analyte. The shell was prepared through a modified Stöber method and consists of patchy or full silica coats. The formation of silica coats was monitored via transmission electron microscopy, UV-visible spectroscopy and phase-analysis light scattering for measuring effective surface charge. Surprisingly, the patchy silica coated silver nanowires are better SERS substrate than silver nanowires; nanomolar concentration of 4-MBA can be detected. In addition, “nano-matryoshka” configurations were used to quantitate/explore the effect of the electromagnetic field at the tips of the nanowire (“hot spots”) in the Raman scattering experiment.

  19. Targeting P-Selectin by Gallium-68–Labeled Fucoidan Positron Emission Tomography for Noninvasive Characterization of Vulnerable Plaques: Correlation With In Vivo 17.6T MRI

    National Research Council Canada - National Science Library

    Li, Xiang; Bauer, Wolfgang; Israel, Ina; Kreissl, Michael C; Weirather, Johannes; Richter, Dominik; Bauer, Elisabeth; Herold, Volker; Jakob, Peter; Buck, Andreas; Frantz, Stefan; Samnick, Samuel

    2014-01-01

    .... We proposed a new approach for noninvasive in vivo characterization of P-selectin on active plaques based on Ga-Fucoidan, which is a polysaccharidic ligand of P-selectin with a nanomolar affinity...

  20. Research Progress on Laser Cladding Amorphous Coatings on Metallic Substrates

    Directory of Open Access Journals (Sweden)

    CHEN Ming-hui

    2017-01-01

    Full Text Available The microstructure and property of amorphous alloy as well as the limitations of the traditional manufacturing methods for the bulk amorphous alloy were briefly introduced in this paper.Combined with characteristics of the laser cladding technique,the research status of the laser cladding Fe-based,Zr-based,Ni-based,Cu-based and Al-based amorphous coatings on the metal substrates were mainly summarized.The effects of factors such as laser processing parameter,micro-alloying element type and content and reinforcing phase on the laser cladding amorphous coatings were also involved.Finally,the main problems and the future research directions of the composition design and control of the laser-cladded amorphous coating,the design and optimization of the laser cladding process,and the basic theory of the laser cladding amorphous coatings were also put forward finally.

  1. Critical role of P-selectin-dependent leukocyte recruitment in endotoxin-induced intestinal barrier dysfunction in mice.

    OpenAIRE

    Mangell, Peter; Röme, Andrada; Wang, Yusheng; Schramm, R; Jeppsson, Bengt; Thorlacius, Henrik

    2007-01-01

    Objective: To define the importance of leukocyte recruitment in endotoxin-induced gut permeability. Materials and methods: 31 male C57BL/6 mice were challenged with lipopolysaccharide (LPS). Ileal permeability was measured in Ussing chambers and leukocyte-endothelium interactions studied with intravital fluorescence microscopy after 18 h. Results: LPS caused a clear-cut increase in leukocyte accumulation and intestinal permeability. Immunoneutralisation of P-selectin not only reduced leukocyt...

  2. Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Ikuko, E-mail: nakamuri@riken.jp [RIKEN Center for Molecular Imaging Science, Kobe (Japan); Department of Cardiovascular Medicine, Saga University, Saga (Japan); Hasegawa, Koki [RIKEN Center for Molecular Imaging Science, Kobe (Japan); Department of Pathology and Experimental Medicine, Kumamoto University, Kumamoto (Japan); Wada, Yasuhiro [RIKEN Center for Molecular Imaging Science, Kobe (Japan); Hirase, Tetsuaki; Node, Koichi [Department of Cardiovascular Medicine, Saga University, Saga (Japan); Watanabe, Yasuyoshi, E-mail: yywata@riken.jp [RIKEN Center for Molecular Imaging Science, Kobe (Japan)

    2013-03-29

    Highlights: ► P-selectin regulates leukocyte recruitment as an early stage event of atherogenesis. ► We developed an antibody-based molecular imaging probe targeting P-selectin for PET. ► This is the first report on successful PET imaging for delineation of P-selectin. ► P-selectin is a candidate target for atherosclerotic plaque imaging by clinical PET. -- Abstract: Background: Sensitive detection and qualitative analysis of atherosclerotic plaques are in high demand in cardiovascular clinical settings. The leukocyte–endothelial interaction mediated by an adhesion molecule P-selectin participates in arterial wall inflammation and atherosclerosis. Methods and results: A {sup 64}Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid conjugated anti-P-selectin monoclonal antibody ({sup 64}Cu-DOTA-anti-P-selectin mAb) probe was prepared by conjugating an anti-P-selectin monoclonal antibody with DOTA followed by {sup 64}Cu labeling. Thirty-six hours prior to PET and CT fusion imaging, 3 MBq of {sup 64}Cu-DOTA-anti-P-selectin mAb was intravenously injected into low density lipoprotein receptor-deficient Ldlr-/- mice. After a 180 min PET scan, autoradiography and biodistribution of {sup 64}Cu-DOTA-anti-P-selectin monoclonal antibody was examined using excised aortas. In Ldlr-/- mice fed with a high cholesterol diet for promotion of atherosclerotic plaque development, PET and CT fusion imaging revealed selective and prominent accumulation of the probe in the aortic root. Autoradiography of aortas that demonstrated probe uptake into atherosclerotic plaques was confirmed by Oil red O staining for lipid droplets. In Ldlr-/- mice fed with a chow diet to develop mild atherosclerotic plaques, probe accumulation was barely detectable in the aortic root on PET and CT fusion imaging. Probe biodistribution in aortas was 6.6-fold higher in Ldlr-/- mice fed with a high cholesterol diet than in those fed with a normal chow diet. {sup 64}Cu-DOTA-anti-P-selectin m

  3. Development of Bioactive Ceramic Coating on Titanium Alloy substrate for Biomedical Application Using Dip Coating Method

    Science.gov (United States)

    Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.

    2017-08-01

    Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.

  4. The influence of propofol on P-selectin expression and nitric oxide production in re-oxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Reperfusion injury is characterized by free radical production and endothelial inflammation. Neutrophils mediate much of the end-organ injury that occurs, requiring P-selectin-mediated neutrophil-endothelial adhesion, and this is associated with decreased endothelial nitric oxide production. Propofol has antioxidant properties in vitro which might abrogate this inflammation. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia and then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg\\/l or propofol 5 microg\\/l for 4 h after re-oxygenation and were then examined for P-selectin expression and supernatant nitric oxide concentrations for 24 h. P-selectin was determined by flow cytometry, and culture supernatant nitric oxide was measured as nitrite. RESULTS: In saline-treated cells, a biphasic increase in P-selectin expression was demonstrated at 30 min (P = 0.01) and 4 h (P = 0.023) after re-oxygenation. Propofol and Diprivan prevented these increases in P-selectin expression (P < 0.05). Four hours after re-oxygenation, propofol decreased endothelial nitric oxide production (P = 0.035). CONCLUSION: This is the first study to demonstrate an effect of propofol upon endothelial P-selectin expression. Such an effect may be important in situations of reperfusion injury such as cardiac transplantation and coronary artery bypass surgery. We conclude that propofol attenuates re-oxygenation-induced endothelial inflammation in vitro.

  5. Inhibition of P-Selectin and PSGL-1 Using Humanized Monoclonal Antibodies Increases the Sensitivity of Multiple Myeloma Cells to Bortezomib

    Directory of Open Access Journals (Sweden)

    Barbara Muz

    2015-01-01

    Full Text Available Multiple myeloma (MM is a plasma cell malignancy localized in the bone marrow. Despite the introduction of novel therapies majority of MM patients relapse. We have previously shown that inhibition of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1 play a key role in proliferation of MM and using small-molecule inhibitors of P-selectin/PSGL-1 sensitized MM cells to therapy. However, these small-molecule inhibitors had low specificity to P-selectin and showed poor pharmacokinetics. Therefore, we tested blocking of P-selectin and PSGL-1 using functional monoclonal antibodies in order to sensitize MM cells to therapy. We have demonstrated that inhibiting the interaction between MM cells and endothelial and stromal cells decreased proliferation in MM cells and in parallel induced loose-adhesion to the primary tumor site to facilitate egress. At the same time, blocking this interaction in vivo led to MM cells retention in the circulation and delayed homing to the bone marrow, thus exposing MM cells to bortezomib which contributed to reduced tumor growth and better mice survival. This study provides a better understanding of the biology of P-selectin and PSGL-1 and their roles in dissemination and resensitization of MM to treatment.

  6. Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. I. Membrane separation from the cytoskeleton

    DEFF Research Database (Denmark)

    Evans, Evan; Heinrich, Volkmar; Leung, Andrew

    2005-01-01

    , and iii), the final detachment from the probe tip by usually one precipitous step of P-selectin:PSGL-1 dissociation. In this first article I, we focus on the initial elastic response and its termination by membrane separation from the cytoskeleton, initiating tether formation. Quantifying membrane...... unbinding forces for rates of loading (force/time) in the elastic regime from 240 pN/s to 38,000 pN/s, we discovered that the force distributions agreed well with the theory for kinetically limited failure of a weak bond. The kinetic rate for membrane unbinding was found to increase as an exponential...

  7. Correlation between the substrate roughness and light loss for interference mirror coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zanaveskin, M. L., E-mail: zanaveskin@ns.crys.ras.ru; Roshchin, B. S.; Grishchenko, Yu. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Azarova, V. V. [FGUP NII Polyus (Russian Federation); Asadchikov, V. E.; Tolstikhina, A. L. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2008-07-15

    The correlation between the parameters of multilayer mirror coatings used in ring laser gyroscopes with the roughness height of the substrate and top surface of mirror coating is investigated. A complex approach is applied to analysis of the roughness of substrates and mirror coatings, which is based on the use of atomic force microscopy and X-ray scattering. A correlation between the roughness of substrates and mirror coatings is established. In addition, the correlation between the scattering coefficient, reflectance, and transmittance of multilayer mirror coatings and the roughness of the substrates used is investigated.

  8. Effect of thrombopoietin receptor agonists on markers of coagulation and P-selectin in patients with immune thrombocytopenia

    DEFF Research Database (Denmark)

    Garabet, Lamya; Ghanima, Waleed; Monceyron Jonassen, Christine

    2018-01-01

    Thrombopoietin-receptor-agonists (TPO-RA) are effective treatments of immune thrombocytopenia (ITP). Previous long-term TPO-RA clinical trials have shown that thrombotic events occurred in 6% of TPO-RA-treated ITP patients. To explore the increased risk of thrombosis, the effects of TPO......-RA on markers of coagulation and P-selectin were studied. The study comprised two ITP cohorts and controls. Cohort 1 included 26 patients with sequential samples acquired before and during treatment with TPO-RA. Cohort 2 included a single sample in 18 patients on TPO-RA for more than one year. Thrombin...... patients in cohort 1. Significantly higher levels of F1+2, D-dimer, and PAI-1 were found in ITP patients before TPO-RA treatment and in patients on long-term TPO-RA treatment than in controls. Pre-treatment levels of sP-selectin did not differ from controls. Analysis of longitudinal trends showed...

  9. COATING OF POLYMERIC SUBSTRATE CATALYSTS ON METALLIC SURFACES

    Directory of Open Access Journals (Sweden)

    H. HOSSEINI

    2010-12-01

    Full Text Available This article presents results of a study on coating of a polymeric substrate ca-talyst on metallic surface. Stability of coating on metallic surfaces is a proper specification. Sol-gel technology was used to synthesize adhesion promoters of polysilane compounds that act as a mediator. The intermediate layer was coated by synthesized sulfonated polystyrene-divinylbenzene as a catalyst for production of MTBE in catalytic distillation process. Swelling of catalyst and its separation from the metal surface was improved by i increasing the quantity of divinylbenzene in the resin’s production process and ii applying adhesion pro¬moters based on the sol-gel process. The rate of ethyl silicate hydrolysis was intensified by increasing the concentration of utilized acid while the conden¬sation polymerization was enhanced in the presence of OH–. Sol was formed at pH 2, while the pH should be 8 for the formation of gel. By setting the ratio of the initial concentrations of water to ethyl silicate to 8, the gel formation time was minimized.

  10. Edge coating apparatus with movable roller applicator for solar cell substrates

    Science.gov (United States)

    Pavani, Luca; Abas, Emmanuel

    2012-12-04

    A non-contact edge coating apparatus includes an applicator for applying a coating material on an edge of a solar cell substrate and a control system configured to drive the applicator. The control system may drive the applicator along an axis to maintain a distance with an edge of the substrate as the substrate is rotated to have the edge coated with a coating material. The applicator may include a recessed portion into which the edge of the substrate is received for edge coating. For example, the applicator may be a roller with a groove. Coating material may be introduced into the groove for application onto the edge of the substrate. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.

  11. Laser Cladding Synthesis of Ta2O5 Coatings on a Ta Substrate

    Science.gov (United States)

    Zhang, H.; Xie, H.; Yue, T. M.

    2017-09-01

    A five-layer overlaid Ta2O5 dense ceramic coating was successfully fabricated on a pure Ta substrate using laser cladding. The coating exhibits a graded microstructure with a single phase of α-Ta2O5 formed towards the top of the coating, and was metallurgically bonded to the Ta substrate. Both the coating and the coating-substrate interface region were free from porosity. The development of the coating’s microstructure was discussed based on an existing Ta-O phase diagram.

  12. The drop evaporation on a heated substrate with single wall nanotubes coating

    Science.gov (United States)

    Semenov, A. A.; Zaitsev, D. V.

    2017-11-01

    Evaporation of a sessile nanoliter water droplet was investigated experimentally at the substrate temperature of 30 °C. The studies were performed on the two substrates made of copper. One of them had no coating and was polished to the root mean square roughness of 20 nm. Another one was coated with single wall nanotubes (the root mean square roughness is 62 nm). The research has shown that specific rate of evaporation (mass loss per unit of the drop surface area) on the substrate with nanotubes coating is up to 20 percent higher in comparison with the substrate without coating.

  13. The effect of crystallographic orientation of titanium substrate on the structure and bioperformance of hydroxyapatite coatings.

    Science.gov (United States)

    Rad, Armin Tahmasbi; Novin, Mana; Solati-Hashjin, Mehran; Vali, Hojatollah; Faghihi, Shahab

    2013-03-01

    This study investigates the effects of crystallographic orientation of titanium substrates on the atomic structure and biological characteristics of hydroxyapatite (HA) coatings. Samples are prepared from extruded rod and rolled sheet of commercially pure titanium having distinct distribution of crystallographic planes. Electrophoresis is used to coat titanium substrates having different microstructures. The biological performance of both HA-coated and non-coated samples is assessed by osteoblast cell attachment, proliferation, differentiation and morphological studies. X-ray diffraction (XRD) analysis of the HA-coated samples indicates the predominant orientation of (002) for HA-coated sheets compared to (211) for the HA-coated rod samples. The numbers of attached and grown cells are higher on the surface of the HA-coated sheet samples. There is also a significant difference in alkaline phosphatase activity on the HA-coated sheet samples. Scanning electron microscopy (SEM) analysis of osteoblast cells grown on HA-coated and non-coated samples demonstrates differences in morphology with respect to spreading and attachment patterns. We believe that the specific atomic structure that is induced in the HA coating by the crystallographic orientation of the sheet substrate causes orientation-dependent coordination with biomolecules and improves cellular interactions. This suggests that crystal orientation of the substrate can be used to both influence the structure of the coating material and improve and control cell-substrate interactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Cube-textured metal substrates for reel-to-reel processing of coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian

    This thesis presents the results of a study aimed at investigating important fabrication aspects of reel-to-reel processing of metal substrates for coated conductors and identifying a new substrate candidate material with improved magnetic properties. The eect of mechanical polishing on surface...... texture and the fraction of low angle grain boundaries. Finally, a Ni-5Cu-5W substrate may be a good candidate material as a substrate in future coated conductors....

  15. Relationship between Platelet PPARs, cAMP Levels, and P-Selectin Expression: Antiplatelet Activity of Natural Products

    Science.gov (United States)

    Fuentes, Eduardo; Palomo, Iván

    2013-01-01

    Platelets are no longer considered simply as cells participating in thrombosis. In atherosclerosis, platelets are regulators of multiple processes, with the recruitment of inflammatory cells towards the lesion sites, inflammatory mediators release, and regulation of endothelial function. The antiplatelet therapy has been used for a long time in an effort to prevent and treat cardiovascular diseases. However, limited efficacy in some patients, drug resistance, and side effects are limitations of current antiplatelet therapy. In this context, a large number of natural products (polyphenols, terpenoids, alkaloids, and fatty acids) have been reported with antiplatelet activity. In this sense, the present paper describes mechanisms of antiplatelet action of natural products on platelet P-selectin expression through cAMP levels and its role as peroxisome proliferator-activated receptors agonists. PMID:24324520

  16. Relationship between Platelet PPARs, cAMP Levels, and P-Selectin Expression: Antiplatelet Activity of Natural Products

    Directory of Open Access Journals (Sweden)

    Eduardo Fuentes

    2013-01-01

    Full Text Available Platelets are no longer considered simply as cells participating in thrombosis. In atherosclerosis, platelets are regulators of multiple processes, with the recruitment of inflammatory cells towards the lesion sites, inflammatory mediators release, and regulation of endothelial function. The antiplatelet therapy has been used for a long time in an effort to prevent and treat cardiovascular diseases. However, limited efficacy in some patients, drug resistance, and side effects are limitations of current antiplatelet therapy. In this context, a large number of natural products (polyphenols, terpenoids, alkaloids, and fatty acids have been reported with antiplatelet activity. In this sense, the present paper describes mechanisms of antiplatelet action of natural products on platelet P-selectin expression through cAMP levels and its role as peroxisome proliferator-activated receptors agonists.

  17. Fatigue cracking behaviour of epoxy-based marine coatings on steel substrate under cyclic tension

    OpenAIRE

    Wu, Tongyu; Irving, Phil E.; Ayre, David; Jackson, P.; Zhao, F.

    2017-01-01

    Strain controlled fatigue tests have been performed on two types of heavily filled epoxy corrosion protection coating sprayed onto a 6 mm steel substrate. Fatigue cycling was performed at R ratios of 0 and −1. The two coatings differed in their formulation and the major differences in mechanical performance were in their static strain to first crack development and their fracture toughness, where Coating A was significantly tougher than coating B. During strain cycling coating crack developme...

  18. Impact of substrate surface scratches on the laser damage resistance of multilayer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, S; Wolfe, J; Monterrosa, A; Teslich, N; Feit, M; Pistor, T; Stolz, C

    2010-11-03

    Substrate scratches can limit the laser resistance of multilayer mirror coatings on high-peak-power laser systems. To date, the mechanism by which substrate surface defects affect the performance of coating layers under high power laser irradiation is not well defined. In this study, we combine experimental approaches with theoretical simulations to delineate the correlation between laser damage resistance of coating layers and the physical properties of the substrate surface defects including scratches. A focused ion beam technique is used to reveal the morphological evolution of coating layers on surface scratches. Preliminary results show that coating layers initially follow the trench morphology on the substrate surface, and as the thickness increases, gradually overcoat voids and planarize the surface. Simulations of the electrical-field distribution of the defective layers using the finite-difference time-domain (FDTD) method show that field intensification exists mostly near the top surface region of the coating near convex focusing structures. The light intensification could be responsible for the reduced damage threshold. Damage testing under 1064 nm, 3 ns laser irradiation over coating layers on substrates with designed scratches show that damage probability and threshold of the multilayer depend on substrate scratch density and width. Our preliminary results show that damage occurs on the region of the coating where substrate scratches reside and etching of the substrate before coating does not seem to improve the laser damage resistance.

  19. C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression

    Science.gov (United States)

    Scotland, Ramona S.; Cohen, Marc; Foster, Paul; Lovell, Matthew; Mathur, Anthony; Ahluwalia, Amrita; Hobbs, Adrian J.

    2005-10-01

    The multifaceted process of immune cell recruitment to sites of tissue injury is key to the development of an inflammatory response and involved in the pathogenesis of numerous cardiovascular disorders. We recently identified C-type natriuretic peptide (CNP) as an important endothelium-derived mediator that regulates vascular tone and protects against myocardial ischemia/reperfusion injury. Herein, we investigated whether CNP inhibits leukocyte recruitment and platelet aggregation and thereby exerts a potential antiinflammatory influence on the blood vessel wall. We assessed the effects of CNP on leukocyte-endothelial cell interactions in mouse mesenteric postcapillary venules in vivo in animals with high basal leukocyte activation (endothelial nitric oxide synthase knockout mice, eNOS-/-) or under acute inflammatory conditions (induced by interleukin-1 or histamine). CNP suppressed basal leukocyte rolling in eNOS-/- mice in a rapid, reversible, and concentration-dependent manner. These effects of CNP were mimicked by the selective natriuretic peptide receptor-C agonist cANF4-23. CNP also suppressed leukocyte rolling induced by IL-1 or histamine, inhibited platelet-leukocyte interactions, and prevented thrombin-induced platelet aggregation of human blood. Furthermore, analysis of human umbilical vein endothelial cells, leukocytes, and platelets revealed that CNP selectively attenuates expression of P-selectin. Thus, CNP is a modulator of acute inflammation in the blood vessel wall characterized by leukocyte and platelet activation. These antiinflammatory effects appear to be mediated, at least in part, via suppression of P-selectin expression. These observations suggest that endothelial CNP might maintain an anti-atherogenic influence on the blood vessel wall and represent a target for therapeutic intervention in inflammatory cardiovascular disorders. endothelium | natriuretic peptide receptor type C | atherosclerosis | thrombosis

  20. Redistribution of P-selectin glycoprotein ligand-1 (PSGL-1) in chemokine-treated neutrophils: a role of lipid microdomains.

    Science.gov (United States)

    Itoh, Saotomo; Susuki, Chie; Takeshita, Kana; Nagata, Kisaburo; Tsuji, Tsutomu

    2007-06-01

    P-selectin glycoprotein ligand-1 (PSGL-1) is a mucin-like cell adhesion molecule expressed on leukocyte plasma membranes and involved in platelet-leukocyte and endothelium-leukocyte interactions. The treatment of neutrophils with a low concentration of IL-8 induced the redistribution of PSGL-1 to one end of the cell to form a cap-like structure. We investigated the role of lipid microdomains in the redistribution of PSGL-1 and its effect on the adhesive characteristics of IL-8-treated neutrophils. The redistribution of PSGL-1 induced by IL-8 was inhibited by cholesterol-perturbing agents such as methyl-beta-cyclodextrin and filipin. Sucrose density gradient centrifugation analysis revealed that PSGL-1 was enriched in a low-density fraction together with the GM1 ganglioside after solubilization of the cell membranes with a nonionic detergent, Brij 58. However, when Triton X-100 was used for the solubilization, PSGL-1 was no longer recovered in the low-density fraction, although GM1 ganglioside remained in the low-density fraction. Furthermore, immunofluorescence microscopic observation demonstrated that the localization of PSGL-1 differed from that of GM1 ganglioside, suggesting that PSGL-1 is associated with a microdomain distinct from that containing the GM1 ganglioside. Treatment of neutrophils with IL-8 increased the formation of microaggregates composed of neutrophils and activated platelets, and this treatment also enhanced reactive oxygen species production in neutrophils induced by the cross-linking of PSGL-1 with antibodies. These results suggest that the association of PSGL-1 with lipid microdomains is essential for its redistribution induced by IL-8 stimulation and that the redistribution modulates neutrophil functions mediated by interactions with P-selectin.

  1. Coatings of metal substrates assisted by laser radiation

    Directory of Open Access Journals (Sweden)

    Caudevilla, H.

    1998-04-01

    Full Text Available In this contribution, a new way of obtaining ceramic coatings is presented. This method uses precursor suspensions, settled on substrates and in-situ pyrolised with a laser. Different deposition techniques of the ceramic precursors have been tested in order to obtain a homogeneous distribution on the metal substrate before the laser treatment.

    La combinación de recubrimientos utilizando disoluciones de precursores metálicos con la pirólisis asistida por láser, permite obtener una gran diversidad de recubrimientos sobre sustratos de muy distinta naturaleza. Se han realizado estudios, tanto con disoluciones poliméricas, como con disoluciones de tipo sol-gel y pastas obtenidas con técnicas similares, depositadas utilizando métodos convencionales de inmersión y atomización previa a la pirólisis asistida por láser, así como simultánea. En este trabajo se presenta un resumen de los resultados más significativos obtenidos en la realización de recubrimientos sobre sustratos metálicos y cerámicos.

  2. Substrate Frequency Effects on Cr x N Coatings Deposited by DC Magnetron Sputtering

    Science.gov (United States)

    Obrosov, Aleksei; Naveed, Muhammad; Volinsky, Alex A.; Weiß, Sabine

    2017-01-01

    Controlled ion bombardment is a popular method to fabricate desirable coating structures and modify their properties. Substrate biasing at high frequencies is a possible technique, which allows higher ion density at the substrate compared with DC current bias. Moreover, high ion energy along with controlled adatom mobility would lead to improved coating growth. This paper focuses on a similar type of study, where effects of coating growth and properties of DC magnetron-sputtered chromium nitride (Cr x N) coatings at various substrate bias frequencies are discussed. Cr x N coatings were deposited by pulsed DC magnetron sputtering on Inconel 718 and (100) silicon substrates at 110, 160 and 280 kHz frequency at low duty cycle. Coating microstructure and morphology were studied by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), scratch adhesion testing and nanoindentation. Results indicate a transformation of columnar into glassy structure of Cr x N coatings with the substrate bias frequency increase. This transformation is attributed to preferential formation of the Cr2N phase at high frequencies compared with CrN at low frequencies. Increase in frequency leads to an increase in deposition rate, which is believed to be due to increase in plasma ion density and energy of the incident adatoms. An increase in coating hardness along with decrease in elastic modulus was observed at high frequencies. Scratch tests show a slight increase in coating adhesion, whereas no clear increase in coating roughness can be found with the substrate bias frequency.

  3. Methods of data analysis for the micro-scale abrasion test on coated substrates

    DEFF Research Database (Denmark)

    Kusano, Y.; Acker, K. Van; Hutchings, I.M.

    2004-01-01

    available for data analysis in this test and proposes some new approaches. The wear volumes of the coating and the substrate can be described by two parameters chosen from among the inner and outer crater diameters, the coating thickness, and the penetration depth. The inner crater diameter can usually......The micro-scale abrasive wear test is attractive for coated substrates because it is simple, only small samples are required, and the specific wear rates for both coating and substrate kappa(c) and kappa(s) can be determined simultaneously. This paper reviews and critically discusses the methods...

  4. CrAlN coatings deposited by cathodic arc evaporation at different substrate bias

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain); Gomez, M.A. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain); Grupo de Corrosion y Proteccion, Universidad de Antioquia, A.A. 1226 Medellin (Colombia); Esteve, J. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain); Montala, F. [Tratamientos Termicos Carreras, TTC S.A., C/Doctor Almera 85, E-08205 Sabadell, Catalunya (Spain); Carreras, L. [Tratamientos Termicos Carreras, TTC S.A., C/Doctor Almera 85, E-08205 Sabadell, Catalunya (Spain); Grifol, M. [Tratamientos Termicos Carreras, TTC S.A., C/Doctor Almera 85, E-08205 Sabadell, Catalunya (Spain); Lousa, A. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain)]. E-mail: alousa@ub.edu

    2006-09-25

    CrAlN is a good candidate as an alternative to conventional CrN coatings especially for high temperature oxidation-resistance applications. Different CrAlN coatings were deposited on hardened steel substrates by cathodic arc evaporation (CAE) from chromium-aluminum targets in a reactive nitrogen atmosphere at negative substrate bias between - 50 and - 400 V. The negative substrate bias has important effects on the deposition growth rate and crystalline structure. All our coatings presented hardness higher than conventional CrN coatings. The friction coefficient against alumina and tungsten carbide balls was around 0.6. The sliding wear coefficient of the CrAlN coatings was very low while an important wear was observed in the balls before a measurable wear were produced in the coatings. This effect was more pronounced as the negative substrate bias was increased.

  5. Lack of influence of the COX inhibitors metamizol and diclofenac on platelet GPIIb/IIIa and P-selectin expression in vitro

    Directory of Open Access Journals (Sweden)

    Gröschel Werner

    2004-04-01

    Full Text Available Abstract Background The effect of non-steroidal anti-inflammatory drugs (NSAIDs for reduced platelet aggregation and thromboxane A2 synthesis has been well documented. However, the influence on platelet function is not fully explained. Aim of this study was to examine the influence of the COX-1 inhibiting NSAIDs, diclofenac and metamizol on platelet activation and leukocyte-platelet complexes, in vitro. Surface expression of GPIIb/IIIa and P-selectin on platelets, and the percentage of platelet-leukocyte complexes were investigated. Methods Whole blood was incubated with three different concentrations of diclofenac and metamizol for 5 and 30 minutes, followed by activation with TRAP-6 and ADP. Rates of GPIIb/IIIa and P-selectin expression, and the percentage of platelet-leukocyte complexes were analyzed by a flow-cytometric assay. Results There were no significant differences in the expression of GPIIb/IIIa and P-selectin, and in the formation of platelet-leukocyte complexes after activation with ADP and TRAP-6, regarding both the time of incubation and the concentrations of diclofenac and metamizol. Conclusions Accordingly, the inhibitory effect of diclofenac and metamizol on platelet aggregation is not related to a reduced surface expression of P-selectin and GPIIb/IIIa on platelets.

  6. Soluble P-selectin level correlates with acetylsalicylic acid but not with clopidogrel response in patients with stable coronary artery disease after a percutaneous coronary intervention.

    Science.gov (United States)

    Kaufmann, Jan; Wellnhofer, Ernst; Kappert, Kai; Urban, Daniel; Meyborg, Heike; Hauptmann, Tobias; Müller, Aline; Meixner, Martin; Graf, Kristof; Fleck, Eckart; Stawowy, Philipp

    2013-06-01

    Impaired response to dual antiplatelet therapy is associated with worse cardiovascular outcome. Besides antiplatelet effects, there is evidence that both clopidogrel and acetylsalicylic acid (ASA) have anti-inflammatory properties. However, little is known about the relationship between platelet function and inflammation under dual antiplatelet therapy in patients with stable coronary artery disease. The purpose of the study was to investigate the correlation of platelet function with soluble (s)P-selectin and soluble (s)CD40L in patients undergoing elective percutaneous coronary intervention. Poor response to ASA and clopidogrel could lead to increased levels of inflammatory markers. A total of 148 patients were included. Eighty percent of the patients were on 100 mg ASA and all patients were clopidogrel naive. They underwent percutaneous coronary intervention and received a loading dose of 600 mg clopidogrel. Platelet function was assessed by light transmittance aggregometry (LTA) and vasodilator-stimulated phosphoprotein analysis at baseline, 24 h after loading, and after 1 month of maintenance therapy, respectively. Plasma levels of sP-selectin and sCD40L were measured. To classify low responders to clopidogrel, patients were screened for genetic variants determining clopidogrel absorption and metabolization. sP-selectin levels correlated with LTA findings after stimulation with arachidonic acid (P=0.012). Further, in addition to decreased platelet reactivity observed on LTA, lower sP-selectin levels were seen in patients under ASA therapy (P=0.004). CYP2C19*2 allele carriers had a higher platelet reactivity after clopidogrel loading measured by adenosine diphosphate-induced aggregation in LTA (P=0.008) and vasodilator-stimulated phosphoprotein phosphorylation (P=0.035); however, there was no difference in the inflammatory markers. Multiple regression analysis showed that variables significantly related to sP-selectin plasma levels were sCD40L (Pacid (P<0

  7. Elevated maternal serum sP-selectin levels in preeclamptic pregnancies with and without intrauterine fetal growth restriction, but not in normotensive pregnancies complicated by isolated IUGR.

    Science.gov (United States)

    Laskowska, Marzena; Laskowska, Katarzyna; Oleszczuk, Jan

    2013-02-15

    The aim of this study was to show differences of maternal serum sP-selectin levels in pregnancies complicated by intrauterine fetal growth restriction (IUGR) in the course of preeclampsia and to compare the results with normotensive pregnant women with isolated IUGR. These studies were also conducted on preeclamptic pregnancies with appropriate-for-gestational-age weight infants and on the control normotensive pregnant women. The study was carried out on 55 patients with pregnancy complicated by fetal growth restriction in the course of preeclampsia, 70 normotensive patients with pregnancies complicated by isolated IUGR, 39 preeclamptic patients with appropriate-for-gestational-age weight fetuses and 54 healthy normotensive pregnant patients with normal fetal growth. Maternal serum levels of sP-selectin were determined using the enzyme-linked immunosorbent assay. Levels of sP-selectin were higher in women with pregnancy complicated by preeclampsia with and without IUGR; whereas, in the group of normotensive pregnant women with isolated fetal growth restriction, serum sP-selectin levels tended to be lower than in the control subjects, but this difference was not statistically significant. The mean values were 192.05±70.96 ng/mL in the IUGR group, 293.18±222.92 ng/mL in the PI group, 379.78±353.13 ng/mL in the P group and 227.96±134.04 ng/mL in the healthy controls (p<0.001*). Our findings may suggest that the elevated level of the soluble P-selectin is associated with preeclampsia, and that it may confirm the presence of platelet and endothelial activation, the presence of the hypercoagulant state and may be due to the systemic inflammatory response in this serious pregnancy disorder.

  8. Soluble P-selectin and matrix metalloproteinase 2 levels are elevated in patients with diastolic dysfunction independent of glucose metabolism disorder or coronary artery disease.

    Science.gov (United States)

    Füth, Reiner; Dinh, Wilfried; Nickl, Werner; Bansemir, Lars; Barroso, Michael Coll; Bufe, Alexander; Sause, Armin; Scheffold, Thomas; Krahn, Thomas; Ellinghaus, Peter; Lankisch, Mark

    2009-01-01

    The development of diastolic dysfunction (DDF) is multifactorial. Possible mechanisms include metabolic disturbances, myocardial fibrosis, chronic inflammation and endothelial dysfunction. Recognizing early stages of DDF may help to identify patients at risk of developing symptomatic DDF. Therefore, biomarkers reflecting pathophysiological changes within the myocardium were investigated in patients with DDF. Seventy-seven patients submitted for coronary angiography with stable or suspected coronary artery disease (CAD) were consecutively enrolled. Those without known diabetes mellitus (DM) underwent a standardized oral glucose tolerance test. Echocardiography for the diagnosis of DDF was performed according to the European Society of Cardiology. Matrix metalloproteinase 2 (MMP-2) and soluble P-selectin (sP-selectin) serum concentrations were analyzed using the ELISA technique. A total of 36% of patients had DM and 74% had CAD. The prevalence of DDF was higher in patients with DM (89% versus 74%) and CAD (84% versus 53%) (PDDF in patients with DM was more severe with a significantly lower mitral annulus velocity of 6.5 cm/s versus 7.8 cm/s (PDDF showed significantly higher sP-selectin (140.3 mug/L versus 107.6 mug/L, PDDF. There was a significant correlation between sP-selectin and MMP-2 (P=0.01), independent of the diagnosis of DM or CAD. sP-selectin as a marker for platelet hyperactivity, inflammation and endothelial dysfunction, and MMP-2 as a marker for extracellular matrix turnover were significantly elevated in patients with DDF. This elevation was independent of coexisting DM or CAD. This observation may help to identify and monitor patients with DDF.

  9. Effect of marathon run and air travel on pre- and post-run soluble d-dimer, microparticle procoagulant activity, and p-selectin levels.

    Science.gov (United States)

    Parker, Beth A; Augeri, Amanda L; Capizzi, Jeffrey A; Ballard, Kevin D; Kupchak, Brian R; Volek, Jeffrey S; Troyanos, Christopher; Kriz, Peter; D'Hemecourt, Pierre; Thompson, Paul D

    2012-05-15

    D-dimer, microparticles, and p-selectin are venous thrombotic risk markers. Elevated p-selectin is associated with increased cardiovascular events. We examined the effects of exercise and air travel on the markers of vascular risk in marathon runners. Forty-one persons participating in the 114th Boston Marathon (April 19, 2010) were divided into travel (n = 23) and nontravel "control" (n = 18) groups according to whether they lived more than a 4-hour plane flight or less than a 2-hour car trip from Boston. The subjects provided venous blood samples the day before, immediately after, and after returning home the day after the marathon. The blood was analyzed for soluble d-dimer, microparticle procoagulant activity, and p-selectin. D-dimer levels increased more before to immediately after (142 ± 83 to 387 ± 196 ng/mL) in the travel group than in the controls (85 ± 26 to 233 ± 95 ng/mL; p = 0.02). Moreover, 6 travel subjects versus 0 controls had d-dimer values >500 ng/mL after returning home the day after the marathon, the clinical threshold for excluding venous thrombosis (p = 0.03). P-selectin increased with exercise (p marathon (r(2) = 0.16, p = 0.01). In conclusion, the combination of exercise and travel increases venous and arterial thrombotic risk. Moreover, the p-selectin levels at rest and after exercise were greater with age. These results might explain the reports of venous thrombosis with air travel after athletic events and the reports of cardiac events in older participants running marathons. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. In vitro effect of anti-β2 glycoprotein I antibodies on P-selectin expression, a marker of platelet activation

    Directory of Open Access Journals (Sweden)

    A. Hoxha

    2012-03-01

    Full Text Available Antiphospholipid antibodies (aPL associated with thromboembolic events and/or pregnancy morbidity characterize the so-called antiphospholipid syndrome (APS. Beta2glycoprotein I (β2GPI is the main target antigen for aPL, but the pathogenic role of anti-β2GPI antibodies (aβ2GPI is still unclear. Some authors assume they play a role in activating platelets. We evaluated the effects of aβ2GPI antibodies on platelet P-selectin expression. Aβ2GPI antibodies in the plasma of a pregnant APS patient were isolated by affinity chromatography at two different stages (catastrophic and quiescent of the disease. Gel filtered platelets (100 x 109/L from healthy volunteers were incubated with β2-GPI (20 µg/mL and with different concentrations (5. 25 and 50 µg/mL of aβ2GPI antibodies. P-selectin surface expression on platelets was assessed by flow cytometry using a specific fluorescent antibody directed against P-selectin. Aβ2GPI antibodies induced platelet activation only in the presence of thrombin receptor activator for peptide 6 (TRAP-6, a platelet agonist, at a subthreshold concentration. Aβ2GPI antibody enhancement on platelet surface P-selectin expression was stronger in the catastrophic than in the quiescent phase of the disease (47 vs 15%. TRAP-6 dependent platelet activation by aβ2GPI antibodies is consistent with the “two hit” pathogenetic hypothesis for thrombosis. Aβ2GPI antibodies induce higher platelet P-selectin expression during the active rather than the acute phases.

  11. Silver-doped hydroxyapatite coatings formed on Ti–6Al–4V substrates and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yanovska, A.A., E-mail: biophy@yandex.ru [Institute of Applied Physics National Academy of Sciences of Ukraine, 58, Sumy 40000 (Ukraine); Stanislavov, A.S. [Institute of Applied Physics National Academy of Sciences of Ukraine, 58, Sumy 40000 (Ukraine); Sukhodub, L.B. [Institute of Microbiology and Immunology, National Academy of Medical Sciences of Ukraine, 14-Puschinskaya St., Kharkov 61057 (Ukraine); Kuznetsov, V.N.; Illiashenko, V.Yu.; Danilchenko, S.N. [Institute of Applied Physics National Academy of Sciences of Ukraine, 58, Sumy 40000 (Ukraine); Sukhodub, L.F. [Sumy State University, Medical Institute, Ministry of Education and Science of Ukraine, R. Korsakova Str. 2, Sumy 40007 (Ukraine)

    2014-03-01

    Coatings with antibacterial components for medical implants are recommended to reduce the risk of bacterial infections. Therefore hydroxyapatite (HA) coatings with addition of chitosan (CS) and silver (Ag) are proposed in this work in an attempt to resolve this problem. Ti–6Al–4V substrates were modified by a chitosan film to study the influence of surface modification on the formation of the HA–Ag and HA–CS–Ag coatings. Using a thermal substrate method, HA and HA–CS coatings doped with Ag{sup +} were prepared at low substrate temperatures (90 °C). Coated surfaces were examined using X-ray diffraction and scanning electron microscopy. The amount of silver in the deposited coatings was analyzed by atomic absorption spectroscopy. From this study it is concluded that the substrate surface modified by a chitosan film promotes the coating formation and increases the antibacterial activity of produced coatings against a strain of Escherichia coli. The adhesion of E. coli (ATCC 25922) to sheep erythrocytes was decreased by 14% as compared with the reference samples without Ag. It could be explained by the inhibition of bacterial adhesins by Ag{sup +} ions released. The combined action of silver ions and chitosan resulted in a 21% decrease in adhesive index. - Highlights: • Silver doped hydroxyapatite (HA) coatings are deposited by thermal substrate method. • Surface modification of Ti–6Al–4V substrates by chitosan film is proposed. • The influence of surface modification on HA–Ag coating formation is investigated. • Substrates modified by a chitosan film promote the nucleation of the HA coatings. • Antibacterial effect on the E. coli is more expressed for coatings on modified surface.

  12. Performance characterization of metallic substrates coated by HVOF WC–Co

    Energy Technology Data Exchange (ETDEWEB)

    Venter, Andrew M., E-mail: andrew.venter@necsa.co.za [Research and Development Division, Necsa Limited, Pretoria (South Africa); School of Chemical and Metallurgical Engineering, University of the Witwatersrand (South Africa); DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand (South Africa); Oladijo, O. Philip [School of Chemical and Metallurgical Engineering, University of the Witwatersrand (South Africa); DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand (South Africa); Luzin, Vladimir [ANSTO (Australian Nuclear Science and Technology Organisation), Lucas Height (Australia); Cornish, Lesley A.; Sacks, Natasha [School of Chemical and Metallurgical Engineering, University of the Witwatersrand (South Africa); DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand (South Africa)

    2013-12-31

    Integral to the performance of high-velocity oxygen-fuel (HVOF) coatings is the thermo-mechanical interaction associated with the thermal misfit, or differences in thermal expansion coefficients (CTEs), between coating and substrate. This investigation reports results on the microstructures, chemical phase content, coating–substrate misfit residual stress, and wear resistance. For this purpose a systematic characterization of WC–Co sprayed coatings on a number of substrates covering a range of CTE values were pursued for both the as-coated and heat-treated conditions. The neutron diffraction technique in conjunction with sub-millimeter sized gauge volumes enabled depth-resolved studies of the stress in the coatings and substrates by paying special attention to the determination of the stress contribution attributed by the final spray process. In the as-coated condition the stress values in the coatings were compressive for CTEs larger than that of WC–Co and tensile for CTE lower than WC–Co. Wear resistance increased for increased compressive stress and macrohardness. In the heat-treated condition, this trend became enhanced due to increased compressive stress in the coatings. - Highlights: • Four different substrate systems coated with HVOF WC-Co has been investigated. • Each substrate set encompassed the grit-blast surface and as-coated conditions, as well as their heat-treated counterparts. • Microstructural, macrohardness, wear performance and depth-resolved residual stress characterised. • Successful application of neutron strain scanning to investigating the combined systems, coatings and substrates. • Link observed between macrohardness, residual stress and wear performance.

  13. An Improved Approach to Fracture Toughness Assessment of Brittle Coating on Ductile Substrate Systems under Indentation

    Science.gov (United States)

    Demidova, Natalia V.

    Fracture toughness is an important material property that determines the structural integrity of a component with pre-existing or service-generated flaws. In the present research, an indentation-based method and the associated fracture mechanics model are proposed for fracture toughness assessment of brittle coating/ductile substrate systems. The proposed models consider well-developed radial/median cracks generated under sharp indentation, despite that the crack formation process may have gone through crack initiation and propagation phases. For generality, the geometry of a well-developed crack is assumed to be semi-elliptical in shape. The driving force of the crack is considered to stem from the residual plastic zone expansion under the indenter, as well as the far-field Boussinesq (elastic) stress. Three well-defined configurations are studied. For the first configuration, a crack with a depth of less than 7% of the coating thickness is considered. In this case, the problem is treated as the one for the monolithic material with the coating material properties. For the second configuration, a crack that runs deeper than 7% of the coating thickness but is still within the coating layer is analyzed. In this case, the composite hardness is introduced into the analysis to account for the influence of the substrate material properties; and furthermore, an interface correction factor is proposed to take into account the presence of the coating/substrate interface and its influence on the stress intensity factor of the well-developed elliptical cracks. For the third configuration, a crack penetrating into the substrate is considered. In this case, based on the condition of deformation compatibility across the coating/substrate interface, the bulk modulus for the coating/substrate system is introduced into the analysis. A series of indentation tests are conducted on a WC/10Co/4Cr coating/1080 low carbon steel substrate specimen, which is a brittle coating on a ductile

  14. Effect of bioglass and silica coating of zirconia substrate on its bond strength to resin cement.

    Science.gov (United States)

    Moezzizadeh, Maryam; Nojedehian, Hanieh; Valizadeh Haghi, Haleh

    2017-01-31

    This study aimed to assess the effect of bioglass and silica coating of zirconia substrate on its bond strength to resin cement. A total of 120 specimens were used in this in-vitro, experimental study. Zirconia discs measuring 10×7×2 mm were cut from Y-TZP zirconia blocks, sintered, cleaned and received different surface treatments of sandblasting, bioglass powder coating+etching, bioglass powder coating+etching+silanization, bioglass slurry coating+etching, bioglass slurry coating+etching+silanization, silica coating+silanization, silica coating+etching+silanization and no treatment group (control). Then the microshear bond strength testing and scanning electron microscope (SEM) analysis were done. Data were analyzed using the Mann Whitney U and the Kruskal Wallis tests. Significant differences existed in bond strength of different groups (pbioglass coated groups showed higher and the colloidal silica-coated groups showed lower bond strength compared to the control group.

  15. DEFINITION OF ACTIVATED THROMBOCYTE NUMBER WITH ANTIBODIES FOR ACTIVATED FIBRINOGEN AND P-SELECTIN IN PATIENTS WITH ESSENTIAL THROMBOCYTHEMIA AND ANTIAGGREGATION DRUG EFFECT

    Directory of Open Access Journals (Sweden)

    Samo Zver

    2004-12-01

    Full Text Available Background. Essential thrombocythemia (ET is a chronic myeloproliferative disease with a platelet count within the range of 400–2000 × 109/L. Higher percentage of platelets in the circulation of patients with ET express also activation markers on their membranes. Two of such markers are P-selectin and activated fibrinogen on platelet membranes. Because of frequent thrombembolic and also bleeding related complications, treatment of ET is mandatory. Patients whose platelet count is less than 1000 × 109/L and who did not suffer any thrombembolic complication during the course of the disease, are ussually treated with an antiaggregation drug, acetylsalicylic acid 100 mg/daily orally. Clopidogrel is an adenosyn-di-phosphate (ADP receptor antagonist in platelets. There is no routine clinical data about clopidogrel treatment in the patients with ET and only sporadic case reports can be find in the literature.Patients and methods. In our clinical study we compared antiaggregational effects of acetylsalicylic acid and clopidogrel, by measuring the P-selectin level and activated fibrinogen expression on platelet membranes.There were 35 ET patients included, within the age range between 21 and 78 years and with platelet counts within 451–952 × 109/L. None of the patients did suffer any thrombembolic complication during the course of the disease. During the sequential 14 day periods, patients received acetylsalicylic acid 100 mg/daily orally, followed by clopidogrel 75 mg/daily orally and ultimativelly, together acetylsalicylic acid 100 mg/daily orally plus clopidogrel 75 mg/daily orally. After each fourteen days period the level of P-selectin and activated fibrinogen activated platelets were determined with monoclonal antibodies on flow cytometer. Statistical evaluation was calculated on the difference of average values between the two small, independent pair groups with the t-test.Results. When the patients stopped with acetylsalicylic acid and

  16. Time course of soluble P-selectin and von Willebrand factor levels in trauma patients: a prospective observational study.

    Science.gov (United States)

    Tang, Ning; Yin, Shiyu; Sun, Ziyong; Pan, Yingying

    2013-09-14

    Coagulopathy often develops in patients with serious trauma and is correlated with the clinical outcome. The contribution of platelet activity and endothelial dysfunction to trauma-induced coagulopathy remain to be defined. The purpose of this study was to investigate the time courses of soluble P-selectin (sPsel, an index of platelet activation) and von Willebrand factor (VWF, an index of endothelial dysfunction) in trauma patients and elucidate their relationship to coagulation parameter levels, the presence of coagulopathy, and patient outcome. This prospective observational study, which took place in a university hospital intensive care unit (ICU), included 82 severely injured trauma patients. The sPsel, VWF antigen, protein C, and factor VII levels were measured and routine coagulation tests were performed upon admission to ICU and daily within the first week. The 30-day mortality rate was also determined. Thirty-seven (45.1%) patients developed coagulopathy upon admission to the ICU, and the 30-day mortality rate was 20.7% (n = 17). Both the admission sPsel and VWF levels were lower in patients with coagulopathy than in those without (p trauma patients in the ICU, lower levels of sPsel and VWF on admission were associated with the presence of coagulopathy and might not predict a better outcome. An increase in the VWF level at the end of the first week after admission to ICU was associated with increased 30-day mortality.

  17. Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants.

    Science.gov (United States)

    Kim, Hae-Won; Kim, Hyoun-Ee; Knowles, Jonathan C

    2004-08-01

    Hydroxyapatite (HA) and fluor-hydroxyapatite (FHA) films were deposited on a titanium substrate using a sol-gel technique. Different concentrations of F- were incorporated into the apatite structure during the sol preparation. Typical apatite structures were obtained for all coatings after dipping and subsequent heat treatment at 500 degrees C. The films obtained were uniform and dense, with a thickness of approximately 5 microm. The dissolution rate of the coating layer decreased with increasing F- incorporation within the apatite structure, which demonstrates the possibility of tailoring the solubility by a functional gradient coating of HA and FHA. The cell proliferation rate on the coating layer decreased slightly with increasing F- incorporation. The alkaline phosphatase (ALP) activity of the cells on all the HA and FHA coated samples showed much higher expression levels compared to pure Ti. This confirmed the improved activity of cell functions on the substrates with the sol-gel coating treatment.

  18. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine-Grained Titanium Substrate: Structure Analysis

    Directory of Open Access Journals (Sweden)

    Konstantin A. Prosolov

    2018-02-01

    Full Text Available Nanocrystalline Zn-substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross-section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn-substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8-nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P–O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn-substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  19. Adhesion of two physically contacting planar substrates coated with layer-by-layer assembled films.

    Science.gov (United States)

    Matsukuma, Daisuke; Aoyagi, Takao; Serizawa, Takeshi

    2009-09-01

    Adhesives composed of synthetic and low-cost molecules that are based on simple chemical principles are attractive because of their versatility. In this article, we report adhesion between two planar substrates coated with layer-by-layer (LbL) assembled films of cationic poly(diallyldimethylammonium chloride) (PDDA) and anionic poly(sodium styrenesulfonate) (PSS) and perform lap shear measurements of the adhered substrates. Films prepared on the substrates functioned as adhesives when one substrate coated with the PDDA-surface film contacted the other surface coated with the PSS-surface film under adequate pressure in the presence of water droplets, suggesting that two films adhered on the basis of polyion complex formation. Observations suggested that the adhesives failed at the substrate-film interface rather than at the bulk films. The adhesion was compared between film-coated substrates and noncoated ones. Confocal laser scanning microscopic observation of adhesives composed of fluorescently labeled poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) revealed that the labeled PAH assembled on one substrate was well dispersed, even in a nonlabeled film assembled on another substrate. It was therefore confirmed that after adhesion in the presence of the water component, the polyelectrolytes became intermixed between the glassy films, resulting in changes in the adhesive structure at the substrate-film interface.

  20. Mechanical Study of Novel VPS-Titanium Coating on Polyethylene Substrates

    Science.gov (United States)

    Wolinne, Géraldine; Harnisch, Céline; Héripré, Eva; Ruch, Sylvie; Salito, Armando; Jeandin, Michel; Corté, Laurent

    2015-01-01

    Thick metallic or ceramic functional coatings onto polymers are of great interest for different domains such as the aerospace and medical industries. A vacuum plasma spray process has been developed to produce coatings on high- and low-temperature melting polymers including PEEK and polyethylene. This study reports the first experimental characterization of the strength and adherence of such titanium coatings on medical grade polyethylene substrates. Four-point bending coupled to microscopic observations show the existence of a critical tensile strain of 1% corresponding to the onset of cracking in the coating. For strains up to 6%, the crack density increases without any noticeable debonding. Fatigue tests over 106 cycles reveal that under this critical strain the coating remains uncracked while above it, the cracks number and size remain stable with no noticeable coating detachment. A protocol for laser shock adhesion testing (LASAT®) was developed to characterize the coating-substrate adhesion and captured the existence of a debonding threshold. These results provide quantitative guides for the design of orthopedic implants for which such a titanium coating is used to enhance anchorage to bone tissues. More generally, they open the way for systematic measurements quantifying the adhesion of metallic coating onto polymer substrates.

  1. Wood-Reinforced Polyphthalamide Resins: MultiFunctional Composite Coating for Metal Substrates

    Directory of Open Access Journals (Sweden)

    M. Barletta

    2014-01-01

    Full Text Available Protective layers were deposited on aluminum substrates by dipping them inside a fluidized bed (FB of wood and polyphthalamide powders. The experimental investigation looked into the influence of the main process parameters (number and composition of superimposed layers, heating temperature, and dipping time on the visual appearance, scratch adhesion, wear resistance, and thermal insulation of the resulting coatings. Micromechanical and tribological responses of the coatings were significantly improved by the effect of the wooden particles dispersed inside the polyphthalamide binder. An improvement of the thermal insulation was also achieved whatever the setting of the process parameters. Further, the coatings displayed good adhesion to the substrate and wear endurance.

  2. Influence of ceramic dental crown coating substrate thickness ratio on strain energy release rate

    Science.gov (United States)

    Khasnulhadi, K.; Daud, R.; Mat, F.; Noor, S. N. F. M.; Basaruddin, K. S.; Sulaiman, M. H.

    2017-10-01

    This paper presents the analysis of coating substrate thickness ratio effect on the crown coating fracture behaviour. The bi-layer material is examined under four point bending with pre-crack at the bottom of the core material by using finite element. Three different coating thickness of core/substrate was tested which is 1:1, 1:2 and 2:1. The fracture parameters are analysed based on bilayer and homogenous elastic interaction. The result shows that the ratio thickness of core/veneer provided a significant effect on energy release rate.

  3. Development of cube textured Ni-W alloy substrates used for coated conductors

    DEFF Research Database (Denmark)

    Suo, Hongli; Ma, Lin; Gao, Mangmang

    2014-01-01

    It is considered as a challenge for RABiTS route to get cube textured Ni-W alloy substrates with high mechanical and magnetic properties for coated conductors. The works of our group in recent years are summarized about different Ni-W substrates with high W content and composite tapes made by RABi...

  4. Vapor deposition on doublet airfoil substrates: Control of coating thickness and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., P.O. Box 400745, Charlottesville, Virginia 22904 (United States)

    2015-11-15

    Gas jet assisted vapor deposition processes for depositing coatings are conducted at higher pressures than conventional physical vapor deposition methods, and have shown promise for coating complex shaped substrates including those with non-line-of-sight (NLS) regions on their surface. These regions typically receive vapor atoms at a lower rate and with a wider incident angular distribution than substrate regions in line-of-sight (LS) of the vapor source. To investigate the coating of such substrates, the thickness and microstructure variation along the inner (curved) surfaces of a model doublet airfoil containing both LS and NLS regions has been investigated. Results from atomistic simulations and experiments confirm that the coating's thickness is thinner in flux-shadowed regions than in other regions for all the coating processes investigated. They also indicated that the coatings columnar microstructure and pore volume fraction vary with surface location through the LS to NLS transition zone. A substrate rotation strategy for optimizing the thickness over the entire doublet airfoil surface was investigated, and led to the identification of a process that resulted in only small variation of coating thickness, columnar growth angle, and pore volume fraction on all doublet airfoil surfaces.

  5. Distamycin A Inhibits HMGA1-Binding to the P-Selectin Promoter and Attenuates Lung and Liver Inflammation during Murine Endotoxemia

    Science.gov (United States)

    Baron, Rebecca M.; Lopez-Guzman, Silvia; Riascos, Dario F.; Macias, Alvaro A.; Layne, Matthew D.; Cheng, Guiying; Harris, Cailin; Chung, Su Wol; Reeves, Raymond; von Andrian, Ulrich H.; Perrella, Mark A.

    2010-01-01

    Background The architectural transcription factor High Mobility Group-A1 (HMGA1) binds to the minor groove of AT-rich DNA and forms transcription factor complexes (“enhanceosomes”) that upregulate expression of select genes within the inflammatory cascade during critical illness syndromes such as acute lung injury (ALI). AT-rich regions of DNA surround transcription factor binding sites in genes critical for the inflammatory response. Minor groove binding drugs (MGBs), such as Distamycin A (Dist A), interfere with AT-rich region DNA binding in a sequence and conformation-specific manner, and HMGA1 is one of the few transcription factors whose binding is inhibited by MGBs. Objectives To determine whether MGBs exert beneficial effects during endotoxemia through attenuating tissue inflammation via interfering with HMGA1-DNA binding and modulating expression of adhesion molecules. Methodology/Principal Findings Administration of Dist A significantly decreased lung and liver inflammation during murine endotoxemia. In intravital microscopy studies, Dist A attenuated neutrophil-endothelial interactions in vivo following an inflammatory stimulus. Endotoxin induction of P-selectin expression in lung and liver tissue and promoter activity in endothelial cells was significantly reduced by Dist A, while E-selectin induction was not significantly affected. Moreover, Dist A disrupted formation of an inducible complex containing NF-κB that binds an AT-rich region of the P-selectin promoter. Transfection studies demonstrated a critical role for HMGA1 in facilitating cytokine and NF-κB induction of P-selectin promoter activity, and Dist A inhibited binding of HMGA1 to this AT-rich region of the P-selectin promoter in vivo. Conclusions/Significance We describe a novel targeted approach in modulating lung and liver inflammation in vivo during murine endotoxemia through decreasing binding of HMGA1 to a distinct AT-rich region of the P-selectin promoter. These studies highlight

  6. Distamycin A inhibits HMGA1-binding to the P-selectin promoter and attenuates lung and liver inflammation during murine endotoxemia.

    Directory of Open Access Journals (Sweden)

    Rebecca M Baron

    2010-05-01

    Full Text Available The architectural transcription factor High Mobility Group-A1 (HMGA1 binds to the minor groove of AT-rich DNA and forms transcription factor complexes ("enhanceosomes" that upregulate expression of select genes within the inflammatory cascade during critical illness syndromes such as acute lung injury (ALI. AT-rich regions of DNA surround transcription factor binding sites in genes critical for the inflammatory response. Minor groove binding drugs (MGBs, such as Distamycin A (Dist A, interfere with AT-rich region DNA binding in a sequence and conformation-specific manner, and HMGA1 is one of the few transcription factors whose binding is inhibited by MGBs.To determine whether MGBs exert beneficial effects during endotoxemia through attenuating tissue inflammation via interfering with HMGA1-DNA binding and modulating expression of adhesion molecules.Administration of Dist A significantly decreased lung and liver inflammation during murine endotoxemia. In intravital microscopy studies, Dist A attenuated neutrophil-endothelial interactions in vivo following an inflammatory stimulus. Endotoxin induction of P-selectin expression in lung and liver tissue and promoter activity in endothelial cells was significantly reduced by Dist A, while E-selectin induction was not significantly affected. Moreover, Dist A disrupted formation of an inducible complex containing NF-kappaB that binds an AT-rich region of the P-selectin promoter. Transfection studies demonstrated a critical role for HMGA1 in facilitating cytokine and NF-kappaB induction of P-selectin promoter activity, and Dist A inhibited binding of HMGA1 to this AT-rich region of the P-selectin promoter in vivo.We describe a novel targeted approach in modulating lung and liver inflammation in vivo during murine endotoxemia through decreasing binding of HMGA1 to a distinct AT-rich region of the P-selectin promoter. These studies highlight the ability of MGBs to function as molecular tools for dissecting

  7. Optimization of thickness uniformity of optical coatings on a conical substrate in a planetary rotation system.

    Science.gov (United States)

    Guo, Chun; Kong, Mingdong; Liu, Cunding; Li, Bincheng

    2013-02-01

    For a coating machine with a planetary rotation system and counterrotating shadowing mask configuration, a shadowing mask was designed using a numerical optimization algorithm to control the thickness uniformity of optical coatings formed on conical substrate. Single-layer magnesium fluoride (MgF(2)) and antireflective (AR) coating at 193 nm were fabricated on a convex conical substrate holder (with diameter 225 mm, apex angle 140 deg, and height 41 mm) by thermal evaporation. Thickness distribution determined from the transmittance spectra of single-layer MgF(2) thin films on BK7 slices showed that uniformities better than 99.3% were experimentally achieved with the designed counterrotating shadowing mask. From the reflectance spectra, uniform optical performance was also obtained for the 193 nm AR coating deposited on fused-silica substrates.

  8. Calcium and Zinc Containing Bactericidal Glass Coatings for Biomedical Metallic Substrates

    Directory of Open Access Journals (Sweden)

    Leticia Esteban-Tejeda

    2014-07-01

    Full Text Available The present work presents new bactericidal coatings, based on two families of non-toxic, antimicrobial glasses belonging to B2O3–SiO2–Na2O–ZnO and SiO2–Na2O–Al2O3–CaO–B2O3 systems. Free of cracking, single layer direct coatings on different biomedical metallic substrates (titanium alloy, Nb, Ta, and stainless steel have been developed. Thermal expansion mismatch was adjusted by changing glass composition of the glass type, as well as the firing atmosphere (air or Ar according to the biomedical metallic substrates. Formation of bubbles in some of the glassy coatings has been rationalized considering the reactions that take place at the different metal/coating interfaces. All the obtained coatings were proven to be strongly antibacterial versus Escherichia coli (>4 log.

  9. Hydrophilic Mineral Coating of Membrane Substrate for Reducing Internal Concentration Polarization (ICP) in Forward Osmosis.

    Science.gov (United States)

    Liu, Qing; Li, Jingguo; Zhou, Zhengzhong; Xie, Jianping; Lee, Jim Yang

    2016-01-22

    Internal concentration polarization (ICP) is a major issue in forward osmosis (FO) as it can significantly reduce the water flux in FO operations. It is known that a hydrophilic substrate and a smaller membrane structure parameter (S) are effective against ICP. This paper reports the development of a thin film composite (TFC) FO membrane with a hydrophilic mineral (CaCO3)-coated polyethersulfone (PES)-based substrate. The CaCO3 coating was applied continuously and uniformly on the membrane pore surfaces throughout the TFC substrate. Due to the intrinsic hydrophilicity of the CaCO3 coating, the substrate hydrophilicity was significantly increased and the membrane S parameter was reduced to as low as the current best of cellulose-based membranes but without the mechanical fragility of the latter. As a result, the ICP of the TFC-FO membrane could be significantly reduced to yield a remarkable increase in water flux without the loss of membrane selectivity.

  10. Enhancement of low pressure cold sprayed copper coating adhesion by laser texturing on aluminum substrates

    Science.gov (United States)

    Knapp, Wolfgang; Gillet, Vincent; Courant, Bruno; Aubignat, Emilie; Costil, Sophie; Langlade, Cécile

    2017-02-01

    Surface pre-treatment is fundamental in thermal spraying processes to obtain a sufficient bonding strength between substrate and coating. Different pre-treatments can be used, mostly grit-blasting for current industrial applications. This study is focused on Cu-Al2O3 coatings obtained by Low Pressure Cold Spray on AW5083 aluminum alloy substrate. Bonding strength is measured by tensile adhesion test, while deposition efficiency is measured. Substrates are textured by laser, using a pattern of equally spaced grooves with almost constant diameter and variations of depth. Results show that bonding strength is improved up to +81% compared to non-treated substrate, while deposition efficiency remains constant. The study of the samples after rupture reveals a modification of the failure mode, from mixed failure to cohesive failure. A modification of crack propagation is also noticed, the shape of laser textured grooves induces a deviation of cracks inside the coating instead of following the interface between the layers.

  11. Transport losses in single and assembled coated conductors with textured-metal substrate with reduced magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Amemiya, N. [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)], E-mail: amemiya@kuee.kyoto-u.ac.jp; Jiang, Z.; Li, Z.; Nakahata, M. [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Kato, T.; Ueyama, M. [Sumitomo Electric Ind., Ltd., Electric Power and Energy Research Laboratories, 1-1-3, Shimaya, Konohana, Osaka 554-0024 (Japan); Kashima, N.; Nagaya, S. [Chubu Electric Power Co., Inc., 20-1 Kita-Sekiyama, Ohdaka, Midori, Nagoya 459-8522 (Japan); Shiohara, S. [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto, Tokyo 136-0062 (Japan)

    2008-09-15

    Transport losses in a coated conductor with a textured-metal substrate with reduced magnetism were studied experimentally. The substrate is with a clad structure, and HoBCO superconductor layer is deposited on the substrate with buffer layers. The measured transport loss of a sample whose critical current is 126.0 A falls between Norris's strip value and Norris's ellipse value. The increase in the measured transport loss from Norris's strip value can be attributed to its non-uniform lateral J{sub c} distribution. The same buffered clad tape was placed under an IBAD-MOCVD coated conductor with a non-magnetic substrate, and its transport loss was measured. The comparison between the measured transport loss of this sample and that of the identical IBAD-MOCVD coated conductor without the buffered clad tape indicates that the increase in the transport loss due to this buffered clad tape is small. The transport losses of hexagonal assemblies of IBAD-MOCVD coated conductors, whose structure simulates that of superconducting power transmission cables, were also measured where the buffered clad tapes were under-lied or over-lied on the coated conductors. The increase in the transport loss of hexagonal assemblies of coated conductors due to the buffered clad tapes is at an allowable level.

  12. Structural characteristics of titanium coating on copper substrates

    Indian Academy of Sciences (India)

    a number of industries such as aerospace and chemical. (Destefani 1990 ... the nuclear industry. 2. Experimental. Coatings of Ti were sputter deposited from a high purity. (99·99%) Ti target of 76 mm diameter on oxygen-free high conductivity ..... ner as there are cluster of acoustic signals at higher applied loads. However ...

  13. Influence of substrate topography on cathodic delamination of anticorrosive coatings

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim

    2009-01-01

    The cathodic delamination of a commercial magnesium silicate and titanium dioxide pigmented epoxy coating on abrasive cleaned cold rolled steel has been investigated. The rate of delamination was found to depend on interfacial transport from the artificial defect to the delamination front...

  14. Zr-based conversion coatings for multi-metal substrates

    NARCIS (Netherlands)

    Cerezo Palacios, J.M.

    2015-01-01

    In this PhD work, a new surface treatment based on the application of Zr-based conversion coatings by immersion in a Cu containing Zr-based conversion solution was investigated as a replacement of the traditional phosphating process for the automotive industry. Nowadays most of the cars are made of

  15. Development of Ceramic Coating on Metal Substrate using Industrial Waste and Ore Minerals

    Science.gov (United States)

    Bhuyan, S. K.; Thiyagarajan, T. K.; Mishra, S. C.

    2017-02-01

    The technological advancement in modern era has a boon for enlightening human life; but also is a bane to produce a huge amount of (industrial) wastes, which is of great concern for utilization and not to create environmental threats viz. polution etc. In the present piece of research work, attempts have been made to utilize fly ash (wastes of thermal power plants) and along with alumina bearing ore i.e. bauxite, for developing plasma spray ceramic coatings on metals. Fly ash and with 10 and 20% bauxite addition is used to deposit plasma spray coatings on a metal substrate. The surface morphology of the coatings deposited at different power levels of plasma spraying investigated through SEM and EDS analysis. The coating thickness is measured. The porosity levels of the coatings are evaluated. The coating hardness isalso measured. This piece of research work will be beneficial for future development and use of industrial waste and ore minerals for high-valued applications.

  16. Evaluation and Characterization of Plasma Sprayed Cu Slag-Al Composite Coatings on Metal Substrates

    Directory of Open Access Journals (Sweden)

    S. Mantry

    2013-01-01

    Full Text Available Copper slag is a waste product obtained during matte smelting and refining of copper. The present work explores the coating potential of copper slag by plasma spraying. This work shows that copper slag is eminently coatable. An attempt has been made in the present investigation to use the composites coatings of copper slag and Al powder in suitable combination on aluminium and mild steel substrates in order to improve the surface properties of these ductile metal-alloy substrates. When premixed with Al powder, the coating exhibits higher interfacial adhesion as compared to pure copper slag coatings. Maximum adhesion strengths of about 23 MPa and 21 MPa are recorded for the coatings of copper slag with 15 wt% of Al on aluminium and mild steel substrates, respectively. The input power to the plasma torch is found to affect the coating deposition efficiency and morphology of the coatings. It also suggests value addition of an industrial waste.

  17. A Green Route for Substrate-Independent Oil-Repellent Coatings

    Science.gov (United States)

    Xu, Li-Ping; Han, Da; Wu, Xiuwen; Zhang, Qingqing; Zhang, Xueji; Wang, Shutao

    2016-11-01

    Oil repellent surface have lots of practical applications in many fields. Current oil repellent coating may suffer from limited liquid repellency to oils or environmental risks. In this work, we report an eco-friendly ‘green’ processes for preparing oil-repellent surface using a renewable and environmentally benign bioresource alginate. The oil-repellent coating was prepared by a two-step surface coating technique and showed stable oil repellency to many kinds of oils. The fabrication process was very simple with no need for special equipment, and this approach can be successfully employed to various substrates with different compositions, sizes and shapes, or even substrate-independent oil-repellent materials. The as-prepared coating of calcium alginate may have a good future in packaging oil-containing products and foods.

  18. THE RESEARCH TECHNIQUES FOR ANALYSIS OF MECHANICAL AND TRIBOLOGICAL PROPERTIES OF COATING-SUBSTRATE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kinga CHRONOWSKA-PRZYWARA

    2014-06-01

    Full Text Available The article presents research techniques for the analysis of both mechanical and tribological properties of thin coatings applied on highly loaded machine elements. In the Institute of Machine Design and Exploitation, AGH University of Science and Technology students of the second level of Mechanical Engineering study tribology attending laboratory class. Students learn on techniques for mechanical and tribological testing of thin, hard coatings deposited by PVD and CVD technologies. The program of laboratories contains micro-, nanohardness and Young's modulus measurements by instrumental indentations and analysys of coating to substrate adhesion by scratch testing. The tribological properties of the coating-substrate systems are studied using various techniques, mainly in point contact load conditions with ball-on-disc and block-on-ring tribomiters as well as using ball cratering method in strongly abrasive suspensions.

  19. Characterization of a biomimetic coating on dense and porous titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.N. da; Pereira, L.C. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEMM/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Ribeiro, A.A.; Oliveira, M.V. de, E-mail: marize.varella@int.gov.b [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil); Andrade, M.C. de [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico

    2010-07-01

    Bioactive materials have been studied as coatings on bioinert subtracts. Thus, it is possible to combine the bioactivity of materials such as calcium phosphate with the excellent mechanical properties of metals. Titanium (Ti) implants can be bioactivated by a biomimetic precipitation method. This study introduces a biomimetic method under a simplified solution (SS) with calcium and phosphorus ions. As substrates, commercially pure Ti sheet and micro-porous Ti samples produced by powder metallurgy were used. The substrates were submitted to chemical and heat treating and then immersed in the SS for 7, 14, 21 days. Surface roughness was evaluated by confocal scanning optical microscopy. Coating characterization was performed by scanning electron microscopy and high resolution X-ray diffraction (XRD). The results showed calcium phosphate crystal morphologies observed in all samples, which was confirmed by XRD phase identifications. These results reveal the solution potential for coating Ti substrates. (author)

  20. Substrate material affects wettability of surfaces coated and sintered with silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Kang; Zeng, Hansong [Laboratory for Biomedical Microsystems, Department of Biomedical Engineering, The Ohio State University, Columbus, OH (United States); Zhao, Yi, E-mail: zhao.178@osu.edu [Laboratory for Biomedical Microsystems, Department of Biomedical Engineering, The Ohio State University, Columbus, OH (United States)

    2013-05-15

    Silica nanoparticles coating and sintering is a widely-used approach for creating hydrophobic and superhydrophobic surfaces. The role of substrate material in this process, however, has not been thoroughly investigated. In this work, the role of substrate material is examined by measuring surface wettability of three different substrate materials (glass, polyimide and copper) under systematically varied conditions. These surfaces are modulated from hydrophilic (water contact angle (WCA) < 90°) to superhydrophobic (WCA > 150°) by coating and sintering silica nanoparticles, followed by assembling a layer of fluorine compound. Static WCA characterization shows that surface wettability is not solely dependent on the concentration of the coating colloidal, but is also on the substrate material. In particular, copper substrate exhibits a larger WCA than glass and polyimide substrates. Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS) and Atomic Force Microscopy (AFM) characterizations show that the substrate material-dependent wettability is attributed to thermal-induced nanostructures on the copper surface, which contributes to the hierarchical micro-/nano- topography. This finding is important for designing hydrophobic/superhydrophobic surfaces comprised of different materials, especially those that would experience thermal cycles in surface functionalization and subsequent use.

  1. Thermal Stability of Silver Paste Sintering on Coated Copper and Aluminum Substrates

    Science.gov (United States)

    Pei, Chun; Chen, Chuantong; Suganuma, Katsuaki; Fu, Guicui

    2017-10-01

    The thermal stability of silver (Ag) paste sintering on coated copper (Cu) and aluminum (Al) substrates has been investigated. Instead of conventional zincating or nickel plating, magnetron sputtering was used to achieve coating with titanium (Ti) and Ag. Silicon (Si) chips were bonded to coated Cu and Al substrates using a mixture of submicron Ag flakes and particles under 250°C and 0.4 MPa for 30 min. The joints were then subject to aging testing at 250°C for duration of 200 h, 500 h, and 1000 h. Two types of joints exhibited satisfactory initial shear strength above 45 MPa. However, the shear strength of the joints on Al substrate decreased to 28 MPa after 1000 h of aging, while no shear strength decline was detected for the joints on Cu substrate. Fracture surface analysis revealed that the vulnerable points of the two types of joints were (1) the Ag layer and (2) the interface between the Ti layer and Cu substrate. Based on the results of scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and simulations, cracks in the Ag layer were identified as the cause of the shear strength degradation in the joints on Al substrate. The interface evolution of the joints on Cu substrate was ascribed to Cu migration and discontinuity points that initialized in the Ti layer. This study reveals that Al exhibited superior thermal stability with sintered Ag paste.

  2. Thermal Stability of Silver Paste Sintering on Coated Copper and Aluminum Substrates

    Science.gov (United States)

    Pei, Chun; Chen, Chuantong; Suganuma, Katsuaki; Fu, Guicui

    2018-01-01

    The thermal stability of silver (Ag) paste sintering on coated copper (Cu) and aluminum (Al) substrates has been investigated. Instead of conventional zincating or nickel plating, magnetron sputtering was used to achieve coating with titanium (Ti) and Ag. Silicon (Si) chips were bonded to coated Cu and Al substrates using a mixture of submicron Ag flakes and particles under 250°C and 0.4 MPa for 30 min. The joints were then subject to aging testing at 250°C for duration of 200 h, 500 h, and 1000 h. Two types of joints exhibited satisfactory initial shear strength above 45 MPa. However, the shear strength of the joints on Al substrate decreased to 28 MPa after 1000 h of aging, while no shear strength decline was detected for the joints on Cu substrate. Fracture surface analysis revealed that the vulnerable points of the two types of joints were (1) the Ag layer and (2) the interface between the Ti layer and Cu substrate. Based on the results of scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and simulations, cracks in the Ag layer were identified as the cause of the shear strength degradation in the joints on Al substrate. The interface evolution of the joints on Cu substrate was ascribed to Cu migration and discontinuity points that initialized in the Ti layer. This study reveals that Al exhibited superior thermal stability with sintered Ag paste.

  3. Activation of platelets by in vitro whole blood contact with materials: increases in microparticle, procoagulant activity, and soluble P-selectin blood levels.

    Science.gov (United States)

    Gemmell, C H

    2001-01-01

    Non-adherent platelets and plasma were analyzed for evidence of platelet activation after whole blood contact with materials under conditions of low shear for one hour at 37 degrees C. The contact involved adding heparinized whole blood to small diameter tubes that were connected to two arms extending from a rocking platform. For all surfaces (polyethylene, polypropylene, Silastic, PVA hydrogel) tested there was strong evidence of platelet activation in the bulk blood: platelet-derived microparticles, procoagulant platelet membranes and soluble P-selectin levels. Flow cytometric quantification of microparticles (MPs) was highly sensitive and entailed the direct determination of microparticle concentrations as opposed to the traditional quantification of microparticle percentages (relative to total number of MPs and platelets). Whole blood contact with polypropylene surfaces led to the greatest drops in bulk platelet counts and also to the lowest increases in microparticle concentrations. Flow cytometry was also used to assess procoagulant levels (annexin V binding) within a light scatter region known to contain platelets and some large microparticles. All surfaces were noted to generate a significant procoagulant population that was, based on forward light scatter, mostly very small platelets or large microparticles. In contrast, most of the P-selectin positive platelets were averaged sized. Lastly. all surfaces generated soluble P-selectin levels that were approximately double the level (25 ng ml(-1)) noted in the resting whole blood samples. In addition to our previous reports, these findings support the observation that there is strong evidence of platelet activation in the bulk that we anticipate will ultimately lead to more relevant in vitro testing of the compatibility of platelets towards materials.

  4. Robust antifogging antireflective coatings on polymer substrates by hydrochloric acid vapor treatment.

    Science.gov (United States)

    Li, Tong; He, Junhui; Yao, Lin; Geng, Zhi

    2015-04-15

    Antireflective coatings on polymer substrates have received significant attention for their potential applications. In this paper, robust microporous antifogging antireflective coatings on polymer substrates were prepared from acid-catalyzed silica sol followed by hydrochloric acid vapor solidification at mild temperature below glass transition temperatures of common polymers. The coatings passed 3H pencil hardness test, sand flow test and water-drop test. They had excellent antireflective and antifogging properties. The maximum transmittance of coatings on PMMA substrates reached 100.0% (the maximum transmittance wavelength could be regulated) and average transmittance reached 99.0% in 400-800 nm. The advantage and mechanism of hydrochloric acid vapor solidification and mechanical strength enhancement of coatings are discussed in contrast to ammonia vapor treatment and air vapor treatment. The hydrochloric acid vapor treatment results in a dense integrated microporous film structure. Optical properties were characterized by a UV-Vis spectrophotometer. Surface wettability was studied by a contact angle/interface system. Surface morphologies and structures of coatings were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atom force microscopy (AFM). Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Gene deletion of P-Selectin and ICAM-1 does not inhibit neutrophil infiltration into peritoneal cavity following cecal ligation-puncture

    Directory of Open Access Journals (Sweden)

    Hess Karen

    2004-07-01

    Full Text Available Abstract Background Neutrophil infiltration is one of the critical cellular components of an inflammatory response during peritonitis. The adhesion molecules, P-selectin and intercellular adhesion molecule (ICAM-1, mediate neutrophil-endothelial cell interactions and the subsequent neutrophil transendothelial migration during the inflammatory response. Despite very strong preclinical data, recent clinical trials failed to show a protective effect of anti-adhesion therapy, suggesting that the length of injury might be a critical factor in neutrophil infiltration. Therefore, the objective of this study was to determine the role of P-selectin and ICAM-1 in neutrophil infiltration into the peritoneal cavity during early and late phases of peritonitis. Methods Peritonitis was induced in both male wild-type and P-selectin/ICAM-1 double deficient (P/I null mice by cecal ligation-puncture (CLP. Peripheral blood and peritoneal lavage were collected at 6 and 24 hours after CLP. The total leukocyte and neutrophil contents were determined, and neutrophils were identified with the aid of in situ immunohistochemical staining. Comparisons between groups were made by applying ANOVA and student t-test analysis. Results CLP induced a severe inflammatory response associated with a significant leukopenia in both wild-type and P/I null mice. Additionally, CLP caused a significant neutrophil infiltration into the peritoneal cavity that was detected in both groups of mice. However, neutrophil infiltration in the P/I null mice at 6 hours of CLP was significantly lower than the corresponding wild-type mice, which reached a similar magnitude at 24 hours of CLP. In contrast, in peritonitis induced by intraperitoneal inoculation of 2% glycogen, no significant difference in neutrophil infiltration was observed between the P/I null and wild-type mice at 6 hours of peritonitis. Conclusions The data suggest that alternative adhesion pathway(s independent of P-selectin and ICAM

  6. Differential expression of genes encoding CD30L and P-selectin in cattle with Johne's disease: Progress toward a diagnostic gene expression signature

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Grell, S. N.; Heegaard, Peter M. H.

    2006-01-01

    a unique gene expression signature for paraTB infection. In the present study, non-stimulated leukocytes isolated from 10 sub-clinical paraTB infected cows were examined for genes being expressed at significantly different levels than in similar cells from control cows with the same herd background. We...... of the seven genes selected for qRT-PCR, CD30 ligand (CD30L) and P-selectin were consistently differentially expressed in freshly isolated leukocytes from paraTB infected and control animals of both breeds of cattle. Although further work is clearly needed to develop a more complete gene expression signature...

  7. In vitro effect of anti-β2 glycoprotein I antibodies on P-selectin expression, a marker of platelet activation

    OpenAIRE

    Hoxha, A.; M. Tonello; E. Falcinelli; Giannini, S.; A. Ruffatti; A. Bontadi; P. Gresele; L. Punzi

    2012-01-01

    Antiphospholipid antibodies (aPL) associated with thromboembolic events and/or pregnancy morbidity characterize the so-called antiphospholipid syndrome (APS). Beta2glycoprotein I (β2GPI) is the main target antigen for aPL, but the pathogenic role of anti-β2GPI antibodies (aβ2GPI) is still unclear. Some authors assume they play a role in activating platelets. We evaluated the effects of aβ2GPI antibodies on platelet P-selectin expression. Aβ2GPI antibodies in the plasma of a pregnant APS patie...

  8. Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating.

    Science.gov (United States)

    Rosman, Christina; Pierrat, Sebastien; Tarantola, Marco; Schneider, David; Sunnick, Eva; Janshoff, Andreas; Sönnichsen, Carsten

    2014-01-01

    In this work, we study epithelial cell growth on substrates decorated with gold nanorods that are functionalized either with a positively charged cytotoxic surfactant or with a biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed cell migration and no significant particle internalization occurred. Concerning cell adhesion and spreading as compared to cell growth on bare substrates after 3 days of incubation, a reduction by 45% and 95%, respectively, for the surfactant particle coating was observed, whereas the amino-terminated polymer induced a reduction by 30% and 40%, respectively, which is absent for the carboxy-terminated polymer. Furthermore, interface-sensitive impedance spectroscopy (electric cell-substrate impedance sensing, ECIS) was employed in order to investigate the micromotility of cells added to substrates decorated with various amounts of surfactant-coated particles. A surface density of 65 particles/µm(2) (which corresponds to 0.5% of surface coverage with nanoparticles) diminishes micromotion by 25% as compared to bare substrates after 35 hours of incubation. We conclude that the surface coating of the gold nanorods, which were applied to the basolateral side of the cells, has a recognizable influence on the growth behavior and thus the coating should be carefully selected for biomedical applications of nanoparticles.

  9. Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

    Directory of Open Access Journals (Sweden)

    Christina Rosman

    2014-12-01

    Full Text Available In this work, we study epithelial cell growth on substrates decorated with gold nanorods that are functionalized either with a positively charged cytotoxic surfactant or with a biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed cell migration and no significant particle internalization occurred. Concerning cell adhesion and spreading as compared to cell growth on bare substrates after 3 days of incubation, a reduction by 45% and 95%, respectively, for the surfactant particle coating was observed, whereas the amino-terminated polymer induced a reduction by 30% and 40%, respectively, which is absent for the carboxy-terminated polymer. Furthermore, interface-sensitive impedance spectroscopy (electric cell–substrate impedance sensing, ECIS was employed in order to investigate the micromotility of cells added to substrates decorated with various amounts of surfactant-coated particles. A surface density of 65 particles/µm2 (which corresponds to 0.5% of surface coverage with nanoparticles diminishes micromotion by 25% as compared to bare substrates after 35 hours of incubation. We conclude that the surface coating of the gold nanorods, which were applied to the basolateral side of the cells, has a recognizable influence on the growth behavior and thus the coating should be carefully selected for biomedical applications of nanoparticles.

  10. Development and characterization of coatings on Silicon Pore Optics substrates for the ATHENA mission

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Jakobsen, Anders Clemen; Christensen, Finn Erland

    2012-01-01

    We present description and results of the test campaign performed on Silicon Pore Optics (SPO) samples to be used on the ATHENA mission. We perform a pre-coating characterization of the substrates using Atomic Force Microscopy (AFM), X-ray Re ectometry (XRR) and scatter measurements. X-ray tests...... roughness in the coatings. Both processes show promising results. Measurements of the coatings were carried out at the 8 keV X-ray facility at DTU Space and with synchrotron radiation in the laboratory of PTB at BESSY II to determine re ectivity at the grazing incidence angles and energies of ATHENA...

  11. Fourier optics for polymeric substrates and coating textures analysis

    OpenAIRE

    Sparavigna, Amelia; Wolf, Rory A.

    2008-01-01

    Several devices for substrate texture detection based on diffractive optics, for paper, textiles and non-wovens have been proposed in the past for direct inspection during the production processes. In spite of the presence of devices totally based on image processing, the use of diffractive optics cannot be considered surpassed for many reasons. Compared with image processing procedures, it is less sensitive to vibrations and does not suffer from the presence of ambient light. Based on transm...

  12. Interaction of carbon nanotubes coatings with titanium substrate

    Science.gov (United States)

    Fraczek-Szczypta, Aneta; Wedel-Grzenda, Alicja; Benko, Aleksandra; Grzonka, Justyna; Mizera, Jaroslaw

    2017-02-01

    The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs) after chemical surface functionalization on the interaction with a titanium surface. Two kinds of MWCNTs differing in terms of concentration of functional groups were deposited on the Ti surface using the electrophoretic deposition method (EPD). The study has shown the detailed analysis of the physicochemical properties of this form of carbon nanomaterial and received on their base coatings using various techniques, such as scanning electron microscopy (SEM), confocal microscopy, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The adhesion of the MWCNTs coatings to the Ti surface was determined using the shear test method, according to standard ASTM F-1044-05. These results indicated that one type of MWCNTs characterized by a higher concentration of functional groups has better adhesion to the metal surface than the second type. Analysis of the MWCNT-metal interface using Raman spectroscopy and SEM and STEM indicates the presence of phase built of MWCNT and TiO2. This phase could be a type of nanocomposite that affects the improvement of the adhesion of MWCNT to the Ti surface.

  13. Porous niobium coatings fabricated with selective laser melting on titanium substrates: Preparation, characterization, and cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sheng [Science and Technology on Power Beam Processes Laboratory, Beijing Aeronautical Manufacturing Technology Research Institute (BAMTRI), Beijing 100024 (China); State Key Lab of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Cheng, Xian; Yao, Yao; Wei, Yehui [Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Han, Changjun; Shi, Yusheng [State Key Lab of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Wei, Qingsong, E-mail: wqs_xn@163.com [State Key Lab of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Zhen, E-mail: zhangzhentitanium@163.com [State Key Lab of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2015-08-01

    Nb, an expensive and refractory element with good wear resistance and biocompatibility, is gaining more attention as a new metallic biomaterial. However, the high price of the raw material, as well as the high manufacturing costs because of Nb's strong oxygen affinity and high melting point have limited the widespread use of Nb and its compounds. To overcome these disadvantages, porous Nb coatings of various thicknesses were fabricated on Ti substrate via selective laser melting (SLM), which is a 3D printing technique that uses computer-controlled high-power laser to melt the metal. The morphology and microstructure of the porous Nb coatings, which had pores ranging from 15 to 50 μm in size, were characterized with scanning electron microscopy (SEM). The average hardness of the coating, which was measured with the linear intercept method, was 392 ± 37 HV. In vitro tests of the porous Nb coating which was monitored with SEM, immunofluorescence, and CCK-8 counts of cells, exhibited excellent cell morphology, attachment, and growth. The simulated body fluid test also proved the bioactivity of the Nb coating. Therefore, these new porous Nb coatings could potentially be used for enhanced early biological fixation to bone tissue. In addition, this study has shown that SLM technique could be used to fabricate coatings with individually tailored shapes and/or porosities from group IVB and VB biomedical metals and their alloys on stainless steel, Co–Cr, and other traditional biomedical materials without wasting raw materials. - Highlights: • Porous Nb coating was firstly fabricated on Ti substrate by SLM technique. • Morphology, microstructure and hardness of the coating were characterized. • In vitro test of the coating showed good cell attachment, morphology and growth.

  14. Influence of plasma treatment on wettability and scratch resistance of Ag-coated polymer substrates

    Directory of Open Access Journals (Sweden)

    Wojcieszak Damian

    2016-06-01

    Full Text Available Rapid progress in thin-film coatings based on metals, which can be deposited on polymers, has been recently observed. In this work discussion on the properties of modified polymers and silver thin films deposited on polytetrafluoroethylene (PTFE and polycarbonate (PC substrates has been presented. Surface of these polymer substrates were exposed to argon plasma discharge. Additionally, silver thin films were deposited on their surface by electron beam evaporation method. The surfaces of the modified polymers were studied by different methods, i.e. topography, wettability and scratch resistance measurements were performed. The ageing effect of treated substrates was also discussed. It was shown that plasma modification of PTFE and PC substrates increased wettability of their surfaces. The value of water contact angle decreased of about 40 % and 25 % for PTFE and PC surface, respectively. The change of hydrophobic to hydrophilic properties was observed. Plasma modification of substrates improved adhesion between silver coating and polymer substrates. However, it did not influence wettability of Ag coating.

  15. Design of a Nickel-Based Bond-Coat Alloy for Thermal Barrier Coatings on Copper Substrates

    Directory of Open Access Journals (Sweden)

    Torben Fiedler

    2014-11-01

    Full Text Available To increase the lifetime of rocket combustion chambers, thermal barrier coatings (TBC may be applied on the copper chamber wall. Since standard TBC systems used in gas turbines are not suitable for rocket-engine application and fail at the interface between the substrate and bond coat, a new bond-coat material has to be designed. This bond-coat material has to be chemically compatible to the copper substrate to improve the adhesion and needs a coefficient of thermal expansion close to that of copper to reduce thermal stresses. One approach to achieve this is to modify the standard NiCrAlY alloy used in gas turbines by adding copper. In this work, the influence of copper on the microstructure of NiCrAlY-alloys is investigated with thermodynamical calculations, optical microscopy, SEM, EDX and calorimetry. Adding copper leads to the formation of a significant amount of \\(\\beta\\ and \\(\\alpha\\ Reducing the aluminum and chromium content leads furthermore to a two-phase fcc microstructure.

  16. Regrowth of Carbon Nanotubes Array on Al Layer Coated Substrate

    Directory of Open Access Journals (Sweden)

    Chien-Chao Chiu

    2010-01-01

    Full Text Available Carbon nanotube (CNT arrays have been synthesized by a repeated growth method using a custom-fabricated plasma-enhanced thermal chemical vapor deposition (PE-thermal CVD apparatus. The initial catalyst is a layered structure prepared by depositing 10 nm of Al followed by 3 nm of Fe on an oxidized silicon substrate. Following CNT growth, the CNT arrays are removed using an ultrasonic cleaner, and another CNT array is grown on the remaining Fe-Al bimetalic nanoparticles without the addition of more catalyst. Annealing the catalytic substrate in air between growth cycles results in the removal of residual amorphous carbon along with the CNTs, and oxidation of the Fe-Al nanoparticles. The diameter of CNTs is reduced with repeated growth-annealing cycles, an effect of which is attributed to the diminishing size of the catalytically active nanoparticles with each cycle. After two growth cycles, SWNTs with the extraordinarily narrow diameter of 0.86 nm are synthesized. The ID/IG ratio derived from the Raman spectrum of these of the SWNT arrays shows the remarkably low value of 0.22.

  17. Microstructural Evolution of (Ti,W,CrB2 Coatings Deposited on Steel Substrates during Annealing

    Directory of Open Access Journals (Sweden)

    Aleksandra Newirkowez

    2014-05-01

    Full Text Available The topic of the present experiments are transition metal diboride coatings of composition (Ti0.49W0.51B2 and (Ti0.44W0.30Cr0.26B2. The coatings were deposited on steel substrates using dc magnetron sputtering. We investigated how annealing in argon at elevated temperatures modifies microstructure. The as-deposited films are amorphous. Annealing between 700 and 1100 °C results in the formation of nano-crystalline precipitates with average grain diameters of about 10–50 nm. A TiC phase (Fm-3m; a ≈ 4.3 Å is observed as the dominating precipitate phase. In addition, small amounts (10%–20% of a Cr23C6 phase (Fm-3m; a ≈ 10.6 Å are observed. In contrast to literature data on the same coatings deposited on silicon substrates, the formation of boride precipitate phases is strongly suppressed here. From investigations with X-ray diffractometry, electron microscopy and secondary ion mass spectrometry we conclude that the nanostructure of the coatings is formed by reactive phase formation of the boride coating with the carbon containing steel substrate.

  18. Effect of grit-blasting on substrate roughness and coating adhesion

    Science.gov (United States)

    Varacalle, Dominic J.; Guillen, Donna Post; Deason, Douglas M.; Rhodaberger, William; Sampson, Elliott

    2006-09-01

    Statistically designed experiments were performed to compare the surface roughness produced by grit blasting A36/1020 steel using different abrasives. Grit blast media, blast pressure, and working distance were varied using a Box-type statistical design of experiment (SDE) approach. The surface textures produced by four metal grits (HG16, HG18, HG25, and HG40) and three conventional grits (copper slag, coal slag, and chilled iron) were compared. Substrate roughness was measured using surface profilometry and correlated with operating parameters. The HG16 grit produced the highest surface roughness of all the grits tested. Aluminum and zinc-aluminum coatings were deposited on the grit-blasted substrates using the twin-wire electric are (TWEA) process. Bond strength of the coatings was measured with a portable adhesion tester in accordance with ASTM standard D 4541. The coatings on substrates roughened with steel grit exhibit superior bond strength to those prepared with conventional grit. For aluminum coatings sprayed onto surfaces prepared with the HG16 grit, the bond strength was most influenced by current, spray distance, and spray gun pressure (in that order). The highest bond strength for the zinc-aluminum coatings was attained on surfaces prepared using the metal grits.

  19. Characterization and properties of an advanced composite substrate for YBCO-coated conductors

    DEFF Research Database (Denmark)

    Gao, M.; Suo, H.; Zhao, Y.

    2010-01-01

    Thin, biaxially textured Ni5W/Ni12W/Ni5W composite substrates for coated conductor applications have been fabricated. The particularity of this three-layer composite configuration resides in the elemental diffusion between the outer layer and the core layer. Due to the migration of elemental W, t......, the diffusion layer in the as-annealed substrate becomes broader than that of the as-rolled substrate. The obtained tape has a sharp cubic texture on the Ni5W outer layers, and the volume fraction of cubic grains exceeds 98.8% (...

  20. A Two-Level Undercut-Profile Substrate for Chemical-Solution-Based Filamentary Coated Conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Lundeman, Jesper H.; Hansen, Jørn B.

    2016-01-01

    A recently developed two-level undercut-profile substrate (2LUPS), containing two levels of plateaus connected by a curved wall with an undercut profile, enables self-forming filaments in a coated conductor during physical line-of-sight deposition of buffer and superconducting layers. In the pres...

  1. SOLVENT-BASED TO WATERBASED ADHESIVE-COATED SUBSTRATE RETROFIT - VOLUME I: COMPARATIVE ANALYSIS

    Science.gov (United States)

    This volume represents the analysis of case study facilities' experience with waterbased adhesive use and retrofit requirements. (NOTE: The coated and laminated substrate manufacturing industry was selected as part of NRMRL'S support of the 33/50 Program because of its significan...

  2. SOLVENT-BASED TO WATERBASED ADHESIVE-COATED SUBSTRATE RETROFIT - VOLUME II: PROCESS OVERVIEW

    Science.gov (United States)

    This volume presents initial results of a study to identify the issues and barriers associated with retrofitting existing solvent-based equipment to accept waterbased adhesives as part of an EPA effort to improve equipment cleaning in the coated and laminated substrate manufactur...

  3. Fabrication of the Textured Ni-9.3at.%W Alloy Substrate for Coated Conductors

    DEFF Research Database (Denmark)

    Gao, M. M.; Suo, H. L.; Grivel, Jean-Claude

    2011-01-01

    It is difficult to obtain a sharp cube texture in the Ni-9.3at.% W substrate used for coated conductors due to its low stacking fault energy. In this paper, the traditional cold rolling procedure was optimized by introducing an intermediate recovery annealing. The deformation texture has been...

  4. A novel wet coating method using small amounts of solution on large flat substrates

    Science.gov (United States)

    Mousavi, S. H.; Jilavi, M. H.; May, A.; Schmitt, K. P.; Schäfer, B.; de Oliveira, P. W.

    2017-10-01

    Coating on large surfaces is a critical issue in both academic studies and industrial production. This work proposes a novel method of coating a large flat substrate (50 × 100 cm2) via a wet chemical process using a very small amount (20 ml) of coating solution. The sol material consisted of surface-modified silicon dioxide (SiO2) nanoparticles (10-30 nm), which have the optimal antireflective (AR) function in the visible spectral range for thin films with a thickness ranging from 110 to 120 nm. Ellipsometry results demonstrate a homogeneous thickness of the AR coating on glass (109.4 ± 2.7 nm). A deviation of less than 3% over a large coated surface was observed. Crack-free coatings with homogeneous morphology on the surface of the coatings were observed using scanning electron microscopy. The AR effect was confirmed with UV-vis measurements, with an average transmittance of 91.1% and 94.7%, respectively, in visible wavelengths for the one-sided and double-sided AR coatings (in comparison to 88% for uncoated glass).

  5. Effect of coating current density on the wettability of electrodeposited copper thin film on aluminum substrate

    Directory of Open Access Journals (Sweden)

    Arun Augustin

    2016-09-01

    Full Text Available Copper is the only one solid metal registered by the US Environmental Protection Agency as an antimicrobial touch surface. In touch surface applications, wettability of the surface has high significance. The killing rate of the harmful microbes depends on the wetting of pathogenic solution. Compared to the bulk copper, coated one on aluminum has the advantage of economic competitiveness and the possibility of manufacturing complex shapes. In the present work, the copper coating on the aluminum surface has successfully carried out by electrodeposition using non cyanide alkaline bath. To ensure good adhesion strength, the substrate has been pre-zincated prior to copper deposition. The coating current density is one of the important parameters which determine the nucleation density of the copper on the substrate. To understand the effect of current density on wettability, the coating has done at different current densities in the range of 3 A dm−2 to 9 A dm−2 for fixed time interval. The grain size has been measured from TEM micrographs and showed that as current density increases, grain size reduces from 62 nm to 35 nm. Since the grain size reduces, grain boundary volume has increases. As a result the value of strain energy (calculated by Williamson–Hall method has increased. The density of nodular morphology observed in SEM analysis has been increased with coating current density. Further, wettability studies with respect to double distilled water on the electrodeposited copper coatings which are coated at different current densities are carried out. At higher current density the coating is more wettable by water because at these conditions grain size of the coating decreases and morphology of grain changes to a favorable dense nodularity.

  6. Effect of the Cold-Sprayed Aluminum Coating-Substrate Interface Morphology on Bond Strength for Aircraft Repair Application

    Science.gov (United States)

    Blochet, Quentin; Delloro, Francesco; N'Guyen, Franck; Jeulin, Dominique; Borit, François; Jeandin, Michel

    2017-04-01

    This article is dealing with the effects of surface preparation of the substrate on aluminum cold-sprayed coating bond strength. Different sets of AA2024-T3 specimens have been coated with pure Al 1050 feedstock powder, using a conventional cold spray coating technique. The sets were grit-blasted (GB) before coating. The study focuses on substrate surface topography evolution before coating and coating-substrate interface morphology after coating. To study coating adhesion by LASAT® technique for each set, specimens with and without preceding GB treatment were tested in load-controlled conditions. Then, several techniques were used to evaluate the effects of substrate surface treatment on the final coating mechanical properties. Irregularities induced by the GB treatment modify significantly the interface morphology. Results showed that particle anchoring was improved dramatically by the presence of craters. The substrate surface was characterized by numerous anchors. Numerical simulation results exhibited the increasing deformation of particle onto the grit-blasted surface. In addition, results showed a strong relationship between the coating-substrate bond strength on the deposited material and surface preparation.

  7. Corrosion resistance of the substrates for the cryogenic gyroscope and electrodeposition of the superconductive niobium coatings

    Science.gov (United States)

    Dubrovskiy, A. R.; Okunev, M. A.; Makarova, O. V.; Kuznetsov, S. A.

    2017-05-01

    The interaction of different materials with the niobium containing melt was investigated. As substrate materials the ceramics, beryllium and carbopyroceram were chosen. Several spherical ceramic and beryllium samples were coated with protective molybdenum and niobium films by magnetron sputtering and PVD, respectively. After the experiment (exposition time 10 min) the exfoliation of molybdenum film from ceramic samples was observed due to interaction of the substrate with the melt. The niobium protective coatings reacted with the melt with niobium oxide formation. The beryllium samples regardless of the shape and the presence of the protective films were dissolved in the niobium containing melt due to more negative electrode potential comparing with niobium one. The carbopyroceram samples were exposed in the melt during 3 and 12 h. It was found that the carbopyroceram not corrodes in the niobium containing melt. The optimal regimes for electrodeposition of smooth uniform niobium coatings with the thickness up to 50 μm on carbopyroceram spheres were found.

  8. Effect of substrate temperature and gas flow ratio on the nanocomposite TiAlBN coating

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Z. M., E-mail: azmr@utem.edu.my; Kwan, W. L., E-mail: kwailoon86@gmail.com; Juoi, J. M., E-mail: jariah@utem.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

    2016-07-19

    Nanocomposite TiAlBN (nc-TiAlBN) coatings were successfully deposited via RF magnetron sputtering by varying the nitrogen-to-total gas flow ratio (R{sub N}), and substrate temperature (T{sub S}). All coatings were deposited on AISI 316 substrates using single Ti-Al-BN hot-pressed disc as a target. The grain size, phases, and chemical composition of the coatings were evaluated using glancing angle X-ray diffraction analysis (GAXRD) and X-ray photoelectron spectroscopy (XPS). Results showed that the grains size of the deposited nc-TiAlBN coatings were in the range of 3.5 to 5.7 nm and reached a nitride saturation state as early as 15 % R{sub N}. As the nitrogen concentration decreases, boron concentration increased from 9 at.% to 16.17 at.%. and thus, increase the TiB{sub 2} phase within the coatings. The T{sub S}, however, showed no significant effect either on the crystallographic structure, grain size, or in the chemical composition of the deposited nc-TiAlBN coating.

  9. Deposition of DLC Film on Stainless Steel Substrates Coated by Nickel Using PECVD Method.

    Science.gov (United States)

    Khalaj, Zahra; Ghoranneviss, Mahmood; Vaghri, Elnaz; Saghaleini, Amir; Diudea, Mircea V

    2012-06-01

    Research on diamond-like carbon (DLC) films has been devoted to find both optimized conditions and characteristics of the deposited films on various substrates. In the present work, we investigate the quality of the DLC films grown on stainless steel substrates using different thickness of the nickel nanoparticle layers on the surface. Nickel nanoparticles were sputtered on the stainless steel substrates at 200 °C by a DC-sputtering system to make a good adherence between DLC coating and steel substrates. Atomic Force Microscopy was used to characterize the surface roughness and distribution function of the nickel nanoparticles on the substrate surface. Diamond like carbon films were deposited on stainless steel substrates coated by nickel using pure acetylene and C2H2/H2 with 15% flow ratio by DC-Plasma Enhanced Chemical Vapor Deposition (PECVD) systems. Microstructural analysis by Raman spectroscopy showed a low intensity ratio ID/IG for DLC films by increasing the Ni layer thickness on the stainless steel substrates. Fourier Transforms Infrared spectroscopy (FTIR) evidenced the peaks attributed to C-H bending and stretching vibration modes in the range of 1300-1700 cm-1 and 2700-3100 cm-1, respectively, in good agreement with the Raman spectroscopy and confirmed the DLC growth in all samples.

  10. Microtribological and electrochemical corrosion behaviors of polydopamine coating on APTS-SAM modified Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ou Junfei [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100080 (China); Wang Jinqing, E-mail: jqwang@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu Sheng [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100080 (China); Zhou Jinfang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Ren Sili, E-mail: slren@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yang Shengrong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2009-11-15

    A polydopamine coating (coded as PDAc) was prepared successfully on a Si substrate through a two-step process. Briefly, to improve the adhesion of PDAc on the Si substrate, a self-assembled monolayer of 3-aminopropyl triethoxysilane (coded as APTS-SAM) was firstly generated on the bare Si wafer. Thereafter, the PDAc with different thickness was fabricated through the chemical adsorption and autopolymerization of the dopamine hydrochloride on the APTS-SAM coated Si substrate. The formation of PDAc on the APTS-SAM modified Si substrate was proved by the characterizations of contact angle measurement, attenuated total reflectance Fourier transform infrared (ATR-FTIR) analysis, and X-ray photoelectron spectroscope (XPS), etc. The ellipsometric thickness measurement and atomic force microscopy (AFM) image analysis showed that the PDAc became thicker and rougher with the deposition time prolongation. Microtribological study showed that the thickness and roughness of the PDAc played a significant role in the tribological properties. In comparison with the bare Si substrate, the PDAc with thinner thickness possessed lower friction and was anticipated to be used as protecting coating in the field of boundary lubrication. The electrochemical corrosion behaviors of the prepared PDAc were investigated using the electrochemical station and a low corrosion current density was revealed, implying that the PDAc had good anti-corrosion capability and might find potential applications in the field of corrosion resistance.

  11. Microtribological and electrochemical corrosion behaviors of polydopamine coating on APTS-SAM modified Si substrate

    Science.gov (United States)

    Ou, Junfei; Wang, Jinqing; Liu, Sheng; Zhou, Jinfang; Ren, Sili; Yang, Shengrong

    2009-11-01

    A polydopamine coating (coded as PDAc) was prepared successfully on a Si substrate through a two-step process. Briefly, to improve the adhesion of PDAc on the Si substrate, a self-assembled monolayer of 3-aminopropyl triethoxysilane (coded as APTS-SAM) was firstly generated on the bare Si wafer. Thereafter, the PDAc with different thickness was fabricated through the chemical adsorption and autopolymerization of the dopamine hydrochloride on the APTS-SAM coated Si substrate. The formation of PDAc on the APTS-SAM modified Si substrate was proved by the characterizations of contact angle measurement, attenuated total reflectance Fourier transform infrared (ATR-FTIR) analysis, and X-ray photoelectron spectroscope (XPS), etc. The ellipsometric thickness measurement and atomic force microscopy (AFM) image analysis showed that the PDAc became thicker and rougher with the deposition time prolongation. Microtribological study showed that the thickness and roughness of the PDAc played a significant role in the tribological properties. In comparison with the bare Si substrate, the PDAc with thinner thickness possessed lower friction and was anticipated to be used as protecting coating in the field of boundary lubrication. The electrochemical corrosion behaviors of the prepared PDAc were investigated using the electrochemical station and a low corrosion current density was revealed, implying that the PDAc had good anti-corrosion capability and might find potential applications in the field of corrosion resistance.

  12. Probing the Chemistry of Adhesion between a 316L Substrate and Spin-on-Glass Coating.

    Science.gov (United States)

    Lampert, Felix; Kadkhodazadeh, Shima; Kasama, Takeshi; Dahl, Kristian Vinter; Christiansen, Alexander Bruun; Møller, Per

    2018-02-27

    Hydrogen silsesquioxane ([HSiO 3/2 ] n )-based "spin-on-glass" has been deposited on a 316L substrate and cured in Ar/H 2 gas atmosphere at 600 °C to form a continuous surface coating with submicrometer thickness. The coating functionality depends primarily on the adhesion to the substrate, which is largely affected by the chemical interaction at the interface between the coating and the substrate. We have investigated this interface by transmission electron microscopy and electron energy loss spectroscopy. The analysis identified a 5-10 nm thick interaction zone containing signals from O, Si, Cr, and Fe. Analysis of the energy loss near edge structure of the present elements identified predominantly signal from [SiO 4 ] 4- units together with Fe 2+ , Cr 2+ , and traces of Cr 3+ . High-resolution transmission electron microscopy images of the interface region confirm a crystalline Fe 2 SiO 4 interfacial region. In agreement with computational thermodynamics, it is proposed that the spin-on-glass forms a chemically bonded silicate-rich interaction zone with the substrate. It was further suggested that this zone is composed of a corundum-type oxide at the substrate surface, followed by an olivine-structure intermediate phase and a spinel-type oxide in the outer regions of the interfacial zone.

  13. Growth and characterization of thick cBN coatings on silicon and tool substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bewilogua, K. [Fraunhofer Institute for Surface Engineering and Thin Films, D-38108 Braunschweig (Germany)]. E-mail: bew@ist.fraunhofer.de; Keunecke, M. [Fraunhofer Institute for Surface Engineering and Thin Films, D-38108 Braunschweig (Germany); Weigel, K. [Fraunhofer Institute for Surface Engineering and Thin Films, D-38108 Braunschweig (Germany); Wiemann, E. [Institute for Machine Tools and Factory Management, Technical University Berlin (Germany)

    2004-12-22

    Recently some research groups have achieved progress in the deposition of cubic boron nitride (cBN) coatings with a thickness of 2 {mu}m and more, which is necessary for cutting tool applications. In our laboratory, thick cBN coatings were sputter deposited on silicon substrates using a boron carbide target. Following a boron carbide interlayer (few 100 nm thick), a gradient layer with continuously increasing nitrogen content was prepared. After the cBN nucleation, the process parameters were modified for the cBN film growth to a thickness of more than 2 {mu}m. However, the transfer of this technology to technically relevant substrates, like cemented carbide cutting inserts, required some further process modifications. At first, a titanium interlayer had to be deposited followed by a more than 1-{mu}m-thick boron carbide layer. The next steps were identical to those on silicon substrates. The total coating thickness was in the range of 3 {mu}m with a 0.5- to nearly 1-{mu}m-thick cBN top layer. In spite of the enormous intrinsic stress, both the coatings on silicon and on cemented carbide exhibited a good adhesion and a prolonged stability in humid air. Oxidation experiments revealed a stability of the coating system on cemented carbide up to 700 deg. C and higher. Coated cutting inserts were tested in turning operations with different metallic workpiece materials. The test results will be compared to those of well-established cutting materials, like polycrystalline cubic boron nitride (PCBN) and oxide ceramics, considering the wear of coated tools.

  14. Performance of carbon-based hot frit substrates. 2, Coating performance studies in hydrogen at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, R.; Vanier, P.; Adams, J.; Svandrlik, J.; Powell, J.R.

    1993-07-01

    Erosion tests were conducted on coated graphite and 2D, 3D carbon- carbons in 1 atm hydrogen at high temperatures. Refractory NbC, TaC coatings were used. It was found that the most effective combination of coating and substrate was TaC deposited by chemical vapor reaction method on AXF-5QI graphite.

  15. Investigation of photocatalytic activity of titanium dioxide coating deposited on aluminium alloy substrate by plasma technique

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Soyama, Juliano; Dirscherl, Kai

    2011-01-01

    . The photocatalytic process is initiated by UV-light in TiO2 which creates electron-/hole pairs in the conduction band (CB) and valence band (VB) of TiO2, respectively. The electron/hole pairs generated have sufficient energy to cause reduction and oxidation on its surface providing the self-cleaning effect....... Literature consists of large number of publications on titanium dioxide coating for self-cleaning applications, with glass as the main substrate. Only little work is available on TiO2 coating of metallic alloys used for engineering applications. Engineering materials, such as light-weight aluminium and steel...... of the coating strongly influences the photocatalytic properties. In general, the photocatalytic activity increased with thickness. Quantification of images scanned with Atomic Force Microscope (AFM) revealed that there is a linear relationship between the thickness of the coating and the average cell size...

  16. Electrophoretic deposition of hydroxyapatite-hexagonal boron nitride composite coatings on Ti substrate.

    Science.gov (United States)

    Göncü, Yapıncak; Geçgin, Merve; Bakan, Feray; Ay, Nuran

    2017-10-01

    In this study, commercial pure titanium samples were coated with nano hydroxyapatite-nano hexagonal boron nitride (nano HA-nano hBN) composite by electrophoretic deposition (EPD). The effect of process parameters (applied voltage, deposition time and solid concentration) on the coating morphology, thickness and the adhesion behavior were studied systematically and crack free nano hBN-nano HA composite coating production was achieved for developing bioactive coatings on titanium substrates for orthopedic applications. For the examination of structural and morphological characteristics of the coating surfaces, various complementary analysis methods were performed. For the structural characterization, XRD and Raman Spectroscopy were used while, Scanning Electron Microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Transmission Electron Microscopy (TEM) techniques were carried out for revealing the morphological characterization. The results showed that nano HA-nano hBN were successfully deposited on Ti surface with uniform, crack-free coating by EPD. The amounts of hBN in suspension are considered to have no effect on coating thickness. By adding hBN into HA, the morphology of HA did not change and hBN has no significant effect on porous structure. These nanostructured surfaces are expected to be suitable for proliferation of cells and have high potential for bioactive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cleaning of parts for precision-optic and glass substrates before coating

    Science.gov (United States)

    Strobel, Johann B.; Hohl, Rolf M.

    2003-05-01

    The state of the art cleanliness of substrate surfaces prior to a coating process is decisive for its success. Any contamination of the surface affects the adhesion of the coating and leads to defects. The degree of cleanliness of the surface can not be expressed in numerical terms and can only be demonstrated by the use of suitable aids. The objective sought is "freedom from residues" and "freedom from particles," as perfectly as possible. Uniform, reproducible quality is indispensable, even when the products supplied from the preceding stages of manufacture vary within relatively wide tolerances in terms of shape, size, nature and degree of contamination. The solution to this type of problem requires well-tried process technologies in user-friendly equipment which operates safely and economically. One well-tried cleaning procedure prior to coating is based on cleaning with aqueous solutions plus ultrasound, followed by drying. In the course of today's increasing awareness of environmental matters, processes which make use of solvents prior to coating have meanwhile disappeared completely from factories. Cleaning in aqueous solutions is carried out in accordance with precise cleaning mechanisms. Cleaning is always a multistage process, in which cleaning and rinsing stages alternate repeatedly. Modern multi-chamber cleaning plants are to be found in the optical and electronics industries and fine mechanics as well as in the high-vacuum coating area (coated lenses and hard coating).

  18. Influence of substrate magnetism of coated conductors on critical current distribution measurement using magnetic knife method

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z. [Department of Electrical and Computer Engineering, Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)], E-mail: kyo@rain.dnj.ynu.ac.jp; Amemiya, N.; Onuma, T. [Department of Electrical and Computer Engineering, Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Kato, T.; Ueyama, M. [Sumitomo Electric Ind., Ltd., Electric Power and Energy Research Laboratories, 1-1-3, Shimaya, Konohana, Osaka 554-0024 (Japan); Kashima, N.; Nagaya, S. [Chubu Electric Power Co., Inc., 20-1 Kita-Sekiyama, Ohdaka, Midori, Nagoya 459-8522 (Japan); Shiohara, Y. [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto, Tokyo 136-0062 (Japan)

    2008-09-15

    A YBCO coated conductor with non-magnetic substrate and a magnetic Ni alloy tape were prepared to investigate the influence of the substrate magnetism on the J{sub c} distribution measurement. We measured the J{sub c} distribution of the YBCO coated conductor and that of the same YBCO coated conductor with the magnetic tape over-lied on its face (the space between the superconducting layer and the magnetic tape is 20 {mu}m which is the thickness of protecting Ag layer), and compared the measured results with each other. The measured results agreed well with each other, and there was little influence of the tape magnetism on the J{sub c} distribution measurement. Based on this fact, the J{sub c} distribution in a HoBCO coated conductor with magnetic substrate was measured using the magnetic knife method. Twenty-two voltage taps were attached to the conductor with 5 mm separation along the conductor axis. The lateral J{sub c} distributions in the sections were generally in the shape of trapezoid.

  19. Characterization of Cold Sprayed CuCrAl Coated GRCop-84 Substrates for Reusable Launch Vehicles

    Science.gov (United States)

    Raj, S . V.; Barrett, C. A.; Lerch, B. A.; Karthikeyan, J.; Ghosn, L. J.; Haynes, J.

    2005-01-01

    An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as combustor liners and nozzles in NASA's future generations of reusable launch vehicles (RLVs). Despite the fact that this alloy has superior mechanical and oxidation properties compared to many commercially available copper alloys, it is felt that its high temperature and environmental resistance capabilities can be further enhanced with the development and use of suitable coatings. Several coatings and processes are currently being evaluated for their suitability and future down selection. A newly developed CuCrAl has shown excellent oxidation resistance compared to current generation Cu-Cr coating alloys. Cold spray technology for depositing the CuCrAl coating on a GRCop-84 substrate is currently being developed under NASA's Next Generation Launch Technology (NGLT) Propulsion Research and Technology (PR&T) project. The microstructures, mechanical and thermophysical properties of overlay coated GRCop-84 substrates are discussed.

  20. Hydrophilic Mineral Coating of Membrane Substrate for Reducing Internal Concentration Polarization (ICP) in Forward Osmosis

    Science.gov (United States)

    Liu, Qing; Li, Jingguo; Zhou, Zhengzhong; Xie, Jianping; Lee, Jim Yang

    2016-01-01

    Internal concentration polarization (ICP) is a major issue in forward osmosis (FO) as it can significantly reduce the water flux in FO operations. It is known that a hydrophilic substrate and a smaller membrane structure parameter (S) are effective against ICP. This paper reports the development of a thin film composite (TFC) FO membrane with a hydrophilic mineral (CaCO3)-coated polyethersulfone (PES)-based substrate. The CaCO3 coating was applied continuously and uniformly on the membrane pore surfaces throughout the TFC substrate. Due to the intrinsic hydrophilicity of the CaCO3 coating, the substrate hydrophilicity was significantly increased and the membrane S parameter was reduced to as low as the current best of cellulose-based membranes but without the mechanical fragility of the latter. As a result, the ICP of the TFC-FO membrane could be significantly reduced to yield a remarkable increase in water flux without the loss of membrane selectivity. PMID:26796675

  1. Femtosecond laser absorption, heat propagation, and damage threshold analysis for Au coating on metallic substrates

    Science.gov (United States)

    Suslova, Anastassiya; Hassanein, Ahmed

    2017-11-01

    The role of metallic substrates as a heat sink for thin layer gold coatings in double-layered optical components exposed to the ultrashort pulsed laser was investigated with the focus on the impact of the gold layer thickness. A two dimensional FEMTO-2D computational code for solid metallic targets with two-layered assemblies has been developed. The model is then used to simulate targets response to fs laser pulses at near damage threshold fluence and to determine the target damage threshold depending on its structure and the substrate material. Considering temperature dependent optical properties of a gold allowed us to make quantitative estimation of the damage threshold unlike many other models. The simulations show decreasing heat sink effect of the substrate with increasing coating thickness until it becomes negligible for 200 nm gold layer. Preliminary results show that a maximum improvement of the damage threshold of about 10% compared to a pure gold target is predicted for 50 nm gold coatings on two substrate materials: copper and nickel.

  2. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Gyrid [Proteomic Unit at University of Bergen (PROBE), University of Bergen, Bergen (Norway); Department of Biomedicine, University of Bergen, Bergen (Norway); Herfindal, Lars; Kopperud, Reidun [Department of Biomedicine, University of Bergen, Bergen (Norway); Aragay, Anna M. [Department of Biomedicine, University of Bergen, Bergen (Norway); Molecular Biology Institute of Barcelona (IBMB, CSIC), Barcelona (Spain); Holmsen, Holm; Døskeland, Stein Ove; Kleppe, Rune [Department of Biomedicine, University of Bergen, Bergen (Norway); Selheim, Frode, E-mail: Frode.Selheim@biomed.uib.no [Proteomic Unit at University of Bergen (PROBE), University of Bergen, Bergen (Norway); Department of Biomedicine, University of Bergen, Bergen (Norway)

    2014-07-04

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.

  3. Glass-(nAg, nCu) Biocide Coatings on Ceramic Oxide Substrates

    Science.gov (United States)

    Esteban-Tejeda, Leticia; Malpartida, Francisco; Díaz, Luis Antonio; Torrecillas, Ramón; Rojo, Fernando; Moya, José Serafín

    2012-01-01

    The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based) substrates. Both glassy coatings showed a high biocide activity against Gram−, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1–2 µg/cm2 in the case of silver nanoparticles, and 10–15 µg/cm2 for the copper nanoparticles. PMID:22427967

  4. Glass-(nAg, nCu biocide coatings on ceramic oxide substrates.

    Directory of Open Access Journals (Sweden)

    Leticia Esteban-Tejeda

    Full Text Available The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based substrates. Both glassy coatings showed a high biocide activity against Gram-, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1-2 µg/cm(2 in the case of silver nanoparticles, and 10-15 µg/cm(2 for the copper nanoparticles.

  5. Design and simulation of thermal residual stresses of coatings on WC-Co cemented carbide cutting tool substrate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Anhai; Zhao, Jun; Zang, Jian; Zheng, Wei [Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical EngineeringShandong University, Jinan (China)

    2016-08-15

    Large thermal residual stresses in coatings during the coating deposition process may easily lead to coating delamination of coated carbide tools in machining. In order to reduce the possibility of coating delamination during the tool failure process, a theoretical method was proposed and a numerical method was constructed for the coating design of WC-Co cemented carbide cutting tools. The thermal residual stresses of multi-layered coatings were analytically modeled based on equivalent parameters of coating properties, and the stress distribution of coatings are simulated by Finite element method (FEM). The theoretically calculated results and the FEM simulated results were verified and in good agreement with the experimental test results. The effects of coating thickness, tool substrate, coating type and interlayer were investigated by the proposed geometric and FEM model. Based on the evaluations of matchability of tool substrate and tool coatings, the basic principles of tool coating design were proposed. This provides theoretical basis for the selection and design of coatings of cutting tools in high-speed machining.

  6. Line-patterning of polyaniline coated MWCNT on stepped substrates using DC electric field

    Science.gov (United States)

    Ko, Young Gun; Do, Tae Gu; Oh, Hyun Chul; Lee, Hyun Jeong; Han, Hung-Gu; Kim, Choong Hyun; Choi, Ung Su

    2014-10-01

    Printing electronic components on a chip edge and a stepped substrate with functional inks are an attractive approach for achieving flexible and inexpensive circuits for applications such as flexible displays and large-area chemo/bio/radioactivity sensors. However, it is still challenging because a sufficient cover of the 100 μm high step at the chip edge with a high-resolution pattern is the hardest part of the layer assembling by inkjet printing. Herein, we present a simple and effective strategy to generate electrically conductive line-patterns on stepped substrates by applying the DC electric field. On the surface of flat polyimide substrate, the fine line-pattern (less than 850 nm in line width) is achieved with a polyaniline coated MWCNT dispersed ink. Furthermore, 9.9 μm of line width is successfully patterned on the high stepped poly(dimethylsiloxane) substrate, higher than 100 μm, by printing only 1 time.

  7. Wear behavior of Ni/WC surface-infiltrated composite coating on copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gui-rong; Ma, Ying; Hao, Yuan [Lanzhou University of Technology, Gansu (China). State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals; Song, Wen-ming [Lanzhou University of Technology, Gansu (China). State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals; Lanzhou Petroleum Machinery Institute, Gansu (China); Li, Jian [Wuhan Research Institute of Materials Protection (China); Lu, Jin-jun [Chinese Academy of Sciences, Lanzhou, Gansu (China). State Key Laboratory of Solid Lubrication

    2016-01-15

    Ni/WC surface-infiltrated composite coating was fabricated on copper alloy substrate through vacuum infiltration casting using Ni-based alloying powder and with different WC particle contents as raw materials. The wear behavior of Ni/WC surface-infiltrated composite coating was investigated using a block-on-ring tester at different loads and sliding speeds at room temperature. Results show that the wear rate of Ni/WC surface-infiltrated composite coating decreased to approximately one-sixth of the wear rate of the Ni-based alloy infiltrated coating. This phenomenon resulted from the supporting function of WC particles under varying loads applied on the specimen surface and the antifriction effect of the transformation layer. Wear rate was reduced by the Ni/WC-infiltrated composite coating with increasing load, especially when the load exceeded 100 N. The friction coefficient decreased with increasing sliding speed for all infiltrated coatings at any load condition. The reduction in the friction coefficient at high sliding speed was larger than that at low sliding speed with increasing load. The wear mechanism was dominated by oxidation under all experimental conditions and accompanied by adhesion and abrasion mechanisms at high load and high sliding speed.

  8. Fabrication of a superhydrophobic and high-glossy copper coating on aluminum substrates

    Science.gov (United States)

    Yang, Hao; He, Yuantao; Wu, Zhongqiang; Miao, Jing; Yang, Fang; Lu, Zhong

    2018-03-01

    Superhydrophobic metal coatings have been extensively studied in recent years because of their significant potential applications. Unfortunately, most of them lost the original metallic luster due to the micro/nano binary structures. In this paper, a facile method was developed to prepare a superhydrophobic and high-glossy copper coating on aluminum substrates. The bionic lotus leaf surfaces were constructed by electroless plating method and further modified with octadecanethiol. The wettability and gloss could be tuned by the concentration of the precursor. With the increase of CuSO4 concentration, the surface roughness of the coating raised, thus resulting in increase of contact angle and decrease of glossiness. When the CuSO4 concentration was 30 mmol/L, the coating exhibited a sub-micro/nano binary structure, in which 20-30 nm protuberances were grown on 300-500 nm mastoids. Such special morphology endowed the coating with superhydrophobic and high-glossy properties, and the coating also showed ultra-low water adhesion and stable dynamic water repellence.

  9. Standardized flavonoid-rich Eugenia jambolana seed extract retards in vitro and in vivo LDL oxidation and expression of VCAM-1 and P-selectin in atherogenic rats.

    Science.gov (United States)

    Jadeja, Ravirajsinh N; Thouaojam, Menaka C; Sankhari, Jayantha M; Jain, Mahendra; Devkar, Ranjitsinh V; Ramachandran, A V

    2012-03-01

    The present inventory evaluates anti-atherogenic potential of flavonoid-rich Eugenia jambolana seed extract (EJSE) against in vitro low-density lipoprotein (LDL) oxidation, foam cell formation, and atherogenic (ATH) diet-induced experimental atherosclerosis in rats. EJSE was able to prevent in vitro LDL oxidation and oxidized LDL-induced macrophage foam cell formation. Also, EJSE supplementation to ATH rats significantly minimized increment in serum markers of LDL oxidation. The ex vivo oxidation indices were also minimized in LDL of EJSE-treated animals. Microscopic evaluation of thoracic aorta of ATH + EJSE rats recorded minimal evidence of atheromatous plaque formation, accumulation of lipid laden macrophages, calcium deposition, and expression of cell adhesion molecules (vascular cell adhesion molecule-1 and P-selectin). This is the first scientific report that demonstrates anti-atherogenic potential of EJSE and warrants further evaluation at clinical level.

  10. Textured Ni-9.0 at.% W substrate tapes for YBCO-coated conductors

    Science.gov (United States)

    Eickemeyer, J.; Hühne, R.; Güth, A.; Rodig, C.; Gaitzsch, U.; Freudenberger, J.; Schultz, L.; Holzapfel, B.

    2010-08-01

    Cube textured tapes were prepared by cold rolling and annealing (RABiTS method) from nickel alloyed with 9.0 at.% tungsten in order to get a flexible nonmagnetic substrate for superconductors of the Y Ba2Cu3O7 - δ (YBCO) type. A fraction of up to 96% of cube orientation was measured for the Ni-9.0 at.% W alloy tape. First coating experiments by pulsed laser deposition revealed an epitaxial growth of the buffer and the YBCO layers on the developed substrate. Critical current densities Jc of up to 1.10 MA cm - 2 were measured at 77 K in self-field.

  11. Copper nanowire coated carbon fibers as efficient substrates for detecting designer drugs using SERS.

    Science.gov (United States)

    Halouzka, Vladimir; Halouzkova, Barbora; Jirovsky, David; Hemzal, Dusan; Ondra, Peter; Siranidi, Eirini; Kontos, Athanassios G; Falaras, Polycarpos; Hrbac, Jan

    2017-04-01

    Miniature Surface Enhanced Raman Scattering (SERS) sensors were fabricated by coating the carbon fiber microelectrodes with copper nanowires. The coating procedure, based on anodizing the copper wire in ultrapure water followed by cathodic deposition of the anode-derived material onto carbon fiber electrodes, provides a "clean" copper nanowire network. The developed miniature (10µm in diameter and 2mm in length) and nanoscopically rough SERS substrates are applicable in drug sensing, as shown by the detection and resolving of a range of seized designer drugs in trace amounts (microliter volumes of 10 -10 -10 -12 M solutions). The copper nanowire modified carbon microfiber substrates could also find further applications in biomedical and environmental sensing. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Localized surface plasmon resonance properties of Ag nanorod arrays on graphene-coated Au substrate

    Science.gov (United States)

    Mu, Haiwei; Lv, Jingwei; Liu, Chao; Sun, Tao; Chu, Paul K.; Zhang, Jingping

    2017-11-01

    Localized surface plasmon resonance (LSPR) on silver nanorod (SNR) arrays deposited on a graphene-coated Au substrate is investigated by the discrete dipole approximation (DDA) method. The resonance peaks in the extinction spectra of the SNR/graphene/Au structure show significantly different profiles as SNR height, and refractive index of the surrounding medium are varied gradually. Numerical simulation reveals that the shifts in the resonance peaks arise from hybridization of multiple plasmon modes as a result of coupling between the SNR arrays and graphene-coated Au substrate. Moreover, the LSPR modes blue-shifts from 800 nm to 700 nm when the thickness of the graphene layer in the metal nanoparticle (NP) - graphene hybrid nanostructure increases from 1 nm to 5 nm, which attribute to charge transfer between the graphene layer and SNR arrays. The results provide insights into metal NP-graphene hybrid nanostructures which have potential applications in plasmonics.

  13. Effect of CVD-diamond coatings on the tribological performance of cemented tungsten carbide substrates

    Directory of Open Access Journals (Sweden)

    Kaleem Ahmad Najar

    2016-06-01

    Full Text Available A comparison has been documented between nanocrystalline diamond (NCD and microcrystalline diamond (MCD coatings deposited on cemented tungsten carbide (WC-Co substrates with architectures of WC-Co/NCD & WC-Co/MCD, using hot filament chemical vapor deposition (HFCVD technique. In the present work, the frictional characteristics were studied using ball-on-disc type linear reciprocating micro-tribometer, under the application of 1–10N normal loads, when sliding against smooth alumina (Al2O3 ceramic ball for the total duration of 15min, under dry sliding conditions. Nanoindentation tests were also conducted using Berkovich nanoindenter for the purpose of measurement of hardness and elastic modulus values. The average coefficients of friction of MCD and NCD coatings decrease from 0.37 – 0.32 and 0.3 – 0.27 respectively, when the load is increased from 1–10N. However, for conventional WC-Co substrate the average coefficient of friction increases from 0.60–0.75, under the same input operating conditions. The wear tracks formed on the surfaces of CVD-diamond coatings and WC-Co substrate, after friction measurement were characterised using Raman spectroscopy and scanning electron microscopy (SEM techniques. However, the compositional analysis for the formation of tribo-layer observed on the wear tracks of CVD-diamond coatings was confirmed using energy dispersive spectroscopy (EDS technique. Therefore, maintaining an appropriate level of normal load and using appropriate type of diamond coating, friction may be kept to some lower value to improve mechanical processes.

  14. Preparation of tantalum carbide films by reaction of electrolytic carbon coating with the tantalum substrate

    OpenAIRE

    Massot, Laurent; Chamelot, Pierre; Taxil, Pierre

    2006-01-01

    This article demonstrates that coatings of tantalum carbide can be obtained by electrodeposition of carbon in molten fluorides on a tantalum substrate as an alternative to the CVD process. The structural characteristics of the carbon deposited by the electrolytic route lead to a high reactivity of this element towards a tantalum cathode to produce tantalum carbide. Mutual reactivity was shown to be enhanced if tantalum plate is replaced by an electrodeposited layer of tantalum, where th...

  15. Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic applications.

    Science.gov (United States)

    Chen, Qiang; Baino, Francesco; Pugno, Nicola M; Vitale-Brovarone, Chiara

    2013-04-01

    A new approach based on the concepts of quantized fracture mechanics (QFM) is presented and discussed in this paper to estimate the bonding strength of trabecular-like coatings, i.e. glass-ceramic scaffolds mimicking the architecture of cancellous bone, to ceramic substrates. The innovative application of glass-derived scaffolds as trabecular-like coatings is proposed in order to enhance the osteointegration of prosthetic ceramic devices. The scaffolds, prepared by polymeric sponge replication, are joined to alumina substrates by a dense glass-ceramic coating (interlayer) and the so-obtained 3-layer constructs are investigated from micro-structural, morphological and mechanical viewpoints. In particular, the fracture strengths of three different crack propagation modes, i.e. glass-derived scaffold fracture, interface delamination or mixed fracture, are predicted in agreement with those of experimental mechanical tests. The approach proposed in this work could have interesting applications towards an ever more rational design of bone tissue engineering biomaterials and coatings, in view of the optimization of their mechanical properties for making them actually suitable for clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Applicability of MSCoating to titanium aluminide substrate - new coating and cladding technology using electro-discharge energy

    Energy Technology Data Exchange (ETDEWEB)

    Suzumura, A.; Kamimura, T.; Yamazaki, T. [Tokyo Inst. of Technology, Tokyo (Japan); Ochiai, H.; Watanabe, M. [Ishikawajima-Harima Heavy Industries, Tokyo (Japan)

    2007-07-01

    Titanium aluminide of light weight heat-resistant alloy comes into various applications such as an impeller in turbocharger, as an aeration and evacuation valve in gasoline engine, as a rotor blade in jet engine, and so on, instead of nickel-based alloy parts with heavy weight. However, titanium aluminide provides so poor wear resistance, that it is necessary to build-up coating material with wear resistance. But, it is impossible to coat the surface by welding, because of the heat shrink crack due to lower ductility of titanium aluminide. Therefore, a wear-resistant coating on titanium aluminide substrate has been made by plasma spraying after not so easy preparation, though the coating is apt to peel off. Micro Spark Coating (MSCoating) technologies, which can stably build up functional coating and cladding, have been developed for various kinds of substrates. MSCoating is an electrical discharging technique using an electrode containing either metal powder or ceramic powder, and can form high wear resistant film efficiently. MSCoating gives the substrate less heat stress, so as to build up the coating without peeling. In addition, this coating does not take long time for preparation. Stellite films formed on nickel alloy substrates using this technique, for example, have been served for jet engine parts under high temperature combustion gas, which demonstrates the high reliability of this technology. In this report, the applicability of MSCoating to titanium aluminide substrate was investigated and discussed. (orig.)

  17. Preparation and magnetic properties of Ni–P–La coating by electroless plating on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yun [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Jihui, E-mail: jhwang@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Yuan, Jing [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007 (China); Li, Haiqin [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007 (China)

    2016-02-28

    Graphical abstract: The content of Ni phase, which is the main ferromagnetic phase in Ni–P–La coating, is almost increased linearly with the concentration of La in plating solution. - Highlights: • The La element improves the magnetic properties of Ni–P–La coating. • Magnetism increases but the stability of bath decreases with La content and pH. • Coatings peel off at high temperature (≥80 °C) and magnetism is weak in short time. • The optimum is the La{sub 2}O{sub 3} of 10 mg L{sup −1}, pH of 5.0, temperature of 75 °C and time of 45 min. - Abstract: Ni–P–La coatings were prepared on Si substrate by electroless plating method under different La content, pH value, plating temperature and plating time. The surface morphology, chemical composition, structure and magnetic properties of coatings were observed and determined by scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray diffractometer (XRD) and vibrating sample magnetometer (VSM). The results showed that Ni–P–La coating is smooth and uniform with a cellular morphology grown in columnar manner. With the increase of La content, pH value and plating time, the thickness and saturation magnetization of coating are increased continuously, but the stability of plating bath is decreased greatly with La content and pH value. Under higher plating temperature, the thickness and saturation magnetization of coatings are obviously enhanced. But too high plating temperature is harmful to the plating bath and coating. The optimum plating conditions for Ni–P–La coating is La{sub 2}O{sub 3} addition of 10 mg L{sup −1}, pH value of 5.0, plating temperature of 75 °C and plating time of 45 min. The role of La element is to benefit the deposition of Ni element, promote the formation of Ni phase during the annealing process, and thus improve the magnetic properties of Ni–P–La coating.

  18. Silica Coated Paper Substrate for Paper-Spray Analysis of Therapeutic Drugs in Dried Blood Spots

    Science.gov (United States)

    Zhang, Zhiping; Xu, Wei; Manicke, Nicholas E.; Cooks, R. Graham; Ouyang, Zheng

    2011-01-01

    Paper spray is a newly developed ambient ionization method that has been applied for direct qualitative and quantitative analysis of biological samples. The properties of the paper substrate and spray solution have a significant impact on the release of chemical compounds from complex sample matrices, the diffusion of the analytes through the substrate, and the formation of ions for mass spectrometry analysis. In this study, a commercially available silica-coated paper was explored in an attempt to improve the analysis of therapeutic drugs in dried blood spots (DBS). The dichloromethane/isopropanol solvent has been identified as an optimal spray solvent for the analysis. The comparison was made with paper spray using chromatography paper as substrate with methanol/water as solvent for the analysis of verapamil, citalopram, amitriptyline, lidocaine and sunitinib in dried blood spots. It has been demonstrated the efficiency of recovery of the analytes was notably improved with the silica coated paper and the limit of quantitation (LOQ) for the drug analysis was 0.1 ng mL−1 using a commercial triple quadrupole mass spectrometer. The use of silica paper substrate also resulted in a sensitivity improvement of 5-50 fold in comparison with chromatography papers, including the Whatmann ET31 paper used for blood card. Analysis using a handheld miniature mass spectrometer Mini 11 gave LOQs of 10~20 ng mL−1 for the tested drugs, which is sufficient to cover the therapeutic ranges of these drugs. PMID:22145627

  19. The Application of Surface Response Methodology to the Pretreatment of WC Substrates Prior to Diamond Coating

    Science.gov (United States)

    Shirdar, Mostafa Rezazadeh; Golshan, Abolfazl; Izman, Sudin; Ghodsiyeh, Danial

    2014-01-01

    High cobalt (Co) content greater than 10% in tungsten carbide is desirable because Co improves the toughness of the cutting tool. However, the additional Co poses a huge challenge in surface preparation given that the Co content must be reduced to less than 1% on the substrate surface prior to applying a diamond coating. The excessive presence of Co on the substrate surface during coating suppresses diamond nucleation and causes the deterioration of diamond film adhesion. Many attempts have been made to overcome this issue, including the use of chemical etching, mechanical blasting, and heat treatment, but the successful pretreatment of WC-12%Co is still very limited. In this paper, a single-step chemical pretreatment using a mixture of sulfuric acid and hydrogen peroxide solutions was carried out on WC-12%Co. Two independent variables, i.e., etching time and acid temperature, were varied in the experiments to reduce Co contents as well as to roughen the substrate surface. The experimental plan was based on a central composite design. Variance analysis was employed to verify the precision of the mathematical models and their relative parameters. The predicted models generated by the response surface methodology (RSM) were compared with the experimental results, and close agreement was observed. The models demonstrated the significance of both factors, namely, acid temperature and etching time, in reducing Co contents to less than 1% as well as a roughening of the substrate surface within the desirable range.

  20. Phosphate chemical conversion coatings on metallic substrates for biomedical application: a review.

    Science.gov (United States)

    Liu, Bing; Zhang, Xian; Xiao, Gui-yong; Lu, Yu-peng

    2015-02-01

    Phosphate chemical conversion (PCC) technology has been investigated for improving the surface performance of metallic implants in the biomedical field over the last decade. The metallic materials, such as magnesium and its alloys, titanium, pure iron and stainless steel are widely used as orthopedic devices for immobilization of bone fractures in clinic. They were previously studied as metal substrates for PCC coating aiming to modify their biocompatibility and osteoconductivity. Zinc, calcium and zinc-calcium PCC coatings are frequently utilized considering their nature and the end-use. Although PCC coating has been confirmed to potentially improve the bio-performance of metallic implants in vitro and in vivo by many researchers, there are no unified standards or regulations to give quantitative appraisal of its quality and property. As such, an overview of several main phosphate phases together with their properties and behaviors in vitro and in vivo was conducted. The mechanism of phosphating was also briefly discussed. Critical qualities of PCC coating used for biomedical application including corrosion resistance, wettability and bonding strength were analyzed separately. Biological response including in vitro cell investigations and in vivo tissue response were discussed in terms of the cytocompatibility and bioactivity of PCC coating. Further investigations are proposed to develop appropriate performance evaluation measurements by combining conventional technologies and biomedical procedures. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Synthesis and characterization of Cerium-doped hydroxyapatite/polylactic acid composite coatings on metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Qiuhua, E-mail: yuanqiuh@szu.edu.cn; Qin, Caoping; Wu, Jianbo; Xu, Anping; Zhang, Ziqiang; Liao, Junquan; Lin, Songxin; Ren, Xiangzhong; Zhang, Peixin

    2016-10-01

    Ce-doped hydroxyapatite/polylactic acid (HA/PLA) composites serving as implant coatings have rarely been studied by other researchers in recent years. This paper was focused to study the existence of Ce ions in structure, chemical composition and surface morphology of HA and its composite coatings. Ce-doped HA powders were synthesized by chemical precipitation method with different Ce molar fractions (0(pure HA), 0.5 mol%, 1 mol% and 2 mol%). And Ce-doped HA/PLA composite coatings were fabricated for the first time on stainless steel substrates by spin coating technique. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) coupled with energy dispersive X-ray detector (EDX), thermo gravimetric-differential thermal analysis (TG-DTA) and X-ray photoelectron spectroscopy (XPS). The results showed that Ce ions were doped into the crystal lattice of apatite successfully. The (Ce + Ca)/P atomic ratios in the doped HA/PLA samples ranged from 1.614 to 1.673, which were very close to the theoretical value of 1.67 for the stoichiometric HA. The addition of PLA could keep metal substrates from catalyzing the decomposition of HA. TG-DTA analysis indicated that Ce-doped HA powder had high thermal stability, and the SEM micrographs revealed that the surface topography of Ce-doped HA/PLA composite coatings was uniform and dense when the Ce molar fraction was 2 mol%. XPS results indicated that the Ce ions doped in HA showed mixed valences of Ce{sup 3+} and Ce{sup 4+}. - Highlights: • Ce-doped HA composite coatings were synthesized by spin-coating technique for the first time. • Ce ions were demonstrated to dope into HA crystal lattice successfully. • The addition of PLA could keep metal substrates from catalyzing the decomposition of HA. • XPS results showed that Ce ions doped in HA have mixed valences of Ce{sup 3+} and Ce{sup 4+}.

  2. In-situ reduced graphene oxide-polyvinyl alcohol composite coatings as protective layers on magnesium substrates

    Directory of Open Access Journals (Sweden)

    Xingkai Zhang

    2017-06-01

    Full Text Available A simple and feasible method was developed to fabricate in-situ reduced graphene oxide-polyvinyl alcohol composite (GO-PVA coatings as protective layers on magnesium substrates. Polyvinyl alcohol was used as an in-situ reductant to transform GO into reduced GO. Contiguous and uniform GO-PVA coatings were prepared on magnesium substrates by dip-coating method, and were further thermally treated at 120 °C under ambient condition to obtain in-situ reduced GO-PVA coatings. Owing to the reducing effect of PVA, thermal treatment at low temperature led to effective in-situ reduction of GO as confirmed by XRD, Raman, FTIR and XPS tests. The corrosion current density of magnesium substrates in 3.5 wt% NaCl solution could be lowered to its 1/25 when using in-situ reduced GO-PVA coatings as protective layers.

  3. Adhesion of silver/polypyrrole nanocomposite coating to a fluoropolymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Horváth, Barbara; Kawakita, Jin, E-mail: KAWAKITA.Jin@nims.go.jp; Chikyow, Toyohiro

    2016-10-30

    Highlights: • Interfacial structure between Ag/polypyrrole (PPy) nanocomposite and PTFE was revealed. • PPy enters into PTFE substrate as a dispersion with up to 12 nm size Ag nanoparticles. • The nanocomposite is absorbed by PTFE substrate up to 1–2 μm deep. • Ag/PPy interlocks mechanically with PTFE causing strong adhesion. - Abstract: This paper describes the adhesive interface between a conducting polymer/metal composite and a polytetrafluoroethylene (PTFE) substrate. Strong adhesion was observed from using a Ag/polypyrrole (Ag/PPy) composite on a fluoropolymer substrate, which in most cases has a very low adhesion to different materials. To clarify the adhesion mechanism between the Ag/PPy composite and the PTFE substrate, the interfacial structure was studied by the use of transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Our results show that Ag/PPy composite is absorbed inside the nano-sized pores of PTFE and the composite mechanically interlocks after solidifying, which causes the nanocomposite to stick strongly to the substrate. The use of Ag/PPy coating could be a novel technique for developing electrodes, antennae or other high performance applications as this metal/conductive polymer composite has excellent adhesion properties on various plastics.

  4. Porous niobium coatings fabricated with selective laser melting on titanium substrates: Preparation, characterization, and cell behavior.

    Science.gov (United States)

    Zhang, Sheng; Cheng, Xian; Yao, Yao; Wei, Yehui; Han, Changjun; Shi, Yusheng; Wei, Qingsong; Zhang, Zhen

    2015-08-01

    Nb, an expensive and refractory element with good wear resistance and biocompatibility, is gaining more attention as a new metallic biomaterial. However, the high price of the raw material, as well as the high manufacturing costs because of Nb's strong oxygen affinity and high melting point have limited the widespread use of Nb and its compounds. To overcome these disadvantages, porous Nb coatings of various thicknesses were fabricated on Ti substrate via selective laser melting (SLM), which is a 3D printing technique that uses computer-controlled high-power laser to melt the metal. The morphology and microstructure of the porous Nb coatings, which had pores ranging from 15 to 50 μm in size, were characterized with scanning electron microscopy (SEM). The average hardness of the coating, which was measured with the linear intercept method, was 392±37 HV. In vitro tests of the porous Nb coating which was monitored with SEM, immunofluorescence, and CCK-8 counts of cells, exhibited excellent cell morphology, attachment, and growth. The simulated body fluid test also proved the bioactivity of the Nb coating. Therefore, these new porous Nb coatings could potentially be used for enhanced early biological fixation to bone tissue. In addition, this study has shown that SLM technique could be used to fabricate coatings with individually tailored shapes and/or porosities from group IVB and VB biomedical metals and their alloys on stainless steel, Co-Cr, and other traditional biomedical materials without wasting raw materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Multifunctional zirconium nitride/copper multilayer coatings on medical grade 316L SS and titanium substrates for biomedical applications.

    Science.gov (United States)

    Kumar, D Dinesh; Kaliaraj, Gobi Saravanan

    2018-01-01

    Protecting from wear and corrosion of many medical devices in the biomedical field is an existing scientific challenge. Surface modification with multilayer ZrN/Cu coating was deposited on medical grade stainless steel (SS) and titanium substrates to enhance their surface properties. Structural results revealed that the ZrN/Cu coatings are highly crystalline and uniform microstructure on both the substrates. Dry and wet tribological measurements of the coated titanium substrate exhibit enhanced wear resistance and low friction coefficient due to the improved microstructure. Similarly, the corrosion resistance was exceptionally improved on titanium substrates, resulting from the high inertness of coating to the SBF electrolyte solution. Antibacterial activity and epifluorescence results signify the effective killing of pathogens by means of ion release killing as well as contact killing mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Influence of substrate microstructure and surface finish on cracking and delamination response of TiN-coated cemented carbides

    OpenAIRE

    Yang, Jing; Odén, Magnus; Johansson-Joesaar, Mats P.; Llanes, L.

    2016-01-01

    The cracking and delamination of TiN-coated hardmetals (WC-Co cemented carbides) when subjected to Brale indentation were studied. Experimental variables were substrate microstructure related to low (6 wt% Co) and medium (13 wt% Co) binder content, and surface finishes associated with grinding and polishing stages before film deposition. Brale indentation tests were conducted on both coated and uncoated hardmetals. Emphasis has been placed on assessing substrate microstructure and subsurface ...

  7. Adhesion of Y2O3-Al2O3-SiO2 coatings to typical aerospace substrates

    Energy Technology Data Exchange (ETDEWEB)

    Marraco-Borderas, C.; Nistal, A.; Garcia, E.; Sainz, M.A.; Martin de la Escalera, F.; Essa, Y.; Miranzo, P.

    2016-07-01

    High performance lightweight materials are required in the aerospace industry. Silicon carbide, carbon fiber reinforced carbon and slicon carbide composites comply with those requirements but they suffer from oxidation at the high temperature of the service conditions. One of the more effective approaches to prevent this problem is the use of protecting ceramic coatings, where the good adhesion between substrates and coatings are paramount to guarantee the optimal protection performance. In the present work, the adhesion between those substrates and glass coatings of the Y2O3-Al2O3-SiO2 system processed by oxyacetylene flame spraying is analyzed. Increasing load scratch tests are employed for determining the failure type, maximum load and their relation with the elastic and mechanical properties of the coatings. The results points to the good adhesion of the coatings to silicon carbide and carbon fibre reinforced silicon carbide while the carbon fiber reinforced carbon is not a suitable material to be coated. (Author)

  8. Corrosion resistance of Ni-50Cr HVOF coatings on 310S alloy substrates in a metal dusting atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Saaedi, J. [Centre for Advanced Coating Technologies, Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4 (Canada); Department of Materials and Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Arabi, H.; Mirdamadi, S.; Ghorbani, H. [Department of Materials and Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Coyle, T.W. [Centre for Advanced Coating Technologies, Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4 (Canada)

    2011-09-15

    Metal dusting attack has been examined after three 168 h cycles on two Ni-50Cr coatings with different microstructures deposited on 310S alloy substrates by the high velocity oxy-fuel (HVOF) thermal-spray process. Metal dusting in uncoated 310S alloy specimens was found to be still in the initiation stage after 504 h of exposure in the 50H{sub 2}:50CO gas environment at 620 C. Dense Ni-50Cr coatings offered suitable resistance to metal dusting. Metal dusting was observed in the 310S substrates adjacent to pores at the interface between the substrate and a porous Ni-50Cr coating. The porosity present in the as-deposited coatings was shown to introduce a large variability into coating performance. Carbon formed by decomposition of the gaseous species accumulated in the surface pores and resulted in the dislodgement of surface splats due to stresses generated by the volume changes. When the corrosive gas atmosphere was able to penetrate through the interconnected pores and reach the coating-substrate interface, the 310S substrate was carburized, metal dusting attack occurred, and the resulting formation of coke in the pores led to local failure of the coating. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Characterization of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    Science.gov (United States)

    Raj, S. V.; Karthikeyan, J.; Lerch, B. A.; Barrett, C.; Garlich, R.

    2007-01-01

    A newly developed Cu-23(wt.%)Cr-5%Al (CuCrAl) alloy is currently being considered as a protective coating for GRCop-84 (Cu-8(at.%)Cr-4%Nb). The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. In contrast, the uncoated substrate lost as much as 80% of its original weight under similar test conditions. Low cycle fatigue tests revealed that the fatigue lives of thinly coated GRCop-84 specimens were similar to the uncoated specimens within the limits of experimental scatter. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  10. Acoustic method of investigating the material properties and humidity sensing behavior of polymer coated piezoelectric substrates

    Science.gov (United States)

    Caliendo, Cinzia

    2006-09-01

    The relative humidity (RH) sensing behavior of a polymeric film was investigated by means of polymer coated surface acoustic wave (SAW) delay lines implemented on single crystal piezoelectric substrates, such as quartz and LiNbO3, and on thin piezoelectric polycrystalline films, such as ZnO and AlN, on Si and GaAs. The same SAW delay line configuration was implemented on each substrate and the obtained devices' operating frequency was in the range of 105-156MHz, depending on the type of the substrate, on its crystallographic orientation, and on the SAW propagation direction. The surface of each SAW device was covered by the same type RH sensitive film of the same thickness and the RH sensitivity of each polymer coated substrate, i.e., the SAW relative phase velocity shift per RH unit changes, was investigated in the 0%—80% RH range. The perturbational approach was used to relate the SAW sensor velocity response to the RH induced changes in the physical parameters of the sensitive polymer film: the incremental change in the mass density and shear modulus of the polymer film per unit RH change were estimated. The shift of the bare SAW delay lines operating frequency induced by the presence of the polymer film, at RH =0% and at T =-10°C, allowed the experimental estimation of the mass sensitivity values of each substrate. These values were in good accordance with those reported in the literature and with those theoretically evaluated by exact numerical calculation. The shift of the bare SAW delay lines propagation loss induced by the polymer coating of the device surface, at RH =0% and at ambient temperature, allowed the experimental estimation of the elastic sensitivity of each substrate. These values were found in good accordance with those available from the literature. The temperature coefficient of delay and the electromechanical coupling coefficient of the bare substrates were also estimated. The membrane sensitivity to ethanol, methanol and isopropylic

  11. Leukocyte rolling on P-selectin: a three-dimensional numerical study of the effect of cytoplasmic viscosity.

    Science.gov (United States)

    Khismatullin, Damir B; Truskey, George A

    2012-04-18

    Rolling leukocytes deform and show a large area of contact with endothelium under physiological flow conditions. We studied the effect of cytoplasmic viscosity on leukocyte rolling using our three-dimensional numerical algorithm that treats leukocyte as a compound droplet in which the core phase (nucleus) and the shell phase (cytoplasm) are viscoelastic fluids. The algorithm includes the mechanical properties of the cell cortex by cortical tension and considers leukocyte microvilli that deform viscoelastically and form viscous tethers at supercritical force. Stochastic binding kinetics describes binding of adhesion molecules. The leukocyte cytoplasmic viscosity plays a critical role in leukocyte rolling on an adhesive substrate. High-viscosity cells are characterized by high mean rolling velocities, increased temporal fluctuations in the instantaneous velocity, and a high probability for detachment from the substrate. A decrease in the rolling velocity, drag, and torque with the formation of a large, flat contact area in low-viscosity cells leads to a dramatic decrease in the bond force and stable rolling. Using values of viscosity consistent with step aspiration studies of human neutrophils (5-30 Pa·s), our computational model predicts the velocities and shape changes of rolling leukocytes as observed in vitro and in vivo. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Leukocyte Rolling on P-Selectin: A Three-Dimensional Numerical Study of the Effect of Cytoplasmic Viscosity

    Science.gov (United States)

    Khismatullin, Damir B.; Truskey, George A.

    2012-01-01

    Rolling leukocytes deform and show a large area of contact with endothelium under physiological flow conditions. We studied the effect of cytoplasmic viscosity on leukocyte rolling using our three-dimensional numerical algorithm that treats leukocyte as a compound droplet in which the core phase (nucleus) and the shell phase (cytoplasm) are viscoelastic fluids. The algorithm includes the mechanical properties of the cell cortex by cortical tension and considers leukocyte microvilli that deform viscoelastically and form viscous tethers at supercritical force. Stochastic binding kinetics describes binding of adhesion molecules. The leukocyte cytoplasmic viscosity plays a critical role in leukocyte rolling on an adhesive substrate. High-viscosity cells are characterized by high mean rolling velocities, increased temporal fluctuations in the instantaneous velocity, and a high probability for detachment from the substrate. A decrease in the rolling velocity, drag, and torque with the formation of a large, flat contact area in low-viscosity cells leads to a dramatic decrease in the bond force and stable rolling. Using values of viscosity consistent with step aspiration studies of human neutrophils (5–30 Pa·s), our computational model predicts the velocities and shape changes of rolling leukocytes as observed in vitro and in vivo. PMID:22768931

  13. Poly-l-lysine-Coated Silver Nanoparticles as Positively Charged Substrates for Surface-Enhanced Raman Scattering

    NARCIS (Netherlands)

    Marsich, L.; Bonifacio, A.; Mandal, S.; Krol, S.; Beleites, C.; Sergo, V.

    2012-01-01

    Positively charged nanoparticles to be used as substrates for surface-enhanced Raman scattering (SERS) were prepared by coating citrate-reduced silver nanoparticles with the cationic polymer poly-l-lysine. The average diameter of the coated nanoparticles is 75 nm, and their zeta potential is +62.3

  14. BARRIERS TO THE USE OF RADIATION-CURABLE ADHESIVES IN THE COATED AND LAMINATED SUBSTRATE MANUFACTURING INDUSTRY

    Science.gov (United States)

    The paper gives results of an investigation of barriers to the use of radiation-cured technology in the coated and laminated substrate manufacturing industry. t presents information gathered from radiation-curable coating and equipment suppliers as well as technical publications....

  15. Conformal dip-coating of patterned surfaces for capillary die-to-substrate self-assembly

    Science.gov (United States)

    Mastrangeli, M.; Ruythooren, W.; Van Hoof, C.; Celis, J.-P.

    2009-04-01

    Capillarity-driven self-assembly of small chips onto planar target substrates is a promising alternative to robotic pick-and-place assembly. It critically relies on the selective deposition of thin fluid films on patterned binding sites, which is anyway normally non-conformal. We found that the addition of a thin wetting sidewall, surrounding the entire site perimeter, enables the conformal fluid coverage of arbitrarily shaped sites through dip-coating, significantly improves the reproducibility of the coating process and strongly reduces its sensitivity to surface defects. In this paper we support the feasibility and potential of this method by demonstrating the conformal dip-coating of square and triangular sites conditioned with combinations of different hydrophobic and hydrophilic surface chemistries. We present both experimental and simulative evidence of the advantages brought by the introduction of the wetting boundary on film coverage accuracy. Application of our surface preparation method to capillary self-assembly could result in higher precision in die-to-substrate registration and larger freedom in site shape design.

  16. Relevance of angiopoietin-2 and soluble P-selectin levels in patients with pulmonary arterial hypertension receiving combination therapy with oral treprostinil: a FREEDOM-C2 biomarker substudy

    Science.gov (United States)

    Schermuly, Ralph; Seeger, Werner; Rao, Youlan; Ghofrani, Hossein A.; Gall, Henning

    2016-01-01

    Abstract Studies have suggested roles for angiopoietin-2 (Ang-2) and soluble P-selectin (sP-selectin) as biomarkers of disease severity and treatment response in pulmonary arterial hypertension (PAH), but additional data are required for validation. We evaluated these biomarkers using data from FREEDOM-C2, in which patients with PAH receiving stable monotherapy or combination therapy were randomized to receive additional treatment with oral treprostinil (up-titrated from 0.25 mg twice daily) or placebo for 16 weeks. Biomarker analysis was optional in FREEDOM-C2. We measured plasma Ang-2 and sP-selectin levels at baseline and at week 16, and we assessed their association with predefined outcomes (6-minute walk distance [6MWD] change from baseline >40 m, 6MWD >380 m, functional class I/II, and/or N-terminal pro-brain natriuretic peptide [NT-proBNP] <1,800 pg/mL at week 16) using Spearman correlation, receiver operating characteristics, and logistic regression. Biomarker data were available for 83 of 157 and 95 of 153 patients in the oral treprostinil and placebo groups, respectively. In the oral treprostinil group, baseline Ang-2 levels correlated with week 16 NT-proBNP levels (P < 0.0001). Baseline Ang-2 ≥12 ng/mL was associated with a reduced likelihood of having NT-proBNP <1,800 pg/mL at week 16 (multivariate odds ratio: 0.08; 95% confidence interval: 0.02–0.32). However, Ang-2 showed no significant association with the other assessed outcomes, and sP-selectin was not associated or correlated with any of the outcomes. These data suggest that Ang-2 and sP-selectin are not associated with response to oral treprostinil in patients already receiving stable PAH therapy. Trial registration: Clinicaltrials.gov identifier NCT00887978. PMID:28090293

  17. Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates.

    Science.gov (United States)

    Xu, Gaoqiang; Shen, Xinkun; Dai, Liangliang; Ran, Qichun; Ma, Pingping; Cai, Kaiyong

    2017-01-01

    Bacterial infection is one of the most severe postoperative complications leading to implantation failure. The early bacterial stage (4-6h) was proved to be the "decisive period" for long-term bacteria-related infection. Thus, to endow potential early antibacterial capacity for a titanium (Ti) based implant, an effective antiseptic agent of octenidine dihydrochloride (OCT) was effectively loaded on the mesoporous silica nanoparticles (MSNs)-incorporated titania coating which was fabricated by an electrophoretic-enhanced micro-arc oxidation technique. The surface characteristic of the coatings were characterized by various methods (SEM, AFM, XPS, XRD, etc.), and its corrosion resistance was also examined by the potentiodynamic polarization curves. The composite coating without OCT loading not only displayed good cytocompatibility but also exhibited certain anti-bacterial property. After loading with OCT, its antibacterial efficiency of the titanium substrates with composite coating was greatly enhanced without compromising their cytocompatibility. The study provides an approach for the fabrication of anti-bacterial Ti implant for potential orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Rain erosion of wind turbine blade coatings using discrete water jets: Effects of water cushioning, substrate geometry, impact distance, and coating properties

    DEFF Research Database (Denmark)

    Zhang, Shizhong; Dam-Johansen, Kim; Bernad, Pablo L.

    2015-01-01

    Rapid and reliable rain erosion screening of blade coatings for wind turbines is a strong need in the coatings industry. One possibility in this direction is the use of discrete water jets, where so-called jet slugs are impacted on a coating surface. Previous investigations have mapped......, confirm the conclusion from the previous investigation that a direct correlation of data from discrete water jet experiments with those obtained in the whirling arm rig does not seem possible (at least not for the blade coatings considered). The underlying mechanisms of rain erosion are substantially...... the influence of water jet slug velocity and impact frequency. In the present work, the effects on coating erosion of water cushioning, substrate curvature, and water nozzle-coating distance were explored. The investigations showed that in some cases water cushioning (the presence of a liquid film...

  19. Recycled hydroxyapatite coatings on 316L stainless steel substrates; Recobrimentos de hidroxiapatita reciclada em substrato de aco inoxidavel 316L

    Energy Technology Data Exchange (ETDEWEB)

    Mendes Filho, Antonio Alves, E-mail: antonio.mendes@cetec.br [Fundacao Centro Tecnologico de Minas Gerais (CETEC), MG (Brazil); Pereira, Renato Alves; Araujo, Fernando Gabriel da Silva, E-mail: renafis@yahoo.com.br, E-mail: fgabrielaraujo@uol.com.br [Universidade Federal de Ouro Preto (UFOP), MG (Brazil); Sousa, Camila Mateus de, E-mail: kamila_mateus@hotmail.com [Centro Universitario de Belo Horizonte (UNIBH), MG (Brazil)

    2010-07-01

    In this work were evaluated recycled hydroxyapatite coatings on 316L stainless steel substrates by plasma thermal aspersion. The hydroxyapatite used was obtained from bovine bone by the hydrothermal method. The samples of hydroxyapatite powders were divided according to their particle size distribution. The adhesion of the powders coating to the substrate was evaluated by assay scratch. The X-ray diffraction techniques and scanning electron microscopy were also used. The results of scratch resistance were between 46N and 63N. Analysis by scanning electron microscopy and x-ray diffraction showed no cracks coatings, single-phase and with few fused particles. (author)

  20. Preparation and Characterization of FC Films Coated on PET Substrates by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Huang Mei-lin

    2018-01-01

    Full Text Available Fluorocarbon (FC films were prepared on polyethylene terephthalate (PET plates and PET fabrics respectively by a radiofrequency (RF magnetron sputtering technique using polytetrafluoroethylene (PTFE as a target. Scanning electron microscope and X-ray photoelectron spectroscopy were used to investigate the morphology, structure and composition of the obtained FC films. The hydrophobicity and uvioresistant properties of the FC film coated fabric were studied. The results show that the FC films were successfully deposited on the PET substrates by a RF magnetron sputtering. The deposited films are made up of four components -CF3, -CF2-, CF- and -C-. The proportions of the four components and surface morphologies of the deposited films vary with the sputtering conditions. Compared with the original fabric samples, the hydrophobicity of the FC film coated fabrics is quite good and improved significantly.

  1. Fabrication of a Textured Non-Magnetic Ni-12at.%V Alloy Substrate for Coated Conductors

    DEFF Research Database (Denmark)

    Gao, M. M.; Grivel, Jean-Claude; Suo, H. L.

    2011-01-01

    Ni-12at.%V alloy is a promising candidate for non-magnetic cube textured metallic substrates used for high temperature coated conductors. In this work, a textured Ni-12at.%V substrate has been fabricated by powder metallurgy route. After cold rolling and recrystallization annealing, a cube texture...

  2. Experimental and Numerical Study of the Influence of Substrate Surface Preparation on Adhesion Mechanisms of Aluminum Cold Spray Coatings on 300M Steel Substrates

    Science.gov (United States)

    Nastic, A.; Vijay, M.; Tieu, A.; Rahmati, S.; Jodoin, B.

    2017-10-01

    The effect of substrate surface topography on the creation of metallurgical bonds and mechanical anchoring points has been studied for the cold spray deposition of pure aluminum on 300M steel substrate material. The coatings adhesion strength showed a significant decrease from 31.0 ± 5.7 MPa on polished substrates to 6.9 ± 2.0 MPa for substrates with roughness of 2.2 ± 0.5 μm. Strengths in the vicinity of 45 MPa were reached for coatings deposited onto forced pulsed waterjet treated surfaces with roughnesses larger than 33.8 μm. Finite element analysis has confirmed the sole presence of mechanical anchoring in coating adhesion strength for all surface treatment except polished surfaces. Grit embedment has been shown to be non-detrimental to coating adhesion for the current deposited material combination. The particle deformation process during impacts has been studied through finite element analysis using the Preston-Tonks-Wallace (PTW) constitutive model. The obtained equivalent plastic strain (PEEQ), temperature, contact pressure and velocity vector were correlated to the particle ability to form metallurgical bonds. Favorable conditions for metallurgical bonding were found to be highest for particles deposited on polished substrates, as confirmed by fracture surface analysis.

  3. Cyclic Oxidation Behavior of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    Science.gov (United States)

    Raj, S. V.; Barrett, C.; Karthikeyan, J.; Garlick, R.

    2006-01-01

    A newly developed Cu-23 (wt %) Cr-5%Al (CuCrAl) alloy shown to resist hydridation and oxidation in an as-cast form is currently being considered as a protective coating for GRCop-84, which is an advanced copper alloy containing 8 (at.%) Cr and 4 (at.%) Nb. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. About a 10 percent weight loss observed at 973 and 1073 K was attributed to the excessive oxidation of the uncoated sides. In contrast, the uncoated substrate lost as much as 80 percent of its original weight under similar test conditions. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  4. Hydrothermal growth of ZnO microrods on ITO-coated glass substrate

    Science.gov (United States)

    Fan, Jincheng; Li, Tengfei; Heng, Hang

    2015-04-01

    ZnO microrods were prepared on indium tin oxide-coated glass substrate by a hydrothermal method. ZnO microrods were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscope, energy-dispersive X-ray spectrometer, photoluminescence, and UV-visible spectrum. ZnO microrods were pure wurtzite phase. The formation mechanism was discussed, especially emphasizing the formation mechanism of ZnO clusters and twinned ZnO structures. Green and orange emissions in photoluminescence were attributed to O vacancies and O interstitials, respectively.

  5. Electrical characteristic of spin coated Fe-Porphyrin on Cu substrates

    Energy Technology Data Exchange (ETDEWEB)

    Utari, E-mail: utari@ugm.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan Surakarta 57126 (Indonesia); Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur BLS 21 Yogyakarta 55281 (Indonesia); Kusumandari,; Purnama, Budi, E-mail: bpurnama@mipa.uns.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan Surakarta 57126 (Indonesia); Mudasir [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur BLS 21 Yogyakarta 55281 (Indonesia); Abraha, Kamsul [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur BLS 21 Yogyakarta 55281 (Indonesia)

    2016-06-17

    This paper describes the electrical-characteristics of Fe-Porphyrin thin films on Cu substrates. The thin layer samples used were deposited by spin coating methods on Cu-substrates at room temperature with and without induced magnetic field in the plane direction of the surface films. Fe-porphyrin was dissolved in chloroform and mixed with a magnetic stirrer for 60 min at a rotational speed of 200 rpm. The experimental results show that the mobility carrier charge of the Fe-Porphyrin layer with induced magnetic field during deposition has lower value than that without induced magnetic field case. The decrease of the mobility can be attribute to the change of the surface morphology in Fe-porphyrin films by means of increase in the nano-granular/nano-molecular size caused by the induce magnetic field.

  6. Elastic and plastic behavior of plasma-sprayed hydroxyapatite coatings on a Ti-6Al-4V substrate.

    Science.gov (United States)

    Zhang, C; Leng, Y; Chen, J

    2001-06-01

    A novel approach that combines the indentation tests with nonlinear finite element modeling (FEM) is proposed to estimate the elastic/plastic constitutive relation of plasma-sprayed hydroxyapatite (HA) coatings on a Ti-6Al-4V substrate. The Ramberg-Osgood constitutive equation can well describe the deformation behavior of plasma-sprayed HA coating on Ti-6Al-4V. A reasonable estimation for the elastic modulus of the HA coatings is given, based on the fact that the coating consists of a crystalline phase, an amorphous phase and pores. The Ramberg-Osgood equations of the coatings indicate that the post-treatment increases both resistance to elastic and plastic deformation, but no effect on strain hardening behavior. The post-treatment, however, could reduce the resistance to coating/substrate separation. The influence of titanium substrate becomes more significant with decreasing coating thickness and increasing indentation load because the plasma-sprayed HA coatings exhibit much less resistance to indentation deformation than does Ti-6Al-4V.

  7. Adhesion and thermal stability of thickness insensitive spectrally selective (TISS) polyurethane-based paint coatings on copper substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kunic, R. [FRAGMAT TIM, d.d., Spodnja Recica 77, SI-3270 Lasko (Slovenia); Kozelj, M.; Orel, B.; Surca Vuk, A.; Vilcnik, A.; Slemenik Perse, L. [Laboratory for Spectroscopy of Materials, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Merlini, D. [COLOR, d.d., Cesta komandanta Staneta 4, SI-1215 Medvode (Slovenia); Brunold, S. [Institut fuer Solartechnik, Oberseestrasse 10, Postfach 1475, CH-8640 Rapperswil (Switzerland)

    2009-05-15

    Thickness insensitive spectrally selective (TISS) paint coatings based on a polyurethane polymeric binder deposited on copper substrates were investigated to obtain information about their service lifetime. The degradation of TISS paint coatings was performed according to the methodology worked out within Task 10 of the IEA's Solar heating and the cooling programme. The activation energy (E{sub a}) for the degradation process was derived from vibrational band changes of the polyurethane binder recorded in the infrared hemispherical reflectance spectra of TISS paint coatings exposed to different thermal loads. The results of the vibrational band analysis were correlated with cross-cut tests, showing that the coatings started to lose integrity at 190 C but protected the copper substrate against oxidation perfectly even at 200 C (15 days). An accelerated test procedure confirmed that TISS coatings could be safely used in solar collectors for at least 45 years. (author)

  8. Synthesis and characterization of ZnO nanostructures on noble-metal coated substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dikovska, A.Og. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Sofia 1784 (Bulgaria); Atanasova, G.B. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 11, 1113 Sofia (Bulgaria); Avdeev, G.V. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 11, 1113 Sofia (Bulgaria); Nedyalkov, N.N. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Sofia 1784 (Bulgaria)

    2016-06-30

    Highlights: • ZnO nanostructures were fabricated on Au–Ag alloy coated silicon substrates by applying pulsed laser deposition. • Morphology of the ZnO nanostructures was related to the Au–Ag alloy content in the catalyst layer. • Increasing the Ag content in Au–Ag catalyst layer changes the morphology of the ZnO nanostructures from nanorods to nanobelts. - Abstract: In this work, ZnO nanostructures were fabricated on noble-metal (Au, Ag and Au–Ag alloys) coated silicon substrates by applying pulsed laser deposition. The samples were prepared at a substrate temperature of 550 °C, an oxygen pressure of 5 Pa, and a laser fluence of 2 J cm{sup −2} – process parameters usually used for deposition of smooth and dense thin films. The metal layer's role is substantial for the preparation of nanostructures. Heating of the substrate changed the morphology of the metal layer and, subsequently, nanoparticles were formed. The use of different metal particles resulted in different morphologies and properties of the ZnO nanostructures synthesized. The morphology of the ZnO nanostructures was related to the Au–Ag alloy's content of the catalyst layer. It was found that the morphology of the ZnO nanostructures evolved from nanorods to nanobelts as the ratio of Au/Ag in the alloy catalyst was varied. The use of a small quantity of Ag in the Au–Ag catalyst (Au{sub 3}Ag) layer resulted predominantly in the deposition of ZnO nanorods. A higher Ag content in the catalyst alloy (AuAg{sub 2}) layer resulted in the growth of a dense structure of ZnO nanobelts.

  9. An Analysis of Trafficking Receptors Shows that CD44 and P-Selectin Glycoprotein Ligand-1 Collectively Control the Migration of Activated Human T-Cells

    Directory of Open Access Journals (Sweden)

    Amal J. Ali

    2017-05-01

    Full Text Available Selectins guide the traffic of activated T-cells through the blood stream by mediating their tethering and rolling onto inflamed endothelium, in this way acting as beacons to help navigate them to sites of inflammation. Here, we present a comprehensive analysis of E-selectin ligands expressed on activated human T-cells. We identified several novel glycoproteins that function as E-selectin ligands. Specifically, we compared the role of P-selectin glycoprotein ligand-1 (PSGL-1 and CD43, known E-selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein carries a binding epitope identifying it as hematopoietic cell E- and/or L-selectin ligand (HCELL. Furthermore, by knocking down these ligands individually or together in primary activated human T-cells, we demonstrated that CD44/HCELL, and not CD43, cooperates with PSGL-1 as a major E-selectin ligand. Additionally, we demonstrated the relevance of our findings to chronic autoimmune disease, by showing that CD44/HCELL and PSGL-1, but not CD43, from T-cells isolated from psoriasis patients, bind E-selectin.

  10. Localization of T and B Lymphocytes to the White Pulp of the Spleen is Independent of L-, E-, and P-Selectin

    Directory of Open Access Journals (Sweden)

    Mitchell H. Grayson

    2003-01-01

    Full Text Available T and B cell interactions are thought to be of prime importance in the generation of a humoral immune response. These interactions are thought to take place in the secondary lymphoid organs. The largest of which is the spleen. While the pathways involved in lymphocyte migration into other secondary lymphoid organs have been unraveled, very little is understood about T and B cell migration to the spleen. We report that adoptively transferred T lymphocytes appear more rapidly within the lymphoid compartment of the spleen than do B lymphocytes. Indeed, half of the transferred T lymphocytes in the spleen appear within the white pulp by 1.4 hours. B lymphocytes take nearly 4.3 hours to achieve the same level of accumulation. In addition, T lymphocyte arrival is fucoidan sensitive, while B cells are not affected by this polysaccharide. Finally, we show that neither L-, E-, or P-selectin appears to play a significant role in the accumulation of lymphocytes in the white pulp.

  11. An Analysis of Trafficking Receptors Shows that CD44 and P-Selectin Glycoprotein Ligand-1 Collectively Control the Migration of Activated Human T-Cells

    KAUST Repository

    Ali, Amal J.

    2017-05-03

    Selectins guide the traffic of activated T-cells through the blood stream by mediating their tethering and rolling onto inflamed endothelium, in this way acting as beacons to help navigate them to sites of inflammation. Here, we present a comprehensive analysis of E-selectin ligands expressed on activated human T-cells. We identified several novel glycoproteins that function as E-selectin ligands. Specifically, we compared the role of P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, known E-selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein carries a binding epitope identifying it as hematopoietic cell E- and/or L-selectin ligand (HCELL). Furthermore, by knocking down these ligands individually or together in primary activated human T-cells, we demonstrated that CD44/HCELL, and not CD43, cooperates with PSGL-1 as a major E-selectin ligand. Additionally, we demonstrated the relevance of our findings to chronic autoimmune disease, by showing that CD44/HCELL and PSGL-1, but not CD43, from T-cells isolated from psoriasis patients, bind E-selectin.

  12. The human megakaryocytic cell line UT-7/TPO responds to platelet agonists with intracellular Ca2+ elevation and P-selectin expression.

    Science.gov (United States)

    Kawaguchi, Tatsuya; Hashimoto, Ryuji; Nawa, Katsuhiko; Yokota, Hiroshi

    2011-05-01

    Megakaryocytes have several signal transduction cascades that are similar, but not identical to platelet activation signals. In order to understand platelet signals in detail, it is useful to compare the similarities and/or differences between platelets and megakaryocytes. We evaluated platelet activation signals related to three kinds of Gq protein-coupled receptors using the megakaryocytic cell line UT-7/TPO. It was found that UT-7/TPO responded to thrombin, resulting in a continuous elevation of the [Ca2+]i (intracellular Ca2+) and P-selectin expression on the surface of the cells. Activation of integrin αIIbβ3 and thromboxane generation was not detected by any of the three stimulations. Taken together, although strong [Ca2+]i elevation by thrombin stimulation caused further P-selection expression, we could detect [Ca2+]i elevation, which is thought to be the individual signals through the thrombin, thromboxane A2 or ADP receptor, without considering the secondary signalling caused by αIIbβ3 activation and the arachidonic acid cascade using UT-7/TPO.

  13. Development of an autoimmune syndrome affecting the skin and internal organs in P-selectin glycoprotein ligand 1 leukocyte receptor-deficient mice.

    Science.gov (United States)

    Pérez-Frías, A; González-Tajuelo, R; Núñez-Andrade, N; Tejedor, R; García-Blanco, M J; Vicente-Rabaneda, E; Castañeda, S; Gamallo, C; Silván, J; Esteban-Villafruela, A; Cubero-Rueda, L; García-García, C; Muñoz-Calleja, C; García-Diez, A; Urzainqui, A

    2014-11-01

    To define and characterize the progression of the spontaneous autoimmune disease that develops in mice in the absence of the leukocyte adhesion receptor P-selectin glycoprotein ligand 1 (PSGL-1). Skin-resident immune cells from PSGL-1-deficient mice and C57BL/6 control mice of different ages were isolated and analyzed by flow cytometry. Biochemical parameters were analyzed in mouse serum and urine, and the presence of serum autoantibodies was investigated. Skin and internal organs were extracted, and their structure was analyzed histologically. Skin-resident innate and adaptive immune cells from PSGL-1(-/-) mice had a proinflammatory phenotype with an imbalanced T effector cell:Treg cell ratio. Sera from PSGL-1(-/-) mice had circulating autoantibodies commonly detected in connective tissue-related human autoimmune diseases. Biochemical and histologic analysis of skin and internal organs revealed skin fibrosis and structural and functional abnormalities in the lungs and kidneys. Furthermore, PSGL-1(-/-) mice exhibited vascular alterations, showing loss of dermal vessels, small vessel medial layer remodeling in the lungs and kidneys, and ischemic processes in the kidney that promote renal infarcts. Our study demonstrates that immune system overactivation due to PSGL-1 deficiency triggers an autoimmune syndrome with characteristics similar to systemic sclerosis, including skin fibrosis, vascular alterations, and systemic organ involvement. These results suggest that PSGL-1 expression contributes to the maintenance of the homeostasis of the immune system and could act as a barrier for autoimmunity in mice. Copyright © 2014 by the American College of Rheumatology.

  14. Synthesis of reduced graphene oxide/ZnO nanorods composites on graphene coated PET flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lei, E-mail: leihuang@shnu.edu.cn; Guo, Guilue; Liu, Yang; Chang, Quanhong; Shi, Wangzhou

    2013-10-15

    Graphical abstract: - Highlights: • ZnO nanorods synthesized on CVD-graphene and rGO surfaces, respectively. • ZnO/CVD-graphene and ZnO/rGO form a distinctive porous 3D structure. • rGO/ZnO nanostructures possibility in energy storage devices. - Abstract: In this work, reduced graphene oxide (rGO)/ZnO nanorods composites were synthesized on graphene coated PET flexible substrates. Both chemical vapor deposition (CVD) graphene and reduced graphene oxide (rGO) films were prepared following by hydrothermal growth of vertical aligned ZnO nanorods. Reduced graphene sheets were then spun coated on the ZnO materials to form a three dimensional (3D) porous nanostructure. The morphologies of the ZnO/CVD graphene and ZnO/rGO were investigated by SEM, which shows that the ZnO nanorods grown on rGO are larger in diameters and have lower density compared with those grown on CVD graphene substrate. As a result of fact, the rough surface of nano-scale ZnO on rGO film allows rGO droplets to seep into the large voids of ZnO nanorods, then to form the rGO/ZnO hierarchical structure. By comparison of the different results, we conclude that rGO/ZnO 3D nanostructure is more desirable for the application of energy storage devices.

  15. Designing interlayers to improve the mechanical reliability of transparent conductive oxide coatings on flexible substrates

    Science.gov (United States)

    Kim, Eun-Hye; Yang, Chan-Woo; Park, Jin-Woo

    2012-05-01

    In this study, we investigate the effect of interlayers on the mechanical properties of transparent conductive oxide (TCO) on flexible polymer substrates. Indium tin oxide (ITO), which is the most widely used TCO film, and Ti, which is the most widely used adhesive interlayer, are selected as the coating and the interlayer, respectively. These films are deposited on the polymer substrates using dc-magnetron sputtering to achieve varying thicknesses. The changes in the following critical factors for film cracking and delamination are analyzed: the internal stress (σi) induced in the coatings during deposition using a white light interferometer, the crystallinity using a transmission electron microscope, and the surface roughness of ITO caused by the interlayer using an atomic force microscope. The resistances to the cracking and delamination of ITO are evaluated using a fragmentation test. Our tests and analyses reveal the important role of the interlayers, which significantly reduce the compressive σi that is induced in the ITO and increase the resistance to the buckling delamination of the ITO. However, the relaxation of σi is not beneficial to cracking because there is less compensation for the external tension as σi further decreases. Based on these results, the microstructural control is revealed as a more influential factor than σi for improving crack resistance.

  16. Erosion Characteristics of Nanoparticle-Reinforced Polyurethane Coatings on Stainless Steel Substrate

    Science.gov (United States)

    Syamsundar, C.; Chatterjee, Dhiman; Kamaraj, M.; Maiti, A. K.

    2015-04-01

    Hydropower generation from the Himalayan rivers in India faces challenge in the form of silt-laden water which can erode the turbine blades and reduce turbine life. To address this issue, polyurethane coatings reinforced with boron carbide (B4C) or silicon carbide (SiC) nanoparticles on 16Cr-5Ni martensitic stainless steel substrate were used in the present investigation to improve erosion wear resistance in silt erosion conditions. Slurry erosive wear tests were carried out based on ASTM G-73 protocol at various test conditions of impact velocity, impingement angle, and erodent particle size as well as slurry concentrations as determined by the implementation of Taguchi design of experiments. Analysis of variance studies of erosion rate indicated that nanoparticle content in PU material is the single most important parameter, and interaction of impact velocity and impingement angle was also proved to be significant. The coatings with B4C nanoparticles had higher wear resistances than those with SiC nanoparticles due to higher hardness of the former. An interesting finding from the results is that there is an optimum amount of nanoparticles at which mass removal is the minimum. This observation has been explained in terms of surface characteristics of coatings as brought out by a combination of measurements including SEM images as well as roughness measurement.

  17. Deciphering surface behavior and deuterium retention in tin-lithium-coated fuzzy tungsten substrates

    Directory of Open Access Journals (Sweden)

    Eric Lang

    2017-08-01

    Full Text Available Tungsten will be used as plasma-facing material in the divertor in ITER, but it undergoes detrimental surface-subsurface morphological changes under irradiation. One type of tungsten that may mitigate such morphologies is porous tungsten due to higher defect sink areal density. While surface nanostructures such as fuzz may compromise plasma performance, their intrinsic porosity offers a proxy for a porous material and strategies to prevent high-Z impurity emission. Liquid metal coatings have been proposed as plasma facing materials to counteract the erosion issues faced by tungsten. Tin-lithium eutectics are an understudied class of potential liquid metal coatings for their low melting points and reduced erosion and fuel retention compared to pure lithium coatings. A 95 at.% tin-lithium eutectic was deposited on fuzzy tungsten samples and exposed to 250 eV deuterium ions at 250 °C and varying fluences. Mitigation of fuzz erosion and deuterium retention were examined post-mortem with SEM and secondary mass ion spectroscopy (SIMS of tungsten samples and witness samples used to collect eroded material. The SnLi film persisted after irradiation and protected underlying fuzz. SIMS results demonstrate surface mixing of the liquid metal and tungsten substrate and increased lithium erosion at high fluence and non-structured surfaces. The highest concentration and deepest penetration of retained deuterium was observed in the sample exposed to the lowest fluence. Results may indicate intercalation of liquid metal with tungsten tendrils at elevated temperatures.

  18. Evaluating the critical strain energy release rate of bioactive glass coatings on Ti6Al4V substrates after degradation.

    Science.gov (United States)

    Matinmanesh, A; Li, Y; Nouhi, A; Zalzal, P; Schemitsch, E H; Towler, M R; Papini, M

    2018-02-01

    It has been reported that the adhesion of bioactive glass coatings to Ti6Al4V reduces after degradation, however, this effect has not been quantified. This paper uses bilayer double cantilever (DCB) specimens to determine GIC and GIIC, the critical mode I and mode II strain energy release rates, respectively, of bioactive coating/Ti6Al4V substrate systems degraded to different extents. Three borate-based bioactive glass coatings with increasing amounts of incorporated SrO (0, 15 and 25mol%) were enamelled onto Ti6Al4V substrates and then immersed in de-ionized water for 2, 6 and 24h. The weight loss of each glass composition was measured and it was found that the dissolution rate significantly decreased with increasing SrO content. The extent of dissolution was consistent with the hypothesis that the compressive residual stress tends to reduce the dissolution rate of bioactive glasses. After drying, the bilayer DCB specimens were created and subjected to nearly mode I and mode II fracture tests. The toughest coating/substrate system (one composed of the glass containing 25mol% SrO) lost 80% and 85% of its GIC and GIIC, respectively, in less than 24h of degradation. The drop in GIC and GIIC occurred even more rapidly for other coating/substrate systems. Therefore, degradation of borate bioactive glass coatings is inversely related to their fracture toughness when coated onto Ti6A4V substrates. Finally, roughening the substrate was found to be inconsequential in increasing the toughness of the system as the fracture toughness was limited by the cohesive toughness of the glass itself. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Characterization and fatigue damage of plasma sprayed HAp top coat with Ti and HAp/Ti bond coat layers on commercially pure titanium substrate.

    Science.gov (United States)

    Rakngarm, Achariya; Mutoh, Yoshiharu

    2009-10-01

    The surface of commercially pure Ti (cp-Ti) substrate was grit-blasted with Al(2)O(3) powders and then wet-blasted with HAp/Ti mixed powders at room temperature. Then plasma spraying with Ti powders or HAp/Ti mixed powders on the blasted surface was carried out to form a bond coat layer, denoted as T50 and T100 bond coat for the former and HT100 bond coat for the later. The HAp top coat was subsequently sprayed with 100 mum thickness. The XRD patterns showed that the as-sprayed HT100 bond coat layer was mainly composed of HAp with minor components of Ti and TiO(2). EDS analysis also showed there co-existed HAp and Ti without reaction in the HT100 bond coat layer. Some cracks were observed in the bond coat and the top coat layers after compression-compression and tension-tension fatigue tests. The HT100 bond coat specimen produced less AE signal and a small amount of debonding and cracking in compression-compression fatigue test. The HT100 specimen could survive up to 10 million cycles at stress amplitude of 200 MPa, which is high enough compared to the maximum stress in bones: the order of 100 MPa. The degree of damage (debonding and cracking) in tension-tension fatigue test was more severe than that in compression-compression fatigue testing.

  20. Enhancement in Tribological and Mechanical Properties of Cemented Tungsten Carbide Substrates using CVD-diamond Coatings

    Directory of Open Access Journals (Sweden)

    K.A. Najar

    2017-03-01

    Full Text Available An experimental investigation has been carried out to study the influence on the performance characteristics of a cutting tool material notably known as cemented tungsten carbide (WC-Co. A comparison has been documented between nanocrystalline diamond (NCD and microcrystalline diamond (MCD coatings deposited on two cemented tungsten carbide (WC-Co substrates with the architectures of WC-Co/NCD and WC-Co/MCD, using hot filament chemical vapor deposition (HFCVD technique. In the present work, the friction characteristics were studied using ball-on-disc type linear reciprocating micro-tribometer, under the application of 1–10 N normal loads, when sliding against smooth alumina (Al2O3 ceramic ball for the total duration of 20 min, under dry sliding condition. Nanoindentation tests were also conducted using Berkovich nanoindenter for the purpose of measurement of hardness and elastic modulus values. However, the average value of friction coefficient (COF corresponding to MCD and NCD coatings decrease from ~0.37–0.32 and ~0.30–0.27, respectively when the load is increased from 1–10 N. However, for conventional WC-Co substrate the average COF increases from ~0.60–0.75, under the same input operating conditions. The wear tracks formed on the surfaces of NCD, MCD and WC-Co, after sliding were characterised using Raman spectroscopy and scanning electron microscopy (SEM techniques. Therefore, the results will serve breakthrough information for the designer to design the cutting tool or mechanical component using this novel coating procedure.

  1. Enhanced photo-transfection efficiency of mammalian cells on graphene coated substrates

    Science.gov (United States)

    Mthunzi, Patience; He, Kuang; Ngcobo, Sandile; Warner, Jamie W.

    2014-03-01

    Literature reports graphene, an atomic-thick sheet of carbon atoms as one of the promising biocompatible scaffolds that promotes cellular proliferation in human mesenchymal stem cells. On the other hand, different mammalian cell lines including the induced pluripotent stem cells exhibited an accelerated proliferation rate when cultured on graphene or graphene oxide coated substrates. These findings provide strong motivation to explore the full capability of graphene in further pluripotent stem cell research activities as there exists an urgent requirement to preserve their therapeutic potential. This therefore calls for non-invasive procedures for handling stem cells in-vitro. For example, resent literature has shown successful laser light driven transfection in both multipotent and pluripotent stem cells. In order to explore the non-invasive nature of optical transfection alongside biocompatible qualities of graphene, in this work we investigated the impact of optically transfecting mouse embryonic stem (mES) cells plated on graphene coated sample chambers. Using Chinese Hamster Ovary cells (CHO-K1), we further studied the influence of graphene on cell viability as well as cell cytotoxicity through assessing changes in levels of mitochondrial adenosine triphosphate (ATP) activity and the release of cytosolic lactate dehydrogenase (LHD) respectively. Our results showed that compared to those treated on plain glass, CHO-K1 cells optically treated while plated on graphene coated substrates exhibited a higher production of ATP and a milder release of LDH. In addition there was enhanced photo-transfection efficiency in both CHO-K1 and mES cells irradiated on graphene sample chambers.

  2. Improving interfacial, mechanical and tribological properties of alumina coatings on Al alloy by plasma arc heat-treatment of substrate

    Science.gov (United States)

    Hou, Guoliang; An, Yulong; Zhao, Xiaoqin; Zhou, Huidi; Chen, Jianmin; Li, Shuangjian; Liu, Xia; Deng, Wen

    2017-07-01

    Plasma sprayed ceramic coatings can be used to improve the mechanical properties and wear resistance of aluminum alloys, but there are still some challenges to effectively increase their interfacial adhesion. Thus we conducted plasma arc-heat treatment (PA-HT) of Al alloy substrate before plasma spraying, hoping to tune the microstructure of Al2O3 coatings and improve their interfacial strength as well as mechanical and tribological properties. The influences of PA-HT on the microstructure of alumina coatings were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy, while its effect on mechanical and tribological properties were evaluated by a nano-indentation tester and a friction and wear tester. Results demonstrate that a few columnar δ-Al2O3 generated on substrate surface after PA-HT at 200-250 °C can induce the epitaxial growth of γ-Al2O3 grains in Al2O3 coatings, thereby enhancing their interfacial bonding. Besides, elevating substrate temperature can help alumina droplets to melt into the interior of substrate and eliminate holes at the interface, finally increasing the interfacial anchorage force. More importantly, no interfacial holes can allow the heat of droplets to be rapidly transmitted to substrate, which is beneficial to yield smaller crystals in coatings and greatly enhance their strength, hardness and wear resistance.

  3. Influence of a silicon (Si14)-based coating substrate for biomaterials on fibroblast growth and human C5a.

    Science.gov (United States)

    Hiebl, B; Hopperdietzel, C; Hünigen, H; Jung, F; Scharnagl, N

    2013-01-01

    Despite considerable efforts in biomaterial development there is still a lack on substrates for cardiovascular tissue engineering approaches which allow the establishment of a tight a functional endothelial layer on their surface to provide hemocompatibility. The study aimed to test the biocompatibility of a silicon (Si14)-based coating substrate (Supershine Medicare, Permanon) which was designed to resist temperatures from -40°C up to 300°C and which allows the use of established heat-inducing sterilization techniques respectively. By X-ray photoelectron spectroscopy it could be validated that this substrate is able to establish a 40-50 nm thick layer of silica, oxygen and carbon without including any further elements from the substrate on an exemplary selection of materials (silicone, soda-lime-silica glass, stainless steel). Analysis of the LDH-release, the cell activity/proliferation (MTS assay) and the cell phenotype after growing 3T3 cells with extracts of the coated materials did not indicate any signs of cytotoxicity. Additionally by measuring the C5a release after exposure of the coated materials with human serum it could be demonstrated, that the coating had no impact on the activation of the complement system. These results generally suggest the tested substrate as a promising candidate for the coating of materials which are aimed to be used in cardiovascular tissue engineering approaches.

  4. Crack formation mechanisms during micro and macro indentation of diamond-like carbon coatings on elastic-plastic substrates

    DEFF Research Database (Denmark)

    Thomsen, N.B.; Fischer-Cripps, A.C.; Swain, M.V.

    1998-01-01

    In the present study crack formation is investigated on both micro and macro scale using spherical indenter tips. in particular, systems consisting of elastic coatings that are well adhered to elastic-plastic substrates are studied. Depth sensing indentation is used on the micro scale and Rockwell...... indentation on the macro scale. The predominant driving force for coating failure and crack formation during indentation is plastic deformation of the underlying substrate. The aim is to relate the mechanisms creating both delamination and cohesive cracking on both scales with fracture mechanical models...... in order to quantitatively determine coating fracture properties. A non-linear elastic-plastic finite element model of the coating system which is loaded with a spherical indenter is used to simulated stress and displacement distributions in the material. The simulations are used to predict the onset...

  5. Effect of Native Oxide Film on Commercial Magnesium Alloys Substrates and Carbonate Conversion Coating Growth and Corrosion Resistance

    Science.gov (United States)

    Feliu, Sebastián; Samaniego, Alejandro; Bermudez, Elkin Alejandro; El-Hadad, Amir Abdelsami; Llorente, Irene; Galván, Juan Carlos

    2014-01-01

    Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO3 solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface. PMID:28788582

  6. Pt-Al2O3 selective cermet coatings on superalloy substrates for photothermal conversion up to 600C

    Energy Technology Data Exchange (ETDEWEB)

    Tran Khan Vien; Sella, C.; Lafait, J.; Berthier, S.

    1985-04-12

    The following features of Pt-Al2O3 cermet coatings deposited by R.F. cosputtering on metallic substrates are reported in this paper. (1) An appropriate choice of cermet composition and coating thickness results in very good optical selectivity. (2) This selectivity is increased if the cermet film has a molybdenum underlayer and an Al2O3 overlayer of adequate thickness. An absorptivity a of 0.92 and an emissivity e of 0.14 (at 300C) have been obtained. (3) These selective absorbers are stable at temperatures of up to 400C when cermet coatings are deposited on stainless steel substrates and over 600C when superalloy substrate are used. (orig.).

  7. Effect of substrate rotation on structure, hardness and adhesion of magnetron sputtered TiB{sub 2} coating on high speed steel

    Energy Technology Data Exchange (ETDEWEB)

    Panich, N. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore (Singapore)]. E-mail: panich@pmail.ntu.edu.sg; Sun, Y. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore (Singapore)

    2006-04-03

    Titanium diboride (TiB{sub 2}) coatings have been deposited on stationary and rotating high speed steel substrates by magnetron sputtering of a TiB{sub 2} target. The structure and hardness of the coatings and the coating-substrate adhesion have been investigated by X-ray diffraction, field emission scanning electron microscopy, nanoindentation and microscratch tests. The results show that substrate rotation has a significant effect on these structural and properties features. It was found that, with substrate rotation, the TiB{sub 2} coating exhibits a columnar structure with random orientation and relatively low hardness and coating-substrate adhesion. On the other hand, without substrate rotation, the TiB{sub 2} coating shows a strong (001) texture with dense, equiaxed grain structure. The hardness and coating-substrate adhesion of the coatings deposited on stationary substrates are much higher than those deposited on rotating substrates. The observed phenomena are discussed in terms of the energy of the sputtered flux, which varies with the substrate-target distance during deposition.

  8. Enhancement and Prediction of Adhesion Strength of Copper Cold Spray Coatings on Steel Substrates for Nuclear Fuel Repository

    Science.gov (United States)

    Fernández, R.; MacDonald, D.; Nastić, A.; Jodoin, B.; Tieu, A.; Vijay, M.

    2016-12-01

    Thick copper coatings have been envisioned as corrosion protection barriers for steel containers used in repositories for nuclear waste fuel bundles. Due to its high deposition rate and low oxidation levels, cold spray is considered as an option to produce these coatings as an alternative to traditional machining processes to create corrosion protective sleeves. Previous investigations on the deposition of thick cold spray copper coatings using only nitrogen as process gas on carbon steel substrates have continuously resulted in coating delamination. The current work demonstrates the possibility of using an innovative surface preparation process, forced pulsed waterjet, to induce a complex substrate surface morphology that serves as anchoring points for the copper particles to mechanically adhere to the substrate. The results of this work show that, through the use of this surface preparation method, adhesion strength can be drastically increased, and thick copper coatings can be deposited using nitrogen. Through finite element analysis, it was shown that it is likely that the bonding created is purely mechanical, explaining the lack of adhesion when conventional substrate preparation methods are used and why helium is usually required as process gas.

  9. HuEP5C7 as a humanized monoclonal anti-E/P-selectin neurovascular protective strategy in a blinded placebo-controlled trial of nonhuman primate stroke.

    Science.gov (United States)

    Mocco, J; Choudhri, Tanvir; Huang, Judy; Harfeldt, Elisabeth; Efros, Lyubov; Klingbeil, Corine; Vexler, Vladimir; Hall, William; Zhang, Yuan; Mack, William; Popilskis, Sulli; Pinsky, David J; Connolly, E Sander

    2002-11-15

    Although inhibiting interaction of beta(2) integrins with cognate immunoglobulin class adhesion receptor ligands is an effective neuroprotective strategy in small mammal models of stroke, the strategy has failed in human trials. A completely different antiadhesion receptor strategy was therefore rigorously tested in a model that may more closely approximate human reperfused stroke. Early leukoadhesive events in postischemic cerebral microvessels are mediated by upregulated selectin-class adhesion receptors on endothelial cells. Therefore, a blocking antibody prepared against common P- and E-selectin epitopes was humanized to suppress complement activation and tested in a reperfused hemispheric stroke model in Papio anubis (baboon). Histological examination of postischemic cerebral microvessels revealed a strong upregulation of E-and P-selectin expression. Placebo-blinded administration of the humanized anti-human E- and P-selectin monoclonal antibody (HuEP5C7, 20 mg/kg IV, n=9; placebo, n=9) immediately after the onset of 1 hour of temporary ischemia resulted in trends showing reduced polymorphonuclear leukocyte (PMN) infiltration into ischemic cortex, reduced infarct volumes (by 41%), improved neurological score (by 35%), and improved ability to self-care (by 39%). Importantly, there was no evidence of systemic complement activation, immune suppression, or pathological coagulopathy associated with this therapy. These data suggest that a humanized anti-E/P-selectin antibody approach is safe and may be effective as a clinical treatment for human stroke.

  10. Effect of water vapor treatment on apatite formation on precalcified titanium and bond strength of coatings to substrates.

    Science.gov (United States)

    Feng, B; Chen, Y; Zhang, X D

    2002-01-01

    In previous investigations, a simple method, precalcification, was developed for bioactivating titanium. After a titanium sample was precalcified in a boiling saturated Ca(OH)(2) solution and then immersed in a calcium phosphate supersaturated solution, an apatite coating rapidly precipitated onto its surface. In the present study, heat-treatment in water vapor was carried out prior to precalcification. Heat-treatment in water vapor stimulated the chemical reaction between titanium, calcium, and phosphate. Coating properties were improved, and the bond strength of the coating to substrate was enhanced. Copyright 2001 John Wiley & Sons, Inc.

  11. Inkjet-Printed Wideband Antenna on Resin-Coated Paper Substrate for Curved Wireless Devices

    KAUST Repository

    Abutarboush, Hattan

    2015-04-28

    A low-cost, inkjet-printed multiband monopole antenna for conformal wireless applications is presented for the first time. The antenna is implemented on a low cost resin coated paper substrate which can be used for conformal devices. The antenna developed here is composed of four branch lines on the radiator and three L-shaped slots on the ground plane that help to generate multiple bands without increasing the size of the antenna. The antenna has a compact size, making it suitable for handheld and wearable wireless devices. Details of the inkjet printing fabrication processes and related issues are presented. The antennas were characterized under flat and bent conditions and the results indicate that the antennas can cover most bands for mobile and wireless applications such as PCS, UMTS, GSM1900 and WLAN

  12. Multifaceted Biomedical Applications of Functional Graphene Nanomaterials to Coated Substrates, Patterned Arrays and Hybrid Scaffolds

    Directory of Open Access Journals (Sweden)

    Yong Cheol Shin

    2017-11-01

    Full Text Available Because of recent research advances in nanoscience and nanotechnology, there has been a growing interest in functional nanomaterials for biomedical applications, such as tissue engineering scaffolds, biosensors, bioimaging agents and drug delivery carriers. Among a great number of promising candidates, graphene and its derivatives—including graphene oxide and reduced graphene oxide—have particularly attracted plenty of attention from researchers as novel nanobiomaterials. Graphene and its derivatives, two-dimensional nanomaterials, have been found to have outstanding biocompatibility and biofunctionality as well as exceptional mechanical strength, electrical conductivity and thermal stability. Therefore, tremendous studies have been devoted to employ functional graphene nanomaterials in biomedical applications. Herein, we focus on the biological potentials of functional graphene nanomaterials and summarize some of major literature concerning the multifaceted biomedical applications of functional graphene nanomaterials to coated substrates, patterned arrays and hybrid scaffolds that have been reported in recent years.

  13. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-03-01

    Full Text Available In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  14. Substrate-Coated Illumination Droplet Spray Ionization: Real-Time Monitoring of Photocatalytic Reactions.

    Science.gov (United States)

    Zhang, Hong; Li, Na; Zhao, Dandan; Jiang, Jie; You, Hong

    2017-09-01

    Real-time monitoring of photocatalytic reactions facilitates the elucidation of the mechanisms of the reactions. However, suitable tools for real-time monitoring are lacking. Herein, a novel method based on droplet spray ionization named substrate-coated illumination droplet spray ionization (SCI-DSI) for direct analysis of photocatalytic reaction solution is reported. SCI-DSI addresses many of the analytical limitations of electrospray ionization (ESI) for analysis of photocatalytic-reaction intermediates, and has potential for both in situ analysis and real-time monitoring of photocatalytic reactions. In SCI-DSI-mass spectrometry (MS), a photocatalytic reaction occurs by loading sample solutions onto the substrate-coated cover slip and by applying UV light above the modified slip; one corner of this slip adjacent to the inlet of a mass spectrometer is the high-electric-field location for launching a charged-droplet spray. After both testing and optimizing the performance of SCI-DSI, the value of this method for in situ analysis and real-time monitoring of photocatalytic reactions was demonstrated by the removal of cyclophosphamide (CP) in TiO 2 /UV. Reaction times ranged from seconds to minutes, and the proposed reaction intermediates were captured and identified by tandem mass spectrometry. Moreover, the free hydroxyl radical (·OH) was identified as the main radicals for CP removal. These results show that SCI-DSI is suitable for in situ analysis and real-time monitoring of CP removal under TiO 2 -based photocatalytic reactions. SCI-DSI is also a potential tool for in situ analysis and real-time assessment of the roles of radicals during CP removal under TiO 2 -based photocatalytic reactions.Graphical Abstract.

  15. Blood Compatibility of ZrO2 Particle Reinforced PEEK Coatings on Ti6Al4V Substrates

    Directory of Open Access Journals (Sweden)

    Jian Song

    2017-11-01

    Full Text Available Titanium (Ti and its alloys are widely used in biomedical devices. As biomaterials, the blood compatibility of Ti and its alloys is important and needs to be further improved to provide better functionality. In this work, we studied the suitability of zirconia (ZrO2 particle reinforced poly-ether-ether-ketone (PEEK coatings on Ti6Al4V substrates for blood-contacting implants. The wettability, surface roughness and elastic modulus of the coatings were examined. Blood compatibility tests were conducted by erythrocytes observation, hemolysis assay and clotting time of recalcified human plasma, to find out correlations between the microstructure of the ZrO2-filled PEEK composite coatings and their blood compatibilities. The results suggested that adding ZrO2 nanoparticles increased the surface roughness and improved the wettability and Derjaguin-Muller-Toporov (DMT elastic modulus of PEEK coating. The PEEK composite matrix coated Ti6Al4V specimens did not cause any aggregation of erythrocytes, showing morphological normal shapes. The hemolysis rate (HR values of the tested specimens were much less than 5% according to ISO 10993-4 standard. The values of plasma recalcification time (PRT of the tested specimens varied with the increasing amount of ZrO2 nanoparticles. Based on the results obtained, 10 wt % ZrO2 particle reinforced PEEK coating has demonstrated an optimum blood compatibility, and can be considered as a candidate to improve the performance of existing PEEK based coatings on titanium substrates.

  16. Properties of amorphous SiC coatings deposited on WC-Co substrates

    Directory of Open Access Journals (Sweden)

    Costa A.K.

    2003-01-01

    Full Text Available In this work, silicon carbide films were deposited onto tungsten carbide from a sintered SiC target on a r.f. magnetron sputtering system. Based on previous results about the influence of r.f. power and argon pressure upon the properties of films deposited on silicon substrates, suitable conditions were chosen to produce high quality films on WC-Co pieces. Deposition parameters were chosen in order to obtain high deposition rates (about 30 nm/min at 400 W rf power and acceptable residual stresses (1.5 GPa. Argon pressure affects the energy of particles so that films with higher hardness (30 GPa were obtained at low pressures (0.05 Pa. Wear rates of the coated pieces against a chromium steel ball in a diamond suspension medium were found to be about half of the uncoated ones. Hardness and wear resistance measurements were done also in thermally annealed (200-800 °C samples revealing the effectiveness of SiC coatings to protect tool material against severe mechanical degradation resulting of high temperature (above 500 °C oxidation.

  17. Improving interfacial, mechanical and tribological properties of alumina coatings on Al alloy by plasma arc heat-treatment of substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Guoliang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); An, Yulong, E-mail: csuayl@sohu.com [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, Xiaoqin; Zhou, Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Chen, Jianmin, E-mail: chenjm@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Shuangjian; Liu, Xia; Deng, Wen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-07-31

    Highlights: • Columnar δ-Al{sub 2}O{sub 3} induces epitaxial growth of γ-Al{sub 2}O{sub 3} grains in coating after PA-HT. • Epitaxial growth greatly enhances interfacial bonding of Al{sub 2}O{sub 3} coating on Al alloy. • Penetration of Al{sub 2}O{sub 3} droplets into Al alloy increases interfacial anchorage force. • Crystal structure of the alumina coatings can be refined after PA-HT of substrate. • Mechanical and tribological properties of the coatings are improved after PA-HT. - Abstract: Plasma sprayed ceramic coatings can be used to improve the mechanical properties and wear resistance of aluminum alloys, but there are still some challenges to effectively increase their interfacial adhesion. Thus we conducted plasma arc-heat treatment (PA-HT) of Al alloy substrate before plasma spraying, hoping to tune the microstructure of Al{sub 2}O{sub 3} coatings and improve their interfacial strength as well as mechanical and tribological properties. The influences of PA-HT on the microstructure of alumina coatings were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy, while its effect on mechanical and tribological properties were evaluated by a nano-indentation tester and a friction and wear tester. Results demonstrate that a few columnar δ-Al{sub 2}O{sub 3} generated on substrate surface after PA-HT at 200–250 °C can induce the epitaxial growth of γ-Al{sub 2}O{sub 3} grains in Al{sub 2}O{sub 3} coatings, thereby enhancing their interfacial bonding. Besides, elevating substrate temperature can help alumina droplets to melt into the interior of substrate and eliminate holes at the interface, finally increasing the interfacial anchorage force. More importantly, no interfacial holes can allow the heat of droplets to be rapidly transmitted to substrate, which is beneficial to yield smaller crystals in coatings and greatly enhance their strength, hardness and wear resistance.

  18. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Afrooz, E-mail: afroozlatifi@yahoo.com [Department of Biomaterials, Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Imani, Mohammad [Novel Drug Delivery Systems Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad Taghi [Biomaterials Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran (Iran, Islamic Republic of); Daliri Joupari, Morteza [Animal and Marine Biotechnology Dept., National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • Stainless steel 316L was surface modified by plasma surface oxidation (PSO) and silicone rubber (SR) coating. • On the PSO substrates, concentration of oxide species was increased ca. 2.5 times comparing to non-PSO substrates. • The surface wettability was improved to 12.5°, in terms of water contact angle, after PSO. • Adhesion strength of SR coating on the PSO substrates was improved by more than two times comparing to non-PSO ones. • After pull-off test, the fractured area patterns for SR coating were dependent on the type of surface modifications received. - Abstract: Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m{sup −1}), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer–metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  19. Optical and electronic coupling of the redox copper Azurin on ITO-coated quartz substrate.

    Science.gov (United States)

    Bizzarri, A R; Andolfi, L; Taranta, M; Cannistraro, S

    2008-10-15

    We have investigated the hybrid system constituted by the redox copper protein Azurin integrated with the semiconductor indium tin oxide (ITO) coated on quartz substrate. The system appears to be a good candidate for bio-sensing and bio-optoelectronics applications, especially due to the coupling between the optical and electron transfer features of Azurin with the conductive properties and optical transparency of ITO. The optical, morphological and electrical properties of the system have been investigated by combining optical absorption and transmission, steady-state fluorescence, resonance Raman spectroscopy and scanning probe microscopies. We found that Azurin molecules are firmly anchored on ITO and retain their structural and optical features underlying the physiological electron transfer activity. Scanning tunnelling spectroscopy evidenced a good electric coupling between the protein molecules and the substrate and a concomitant modulation of the ITO semiconductor properties upon deposition of Azurin. Some interplay between the conduction and valence bands of ITO and the electronic levels of Azurin is therefore suggested. These results are of a significant relevance in the perspective of developing bio-nanodevices able to process both optical and electrical signals, in conjugation also with the biorecognition capability of the protein molecules.

  20. Liquid Crystal Alignment Control Using Polymer Filament and Polymer Layers Coated on Substrates

    Science.gov (United States)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2005-04-01

    We investigated liquid crystal (LC) alignment in LC cells containing an aligned cellulose filament sandwiched by thin polymer layers coated on substrates. Three types of polymer material, namely polystyrene (PS), polyvinyl alcohol (PVA) and polyimide (PI), were used as polymer layers. LC alignment areas induced on both sides of the filament were large in the order of PS, PVA and PI. In the case of the PS layer, the average LC alignment area reached approximately 100 μm in the direction perpendicular to the polymer filament. The molecular interaction between the LC and the PS layer is thought to be weak and it does not disturb the LC alignment due to the polymer filament. On the other hand, rubbed PS layers were used as polymer layers of the LC cell, where the LC alignment direction induced by the rubbed PS layer was perpendicular to the polymer filament. It was found that the LC alignment near the polymer filament gradually bent in the cell plane. The result suggests that various three-dimensional LC alignments can be realized by the combination of the polymer filament and substrate surface.

  1. Controlling the shapes of coated silicon substrates via magnetic fields, a progress report

    Science.gov (United States)

    Ulmer, Melville P.; Coppejans, Rocco; Buchholz, David B.; Cao, Jian; Wang, Xiaoli; Mercado, Alejandro M.; Qian, Jun; Assoufid, Lahsen; O'Donnell, Allison E.; Condron, Kyle S.; Harpt, Benjamin E.

    2017-08-01

    We describe our progress in developing a method for correcting residual figure errors in X-ray mirrors. The technology has applications to both synchrotron radiation beamlines and X-ray astronomy. Our concept is to develop mirrors that are on the order of a millimeter thick. A magnetic smart material (MSM) is deposited onto the mirror substrate (silicon) and coated with a magnetically hard material. The shape of the mirror can be controlled by applying an external magnetic field to the mirror. This causes the MSM to expand or contract, thereby applying a magnetostrictive stress to the mirror and changing its shape. The shape change is maintained after the field has been removed by the magnetic hard material, which retains part of the field and prevents the MSM from relaxing. Here we present the results of shaping 200 µm thick silicon (100) 14 × 2 mm cantilevers and 50 × 50 × 0.1 mm substrates. We demonstrate that not only can a sizable deflection be created, but it can also be retained for ˜ 60 hours.

  2. Highly enhanced and temporally stable field emission from MWCNTs grown on aluminum coated silicon substrate

    Directory of Open Access Journals (Sweden)

    M. Sreekanth

    2015-06-01

    Full Text Available In this work, a detailed field emission study of multi-walled carbon nanotubes (MWCNTs grown on Si and Al coated Si substrates is reported. Morphological and microstructural studies of the films show higher entanglement of CNTs in the case of CNT/Si film as compared to CNT/Al/Si film. Raman studies show that the defect mediated peak (D is substantially suppressed as compared to graphitic peak (G resulting in significant reduction in ID/IG value in CNT/Al/Si film. Field emission (FE current density of CNT/Al/Si film (∼25 mA/cm2 is significantly higher as compared to that of CNT/Si film (∼1.6 mA/cm2. A substantial improvement in temporal stability is also observed in CNT/Al/Si film. This enhancement in field emission current is attributed to strong adhesion between substrate and CNTs, low work function, high local field enhancement factor at the CNT tips and less entanglement of CNTs grown on Al/Si. The temporally stable CNT/Al/Si cold cathode can be a potential candidate to replace conventional electron sources in prototype devices.

  3. Cracking caused by cutting of plasma-sprayed hydroxyapatite coatings and its relation to the structural features of coatings deposited at different initial substrate temperatures

    Directory of Open Access Journals (Sweden)

    Gligorijević Bojan R.

    2017-01-01

    Full Text Available The present study estimated the cracking phenomenon in as-plasma-sprayed hydroxylapatite coatings (HACs after they were being subjected to the severe cutting conditions in the direction perpendicular to the coating/substrate interface. In order to evaluate the effects of substrate preheating on the occurrence of micro-cracks, the HACs were deposited at different initial substrate temperatures (TS = 20, 100 and 200°C. The changes in phase composition and HA splat morphology with TS were observed and were correlated with the cracking occurrence. The results showed that severe cutting conditions introduced a localized cracking in the regions of HACs dominantly attributed to the brittle hydroxyl-deficient amorphous calcium phosphate (ACP phase. This effect was particularly observable in the HACs deposited without preheating of substrate. On the other hand, the preheating of substrate reduced the presence of micro-cracks and caused insignificant changes in the average local phase composition. In HACs deposited with preheating of substrate, the HA splats (of which HACs are composed were thinner and recrystallized HA regions seemed smaller in size and more evenly distributed. These results implied potentially important roles of the HA splat formation mechanism on the distribution of ACP and recrystallized HA regions in the as-plasma-sprayed HACs and the cracking resistance of HACs. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 34022

  4. Influence of graphene coating on the adsorption and tribology of Xe on Au(1 1 1) substrate.

    Science.gov (United States)

    Zhang, Y N; Bortolani, V; Mistura, G

    2014-11-05

    The adsorption and tribological properties of graphene have received increasing attention for the further development of graphene-based coatings in applications. In this work, we performed first principles calculations with the inclusion of the nonlocal van der Waals correction to study the effect of graphene coating on the adsorption geometries, sliding frictions and electronic properties of Xe monolayer on the Au(1 1 1) substrate. The calculated activation energies indicate that Xe becomes movable on pure Au(1 1 1) surface at a temperature of around 30 K, whereas its motion can be activated only at a high temperature of ~50 K on graphene and on graphene-coated Au(1 1 1) substrates, in good agreement with recent experimental measurements by quartz crystal microbalance technique.

  5. Crystal-Structure-Based Modeling Study of Temperature-Dependent Fracture Toughness for Brittle Coating Deposited on Ductile Substrate

    Science.gov (United States)

    Gu, Yichen; Chen, Kuiying; Liu, Rong; Yao, Matthew X.; Collier, Rachel

    2016-10-01

    The temperature-dependent fracture toughness of a brittle coating/ductile substrate system, WC-10Co4Cr deposited on 1018 low carbon steel, is evaluated at microscopic level using an indentation-based model in terms of the Arrhenius-type equation and rate-controlling theory. The formulation of the model utilizes the parameters of crystal structures of each phase in the coating material. The slip systems of hard hexagonal δ-WC phase and soft FCC α-Co phase are analyzed. The fracture toughness of the two-phase coating is obtained by integrating the fracture toughness of single δ-WC phase coating and that of single α-Co phase coating using either the basic mixture method or the unconstrained mixture method. The results suggest that the fracture toughness of WC-10Co4Cr coating/1018 low carbon steel substrate system may remain constant until the temperature reaches a critical value, about 200 K, and ranges from 2.16 to 10.82 {{MPa}}{{m}}^{1/2} , with temperature increasing from room temperature (298 K) to 1000 K.

  6. Agent-based model of therapeutic adipose-derived stromal cell trafficking during ischemia predicts ability to roll on P-selectin.

    Directory of Open Access Journals (Sweden)

    Alexander M Bailey

    2009-02-01

    , or CD65. In vitro experiments confirmed this prediction; a subpopulation of hASCs slowly rolled on immobilized P-selectin at speeds as low as 2 microm/s. Thus, our work led to a fundamentally new understanding of hASC biology, which may have important therapeutic implications.

  7. Agent-based model of therapeutic adipose-derived stromal cell trafficking during ischemia predicts ability to roll on P-selectin.

    Science.gov (United States)

    Bailey, Alexander M; Lawrence, Michael B; Shang, Hulan; Katz, Adam J; Peirce, Shayn M

    2009-02-01

    vitro experiments confirmed this prediction; a subpopulation of hASCs slowly rolled on immobilized P-selectin at speeds as low as 2 microm/s. Thus, our work led to a fundamentally new understanding of hASC biology, which may have important therapeutic implications.

  8. Superhydrophobic SERS Substrates Based on Silver-Coated Reduced Graphene Oxide Gratings Prepared by Two-Beam Laser Interference.

    Science.gov (United States)

    Yan, Zhao-Xu; Zhang, Yong-Lai; Wang, Wei; Fu, Xiu-Yan; Jiang, Hao-Bo; Liu, Yu-Qing; Verma, Prabhat; Kawata, Satoshi; Sun, Hong-Bo

    2015-12-16

    Reported here is the fabrication of reduced graphene oxide (RGO) grating structures by two-beam laser interference (TBLI) for the development of highly efficient SERS substrates via simple physical vapor deposition (PVD) coating of silver. TBLI has been utilized to make hierarchical RGO grating structures with microscale gratings and nanoscale folders through a laser treatment induced ablation and photoreduction process. The hierarchical structures contribute to the formation of plasmonic structures after silver coating, giving rise to the formation of plenty of SERS "hot spots", while the RGO substrate would provide chemical enhancement of Raman signal through interaction with analytes molecules. The significantly increased roughness with respect to the hierarchical structures in combination with the removal of hydrophilic oxygen-containing groups endow the resultant substrates with unique superhydrophobicity, which leads to the enrichment of analytes and further lowers the detection limit. The synergistic effects make the silver coated RGO gratings a highly efficient SERS substrate; in the detection of Rhodamine B, our SERS substrates showed high SERS enhancement and good reproducibility, a detection limit of 10(-10) M has been achieved.

  9. Substrate-Versatile Approach to Robust Antireflective and Superhydrophobic Coatings with Excellent Self-Cleaning Property in Varied Environments.

    Science.gov (United States)

    Ren, Tingting; He, Junhui

    2017-10-04

    Robust antireflective and superhydrophobic coatings are highly desired in wide applications, such as optical devices, solar cell panels, architectural and automotive glasses, lab-on chip systems, and windows for electronic devices. Meanwhile, simple, low-cost, and substrate-versatile fabrication is also essential toward real applications of such coatings. Herein, we developed a substrate-versatile strategy to fabricate robust antireflective and superhydrophobic coatings with excellent self-cleaning property in varied environments, including air and oil and after oil contamination. A mixed ethanol suspension, which consists of 1H,1H,2H,2H-perfluorooctyltriethoxysilane modified dual-sized silica nanoparticles and acid-catalyzed silica precursor, was first synthesized. The acid-catalyzed silica precursor could help to form a highly cross-linked silica network by connecting the silica nanoparticles, thus significantly enhancing the robustness of coatings. The as-prepared coatings were able to withstand a water drop impact test, sand abrasion test, tape adhesion test, and knife and pencil scratching tests. More importantly, it was also found that the wettability and self-cleaning property of coatings after oil contamination were surprisingly different from those in air and oil. These observations are explainable by the alteration of interface; i.e., the alteration of interface has significant effects on the functional properties of coatings. Additionally, the mixed suspension could be sprayed onto various hard and soft substrates including glass, polyethylene terephthalate (PET), polycarbonate (PC), and poly(methyl methacrylate) (PMMA), opening up a feasible route toward varied practical applications in solar cell panels, optical devices, architectural and automotive glasses, droplet manipulators, and fluid control.

  10. Synthesis, characterization of ceria-coated silica particles and their chemical mechanical polishing performance on glass substrate

    Science.gov (United States)

    Zhang, Zefang; Liu, Weili; Zhu, Jingkang; Song, Zhitang

    2010-12-01

    Nano-sized ceria particles were coated on the silica surface by the precipitation method using ammonium cerium nitrate and urea as precipitant with poly(vinylpyrrolidone) (PVP) as assistant. The structures and compositions of ceria-coated silica particles were characterized using X-ray diffraction (XRD), field-emission scanning microscopy (FE-SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements. The results show that nano-size ceria particles were coated uniformly around the surface of silica particles when PVP was used as assistant during coating process, while without PVP, the ceria particles were grown sparsely on the silica particle surface and many ceria particles grow up through independent nucleation in the solution. Then, the chemical mechanical polishing (CMP) behaviors of the as-prepared ceria-coated silica particles on glass substrate were investigated. The CMP test results suggest that the as-prepared ceria-coated silica particles exhibit higher removal rate than pure silica particles without deteriorating the surface quality. In addition, online coefficient of friction (COF) was conducted during the polishing process. The COF data indicate that the COF values of ceria-coated silica particles are larger than those of pure silica particles due to their surface properties.

  11. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    Science.gov (United States)

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-09-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  12. Development of a radio frequency atmospheric pressure plasma jet for diamond-like carbon coatings on stainless steel substrates

    Science.gov (United States)

    Sohbatzadeh, F.; Samadi, O.; Siadati, S. N.; Etaati, G. R.; Asadi, E.; Safari, R.

    2016-10-01

    In this paper, an atmospheric pressure plasma jet with capacitively coupled radio frequency discharge was developed for diamond-like carbon (DLC) coatings on stainless steel substrates. The plasma jet was generated by argon-methane mixture and its physical parameters were investigated. Relation between the plasma jet length and width of the powered electrode was discussed. Optical and electrical characteristics were studied by optical emission spectroscopy, voltage and current probes, respectively. The evolutions of various species like ArI, C2 and CH along the jet axis were investigated. Electron temperature and density were estimated by Boltzmann plot method and Saha-Boltzmann equation, respectively. Finally, a diamond-like carbon coating was deposited on stainless steel-304 substrates by the atmospheric pressure radio frequency plasma jet in ambient air. Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy and Vickers hardness test were used to study the deposited films. The length of the jet was increased by increasing the width of the powered electrode. The estimated electron temperature and density were 1.43 eV and 1.39 × 1015 cm-3, respectively. Averaged Vicker's hardness of the coated sample was three times greater than that of the substrate. The SEM images of the deposited thin films revealed a 4.5 μm DLC coated for 20 min.

  13. Construction of a multifunctional coating consisting of phospholipids and endothelial progenitor cell-specific peptides on titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huiqing; Li, Xiaojing [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhao, Yuancong, E-mail: zhaoyc7320@163.com [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Li, Jingan; Chen, Jiang [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Yang, Ping, E-mail: yangping8@263.net [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Maitz, Manfred F. [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Max Bergmann Center of Biomaterials Dresden, Leibniz of Polymer Research Dresden, 01069 Dresden (Germany); Huang, Nan [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2015-08-30

    Graphical abstract: The phospholipid groups of PMMDP can inhibit platele adhesion, and the EPCs-specific peptide of the PMMDP showed special recognition and capture for EPCs. The catechol groups of PMMDP play a critical role as molecular anchor for balancing the binding between the coating and the substrate. - Highlights: • The uniform coating of PMMDP can be constructed on titanium surface successfully through the catechol groups. • The phospholipid groups of PMMDP can inhibit platele adhesion, fibrinogen denaturation and improve the hydrophilicity of substrate. • The EPCs-specific peptide of the PMMDP showed special recognition and capture for EPCs. - Abstract: A phospholipid/peptide polymer (PMMDP) with phosphorylcholine groups, endothelial progenitor cell (EPC)-specific peptides and catechol groups was anchored onto a titanium (Ti) surface to fabricate a biomimetic multifunctional surface. The PMMDP coating was characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements and atomic force microscopy (AFM), respectively. The amount of PMMDP coating on the Ti surface was quantified by using the quartz crystal microbalance with dissipation (QCM-D). Interactions between blood components and the coated and bare Ti substrates were evaluated by platelet adhesion and activation assays and fibrinogen denaturation test using platelet rich plasma (PRP). The results revealed that the PMMDP-modified surface inhibited fibrinogen denaturation and reduced platelet adhesion and activation. EPC cell culture on the PMMDP-modified surface showed increased adhesion and proliferation of EPCs when compared to the cells cultured on untreated Ti surface. The inhibition of fibrinogen denaturation and platelet adhesion and support of EPCs attachment and proliferation indicated that this coating might be beneficial for future applications in blood-contacting implants, such as vascular stents.

  14. Effect of interfacial oxide thickness on the photocatalytic activity of magnetron-sputtered TiO2coatings on aluminum substrate

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Petit, Jean-Pierre; Shabadi, Rajashekhara

    2015-01-01

    The influence of the coating/substrate interface on the photocatalytic behavior of Al-TiO2 coatings was investigated. The TiO2 coatings were prepared by magnetron sputtering. The nanoscale structure of the coating was analyzed using X-ray diffraction; atomic force microscopy; scanning electron...... microscopy; and transmission electron microscopy. The photocatalytic behavior was investigated through optical spectrophotometry studies and electrochemical experiments; as photo voltage; photocurrent; and electrochemical impedance measurements. Consistent results from both optical and electrochemical...

  15. Synthesis of LSM films deposited by dip-coating on YSZ substrate; Sintese de filmes de LSM depositados por dip-coating em substratos de YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Leandro da; Souza, Mariana M.V.M., E-mail: mmattos@eq.ufrj.b [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica; Ribeiro, Nielson F.P. [Coordenacao dos Programas de Pos-graduacao de Engenharia (PEQ/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Quimica. Nucleo de Catalise

    2010-07-01

    The dip-coating process was used to deposit films of La{sub 0.7}Sr{sub 0.}3MnO{sub 3} (LSM) used as cathode in solid oxide fuel cells (SOFC). In this study we evaluated the relationship between the deposition parameters such as speed of withdrawal and number of deposited layers of LSM film on a substrate of 8% YSZ commercial, and structural properties, such as thickness and formation of cracks. The structure and morphology of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). With parameters set the film had good adhesion to the substrate with a thickness around 10 {mu}m, showing possible adherence problems when more than one layer is deposited on the substrate. (author)

  16. Preparation and characterization of lanthanum-incorporated hydroxyapatite coatings on titanium substrates

    National Research Council Canada - National Science Library

    Lou, W; Dong, Y; Zhang, H; Jin, Y; Hu, X; Ma, J; Liu, J; Wu, G

    2015-01-01

    ...) coating, using a dip-coating technique with a La-HA sol along with post-heat treatment. The XRD, FTIR and EDX results presented in this paper confirmed that lanthanum was successfully incorporated into the structure of HA...

  17. Selected immunological changes in patients with Goeckerman's therapy TNF-alpha, sE-selectin, sP-selectin, sICAM-1 and IL-8

    Energy Technology Data Exchange (ETDEWEB)

    Borska, L.; Fiala, Z.; Krejsek, J.; Andrys, C.; Vokurkova, D.; Hamakova, K.; Kremlacek, J.; Ettler, K. [Charles University, Hradec Kralove (Czech Republic). Faculty of Medicine

    2006-07-01

    Psoriasis is one of the most frequent inflammatory skin diseases in which abnormal individual immune reactivity plays an important role. The aim of the present study was to describe selected immunological changes, concerning pro-inflammatory cytokines (TNF-alpha, IL-8) and adhesion molecules (sE-selectin, sP-selectin, sICAM-1), in 56 patients cured by Goeckerman's therapy (GT). GT includes dermal application of crude coal tar (containing polycyclic aromatic hydrocarbons) and exposure to UV radiation.

  18. Infrared measurement of undercooling during silicon solidification on bare and Si3N4 coated quartz substrates

    Science.gov (United States)

    Yang, C. F.; Tsoutsouva, M. G.; Hsu, H. P.; Lan, C. W.

    2016-11-01

    Undercooling is one of the most significant parameters in the solidification of silicon since it controls the grain structure formation, which determines the final performance of solar cell. Here a new and simple experimental facility is proposed to provide reliable undercooling values and visualize the melting-solidification process when silicon solidifies on a bare and a Si3N4 coated quartz (SiO2) substrate. A lamp heating system was used for the melting, the undercooling temperature was measured with the aid of an infrared single-color pyrometer while the morphologies of the growing silicon on the SiO2 and Si3N4-coated SiO2 substrates are also investigated through a digital microscope. The high precision and accuracy of the given undercooling values when using the present setup comes from the principle of minimizing the background radiation that can significantly influence the pyrometer measurements.

  19. Facile Construction of Robust Multilayered PEG Films on Polydopamine-Coated Solid Substrates for Marine Antifouling Applications.

    Science.gov (United States)

    Kim, Suyeob; Gim, Taewoo; Jeong, Yeonwoo; Ryu, Ji Hyun; Kang, Sung Min

    2017-08-30

    We report an effective and versatile approach to control marine fouling on artificial surfaces based on specific chemical interactions found in marine mussels. The approach consists of mussel-inspired polydopamine coating, spin-coating-assisted deposition of poly(ethylene glycol) (PEG) catechols, and their cross-linking via catechol-Fe(3+)-catechol interactions. Using this approach, multilayered PEG films that were highly resistant to marine diatom adhesion were successfully constructed on various substrates, such as stainless steel, nylon, titanium oxide, and silicon oxide. We believe that our results will provide a basis for the construction of a marine antifouling agent that can be applied by a large variety of industries owing to its applicability to different types of substrates and stability under marine environments.

  20. [Coating modification of anthracite substrates in vertical-flow constructed wetlands by LDHs synthesized from different metal compounds and the nitrogen removal efficiencies].

    Science.gov (United States)

    Zhang, Xiang-Ling; Guo, Lu; Chen, Jun-Jie; Liu, Xiao-Ting; Xu, Lu; Chen, Qiao-Zhen; Wang, Xiao-Xiao

    2014-08-01

    As one kind of vertical-flow constructed wetlands substrates, anthracite was selected in this experiment. LDHs (layered double hydroxides) were synthesized in alkaline conditions by co-precipitation of different kinds of metal compounds, such as CaCl2, ZnCl2, MgCl2, FeCl3, AlCl3, CoCl3. The synthesized LDHs were in-situ coated onto the surface of anthracite substrate to achieve the aim of modification. Simulated test columns were constructed to study the nitrogen removal efficiency of the urban sewage using the original anthracite substrates and 9 kinds of modified anthracite substrates. The results showed that: LDHs synthesized by all the 9 different kinds of methods could effectively modify the anthracite substrate by in-situ coating. With Mg2+ involved in the synthesis of modified substrates, good TN and ammonia nitrogen removal efficiencies were observed. The modified anthracite substrates coated with MgCo-LDHs had the optimal performance with average TN and ammonia nitrogen removal efficiencies of higher than 80% and 85%, respectively. The ammonia nitrogen removal efficiencies by the modified anthracite substrates coated by LDHs reacted with Mg2+ and Fe3+ were also high. The ammonia nitrogen removal efficiencies by modified anthracite substrates coated with CaFe-LDHs and MgFe-LDHs were higher than 85%.

  1. Ultraviolet-Diode Pump Solid State Laser Removal of Titanium Aluminium Nitride Coating from Tungsten Carbide Substrate

    Science.gov (United States)

    See, Tian Long; Chantzis, Dimitrios; Royer, Raphael; Metsios, Ioannis; Antar, Mohammad; Marimuthu, Sundar

    2017-09-01

    This paper presents an investigation on the titanium aluminium nitride (TiAlN) coating removal from tungsten carbide (WC-Co) substrate using a diode pump solid state (DPSS) ultraviolet (UV) laser with maximum average power of 90 W, wavelength of 355 nm and pulse width of 50 ns. The TiAlN coating of 1.5 μm thickness is removed from the WC-Co substrate with laser fluence of 2.71 J/cm2 at 285.6 number of pulses (NOP) and with NOP of 117.6 at 3.38 J/cm2 fluence. Titanium oxide formation was observed on the ablated surface due to the re-deposition of ablated titanium residue and also attributed to the high temperature observed during the laser ablation process. Crack width of around 0.2 μm was observed over both TiAlN coating and WC-Co substrate. The crack depth ranging from 1 to 10 μm was observed and is related to the thickness of the melted carbide. The crack formation is a result of the thermal induced stresses caused by the laser beam interaction with the material as well as the higher thermal conductivity of cobalt compared to WC. Two cleaning regions are observed and is a consequence of the Gaussian distribution of the laser beam energy. The surface roughness of the ablated WC-Co increased with increasing laser fluence and NOP.

  2. Preparation, characterization, and biological properties of organic-inorganic nanocomposite coatings on titanium substrates prepared by sol-gel.

    Science.gov (United States)

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando

    2014-02-01

    When surface-reactive (bioactive) coatings are applied to medical implants by means of the sol-gel dip-coating technique, the biological proprieties of the surface of the implant can be locally modified to match the properties of the surrounding tissues to provide a firm fixation of the implant. The aim of this study has been to synthesize, via sol-gel, organoinorganic nanoporous materials and to dip-coat a substrate to use in dental applications. Different systems have been prepared consisting of an inorganic zirconium-based matrix, in which a biodegradable polymer, the poly-ε-caprolactone was incorporated in different percentages. The materials synthesized by the sol-gel process, before gelation, when they were still in sol phase, have been used to coat a titanium grade 4 (Ti-4) substrate to change its surface biological properties. Thin films have been obtained by means of the dip-coating technique. A microstructural analysis of the obtained coatings was performed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. The biological proprieties have been investigated by means of tests in vitro. The bone-bonding capability of the nanocomposite films has been evaluated by examining the appearance of apatite on their surface when plunged in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. The examination of apatite formation on the nanocomposites, after immersion in SBF, has been carried out by SEM equipped with energy-dispersive X-ray spectroscopy. To evaluate cells-materials interaction, human osteosarcoma cell line (Saos-2) has been seeded on specimens and cell vitality evaluated by WST-8 assay. © 2013 Wiley Periodicals, Inc.

  3. Improvement of Electrochemical Surface Properties in Steel Substrates Using a Nanostructured CrN/AlN Multilayer Coating

    Science.gov (United States)

    Cabrera, G.; Torres, F.; Caicedo, J. C.; Aperador, W.; Amaya, C.; Prieto, P.

    2012-01-01

    Improvement of corrosion properties on AISI D3 steel surfaces coated with [CrN/AlN] n multilayered system deposited for various periods (Λ) via magnetron sputtering has been studied in this work exhaustively. For practical effects compared were the latter properties with CrN and AlN single layers deposited with the same conditions as the multilayered systems. The coatings were characterized in terms of crystal phase; chemical composition, micro-structural, and electrochemical properties by x-ray diffractometry, energy dispersive x-ray, Fourier transforming infrared spectroscopy, atomic force microscopy, scanning electron microscopy, Tafel polarization curves, and electrochemical impedance spectroscopy. Corrosion evolution was observed via optical microscopy. Results from x-ray diffractometry analysis revealed that the crystal structure of [CrN/AlN] n multilayered coatings has an NaCl-type lattice structure and hexagonal structure (wurtzite-type) for CrN and AlN, respectively, i.e., it was made non-isostructural multilayered. The best behavior was obtained by the multilayered period: Λ = 60 nm (50 bilayers), showing the maximum corrosion resistance (polarization resistance of 1.18 KΩ, and corrosion rate of 1.02 mpy). Those results indicated an improvement of anticorrosive properties, compared to the CrN/AlN multilayer system with 1 bilayer at 98 and 80%, respectively. Furthermore, the corrosion resistance of steel AISI D3 is improved beyond 90%. These improvement effects in multilayered coatings could be attributed to the number of interfaces that act as obstacles for the inward and outward diffusions of ion species, generating an increment in the energy or potential required for translating the corrosive ions across the coating/substrate interface. Moreover, the interface systems affect the means free path on the ions toward the metallic substrate, due to the decreasing of the defects presented in the multilayered coatings.

  4. Wear and Corrosion Resistance of Thick Ti-6Al-4V Coating Deposited on Ti-6Al-4V Substrate via High-Pressure Cold Spray

    Science.gov (United States)

    Khun, N. W.; Tan, A. W. Y.; Sun, W.; Liu, E.

    2017-08-01

    Ti-6Al-4V (Ti64) coating with a thickness of about 9 mm was deposited on commercial Ti64 substrate via a high-pressure cold spray process. The microstructure, hardness, and wear and corrosion resistance of the Ti64 coating were systematically investigated. The hardness of the Ti64 coating was higher than that of the Ti64 substrate due to the cold-worked microstructure of the coating. The tribological results showed that there was no significant difference in the surface wear rates of the Ti64 coating measured on its different layers while the surface wear resistance of the Ti64 coating was lower than its cross-sectional wear resistance. The corrosion results showed that the Ti64 coating did not effectively prevent its underlying Ti64 substrate from corrosion due to the occurrence of pores in the coating microstructure. It could be concluded that the hardness and wear resistance of the Ti64 coating were comparable to those of the commercial Ti64 substrate.

  5. Associations of combined polymorphisms of the platelet membrane glycoproteins Ia and IIIa and the platelet-endothelial cell adhesion molecule-1 and P-Selectin genes with IVF implantation failures.

    Science.gov (United States)

    Vlachadis, Nikolaos; Tsamadias, Vasileios; Vrachnis, Nikolaos; Kaparos, Georgios; Vitoratos, Nikolaos; Kouskouni, Evaggelia; Economou, Emmanuel

    2017-04-01

    The aim of the study was to investigate the combined impact of the genetic heterogeneity of the glycoproteins Ia (GpIa) and IIIa (GpIIIa) and the platelet-endothelial cell adhesion molecule-1 (PECAM-1) and P-Selectin genes on IVF embryo transfer implantation failures (IVF-ET failures). Sixty nulligravida women with previous IVF-ET failures and 60 fertile controls were genotyped for the GpIa-C807T, GpIIIa-PlA1/PA2, PECAM-1-C373G (Leu125Val) and P-Selectin-A37674C (Thr715Pro) polymorphisms by pyrosequencing. Compared with wild-type combined homozygotes, carriers of combinations of risk alleles in two gene loci were at significantly increased risk for IVF-ET failure, whereas carriers of the combination of GpIa-807T, GpIIIa-PlA2 and PECAM-1-373G alleles had OR = 52.50 (95%CI: 4.05-680.95, p IVF-ET failures especially for younger women and provided a genetic risk score with good diagnostic accuracy in the prediction of IVF-ET failures.

  6. Effects of post-heat treatment on microstructure and properties of laser cladded composite coatings on titanium alloy substrate

    Science.gov (United States)

    Li, G. J.; Li, J.; Luo, X.

    2015-01-01

    The composite coatings were produced on the Ti6Al4V alloy substrate by laser cladding. Subsequently, the coatings were heated at 500 °C for 1 h and 2 h and then cooled in air. Effects of post-heat treatment on microstructure, microhardness and fracture toughness of the coatings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), optical microscopy (OM). Wear resistance of the coatings was evaluated under the dry sliding reciprocating friction condition at room temperature. The results indicated that the coatings mainly consist of a certain amount of coarse white equiaxed WC particles surrounded by the white-bright W2C, a great deal of fine dark spherical TiC particles and the matrix composed of the α(Ti), Ti2Ni and TiNi phases. Effects of the post-heat treatment on phase constituents and microstructure of the coatings were almost negligible due to the low temperature. However, the post-heat treatment could decrease the residual stress and increase fracture toughness of the coatings, and fracture toughness of the coatings was improved from 2.77 MPa m1/2 to 3.80 MPa m1/2 and 4.43 MPa m1/2 with the heat treatment for 1 h and 2 h, respectively. The mutual role would contribute to the reduction in cracking susceptibility. Accompanied with the increase in fracture toughness, microhardness of the coatings was reduced slightly. The dominant wear mechanism for all the coatings was abrasive wear, characterized by micro-cutting or micro-plowing. The heat treatment could significantly decrease the average friction coefficient and reduce the fluctuation of the friction coefficient with the change in sliding time. The appropriate heat treatment time (approximately 1 h) had a minimal effect on wear mass loss and volume loss. Moreover, the improvement in fracture toughness will also be beneficial to wear resistance of the coatings under the long service.

  7. Substrate-mediated delivery of gene complex nanoparticles via polydopamine coating for enhancing competitiveness of endothelial cells.

    Science.gov (United States)

    Li, Bo-Chao; Chang, Hao; Ren, Ke-Feng; Ji, Jian

    2016-11-01

    Substrate-mediated delivery of functional plasmid DNA (pDNA) has been proven to be a promising strategy to promote competitiveness of endothelial cells (ECs) over smooth muscle cells (SMCs), which is beneficial to inducing fast endothelialization of implanted vascular devices. Thus, it is of great importance to develop universal approaches with simplicity and easiness to immobilize DNA complex nanoparticles on substrates. In this study, the bioinspired polydopamine (PDA) coating was employed in immobilization of DNA complex nanoparticles, which were composed of protamine (PrS) and plasmid DNA encoding with hepatocyte growth factor (HGF-pDNA) gene. We demonstrated that the DNA complex nanoparticles can be successfully immobilized onto the PDA surface. Consequently, the HGF expression of both ECs and SMCs were significantly improved when they cultured on the DNA complex nanoparticles-immobilized substrates. Furthermore, EC proliferation was specifically promoted due to bioactivity of HGF, leading to an enhancement of EC competitiveness over SMCs. Our findings demonstrated the substrate-mediated functional gene nanoparticle delivery through PDA coating as a simple and efficient approach. It may hold great potential in the field of interventional cardiovascular implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Corrosion Control through a Better Understanding of the Metallic Substrate/Organic Coating/Interface.

    Science.gov (United States)

    1984-12-13

    of all species is enhanced. Third, it is probable that both anions and cations diffuse through the coating as aquo complexes which react differently to...the coating/metal interface looks promising as a water detection technique. This molecule upon reaction with ferrous ion yields a complex when dis...effective in promoting * bonding to titanium surfaces. *The interactions between metal surfaces and organic coatings are undoubtedly more complex than the

  9. The Effect of Substrate Contaminates on the Life of Epoxy Coatings Submerged in Sea Water

    Science.gov (United States)

    1991-03-01

    SPECIFICALLY DISCLAIMED. -3- ABSTRACT This research was conducted to study the effects that contaminants, commonly occurring in the marine ...work, was to examine how environmental contaminants, common in marine coating operations, can adversely affect the service life of epoxy coatings...contaminants: coal tar, SovaPon, Mare Island and Aquapon . Aquapon is a clear (unpigmented) polyamide epoxy coating. While Aquapon is not normally used for

  10. Corrosion Control through a Better Understanding of the Metallic Substrate/Organic Coating/Interface.

    Science.gov (United States)

    1988-01-04

    43 --Ihe Effect of Alkali Metal Hydroxides on the Dissolu- tion Behavior of a Zinc Phosphate Conversion Coating on Steel and Pertinence to...WT71 -. .,, Effect of Alkali Metal Hydroxides on the Dissolution Behavior of a Zinc Phosphate Conversion Coating on Steel and % Pertinence to Cathodic...Effect of Alkali Metal Hydroxides on the Dissolution Behavior of a Zinc Phosphate Conversion Coating on Steel and Pertinence to Cathodic Delamination

  11. Development of Oxidation Resistant Coatings on GRCop-84 Substrates by Cold Spray Process

    Science.gov (United States)

    Karthikeyan, J.

    2007-01-01

    GRCop-84, a Cu-CR-Nb alloy, has been developed for rocket engine liner applications. For maximum life additional oxidation protection is required to prevent blanching. NiCrAlY was identified as a suitable coating, and efforts were initiated to develop suitable coating techniques. Cold spray is one technique under consideration. Efforts at ASB Industries to produce dense, adherent coatings are detailed. The work culminated in the production of samples for testing at NASA Glenn Research Center.

  12. Magnetron reactively sputtered Ti-DLC coatings on HNBR rubber: The influence of substrate bias

    OpenAIRE

    Bui, X.L.; Pei, Y.T.; De Hosson, J. Th. M.

    2008-01-01

    In this study, Ti-containing diamond-like carbon (Ti-DLC) coatings have been deposited on HNBR (hydrogenated nitrile butadiene) rubber and also on Si wafer as reference via unbalanced magnetroli reactive sputtering from a Ti target in C2H2/Ar plasma. The deposition rates of coatings on rubber and Si wafer were about the same. Columnar structures resulting from a rough interface were often observed in the coatings deposited on rubbers. Only at a high bias voltage of -300 V the coating on HNBR ...

  13. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Pharmacy College, Jiamusi University, Jiamusi 154007 (China); Dai Changsong, E-mail: changsd@hit.edu.cn [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Wei Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Chemistry and Bioengineering, Suzhou Science Technology University, Suzhou 215009 (China); Wen Zhaohui, E-mail: wenzhaohui1968@163.com [Department of Neuro intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Calcium phosphate/chitosan composite coatings on the MAO-AZ91D alloy were prepared. Black-Right-Pointing-Pointer The bonding force between the coating and the magnesium alloy was optimized. Black-Right-Pointing-Pointer The composite coating slowed down the corrosion rate of magnesium alloy in m-SBF. - Abstract: In order to improve the bonding strength between calcium phosphate/chitosan composite coatings and a micro-arc oxidized (MAO)-AZ91D Mg alloy, different influencing parameters were investigated in the process of electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). Surface morphology and phase constituents of the as-prepared materials were investigated by using X-ray diffractometer (XRD), Fourier-transformed infrared spectrophotometer (FTIR), Raman spectrometer, scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), and a thermo gravimetric and differential thermal analyzer (TG-DTA). Scratch tests were carried out to study the bonding properties between the coatings and the substrates. In vitro immersion tests were conducted to determine the corrosion behaviors of samples with and without deposit layers through electrochemical experiments. In the EPD process, the acetic acid content in the electrophoresis suspension and the electrophoretic voltage played important roles in improving the bonding properties, while the contents of chitosan (CS) and nano-hydroxyapatite (nHA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) in the suspension had less significant influences on the mechanical bonding strength. It was observed that the coatings showed the excellent bonding property when an electrophoretic voltage was in a range of 40-110 V with other reagent amounts as follows: acetic acid: 4.5 vol.%, CS {<=} 0.25 g, nHA {<=} 2.0 g in 200 ml of a CS-acetic acid aqueous solution and nHA {<=} 2.5 g in 300 ml of absolute ethanol. The morphology of the composite coating

  14. Optimal conjugation of catechol group onto hyaluronic acid in coronary stent substrate coating for the prevention of restenosis

    Directory of Open Access Journals (Sweden)

    Eugene Lih

    2016-12-01

    Full Text Available Although endovascular stenting has been used as an interventional therapy to treat cardio- and cerebro-vascular diseases, it is associated with recurrent vascular diseases following stent thrombosis and in-stent restenosis. In this study, a metallic stent was coated with dopamine-conjugated hyaluronic acid with different ratios of catechol group to improve hemocompatibility and re-endothelialization. Especially, we were interested in how much amount of catechol group is appropriate for the above-mentioned purposes. Therefore, a series of dopamine-conjugated hyaluronic acid conjugates with different ratios of catechol group were synthesized via a carbodiimide coupling reaction. Dopamine-conjugated hyaluronic acid conjugates were characterized with 1H-nuclear magnetic resonance and Fourier transform infrared spectroscopy, and the amount of catechol group in dopamine-conjugated hyaluronic acid was measured by ultraviolet spectrometer. Co-Cr substrates were polished and coated with various dopamine-conjugated hyaluronic acid conjugates under pH 8.5. Dopamine-conjugated hyaluronic acid amounts on the substrate were quantified by micro-bicinchoninic acid assay. Surface characteristics of dopamine-conjugated hyaluronic-acid-coated Co-Cr were evaluated by water contact angle, scanning electron microscopy, and atomic force microscopy. The hemocompatibility of the surface-modified substrates was assessed by protein adsorption and platelet adhesion tests. Adhesion and activation of platelets were confirmed with scanning electron microscopy and lactate dehydrogenase assay. Human umbilical vein endothelial cells were cultured on the substrates, and the viability, adhesion, and proliferation were investigated through cell counting kit-8 assay and fluorescent images. Obtained results demonstrated that optimal amounts of catechol group (100 µmol in the dopamine-conjugated hyaluronic acid existed in terms of various properties such as hemocompatibility and

  15. Magnetron reactively sputtered Ti-DLC coatings on HNBR rubber : The influence of substrate bias

    NARCIS (Netherlands)

    Bui, X.L.; Pei, Y.T.; Hosson, J.Th.M. De

    2008-01-01

    In this study, Ti-containing diamond-like carbon (Ti-DLC) coatings have been deposited on HNBR (hydrogenated nitrile butadiene) rubber and also on Si wafer as reference via unbalanced magnetroli reactive sputtering from a Ti target in C2H2/Ar plasma. The deposition rates of coatings on rubber and Si

  16. Evaluation of the mechanical properties of microarc oxidation coatings and 2024 aluminium alloy substrate

    CERN Document Server

    Xue Wen Bin; Deng Zhi Wei; Chen Ru Yi; Li Yong Liang; Zhang Ton Ghe

    2002-01-01

    A determination of the phase constituents of ceramic coatings produced on Al-Cu-Mg alloy by microarc discharge in alkaline solution was performed using x-ray diffraction. The profiles of the hardness, H, and elastic modulus, E, across the ceramic coating were determined by means of nanoindentation. In addition, a study of the influence of microarc oxidation coatings on the tensile properties of the aluminium alloy was also carried out. The results show that the H-and E-profiles are similar, and both of them exhibit a maximum value at the same depth of coating. The distribution of the alpha-Al sub 2 O sub 3 phase content determines the H- and E-profiles of the coatings. The tensile properties of 2024 aluminium alloy show less change after the alloy has undergone microarc discharge surface treatment.

  17. Electrophoretic deposition of organic/inorganic composite coatings on metallic substrates for bone replacement applications: mechanisms and development of new bioactive materials based on polysaccharides

    OpenAIRE

    Cordero Arias, Luis Eduardo

    2015-01-01

    Regarding the need to improve the usually encountered osteointegration of metallic implants with the surrounding body tissue in bone replacement applications, bioactive organic/inorganic composite coatings on metallic substrates were developed in this work using electrophoretic deposition (EPD) as coating technology. In the present work three polysaccharides, namely alginate, chondroitin sulfate and chitosan were used as the organic part, acting as the matrix of the coating and enabling the c...

  18. Optical response of large-area aluminum-coated nano-bucket arrays on flexible PET substrates

    Science.gov (United States)

    Hohertz, Donna; Chuo, Yindar; Omrane, Badr; Landrock, Clint; Kavanagh, Karen L.

    2014-09-01

    The high-cost of fabrication of nanohole arrays for extraordinary optical transmission, surface-plasmon-resonance-based sensors, inhibits their widespread commercial adoption. Production typically involves the application of small-area patterning techniques, such as focused-ion-beam milling, and electron-beam lithography onto high-cost gold-coated substrates. Moving to lower-cost manufacturing is a critical step for applications such as the detection of environmental oil-leaks, or water quality assurance. In these applications, the sensitivity requirements are relatively low, and a bio-compatible inert surface, such as gold, is unnecessary. We report on the optical response of aluminum-coated nano-bucket arrays fabricated on flexible polyethylene terephthalate substrates. The arrays are fabricated using an economical roll-to-roll UV-casting process from large sheets of nickel templates generated from master quartz stamps. The nano-featured surface is subsequently coated with 50 nm of thermally-evaporated aluminum. The roll-to-roll production process has a 97% yield over a 600 m roll producing nano-buckets with 240 nm diameters, 300 nm deep, with a 70° taper. When exposed to a series of refractive index standards (glucose solutions), changes in the locations of the resonance transmission peaks result in optical sensitivities as high as 390 ± 20 nm/RIU. The peak transmission is approximately 5% of illumination, well within the sensitivity requirements of most common low-cost detectors.

  19. Tuning the morphology of silver nanostructures photochemically coated on glass substrates: an effective approach to large-scale functional surfaces

    Science.gov (United States)

    Zaier, Mohamed; Vidal, Loic; Hajjar-Garreau, Samar; Bubendorff, Jean-Luc; Balan, Lavinia

    2017-03-01

    This paper reports on a simple and environmentally friendly photochemical process capable of generating nano-layers (8-22 nm) of silver nanostructures directly onto glass surfaces. This approach opens the way to large-scale functionalized surfaces with plasmonic properties through a single light-induced processing. Thus, Ag nanostructures top-coated were obtained through photo-reduction, at room temperature, of a photosensitive formulation containing a metal precursor, free from extra toxic stabilizers or reducing agents. The reactive formulation was confined between two glass slides and exposed to a continuous near-UV source. In this way, stable silver nano-layers can be generated directly on the substrate with a very good control of the morphology of as-synthesized nanostructures that allows tailoring the optical properties of the coated layers. The position and width of the corresponding surface plasmon resonance bands can be adjusted over a broad spectral window. By extension, this low-cost and easy-to-apply process can also be used to coat ultra thin layers of metal nanostructures on a variety of substrates. The possibility of controlling of nanostructures shape should achieve valuable developments in many fields, as diverse as plasmonics, surface enhanced Raman scattering, nano-electronic circuitry, or medical devices.

  20. Fabrication of (Mn,Co)3O4 Surface Coatings onto Alloy Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhenguo; Xia, Guanguang; Li, Xiaohong S.; Singh, Prabhakar; Stevenson, Jeffry W.

    2007-04-30

    Ferritic stainless steels are promising candidates for IT-SOFC interconnect applications due to their low cost and resistance to oxidation at SOFC operating temperatures. However, several challenges remain, including long term electrical conductivity and surface stability under interconnect exposure conditions and chromia scale evaporation. One means of extending interconnect lifetime and improving performance is to apply a protective coating, such as (Mn,Co)3O4 spinel, to the cathode side of the interconnect. These coatings have proven effective in reducing scale growth kinetics and Cr volatility. This report describes several procedures developed at PNNL for fabricating (Mn,Co)3O4 spinel coatings onto ferritic stainless steels.

  1. Effects of inside spallation of a coating on the debonding of its interface with a substrate subjected to a laser shock

    CERN Document Server

    Boustie, M; Romain, J P; Jeandin, M

    2002-01-01

    When applying a laser shock to a substrate with a coating in order to test the adhesion strength of the interface, traction can be generated not only at the interface, but also within the materials. The effects of a possible rupture of these materials prior to the debonding is analysed by shock wave propagation mechanisms and experimentally evidenced for plasma sprayed coatings of alumina on an aluminium substrate. An estimate of the bond strength and the spall strength of the coating is obtained by numerical simulation.

  2. In situ crystallization of b-oriented MFI films on plane and curved substrates coated with a mesoporous silica layer

    KAUST Repository

    Deng, Zhiyong

    2013-05-01

    A simple and reproducible method is presented for preparing b-oriented MFI films on plane (disc) and curved (hollow fiber) supports by in situ hydrothermal synthesis. A mesoporous silica (sub-)layer was pre-coated on the supports by dip coating followed by a rapid thermal calcination step (973 K during 1 min) to reduce the number of grain boundaries while keeping the hydrophilic behavior of silica. The role of the silica sub-layer is not only to smoothen the substrate surface, but also to provide a silica source to promote the nucleation and growth of zeolite crystals via a heterogeneous nucleation mechanism (zeolitization), and adsorb zeolite moieties generated in the synthesis solution via a homogeneous nucleation mechanism. A monolayer of b-oriented MFI crystals was obtained on both supports after 3 h synthesis time with a moderate degree of twinning on the surface. © 2013 Elsevier Ltd.

  3. Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation.

    Science.gov (United States)

    Temuujin, Jadambaa; Minjigmaa, Amgalan; Rickard, William; Lee, Melissa; Williams, Iestyn; van Riessen, Arie

    2010-08-15

    Class F fly ash based Na-geopolymer formulations have been applied as fire resistant coatings on steel. The main variables for the coating formulations were Si: Al molar and water: cement weight ratios. We have determined that the adhesive strength of the coatings strongly depend on geopolymer composition. The ease with which geopolymer can be applied onto metal surfaces and the resultant thickness depend on the water content of the formulation. Adhesive strengths of greater than 3.5 MPa have been achieved on mild steel surfaces for compositions with Si:Al of 3.5. Microstructure evolution and thermal properties of the optimised coating formulations show that they have very promising fire resistant characteristics. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Preparation of Stable Superhydrophobic Coatings on Wood Substrate Surfaces via Mussel-Inspired Polydopamine and Electroless Deposition Methods

    Directory of Open Access Journals (Sweden)

    Kaili Wang

    2017-06-01

    Full Text Available Mussel-inspired polydopamine (PDA chemistry and electroless deposition approaches were used to prepare stable superhydrophobic coatings on wood surfaces. The as-formed PDA coating on a wood surface exhibited a hierarchical micro/nano roughness structure, and functioned as an “adhesive layer” between the substrate and a metallic film by the metal chelating ability of the catechol moieties on PDA, allowing for the formation of a well-developed micro/nanostructure hierarchical roughness. Additionally, the coating acted as a stable bridge between the substrate and hydrophobic groups. The morphology and chemical components of the prepared superhydrophobic wood surfaces were characterized by scanning electron microscopy (SEM, Fourier transform infrared (FT-IR spectroscopy, and X-ray photoelectron spectroscopy (XPS. The PDA and octadecylamine (OA modified surface showed excellent superhydrophobicity with a water contact angle (CA of about 153° and a rolling angle (RA of about 9°. The CA further increased to about 157° and RA reduced to about 5° with the Cu metallization. The superhydrophobic material exhibited outstanding stability in harsh conditions including ultraviolet aging, ultrasonic washing, strong acid-base and organic solvent immersion, and high-temperature water boiling. The results suggested that the PDA/OA layers were good enough to confer robust, degradation-resistant superhydrophobicity on wood substrates. The Cu metallization was likely unnecessary to provide significant improvements in superhydrophobic property. However, due to the amazing adhesive capacity of PDA, the electroless deposition technique may allow for a wide range of potential applications in biomimetic materials.

  5. Adherence and electrochemical behavior of calcium titanate coatings onto 304 stainless steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Esguerra A, J.; Aguilar, Y. [Universidad del Valle, Escuela de Ingenieria de Materiales, TPMR, Calle 13 No. 100-00, A. A. 25360 Cali (Colombia); Aperador, W. [Escuela Colombiana de Ingenieria Julio Garavito, Escuela de Ingenieria Mecanica, AK 45 No. 205-59 (Autopista Norte), A. A. 14520 Bogota (Colombia); Alba de Sanchez, N. [Universidad Autonoma de Occidente, Grupo de Investigacion en Ciencia e Ingenieria de Materiales, Calle 25 No. 115-85, A. A. 2790 Cali (Colombia); Bolanos P, G.; Rincon, C., E-mail: johanna.esguerra@univalle.edu.co [Universidad del Cauca, Departamento de Fisica, Laboratorio de Fisica de Bajas Temperaturas, Calle 5 No. 4-70, A. A. 996 Popayan (Colombia)

    2014-07-01

    Calcium titanate has been proposed as a coating for biomedical applications but it has not been reported characterization of adhesion failure mechanisms or electrochemical properties in time. In this work have been studied these properties of a calcium titanate coating growth onto AISI 304 steel deposited by r.f. magnetron sputtering. It was found that the coating has a critical adhesive load of 6.53 ± 0.14 N. With respect to its electrochemical properties potentiodynamic polarization curves show that the calcium titanate coating provides protection to AISI 304 steel. However. EIS indicates that even though metal dissolution occur through the pores in the coating, this leads to the precipitation of salts that block pores; this precipitates layer acts like and additional barrier to the metal dissolution in the system. The coatings deposition was carried out via magnetron sputtering during 4 hours at 500 grades C. The crystal structure of the films was determined by using glancing incident X-ray diffraction. The chemical composition of deposited films was performed by impedance dispersive X-ray spectroscopy (EDX) in the scanning electron microscopy (Jeol JSM-649 OLV Sem), and the grain size and the roughness was obtained using an atomic force microscopy from Asylum Research MFP-3D using a cantilever silicon tip in non-contact mode and calculated by scanning probe image processor. (Author)

  6. Evaluation of hydrogen-Induced cracking resistance of the In625 laser coating system on a C-Mn steel substrate

    Directory of Open Access Journals (Sweden)

    Vicente Braz Trindade

    Full Text Available Abstract The corrosion of C-Mn steels in the presence of hydrogen sulfide (H2S represents a significant challenge to oil production and natural gas treatment facilities. The failure mechanism induced by hydrogen-induced cracking (HIC in a Inconel 625 coating / C-Mn steel has not been extensively investigated in the past. In the present work, an API 5CT steel was coated with In625 alloy using laser cladding and the HIC resistance of different regions, such as the coating surface, the substrate and HAZ, were evaluated. SEM observations illustrated that all HIC cracks were formed at the hard HAZ after 96h of exposure. No HIC cracks were observed in the substrate and the In625 coating after the same exposure duration. Pitting was recorded in the substrate caused by non-metallic inclusion dissolving.

  7. Investigation of Coating Performance of UV-Curable Hybrid Polymers Containing 1H,1H,2H,2H-Perfluorooctyltriethoxysilane Coated on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    Mustafa Çakır

    2017-03-01

    Full Text Available This study describes preparation and characterization of fluorine-containing organic-inorganic hybrid coatings. The organic part consists of bisphenol-A glycerolate (1 glycerol/phenol diacrylate resin and 1,6-hexanediol diacrylate reactive diluent. The inorganically rich part comprises trimethoxysilane-terminated urethane, 1H,1H,2H,2H-perfluorooctyltriethoxysilane, 3-(trimethoxysilyl propyl methacrylate and sol–gel precursors that are products of hydrolysis and condensation reactions. Bisphenol-A glycerolate (1 glycerol/phenol diacrylate resin was added to the inorganic part in predetermined amounts. The resultant mixture was utilized in the preparation of free films as well as coatings on aluminum substrates. Thermal and mechanical tests such as DSC, thermo-gravimetric analysis (TGA, and tensile and shore D hardness tests were performed on free films. Water contact angle, gloss, Taber abrasion test, cross-cut and tubular impact tests were conducted on the coated samples. SEM examination and EDS analysis was performed on the fractured surfaces of free films. The hybrid coatings on the aluminum sheets gave rise to properties such as moderately glossed surface; low wear rate and hydrophobicity. Tensile strength of free films increased with up to 10% inorganic content in the hybrid structure and this increase was approximately three times that of the control sample. As expected; the % strain value decreased by 17.3 with the increase in inorganic content and elastic modulus values increased by a factor of approximately 6. Resistance to ketone-based solvents was proven and an increase in hardness was observed as the ratio of the inorganic part increased. Samples which contain 10% sol–gel content were observed to provide optimal properties.

  8. Structure and corrosion behavior of sputter deposited cerium oxide based coatings with various thickness on Al 2024-T3 alloy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuanyuan [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); Materials Research Center, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Huang, Jiamu, E-mail: huangjiamu@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); Claypool, James B.; Castano, Carlos E. [Materials Research Center, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); O’Keefe, Matthew J., E-mail: mjokeefe@mst.edu [Materials Research Center, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-11-15

    Highlights: • Crystalline CeO{sub 2} coatings are deposited on Al 2024-T3 alloys by magnetron sputtering. • The crystal size and internal stress both increased with the thickness of CeO{sub 2} coating. • The ∼210 nm thick coating has the highest adhesion strength to the Al alloy substrate. • The ∼900 nm thick coating increased the corrosion resistance two orders of magnitude. • CeO{sub 2} coatings provide good cathodic inhibition for Al alloys by acting as physical barriers. - Abstract: Cerium oxide based coatings from ∼100 to ∼1400 nm in thickness were deposited onto Al 2024-T3 alloy substrates by magnetron sputtering of a 99.99% pure CeO{sub 2} target. The crystallite size of CeO{sub 2} coatings increased from 15 nm to 46 nm as the coating thickness increased from ∼100 nm to ∼1400 nm. The inhomogeneous lattice strain increased from 0.36% to 0.91% for the ∼100 nm to ∼900 nm thick coatings and slightly decreased to 0.89% for the ∼1400 nm thick coating. The highest adhesion strength to Al alloy substrates was for the ∼210 nm thick coating, due to a continuous film coverage and low internal stress. Electrochemical measurements indicated that sputter deposited crystalline CeO{sub 2} coatings acted as physical barriers that provide good cathodic inhibition for Al alloys in saline solution. The ∼900 nm thick CeO{sub 2} coated sample had the best corrosion performance that increased the corrosion resistance by two orders magnitude and lowered the cathodic current density 30 times compared to bare Al 2024-T3 substrates. The reduced defects and exposed surface, along with suppressed charge mobility, likely accounts for the improved corrosion performance as coating thickness increased from ∼100 nm to ∼900 nm. The corrosion performance decreased for ∼1400 nm thick coatings due in part to an increase in coating defects and porosity along with a decrease in adhesion strength.

  9. Experimental and Simulated Investigations of Thin Polymer Substrates with an Indium Tin Oxide Coating under Fatigue Bending Loadings

    Directory of Open Access Journals (Sweden)

    Jiong-Shiun Hsu

    2016-08-01

    Full Text Available Stress-induced failure is a critical concern that influences the mechanical reliability of an indium tin oxide (ITO film deposited on a transparently flexible polyethylene terephthalate (PET substrate. In this study, a cycling bending mechanism was proposed and used to experimentally investigate the influences of compressive and tensile stresses on the mechanical stability of an ITO film deposited on PET substrates. The sheet resistance of the ITO film, optical transmittance of the ITO-coated PET substrates, and failure scheme within the ITO film were measured to evaluate the mechanical stability of the concerned thin films. The results indicated that compressive and tensile stresses generated distinct failure schemes within an ITO film and both led to increased sheet resistance and optical transmittance. In addition, tensile stress increased the sheet resistance of an ITO film more easily than compressive stress did. However, the influences of both compressive and tensile stress on increased optical transmittance were demonstrated to be highly similar. Increasing the thickness of a PET substrate resulted in increased sheet resistance and optical transmittance regardless of the presence of compressive or tensile stress. Moreover, J-Integral, a method based on strain energy, was used to estimate the interfacial adhesion strength of the ITO-PET film through the simulation approach enabled by a finite element analysis.

  10. Piezoelectric characterization of Pb(Zr,Ti)O3 thin films deposited on metal foil substrates by dip coating

    Science.gov (United States)

    Hida, Hirotaka; Hamamura, Tomohiro; Nishi, Takahito; Tan, Goon; Umegaki, Toshihito; Kanno, Isaku

    2017-10-01

    We fabricated the piezoelectric bimorphs composed of Pb(Zr,Ti)O3 (PZT) thin films on metal foil substrates. To efficiently inexpensively manufacture piezoelectric bimorphs with high flexibility, 1.2-µm-thick PZT thin films were directly deposited on both surfaces of 10- and 20-µm-thick bare stainless-steel (SS) foil substrates by dip coating with a sol-gel solution. We confirmed that the PZT thin films deposited on the SS foil substrates at 500 °C or above have polycrystalline perovskite structures and the measured relative dielectric constant and dielectric loss were 323-420 and 0.12-0.17, respectively. The PZT bimorphs were demonstrated by comparing the displacements of the cantilever specimens driven by single- and double-side PZT thin films on the SS foil substrates under the same applied voltage. We characterized the piezoelectric properties of the PZT bimorphs and the calculated their piezoelectric coefficient |e 31,f| to be 0.3-0.7 C/m2.

  11. Strengthened, biaxially textured Ni substrate with small alloying additions for coated conductor applications

    Science.gov (United States)

    Goyal, A.; Feenstra, R.; Paranthaman, M.; Thompson, J. R.; Kang, B. Y.; Cantoni, C.; Lee, D. F.; List, F. A.; Martin, P. M.; Lara-Curzio, E.; Stevens, C.; Kroeger, D. M.; Kowalewski, M.; Specht, E. D.; Aytug, T.; Sathyamurthy, S.; Williams, R. K.; Ericson, R. E.

    2002-11-01

    Fabrication of a biaxially textured, strengthened Ni substrate with small alloying additions of W and Fe is reported. The substrates have significantly improved mechanical properties compared to 99.99% Ni and surface characteristics which are similar to that of 99.99% Ni substrates. High quality oxide buffer layers can be deposited on these substrates without the need for any additional surface modification steps. Grain boundary misorientation distributions obtained from the substrate show a predominant fraction of low-angle grain boundaries. A high critical current density, Jc, of 1.9 MA/cm 2 at 77 K, self-field is demonstrated on this substrate using a multilayer configuration of YBCO/CeO 2/YSZ/Y 2O 3/ Ni-3at.%W-1.7at.%Fe. This translates to a Ic/width of 59 A/cm at 77 K and self-field. Jc at 0.5 T is reduced by only 21% indicating strongly-linked grain boundaries in the YBCO film on this substrate.

  12. Completely enzymic synthesis of the mucin-type sialyl Lewis x epitope, involved in the interaction between PSGL-1 and P-selectin

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Zeng, S.; Gutiérrez Gallego, R.; Dinter, A.; Malissard, M.; Kamerling, J.P.; Berger, E.G.

    1999-01-01

    Sialyl Lewis x (sLex) is an established selectin ligand occurring on N- and O-linked glycans. Using a completely enzymic approach starting from p-nitrophenyl N-acetyl-alpha-D-galactosaminide (GalNAc(alpha1-pNp as core substrate, the sLex-oligosaccharide

  13. Chemical Stability of Graphene Coated Silver Substrates for Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Suzuki, Seiya; Yoshimura, Masamichi

    2017-11-01

    Surface enhanced Raman spectroscopy (SERS) is a novel method to sense molecular and lattice vibrations at a high sensitivity. Although nanostructured silver surface provides intense SERS signals, the silver surface is unstable under acidic environment and heated environment. Graphene, a single atomic carbon layer, has a prominent stability for chemical agents, and its honeycomb lattice completely prevents the penetration of small molecules. Here, we fabricated a SERS substrate by combining nanostructured silver surface and single-crystal monolayer graphene (G-SERS), and focused on its chemical stability. The G-SERS substrate showed SERS even in concentrated hydrochloric acid (35-37%) and heated air up to 400 °C, which is hardly obtainable by normal silver SERS substrates. The chemically stable G-SERS substrate posesses a practical and feasible application, and its high chemical stability provides a new type of SERS technique such as molecular detections at high temperatures or in extreme acidic conditions.

  14. Growth of CdS thin films on indium coated glass substrates via chemical bath deposition and subsequent air annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Biswajit; Kumar, Kamlesh; Singh, Balwant Kr; Banerjee, Pushan; Das, Subrata, E-mail: neillohit@yahoo.co.in

    2014-11-30

    Graphical abstract: - Highlights: • CdS film grown on indium coated glass substrates via CBD and subsequent annealing. • Disappearance of the indium (1 1 2) peak confirms interdiffusion at 300 °C. • SIMS indicates the subsequent interdiffusion at progressively higher temperature. • Composite In–CdS layer showed lower photosensitivity compared to pure CdS. - Abstract: In the present work attempts were made to synthesize indium doped CdS films by fabricating In/CdS bilayers using CBD-CdS on vacuum evaporated In thin films and subsequent air annealing. 135 nm CdS films were grown onto 20 nm and 35 nm indium coated glass substrate employing chemical bath deposition technique. The In/CdS bilayers thus formed were subjected to heat treatment at the temperatures between 200 and 400 °C for 4 min in the muffle furnace to facilitate indium to diffuse into the CdS films. XRD pattern ascertained no noticeable shift in lattice constant implying grain boundary metal segregation, while secondary ion mass spectrometry indicated the diffusion profile of indium into CdS matrices. Mass spectrometry results showed that substantial diffusion of indium had been taken place within CdS at 400 °C. Dark and photocurrent with different illumination time were measured to ascertain the photosensitivity of pure and composite CdS films.

  15. Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric.

    Science.gov (United States)

    Yun, Dong-Jin; Lee, Seunghyup; Yong, Kijung; Rhee, Shi-Woo

    2012-04-01

    The hafnium silicate and aluminum oxide high-k dielectrics were deposited on stainless steel substrate using atomic layer deposition process and octadecyltrichlorosilane (OTS) and polystyrene (PS) were treated improve crystallinity of pentacene grown on them. Besides, the effects of the pentacene deposition condition on the morphologies, crystallinities and electrical properties of pentacene were characterized. Therefore, the surface treatment condition on dielectric and pentacene deposition conditions were optimized. The pentacene grown on polystyrene coated high-k dielectric at low deposition rate and temperature (0.2-0.3 Å/s and R.T.) showed the largest grain size (0.8-1.0 μm) and highest crystallinity among pentacenes deposited various deposition conditions, and the pentacene TFT with polystyrene coated high-k dielectric showed excellent device-performance. To decrease threshold voltage of pentacene TFT, the polystyrene-thickness on high-k dielectric was controlled using different concentration of polystyrene solution. As the polystyrene-thickness on hafnium silicate decreases, the dielectric constant of polystyrene/hafnium silicate increases, while the crystallinity of pentacene grown on polystyrene/hafnium silicate did not change. Using low-thickness polystyrene coated hafnium silicate dielectric, the high-performance and low voltage operating (1 × 10(4)) and complementary inverter (DC gains, ~20) could be fabricated.

  16. Development of Strontium Titanate Thin films on Technical Substrates for Superconducting Coated Conductors

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P; Yue, Zhao; Grivel, Jean-Claude

    2012-01-01

    SrTiO3 is a widely studied perovskite material due to its advantages as a template for high temperature superconducting tapes. Heteroepitaxial SrTiO3 thin films were deposited on Ni/W tapes using dip-coating in a precursor solution followed by drying and annealing under reducing conditions. Nearl...

  17. Signal enhancement in multiphoton imaging by the use of coated glass substrates

    Science.gov (United States)

    Lee, Sheng-Lin; Guo, Han-Wen; Chen, Yang-Fan; Dong, Chen-Yuan

    2015-01-01

    In nonlinear optical imaging of biological specimens, more than half of the generated luminescence signal is lost, when signal collection is performed in the epi-illuminated geometry. In this study, we enhanced the collected luminescence signal by the use of alternating multiply-coated layers of tantalum pentoxide (Ta2O5) and silicon dioxide (SiO2) on standard microscope cover glasses that has high transmission in the near-infrared wavelength region and high reflection of the visible, luminescence signal. Our coating is biocompatible, allows visual examination of the specimens and optimize collection of the luminescence signal. We demonstrated this approach on a number of specimens including sulforhodamine solution, fluorescence microspheres, and labeled 3T3 cells. In all cases, the use of coated cover glass enhanced signal, optimally by a factor of about 2. Image analysis of labeled 3T3 cells also shows signal enhancement did not contribute to additional photobleaching. Our results show that properly designed coated cover glass can enhance detected signal in multiphoton microscopy and result in improved image quality. PMID:26417521

  18. Electrodeposition of BaCO3 coatings on stainless steel substrates ...

    Indian Academy of Sciences (India)

    Administrator

    Department of Chemistry, Central College, Bangalore University, Bangalore 560 001. 2 ... and dissolved ions that can influence the process. Therefore many ... and paper industries. Also it is used as starting mate- rial for BaTiO3 synthesis. Decomposition of a bi- phasic coating of BaCO3 and TiO2 resulted in the formation of ...

  19. The effect of substrate bias on the characteristics of CrN coatings deposited by DC-superimposed HiPIMS system

    Science.gov (United States)

    Zuo, X.; Xia, F.; Zhang, D.; Ke, P. L.; Wang, Q. M.; Wang, A. Y.

    2017-07-01

    Chromium nitride coatings were prepared by reactive DC-superimposed high-power-impulse magnetron sputtering (HiPIMS) system. The influence of substrate bias on the microstructure and mechanical properties of CrN coatings was investigated. XRD and cross-sectional SEM were utilized to characterize the film structures. Mechanical properties were characterized by nanoindentation and Vickers indentation test. The results revealed that the microstructure and mechanical properties of CrN coatings were affected by bias voltage. The CrN coatings exhibited dense and fine columnar grain structure with the hardness of about 18.7 GPa. The fracture toughness of CrN coatings was around 3.16 MPa ṡ m1/2. However, further increase of the bias voltage from -250 V to -300 V led to the degradation of coating properties.

  20. Manufacture of thick VPS W coatings on relatively large CuZrCr substrate and its steady high heat load performance

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Chunming, E-mail: denghans@126.com; Liu, Min; Yang, Zhenxiao; Deng, Changguang; Zhou, Kesong; Kuang, Ziqi; Zhang, Jifu

    2014-12-15

    W material is considered as one of potential Plasma Facing Materials (PFMs) for its high melting point, excellent stability at elevated temperature, good thermal conductivity, excellent anti-plasma sputtering and low Tritium retention. Functionally graded W/Cu coating was applied on CuCrZr substrate (250 mm × 120 mm × 30 mm) with compositionally gradient W/Cu as bond coat (0.4–0.6 mm) and 1.5 mm thick W coating as top coat via Vacuum Plasma Spraying (VPS) for continuous deposition of 5 h. Microstructure, chemical composition, porosity and adhesive strength for as sprayed thick W coating on the CuCrZr substrate were characterized by means of SEM, ICP-MS, Mercury Intrusion Porosimeter and tensile strength tester. The steady high heat load (HHL) performance for W/Cu functional gradient coating was evaluated by high energy electron beam. The results showed that thick VPS W coated CuCrZr substrate can withstand the steady high heat load at the electron beam power density of 9 MW/m{sup 2} for 1000 cycles.

  1. Manufacture of thick VPS W coatings on relatively large CuZrCr substrate and its steady high heat load performance

    Science.gov (United States)

    Deng, Chunming; Liu, Min; Yang, Zhenxiao; Deng, Changguang; Zhou, Kesong; Kuang, Ziqi; Zhang, Jifu

    2014-12-01

    W material is considered as one of potential Plasma Facing Materials (PFMs) for its high melting point, excellent stability at elevated temperature, good thermal conductivity, excellent anti-plasma sputtering and low Tritium retention. Functionally graded W/Cu coating was applied on CuCrZr substrate (250 mm × 120 mm × 30 mm) with compositionally gradient W/Cu as bond coat (0.4-0.6 mm) and 1.5 mm thick W coating as top coat via Vacuum Plasma Spraying (VPS) for continuous deposition of 5 h. Microstructure, chemical composition, porosity and adhesive strength for as sprayed thick W coating on the CuCrZr substrate were characterized by means of SEM, ICP-MS, Mercury Intrusion Porosimeter and tensile strength tester. The steady high heat load (HHL) performance for W/Cu functional gradient coating was evaluated by high energy electron beam. The results showed that thick VPS W coated CuCrZr substrate can withstand the steady high heat load at the electron beam power density of 9 MW/m2 for 1000 cycles.

  2. Nanocrystalline ZnO film deposited by ultrasonic spray on textured silicon substrate as an anti-reflection coating layer

    Energy Technology Data Exchange (ETDEWEB)

    Sali, S., E-mail: samira_sali@yahoo.fr [Silicon Technology Development Unit (UDTS), 02 Bd, Frantz FANON, B.P. 140, Algiers (Algeria); Houari Boumediene University (USTHB), Faculty of Physics, Algiers (Algeria); Boumaour, M. [Silicon Technology Development Unit (UDTS), 02 Bd, Frantz FANON, B.P. 140, Algiers (Algeria); Kechouane, M. [Houari Boumediene University (USTHB), Faculty of Physics, Algiers (Algeria); Kermadi, S.; Aitamar, F. [Silicon Technology Development Unit (UDTS), 02 Bd, Frantz FANON, B.P. 140, Algiers (Algeria)

    2012-07-01

    A ZnO thin film was successfully synthesized on glass, flat surface and textured silicon substrates by chemical spray deposition. The textured silicon substrate was carried out using two solutions (NaOH/IPA and Na{sub 2}CO{sub 3}). Textured with Na{sub 2}CO{sub 3} solution, the sample surface exhibits uniform pyramids with an average height of 5 {mu}m. The properties and morphology of ZnO films were investigated. X-ray diffraction (XRD) spectra revealed a preferred orientation of the ZnO nanocrystalline film along the c-axis where the low value of the tensile strain 0.26% was obtained. SEM images show that all films display a granular, polycrystalline morphology. The morphology of the ZnO layers depends dramatically on the substrate used and follows the contours of the pyramids on the substrate surface. The average reflectance of the textured surface was found to be around 13% and it decreases dramatically to 2.57% after deposition of a ZnO antireflection coating. FT-IR peaks arising from the bonding between Zn-O are clearly represented using a silicon textured surface. A very intense photoluminescence (PL) emission peak is observed for ZnO/textured Si, revealing the good quality of the layer. The PL peak at 380.5 nm (UV emission) and the high-intensity PL peak at 427.5 nm are observed and a high luminescence occurs when using a textured Si substrate.

  3. Au coated PS nanopillars as a highly ordered and reproducible SERS substrate

    Science.gov (United States)

    Kim, Yong-Tae; Schilling, Joerg; Schweizer, Stefan L.; Sauer, Guido; Wehrspohn, Ralf B.

    2017-07-01

    Noble metal nanostructures with nanometer gap size provide strong surface-enhanced Raman scattering (SERS) which can be used to detect trace amounts of chemical and biological molecules. Although several approaches were reported to obtain active SERS substrates, it still remains a challenge to fabricate SERS substrates with high sensitivity and reproducibility using low-cost techniques. In this article, we report on the fabrication of Au sputtered PS nanopillars based on a template synthetic method as highly ordered and reproducible SERS substrates. The SERS substrates are fabricated by anodic aluminum oxide (AAO) template-assisted infiltration of polystyrene (PS) resulting in hemispherical structures, and a following Au sputtering process. The optimum gap size between adjacent PS nanopillars and thickness of the Au layers for high SERS sensitivity are investigated. Using the Au sputtered PS nanopillars as an active SERS substrate, the Raman signal of 4-methylbenzenethiol (4-MBT) with a concentration down to 10-9 M is identified with good signal reproducibility, showing great potential as promising tool for SERS-based detection.

  4. Coatings of titanium substrates with xCaO·(1 − x)SiO{sub 2} sol–gel materials: characterization, bioactivity and biocompatibility evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it; Papale, F.; Bollino, F.

    2016-01-01

    The objective of this study has been to develop low temperature sol–gel coatings to modify the surface of commercially pure titanium grade 4 (a material generally used in dental application) and to evaluate their bioactivity and biocompatibility on the substrate. Glasses of composition expressed by the following general formula xCaO·(1 − x)SiO{sub 2} (0.0 < x < 0.60) have been prepared by means of the sol–gel route starting from tetraethyl orthosilicate and calcium nitrate tetrahydrate. Those materials, still in the sol phase, have been used to coat titanium substrates by means of the dip-coating technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) allowed the materials to be characterized and a microstructural analysis of the coatings obtained was performed using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated titanium was immersed in simulated body fluid (SBF) for 21 days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM–EDXS analysis, as an index of bone-bonding capability. To investigate cell-material interactions, mouse embryonic fibroblast cells (3 T3) were seeded onto the specimens and the cell viability was evaluated by a WST-8 assay. - Highlights: • CaO/SiO{sub 2} biomaterials synthesized by sol–gel method at various molar ratio • Coating of titanium substrate with dip-coating technology • Chemical and morphological characterization of materials and coating • Biocompatibility and bioactivity improvement of coated titanium.

  5. Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking.

    Science.gov (United States)

    Ma, Lang; Cheng, Chong; He, Chao; Nie, Chuanxiong; Deng, Jie; Sun, Shudong; Zhao, Changsheng

    2015-12-02

    In this work, we designed a robust and heparin-mimetic hydrogel thin film coating via combined layer-by-layer (LbL) self-assembly and mussel-inspired post-cross-linking. Dopamine-grafted heparin-like/-mimetic polymers (DA-g-HepLP) with abundant carboxylic and sulfonic groups were synthesized by the conjugation of adhesive molecule, DA, which exhibited substrate-independent adhesive affinity to various solid surfaces because of the formation of irreversible covalent bonds. The hydrogel thin film coated substrates were prepared by a three-step reaction: First, the substrates were coated with DA-g-HepLP to generate negatively charged surfaces. Then, multilayers were obtained via LbL coating of chitosan and the DA-g-HepLP. Finally, the noncovalent multilayers were oxidatively cross-linked by NaIO4. Surface ATR-FTIR and XPS spectra confirmed the successful fabrication of the hydrogel thin film coatings onto membrane substrates; SEM images revealed that the substrate-independent coatings owned 3D porous morphology. The soaking tests in highly alkaline, acid, and concentrated salt solutions indicated that the cross-linked hydrogel thin film coatings owned high chemical resistance. In comparison, the soaking tests in physiological solution indicated that the cross-linked hydrogel coatings owned excellent long-term stability. The live/dead cell staining and morphology observations of the adhered cells revealed that the heparin-mimetic hydrogel thin film coated substrates had low cell toxicity and high promotion ability for cell proliferation. Furthermore, systematic in vitro investigations of protein adsorption, platelet adhesion, blood clotting, and blood-related complement activation confirmed that the hydrogel film coated substrates showed excellent hemocompatibility. Both the results of inhibition zone and bactericidal activity indicated that the gentamycin sulfate loaded hydrogel thin films had significant inhibition capability toward both Escherichia coli and

  6. Grain morphology of YBCO coated superconductors prepared by spin process on Ni substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.F.; Du, S.J.; Yan, G.; Xi, W.; Wu, X.; Pang, Y.; Wang, F.Y.; Liu, X.H.; Feng, Y.; Zhang, P.X.; Wu, X.Z.; Zhou, L

    2003-04-15

    The YBCO thick films with c-axis preferred orientation were prepared by spin and printing processes on Ni substrates (including cold rolling Ni, cube textured Ni, and cube textured Ni+self-oxided NiO). The results show that the chrysanthemum (or spherulite) and polygon morphology grains dominate the microstructure of YBCO films. The chrysanthemum size is about 0.2-0.5 mm range, some reaches 1 mm, and polygon grains normally are placed in the center of the chrysanthemum grains. No chrysanthemum grains appear in the thick films prepared on the substrate with Ag or YBCO intermediate layers.

  7. A nafion coated capacitive humidity sensor on a flexible PET substrate

    KAUST Repository

    Sapsanis, Christos

    2017-03-07

    This paper reports a simple and low-cost technique for fabricating low-power capacitive humidity sensors without the use of a cleanroom environment. A maskless laser engraving system was utilized to fabricate two different gold electrode structures, interdigitated electrodes and Hilbert\\'s fifth-order fractal. The capacitive structures were implemented on a flexible PET substrate. The usage of Nafion, a well-known polymer for its hydrophilic properties as a sensing film, was attempted on the PET and outperformed the current efforts in flexible substrates. Its humidity sensing properties were evaluated in an automated gas setup with a relative humidity (RH %) ranging from 15% to 95 %.

  8. Maximising the Interfacial Fracture Toughness of Thin Coatings and Substrate through Optimisation of Defined Parameters

    OpenAIRE

    Khan, Zulfiqar Ahmad; Nazir, M.H.

    2015-01-01

    The influence of three parameters i.e. interfacial roughness, coating thickness and the size of impurity at the interface on interfacial fracture toughness has been investigated within the framework of two approaches i.e. thermodynamics and fracture mechanics. Mathematical relationship for both the approaches have been designed independently and then fused to form a governing law for evaluating the interfacial toughness. Simulation techniques founded on the experimental studies, have been dev...

  9. COSIM: A Finite-Difference Computer Model to Predict Ternary Concentration Profiles Associated With Oxidation and Interdiffusion of Overlay-Coated Substrates

    Science.gov (United States)

    Nesbitt, James A.

    2001-01-01

    A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating life based on a concentration dependent failure criterion (e.g., surface solute content drops to 2%). The computer code is written in FORTRAN and employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.

  10. Design and fabrication of anti-reflection coating on Gallium Phosphide, Zinc Selenide and Zinc Sulfide substrates for visible and infrared application

    Directory of Open Access Journals (Sweden)

    Mokrý P.

    2013-05-01

    Full Text Available Results of design and fabrication of a dual-band anti-reflection coating on a gallium phosphide (GaP, zinc selenide (ZnSe and zinc sulfide (ZnS substrates are presented. A multilayer stack structure of antireflection coatings made of zinc sulfide and yttrium fluoride (YF3 was theoretically designed for optical bands between 0.8 and 0.9 μm and between 9.5 and 10.5 μm. This stack was designed as efficient for these materials (GaP, ZnS, ZnSe together. Multilayer stack structure was deposited using thermal evaporation method. Theoretically predicted transmittance spectra were compared with transmitted spectra measured on coated substrates. Efficiency of anti-reflection coating is estimated and discrepancies are analyzed and discussed.

  11. Cracking the chocolate egg problem: polymeric films coated on curved substrates

    Science.gov (United States)

    Brun, Pierre-Thomas; Lee, Anna; Marthelot, Joel; Balestra, Gioele; Gallaire, François; Reis, Pedro

    2015-11-01

    Inspired by the traditional chocolate egg recipe, we show that pouring a polymeric solution onto spherical molds yields a simple and robust path of fabrication of thin elastic curved shells. The drainage dynamics naturally leads to uniform coatings frozen in time as the polymer cures, which are subsequently peeled off their mold. We show how the polymer curing affects the drainage dynamics and eventually selects the shell thickness and sets its uniformity. To this end, we perform coating experiments using silicon based elastomers, Vinylpolysiloxane (VPS) and Polydimethylsiloxane (PDMS). These results are rationalized combining numerical simulations of the lubrication flow field to a theoretical model of the dynamics yielding an analytical prediction of the formed shell characteristics. In particular, the robustness of the coating technique and its flexibility, two critical features for providing a generic framework for future studies, are shown to be an inherent consequence of the flow field (memory loss). The shell structure is both independent of initial conditions and tailorable by changing a single experimental parameter.

  12. Film forming properties of silicon nanoparticles on SixNy coated substrates during excimer laser annealing

    Science.gov (United States)

    Caninenberg, M.; Kiesler, D.; Benson, N.; Schmechel, R.

    2017-05-01

    In this article we investigate the film forming properties of excimer laser annealed silicon nanoparticles on non-silicon substrates. In contrast to their film forming properties on oxide free silicon substrates, the nanoparticle thin film tends to dewet and form a porous μ-structure on the silicon nitrite covered glass model substrates considered for our investigation. This is quantified using a SEM study in conjunction with image processing software, in order to evaluate the μ-structure size and inter μ-structure distance in dependence of the laser energy density. To generalize our results, the film forming process is described using a COMSOL Multiphysics ® fluid dynamics model, which solves the Navier Stokes equation for incompressible Newtonian fluids. To account for the porous nanoparticle thin film structure in the simulation, an effective medium approach is used by applying a conservative level set one phase method to our mesh. This effort allows us to predict the Si melt film formation ranging from a porous Si μ-structure to a compact 100% density Si thin film in dependence of the substrate / thin film interaction, as well as the laser energy used for the nanoparticle processing.

  13. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results.

    Science.gov (United States)

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  14. Display of amino groups on substrate surfaces by simple dip-coating of methacrylate-based polymers and its application to DNA immobilization.

    Science.gov (United States)

    Shimomura, Ayane; Nishino, Takashi; Maruyama, Tatsuo

    2013-01-22

    The implementation of a reactive functional group onto a material surface is of great importance. Reactive functional groups (e.g., an amino group and a hydroxyl group) are usually hydrophilic, which makes it difficult to display them on a dry polymer surface. We here propose a novel method for displaying amino groups on the surfaces of polymeric substrates through dip-coating of a methacrylate-based copolymer. We synthesized copolymers composed of methyl methacrylate and 2-aminoethyl methacrylate with different protecting groups or ion-complexes on their amino groups, then dip-coated the copolymers onto a poly(methyl methacrylate) (PMMA) substrate. Evaluation using a cleavable fluorescent compound, which was synthesized in the present study to quantify a small amount (pmol/cm(2)) of amino groups on a solid surface, revealed that the protection of amino groups affected their surface segregation in the copolymer coating. p-Toluenesulfonate ion-complex and tert-butoxycarbonyl (Boc) protection of amino groups were found to effectively display amino groups on the surface (more than 70 pmol/cm(2)). The density of amino groups displayed on a surface can be easily controlled by mixing the copolymer and PMMA before dip-coating. Dip-coating of the copolymer with Boc protection on various polymeric substrates also successfully displayed amino groups on their surfaces. Finally, we demonstrated that the amino groups displayed can be utilized for the immobilization of a DNA oligonucleotide on a substrate surface.

  15. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO₂ Composite Coatings on Stainless Steel (316L) Substrates.

    Science.gov (United States)

    Raddaha, Namir S; Cordero-Arias, Luis; Cabanas-Polo, Sandra; Virtanen, Sannakaisa; Roether, Judith A; Boccaccini, Aldo R

    2014-03-04

    This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN) and chitosan/h-BN/titania (TiO₂) composites on SS316L substrates using electrophoretic deposition (EPD) for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time) and relative concentrations of chitosan, h-BN and TiO₂ in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO₂ particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO₂ and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF) for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO₂ and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings.

  16. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L Substrates

    Directory of Open Access Journals (Sweden)

    Namir S. Raddaha

    2014-03-01

    Full Text Available This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN and chitosan/h-BN/titania (TiO2 composites on SS316L substrates using electrophoretic deposition (EPD for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time and relative concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO2 particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO2 and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO2 and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings.

  17. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L) Substrates

    Science.gov (United States)

    Raddaha, Namir S.; Cordero-Arias, Luis; Cabanas-Polo, Sandra; Virtanen, Sannakaisa; Roether, Judith A.; Boccaccini, Aldo R.

    2014-01-01

    This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN) and chitosan/h-BN/titania (TiO2) composites on SS316L substrates using electrophoretic deposition (EPD) for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time) and relative concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO2 particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO2 and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF) for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO2 and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings. PMID:28788541

  18. Improved brushing durability of titanium dioxide coating on polymethylmethacrylate substrate by prior treatment with acryloxypropyl trimethoxysilane-based agent for denture application.

    Science.gov (United States)

    Amano, Daichi; Ueda, Takayuki; Sugiyama, Tetsuya; Takemoto, Shinji; Oda, Yutaka; Sakurai, Kaoru

    2010-01-01

    The purpose of this study was to determine whether the brushing durability of a titanium dioxide coating on a polymethyl methacrylate (PMMA) substrate was improved by prior treatment with an acryloxypropyl trimethoxysilane-based agent. Titanium dioxide coatings were obtained by spray-coating substrates with or without prior treatment. Structure was investigated using IR, SEM, and an EPMA. Effect on durability against brushing was determined with a brush-wear test machine utilizing a commercial denture brush. A thin layer comprised of siloxane and TiO(2) was formed on a PMMA substrate by prior treatment with an acryloxypropyl trimethoxysilane-based agent and spray-coating of TiO(2). Prior treatment demonstrated improved stability against brushing, whereas the titanium coating was removed after less than 1x10(5) brushing cycles without prior treatment. This suggests that prior treatment with an acryloxypropyl trimethoxysilane-based agent would confer improved durability against brushing-induced stress on a TiO(2) coating in its application to dentures.

  19. Influence of Substrate Heating and Nitrogen Flow on the Composition, Morphological and Mechanical Properties of SiNx Coatings Aimed for Joint Replacements

    Directory of Open Access Journals (Sweden)

    Charlotte Skjöldebrand

    2017-02-01

    Full Text Available Silicon nitride (SiNx coatings are promising for joint replacement applications due to their high wear resistance and biocompatibility. For such coatings, a higher nitrogen content, obtained through an increased nitrogen gas supply, has been found to be beneficial in terms of a decreased dissolution rate of the coatings. The substrate temperature has also been found to affect the composition as well as the microstructure of similar coatings. The aim of this study was to investigate the effect of the substrate temperature and nitrogen flow on the coating composition, microstructure and mechanical properties. SiNx coatings were deposited onto CoCrMo discs using reactive high power impulse magnetron sputtering. During deposition, the substrate temperatures were set to 200 °C, 350 °C or 430 °C, with nitrogen-to-argon flow ratios of 0.06, 0.17 or 0.30. Scanning and transmission electron spectroscopy revealed that the coatings were homogenous and amorphous. The coatings displayed a nitrogen content of 23–48 at.% (X-ray photoelectron spectroscopy. The surface roughness was similar to uncoated CoCrMo (p = 0.25 (vertical scanning interferometry. The hardness and Young’s modulus, as determined from nanoindentation, scaled with the nitrogen content of the coatings, with the hardness ranging from 12 ± 1 GPa to 26 ± 2 GPa and the Young’s moduli ranging from 173 ± 8 GPa to 293 ± 18 GPa, when the nitrogen content increased from 23% to 48%. The low surface roughness and high nano-hardness are promising for applications exposed to wear, such as joint implants.

  20. Protective conversion coating on mixed-metal substrates and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Matthew J.; Maddela, Surender

    2016-09-06

    Mixed-metal automotive vehicle bodies-in-white comprising ferrous metal surfaces, zinc surfaces, aluminum alloy surfaces, and magnesium alloy surfaces are cleaned and immersed in an aqueous bath comprising an adhesion promoter and an aqueous electrocoat bath (the adhesion promoter may be in the electrocoat bath. The adhesion promoter, which may be a cerium salt, is selected to react with each metal in the body surfaces to form an oxide layer that provides corrosion resistance for the surface and adherence for the deposited polymeric paint coating. The body is cathodic in the electrocoat deposition.

  1. Annealing Heat Treatment of ZnO Nanoparticles Grown on Porous Si Substrate Using Spin-Coating Method

    Directory of Open Access Journals (Sweden)

    K. A. Eswar

    2014-01-01

    Full Text Available ZnO nanoparticles were successfully deposited on porous silicon (PSi substrate using spin-coating method. In order to prepare PSi, electrochemical etching was employed to modify the Si surface. Zinc acetate dihydrate was used as a starting material in ZnO sol-gel solution preparation. The postannealing treatments were investigated on morphologies and photoluminescence (PL properties of the ZnO thin films. Field emission scanning electron microscopy (FESEM results indicate that the thin films composed by ZnO nanoparticles were distributed uniformly on PSi. The average sizes of ZnO nanoparticle increase with increasing annealing temperature. Atomic force microscopic (AFM analysis reveals that ZnO thin films annealed at 500°C had the smoothest surface. PL spectra show two peaks that completely correspond to nanostructured ZnO and PSi. These findings indicate that the ZnO nanostructures grown on PSi are promising for application as light emitting devices.

  2. Enhanced quantum efficiency for CsI grown on a graphite-based substrate coating

    CERN Document Server

    Friese, J; Homolka, J; Kastenmüller, A; Maier-Komor, P; Peter, M; Zeitelhack, K; Kienle, P; Körner, H J

    1999-01-01

    Quantum efficiencies (QE) in the vacuum ultraviolet (VUV) wavelength region have been measured for solid CsI layers on various substrates. The CsI films were deposited applying electron beam evaporation. The QE measurements were performed utilizing synchrotron radiation as well as light from a deuterium lamp. A GaAsP diode with a sensitivity calibration traceable to a primary radiation standard was used for normalization. For CsI layers grown on resin-stabilized graphite films a significant enhancement of QE was observed. Substrates suitable for gas detector applications and aging properties were investigated. The procedures to prepare and reproduce high quantum efficient CsI layers are described.

  3. 120 DEG C Cure, Durable, Corrosion Protection Powder Coatings for Temperature Sensitive Substrates

    Science.gov (United States)

    2005-01-28

    functional acrylics •Phenol functional resins Crosslinkers •Blocked isocyanates •Uretidiones Catalysts •Lewis Acids • Bismuth carboxylates •N,N...inhibitor, (1-benzothiazol-2-ylthio) succinic acid (Irgacor 252LD) were also tested. 72 Table 5.2 Eight corrosion...2-ylthio) Succinic Acid F Zinc Phosphate Zinc Phosphate G CW-491 Calcium Phosphosilicate H Test Substrates Chromated and untreated aluminum

  4. Quantifying the mode II critical strain energy release rate of borate bioactive glass coatings on Ti6Al4V substrates.

    Science.gov (United States)

    Matinmanesh, A; Li, Y; Clarkin, O; Zalzal, P; Schemitsch, E H; Towler, M R; Papini, M

    2017-11-01

    Bioactive glasses have been used as coatings for biomedical implants because they can be formulated to promote osseointegration, antibacterial behavior, bone formation, and tissue healing through the incorporation and subsequent release of certain ions. However, shear loading on coated implants has been reported to cause the delamination and loosening of such coatings. This work uses a recently developed fracture mechanics testing methodology to quantify the critical strain energy release rate under nearly pure mode II conditions, G IIC , of a series of borate-based glass coating/Ti6Al4V alloy substrate systems. Incorporating increasing amounts of SrCO 3 in the glass composition was found to increase the G IIC almost twofold, from 25.3 to 46.9J/m 2 . The magnitude and distribution of residual stresses in the coating were quantified, and it was found that the residual stresses in all cases distributed uniformly over the cross section of the coating. The crack was driven towards, but not into, the glass/Ti6Al4V substrate interface due to the shear loading. This implied that the interface had a higher fracture toughness than the coating itself. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Optimization of Grit-Blasting Process Parameters for Production of Dense Coatings on Open Pores Metallic Foam Substrates Using Statistical Methods

    Science.gov (United States)

    Salavati, S.; Coyle, T. W.; Mostaghimi, J.

    2015-10-01

    Open pore metallic foam core sandwich panels prepared by thermal spraying of a coating on the foam structures can be used as high-efficiency heat transfer devices due to their high surface area to volume ratio. The structural, mechanical, and physical properties of thermally sprayed skins play a significant role in the performance of the related devices. These properties are mainly controlled by the porosity content, oxide content, adhesion strength, and stiffness of the deposited coating. In this study, the effects of grit-blasting process parameters on the characteristics of the temporary surface created on the metallic foam substrate and on the twin-wire arc-sprayed alloy 625 coating subsequently deposited on the foam were investigated through response surface methodology. Characterization of the prepared surface and sprayed coating was conducted by scanning electron microscopy, roughness measurements, and adhesion testing. Using statistical design of experiments, response surface method, a model was developed to predict the effect of grit-blasting parameters on the surface roughness of the prepared foam and also the porosity content of the sprayed coating. The coating porosity and adhesion strength were found to be determined by the substrate surface roughness, which could be controlled by grit-blasting parameters. Optimization of the grit-blasting parameters was conducted using the fitted model to minimize the porosity content of the coating while maintaining a high adhesion strength.

  6. Enhanced bonding property of cold-sprayed Zn-Al coating on interstitial-free steel substrate with a nanostructured surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Y.L. [University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Advanced Technology Division, Research Institute, Baoshan Iron & Steel Co., Ltd., 655 Fujin Road, Shanghai 201900 (China); Wang, Z.B., E-mail: zbwang@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, J. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, J.B. [Advanced Technology Division, Research Institute, Baoshan Iron & Steel Co., Ltd., 655 Fujin Road, Shanghai 201900 (China); Lu, K. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-11-01

    Highlights: • A nanostructured surface layer was produced on hot-rolled interstitial-free steel. • Zn-Al coating was cold-sprayed on the steel plate with nanostructured surface layer. • Bonding strength of the coating on the nanostructured surface increases ∼30%. • Improved bonding property was due to promoted diffusion and hardness in surface layer. • No further increase in bonding property was achieved after annealing at 400 °C. - Abstract: By means of surface mechanical attrition treatment (SMAT), a gradient nanostructured surface layer was fabricated on a hot-rolled interstitial-free steel plate. A Zn-Al coating was subsequently deposited on the SMAT sample by using cold spray process. The bonding property of the coating on the SMAT substrate was compared with that on the coarse-grained (CG) sample. Stud-pull tests showed that the bonding strength in the as-sprayed SMAT sample is ∼30% higher than that in the as-sprayed CG sample. No further improvement in bonding strength was achieved in the coated SMAT sample after annealing at 400 °C, mostly due to the formation of cracks and intermetallic compounds at the coating/substrate interface in an earlier stage (<30 min) and in a final stage (>90 min), respectively. The enhanced bonding property of the Zn-Al coating on the SMAT sample might be related with the promoted atomic diffusion and hardness in the nanostructured surface layer.

  7. A non-destructive method for determination of thermal conductivity of YSZ coatings deposited on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, C. [Thin Films Group, Department of Physics, Universidad del Valle, Cali (Colombia); Research Group in Development of Materials and Products, CDT-ASTIN SENA, Cali (Colombia); Caicedo, J.C., E-mail: jcaicedoangulo1@gmail.com [Thin Films Group, Department of Physics, Universidad del Valle, Cali (Colombia); Yanez-Limon, J.M. [Cinvestav-Unidad Queretaro, Dept. of Materials Science and Engineering, Queretaro (Mexico); Vargas, R.A. [Group Phase Transitions in Non-metallic Systems, Universidad del Valle, Cali (Colombia); Zambrano, G.; Gomez, M.E. [Thin Films Group, Department of Physics, Universidad del Valle, Cali (Colombia); Prieto, P. [Excellence Center for Novel Materials, Universidad del Valle, Cali (Colombia)

    2012-10-15

    Thermal diffusivity ({alpha}) of YSZ coatings was determined by the phase lag method of the photo-acoustic signal for rear and frontal illuminations using a two-beam photo-acoustic cell. XRD results show the presence of a tetragonal phase with (101) and (112) orientations, and FTIR spectra exhibit the 2{sub Eu} and F{sub 1u} modes as two broad bands in the frequency at 453 cm{sup -1}, 468 cm{sup -1}, corresponding to the tetragonal phase of ZrO{sub 2}. Thermal diffusivity was measured in the Si/YSZ system and also on the Si (100) substrate from which a simple two-layer system model. Via specific heat measurements at constant pressure (C{sub p}) using the (DSC) technique, and mass density ({rho}) calculations using Archimedes and Aleksandrov's methods for both in-bulk and film YSZ samples, thermal conductivity ({kappa}) was obtained. The results were: {alpha} = (0.0021 {+-} 0.0002) and (0.0023 {+-} 0.0002) cm{sup 2} s{sup -1}, {rho} = (4.7725 {+-} 0.005) Multiplication-Sign 10{sup 3} and (5.883 {+-} 0.005) Multiplication-Sign 10{sup 3} kg m{sup -3}, C{sub p} = (427 {+-} 14) J kg{sup -1} K{sup -1}, and {kappa} = (0.43 {+-} 0.06) and (0.57 {+-} 0.06) W m{sup -1} K{sup -1} for in-bulk and film YSZ samples, respectively. -- Highlights: Black-Right-Pointing-Pointer Anon-destructive method for determination of thermal conductivity. Black-Right-Pointing-Pointer Novel relationship between density, porosity and thermal diffusivity in 8YSZ coating. Black-Right-Pointing-Pointer Thermal diffusivity of 8YSZ coating analyzed by the phase lag method of the photo-acoustic signal.

  8. Evidence of a Love wave bandgap in a quartz substrate coated with a phononic thin layer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ting-Wei; Wu, Tsung-Tsong, E-mail: wutt@ntu.edu.tw [Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan (China); Lin, Yu-Ching; Tsai, Yao-Chuan [WPI-AIMR, Tohoku University, Sendai (Japan); Ono, Takahito; Tanaka, Shuji [Department of Mechanical Engineering, Tohoku University, Sendai (Japan)

    2014-05-05

    This paper presents a numerical and experimental study of Love wave propagation in a micro-fabricated phononic crystal (PC) structure consisting of a 2D, periodically etched silica film deposited on a quartz substrate. The dispersion characteristics of Love waves in such a phononic structure were analyzed with various geometric parameters by using complex band structure calculations. For the experiment, we adopted reactive-ion etching with electron-beam lithography to fabricate a submicrometer phononic structure. The measured results exhibited consistency with the numerical prediction. The results of this study may serve as a basis for developing PC-based Love wave devices.

  9. Gadolinium-doped zinc oxide thin films prepared on different substrates by sol-gel spin-coating

    Science.gov (United States)

    Fadzilah, A. R. Nurul; Othman, R. N.; Miskon, A.; Sahdan, M. Z.; Tawil, S. N. M.

    2017-12-01

    Gadolinium (Gd) doped zinc oxide (ZnO) thin films were prepared by sol-gel spin-coating technique. The solution was prepared using zinc acetate dihydrate and monoethanolamine (MEA) as a stabilizer. The Gd-doped ZnO thin films were deposited on different substrates; glass, aluminium doped ZnO (AZO), fluorine doped tin oxide (FTO) and silicon (Si). The structural and optical properties of Gd-doped ZnO on different substrates were studied using X-ray Diffraction (XRD), Field-Emission Scanning Electron Microscope-Energy Dispersive X-ray (FESEM-EDX) and Ultra Violet-Visible spectrophotometer (UV-Vis), respectively. Based on the XRD data, the crystallite size of the films was found to be in the range of 12.26 ˜ 22.95 nm, which shows a hexagonal wurtzite structure. Transmittance spectra of films deposited on AZO indicates a clear sinusoidal behavior as compared to samples prepared on glass and FTO. All samples exhibit magnetic properties at room temperature measured by means of Vibrating Sample Magnetometer (VSM).

  10. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.

    Science.gov (United States)

    Kim, Cheolwoo; Lee, Jusuk; Cho, Jeonghun; Oh, Yeonock; Choi, Yoon Kyung; Choi, Eunjeong; Park, Jaiwook; Kim, Mahn-Joo

    2013-03-15

    Forty-four different secondary alcohols, which can be classified into several types (II-IX), were tested as the substrates of ionic surfactant-coated Burkholderia cepacia lipase (ISCBCL) to see its substrate scope and enantioselectivity in kinetic and dynamic kinetic resolution (KR and DKR). They include 6 boron-containing alcohols, 24 chiral propargyl alcohols, and 14 diarylmethanols. The results from the studies on KR indicate that ISCBCL accepted most of them with high enantioselectivity at ambient temperature and with useful to high enantioselectivity at elevated temperatures. In particular, ISCBCL displayed high enantioselectivity toward sterically demanding secondary alcohols (types VIII and IX) which have two bulky substituents at the hydroxymethine center. DKR reactions were performed by the combination of ISCBCL with a ruthenium-based racemization catalyst at 25-60 °C. Forty-one secondary alcohols were tested for DKR. About half of them were transformed into their acetates of high enantiopurity (>90% ee) with good yields (>80%). It is concluded that ISCBCL appears to be a superb enzyme for the KR and DKR of secondary alcohols.

  11. A performance evaluation of various coatings, substrate materials, and solar collector systems

    Science.gov (United States)

    Dolan, F. J.

    1976-01-01

    An experimental apparatus was constructed and utilized in conjunction with both a solar simulator and actual sunlight to test and evaluate various solar panel coatings, panel designs, and scaled-down collector subsystems. Data were taken by an automatic digital data acquisition system and reduced and printed by a computer system. The solar collector test setup, data acquisition system, and data reduction and printout systems were considered to have operated very satisfactorily. Test data indicated that there is a practical or useful limit in scaling down beyond which scaled-down testing cannot produce results comparable to results of larger scale tests. Test data are presented as are schematics and pictures of test equipment and test hardware.

  12. Long term hydrophilic coating on poly(dimethylsiloxane) substrates for microfluidic applications

    Energy Technology Data Exchange (ETDEWEB)

    Maheshwari, Nidhi [Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai (India); Centre for Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai (India); Kottantharayil, Anil [Centre for Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai (India); Kumar, Mahesh [Surface Physics and Nanostructures Group, National Physical Laboratory, New Delhi (India); Mukherji, Soumyo, E-mail: mukherji@iitb.ac.in [Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai (India); Centre for Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai (India)

    2010-11-01

    Poly(dimethylsiloxane) (PDMS) has been used extensively for microfluidic components and as substrates for biological applications. Since the native nature of PDMS is hydrophobic it requires a functionalization step for use in conjunction with aqueous media. Commonly, oxygen plasma treatment is used for the formation of hydrophilic groups on the surface. However, the hydrophilic nature of these surfaces is short lived and the surfaces quickly revert back to their original hydrophobic state. In this work, branched-polyethylenimine (b-PEI) was used for long term modification of plasma treated PDMS surface. Contact angle, X-ray photoelectron spectroscopy (XPS) and Atomic force microscopy (AFM) were used for characterization of the modified surfaces and their stability with time was studied. The results obtained demonstrate that comparatively higher stability, hydrophilic, positively charged surfaces can be obtained after b-PEI treatment. These b-PEI treated PDMS surfaces can be used as fluidic channels for the separation of molecules as well as a substrate for the adherence of bio-molecules or biological cells.

  13. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results

    Energy Technology Data Exchange (ETDEWEB)

    Strąkowska, Paulina [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Beutner, René [Max Bergmann Center, Technische Universität Dresden (Germany); Gnyba, Marcin [Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Zielinski, Andrzej [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Scharnweber, Dieter, E-mail: Dieter.Scharnweber@tu-dresden.de [Max Bergmann Center, Technische Universität Dresden (Germany)

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD > HAp/B-NCD > uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  14. Efficiency enhancement of flexible Cu(In,Ga)Se2 solar cells deposited on polyimide-coated soda lime glass substrate by alkali treatment

    Science.gov (United States)

    Sadono, Adiyudha; Ogihara, Tomohiro; Hino, Masashi; Yamamoto, Kenji; Nakada, Kazuyoshi; Yamada, Akira

    2017-08-01

    Alkali treatment effects on Cu(In,Ga)Se2 (CIGS) solar cells deposited on polyimide-coated soda lime glass (PI-coated SLG) were investigated. CIGS on PI-coated SLG shows Na diffusion from the substrate, which should be controlled to obtain high efficiencies. Further incorporation of Na was achieved by enhancing diffusion from the substrate or by external incorporation using post-deposition treatment (PDT) methods. Both methods lead to a high efficiency of approximately 15%. Moreover, aside from Na, K was also incorporated by KF-PDT, resulting in efficiency improvement from 12% for an untreated CIGS to more than 18% at the maximum substrate temperature of 450 °C, which is comparable to CIGS deposited at higher temperatures using the same equipment. It was also found that the alkali concentration of CIGS deposited on PI-coated SLG shows almost the same behavior as that of a film deposited on a rigid glass, suggesting that the deposition technique for CIGS on the rigid glass can be applied to flexible substrates.

  15. Immunologic changes in TNF-alpha, sE-selectin, sP-selectin, sICAM-1, and IL-8 in pediatric patients treated for psoriasis with the Goeckerman regimen

    Energy Technology Data Exchange (ETDEWEB)

    Borska, L.; Fiala, Z.; Krejsek, J.; Andrys, C.; Vokurkova, D.; Hamakova, K.; Kremlacek, J.; Ettler, K. [Charles University of Prague, Hradec Kralove (Czech Republic). Faculty of Medicine

    2007-11-15

    Psoriasis is a chronic inflammatory skin disease which is often manifested during childhood. The present study investigated changes in the serum levels of proinflammatory cytokines and soluble forms of adhesion molecules in children with psoriasis. The observed patient group of 26 children was treated with the Goeckerman regimen. This therapy combines dermal application of crude coal tar with ultraviolet radiation. The Psoriasis Area Severity Index decreased significantly after treatment by with the Goeckerman regimen (p < 0.001). Serum levels of the proinflammatory cytokine TNF-alpha and adhesion molecules sICAM-1, sP-selectin and sE-selectin decreased after the Goeckerman regimen. The TNF-alpha and sICAM-1 decreased significantly (p < 0.05). Our findings support the complex role of these immune parameters in the immunopathogenesis of psoriasis in children. The serum level of IL-8 increased after the Goeckerman regimen. This fact indicates that the chemokine pathway of IL-8 activity could be modulated by this treatment, most likely by polycyclic aromatic hydrocarbons.

  16. Quantitative Characterization of E-selectin Interaction with Native CD44 and P-selectin Glycoprotein Ligand-1 (PSGL-1) Using a Real Time Immunoprecipitation-based Binding Assay

    KAUST Repository

    Abu Samra, Dina Bashir Kamil

    2015-06-29

    Selectins (E-, P-, and L-selectins) interact with glycoprotein ligands to mediate the essential tethering/rolling step in cell transport and delivery that captures migrating cells from the circulating flow. In this work, we developed a real time immunoprecipitation assay on a surface plasmon resonance chip that captures native glycoforms of two well known E-selectin ligands (CD44/hematopoietic cell E-/L-selectin ligand and P-selectin glycoprotein ligand-1) from hematopoietic cell extracts. Here we present a comprehensive characterization of their binding to E-selectin. We show that both ligands bind recombinant monomeric E-selectin transiently with fast on- and fast off-rates, whereas they bind dimeric E-selectin with remarkably slow onand off-rates. This binding requires the sialyl Lewis x sugar moiety to be placed on both O- and N-glycans, and its association, but not dissociation, is sensitive to the salt concentration. Our results suggest a mechanism through which monomeric selectins mediate initial fast on and fast off kinetics to help capture cells out of the circulating shear flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to significantly slow rolling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Structural, mechanical and tribocorrosion behaviour in artificial seawater of CrN/AlN nano-multilayer coatings on F690 steel substrates

    Science.gov (United States)

    Ma, Fuliang; Li, Jinlong; Zeng, Zhixiang; Gao, Yimin

    2018-01-01

    The CrN monolayer and CrN/AlN nano-multilayer coating were successfully fabricated by reactive magnetron sputtering on F690 steel. The results show that CrN monolayer exhibits a face centered cubic crystalline structure with (111) preferred orientation and CrN/AlN nano-multilayer coating has a (200) preferred orientation. This design of the nano-multilayer can interrupt the continuous growth of columnar crystals making the coating denser. The CrN/AlN nano-multilayer coating has a better wear resistance and corrosion resistance compared with the CrN monolayer coating. The tribocorrosion tests reveal that the evolution of potential and current density of F690 steel and CrN monolayer or CrN/AlN nano-multilayer coating see an opposite trend under the simultaneous action of wear and corrosion, which is attributed to that F690 steel is a non-passive material and PVD coatings is a passive material. The nano-multilayer structure has a good ;Pore Sealing Effect;, and the corrosive solution is difficult to pass through the coating to corrode the substrate.

  18. Growth of CNTs on Fe-Si catalyst prepared on Si and Al coated Si substrates.

    Science.gov (United States)

    Teng, F-Y; Ting, Jyh-Ming; Sharma, Sahendra P; Liao, Kun-Hou

    2008-03-05

    In this paper we report the effect of Al interlayers on the growth characteristics of carbon nanotubes (CNTs) using as-deposited and plasma etched Fe-Si catalyst films as the catalysts. Al interlayers having various thicknesses ranging from 2 to 42 nm were deposited on Si substrates prior to the deposition of Fe-Si catalysts. It was found that the Al interlayer diffuses into the Fe-Si catalyst during the plasma etching prior to the CNT growth, leading to the swelling and amorphization of the catalyst. This allows enhanced carbon diffusion in the catalyst and therefore a faster growth rate of the resulting CNTs. It was also found that use of an Al interlayer having a thickness of ∼3 ± 1 nm is most effective. Due to the effectiveness of this, the normally required catalyst etching is no longer needed for the growth of CNTs.

  19. Characterization of Ni-P-SiO{sub 2}-Al{sub 2}O{sub 3} nanocomposite coatings on aluminum substrate

    Energy Technology Data Exchange (ETDEWEB)

    Rahemi Ardakani, S., E-mail: saeed.rahemi69@gmail.com [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Afshar, A. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Sadreddini, S., E-mail: sina.sadreddini1986@gmail.com [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ghanbari, A.A. [Department of Materials Science and Engineering, Sharif University of Technology, International Campus, Kish Island (Iran, Islamic Republic of)

    2017-03-01

    In the present work, nano-composites of Ni-P-SiO{sub 2}-Al{sub 2}O{sub 3} were coated on a 6061 aluminum substrate. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO{sub 2} in the coating was determined by Energy Dispersive Analysis of X-Ray (EDX) and the crystalline structure of the coating was examined by X-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5%wt NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO{sub 2} and Al{sub 2}O{sub 3} in Ni-P coating at the SiO{sub 2} concentration of 10 g/L and 14 g/L Al{sub 2}O{sub 3} led to the lowest corrosion rate (i{sub corr} = 0.88 μA/cm{sup 2}), the most positive E{sub corr} and maximum microhardness (537 μHV). Furthermore, increasing the amount of nanoparticles in the coating was found to decrease CPE{sub dl} and improve porosity. - Highlights: • The maximum content of Al{sub 2}O{sub 3} and SiO{sub 2} in the coating was increased to 14.02%wt and 4.54%wt, respectively. • By enhancing the amount of nanoparticles in the coating, there was higher corrosion resistance. • Increasing the nanoparticles content in the coating improved microhardness of coating. • The maximum of microhardness of Ni-P-SiO{sub 2}-Al{sub 2}O{sub 3} was measured to be 537 μHV.

  20. Fabrication of calcium phosphate films for coating on titanium substrates heated up to 773 K by RF magnetron sputtering and their evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Kyosuke [Department of Materials Processing, Tohoku University, 6-6-02 Aza Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Narushima, Takayuki [Tohoku University Biomedical Engineering Research Organization, 6-6-02 Aza Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Goto, Takashi [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Taira, Masayuki [Department of Dental Materials and Technology, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 (Japan); Katsube, Tomoyuki [Tohoku University Biomedical Engineering Research Organization, 6-6-02 Aza Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2007-09-15

    Calcium phosphate films were fabricated on titanium substrates heated up to 773 K using radiofrequency (RF) magnetron sputtering. The deposition rate, phase and preferred orientation of the calcium phosphate films were studied. Immersion tests for the films were conducted using Hanks' solution and PBS(-), and the surface reactions on the specimens coated with the calcium phosphate films were investigated. The bonding strength between the coating films and the titanium substrates before and after the immersion tests was evaluated; the bonding strength decreased after the immersion tests. The alkaline phosphatase (ALP) activity of SaOS-2 cells on a titanium plate coated with a calcium phosphate film was examined by conducting a culture test. Calcium phosphate coating increased the ALP activity of SaOS-2 cells cultured for 3 and 7 days. Titanium cylinders were coated with an amorphous calcium phosphate film and implanted into the mandibles of beagle dogs. An increase in the extent of bone-implant contact for the coated titanium cylinders was confirmed 8 to 12 weeks after implantation and compared with the case for uncoated titanium cylinders.

  1. Effect of C/Si Ratio on the Electrochemical Behavior of a-SiCx:H Coatings on SS301 Substrate Deposited by PECVD

    Directory of Open Access Journals (Sweden)

    D. Li

    2014-01-01

    Full Text Available Amorphous hydrogenated silicon carbide (a-SiCx:H coatings were deposited on stainless steel 301 (SS301 using plasma enhanced chemical vapor deposition with the methane gas flow ranging from 30 to 90 sccm. XRD spectra confirmed the amorphous structure of these coatings. The as-deposited coatings all exhibited homogenous dense feature, and no porosities were observed in SEM and AFM analysis. The a-SiCx:H coatings remarkably increased the corrosion resistance of the SS301 substrate. With the increase of the C concentration, the a-SiCx:H coatings exhibited significantly enhanced electrochemical behavior. The a-SiCx:H coating with the highest carbon concentration acted as an excellent barrier to charge transfer, with a corrosion current of 3.5×10-12 A/cm2 and a breakdown voltage of 1.36 V, compared to 2.5×10-8 A/cm2 and 0.34 V for the SS301 substrate.

  2. NiTi Intermetallic Surface Coatings by Laser Metal Deposition for Improving Wear Properties of Ti-6Al-4V Substrates

    Directory of Open Access Journals (Sweden)

    Mokgadi Nomsa Mokgalaka

    2014-01-01

    Full Text Available The NiTi intermetallic possesses a number of good properties, such as high wear, oxidation, and corrosion resistance. This paper focuses on the deposition of NiTi intermetallic coatings on Ti6Al4V substrate by laser melting of Ti and Ni elemental powder mixtures. The effect of varying the Ti content in the NiTi composition on the microstructure and wear properties of the coatings was investigated. The microstructure of the NiTi intermetallic coatings were characterized by the scanning electron microscope (SEM equipped with Energy Dispersive Spectroscope (EDS. The wear properties of the coatings were performed under accelerated dry sliding wear tests. The results obtained from the SEM/EDS analysis; show that the coatings consist of Ni and Ti elements from the feedstock, and the NiTi, NiTi2 and NiTi3, intermetallic phases. Dry sliding wear analysis revealed that there is correlation between the hardness and the wear rate. The coatings displayed significant improvement in wear resistance up to 80% compared to the substrate.

  3. Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate.

    Science.gov (United States)

    Kaabi Falahieh Asl, Sara; Nemeth, Sandor; Tan, Ming Jen

    2016-11-01

    Ceramic type coatings on metallic implants, such as calcium phosphate (Ca-P), are generally stiff and brittle, potentially leading to the early failure of the bone-implant interface. To reduce material brittleness, polyacrylic acid and carboxymethyl cellulose were used in this study to deposit two types of novel Ca-P/polymer composite coatings on AZ31 magnesium alloy using a one-step hydrothermal process. X-ray diffraction and scanning electron microscopy showed that the deposited Ca-P crystal phase and morphology could be controlled by the type and concentration of polymer used. Incorporation of polymer in the Ca-P coatings reduced the coating elastic modulus bringing it close to that of magnesium and that of human bone. Nanoindentation test results revealed significantly decreased cracking tendency with the incorporation of polymer in the Ca-P coating. Apart from mechanical improvements, the protective composite layers had also enhanced the corrosion resistance of the substrate by a factor of 1000 which is sufficient for implant application. Cell proliferation studies indicated that the composite coatings induced better cell attachment compared with the purely inorganic Ca-P coating, confirming that the obtained composite materials could be promising candidates for surface protection of magnesium for implant application with the multiple functions of corrosion protection, interfacial stress reduction, and cell attachment/cell growth promotion. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1643-1657, 2016. © 2015 Wiley Periodicals, Inc.

  4. Laser ablation of polytetrafluoroethylene (PTFE) coatings applied on EN AW-5251 substrates; Ablacion laser de recubrimientos de politetrafluoretileno (PTFE) aplicados sobre sustratos EN AW-5251

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero Vaca, G. R.; Sevilla Hurtado, L.; Soriano Reyes, C.

    2014-07-01

    Currently the most common used methods for removing PTFE rich coatings on metal substrates are: grinding, pyrolysis, chemical processes or a combination of these. While effective, all present serious difficulties. In this paper the use of laser ablation to remove PTFE rich coatings, which have previously been applied to sheets of aluminum magnesium alloy EN AW-5251 H34, is proposed. For this purpose the values of the yield strength, tensile strength, percent elongation, impact energy retained and hardness are analyzed. Equally, the grain size distribution at the microstructural level, the ASTM average grain size and distribution of constituent particles have been evaluated. Measurements were performed to three successive stages of application and laser coating removal. Moreover, the previous set of properties have been determined for the same substrates and stages but using pyrolysis to remove the coating. Comparison of the results shows that the removal by laser ablation does not cause any reduction in the properties of the substrates and may become an industrial alternative to traditional disposal procedures. (Author)

  5. Fabrication and characterization of nano-HA-45S5 bioglass composite coatings on calcium-phosphate containing micro-arc oxidized CP-Ti substrates

    Science.gov (United States)

    Farnoush, Hamidreza; Muhaffel, Faiz; Cimenoglu, Huseyin

    2015-01-01

    In the present study, micro-arc oxidation (MAO) was carried out on commercially pure titanium (CP-Ti) to fabricate porous titanium oxide coatings containing calcium phosphates (CaP) at different applied voltages of 300, 330 and 360 V for 5 min. Subsequently, nano-hydroxyapatite (HA) and HA-45S5 bioglass (BG) composite were effectively coated on micro-arc oxidized substrate by electrophoretic deposition (EPD) at a constant voltage of 30 V for 120 s. The phase, structural agents, microstructure and composition of MAO interlayer and subsequent EPD coatings were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. Thermal stability of the as-deposited coatings was analyzed by simultaneous differential scanning calorimetry and thermal gravimetery. The pull-off adhesion tests showed the highest bonding strength was obtained for HA-BG coating on micro-oxidized sample at 360 V. The results of potentiodynamic polarization and impedance spectroscopic measurements in simulated body fluid solution depicted that the combination of MAO treatment at 360 V and EPD of HA-BG composite could effectively increase the corrosion resistance of CP-Ti substrates.

  6. Fabrication and characterization of nano-HA-45S5 bioglass composite coatings on calcium-phosphate containing micro-arc oxidized CP-Ti substrates

    Energy Technology Data Exchange (ETDEWEB)

    Farnoush, Hamidreza, E-mail: farnoush@aut.ac.ir [Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of Kashan, P.O. Box 87317-51167, Kashan (Iran, Islamic Republic of); Muhaffel, Faiz; Cimenoglu, Huseyin [Department of Metallurgical and Materials Engineering, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)

    2015-01-01

    Highlights: • Introducing a calcium-containing titanium oxide interlayer by MAO on CP-Ti. • EPD was utilized for HA and HA-BG coatings on MAO CP-Ti substrates. • Highest bonding strength was obtained for HA-BG/MAO 360 Ti sample. • Enhancement of corrosion resistance for HA-BG/MAO 360 Ti sample in SBF. - Abstract: In the present study, micro-arc oxidation (MAO) was carried out on commercially pure titanium (CP-Ti) to fabricate porous titanium oxide coatings containing calcium phosphates (CaP) at different applied voltages of 300, 330 and 360 V for 5 min. Subsequently, nano-hydroxyapatite (HA) and HA-45S5 bioglass (BG) composite were effectively coated on micro-arc oxidized substrate by electrophoretic deposition (EPD) at a constant voltage of 30 V for 120 s. The phase, structural agents, microstructure and composition of MAO interlayer and subsequent EPD coatings were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. Thermal stability of the as-deposited coatings was analyzed by simultaneous differential scanning calorimetry and thermal gravimetery. The pull-off adhesion tests showed the highest bonding strength was obtained for HA-BG coating on micro-oxidized sample at 360 V. The results of potentiodynamic polarization and impedance spectroscopic measurements in simulated body fluid solution depicted that the combination of MAO treatment at 360 V and EPD of HA-BG composite could effectively increase the corrosion resistance of CP-Ti substrates.

  7. Electrical performance of multilayer MoS2 transistors on high-κ Al2O3 coated Si substrates

    Directory of Open Access Journals (Sweden)

    Tao Li

    2015-05-01

    Full Text Available The electrical performance of MoS2 can be engineered by introducing high-κ dielectrics, while the interactions between high-κ dielectrics and MoS2 need to be studied. In this study, multilayer MoS2 field-effect transistors (FETs with a back-gated configuration were fabricated on high-κ Al2O3 coated Si substrates. Compared with MoS2 FETs on SiO2, the field-effect mobility (μFE and subthreshold swing (SS were remarkably improved in MoS2/Al2O3/Si. The improved μFE was thought to result from the dielectric screening effect from high-κ Al2O3. When a HfO2 passivation layer was introduced on the top of MoS2/Al2O3/Si, the field-effect mobility was further enhanced, which was thought to be concerned with the decreased contact resistance between the metal and MoS2. Meanwhile, the interface trap density increased from 2.4×1012 eV−1cm−2 to 6.3×1012 eV−1cm−2. The increase of the off-state current and the negative shift of the threshold voltage may be related to the increase of interface traps.

  8. Photo-thermal and cytotoxic properties of inkjet-printed copper sulfide films on biocompatible latex coated substrates

    Science.gov (United States)

    Sarfraz, Jawad; Borzenkov, Mykola; Niemelä, Erik; Weinberger, Christian; Törngren, Björn; Rosqvist, Emil; Collini, Maddalena; Pallavicini, Piersandro; Eriksson, John; Peltonen, Jouko; Ihalainen, Petri; Chirico, Giuseppe

    2018-03-01

    Inkjet-printing of metal nanoparticles is a particularly promising technique for the fabrication and modification of surfaces with a multifunctional nature. Recently copper sulfide nanoparticles (CuS NPs) have attracted wide interest due to a range of valuable properties including long term stability, photo-thermal activity, ease of synthesis and low cost. In the present study, printed CuS patterns were successfully fabricated on latex coated paper substrates and characterized by means of atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV-Vis-NIR spectroscopy, and grazing incidence X-ray diffraction (GID). The resulted patterns displayed pronounced photo-thermal effect under Near Infrared Irradiation (NIR) even with relatively low laser power. Finally, by utilizing an automated real-time imaging platform it was possible to verify that the CuS printed film was not cytotoxic to human dermal fibroblast cells (HDF). The pronounced photo-thermal properties and nontoxic nature of these printed low-cost flexible CuS films make them promising candidates for fabrication of devices with localized photo-thermal effect suitable for biomedical applications.

  9. Formation of Nanosized Lamellas of a Hardening Intermetallic Phase in the Powder Ni-based Coating Deposited by Microplasma Spraying on Steel Substrates

    Science.gov (United States)

    Alontseva, D.; Ghassemieh, E.; Russakova, A.; Dzhes, A.; Prokhorenkova, N.

    2017-09-01

    This paper presents new results of studying the structure-phase compositions of Ni-based powder coating, deposited by Microplasma Spraying onto steel substrate by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). It is shown that we have managed to obtain the predicted specific structure with nanosized lamellas of intermetallic phases due to the appropriate proper selection of modes of additional microplasma processing. As a result, the microhardness of the coating has been increased by 1.25 times.

  10. Annealing of electrophoretic YBa2Cu3O7 coatings on polycristaline substrates by zonal laser fusion

    Directory of Open Access Journals (Sweden)

    de la Fuente, G.

    2002-02-01

    Full Text Available Obtaining coatings on metallic substrates of irregular geometries is not easy by traditional methods. In those cases electrochemical methods show important advantages and have been used successfully. To date only silver has shown to be inert with respect to superconducting cuprates, although progress has been made in the development of intermediate buffer layers. However, in the particular case of YBa2Cu3O7 , annealing above the cuprate superconducting melting point to attempt densification or texturing is hard on silver because of the lower melting point of the metal. . Focalized heating of superconducting oxides over metallic substrates, using LASER techniques on controlled geometries, allows densification of coatings. The Laser processed sample may be amorphous but the crystallinity is easily recovered, as well as the optimal oxygen content for the oxide, but the preferential orientation induced by the electrophoretic deposition is lost upon the recrystallization process occurring over polycrystaline substrates.La realización de depósitos de óxidos superconductores sobre substratos metálicos de geometría compleja y en general policristalinos está prácticamente basada en métodos electroforéticos o electroquímicos que permiten la utilización de un campo eléctrico de geometría definida para inducir el movimiento de partículas de óxido o de precursores de éste, hacia el electrodo elegido. Dichos métodos son fundamentales cuando el substrato es metálico o puede hacerse metálico con facilidad. Hasta el presente tan sólo la plata ha mostrado ser lo suficientemente inerte para permitir recocidos posteriores, aunque se está progresando en el desarrollo de capas “buffer”. Sin embargo, cuando el óxido depositado es YBa2Cu3O7 , el proceso de recocido posterior no permite la obtención de textura sobre Ag mediante métodos térmicos dado el inferior punto de fusión de este metal. El presente trabajo presenta un estudio de fusi

  11. Understanding the influence of wood as a substrate on the permeability of coatings by NMR imaging and wet-cup

    NARCIS (Netherlands)

    Gezici-Koç, Ö.; Erich, S.J.F.; Huinink, H.P.; Ven, L.G.J. van der; Adan, O.C.G.

    2018-01-01

    An important reason to apply coatings on wood is to protect wood against moisture. As a result of regulations and ecological concerns, there has been a shift towards waterborne coatings, which make coatings intrinsically more sensitive to water. As a consequence of the higher sensitivity to water,

  12. Study on the interactions between the coatings of electric conductor or dielectric media and piezoelectric substrate in the piezoelectric functional devices

    Science.gov (United States)

    Hou, Peng-Fei; Zhang, Yang; Chen, Bing-Jie

    2017-09-01

    Because that most of piezoelectric functional devices are combined with the coatings of electric conductor or dielectric media and the piezoelectric substrate, the study on the interactions between them is valuable for their advanced design. In this paper, a method for the electro-mechanical coupling fields in these piezoelectric functional devices is presented. Firstly, the two-dimensional Green's function for a normal line force or line charge is derived. Then, based on the obtained Green's function, the interaction mechanism between the coatings of electric conductor or dielectric media and the piezoelectric substrate is studied. Finally, the electro-mechanical coupling fields under arbitrary loads are obtained by superposition principle and Gauss integration. Numerical results show that this method has high computational precision, efficiency and stability. And it can be used to improve the reliability and working performance of the piezoelectric functional device effectively.

  13. Study on the interactions between the coatings of electric conductor or dielectric media and piezoelectric substrate in the piezoelectric functional devices

    Directory of Open Access Journals (Sweden)

    Peng-Fei Hou

    2017-09-01

    Full Text Available Because that most of piezoelectric functional devices are combined with the coatings of electric conductor or dielectric media and the piezoelectric substrate, the study on the interactions between them is valuable for their advanced design. In this paper, a method for the electro-mechanical coupling fields in these piezoelectric functional devices is presented. Firstly, the two-dimensional Green’s function for a normal line force or line charge is derived. Then, based on the obtained Green’s function, the interaction mechanism between the coatings of electric conductor or dielectric media and the piezoelectric substrate is studied. Finally, the electro-mechanical coupling fields under arbitrary loads are obtained by superposition principle and Gauss integration. Numerical results show that this method has high computational precision, efficiency and stability. And it can be used to improve the reliability and working performance of the piezoelectric functional device effectively.

  14. In-situ studies of multicrystalline silicon nucleation and growth on α- and β-Si3N4 coated substrates

    Science.gov (United States)

    Undheim, Espen; Maeda, Kensaku; Arnberg, Lars; Holmestad, Randi; Fujiwara, Kozo; Di Sabatino, Marisa

    2018-01-01

    The growth of silicon on various nitride coated quartz substrates were studied using in-situ observation of the solidification process. Three different coating types were used: One consisting entirely of α-Si3N4 particles, one of only β-Si3N4 particles, and a third of a 50/50 mixture of the above mentioned coating powders. The mean particle size of the α- and β-particles was about 0.3 μm and 5.7 μm, respectively. Three different cooling rates were used for each coating type: 2, 5 and 10 K/min. It was observed that the samples were similar at the lowest cooling rate, but at 5 K/min and higher the samples differed significantly. The biggest difference was seen in the α-particle coating, which showed significant dendritic growth, compared to the more faceted growth observed from the other coatings. All coatings containing the β-particles showed similar growth characteristics. These samples were also analyzed by electron-backscattered diffraction (EBSD) on both the vertical and horizontal planes. No clear trend in preferred crystal orientations was observed; however, it was seen that the density of Σ3 boundaries, especially parallel twins, increased with cooling rate. A gradual increase in the Σ3 grain boundary density was seen for the coatings containing β-Si3N4 particles, while the α-particle coating showed a faster increase. The grain sizes were also analyzed from the horizontal EBSD maps. Again there was a clear difference between the samples containing β-particles and the sample with α-particle coating. The ones containing β-particles showed a decrease in grain size with increasing cooling rate, while the opposite was true for the other α-particle coated samples. This was attributed to the rapid dendritic growth, which caused the grain structure to be dominated by one single grain. The difference in growth for the three coating types was explained using the athermal nucleation theory, which states that there is a correlation between particle sizes

  15. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L) Substrates

    OpenAIRE

    Raddaha, Namir S.; Luis Cordero-Arias; Sandra Cabanas-Polo; Sannakaisa Virtanen; Roether, Judith A; Boccaccini, Aldo R.

    2014-01-01

    This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN) and chitosan/h-BN/titania (TiO2) composites on SS316L substrates using electrophoretic deposition (EPD) for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time) and relative concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. The composition and structure of deposited coatings were inv...

  16. Fundamental Study on the Fabrication of Inverted Planar Perovskite Solar Cells Using Two-Step Sequential Substrate Vibration-Assisted Spray Coating (2S-SVASC).

    Science.gov (United States)

    Zabihi, Fatemeh; Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2016-12-01

    In this paper, a scalable and fast process is developed and employed for the fabrication of the perovskite light harvesting layer in inverted planar heterojunction solar cell (FTO/PEDOT:PSS/CH3NH3PbI3-x Cl x /PCBM/Al). Perovskite precursor solutions are sprayed onto an ultrasonically vibrating substrate in two sequential steps via a process herein termed as the two-step sequential substrate vibration-assisted spray coating (2S-SVASC). The gentle imposed ultrasonic vibration on the substrate promotes droplet spreading and coalescence, surface wetting, evaporation, mixing of reagents, and uniform growth of perovskite nanocrystals. The role of the substrate temperature, substrate vibration intensity, and the time interval between the two sequential sprays are studied on the roughness, coverage, and crystalline structure of perovskite thin films. We demonstrate that a combination of a long time interval between spraying of precursor solutions (15 min), a high substrate temperature (120 °C), and a mild substrate vibration power (5 W) results in a favorable morphology and surface quality. The characteristics and performance of prepared perovskite thin films made via the 2S-SVASC technique are compared with those of the co-sprayed perovskite thin films. The maximum power conversion efficiency of 5.08 % on a 0.3-cm(2) active area is obtained for the device made via the scalable 2S-SVASC technique.

  17. ANTIMICROBIAL PROPERTIES OF HYDROXYAPATITE COATINGS CONTAINING OF CHITOSAN AND SILVER ON TITANIUM SUBSTRATES IN RELATION TO MICROORGANISMS E.COLI ATCC 25922

    Directory of Open Access Journals (Sweden)

    Sukhodub LB

    2013-03-01

    Full Text Available In this work it was studied the antibacterial properties of coatings based on HA, with Chitosan and silver ions additions, produced by substrates termodeposition method from aqueous solutions with varying concentrations of Chitosan (0.025 and 0.1 g/l and silver (1 mg/l as the antimicrobial components as well as three-part cover, consisting of a film of Chitosan, HA and silver. Study on antibacterial properties of composite coatings on the pathogen E.coli ATCC 25922 was held by Spectrophotometric measurement and analysis of optical density of suspensions, containing samples. 3 series of measurements data were averaged. The results showed that the concentration of antimicrobial components have indicated a bacteriostatic effect of coatings on the culture of E. coli AS ATCC 25922 in physiological solution at a temperature of 37 °C. The most effective was the three-part cover consisting of a film of chitosan, HA and silver.

  18. Fabrication of the flexible nanogenerator from BTO nanopowders on graphene coated PMMA substrates by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Sankar Ganesh, R. [Department of Physics and Nanotechnology, SRM University, Kattankullathur, Chennai, 603203, Tamil Nadu (India); Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8011 (Japan); Sharma, Sanjeev K., E-mail: sksharma@dongguk.edu [Department of Semiconductor Science, Dongguk University-Seoul, Jung-gu, Seoul, 04620 (Korea, Republic of); Abinnas, N. [Department of Physics and Nanotechnology, SRM University, Kattankullathur, Chennai, 603203, Tamil Nadu (India); Durgadevi, E. [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8011 (Japan); Raji, P. [Department of Physics, Mepco Schlenk Engineering College, Sivakasi, 626 005, Tamil Nadu (India); Ponnusamy, S., E-mail: suruponnus@gmail.com [Department of Physics and Nanotechnology, SRM University, Kattankullathur, Chennai, 603203, Tamil Nadu (India); Muthamizhchelvan, C. [Department of Physics and Nanotechnology, SRM University, Kattankullathur, Chennai, 603203, Tamil Nadu (India); Hayakawa, Y. [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8011 (Japan); Kim, Deuk Young [Department of Semiconductor Science, Dongguk University-Seoul, Jung-gu, Seoul, 04620 (Korea, Republic of)

    2017-05-01

    Nanostructured bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) or BTO powders were synthesized by the combustion method. The crystalline phase of BTO nanopowders was evaluated from X-ray diffraction (XRD) and further confirmed by selected area electron diffraction (SAED) pattern. The SEM and TEM micrographic images clearly showed the nanosheets like morphology of BTO nanopowder. The EDS spectrum of BTO nanopowder showed the elemental peaks of O, Bi and Ti at 0.53 keV, 2.41 keV and 4.49 keV, respectively. FTIR band peaks were observed at 815 and 595 cm{sup -1} corresponding to the stretching vibrations of Bi-O and Ti-O. The red shift in optical absorption of BTO was observed and the bandgap decreased from 3.18 to 3.08 eV as the calcined temperature increased from 600 to 800 °C. The sandwich structure, called the nanogenerator, Graphene/BTO-PDMS/Graphene (G/BTO/G), was fabricated on graphene coated polymethyl methacrylate (PMMA) substrates, which produced a peak voltage (10 mV) by applying the pressure from human's finger. The switching mechanism of BTO nanosheets was observed to be dependent on the polarity and intrinsic dipole formation. - Highlights: • Bi{sub 4}Ti{sub 3}O{sub 12} (BTO) nanosheets synthesized from a simple combustion method. • SEM & TEM images confirmed the nanosheets structure with a hexagonal shape. • XRD and SAED pattern of BTO nanosheets confirmed the orthorhombic crystal structure. • Flexible G/BTO/G nanogenerator fabricated by sol-gel method. • Peak voltage was observed to be 10 mV by applying pressure from human's finger.

  19. Efficient photocatalytic decolorization of some textile dyes using Fe ions doped polyaniline film on ITO coated glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Haspulat, Bircan; Gülce, Ahmet; Gülce, Handan, E-mail: hgulce@selcuk.edu.tr

    2013-09-15

    Highlights: • The PANI/Fe film as photocatalyst was used for the first time. • It was possible to modify the surface roughness and wettability of the PANI films. • The photocatalytic decolorization of four dyes has been investigated. • The photocatalytical activity of the PANI matrix was increased by adding Fe ions. -- Abstract: In this study, the photocatalytic decolorization of four commercial textile dyes with different structures has been investigated using electrochemically synthesized polyaniline and Fe ions doped polyaniline on ITO coated glass substrate as photocatalyst in aqueous solution under UV irradiation for the first time. Scanning electron microscopy, atomic force microscopy, FT-IR spectra, UV–vis spectroscopy measurements were used to characterize the electrochemically synthesized polymer film photocatalyst. Film hydrophilicity was assessed from contact angle measurements. The results show that both of the polymer films exhibit good photocatalytic performance. Surprisingly, it was determined that by using Fe(II) ions during polymerization, it is possible to modify the surface roughness and wettability of the produced polyaniline films which favors their photocatalytic activity in water-based solutions. All four of the used dyes (methylene blue, malachite green, methyl orange and methyl red) were completely decolorizated in 90 min of irradiation under UV light by using Fe ions doped polyaniline at the dye concentration of 1.5 × 10{sup −5} M, while the decolorization of those dyes were between 43% and 83% by using polyaniline as photocatalyst. Hence, it may be a viable technique for the safe disposal of textile wastewater into waste streams.

  20. Thermal analysis of silicon carbide coating on a nickel based superalloy substrate and thickness measurement of top layers by lock-in infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of)

    2017-04-15

    In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.

  1. Optimization of a polydopamine (PD)-based coating method and polydimethylsiloxane (PDMS) substrates for improved mouse embryonic stem cell (ESC) pluripotency maintenance and cardiac differentiation.

    Science.gov (United States)

    Fu, Jiayin; Chuah, Yon Jin; Ang, Wee Tong; Zheng, Nan; Wang, Dong-An

    2017-05-30

    Myocardiocyte derived from pluripotent stem cells, such as induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), is a promising cell source for cardiac tissue engineering. Combined with microfluidic technologies, a heart-on-a-chip is very likely to be developed and function as a platform for high throughput drug screening. Polydimethylsiloxane (PDMS) silicone elastomer is a widely-used biomaterial for the investigation of cell-substrate interactions and biochip fabrication. However, the intrinsic PDMS surface hydrophobicity inhibits cell adhesion on the PDMS surface, and PDMS surface modification is required for effective cell adhesion. Meanwhile, the formulation of PDMS also affects the behaviors of the cells. To fabricate PDMS-based biochips for ESC pluripotency maintenance and cardiac differentiation, PDMS surface modification and formulation were optimized in this study. We found that a polydopamine (PD) with gelatin coating greatly improved the ESC adhesion, proliferation and cardiac differentiation on its surface. In addition, different PDMS substrates varied in their surface properties, which had different impacts on ESCs, with the 40 : 1 PDMS substrate being more favorable for ESC adhesion and proliferation as well as embryoid body (EB) attachment than the other PDMS substrates. Moreover, the ESC pluripotency was best maintained on the 5 : 1 PDMS substrate, while the cardiac differentiation of the ESCs was optimal on the 40 : 1 PDMS substrate. Based on the optimized coating method and PDMS formulation, biochips with two different designs were fabricated and evaluated. Compared to the single channels, the multiple channels on the biochips could provide larger areas and accommodate more nutrients to support improved ESC pluripotency maintenance and cardiac differentiation. These results may contribute to the development of a real heart-on-a-chip for high-throughput drug screening in the future.

  2. In situ X-ray scattering of perovskite solar cell active layers roll-to-roll coated on flexible substrates

    DEFF Research Database (Denmark)

    Rossander, Lea Hildebrandt; Larsen-Olsen, Thue T.; Dam, Henrik Friis

    2016-01-01

    that the flexible substrates absorb part of the solvent, thereby delaying evaporation and changing the solvent environment around the perovskite. As a further test, we produced solar cells with the same substrates and confirmed that the ones made on flexible substrates performed worse than those made on glass...

  3. Prediction of cyclic delamination lives of plasma-sprayed hydroxyapatite coating on Ti-6Al-4V substrates with considering wear and dissolutions.

    Science.gov (United States)

    Otsuka, Yuichi; Kojima, Daisuke; Mutoh, Yoshiharu

    2016-12-01

    This study aims at developing the prediction model of cyclic delamination lives of plasma-sprayed HAp coating on Ti-6Al-4V substrate by considering wear by interface contacts and dissolution effect by Simulated Body Fluid (SBF). Delamination of HAp coating can lead to loosening of implants stem and final failure in vivo. In the fracture mechanism of interfaces between HAp coating with Ti substrates, only adhesive strength (interracial tensile strength) or fatigue behavior by longitudinal cracking have been observed. Cyclic delamination mechanism by considering various loading modes and corrosion effect has not been revealed yet. The interface delamination rates by cyclic loading were much higher than those by static loading tests. The result clearly demonstrated that the interface demalination behaviors are dominated not by maximum stress, but by stress range. Surface profile measurement and SEM observation also demonstrated damages by interface contact or third body wear at delamination tips of HAp coating only in the cases of compressions. The mechanisms of acceleration on the delaminations are third-body wear or wedge effect by worn particles which increased mean stress level during cyclic loading. Cyclic loading tests under SBF also revealed that cyclic delamination lives were shortened probably due to crevice corrosion at interfaces. Dissolutions at the tips of delaminations were observed by SEM images under tensile loading condition in SBF. Linearly adding the effects of wear and dissolutions into Paris law could successfully predict the delamination lives of HAp coating for various loading ratios in SBF. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Polydopamine-Gelatin as Universal Cell-Interactive Coating for Methacrylate-Based Medical Device Packaging Materials: When Surface Chemistry Overrules Substrate Bulk Properties.

    Science.gov (United States)

    Van De Walle, Elke; Van Nieuwenhove, Ine; Vanderleyden, Els; Declercq, Heidi; Gellynck, Karolien; Schaubroeck, David; Ottevaere, Heidi; Thienpont, Hugo; De Vos, Winnok H; Cornelissen, Maria; Van Vlierberghe, Sandra; Dubruel, Peter

    2016-01-11

    Despite its widespread application in the fields of ophthalmology, orthopedics, and dentistry and the stringent need for polymer packagings that induce in vivo tissue integration, the full potential of poly(methyl methacrylate) (PMMA) and its derivatives as medical device packaging material has not been explored yet. We therefore elaborated on the development of a universal coating for methacrylate-based materials that ideally should reveal cell-interactivity irrespective of the polymer substrate bulk properties. Within this perspective, the present work reports on the UV-induced synthesis of PMMA and its more flexible poly(ethylene glycol) (PEG)-based derivative (PMMAPEG) and its subsequent surface decoration using polydopamine (PDA) as well as PDA combined with gelatin B (Gel B). Successful application of both layers was confirmed by multiple surface characterization techniques. The cell interactivity of the materials was studied by performing live-dead assays and immunostainings of the cytoskeletal components of fibroblasts. It can be concluded that only the combination of PDA and Gel B yields materials possessing similar cell interactivities, irrespective of the physicochemical properties of the underlying substrate. The proposed coating outperforms both the PDA functionalized and the pristine polymer surfaces. A universal cell-interactive coating for methacrylate-based medical device packaging materials has thus been realized.

  5. Investigation on Parameters Affecting the Effectiveness of Photocatalytic Functional Coatings to Degrade NO: TiO2 Amount on Surface, Illumination, and Substrate Roughness

    Directory of Open Access Journals (Sweden)

    J. Hot

    2017-01-01

    Full Text Available This paper deals with the degradation of NO by photocatalytic oxidation using TiO2-based coatings. Tests are conducted at a laboratory scale through an experimental setup inspired from ISO 22197-1 standard. Various parameters are explored to evaluate their influence on photocatalysis efficiency: TiO2 dry matter content applied to the surface, nature of the substrate, and illumination conditions (UV and visible light. This article points out the different behaviors between three kinds of substrates which are common building materials: normalized mortar, denser mortar, and commercial wood. The illumination conditions are of great importance in the photocatalytic process with experiments under UV light showing the best results. However, a significant decrease in NO concentration under visible light is also observed provided that the TiO2 dry matter content on the surface is high enough. The nature of the substrate plays an important role in the photocatalytic activity with rougher substrates being more efficient to degrade NO. However, limiting the roughness of the substrate seems to be of utmost interest to obtain the highest exposed surface area and thus the optimal photocatalytic efficiency. A higher roughness promotes the surface contact between TiO2 and NO but does not necessarily increase the photochemical oxidation.

  6. XPS, XRD and laser Raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Silva, William de Melo; Carneiro, Jose Rubens Goncalves, E-mail: williammelosilva@gmail.com [Pontificia Universidade Catolica de Minas Gerais (PUC-MG), Belo Horizonte (Brazil). Dept. de Engenharia Mecanica; Trava-Airoldi, Vladimir Jesus [Associate Laboratory of Sensors and Materials, National Institute for Space Research, Sao Jose dos Campos, SP (Brazil)

    2013-11-01

    Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment. (author)

  7. Pulsed laser deposition of SiO2 - P2O5 - CaO - MgO glass coatings on titanium substrates

    Directory of Open Access Journals (Sweden)

    Joanni Ednan

    2004-01-01

    Full Text Available Thin films of bioactive glass-ceramic have been deposited on titanium substrates by the Pulsed Laser Deposition (PLD technique under different experimental conditions. The effect of parameters such as deposition pressure and temperature of heat treatments was studied. The microstructure and the crystalline phases of the coatings were characterized using SEM, EDX and XRD analysis; the phases present were titanium oxides, calcium magnesium silicates and phosphates. The adhesion of the as-deposited films has been examined by scratch tests. The interfacial adhesion of the coatings was better when the deposition was performed at low pressure. Samples were immersed in simulated body fluid (SBF, and a calcium-phosphate precipitate was observed on the surface of less crystallized samples, suggesting that there is some relationship between surface reactivity and crystallinity.

  8. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program: Topical report I, selection of candidate alloys. Volume 3. Selection of surface coating/substrate systems for screening creep and structural stability studies

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-20

    Considering the high temperature, low O/sub 2/, high C environment of operation in the Very High Temperature Reactor (VHTR) Systems, the utilization of coatings is envisaged to hold potential for extending component lifetimes through the formation of stable and continuous oxide films with enhanced resistance to C diffusion. A survey of the current state of technology for high temperature coatings has been performed. The usefulness of these coatings on the Mo, Ni, and Fe base alloys is discussed. Specifically, no coating substitute was identified for TZM other than the well known W-3 (pack silicide) and Al/sub 2/O/sub 3/ forming coatings were recommended for the Fe and Ni base structural materials. Recommendations as to coating types and processng have been made based on the predicted VHTR component size, shape, base metal and operational environment. Four tests designed to evaluate the effects of selected combinations of coatings and substrate matrices are recommended for consideration.

  9. Cyclic delamination behavior of plasma-sprayed hydroxyapatite coating on Ti-6Al-4V substrates in simulated body fluid.

    Science.gov (United States)

    Otsuka, Yuichi; Kawaguchi, Hayato; Mutoh, Yoshiharu

    2016-10-01

    This study aimed to clarify the effect of a simulated body fluid (SBF) on the cyclic delamination behavior of a plasma-sprayed hydroxapatite (HAp) coating. A HAp coating is deposited on the surfaces of surgical metallic materials in order to enhance the bond between human bone and such surfaces. However, the HAp coating is susceptible to delamination by cyclic loading from the patient's gait. Although hip joints are subjected to both positive and negative moments, only the effects of tensile bending stresses on vertical crack propagation behavior have been investigated. Thus, the cyclic delamination behavior of a HAp coating was observed at the stress ratio R=-1 in order to determine the effects of tensile/compressive loading on the delamination behavior. The delamination growth rate increased with SBF immersion, which decreased the delamination life. Raman spectroscopy analysis revealed that the selective phase dissolution in the HAp coating was promoted at interfaces. Finite element analysis revealed that the energy release rate Gmax showed a positive value even in cases with compressive loading, which is a driving force for the delamination of a HAp coating. A prediction model for the delamination growth life was developed that combines a fracture mechanics parameter with the assumed stress-dependent dissolution rate. The predicted delamination life matched the experimental data well in cases of lower stress amplitudes with SBF. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Development and application of a green-chemistry solution deposition technique for buffer layer coating on cube-textured metal substrates in view of further deposition of rare-earth based superconductors

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P

    and hazardous chemicals such as 2-methoxyethanol, and trifluroacetic acid (TFA). Therefore, in our research the main focus was on the development of SrTiO3 single buffer layers based on environmentally safe chemicals, to reach the engineering requirements for continuous coating of long substrate tapes. A new...... precursor solution for SrTiO3 buffer layers has been successfully developed with the reagents of strontium acetate, acetic acid, titanium isopropoxide, 1-methoxy-2-propanol and 2,4-pentanedione. Using this precursor with dip-coating, high cube-textured SrTiO3 mono-coatings on Cu-33at.%Ni tapes were...... which consist of YBCO superconducting coatings on cube-textured Ni based alloy tapes.  Before the epitaxial deposition this superconducting layer, a buffer layer is applied on the metal substrate as a diffusion barrier which is also required to transfer the strong texture of the underlying substrate...

  11. Colorimetric gas detection by the varying thickness of a thin film of ultrasmall PTSA-coated TiO2 nanoparticles on a Si substrate

    Directory of Open Access Journals (Sweden)

    Urmas Joost

    2017-01-01

    Full Text Available Colorimetric gas sensing is demonstrated by thin films based on ultrasmall TiO2 nanoparticles (NPs on Si substrates. The NPs are bound into the film by p-toluenesulfonic acid (PTSA and the film is made to absorb volatile organic compounds (VOCs. Since the color of the sensing element depends on the interference of reflected light from the surface of the film and from the film/silicon substrate interface, colorimetric detection is possible by the varying thickness of the NP-based film. Indeed, VOC absorption causes significant swelling of the film. Thus, the optical path length is increased, interference wavelengths are shifted and the refractive index of the film is decreased. This causes a change of color of the sensor element visible by the naked eye. The color response is rapid and changes reversibly within seconds of exposure. The sensing element is extremely simple and cheap, and can be fabricated by common coating processes.

  12. Colorimetric gas detection by the varying thickness of a thin film of ultrasmall PTSA-coated TiO2 nanoparticles on a Si substrate.

    Science.gov (United States)

    Joost, Urmas; Šutka, Andris; Visnapuu, Meeri; Tamm, Aile; Lembinen, Meeri; Antsov, Mikk; Utt, Kathriin; Smits, Krisjanis; Nõmmiste, Ergo; Kisand, Vambola

    2017-01-01

    Colorimetric gas sensing is demonstrated by thin films based on ultrasmall TiO2 nanoparticles (NPs) on Si substrates. The NPs are bound into the film by p-toluenesulfonic acid (PTSA) and the film is made to absorb volatile organic compounds (VOCs). Since the color of the sensing element depends on the interference of reflected light from the surface of the film and from the film/silicon substrate interface, colorimetric detection is possible by the varying thickness of the NP-based film. Indeed, VOC absorption causes significant swelling of the film. Thus, the optical path length is increased, interference wavelengths are shifted and the refractive index of the film is decreased. This causes a change of color of the sensor element visible by the naked eye. The color response is rapid and changes reversibly within seconds of exposure. The sensing element is extremely simple and cheap, and can be fabricated by common coating processes.

  13. A cost- and time-saving strategy of spraying TiO2 self-cleaning coatings in tubular substrates by air cold plasma

    Science.gov (United States)

    Zhang, Lujie; Yu, Shuang; Wang, Kaile; Zhang, Jue; Fang, Jing

    2017-11-01

    In this study, using an atmospheric pressure air plasma jet generated by a dielectric barrier structure with hollow electrodes (HEDBS), we developed an ultrafast process for spraying TiO2 self-cleaning films inside tubular substrates. Importantly, SEM images showed that the TiO2 particles were dispersed evenly in the tubular substrates. Furthermore, Raman and XRD pattern indicated the anatase structure of the HEDBS-spayed TiO2 coating after heating at 270 °C. Further results of the self cleaning test suggested that the proposed cost- and time-saving HEDBS approach with air working gas could provide a feasible way for synthesizing thin TiO2 nanofilms.

  14. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shih-Ping [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.tw [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2015-08-15

    Graphical abstract: - Highlights: • Sr-containing coating prepared by plasma spraying and micro-arc oxidation process, respectively. • MAO coating stimulated high ECM-like structures of cells on early stage. • Sr-containing specimens had high cell responses on late stage. • Sr-MAO coating is a desirable implant surface treatment for clinical applications. - Abstract: An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications.

  15. Interfacial analysis and properties of regioregular Poly (3-Hexyl thiophene) spin-coated on an Indium tin oxide coated glass substrate

    CSIR Research Space (South Africa)

    Malgas, GF

    2008-08-01

    Full Text Available Interfacial analysis of the rrP3HT samples spincoated on a glass substrate was studied in detail using transmission electron microscopy (TEM) and SEM measurements. Very homogeneous and smooth polymer (P3HT and PEDOT:PSS) layers are observed...

  16. Structural and electrical characterization of NbO2 vertical devices grown on TiN coated SiO2/Si substrate

    Science.gov (United States)

    Joshi, Toyanath; Borisov, Pavel; Lederman, David

    Due to its relatively high MIT temperature (1081 K) and current-controlled negative differential resistance, NbO2 is a robust candidate for memory devices and electrical switching applications. In this work, we present in-depth analysis of NbO2 thin film vertical devices grown on TiN coated SiO2/Si substrates using pulsed laser deposition (PLD). Two of the films grown in 1 mTorr and 10 mTorr O2/Ar (~7% O2) mixed growth pressures were studied. The formation of NbO2 phase was confirmed by Grazing Incidence X-ray Diffractometry (GIXRD), X-ray Photoelectron Spectroscopy (XPS) and current vs. voltage measurements. A probe station tip (tip size ~2 μm) or conductive AFM tip was used as a top and TiN bottom layer was used as a bottom contact. Device conductivity showed film thickness and contact size dependence. Current pulse measurements, performed in response to applied triangular voltage pulses, showed a non-linear threshold switching behavior for voltage pulse durations of ~100 ns and above. Self-sustained current oscillations were analyzed in terms of defect density presented in the film. Supported by FAME (sponsored by MARCO and DARPA, Contract 2013-MA-2382), WV Higher Education Policy Commission Grant (HEPC.dsr.12.29), and WVU SRF. We also thank S. Kramer from Micron for providing the TiN-coated Si substrates.

  17. Flow coating apparatus and method of coating

    Science.gov (United States)

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  18. TiO2 coatings via atomic layer deposition on polyurethane and polydimethylsiloxane substrates: Properties and effects on C. albicans growth and inactivation process

    Science.gov (United States)

    Pessoa, R. S.; dos Santos, V. P.; Cardoso, S. B.; Doria, A. C. O. C.; Figueira, F. R.; Rodrigues, B. V. M.; Testoni, G. E.; Fraga, M. A.; Marciano, F. R.; Lobo, A. O.; Maciel, H. S.

    2017-11-01

    Atomic layer deposition (ALD) surges as an attractive technology to deposit thin films on different substrates for many advanced biomedical applications. Herein titanium dioxide (TiO2) thin films were successful obtained on polyurethane (PU) and polydimethylsiloxane (PDMS) substrates using ALD. The effect of TiO2 films on Candida albicans growth and inactivation process were also systematic discussed. TiCl4 and H2O were used as precursors at 80 °C, while the reaction cycle number ranged from 500 to 2000. Several chemical, physical and physicochemical techniques were used to evaluate the growth kinetics, elemental composition, material structure, chemical bonds, contact angle, work of adhesion and surface morphology of the ALD TiO2 thin films grown on both substrates. For microbiological analyses, yeasts of standard strains of C. albicans were grown on non- and TiO2-coated substrates. Next, the antifungal and photocatalytic activities of the TiO2 were also investigated by counting the colony-forming units (CFU) before and after UV-light treatment. Chlorine-doped amorphous TiO2 films with varied thicknesses and Cl concentration ranging from 2 to 12% were obtained. In sum, the ALD TiO2 films suppressed the yeast-hyphal transition of C. albicans onto PU, however, a high adhesion of yeasts was observed. Conversely, for PDMS substrate, the yeast adhesion did not change, as observed in control. Comparatively to control, the TiO2-covered PDMS had a reduction in CFU up to 59.5% after UV treatment, while no modification was observed to TiO2-covered PU. These results pointed out that ALD chlorine-doped amorphous TiO2 films grown on biomedical polymeric surfaces may act as fungistatic materials. Furthermore, in case of contamination, these materials may also behave as antifungal materials under UV light exposure.

  19. Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hongsingthong, Aswin, E-mail: aswin.hongsingthong@nectec.or.th [Solar Energy Technology Laboratory, National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120 (Thailand); Krajangsang, Taweewat; Limmanee, Amornrat; Sriprapha, Kobsak; Sritharathikhun, Jaran [Solar Energy Technology Laboratory, National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120 (Thailand); Konagai, Makoto [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, NE-15, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2013-06-30

    Zinc oxide (ZnO) films with a very high haze ratio and low resistivity were developed on soda–lime glass substrate by using reactive ion etching (RIE) treatment with carbon tetrafluoride (CF{sub 4}) to modify the substrate surface morphology before the deposition of ZnO films. We found that the surface morphology of the ZnO films deposited by metal organic chemical vapor deposition (MOCVD) technique could be modified by varying the glass treatment conditions and the gas pressure was a key parameter. With increasing glass-etching pressure, the surface morphology of the ZnO films changed from conventional pyramid-like single texture to greater cauliflower-like double texture, leading to significant increases in root mean square roughness and haze ratio of the films. By employing the developed high-haze ZnO films as a front transparent conductive oxide (TCO) layer in microcrystalline silicon solar cells, an enhancement in the quantum efficiency in the long-wavelength region has been achieved. Experimental results have verified that our unique and original glass etching treatment is a simple and effective technique to improve the light-scattering properties of the ZnO films while preserving their good transparency and electrical properties. Thus, the ZnO films deposited on etched soda–lime glass have a high potential for the use as a front TCO layer in thin-film Si solar cells. - Highlights: • High-haze zinc oxide (ZnO) grown on low cost soda–lime glass has been developed. • Surface of the ZnO can be modified by varying glass-substrate etching conditions. • Glass-etching pressure is a key to increase haze ratio of the ZnO films. • Higher cell efficiency has been achieved from cell using etched glass. • High-haze ZnO coated glass is a promising transparent conductive oxide coated glass.

  20. Effects of Laser Power Level on Microstructural Properties and Phase Composition of Laser-Clad Fluorapatite/Zirconia Composite Coatings on Ti6Al4V Substrates

    Directory of Open Access Journals (Sweden)

    Chi-Sheng Chien

    2016-05-01

    Full Text Available Hydroxyapatite (HA is one of the most commonly used materials for the coating of bioceramic titanium (Ti alloys. However, HA has poor mechanical properties and a low bonding strength. Accordingly, the present study replaces HA with a composite coating material consisting of fluorapatite (FA and 20 wt % yttria (3 mol % stabilized zirconia (ZrO2, 3Y-TZP. The FA/ZrO2 coatings are deposited on Ti6Al4V substrates using a Nd:YAG laser cladding system with laser powers and travel speeds of 400 W/200 mm/min, 800 W/400 mm/min, and 1200 W/600 mm/min, respectively. The experimental results show that a significant inter-diffusion of the alloying elements occurs between the coating layer (CL and the transition layer (TL. Consequently, a strong metallurgical bond is formed between them. During the cladding process, the ZrO2 is completely decomposed, while the FA is partially decomposed. As a result, the CLs of all the specimens consist mainly of FA, Ca4(PO42O (TTCP, CaF2, CaZrO3, CaTiO3 and monoclinic phase ZrO2 (m-ZrO2, together with a small amount of θ-Al2O3. As the laser power is increased, CaO, CaCO3 and trace amounts of tetragonal phase ZrO2 (t-ZrO2 also appear. As the laser power increases from 400 to 800 W, the CL hardness also increases as a result of microstructural refinement and densification. However, at the highest laser power of 1200 W, the CL hardness reduces significantly due to the formation of large amounts of relatively soft CaO and CaCO3 phase.

  1. Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shih-Chang [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Chang, Zue-Chin [Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Tsai, Du-Cheng [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Lin, Yi-Chen; Sung, Huan-Shin [Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Deng, Min-Jen [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Department of Optometry, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County 356, Taiwan (China); Shieu, Fuh-Sheng, E-mail: fsshieu@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2011-06-15

    The present paper reports the influence of growth conditions on the characteristics of (TiVCrZrHf)N films prepared by rf reactive magnetron sputtering at various substrate temperatures. The nitrogen content is observed to decrease with increasing substrate temperature. The X-ray diffraction results indicate that all (TiVCrZrHf)N films are simple face centered cubic (FCC) structures. Initially, there is an obvious decrease followed by an increase in grain size with the increase in substrate temperature. The lower part of the microstructure has an amorphous structure. A nano grain structure (size {approx}1 nm) with a random orientation is also observed above the amorphous structure. The fully dense columnar structure with an fcc crystal phase then starts to develop. Extreme hardness of around 48 GPa is obtained in the present alloy design.

  2. Uniform coating of Ta2O5 on vertically aligned substrate: A prelude to forced flow atomic layer deposition

    Science.gov (United States)

    Mishra, Mrinalini; Kei, Chi-Chung; Yu, Yu-Hsuan; Liu, Wei-Szu; Perng, Tsong-Pyng

    2017-06-01

    Uniform tantalum oxide thin films, with a growth rate of 0.6 Å/cycle, were fabricated on vertically aligned, 10 cm-long, silicon substrates using an innovative atomic layer deposition (ALD) design. The ALD system, with a reaction chamber depth of 13.3 cm and 18 vertical enclosed channels (inner diameter 1.3 cm), was coupled with a shower-head type precursor conduit plate bearing 6 radial channels. This design enabled deposition on 6 silicon substrates at a time. The degrees of non-uniformity of deposits along the length of the silicon wafer and across different positions in the ALD chamber were found to be 1.77%-6.21% and 3.27%-5.45%, respectively. A further advantage of the design is that the conduit plate may be modified and the number of channels increased to process 18 substrates simultaneously, thus moving toward efficient and expedited ALD systems.

  3. Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Guina, E-mail: xiaoguina@shnu.edu.cn; Li, Yunxiang; Shi, Wangzhou; Shen, Leo; Chen, Qi; Huang, Lei, E-mail: leihuang@shnu.edu.cn

    2017-05-15

    Highlights: • We developed a paper-based SERS substrate by gravure and inkjet printing methods. • The S-RGO/AgNPs comoposite structure had higher SERS activity than the pure AgNPs. • The Raman enhancement factor of S-RGO/AgNPs substrate was calculated to be 10{sup 9}. • The paper-based substrate exhibited good reproducibility and long-term stability. - Abstract: Paper-based surface-enhanced Raman scattering (SERS) substrates receive a great deal of attention due to low cost and high flexibility. Herein, we developed an efficient SERS substrate by gravure printing of sulfonated reduced graphene-oxide (S-RGO) thin film and inkjet printing of silver nanoparticles (AgNPs) on weighing paper successively. Malachite green (MG) and rhodamine 6G (R6G) were chosen as probe molecules to evaluate the enhanced performance of the fabricated SERS-active substrates. It was found that the S-RGO/AgNPs composite structure possessed higher enhancement ability than the pure AgNPs. The Raman enhancement factor of S-RGO/AgNPs was calculated to be as large as 10{sup 9}. The minimum detection limit for MG and R6G was down to 10{sup −7} M with good linear responses (R{sup 2} = 0.9996, 0.9983) range from 10{sup −4} M to 10{sup −7} M. In addition, the S-RGO/AgNPs exhibited good uniformity with a relative standard deviation (RSD) of 7.90% measured by 572 points, excellent reproducibility with RSD smaller than 3.36%, and long-term stability with RSD less than 7.19%.

  4. Shallow hydroxyapatite coatings pulsed laser deposited onto Al{sub 2}O{sub 3} substrates with controlled porosity: correlation of morphological characteristics with in vitro testing results

    Energy Technology Data Exchange (ETDEWEB)

    Sima, F.; Ristoscu, C.; Stefan, N.; Dorcioman, G. [National Institute for Lasers, Plasma, and Radiation Physics, PO Box MG-54, RO-77125 Bucharest-Magurele (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, PO Box MG-54, RO-77125 Bucharest-Magurele (Romania)], E-mail: ion.mihailescu@inflpr.ro; Sima, L.E.; Petrescu, S.M. [Institute of Biochemistry, Romanian Academy, Splaiul Independentei 296, Bucharest (Romania); Palcevskis, E.; Krastins, J.; Zalite, I. [Institute of Inorganic Chemistry of the Riga Technical University, 34 Miera str, Salaspils LV-2169 (Latvia)

    2009-03-01

    We studied the influence of porous Al{sub 2}O{sub 3} substrates on Ce-stabilized ZrO{sub 2}-doped hydroxyapatite thin films morphology pulsed laser deposited on their top. The porosities of substrates were monitored by changing sintering temperatures and measured with a high pressure Hg porosimeter. The depositions were conducted in 50 Pa water vapors by multipulse ablation of the targets with an UV KrF* ({lambda} = 248 nm, {tau} {approx} 25 ns) excimer laser. The surface morphology of synthesized nanostructures was investigated by scanning electron microscopy and atomic force microcopy. Ca/P ratio within the range 1.67-1.70 was found for hydroxyapatite coatings by energy dispersive spectroscopy. The films were further seeded with mesenchymal stem cells for in vitro tests. The cells showed good attachment and spreading uniformly covering the entire surface of samples. The complexity of film morphology which is increasing with substrate porosity was shown to have a positive influence on cultivated cells density.

  5. Coating of a substrate with surface preliminarily treated with intensive flows of high-speed electrons and plasma using a magnetron

    Science.gov (United States)

    Leyvi, A. Ya; Yalovets, A. P.

    2017-05-01

    This paper presents results of the research in influence of preliminary surface treatment on adhesion of film to substrate (St8 or brass-target, CU, Ni-film). The preliminary treatment has been conducted by two methods: first, by compressive plasma flow with charge duration ∼100μs, plasma formation rate (15-20)×103 m/s; second, by low-energy high-current electron beams with pulse duration 2-3 μs and electron energy up to 30 keV. The investigation shows the strong influence of preliminary sample treatment and processing parameters on adhesion of film to substrate and final roughness. Experimental investigations have revealed the best adhesion of film to substrate, and the smoothest film is corresponding to the mode with preliminary LEHCEB irradiation with electron energy of 25, 30 keV. It was shown that the alternation of deposition with LEHCEB irradiation has resulted in large-scale surface smoothing: the surface has become glassy whereas craters of 10-20 μm have formed. It was shown that the magnetron-covered samples can withstand the saline mist for twice as long as samples with galvanic coatings.

  6. Systematic studies of the nucleation and growth of ultrananocrystalline diamond films on silicon substrates coated with a tungsten layer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yueh-Chieh; Jiang, Gerald [Institute of Microelectronics, No.1, University Road, Tainan 701, Taiwan (China); Tu, Chia-Hao [Institute of Nanotechnology and Microsystems Engineering, No.1, University Road, Tainan 701, Taiwan (China); Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan (China); Chang Chi [Institute of Nanotechnology and Microsystems Engineering, No.1, University Road, Tainan 701, Taiwan (China); Liu, Chuan-pu; Ting, Jyh-Ming [Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan (China); Lee, Hsin-Li [Industrial Technology Research Institute - South, Tainan 701, Taiwan (China); Tzeng, Yonhua [Institute of Microelectronics, No.1, University Road, Tainan 701, Taiwan (China); Advanced Optoelectronics Technology Center, No.1, University Road, Tainan 701, Taiwan (China); Auciello, Orlando [Argonne National Laboratory, Materials Science Division, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States)

    2012-06-15

    We report on effects of a tungsten layer deposited on silicon surface on the effectiveness for diamond nanoparticles to be seeded for the deposition of ultrananocrystalline diamond (UNCD). Rough tungsten surface and electrostatic forces between nanodiamond seeds and the tungsten surface layer help to improve the adhesion of nanodiamond seeds on the tungsten surface. The seeding density on tungsten coated silicon thus increases. Tungsten carbide is formed by reactions of the tungsten layer with carbon containing plasma species. It provides favorable (001) crystal planes for the nucleation of (111) crystal planes by Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) in argon diluted methane plasma and further improves the density of diamond seeds/nuclei. UNCD films grown at different gas pressures on tungsten coated silicon which is pre-seeded by nanodiamond along with heteroepitaxially nucleated diamond nuclei were characterized by Raman scattering, field emission-scanning electron microscopy, and high resolution-transmission electron microscopy.

  7. Precise femtosecond laser crater fabrication in hard nanolayered AlTiN/TiN coating on steel substrate

    Science.gov (United States)

    Gaković, B.; Petrović, S.; Albu, C.; Zamfirescu, M.; Panjan, P.; Milovanović, D.; Popescu-Pelin, G.; Mihailescu, I. N.

    2017-03-01

    Processing of AlTiN/TiN multilayered hard coatings by femtosecond (fs) laser pulses has been investigated. Irradiation was performed in air with linearly polarized laser radiation with pulses of 200 fs duration at 775 nm wavelength. Single or 1000 subsequent laser pulses were directed at normal incidence towards target surface. Laser energy per pulse was adjusted from 0.5 to 50 μJ and corresponding fluence was 0.17-17.5 J cm-2. The as deposited and laser-ablated samples were characterized by optical confocal microscopy, optical profilometry and scanning and transmition electron microscopy. In case of the AlTiN/TiN coating, a single-pulse damage threshold of 0.41 J cm-2 was estimated. Well defined holes/craters with diameters from 7 to 35 μm, up to 40 μm depth were drilled, depending on laser pulse energy and number, after 1000 laser pulses. For small energy/fluence, laser induced periodical surface structures were observed. A model is discussed which can account for these features by the accumulation effect during multi-pulse irradiation. The forming craters can prove useful for fabrication of micron solid state lubricant reservoirs in the protective coating-steel system.

  8. Structure analysis of laser deposited NiBSi-WC coatings on a Cu-Cr-Zr substrate

    Science.gov (United States)

    Korobov, Yury; Vopneruk, Alexander; Kotelnikov, Alexander; Khudorozhkova, Yulia; Burov, Sergey; Balu, Prabu

    2017-12-01

    Metal matrix composite (MMC) layers like NiBSi/WC on a substrate of bronze C18150 were formed by laser deposition. The influence of the layer thickness and operating parameters on the structural characteristics, microhardness, and crack susceptibility were analyzed.

  9. Spin coating of electrolytes

    Science.gov (United States)

    Stetter, Joseph R.; Maclay, G. Jordan

    1989-01-01

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  10. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate.

    Science.gov (United States)

    Chen, Jing; Dou, Renmei; Cui, Dapeng; Zhang, Qiaolan; Zhang, Yifan; Xu, Fujian; Zhou, Xin; Wang, Jianjun; Song, Yanlin; Jiang, Lei

    2013-05-22

    A robust prototypical anti-icing coating with a self-lubricating liquid water layer (SLWL) is fabricated via grafting cross-linked hygroscopic polymers inside the micropores of silicon wafer surfaces. The ice adhesion on the surface with SLWL is 1 order of magnitude lower than that on the superhydrophobic surfaces and the ice formed atop of it can be blown off by an action of strong breeze. The surface with self-lubricating liquid water layer exhibits excellent capability of self-healing and abrasion resistance. The SLWL surface should also find applications in antifogging and self-cleaning by rainfall, in addition to anti-icing and antifrosting.

  11. Enhanced osseointegration and antibacterial action of zinc-loaded titania-nanotube-coated titanium substrates: in vitro and in vivo studies.

    Science.gov (United States)

    Li, Yong; Xiong, Wei; Zhang, Chengcheng; Gao, Biao; Guan, Hanfeng; Cheng, Hao; Fu, Jijiang; Li, Feng

    2014-11-01

    Poor osseointegration and infection resulting from implants are serious medical issues, and it is not straightforward to manufacture implants that can simultaneously address both of these problems. In this study, we produced coatings containing titania nanotubes (TiO2 -NTs) incorporated with zinc (NT-Zn) on Ti substrates by anodization and hydrothermal treatment. The zinc content was controlled by varying the duration of the hydrothermal treatment. The NT-Zn implants not only exhibited improved bone formation (shown by both in vitro and in vivo studies), which enhances osseointegration between bone and implant, but also inhibited growth of bacteria. The cytotoxicity of locally high concentrations of zinc in the NT-Zn3h specimens observed during in vitro studies was mitigated by the effects of dilution in vivo. © 2013 Wiley Periodicals, Inc.

  12. Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper

    Science.gov (United States)

    Xiao, Guina; Li, Yunxiang; Shi, Wangzhou; Shen, Leo; Chen, Qi; Huang, Lei

    2017-05-01

    Paper-based surface-enhanced Raman scattering (SERS) substrates receive a great deal of attention due to low cost and high flexibility. Herein, we developed an efficient SERS substrate by gravure printing of sulfonated reduced graphene-oxide (S-RGO) thin film and inkjet printing of silver nanoparticles (AgNPs) on weighing paper successively. Malachite green (MG) and rhodamine 6G (R6G) were chosen as probe molecules to evaluate the enhanced performance of the fabricated SERS-active substrates. It was found that the S-RGO/AgNPs composite structure possessed higher enhancement ability than the pure AgNPs. The Raman enhancement factor of S-RGO/AgNPs was calculated to be as large as 109. The minimum detection limit for MG and R6G was down to 10-7 M with good linear responses (R2 = 0.9996, 0.9983) range from 10-4 M to 10-7 M. In addition, the S-RGO/AgNPs exhibited good uniformity with a relative standard deviation (RSD) of 7.90% measured by 572 points, excellent reproducibility with RSD smaller than 3.36%, and long-term stability with RSD less than 7.19%.

  13. Synthesis and optical properties of zinc oxide nanoparticles grown on Sn-coated silicon substrate by thermal evaporation method

    Science.gov (United States)

    Somvanshi, Divya; Jit, S.

    2013-01-01

    The Zinc oxide (ZnO) nanoparticles have been grown on n type silicon substrate using tin (Sn) metal as seed layer by a low cost thermal evaporation method. SEM images show that the ZnO nanoparticles have been uniformely grown on the whole substrate surface relatively perpendicular to the substrate. The Photoluminescence (PL) spectrum consists of strong UV emission at wavelength of 355 nm along with a broad near band edge (NBE) emission covering a wide range of wavelength from 370 to 550 nm. This broadening region exhibits blue, violet and green emission due to the presence of native defects such as zinc interstitial (Zni), oxygen vacancy (VO) and oxygen interstitial (Oi) in the band gap of ZnO. Raman spectroscopy shows the existence of E2 mode at 437 cm-1 which confirms the pure wurtzite hexagonal phase of ZnO. The optical and structural properties of ZnO nanoparticles could be explored for blue-violet light emitting diodes (LEDs) and gas sensing applications.

  14. Growth of polycrystalline Pr{sub 2}NiO{sub 4+δ} coating on alumina substrate by RF magnetron co-sputtering from composite targets

    Energy Technology Data Exchange (ETDEWEB)

    Sediri, A., E-mail: amal.sediri@univ-tours.fr [Université François-Rabelais de Tours, GREMAN UMR 7347 CNRS, IUT de Blois 15 rue de la chocolaterie CS 2903, 41029 Blois Cedex (France); Zaghrioui, M.; Barichard, A.; Autret, C.; Negulescu, B. [Université François-Rabelais de Tours, GREMAN UMR 7347 CNRS, IUT de Blois 15 rue de la chocolaterie CS 2903, 41029 Blois Cedex (France); Del Campo, L.; Echegut, P. [CNRS, UPR 3079 CEMHTI, 45071 Orléans Cedex 2 (France); Laffez, P. [Université François-Rabelais de Tours, GREMAN UMR 7347 CNRS, IUT de Blois 15 rue de la chocolaterie CS 2903, 41029 Blois Cedex (France)

    2016-02-01

    Polycrystalline Pr{sub 2}NiO{sub 4+δ} coatings have been deposited on alumina substrates at room temperature by RF magnetron co-sputtering from Pr and Ni metallic composite target. The mixed target's area and the sputtering conditions were optimized to reach an atomic ratio Pr/Ni of 2. A subsequent annealing, at 1050–1100 °C, allowed obtaining Pr{sub 2}NiO{sub 4+δ} phase after in situ high temperature x-ray diffraction study performed on as-deposited film. Microstructural analyses (SEM and AFM) revealed dense and rough microstructure. Normal spectral emittance measurements performed at 794 °C in the spectral range 400–5000 cm{sup -1} showed an emissivity of ε ≈ 0.8. - Highlights: • Pr{sub 2}NiO{sub 4+δ} coatings deposited by RF magnetron co-sputtering • Crystallization kinetic studied by X-ray diffraction versus temperature • SEM and AFM observations showed dense and rough microstructure • Normal spectral emittance reaches to ε = 0.8 at 794 °C in the opaque zone.

  15. High-Density Single-Layer Coating of Gold Nanoparticles onto Multiple Substrates by Using an Intrinsically Disordered Protein of α-Synuclein for Nanoapplications.

    Science.gov (United States)

    Bhak, Ghibom; Lee, Junghee; Kim, Chang-Hyun; Chung, Dong Young; Kang, Jin Hyoun; Oh, Soojung; Lee, Jungsup; Kang, Jin Soo; Yoo, Ji Mun; Yang, Jee Eun; Rhoo, Kun Yil; Park, Sunghak; Lee, Somin; Nam, Ki Tae; Jeon, Noo Li; Jang, Jyongsik; Hong, Byung Hee; Sung, Yung-Eun; Yoon, Myung-Han; Paik, Seung R

    2017-03-15

    Functional graffiti of nanoparticles onto target surface is an important issue in the development of nanodevices. A general strategy has been introduced here to decorate chemically diverse substrates with gold nanoparticles (AuNPs) in the form of a close-packed single layer by using an omni-adhesive protein of α-synuclein (αS) as conjugated with the particles. Since the adsorption was highly sensitive to pH, the amino acid sequence of αS exposed from the conjugates and its conformationally disordered state capable of exhibiting structural plasticity are considered to be responsible for the single-layer coating over diverse surfaces. Merited by the simple solution-based adsorption procedure, the particles have been imprinted to various geometric shapes in 2-D and physically inaccessible surfaces of 3-D objects. The αS-encapsulated AuNPs to form a high-density single-layer coat has been employed in the development of nonvolatile memory, fule-cell, solar-cell, and cell-culture platform, where the outlying αS has played versatile roles such as a dielectric layer for charge retention, a sacrificial layer to expose AuNPs for chemical catalysis, a reaction center for silicification, and biointerface for cell attachment, respectively. Multiple utilizations of the αS-based hybrid NPs, therefore, could offer great versatility to fabricate a variety of NP-integrated advanced materials which would serve as an indispensable component for widespread applications of high-performance nanodevices.

  16. The growth of ubiquitous ZnO rods on PMMA-coated substrate by solution-immersion method at different annealing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Aadila, A., E-mail: aadilaazizali@gmail.com; Asib, N. A. M.; Afaah, A. N.; Husairi, F. S.; Khusaimi, Z., E-mail: zurai142@salam.edu.my [NANO-Scitech Centre, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Mohamed, R.; Rusop, M. [NANO-Scitech Centre, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); NANO-Electronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    In this work, solution-immersion method was used to grow ZnO rods on PMMA-coated substrate. For this purpose, 0.15 M of zinc nitrate hexahydrate (Zn(NO{sub 3}){sub 2}.6H{sub 2}O) and hexamethylenetetramine (C{sub 6}H{sub 12}N{sub 4}) were used to growth of ZnO films at different annealing temperatures (room temperature, 80, 100, 120 and 140 °C). The morphology of the films was investigated by Scanning Electron Microscope (SEM) and optical properties were studied by Ultraviolet (UV-Vis) Spectroscopy. SEM analysis showed ubiquitous growth of ZnO rods that became better aligned and more closely-packed as the annealing temperature increased. As the annealing temperature exceeds 100 °C, the rods tend to merge to adjacent particles and the UV absorption decreased for the sample at higher temperatures (120 °C and 140 °C). Good absorption and better orientation of ZnO was obtained for the sample annealed at 100 °C due to the film possess better distribution and these improved orientation of particles caused the light to be effectively scattered on the sample. Both surface morphology and UV was significantly affected by the change in annealing temperatures thus thermal effect played a dominant role in shaping and improving the orientation of ZnO rods on PMMA-coated and its UV absorption.

  17. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Da; Kunz, Thomas [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Wolf, Nadine [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Energy Efficiency, Am Galgenberg 87, 97074 Wuerzburg (Germany); Liebig, Jan Philipp [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Göken, Mathias [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Brabec, Christoph J. [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Institute of Materials for Electronics and Energy Technology, University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen (Germany)

    2015-05-29

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm{sup 2} aperture area on the graphite substrate. The optical properties of the SiN{sub x}/a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN{sub x}/a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN{sub x}/a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance.

  18. Porous polymer coatings as substrates for the formation of high-fidelity micropatterns by quill-like pens

    Directory of Open Access Journals (Sweden)

    Michael Hirtz

    2013-06-01

    Full Text Available We explored the potentials of microarray printing using quill-like microcantilevers onto solid supports that are typically used in microspot printing, including paper, polymeric nitrocellulose and nylon membranes. We compared these membranes with a novel porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate support (HEMA with narrow pore size distribution in the 150 nm range, which demonstrated advantages in pattern definition, spot homogeneity, and consistent spot delivery of different dyes (phloxine B and bromophenol blue with diameters of several micrometres. The bromophenol blue arrays on HEMA support were used to detect the presence of bovine serum albumin (BSA. In the presence of BSA, the fluorescence spectrum observed from the bromophenol blue microarray exhibited a significant red shift of the maximum emission wavelength. Our results show that the porous HEMA substrates can improve the fidelity and quality of microarrays prepared by using the quill-like microcantilevers. The presented method sets the stage for further studies using chemical and biochemical recognition elements, along with colorimetric and fluorometric sensors that can be spotted by this method onto flat porous polymer substrates.

  19. Effect of low current density and low frequency on oxidation resistant and coating activity of coated FeCrAl substrate by γ-Al2O3 powder

    Science.gov (United States)

    Leman, A. M.; Feriyanto, Dafit; Zakaria, Supaat; Sebayang, D.; Rahman, Fakhrurrazi; Jajuli, Afiqah

    2017-09-01

    High oxidation resistant is the needed material properties for material that operates in high temperature such as catalytic converter material. FeCrAl alloy acts as metallic material and is used as substrate material that is coated by ceramic material i.e. γ-Al2O3. The main purpose of this research is to increase oxidation resistant of metallic material as it will help improve the life time of metallic catalytic converter. Ultrasonic technique (UB) and Nickel electroplating technique (EL) were used to achieve the objective. UB was carried out using various time of 1, 1.5, 2, 2.5 and 3 h, in low frequency of 35 kHz and ethanol as the electrolyte. Meanwhile, EL was conducted using various times of 15, 30, 45, 60 and 75 minutes, DC power supply was 1.28A and sulphamate type as the solution. The characterization and analysis were carried out using Scanning Electron Microscopy (SEM) and box furnace at various temperature of 1000, 1100 and 1200 °C. SEM analysis shows the surface morphology of treated and untreated samples. Untreated samples shows finer surface structure as compared to UB and EL samples. It was caused by γ-Al2O3 which was embedded during UB and EL process on the surface of FeCrAl substrate to develop protective oxide layer. The layer was used to protect the substrate from extreme environment condition and temperature operation. Oxidation resistant analysis shows that treated samples had lower mass change as compared to untreated samples. Lowest mass change of treated samples were located at UB 1.5 h and EL at 30 minute with 0.00475 g and 0.00243 g for temperature of 1000 °C, 0.00495 g and 000284 g for temperature of 1100 °C and 0.00519 g and 0.00304 g for temperature 1200 °C, Based on the overall results, it can be concluded that EL 30 minute samples was the appropriate parameter to coat FeCrAl by γ-Al2O3 to develop metallic catalytic converter that is high oxidation resistant in high temperature operation.

  20. Nanostructured Protective Coatings

    Science.gov (United States)

    2006-01-01

    understanding of PVD parameters, depositing coatings on practical substrates such as the Ti6Al4V used for turbine blades, and developing a versatile...Phase I objectives, particularly in enhancing the understanding of PVD parameters, depositing coatings on practical substrates such as the Ti6Al4V ...understanding of PVD parameters, depositing coatings on practical substrates such as the Ti6Al4V used for turbine blades, and developing a versatile

  1. Water Repellence and Oxygen and Water Vapor Barrier of PVOH-Coated Substrates before and after Surface Esterification

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2014-11-01

    Full Text Available This study investigates chemical grafting with fatty acid chlorides as a method for the surface modification of hydrophilic web materials. The resulting changes in the water repellence and barrier properties were studied. For this purpose, different grades of polyvinyl alcohol (PVOH were coated on regenerated cellulose films (“cellophane” and paper and then grafted with fatty acid chlorides. The PVOH grades varied in their degree of hydrolysis and average molecular weight. The surface was esterified with two fatty acid chlorides, palmitoyl (C16 and stearoyl chloride (C18, by chemical grafting. The chemical grafting resulted in water-repellent surfaces and reduced water vapor transmission rates by a factor of almost 19. The impact of the surface modification was greater for a higher degree of hydrolysis of the polyvinyl alcohol and for shorter fatty acid chains. Although the water vapor barrier for palmitoyl-grafted PVOH was higher than for stearoyl-grafted PVOH, the contact angle with water was lower. Additionally, it was shown that a higher degree of hydrolysis led to higher water vapor barrier improvement factors after grafting. Furthermore, the oxygen permeability decreased after grafting significantly, due to the fact that the grafting protects the PVOH against humidity when the humidity is applied on the grafted side. It can be concluded that the carbon chain length of the fatty acid chlorides is the limiting factor for water vapor adsorption, but the grafting density is the bottleneck for water diffusing in the polymer.

  2. Improved patterning of ITO coated with gold masking layer on glass substrate using nanosecond fiber laser and etching

    Science.gov (United States)

    Tan, Nguyen Ngoc; Hung, Duong Thanh; Anh, Vo Tran; BongChul, Kang; HyunChul, Kim

    2015-05-01

    In this paper, an indium-tin oxide (ITO) thin-film patterning method for higher pattern quality and productivity compared to the short-pulsed laser direct writing method is presented. We sputtered a thin ITO layer on a glass substrate, and then, plated a thin gold layer onto the ITO layer. The combined structure of the three layers (glass-ITO-gold) was patterned using laser-induced plasma generated by an ytterbium pulsed fiber laser (λ = 1064 nm). The results showed that the process parameters of 50 mm/s in scanning speed, 14 ns pulse duration, and a repetition rate of 7.5 kHz represented optimum conditions for the fabrication of ITO channels. Under these conditions, a channel 23.4 μm wide and 20 nm deep was obtained. However, built-up spikes (∼15 nm in height) resulted in a decrease in channel quality, and consequently, short circuit occurred at some patterned positions. These built-up spikes were completely removed by dipping the ITO layer into an etchant (18 wt.% HCl). A gold masking layer on the ITO surface was found to increase the channel surface quality without any decrease in ITO thickness. Moreover, the effects of repetition rate, scanning speed, and etching characteristics on surface quality were investigated.

  3. Dielectric properties of Ba(Zn{sub 1/3}Ta{sub 2/3})O{sub 3} thin films on Pt-coated Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nedelcu, L., E-mail: nedelcu@infim.ro [National Institute of Materials Physics, Multifunctional Materials and Structures Laboratory, PO Box MG-7, 077125 Bucharest-Magurele (Romania); Mandache, N.B. [National Institute for Lasers, Plasmas and Radiation Physics, Plasma Physics and Nuclear Fusion Laboratory, PO Box MG-36, 077125 Bucharest-Magurele (Romania); Toacsan, M.I.; Vlaicu, A.M.; Banciu, M.G.; Ioachim, A. [National Institute of Materials Physics, Multifunctional Materials and Structures Laboratory, PO Box MG-7, 077125 Bucharest-Magurele (Romania); Gherendi, F.; Luculescu, C.R.; Nistor, M. [National Institute for Lasers, Plasmas and Radiation Physics, Plasma Physics and Nuclear Fusion Laboratory, PO Box MG-36, 077125 Bucharest-Magurele (Romania)

    2012-11-01

    Ba(Zn{sub 1/3}Ta{sub 2/3})O{sub 3} (BZT) thin films were grown on Pt-coated Si substrates at 500 Degree-Sign C substrate temperatures by pulsed electron beam deposition method and post-annealed at 600 and 650 Degree-Sign C for 1 h. The X-ray diffraction patterns indicate that the as-grown films are partially crystallized but single-phase cubic perovskite structure was formed in annealed films. The temperature dependence of the dielectric constant of the BZT films was recorded in the - 100 to + 100 Degree-Sign C range. The annealing treatment induces a decrease of the temperature coefficient of the dielectric permittivity with an order of magnitude, from 2000 to 100 ppm/ Degree-Sign C. The influence of the annealing treatments on the temperature behavior of the BZT films was evidenced; a dielectric constant of about 21 at room temperature was obtained for the films annealed at 650 Degree-Sign C. - Highlights: Black-Right-Pointing-Pointer Ba(Zn{sub 1/3}Ta{sub 2/3})O{sub 3} thin films were grown by pulsed electron beam deposition method. Black-Right-Pointing-Pointer Single-phase cubic perovskite structure after post-annealing Black-Right-Pointing-Pointer Decrease of the temperature drift of the permittivity with an order of magnitude Black-Right-Pointing-Pointer Ba(Zn{sub 1/3}Ta{sub 2/3})O{sub 3} films with a dielectric constant around 21 were obtained.

  4. Mechanical properties, chemical analysis and evaluation of antimicrobial response of Si-DLC coatings fabricated on AISI 316 LVM substrate by a multi-target DC-RF magnetron sputtering method for potential biomedical applications

    Science.gov (United States)

    Bociaga, Dorota; Sobczyk-Guzenda, Anna; Szymanski, Witold; Jedrzejczak, Anna; Jastrzebska, Aleksandra; Olejnik, Anna; Jastrzebski, Krzysztof

    2017-09-01

    In this study silicon doped diamond-like carbon (Si-DLC) coatings were synthesized on two substrates: silicon and AISI 316LVM stainless steel using a multi-target DC-RF magnetron sputtering method. The Si content in the films ranged between 4 and 16 at.%, and was controlled by the electrical power applied in RF regime to Si cathode target. The character of the chemical bonds was revealed by FTIR analysis. With the addition of silicon the hydroxyl absorption (band in the range of 3200-3600 cm-1) increased what suggests more hydrophilic character of the coating. There were also observed significant changes in bonding of Si atoms. For low content of dopant, Si-O-Si bond system is predominant, while for the highest content of silicon there is an evidence of the shift to Si-C bonds in close proximity to methyl groups. The Raman spectroscopy revealed that the G peak position is shifted to a lower wavenumber and the ID/IG ratio decreased with increasing Si content, which indicates an increase in the C-sp3 content. Regardless of the coatings' composition, the improvement of hardness in comparison to pure substrate material (AISI 316 LVM) was observed. Although the reduction of the level of hardness from the level of 10.8 GPa for pure DLC to about 9.4 GPa for the silicon doped coatings was observed, the concomitant improvement of films adhesion with higher amount of Si was revealed. Although incorporation of the dopant to DLC coatings increases the number of E. coli cells which adhered to the examined surfaces, the microbial colonisation remains on the level of substrate material. The presented results prove the potential of Si-DLC coatings in biomedical applications from the point of view of their mechanical properties.

  5. Room temperature trapping of stibine and bismuthine onto quartz substrates coated with nanostructured palladium for total reflection X-ray fluorescence analysis

    Science.gov (United States)

    Romero, Vanesa; Costas-Mora, Isabel; Lavilla, Isela; Bendicho, Carlos

    2015-05-01

    In this work, a novel method for determining Sb and Bi based on the trapping of their covalent hydrides onto quartz reflectors coated with immobilized palladium nanoparticles (Pd NPs) followed by total reflection X-ray fluorescence (TXRF) analysis is proposed. Pd NPs were synthesized by chemical reduction of the metal precursor using a mixture of water:ethanol as mild reducing agent. Silanization using 3-mercaptopropyltrimethoxysilane (MPTMS) was performed for the immobilization of Pd NPs onto the quartz substrates. Volatile hydrides (stibine and bismuthine) generated by means of a continuous flow system were flushed onto the immobilized Pd NPs and retained by catalytic decomposition. As a result of the high catalytic activity of the nanostructured film, trapping can be performed at ambient temperature with good efficiency. Limits of detection (LODs) were 2.3 and 0.70 μg L- 1 for Sb and Bi, respectively. Enrichment factors of 534 and 192 were obtained for Sb and Bi, respectively. The new method was applied for the analysis of several matrices (milk, soil, sediment, cutaneous powder). Recoveries were in the range of 98.4-101% for both elements with a relative standard deviation of 2.5% (N = 5).

  6. Surface Decoration of Amino-Functionalized Metal-Organic Framework/Graphene Oxide Composite onto Polydopamine-Coated Membrane Substrate for Highly Efficient Heavy Metal Removal.

    Science.gov (United States)

    Rao, Zhuang; Feng, Kai; Tang, Beibei; Wu, Peiyi

    2017-01-25

    A new metal-organic framework/graphene oxide composite (IRMOF-3/GO) with high adsorption capacity of copper(II) (maximal adsorption amount = 254.14 mg/g at pH 5.0 and 25 °C) was prepared. Novel and highly efficient nanofiltration (NF) membrane can be facilely fabricated via surface decoration of IRMOF-3/GO onto polydopamine (PDA)-coated polysulfone (PSF) substrate. After decoration of IRMOF-3/GO, membrane surface potential increased from 6.7 to 13.1 mV at pH 5.0 and 25 °C. Due to the adsorption effect of IRMOF-3/GO and the enhancement of membrane surface potential, the prepared NF membrane (the loading amount of IRMOF-3/GO is ca. 13.6 g/m2) exhibits a highly efficient rejection of copper(II). The copper(II) rejection reaches up to ∼90%, while maintaining a relatively high flux of ∼31 L/m2/h at the pressure of 0.7 MPa and pH 5.0. Moreover, the membrane also presents an outstanding stability throughout the 2000 min NF testing period. Thus, the newly developed NF membrane shows a promising potential for water cleaning. This work provides a worthy reference for designing highly efficient NF membranes modified by metal-organic framework (MOF) relevant materials.

  7. Dense protective coatings, methods for their preparation and coated articles

    Science.gov (United States)

    Tulyani, Sonia; Bhatia, Tania; Smeggil, John G.

    2015-12-29

    A method for depositing a protective coating on a complex shaped substrate includes the steps of: (1) dipping a complex shaped substrate into a slurry to form a base coat thereon, the slurry comprising an aqueous solution, at least one refractory metal oxide, and at least one transient fluid additive present in an amount of about 0.1 percent to 10 percent by weight of the slurry; (2) curing the dipped substrate; (3) dipping the substrate into a precursor solution to form a top barrier coat thereon; and (4) heat treating the dipped, cured substrate to form a protective coating.

  8. Gold coated porous silicon nanocomposite as a substrate for photoluminescence-based immunosensor suitable for the determination of Aflatoxin B1.

    Science.gov (United States)

    Myndrul, Valerii; Viter, Roman; Savchuk, Maryna; Koval, Maryna; Starodub, Nikolay; Silamiķelis, Viesturs; Smyntyna, Valentyn; Ramanavicius, Arunas; Iatsunskyi, Igor

    2017-12-01

    A rapid and low cost photoluminescence (PL) immunosensor for the determination of low concentrations of Aflatoxin B1 (AFB1) has been developed. This immunosensor was based on porous silicon (PSi) covered by thin gold layer (Au) and modified by antibodies against AFB1 (anti-AFB1). PSi layer was formed on silicon substrate, then the surface of PSi was covered by 30nm layer of gold (PSi/Au) using electrochemical and chemical deposition methods and in such ways PSi/Au(El.) and PSi/Au(Chem.) structures were formed, respectively. In order to find PSi/Au the most efficiently suitable for PL-based sensor design, structure several different PSi/Au(El.) and PSi/Au(Chem.) structures were designed while using different conditions for electrochemical or chemical deposition of gold layer. It was shown that during the formation of PSi/Au structure crystalline Au nanoparticles uniformly coated the surface of the PSi pores. PL spectroscopy of PSi/Au nanocomposites was performed at room temperature and it showed a wide emission band centered at 700nm. Protein A was covalently immobilized on the surface of PSi/Au(El.) and PSi/Au(Chem.) forming PSi/Au(El.)/Protein-A and PSi/Au(Chem.)/Protein-A structures, respectively. In the next step PSi/Au(El.)/Protein-A and PSi/Au(Chem.)/Protein-A structures were modified by anti-AFB1 and in such way a structures (PSi/Au(El.)/Protein-A/anti-AFB1 and PSi/Au(Chem.)/Protein-A/anti-AFB1) sensitive towards AFB1 were designed. The PSi/Au(El.)/Protein-A/anti-AFB1- and PSi/Au(Chem.)/Protein-A/anti-AFB1-based immunosensors were tested in a wide range of AFB1 concentrations from 0.001 upon 100ng/ml. Interaction of AFB1 with PSi/Au(El.)/Protein-A/anti-AFB1- and PSi/Au(Chem.)/Protein-A/anti-AFB1-based structures resulted PL quenching. The highest sensitivity towards AFB1 was determined for PSi/Au(El.)/Protein-A/anti-AFB1-based immunosensor and it was in the range of 0.01-10ng/ml. The applicability of PSi/Au-based structures as new substrates suitable for PL

  9. Room temperature trapping of stibine and bismuthine onto quartz substrates coated with nanostructured palladium for total reflection X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Vanesa; Costas-Mora, Isabel; Lavilla, Isela; Bendicho, Carlos, E-mail: bendicho@uvigo.es

    2015-05-01

    In this work, a novel method for determining Sb and Bi based on the trapping of their covalent hydrides onto quartz reflectors coated with immobilized palladium nanoparticles (Pd NPs) followed by total reflection X-ray fluorescence (TXRF) analysis is proposed. Pd NPs were synthesized by chemical reduction of the metal precursor using a mixture of water:ethanol as mild reducing agent. Silanization using 3-mercaptopropyltrimethoxysilane (MPTMS) was performed for the immobilization of Pd NPs onto the quartz substrates. Volatile hydrides (stibine and bismuthine) generated by means of a continuous flow system were flushed onto the immobilized Pd NPs and retained by catalytic decomposition. As a result of the high catalytic activity of the nanostructured film, trapping can be performed at ambient temperature with good efficiency. Limits of detection (LODs) were 2.3 and 0.70 μg L{sup −1} for Sb and Bi, respectively. Enrichment factors of 534 and 192 were obtained for Sb and Bi, respectively. The new method was applied for the analysis of several matrices (milk, soil, sediment, cutaneous powder). Recoveries were in the range of 98.4–101% for both elements with a relative standard deviation of 2.5% (N = 5). - Highlights: • A novel method for trapping covalent hydrides of antimony and bismuth is proposed. • Emphasis is placed on the application of Pd nanoparticles as trapping surface. • The nanostructured surface provides high catalytic activity at ambient temperature. • Analysis by total reflection X-ray fluorescence is performed. • Determination of Bi and Sb in different matrices is carried out.

  10. Oriented thin films of Na {sub 0.6}CoO {sub 2} and Ca {sub 3}Co {sub 4}O {sub 9} deposited by spin-coating method on polycrystalline substrate

    Energy Technology Data Exchange (ETDEWEB)

    Buršík, J., E-mail: bursik@iic.cas.cz [Institute of Inorganic Chemistry ASCR, 250 68 Řež near Prague (Czech Republic); Soroka, M. [Institute of Inorganic Chemistry ASCR, 250 68 Řež near Prague (Czech Republic); Knížek, K.; Hirschner, J.; Levinský, P.; Hejtmánek, J. [Institute of Physics ASCR, Cukrovarnická 10, 162 00 Prague 6 (Czech Republic)

    2016-03-31

    Thin film of two thermoelectric materials, Na {sub x}CoO {sub 2} (x ~ 0.6) and Ca {sub 3}Co {sub 4}O {sub 9}, was deposited using the sol–gel spin-coating method on a polycrystalline yttria-stabilized zirconia (YSZ) substrate. Despite the polycrystalline character of the substrate, the c-axis preferred orientation was obtained, suggesting self-assembly growth mechanism. The deposition procedure used offers several benefits, namely simplicity, high deposition rate, low fabrication cost as well as low price of the substrate, and low thermal conductivity of the substrate suitable for characterization of thermoelectric properties and for applications. The thermoelectric properties of the thin films are comparable with bulk materials. The samples exhibit power factor 0.23 - 0.26 × 10{sup -3} W ⋅ m {sup -1} ⋅ K {sup -2} at 750 K. - Highlights: • Thin film of thermoelectric cobaltates was deposited using the spincoating method. • The c-axis preferred orientation was obtained on polycrystalline YSZ substrate. • Benefits of the chosen procedure are simplicity, low cost, and low thermal conductivity of the substrate.

  11. Rapidly curable electrically conductive clear coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Mark P.; Anderson, Lawrence G.; Post, Gordon L.

    2018-01-16

    Rapidly curable electrically conductive clear coatings are applied to substrates. The electrically conductive clear coating includes to clear layer having a resinous binder with ultrafine non-stoichiometric tungsten oxide particles dispersed therein. The clear coating may be rapidly cured by subjecting the coating to infrared radiation that heats the tungsten oxide particles and surrounding resinous binder. Localized heating increases the temperature of the coating to thereby thermally cure the coating, while avoiding unwanted heating of the underlying substrate.

  12. Characterization and corrosion behavior of phytic acid coatings, obtained by chemical conversion on magnesium substrates in physiological solution; Caracterizacion y comportamiento frente a la corrosion de recubrimientos de acido fitico, obtenidos por conversion quimica, sobre substratos de magnesio en solucion fisiologica

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Alvarado, L. A.; Lomeli, M. A.; Hernandez, L. S.; Miranda, J. M.; Narvaez, L.; Diaz, I.; Garcia-Alonso, M. C.; Escudero, M. L.

    2014-10-01

    In order to improve the corrosion resistance of biodegradable magnesium and AZ31 magnesium alloy implants, a phytic acid coating has been applied on both substrates and their protective effect against corrosion has been assessed. The morphology and the chemical nature of the conversion coating were analyzed by SEM/EDX, XRD and FTIR. The spectra showed that the conversion coating was amorphous, and it was composed of Mg, O, and P on magnesium surface, along with Al, Zn and C on AZ31 alloy. The main coating components were chelate compounds formed by phytic acid and metallic ions. The corrosion resistance of bare and coated samples was evaluated by potentiodynamic polarization technique in Hank's solution at 37 degree centigrade. The results indicate that phytic acid conversion coatings provided a very effective protection to the magnesium substrates studied. (Author)

  13. Preliminary Microstructural and Microscratch Results of Ni-Cr-Fe and Cr3C2-NiCr Coatings on Magnesium Substrate

    Science.gov (United States)

    Istrate, B.; Munteanu, C.; Lupescu, S.; Benchea, M.; Vizureanu, P.

    2017-06-01

    Thermal coatings have a large scale application in aerospace and automotive field, as barriers improving wear mechanical characteristics and corrosion resistance. In present research, there have been used two types of coatings, Ni-Cr-Fe, respectively Cr3C2-NiCr which were deposited on magnesium based alloys (pure magnesium and Mg-30Y master alloy). There have been investigated the microstructural aspects through scanning electronic microscopy and XRD analysis and also a series of mechanical characteristics through microscratch and indentation determinations. The results revealed the formation of some adherent layers resistant to the penetration of the metallic indenter, the coatings did not suffer major damages. Microstructural analysis highlighted the formation of Cr3C2, Cr7C3, Cr3Ni2, Cr7Ni3, FeNi3, Cr-Ni phases. Also, the apparent coefficient of friction for Ni-Cr-Fe coatings presents superior values than Cr3C2-NiCr coatings.

  14. Preparation of Metal Coatings on Steel Balls Using Mechanical Coating Technique and Its Process Analysis

    Directory of Open Access Journals (Sweden)

    Liang Hao

    2017-04-01

    Full Text Available We successfully applied mechanical coating technique to prepare Ti coatings on the substrates of steel balls and stainless steel balls. The prepared samples were analyzed by X-ray diffraction (XRD and scanning electron microscopy (SEM. The weight increase of the ball substrates and the average thickness of Ti coatings were also monitored. The results show that continuous Ti coatings were prepared at different revolution speeds after different durations. Higher revolution speed can accelerate the formation of continuous Ti coatings. Substrate hardness also markedly affected the formation of Ti coatings. Specifically, the substance with lower surface hardness was more suitable as the substrate on which to prepare Ti coatings. The substrate material plays a key role in the formation of Ti coatings. Specifically, Ti coatings formed more easily on metal/alloy balls than ceramic balls. The above conclusion can also be applied to other metal or alloy coatings on metal/alloy and ceramic substrates.

  15. NiTi intermetallic surface coatings by laser metal deposition for improving wear properties of Ti-6Al-4V substrates

    CSIR Research Space (South Africa)

    Mokgalaka, MN

    2014-03-01

    Full Text Available was evident on the worn surface demonstrating that the mechanism is adhesion and abrasive wear. The wear track of the laser deposited Ti50Ni50 coating is presented in Figure 10(a), showing ploughing mechanism experienced by the coating. Wear debris...). Plastic deformation and shallow plough grooves on the worn surface of theNiTi show that the coating suffers fromnonsevere abra- sive and adhesive wear from the hard tungsten carbide ball. Figure 11(a) displays the wear track of the laser deposited Ni55Ti45...

  16. Corrosion Finishing/Coating Systems for DoD Metallic Substrates Based on Non-Chromate Inhibitors and UV Curable, Zero VOC Materials

    Science.gov (United States)

    2010-08-01

    deposited on panels prepared using each method. Figure 8. Optical images of prepared, uncoated aluminum 7075-T6 panels 17 after exposure to salt fog ...aluminum 7075-T6 panels after exposure 18 to salt fog for 18 hours A) chemical immersion, B) chemical wipe, C) ultrasonic processing, and D) abrasive...permit. Ultraviolet curing is one of the radiation curing techniques that are used in coatings, inks, adhesives and sealants . UV curable coatings

  17. Transparent nanocrystalline diamond coatings and devices

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.

  18. Article Including Environmental Barrier Coating System

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  19. Method of measuring metal coating adhesion

    Science.gov (United States)

    Roper, J.R.

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  20. Near-infrared radiation curable multilayer coating systems and methods for applying same

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Mark P; Verdun, Shelley D; Post, Gordon L

    2015-04-28

    Multilayer coating systems, methods of applying and related substrates are disclosed. The coating system may comprise a first coating comprising a near-IR absorber, and a second coating deposited on a least a portion of the first coating. Methods of applying a multilayer coating composition to a substrate may comprise applying a first coating comprising a near-IR absorber, applying a second coating over at least a portion of the first coating and curing the coating with near infrared radiation.

  1. Ion Beam Sputtered Coatings of Bioglass

    Science.gov (United States)

    Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne

    1982-01-01

    The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.

  2. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  3. Aluminum phosphate coatings

    Science.gov (United States)

    Sambasivan, Sankar; Steiner, Kimberly A.; Rangan, Krishnaswamy K.

    2007-12-25

    Aluminophosphate compounds and compositions as can be used for substrate or composite films and coating to provide or enhance, without limitation, planarization, anti-biofouling and/or anti-microbial properties.

  4. Order and orientation control of mesoporous silica films on conducting gold substrates formed by dip-coating and self-assembly: a grazing angle of incidence small-angle X-ray scattering and field emission scanning electron microscopy study.

    Science.gov (United States)

    Tate, Michael P; Eggiman, Brian W; Kowalski, Jonathan D; Hillhouse, Hugh W

    2005-10-25

    Grazing-angle of incidence small-angle X-ray scattering (GISAXS) and high-resolution field emission scanning electron microscopy have been used to characterize the mesophase symmetry, orientation, and long-range order in PEO20-PPO70-PEO20 (Pluronic P123) templated mesoporous silica thin films on conducting gold substrates as a function of silica-to-ethylene oxide (Si/EO) block ratio and relative humidity (RH). The films are formed by dip-coating followed by evaporation-induced self-assembly under tightly controlled RH. The general evolution of the mesophase follows the trends that are expected based on shape factors due to swelling of the PEO block. However, changes in orientation of the nanostructure relative to the substrate and the degree of long-range order are found to depend on Si/EO ratio. These effects are likely due to the dynamics of evaporation and self-assembly. Generally, at Si/EO ratios lower than 3.29, the films contained regions where the nanostructure was not oriented relative to the plane of the substrate. However, for Si/EO ratios greater than 3.62, conditions were found where the nanostructure of the film was highly oriented relative to the plane of the substrate. This is true over the range of RH studied, independent of the nanostructure symmetry. For low Si/EO ratios at the highest RH levels, the films were composed of a mixture of spherical and cylindrical pores. At high Si/EO ratios and high RH levels, the films had a highly oriented R-3m nanostructure but displayed streaking perpendicular to the substrate in the Bragg spots on GISAXS patterns. This streaking is interpreted as faulting along planes parallel to the substrate.

  5. Biaxially Textured Copper and Copper-Iron Alloy Substrates for Use in YBa2Cu3O7-x Coated Conductors

    National Research Council Canada - National Science Library

    Varanasi, Chakrapani V; Barnes, Paul N; Yust, Nicholas A

    2005-01-01

    Copper and Cu?Fe (Fe ̃ 2.35 wt%) alloy substrates were thermo-mechanically processed and the biaxial texture development, magnetic properties, yield strength, and electrical resistivity were studied and compared to determine...

  6. The photocatalytic removal of azo dye by nickel-doped titanium dioxide nanoparticles coated on Iranian natural zeolite clinoptilolite fixed substrate

    Directory of Open Access Journals (Sweden)

    Masoud Rismanchian

    2015-01-01

    Conclusion: Application of Iranian CLI as a substrate is the most cost-effective way to increase the photocatalytic activity. Furthermore, adding Ni to TiO 2 can increase the photocatalyst removal efficiency of azonium compound.

  7. Smooth Compliant Antifoulant Coatings.

    Science.gov (United States)

    1982-09-30

    team reviewed the state of the art in marine antifoulant tech- nology. As part of this technology review, the team visited the Naval Ship Research and...high payoff is the incorporation of the biocide within the substrate polymer chain. This permits the antifoulant to be held chemi- cally rather than by...traditionally used red lead as a basis for protection against marine fouling. The antifoulant coating consists of a metal pretreatment coat, four coats of an

  8. Cube Texture Formation of Cu-33at.%Ni Alloy Substrates and CeO2 Buffer Layer for YBCO Coated Conductors

    DEFF Research Database (Denmark)

    Tian, Hui; Li, Suo Hong; Ru, Liang Ya

    2014-01-01

    Cube texture formation of Cu-33 at.%Ni alloy substartes and CeO2 buffer layer prepared by chemical solution deposition on the textured substrate were investigated by electron back scattered diffraction (EBSD) and XRD technics systematically. The results shown that a strong cube textured Cu-33at.......%Ni alloy substrate with the cube texture fraction of 99.8 % (cube texture fraction...

  9. Influence of the substrate bias voltage on the crystallographic structure and mechanical properties of Ti6Al4V coatings deposited by rf magnetron

    Science.gov (United States)

    Alfonso, J. E.; Pacheco, Fernando; Castro P., Alvaro; Torres, J.

    2005-08-01

    Physical and mechanical properties of pure titanium are improved when the material is mixed with aluminum and vanadium at specific concentrations. Specifically, the alloy composed by 90% of titanium, 6% of aluminum and 4% of vanadium (Ti-6Al-4V) is highly resistant to fatigue and corrosion titanium and their alloys can be deposited by two techniques: Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD). However, some problems are generated when carbonated steel substrates are used under the CVD technique, mainly because those substrates lost its carbon as a result of the high substrate temperature used during the deposition process. Alternatively, PVD (magnetron sputtering, ion plating) is a low temperature substrate process and also has the advantage that substrate bias can promote structure refinement through resputtering effects.Substrate bias influence on the crystalline structure of Ti6Al4V thin films prepared by rf magnetron sputtering are presented in this work. Samples were grown onto common glass and AISI 420 steel substrates using a Ti6Al4V (99.9 %) target. Substrate bias was varied from -100 V to -200 V. Samples were characterized by X-ray Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDXS), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). Thin films stoichiometry were studied by EDX in agreement with the Ti-6Al-4V target. Finally, the studies of the mechanical behavior of the films on steel showed that the hardness increased 1100 Knoop when the bias voltage is raised to -160 V.

  10. Influence of substrate pre-treatments by Xe{sup +} ion bombardment and plasma nitriding on the behavior of TiN coatings deposited by plasma reactive sputtering on 100Cr6 steel

    Energy Technology Data Exchange (ETDEWEB)

    Vales, S., E-mail: sandra.vales@usp.br [Universidade de São Paulo (USP), Escola de Engenharia de São Carlos, Av. Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 (Brazil); Brito, P., E-mail: ppbrito@gmail.com [Pontifícia Universidade Católica de Minas Gerais (PUC-MG), Av. Dom José Gaspar 500, 30535-901 Belo Horizonte, MG (Brazil); Pineda, F.A.G., E-mail: pipe8219@gmail.com [Universidade de São Paulo (USP), Escola de Engenharia de São Carlos, Av. Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 (Brazil); Ochoa, E.A., E-mail: abigail_ochoa@hotmail.com [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); Droppa, R., E-mail: roosevelt.droppa@ufabc.edu.br [Universidade Federal do ABC (UFABC), Av. dos Estados, 5001, Santo André, SP CEP 09210-580 (Brazil); Garcia, J., E-mail: jose.garcia@sandvik.com [Sandvik Coromant R& D, Lerkrogsvägen 19, SE-12680, Stockholm (Sweden); Morales, M., E-mail: monieriz@gmail.com [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); Alvarez, F., E-mail: alvarez@ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); and others

    2016-07-01

    In this paper the influence of pre-treating a 100Cr6 steel surface by Xe{sup +} ion bombardment and plasma nitriding at low temperature (380 °C) on the roughness, wear resistance and residual stresses of thin TiN coatings deposited by reactive IBAD was investigated. The Xe{sup +} ion bombardment was carried out using a 1.0 keV kinetic energy by a broad ion beam assistance deposition (IBAD, Kaufman cell). The results showed that in the studied experimental conditions the ion bombardment intensifies nitrogen diffusion by creating lattice imperfections, stress, and increasing roughness. In case of the combined pre-treatment with Xe{sup +} ion bombardment and subsequent plasma nitriding, the samples evolved relatively high average roughness and the wear volume increased in comparison to the substrates exposed to only nitriding or ion bombardment. - Highlights: • Effect of Xe ion bombardment and plasma nitriding on TiN coatings was investigated. • Xe ion bombardment with 1.0 KeV increases nitrogen retention in plasma nitriding. • 1.0 KeV ion impact energy causes sputtering, thus increasing surface roughness. • TiN coating wear is minimum after plasma nitriding due to lowest roughness.

  11. ENVIRONMENTAL AND ENERGY QUALITY TECHNOLOGIES Task Order 0005: Organic Finishing Technologies Sub Task 11: High Speed, Substrate Safe Specialty Coating Laser Stripping

    Science.gov (United States)

    2015-06-22

    Mr. Jason Cary Mr. David Nielson Concurrent Technologies Corporation Ms. Shanna Denny Mr. James Arthur, Jr. Mr. Randall Straw Mr. Bryan...inspection and/or replacement. Standard coating removal methods include chemical strippers, media blasting (i.e., wheat starch, plastic

  12. Environmental and Energy Quality Technologies. Task Order 0005: Organic Finishing Technologies, Sub Task 11: High Speed, Substrate Safe Specialty Coating Laser Stripping : Project: WP 2146

    Science.gov (United States)

    2015-06-22

    Mr. Jason Cary Mr. David Nielson Concurrent Technologies Corporation Ms. Shanna Denny Mr. James Arthur, Jr. Mr. Randall Straw Mr. Bryan...inspection and/or replacement. Standard coating removal methods include chemical strippers, media blasting (i.e., wheat starch, plastic

  13. Characterization of a strongly textured non-ferromagnetic Cu-33 at%Ni substrate coated with a CeO2 buffer layer

    DEFF Research Database (Denmark)

    Tian, Hui; Suo, H.L.; Yue, Zhao

    2013-01-01

    the fraction of the cube {001}〈100〉 texture is 99.8% and the fraction of boundary misorientations with angles greater than 10 is only 5%. The material is shown to be non-ferromagnetic at typical operating temperatures for coated conductors. Furthermore, it is shown that a CeO2 buffer layer can be successfully...

  14. Human-derived extracellular matrix from Wharton's jelly: An untapped substrate to build up a standardized and homogeneous coating for vascular engineering.

    Science.gov (United States)

    Dan, Pan; Velot, Émilie; Francius, Grégory; Menu, Patrick; Decot, Véronique

    2017-01-15

    One of the outstanding goals in tissue engineering is to develop a natural coating surface which is easy to manipulate, effective for cell adhesion and fully biocompatible. The ideal surface would be derived from human tissue, perfectly controllable, and pathogen-free, thereby satisfying all of the standards of the health authorities. This paper reports an innovative approach to coating surfaces using a natural extracellular matrix (ECM) extracted from the Wharton's jelly (WJ) of the umbilical cord (referred to as WJ-ECM). We have shown by atomic force microscopy (AFM), that the deposition of WJ-ECM on surfaces is homogenous with a controllable thickness, and that this easily-prepared coating is appropriate for both the adhesion and proliferation of human mesenchymal stem cells and mature endothelial cells. Furthermore, under physiological shear stress conditions, a larger number of cells remained adhered to WJ-ECM than to a conventional coating such as collagen - a result supported by the higher expression of both integrins α2 and β1 in cells cultured on WJ-ECM. Our data clearly show that Wharton's jelly is a highly promising coating for the design of human biocompatible surfaces in tissue engineering as well as in regenerative medicine. Discovery and design of biomaterial surface are a hot spot in the tissue engineering field. Natural matrix is preferred to mimic native cell microenvironment but its use is limited due to poor resource availability. Moreover, current studies often use single or several components of natural polymers, which is not the case in human body. This paper reports a natural extracellular matrix with full components derived from healthy human tissue: Wharton's jelly of umbilical cord. Reconstituting this matrix as a culture surface, our easily-prepared coating provides superior biocompatibility for stem and mature cells. Furthermore, we observed improved cell performance on this coating under both static and dynamic condition. This novel

  15. Enhancement of mechanical and tribological properties in AISI D3 steel substrates by using a non-isostructural CrN/AlN multilayer coating

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, G. [Thin Film Group, Universidad del Valle in Cali (Colombia); Caicedo, J.C., E-mail: jcaicedoangulo@gmail.com [Thin Film Group, Universidad del Valle in Cali (Colombia); Amaya, C. [Thin Film Group, Universidad del Valle in Cali (Colombia); Laboratory of Hard Coatings, CDT-ASTIN SENA in Cali (Colombia); Yate, L. [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain); Munoz Saldana, J. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro (Mexico); Prieto, P. [Thin Film Group, Universidad del Valle in Cali (Colombia); Center of Excellence for Novel Materials - CENM, Calle 13 100-00 320-026, Cali (Colombia)

    2011-02-15

    Enhancement of mechanical and tribological properties on AISI D3 steel surfaces coated with CrN/AlN multilayer systems deposited in various bilayer periods ({Lambda}) via magnetron sputtering has been studied in this work exhaustively. The coatings were characterized in terms of structural, chemical, morphological, mechanical and tribological properties by X-ray diffraction (XRD), electron dispersive spectrograph, atomic force microscopy, scanning and transmission electron microscopy, nanoindentation, pin-on-disc and scratch tests. The failure mode mechanisms were observed via optical microscopy. Results from X-ray diffraction analysis revealed that the crystal structure of CrN/AlN multilayer coatings has a NaCl-type lattice structure and hexagonal structure (wurtzite-type) for CrN and AlN, respectively, i.e., made was non-isostructural multilayers. An enhancement of both hardness and elastic modulus up to 28 GPa and 280 GPa, respectively, was observed as the bilayer periods ({Lambda}) in the coatings were decreased. The sample with a bilayer period ({Lambda}) of 60 nm and bilayer number n = 50 showed the lowest friction coefficient ({approx}0.18) and the highest critical load (43 N), corresponding to 2.2 and 1.6 times better than those values for the coating deposited with n = 1, respectively. The best behavior was obtained when the bilayer period ({Lambda}) is 60 nm (n = 50), giving the highest hardness 28 GPa and elastic modulus of 280 GPa, the lowest friction coefficient ({approx}0.18) and the highest critical load of 43 N. These results indicate an enhancement of mechanical, tribological and adhesion properties, comparing to the CrN/AlN multilayer systems with 1 bilayer at 28%, 21%, 40%, and 30%, respectively. This enhancement in hardness and toughness for multilayer coatings could be attributed to the different mechanisms for layer formation with nanometric thickness such as the Hall-Petch effect and the number of interfaces that act as obstacles for the

  16. Studies on modification of ZnO sol-gel spin coated on flexible substrate at low temperature: Effect of time exposure

    Science.gov (United States)

    Kamardin, Ili Liyana Khairunnisa; Ainuddin, Ainun Rahmahwati

    2017-04-01

    Transparent Conducting Oxide (TCO) Film has been chosen as flexible substrate recently in the application of a device. One of the TCO mostly used is ITO/PET substrates. Through this communication, the effect of time exposure of ZnO thin film by modified sol-gel deposited on flexible substrates was investigated. 0.75 M of NaOH and C6H8O7 were dropped directly into precursor solution right before aging process in order to modified precursor solution environment condition. x-ray diffraction pattern recorded plane (100) and (101) as preferential growth orientation. The (101) plane was selected to calculate the average crystallite. The atomic force microscopy indicated RMS value for NaOH samples increased with time exposure. Meanwhile, for C6H8O7 samples decreased with hot water treatment time exposure.

  17. A laboratory scale approach to polymer solar cells using one coating/printing machine, flexible substrates, no ITO, no vacuum and no spincoating

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Andersen, Thomas Rieks; Helgesen, Martin

    2013-01-01

    Printing of the silver back electrode under ambient conditions using simple laboratory equipment has been the missing link to fully replace evaporated metal electrodes. Here we demonstrate how a recently developed roll coater is further developed into a single machine that enables processing of all......–tin-oxide (ITO) or vacuum evaporation steps making it a significant step beyond the traditional laboratory polymer solar cell processing methods involving spin coating and metal evaporation....

  18. Biocompatibility of Niobium Coatings

    Directory of Open Access Journals (Sweden)

    René Olivares-Navarrete

    2011-09-01

    Full Text Available Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainless steel substrates and tissue culture plastic were also studied, in order to give comparative information. No toxic response was observed for any of the surfaces, indicating that the Nb coatings act as a biocompatible, bioinert material. Cell morphology was also studied by immune-fluorescence and the results confirmed the healthy state of the cells on the Nb surface. X-ray diffraction analysis of the coating shows that the film is polycrystalline with a body centered cubic structure. The surface composition and corrosion resistance of both the substrate and the Nb coating were also studied by X-ray photoelectron spectroscopy and potentiodynamic tests. Water contact angle measurements showed that the Nb surface is more hydrophobic than the SS substrate.

  19. Evolution of microstructure, texture and topography during additional annealing of cube-textured Ni–5at.%W substrate for coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Mishin, Oleg; Grivel, Jean-Claude

    2012-01-01

    Microstructure, texture and topography have been studied in a recrystallized Ni–5at.%W substrate before and after additional annealing at 1025C for 1 h. The initial recrystallized material contained a strong cube texture and a high fraction of low angle grain boundaries. R3 boundaries were also f...

  20. Eps15R is a tyrosine kinase substrate with characteristics of a docking protein possibly involved in coated pits-mediated internalization

    DEFF Research Database (Denmark)

    Coda, L; Salcini, A E; Confalonieri, S

    1998-01-01

    eps15R was identified because of its relatedness to eps15, a gene encoding a tyrosine kinase substrate bearing a novel protein-protein interaction domain, called EH. In this paper, we report a biochemical characterization of the eps15R gene product(s). In NIH-3T3 cells, three proteins of 125, 108...

  1. SERS substrate and a method of providing a SERS substrate

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2011116089A A substrate primarily for SERS determination, the substrate has a number of elongate elements with a density of at least 1x108 elongate elements per cm2 and having metal coated tips. When the elements may be made to lean toward each other, such as by providing a drop...

  2. Friction surfaced Stellite6 coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. Prasad; Damodaram, R. [Department of Metallurgical and Materials Engineering - Indian Institute of Technology Madras, Chennai 600 036 (India); Rafi, H. Khalid, E-mail: khalidrafi@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Ram, G.D. Janaki [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Reddy, G. Madhusudhan [Metal Joining Group, Defence Metallurgical Research Laboratory (DMRL) Kanchanbagh, Hyderabad 500 058 (India); Nagalakshmi, R. [Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirappalli 620 014 (India)

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material for friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  3. spin coating

    African Journals Online (AJOL)

    PROJET SOJA

    Dans ce travail nous avons préparé des couches minces de l'oxyde de zinc ZnO dopées à l'aluminium et non dopées par la technique Sol-Gel associée au « spin coating » sur des substrats en verre « pyrex » à partir de l'acétate de zinc dissous dans une solution de l'éthanol. Nous avons ensuite effectué des analyses ...

  4. Functional Surface Coating on Cellulosic Flexible Substrates with Improved Water-Resistant and Antimicrobial Properties by Use of ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xiaofei Tian

    2017-01-01

    Full Text Available It is of significant interest to create functional flexible surfaces that simultaneously exhibit high water-resistance and antimicrobial performances for medical or packaging applications. This study reported a synthesis of functional surface coating on flexible cellulose materials (filter papers with ZnO nanoparticles and binds of renewable soybean oil-based polymers. Self-aggregation of ZnO nanoparticles could form ZnO particles with two regular morphological patterns. Rather than a rod-like morphology, a flower-like ZnO benefited a promotion of surface hydrophobicity. Moreover, surface with the flower-like ZnO showed a 51.6% promotion on antimicrobial activities against Gram-negative bacteria (E. coli than the rod-like ZnO. A low binder/ZnO ratio of 0.2 led to a remarkable improvement on water repelling performances without negative effects on a coating adhesion of ZnO. Under this condition, a hydrophobic surface was achieved with a large static contact angle of 138° when applying ZnO nanoparticles at a dosage of 3 g m−2.

  5. Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol-gel-derived TiO2-SiO2 nano composite coatings on stainless steel substrates.

    Science.gov (United States)

    Dadash, Mohammad Saleh; Karbasi, Saeed; Esfahani, Mojtaba Nasr; Ebrahimi, Mohammad Reza; Vali, Hojatollah

    2011-04-01

    Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol-gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50-60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si-O-Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO(2)-calcinated NBG and TiO(2)-Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si-O-Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBG-titania films have better bioactivity than non calcinated NBG-titania films.

  6. Mechanical characterization of 'uncoated' and 'Ta2O5-single-layer-coated' SiO2 substrates: results from GeNS suspension, and the CoaCh project

    Science.gov (United States)

    Cesarini, E.; Prato, M.; Lorenzini, M.; Cagnoli, G.; Campagna, E.; Canepa, M.; Chincarini, A.; Gemme, G.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Vetrano, F.

    2010-04-01

    Thermal noise of the mirrors limits the sensitivity of interferometric gravitational-wave detectors in the frequency range between 50 and 300 Hz. According to the fluctuation-dissipation theorem, the thermal noise amplitude is proportional to the mechanical loss of the mirrors. Fused silica substrates loss angle widely ranges from 10-9 to 10-6, while for the coating it is around 10-4. Loss angle measurements in ultra low mechanical loss materials are normally affected by a large systematic error due to the excess losses introduced by the suspension system used to hold the samples. An innovative measurement system Gentle Nodal Suspension, where the disk-shaped sample is suspended in equilibrium on the top of a sphere, touching one of the nodal points of vibration, has been developed in INFN Florence Virgo laboratory. The advantages of this system are as follows: (i) the good reproducibility of loss angle measurements; (ii) one surface only (in any case uncoated) of the sample is touched; (iii) the contact surface is minimized because of the absence of applied forces. This suspension has been used to characterize annealing and coating deposition effects on the mechanical quality factor Q. An interesting comparison/analysis of these effects on mechanical, optical, chemical and surface properties using spectroscopic ellipsometry, x-ray photoelectron spectroscopy and atomic force microscopy has been carried out.

  7. Corrosion behavior of duplex coatings

    Directory of Open Access Journals (Sweden)

    K. Raghu Ram Mohan Reddy

    2016-07-01

    Full Text Available The titanium alloys are used in defense, aerospace, automobile, chemical plants and biomedical applications due to their very high strength and lightweight properties. However, corrosion is a life-limiting factor when Ti alloys are exposed to different chemical environments at high temperatures. In the present paper, duplex NiCrAlY/WC–Co coating is coated onto Ti6Al4V substrate to investigate the corrosion behavior of both coated samples and the substrate. The duplex coating was performed with NiCrAlY as the intermediate coat of 200 μm thickness deposited by HVOF process and WC–Co ceramic top coat with varying thicknesses of 250 μm, 350 μm and 450 μm deposited by DS process. Potentiodynamic polarization tests were employed to investigate the corrosion performance of duplex coated samples and substrate in Ringer’s solution at 37 °C and pH value was set to 5.7. Finally the results reveal that 350 μm thick coated samples showed highest corrosion resistance compared to 250 μm thick samples as well as bare substrate. However, the 450 μm thick coated sample showed poor corrosion resistance compared to the substrate. The scale formed on the samples upon corrosion was characterized by using SEM analysis to understand the degree of corrosion behavior.

  8. The influence of substrate temperature and spraying distance on the properties of plasma sprayed tungsten and steel coatings deposited in a shrouding chamber

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Vilémová, Monika; Nevrlá, Barbara; Kocmanová, Lenka; Veverka, Jakub; Halasová, Martina; Hadraba, Hynek

    2017-01-01

    Roč. 318, May (2017), s. 217-223 ISSN 0257-8972. [International Meeting on Thermal Spraying (RIPT)/7./. Limoges, 09.12.2015-11.12.2015] R&D Projects: GA ČR GB14-36566G EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 ; RVO:68081723 Keywords : Tungsten * Steel * Atmospheric plasma spraying * Shrouding * Substrate temperature * Fusion reactor materials * Plasma facing components Subject RIV: JK - Corrosion ; Surface Treatment of Materials; JK - Corrosion ; Surface Treatment of Materials (UFM-A) Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/article/pii/S0257897216310520

  9. Characterization of ZnO thin films grown on different p-Si substrate elaborated by solgel spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Chebil, W., E-mail: Chbil.widad@live.fr [Laboratoire Physico-chimie des Matériaux, Unité de Service Commun de Recherche “High resolution X-ray diffractometer”, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Fouzri, A. [Laboratoire Physico-chimie des Matériaux, Unité de Service Commun de Recherche “High resolution X-ray diffractometer”, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Institut Supérieur des Sciences Appliquées et de Technologie de Sousse, Université de Sousse (Tunisia); Fargi, A. [Laboratoire de Microélectronique et Instrumentation, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l’environnement, 5019 Monastir (Tunisia); Azeza, B.; Zaaboub, Z. [Laboratoire Micro-Optoélectroniques et Nanostructures, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l' environnement, 5019 Monastir (Tunisia); and others

    2015-10-15

    Highlights: • High quality ZnO thin films grown on different p-Si substrates were successful obtained by sol–gel process. • PL measurement revealed that ZnO thin film grown on porous Si has the better optical quality. • I–V characteristics for all heterojunctions exhibit successful diode formation. • The diode ZnO/PSi shows a better photovoltaic effect under illumination with a maximum {sub Voc} of 0.2 V. - Abstract: In this study, ZnO thin films are deposited by sol–gel technique on p-type crystalline silicon (Si) with [100] orientation, etched silicon and porous silicon. The structural analyses showed that the obtained thin films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented along the c-axis direction. Morphological study revealed the presence of rounded and facetted grains irregularly distributed on the surface of all samples. PL spectra at room temperature revealed that ZnO thin film grown on porous Si has a strong UV emission with low defects in the visible region comparing with ZnO grown on plat Si and etched Si surface. The heterojunction parameters were evaluated from the (I–V) under dark and illumination at room temperature. The ideality factor, barrier height and series resistance of heterojunction grown on different p-Si substrates are determined by using different methods. Best electrical properties are obtained for ZnO layer deposited on porous silicon.

  10. Coated particle waste form development

    Energy Technology Data Exchange (ETDEWEB)

    Oma, K.H.; Buckwalter, C.Q.; Chick, L.A.

    1981-12-01

    Coated particle waste forms have been developed as part of the multibarrier concept at Pacific Northwest Laboratory under the Alternative Waste Forms Program for the Department of Energy. Primary efforts were to coat simulated nuclear waste glass marbles and ceramic pellets with low-temperature pyrolytic carbon (LT-PyC) coatings via the process of chemical vapor deposition (CVD). Fluidized bed (FB) coaters, screw agitated coaters (SAC), and rotating tube coaters were used. Coating temperatures were reduced by using catalysts and plasma activation. In general, the LT-PyC coatings did not provide the expected high leach resistance as previously measured for carbon alone. The coatings were friable and often spalled off the substrate. A totally different concept, thermal spray coating, was investigated at PNL as an alternative to CVD coating. Flame spray, wire gun, and plasma gun systems were evaluated using glass, ceramic, and metallic coating materials. Metal plasma spray coatings (Al, Sn, Zn, Pb) provided a two to three orders-of-magnitude increase in chemical durability. Because the aluminum coatings were porous, the superior leach resistance must be due to either a chemical interaction or to a pH buffer effect. Because they are complex, coated waste form processes rank low in process feasibility. Of all the possible coated particle processes, plasma sprayed marbles have the best rating. Carbon coating of pellets by CVD ranked ninth when compared with ten other processes. The plasma-spray-coated marble process ranked sixth out of eleven processes.

  11. Solid polymer substrates and coated fibers containing 2,4,6-trinitrobenzene motifs as smart labels for the visual detection of biogenic amine vapors.

    Science.gov (United States)

    Pablos, Jesús L; Vallejos, Saúl; Muñoz, Asunción; Rojo, María J; Serna, Felipe; García, Félix C; García, José M

    2015-06-08

    Attempts to polymerize trinitrobenzene derivatives (TNB) have been fruitless so far. Accordingly, polymers containing TNB have not been exploited in spite of their envisaged potential applications. Here, we describe two ways for preparing polymers with TNB moieties thus overcoming the previously reported polymerization impairments. We also report on the exploitation of the materials, both obtained as tractable transparent films and coated fibers, as smart labels for the visual detection of amine vapors. More precisely, amines in the atmosphere surrounding the sensory materials diffuse into them reacting with the TNB motifs forming highly colored Meisenheimer complexes, giving rise to development of color and to the naked eye sensing phenomenon. This is the case of highly volatile amines, such as trimethylamine, produced in food spoilage, specifically in the deterioration of fish or meat, for which the color development of the smart labels can be used as a visual test for food freshness. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A multi technique study of a new lithium disilicate glass-ceramic spray-coated on ZrO2 substrate for dental restoration

    Directory of Open Access Journals (Sweden)

    Möncke Doris

    2017-09-01

    Full Text Available An alkali niobate-silicate veneer ceramic for ZrO2-based dental restoration was developed and characterized for its physical properties and structure. The properties were adjusted for dental applications. The new lithium disilicate glass-ceramic VBK (sold as cerafusion or LiSi can easily be applied by spray coating to any individually formed ZrO2-matrix and needs only one final tempering treatment. The surface of the glass-ceramic is very smooth. The color of the already translucent glass-ceramic can be adjusted to that of individual natural teeth. The structure of the glass-ceramicwas studied by XRD and Ramanspectroscopy as a function of heat-treatment and of spatial variations within the material and at its interfaces. ToF SIMS, SEM and thermal analysis techniques were applied to investigate the crystallization behavior and surface-interface reactions. XRD and Raman spectroscopy identified different crystalline phases in the amorphous glass matrix including Li2Si2O5, Li2SiO3, NaxLi(1−xNbO3 and Na3NbO4. The Raman spectrum of the amorphous matrix is dominated by the vibrational activity of the highly polarizable niobate units with a prominent feature at 865 cm−1, assigned to Nb-O stretching in NbO6 octahedra, which have non-bridging oxygen atoms and are connected to the silicate matrix rather than to other niobate polyhedra.

  13. Phosphorylation by Dyrk1A of clathrin coated vesicle-associated proteins: identification of the substrate proteins and the effects of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Noriko Murakami

    Full Text Available Dyrk1A phosphorylated multiple proteins in the clathrin-coated vesicle (CCV preparations obtained from rat brains. Mass spectrometric analysis identified MAP1A, MAP2, AP180, and α- and β-adaptins as the phosphorylated proteins in the CCVs. Each protein was subsequently confirmed by [(32P]-labeling and immunological methods. The Dyrk1A-mediated phosphorylation released the majority of MAP1A and MAP2 and enhanced the release of AP180 and adaptin subunits from the CCVs. Furthermore, Dyrk1A displaced adaptor proteins physically from CCVs in a kinase-concentration dependent manner. The clathrin heavy chain release rate, in contrast, was not affected by Dyrk1A. Surprisingly, the Dyrk1A-mediated phosphorylation of α- and β-adaptins led to dissociation of the AP2 complex, and released only β-adaptin from the CCVs. AP180 was phosphorylated by Dyrk1A also in the membrane-free fractions, but α- and β-adaptins were not. Dyrk1A was detected in the isolated CCVs and was co-localized with clathrin in neurons from mouse brain sections and from primary cultured rat hippocampus. Previously, we proposed that Dyrk1A inhibits the onset of clathrin-mediated endocytosis in neurons by phosphorylating dynamin 1, amphiphysin 1, and synaptojanin 1. Current results suggest that besides the inhibition, Dyrk1A promotes the uncoating process of endocytosed CCVs.

  14. Edge effect enhanced electron field emission in top assembled reduced graphene oxide assisted by amorphous CNT-coated carbon cloth substrate

    Directory of Open Access Journals (Sweden)

    Rajarshi Roy

    2013-01-01

    Full Text Available In this work a hybrid structure assembly of amorphous carbon nanotubes (a-CNTs -reduced graphene oxide (RGO has been fabricated on carbon cloth/PET substrates for enhanced edge effect assisted flexible field emission device application. The carbon nanostructures prepared by chemical processes were finally deposited one over the other by a simple electrophoretic deposition (EPD method on carbon cloth (CC fabric. The thin films were then characterized by X-ray diffraction (XRD, Fourier transformed infrared spectroscopy (FTIR, field emission scanning electron microscopy (FESEM and high resolution transmission electron microscope (HRTEM. Field assisted electron emission measurement was performed on this hybrid structure. It was observed that the hybrid carbon nanostructure showed exceptional field emission properties with outstanding low turn-on and threshold field (Eto∼ 0.26 Vμm−1, Eth ∼ 0.55 Vμm1. These observed results are far better compared to standalone and plasma etched edge enhanced RGO systems due to the bottom layer a-CNTs bed which assisted in significant enhancement of edge effect in RGO sheets.

  15. The formation of photoresist film with thicknesses from 0.7 microns to 100 microns on surfaces with considerable relief by spray coating on the heated substrate

    Science.gov (United States)

    Romashkin, Alexey V.; Levin, Denis D.; Rozanov, Roman Yu.; Nevolin, Vladimir K.

    2016-12-01

    The principle of the formation of thin and thick photoresist films on surfaces with considerable relief by the aerosol deposition using ultra low flow was investigated. It was shown that the change in the photoresist blend composition of solution is required with decreasing film thickness less than 1 micron to achieve a roughness of less than 150 nm. And the film at least 0.7 microns thickness can be formed and have the uniform film thickness as on the walls and on horizontal surfaces on the substrate with grooves obtained by etching liquid. It is shown that even with a film thickness of 10 microns vertical walls may be partially cover the of the photoresist and unfilled plasma-chemical etching grooves with vertical walls, whose width not exceeding 10 microns. To determine the uniformity of film thickness atomic force microscopy was used. And it was shown that up to 2 microns of film thickness spectroscopic methods with the analysis of the fluorescent signal intensity for positive photoresists is possible to use too.

  16. Plastic Substrates for Flexible Displays

    Science.gov (United States)

    Ito, Hisashi; Oka, Wataru; Goto, Hideki; Umeda, Hideo

    2006-05-01

    New flexible fibrous glass-reinforced plastic (FRP) substrates for flat panel displays were developed. Optimizing the composition of the FRP by adjusting the difference in refractive index between a matrix resin and a glass fiber enabled the coexistence of a high transparency and a low coefficient of thermal expansion (CTE). An excellent smooth surface morphology was confirmed by the formulation of a coating resin. The stability of moisture impermeability depended on the surface smoothness and adhesion between a barrier layer and the coating layer. The moisture permeation rates of barrier substrates were below detection limits (<0.01 g m-2 day-1) on standard measurement equipment.

  17. Antireflective Coatings for Glass and Transparent Polymers

    NARCIS (Netherlands)

    Buskens, P.; Burghoorn, M.; Danho Mourad, M.C.; Vroon, Z.

    2016-01-01

    Antireflective coatings (ARCs) are applied to reduce surface reflections. We review coatings that reduce the reflection of the surface of the transparent substrates float glass, polyethylene terephthalate, poly(methyl methacrylate), and polycarbonate. Three main coating concepts exist to lower the

  18. Molecular Adsorber Coating

    Science.gov (United States)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  19. Advanced Coating Removal Techniques

    Science.gov (United States)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  20. Failure Mechanisms of the Coating/Metal Interface in Waterborne Coatings: The Effect of Bonding

    OpenAIRE

    Hongxia Wan; Dongdong Song; Xiaogang Li; Dawei Zhang; Jin Gao; Cuiwei Du

    2017-01-01

    Waterborne coating is the most popular type of coating, and improving its performance is a key point of research. Cathodic delamination is one of the major modes of failure for organic coatings. It refers to the weakening or loss of adhesion between the coating and substrate. Physical and chemical characteristics of coatings have been studied via scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle measurements, Fourier transform infrared spectroscopy (FTIR), and s...

  1. Graphene dip coatings: An effective anticorrosion barrier on aluminum

    Science.gov (United States)

    Liu, Jianhua; Hua, Lei; Li, Songmei; Yu, Mei

    2015-02-01

    The properties of graphene coating prepared via dip coating route as an effective anticorrosion barrier on aluminum in 0.5 M NaCl solutions were studied. The Raman spectra analysis indicated that the graphene dip coatings were spread consecutively and uniformly on Al substrates. The potentiodynamic polarization and electrochemical impedance spectroscopy results indicated that the graphene dip coatings were a barrier layer between corrosive medium and Al substrate with a highly protection effective. The corrosion resistance efficiency of the substrate with the coatings was three orders of magnitude higher than that without the coatings.

  2. Standard practice for characterization of coatings using conformable Eddy-Current sensors without coating reference standards

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers the use of conformable eddy-current sensors for nondestructive characterization of coatings without standardization on coated reference parts. It includes the following: (1) thickness measurement of a conductive coating on a conductive substrate, (2) detection and characterization of local regions of increased porosity of a conductive coating, and (3) measurement of thickness for nonconductive coatings on a conductive substrate or on a conductive coating. This practice includes only nonmagnetic coatings on either magnetic (μ ≠ μ0) or nonmagnetic (μ = μ0) substrates. This practice can also be used to measure the effective thickness of a process-affected zone (for example, shot peened layer for aluminum alloys, alpha case for titanium alloys). For specific types of coated parts, the user may need a more specific procedure tailored to a specific application.

  3. Investigation on a-C:H:Me coated substrates as an alternative bipolar plate material in all-vanadium redox-flow batteries; Untersuchungen an a-C:H:Me beschichteten Substraten zur Eignung als alternatives Bipolarplattenmaterial fuer waessrige Vanadium Redox-Flow Batterien

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Justin Frederick

    2015-07-01

    A crucial aspect of advancing in renewable energies is the development of affordable decentralized storage systems for the local or regional distribution grid. A technology with great potential is the all-vanadium redox-flow battery (VRFB) with the distinct feature of individual scalable power and capacity. The present work focusses on one of the essential parts in the redox-flow cell; the bipolar plates. By the application of metallic substrates instead of state-of-the-arte graphite composite plates, the design of the cell isn't limited anymore to the mechanical properties or fabrication process of the material. Although metals possess high ductility, which eases the production of such plates, they are prone to corrosion in the high acidic environment of the battery electrolyte. Therefore in this study amorphous carbon coatings (a-C:H) are investigated for corrosion protection. To attain the need of high electrical conductivity the carbon matrices is doped with a metallic element. Preferably refractory metals such as titanium, vanadium, chromium and tungsten were investigated as possible dopants. The electrochemical tests of the samples revealed less degradation the higher the coating thickness was. This can be found on all metallic substrates (material number: 1.4301, 3.7165 and 3.3535). Regarding the hydrogen overpotential, which is an essential value for the suppression of side reactions on the anode, the dominating factor was found to be the sort of doping material as well as the composition of the metallic adhesive layer between coating and substrate. Pores in the coating originate from defects in the substrates as well as from contaminations during the coating process. To understand the degradation mechanism an in-situ-corrosion cell was developed. By the means of these results, delamination could be found to be the predominant factor concerning degradation mechanisms at cathodic potentials. The degradation is initialized at the defects or at the edges

  4. Superhydrophobic silica coating by dip coating method

    Energy Technology Data Exchange (ETDEWEB)

    Mahadik, Satish A., E-mail: superhydrophobicmaterial2100@gmail.com [Air Glass Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, Maharashtra (India); Parale, Vinayak; Vhatkara, Rajiv S.; Mahadik, Dinesh B.; Kavale, Mahendra S. [Air Glass Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, Maharashtra (India); Wagh, Pratap B.; Gupta, Satish [Applied Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai 400 085 (India); Gurav, Jyoti [Empa, Advanced Materials Processing laboratory, 3602 Thun (Switzerland)

    2013-07-15

    Herein, we report a simple and low cost method for the fabrication of superhydrophobic coating surface on quartz substrates via sol-gel dip coating method at room temperature. Desired surface chemistry and texture growth for superhydrophobicity developed under double step sol–gel process at room temperature. The resultant superhydrophobic surfaces were characterized by Field-emission scanning electron microscopy (FE-SEM), Atomic force microscopy (AFM), water contact angle (WCA) measurement, differential thermal gravimetric analysis-differential thermal analysis (TGA-DTA) calorimetry and optical spectrometer. Coating shows the ultra high water contact angle about 168 ± 2° and water sliding angle 3 ± 1° and superoleophilic with petroleum oils. This approach allows a simple strategy for the fabrication process of superhydrophilic–superhydrophobic on same surfaces with high thermal stability of superhydrophobicity up to 560 °C. Thus, durability, special wettability and thermal stability of superhydrophobicity expand their application fields.

  5. Sequential adhesion of platelets and leukocytes from flowing whole blood onto a collagen-coated surface: requirement for a GpVI-binding site in collagen.

    Science.gov (United States)

    Butler, Lynn M; Metson-Scott, Tom; Felix, Jo; Abhyankar, Anita; Rainger, G Ed; Farndale, Richard W; Watson, Stephen P; Nash, Gerard B

    2007-05-01

    The adhesion of leukocytes to immobilised platelets may contribute to inflammatory and thrombotic responses in damaged tissue. To investigate the conditions under which platelets and leukocytes might be deposited together in vessels, we perfused fluorescently-labelled whole blood through glass capillaries coated with various collagen preparations. Video-microscopic observations of the surface showed that platelets formed numerous, individual, rolling and stationary attachments to surfaces coated with acid-soluble, monomeric collagen. However, leukocyte interactions with the deposited platelets were rare. If the blood was washed out, the adherent platelets became more activated, and many rolling adherent leukocytes were observed if a second bolus of blood was perfused over them. This suggested that platelet activation had initially been inadequate to support leukocyte capture. Next, fibrillar collagen was adsorbed to the capillaries to present an ordered array of peptide motifs to platelet receptor glycoprotein (Gp)VI and transduce an activating signal. In this case, platelets were deposited in discrete, stable aggregates and the bound platelets captured many flowing leukocytes. Alternatively, acid-soluble collagen was seeded with collagen-related peptide (CRP) known to contain a GpVI-binding motif. Again, platelet adhesion became stable, and numerous flowing leukocytes were captured. Addition of antibody against GpVI or against P-selectin greatly reduced leukocyte adhesion to the platelets. Thus, in whole blood, platelets binding to exposed collagen need to be activated through GpVI in order to expose sufficient P-selectin to allow efficient capture of flowing leukocytes to take place.

  6. Functional Plasma-Deposited Coatings

    Directory of Open Access Journals (Sweden)

    Mykhaylo Pashechko

    2017-12-01

    Full Text Available The paper focuses on the problem of low adhesion of plasma sprayed coatings to the substrate. The subsequent laser treatment modes and their influence on the coating-substrate interface were studied. This allows to decrease the level of metstability of the coating, thus decreasing its hardness down to 11-12 GPa on the surface and to about 9 GPa on depth of 400 µm. The redistribution of alloying elements through solid and liquid diffusion improves mechanical properties and rises the adhesion up to 450 MPa after remelting and up to 90-110 MPa after laser-aided thermal cycling. At he same time, remelting of coating helps to decrease its porosity down to 1%. Obtained complex of properties also allows to improve wear resistance of coatings and to decrease friction factor.

  7. Coated silicon comprising material for protection against environmental corrosion

    Science.gov (United States)

    Hazel, Brian Thomas (Inventor)

    2009-01-01

    In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.

  8. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    Science.gov (United States)

    Park, Jong Hee

    1998-01-01

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound

  9. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  10. The development of chemically vapor deposited mullite coatings for the corrosion protection of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.; Hou, P.; Sengupta, A.; Basu, S.; Sarin, V. [Boston Univ., MA (United States)

    1998-05-01

    Crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance the corrosion and oxidation resistance of the substrate. Current research has been divided into three distinct areas: (1) Development of the deposition processing conditions for increased control over coating`s growth rate, microstructure, and morphology; (2) Analysis of the coating`s crystal structure and stability; (3) The corrosion resistance of the CVD mullite coating on SiC.

  11. Ni-Al composite coatings: Diffusion analysis and coating lifetime estimation

    Energy Technology Data Exchange (ETDEWEB)

    SUSAN,DONALD F.; MARDER,A.R.

    2000-05-09

    The interdiffusion of Ni matrix/Al particle composite coatings and nickel substrates was studied using electron probe microanalysis (EPMA) and a one-dimensional diffusion model. The initial coating microstructure was a two-phase mixture of y(Ni) and y{prime}(Ni{sub 3}Al). The coating/substrate assemblies were aged at 800 to 1,100 C for times up to 2,000 hours. It was found that aluminum losses to the substrate are significant at 1,000 C and above. The experimental results for the diffusion of Al into the substrate were compared to model predictions based on a diffusion equation for a finite layer on an infinite substrate. Using combined experimental and model results, the effects of temperature and coating thickness were determined and a rationale was developed for coating lifetime prediction.

  12. Mechanical behaviour of hard PVD multilayered coatings

    Energy Technology Data Exchange (ETDEWEB)

    Harry, E. [Lyon-1 Univ., Villeurbanne (France). Lab. des Sciences and Ingenierie des Surfaces; Ignat, M.; Pauleau, Y. [ENSEEG, F-38402, Saint Martin d' Heres (France); Rouzaud, A.; Juliet, P. [CEA, F-38054, Grenoble (France)

    2000-03-01

    The aim of this work was to investigate the cracking behaviour and adhesion of tungsten-carbon-based multilayered coatings deposited on steel substrates by magnetron sputtering. Three-point bending experiments were performed on the coating-on-substrate systems until failure of the film. The systems were also strained uniaxially with a microtensile device adapted to a scanning electron microscope. The mechanical response is analysed from the evolution of the crack density in the coating and the fracture toughness. The results show that the rupture properties of the multilayered coatings are correlated to the film thickness and arrangement of the elementary layers. Scratch experiments on the systems revealed a strong adhesion of the multilayered coatings on steel substrates, and delamination at layer interfaces. Thus, graded coatings appear to be more attractive for mechanical applications. (orig.)

  13. Offshore Substrate

    Data.gov (United States)

    California Department of Resources — This shapefile displays the distribution of substrate types from Pt. Arena to Pt. Sal in central/northern California. Originally this data consisted of seven paper...

  14. Superheating in coated niobium

    OpenAIRE

    T. Junginger; Wasserman, W.; Laxdal, R. E.

    2017-01-01

    Using muon spin rotation it is shown that the field of first flux penetration H_entry in Nb is enhanced by about 30% if coated with an overlayer of Nb_3Sn or MgB_2. This is consistent with an increase from the lower critical magnetic field H_c1 up to the superheating field H_sh of the Nb substrate. In the experiments presented here coatings of Nb_3Sn and MgB_2 with a thickness between 50 and 2000nm have been tested. H_entry does not depend on material or thickness. This suggests that the ener...

  15. Hybrid Calcium Phosphate Coatings for Titanium Implants

    Science.gov (United States)

    Kharapudchenko, E.; Ignatov, V.; Ivanov, V.; Tverdokhlebov, S.

    2017-01-01

    Hybrid multilayer coatings were obtained on titanium substrates by the combination of two methods: the micro-arc oxidation in phosphoric acid solution with the addition of calcium compounds to high supersaturated state and RF magnetron sputtering of the target made of synthetic hydroxyapatite. 16 different groups of coatings were formed on titanium substrates and in vitro studies were conducted in accordance with ISO 23317 in the solution simulating body fluid. The studies using SEM, XRD of the coatings of the samples before and after exposure to SBF were performed. The features of morphology, chemical and phase composition of the studied coatings are shown.

  16. Failure Mechanisms of the Coating/Metal Interface in Waterborne Coatings: The Effect of Bonding

    Directory of Open Access Journals (Sweden)

    Hongxia Wan

    2017-04-01

    Full Text Available Waterborne coating is the most popular type of coating, and improving its performance is a key point of research. Cathodic delamination is one of the major modes of failure for organic coatings. It refers to the weakening or loss of adhesion between the coating and substrate. Physical and chemical characteristics of coatings have been studied via scanning electron microscopy (SEM, atomic force microscopy (AFM, contact angle measurements, Fourier transform infrared spectroscopy (FTIR, and secondary ion mass spectrometry (SIMS. Early heterogeneous swelling at the metal-coating interface in non-defective coated metals was elucidated using frequency-dependent alternating-current scanning electrochemical microscopy. Two types of coatings (styrene-acrylic coating and terpolymer coating were compared. The effects of thickness, surface roughness, and chemical bonding on cathodic delamination were investigated.

  17. Failure Mechanisms of the Coating/Metal Interface in Waterborne Coatings: The Effect of Bonding.

    Science.gov (United States)

    Wan, Hongxia; Song, Dongdong; Li, Xiaogang; Zhang, Dawei; Gao, Jin; Du, Cuiwei

    2017-04-09

    Waterborne coating is the most popular type of coating, and improving its performance is a key point of research. Cathodic delamination is one of the major modes of failure for organic coatings. It refers to the weakening or loss of adhesion between the coating and substrate. Physical and chemical characteristics of coatings have been studied via scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle measurements, Fourier transform infrared spectroscopy (FTIR), and secondary ion mass spectrometry (SIMS). Early heterogeneous swelling at the metal-coating interface in non-defective coated metals was elucidated using frequency-dependent alternating-current scanning electrochemical microscopy. Two types of coatings (styrene-acrylic coating and terpolymer coating) were compared. The effects of thickness, surface roughness, and chemical bonding on cathodic delamination were investigated.

  18. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    Energy Technology Data Exchange (ETDEWEB)

    Pardun, Karoline [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Treccani, Laura, E-mail: treccani@uni-bremen.de [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Volkmann, Eike [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Streckbein, Philipp [University Hospital, Justus-Liebig-University Giessen, Department of Cranio-Maxillo-Facial Surgery, Klinikstrasse 33, 35385 Giessen (Germany); Heiss, Christian [University Hospital of Giessen-Marburg, Department of Trauma Surgery, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany, (Germany); Laboratory of Experimental Surgery, Kerkraderstrasse 9, 35392 Giessen (Germany); Destri, Giovanni Li; Marletta, Giovanni [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemistry, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany)

    2015-03-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic.

  19. Electrically conductive polymer concrete coatings

    Science.gov (United States)

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  20. Induction surface hardening of hard coated steels

    DEFF Research Database (Denmark)

    Pantleon, Karen; Kessler, Olaf; Hoffmann, Franz

    1999-01-01

    -process is the high deposition temperature, consequently the properties of steel substrates are negatively influenced. Therefore, a subsequent heat treatment of the coated steels is necessary to restore the properties of steels ready for operation. Induction surface hardening is used as a method of heat treatment......, the scratch test is used to estimate critical loads for cohesive and adhesive failure of the coatings. Additionally, distortion measurements are carried out. The results emphasize the advantage of induction surface hardening as a method of subsequent heat treatment of CVD-coated steels....... after the deposition of TiN hard coatings on steel substrates. Influences of both the coating properties and the substrate properties are discussed in dependence on the parameters of induction heating. Thereby the heating time, heating atmosphere and the power input into the specimen are changed...

  1. Estudo das características de revestimentos poliméricos aplicados por aspersão térmica para proteção contra desgaste e corrosão de substratos metálicos Study of the characteristics of thermally sprayed polymer coatings for wear and corrosion protection of metallic substrates

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Camello Lima

    2012-12-01

    Full Text Available Revestimentos poliméricos vêm sendo crescentemente considerados como solução na proteção de materiais metálicos contra corrosão e desgaste. A tecnologia de aspersão térmica permite a aplicação de polímeros sobre diversos materiais de substrato, em diversas espessuras, para várias condições ambientais. Polímeros depositados por este processo têm potencial, tanto para reduzir custos com materiais, como para melhorar o desempenho do revestimento em ambientes agressivos. Neste trabalho, foram aplicados revestimentos poliméricos poli-éter-éter-cetona (PEEK e Poliamida 12 sobre substratos de aço carbono, utilizando o processo de aspersão térmica a chama de baixa velocidade. Revestimentos de alta qualidade foram obtidos por esta técnica. Foram avaliadas as características dos materiais e dos revestimentos obtidos, especialmente quanto às propriedades mecânicas, de desgaste e corrosão. De acordo com os resultados obtidos, pode-se afirmar que os revestimentos estudados podem ser utilizados com sucesso em aplicações que envolvam desgaste e corrosão, com uma pequena vantagem para o polímero PEEK.Polymer coatings have been widely considered as a solution in the protection of metallic substrates against both wear and corrosion. Thermal spray technology allows the deposition of polymers onto several substrate materials for various thicknesses at several environmental conditions. Thermal sprayed polymers have high potential for material cost reduction as well as to improve coating performance in drastic environments. In this work, poly-ether-ether-ketone (PEEK and Polyamide 12 were flame sprayed on carbon steel substrates. High quality coatings were obtained. Several tests were carried out to evaluate the coatings mainly related to wear and corrosion performance. According to the obtained results, it can be stated that the studied coatings can be successfully used in applications involving wear and corrosion, with a slight edge

  2. The Influence of Thermal Spray Process Technological Parameters on the Properties of Coatings

    Directory of Open Access Journals (Sweden)

    Aleksandr Lebedev

    2017-01-01

    Full Text Available The article deals with the plasma sprayed Ni-based coating on aluminum alloy substrates. Before spraying, the surfaces of substrates were modified employing sandblasting and its combination with preheating. The coatings were sprayed under variation of spray process parameters. The study involves coating microstructure, porosity and adhesion tests. The influence of spray parameters and substrate pre-treatment on the properties of coating were evaluated.

  3. Methods of Antimicrobial Coating of Diverse Materials

    Science.gov (United States)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of coating diverse substrate materials with antimicrobial agents have been developed. Originally intended to reduce health risks to astronauts posed by pathogenic microorganisms that can grow on surfaces in spacecraft, these methods could also be used on Earth for example, to ensure sterility of surgical inserts and other medical equipment. The methods involve, generally, chemical preparation of substrate surfaces to enable attachment of antimicrobial molecules to the substrate surfaces via covalent bonds. Substrate materials that have been treated successfully include aluminum, glass, a corrosion-resistant nickel alloy, stainless steel, titanium, and poly(tetrafluoroethylene). Antimicrobial agents that have been successfully immobilized include antibiotics, enzymes, bacteriocins, bactericides, and fungicides. A variety of linkage chem istries were employed. Activity of antimicrobial coatings against gram-positive bacteria, gram-negative bacteria, and fungi was demonstrated. Results of investigations indicate that the most suitable combination of antimicrobial agent, substrate, and coating method depends upon the intended application.

  4. Zirconium influence on microstructure of aluminide coatings ...

    Indian Academy of Sciences (India)

    Influence of Zr on the microstructure and phase characteristics of aluminide diffusion coatings deposited on the nickel substrate has been investigated in this study. The coatings with and without zirconium were deposited by CVD method. The cross-section chemical composition investigations revealed that during the ...

  5. Modelling biocide release based on coating properties

    NARCIS (Netherlands)

    Erich, S.J.F.; Baukh, V.

    2016-01-01

    Growth of micro-organisms on coated substrates is a common problem, since it reduces the performance of materials, in terms of durability as well as aesthetics. In order to prevent microbial growth biocides are frequently added to coatings. Unfortunately, early release of these biocides reduces the

  6. Preparation of a MFI zeolite coating on activated carbon

    OpenAIRE

    van der Vaart, R.; Bosch, H.; Keizer, Klaas; Reith, T.

    1997-01-01

    A new and simple method for the preparation of MFI zeolite coated activated carbon is presented. Suitable nucleation sites for the growth of zeolites were introduced to the carbon by adding hydrophilic montmorillonite clay to the carbon substrate. A gas tight MFI zeolite coating was obtained on this modified substrate by hydrothermal growth.

  7. Development of diamond coated tool and its performance in ...

    Indian Academy of Sciences (India)

    ... could maintain low level of cutting forces and remarkably improved surface finish. It has been further revealed that success of the diamond coated tool depends primarily on adhesion of the diamond coating with the carbide substrate and this is strongly influenced by the pre-treatment of the carbide substrate surface before ...

  8. Structure and corrosion properties of PVD Cr-N coatings

    CERN Document Server

    Liu, C; Ziegele, H; Leyland, A; Matthews, A

    2002-01-01

    PVD Cr-N coatings produced by physical vapor deposition (PVD) are increasingly used for mechanical and tribological applications in various industrial sectors. These coatings are particularly attractive for their excellent corrosion resistance, which further enhances the lifetime and service quality of coated components. PVD Cr-N coated steels in an aqueous solution are usually corroded by galvanic attack via through-coating 'permeable' defects (e.g., pores). Therefore, the corrosion performance of Cr-N coated steel is determined by a number of variables of the coating properties and corrosive environment. These variables include: (i) surface continuity and uniformity; (ii) through-coating porosity; (iii) film density and chemical stability; (iv) growth stresses; (v) interfacial and intermediate layers; (vi) coating thickness; (vii) coating composition; and (viii) substrate properties. In this article, PVD Cr-N coatings were prepared, by electron-beam PVD and sputter deposition, with different compositions, t...

  9. Organic/inorganic hybrid coatings for anticorrosion

    Science.gov (United States)

    He, Zhouying

    Compared to organic coatings, organic-inorganic hybrid coatings can potentially improve the anticorrosion performance. The organic phase provides the excellent mechaincal and barrier properties while the inorganic phase acts as an adhesion promoter and corrosion inhibitor. Despite that many studies on alkoxylsilane-based hybrid coatings have been developed and studied, their weatherability and anticorrosion performance has been rarely evaluated. On the other hand, organic-inorganic hybrid coatings based on mixed sol-gel precursors have received much less attention compared to alkoxylsilane-based hybrid coatings. In the first part, polyurethane hybrid coatings with a unique hybrid crosslinked structure as an improved unicoat were successfully prepared. The effect of polyesters on physical properties of the hybrid coatings was studied. Polyurethane coatings derived from cycloaliphatic polyester show comparable properties than those derived from the commercially viable aromatic polyester. Introducing the polysiloxane part into the polyurethane coatings enhanced the crosslinking density, Tg, mechanical properties, and general coating properties. The increased adhesion between the hybrid coating and the substrate make the hybrid coating a good candidate for anticorrosion application, which is shown by electrochemical impedance spectroscopy (EIS). The degradation mechanism of the polyurethane/polysiloxane hybrid coatings under various weathering conditions was shown to be the scission of the urethane and ester groups in the organic phase along with reorganizing and rearranging of the inorganic phase. The anticorrosion performance of the cycloaliphatic hybrid was much better than that of aromatic based hybrid under outdoor weathering based on visual observation and EIS analysis. Acid undercutting is an issue for TEOS based hybrid coating. In the second part, design of experiments (DOEs) was used to statistically investigate on the effect of sol-gel precursors. The

  10. Moisture transport in coated plaster

    NARCIS (Netherlands)

    Goossens, E.L.J.; Van der Spoel, W.H.; Bancken, E.L.J.

    2001-01-01

    In the framework of the research project: 'Water balance of water-borne paint systems on plaster substrates in relation to fungal growth', a study is carried out to moisture transport mechanisms in coated gypsum plaster. In this contribution, the set-up of the study is described. Besides a

  11. Industrial Coatings at Extreme Conditions

    DEFF Research Database (Denmark)

    Subramanian, Srinath; Pérez Hornero, Clara; Pedersen, Lars Thorslund

    With the gradual depletion of oil wells operable at relatively lower temperatures and pressures, the upstream oil industry relies on High Pressure High Temperature (HPHT) wells to source crude oil and gas. HPHT well extraction and processing require anticorrosive coatings applied on substrates...

  12. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  13. Nano-structure TiO2 film coating on 316L stainless steel via sol-gel technique for blood compatibility improvement

    Directory of Open Access Journals (Sweden)

    Mohammadreza Foruzanmehr

    2014-04-01

    Full Text Available   Objective(s: Titanium oxides are known to be appropriate hemocompatible materials which are suggested as coatings for blood-contacting devices. Little is known about the influence of nanometric crystal structure, layer thickness, and semiconducting characteristics of TiO2 on blood hemostasis.   Materials and Methods: Having used sol-gel dip coating method in this study, TiO2 thin films were deposited on nano-scale electro-polished stainless steel 316L with 1 to 5 nano-sized layers. Surface morphology and structure of the film were studied with X-ray diffraction and atomic force microscopy. Blood compatibility was also determined by measuring the platelet activation (CD62P expression, platelet adhesion (Scanning Electron Microscopy, and the blood clotting time on these samples. Results: The films were compact and smooth and existed mainly in the form of anatase. By increasing the number of TiO2 thin layer, clotting time greatly extended, and the population of activated platelet and P-selectine expression changed according to the surface characteristics of each layer. Conclusion: The findings revealed that stainless steel 316L coated with nano-structured TiO2 layer improved blood compatibility, in terms of both blood platelet activity and coagulation cascade, which can decrease the thrombogenicity of blood contacting devices which were made from stainless steel.

  14. Low gloss UV-cured coatings for aircraft

    Science.gov (United States)

    Bowman, Mark; Muschar, Harry

    2014-12-09

    A method of applying a low gloss coating to a substrate such as the exterior surface of an aircraft is disclosed. The coating co