WorldWideScience

Sample records for ozone initiated reactions

  1. Ozone initiated reactions and human comfort in indoor environments

    DEFF Research Database (Denmark)

    Tamas, Gyöngyi

    2006-01-01

    Chemical reactions between ozone and pollutants commonly found indoors have been suggested to cause adverse health and comfort effects among building occupants. Of special interest are reactions with terpenes and other pollutants containing unsaturated carbon-carbon bonds that are fast enough...... to occur under normal conditions in various indoor settings. These reactions are known to occur both in the gas phase (homogeneous reactions) and on the surfaces of building materials (heterogeneous reactions), producing a number of compounds that can be orders of magnitude more odorous and irritating than...... their precursors. The present thesis investigates the effects of ozone-initiated reactions with limonene and with various interior surfaces, including those associated with people, on short-term sensory responses. The evaluations were conducted using a perceived air quality (PAQ) method introduced by Fanger (1988...

  2. New Directions: Ozone-initiated reaction products indoors may be more harmful than ozone itself

    Science.gov (United States)

    Weschler, Charles J.

    2004-10-01

    Epidemiological studies have found associations between ozone concentrations measured at outdoor monitoring stations and certain adverse health outcomes. As a recent example, Gent et al. (2003, Journal of the American Medical Association 290, 1859-1867) have observed an association between ozone levels and respiratory symptoms as well as the use of maintenance medication by 271 asthmatic children living in Connecticut and the Springfield area of Massachusetts. In another example, Gilliland et al. (2001, Epidemiology 12, 43-54) detected an association between short-term increases in ozone levels and increased absences among 4th grade students from 12 southern California communities during the period from January to June 1996. Although children may spend a significant amount of time outdoors, especially during periods when ozone levels are elevated, they spend a much larger fraction of their time indoors. I hypothesize that exposure to the products of ozone-initiated indoor chemistry is more directly responsible for the health effects observed in the cited epidemiological studies than is exposure to outdoor ozone itself.

  3. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice.

    Science.gov (United States)

    Hansen, Jitka S; Nørgaard, Asger W; Koponen, Ismo K; Sørli, Jorid B; Paidi, Maya D; Hansen, Søren W K; Clausen, Per Axel; Nielsen, Gunnar D; Wolkoff, Peder; Larsen, Søren Thor

    2016-11-01

    Inhalation of indoor air pollutants may cause airway irritation and inflammation and is suspected to worsen allergic reactions. Inflammation may be due to mucosal damage, upper (sensory) and lower (pulmonary) airway irritation due to activation of the trigeminal and vagal nerves, respectively, and to neurogenic inflammation. The terpene, d-limonene, is used as a fragrance in numerous consumer products. When limonene reacts with the pulmonary irritant ozone, a complex mixture of gas and particle phase products is formed, which causes sensory irritation. This study investigated whether limonene, ozone or the reaction mixture can exacerbate allergic lung inflammation and whether airway irritation is enhanced in allergic BALB/cJ mice. Naïve and allergic (ovalbumin sensitized) mice were exposed via inhalation for three consecutive days to clean air, ozone, limonene or an ozone-limonene reaction mixture. Sensory and pulmonary irritation was investigated in addition to ovalbumin-specific antibodies, inflammatory cells, total protein and surfactant protein D in bronchoalveolar lavage fluid and hemeoxygenase-1 and cytokines in lung tissue. Overall, airway allergy was not exacerbated by any of the exposures. In contrast, it was found that limonene and the ozone-limonene reaction mixture reduced allergic inflammation possibly due to antioxidant properties. Ozone induced sensory irritation in both naïve and allergic mice. However, allergic but not naïve mice were protected from pulmonary irritation induced by ozone. This study showed that irritation responses might be modulated by airway allergy. However, aggravation of allergic symptoms was observed by neither exposure to ozone nor exposure to ozone-initiated limonene reaction products. In contrast, anti-inflammatory properties of the tested limonene-containing pollutants might attenuate airway allergy.

  4. Hydroxyl radical and ozone initiated photochemical reactions of 1,3-butadiene

    Science.gov (United States)

    Liu, Xiaoyu; Jeffries, Harvey E.; Sexton, Kenneth G.

    1,3-Butadiene, classified as hazardous in the 1990 Clean Air Act Amendments, is an important ambient air pollutant. Understanding its atmospheric transformation is useful for its own sake, and is also helpful for eliciting isoprene's fate in the atmosphere (isoprene dominates the biogenic emissions in US). In this paper, samples from both hydroxyl- and ozone-initiated photooxidation of 1,3-butadiene were analyzed by derivatization with O- (2,3,4,5,6-pentafluorobenzyl)-hydroxylamine followed by separation and detection by gas chromatography/ion trap mass spectrometry to detect and identify carbonyl compounds. The following carbonyls were observed: formaldehyde, acrolein, glycolaldehyde, glycidaldehyde, 3-hydroxy-propanaldehyde, hydroxy acetone, and malonaldehyde, which can be classified into three categories: epoxy carbonyls, hydroxyl carbonyls, and di-carbonyls. Three non-carbonyls, furan, 1,3-buatdiene monoxide, and 1,3-butadiene diepoxide, were also found. To confirm their identities, both commercially available and synthesized standards were used. To investigate the mechanism of 1,3-butadiene, separate batch reactor experiments for acrolein and 1,3-butadiene monoxide were carried out. Time series samples for several products were also taken. When necessary, computational chemistry methods were also employed. Based on these results, various schemes for the reaction mechanism are proposed.

  5. Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke

    Science.gov (United States)

    Sleiman, Mohamad; Destaillats, Hugo; Smith, Jared D.; Liu, Chen-Lin; Ahmed, Musahid; Wilson, Kevin R.; Gundel, Lara A.

    2010-11-01

    We used controlled laboratory experiments to evaluate the aerosol-forming potential of ozone reactions with nicotine and secondhand smoke. Special attention was devoted to real-time monitoring of the particle size distribution and chemical composition of SOA as they are believed to be key factors determining the toxicity of SOA. The experimental approach was based on using a vacuum ultraviolet photon ionization time-of-flight aerosol mass spectrometer (VUV-AMS), a scanning mobility particle sizer (SMPS) and off-line thermal desorption coupled to mass spectrometry (TD-GC-MS) for gas-phase byproducts analysis. Results showed that exposure of SHS to ozone induced the formation of ultrafine particles (smoke that is associated with the formation of ultrafine particles (UFP) through oxidative aging of secondhand smoke. The significance of this chemistry for indoor exposure and health effects is highlighted.

  6. Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Beverly; Coleman, Beverly K.; Lunden, Melissa M.; Destaillats, Hugo; Nazaroff, William W.

    2008-01-01

    We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting behavior similar to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particle sizer (SMPS, 10 to 400 nm) in every experiment and with an optical particle counter (OPC, 0.1 to 2.0 ?m) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM1.1) ranged from 10 to> 300 mu g m-3 and yields ranged from 5percent to 37percent. Steady-state nucleation rates and SOA mass formation rates were on the order of 10 cm-3 s-1 and 10 mu g m-3 min-1, respectively.

  7. Sensitivity of the Reaction Mechanism of the Ozone Depletion Events during the Arctic Spring on the Initial Atmospheric Composition of the Troposphere

    Directory of Open Access Journals (Sweden)

    Le Cao

    2016-09-01

    Full Text Available Ozone depletion events (ODEs during the Arctic spring have been investigated since the 1980s. It was found that the depletion of ozone is highly associated with the release of halogens, especially bromine containing compounds. These compounds originate from various substrates such as the ice/snow-covered surfaces in Arctic. In the present study, the dependence of the mixing ratios of ozone and principal bromine species during ODEs on the initial composition of the Arctic atmospheric boundary layer was investigated by using a concentration sensitivity analysis. This analysis was performed by implementing a reaction mechanism representing the ozone depletion and halogen release in the box model KINAL (KInetic aNALysis of reaction mechanics. The ratios between the relative change of the mixing ratios of particular species such as ozone and the variation in the initial concentration of each atmospheric component were calculated, which indicate the relative importance of each initial species in the chemical kinetic system. The results of the computations show that the impact of various chemical species is different for ozone and bromine containing compounds during the depletion of ozone. It was found that CH3CHO critically controls the time scale of the complete removal of ozone. However, the rate of the ozone loss and the maximum values of bromine species are only slightly influenced by the initial value of CH3CHO. In addition, according to the concentration sensitivity analysis, the reduction of initial Br2 was found to cause a significant retardant of the ODE while the initial mixing ratio of HBr exerts minor influence on both ozone and bromine species. In addition, it is also interesting to note that the increase of C2H2 would significantly raise the amount of HOBr and Br in the atmosphere while the ozone depletion is hardly changed.

  8. Indoor transient SOA formation from ozone + α-pinene reactions: Impacts of air exchange and initial product concentrations, and comparison to limonene ozonolysis

    Science.gov (United States)

    Youssefi, Somayeh; Waring, Michael S.

    2015-07-01

    The ozonolysis of reactive organic gases (ROG), e.g. terpenes, generates secondary organic aerosol (SOA) indoors. The SOA formation strength of such reactions is parameterized by the aerosol mass fraction (AMF), a.k.a. SOA yield, which is the mass ratio of generated SOA to oxidized ROG. AMFs vary in magnitude both among and for individual ROGs. Here, we quantified dynamic SOA formation from the ozonolysis of α-pinene with 'transient AMFs,' which describe SOA formation due to pulse emission of a ROG in an indoor space with air exchange, as is common when consumer products are intermittently used in ventilated buildings. We performed 19 experiments at low, moderate, and high (0.30, 0.52, and 0.94 h-1, respectively) air exchange rates (AER) at varying concentrations of initial reactants. Transient AMFs as a function of peak SOA concentrations ranged from 0.071 to 0.25, and they tended to increase as the AER and product of the initial reactant concentrations increased. Compared to our similar research on limonene ozonolysis (Youssefi and Waring, 2014), for which formation strength was driven by secondary ozone reactions, the AER impact for α-pinene was opposite in direction and weaker, while the initial reactant product impact was in the same direction but stronger for α-pinene than for limonene. Linear fits of AMFs for α-pinene ozonolysis as a function of the AER and initial reactant concentrations are provided so that future indoor models can predict SOA formation strength.

  9. Reactions of GD and VX with Ozone

    National Research Council Canada - National Science Library

    Bartram, Philip

    1998-01-01

    .... The identified products reveal that the reaction is strictly analogous to the well-known ozonation of tertiary amines, with oxidation occurring predominately at carbons adjacent to the nitrogen...

  10. Ozone reaction on slime mold. [Physarum polycephalum

    Energy Technology Data Exchange (ETDEWEB)

    Kanoh, F.

    1972-01-01

    To determine the effect of ozone, the motive force responsible for protoplasmic streaming in the slime mold, Physarum polycephalum was measured by the Double chamber method which was developed by Kamiya. The effects of ozone on the motive force were investigated by comparison of the Dynamoplasmogram of controls with that of ozone exposure. In the case of high concentration exposure, thickening of plasmagel, inversion of the period of flow and reduction of the extreme point were observed. Succinoxidase of exposed homogenates showed stronger activity than that of controls. It is certain that the Pasteur reaction takes place when plasmodium is kept under high ozone exposure condition. It appears that ozone inhibited a part of the process of glycolysis. 32 references, 8 figures.

  11. Ozone's impact on public health: Contributions from indoor exposures to ozone and products of ozone-initiated chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.

    2006-01-01

    OBJECTIVES: The associations between ozone concentrations measured outdoors and both morbidity and mortality may be partially due to indoor exposures to ozone and ozone-initiated oxidation products. In this article I examine the contributions of such indoor exposures to overall ozone-related heal...

  12. Ozone-surface reactions in five homes: surface reaction probabilities, aldehyde yields, and trends.

    Science.gov (United States)

    Wang, H; Morrison, G

    2010-06-01

    Field experiments were conducted in five homes during three seasons (summer 2005, summer 2006 and winter 2007) to quantify ozone-initiated secondary aldehyde yields, surface reaction probabilities, and trends any temporal over a 1.5-year interval. Surfaces examined include living room carpets, bedroom carpets, kitchen floors, kitchen counters, and living room walls. Reaction probabilities for all surfaces for all seasons ranged from 9.4 x 10(-8) to 1.0 x 10(-4). There were no significant temporal trends in reaction probabilities for any surfaces from summer 2005 to summer 2006, nor over the entire 1.5-year period, indicating that it may take significantly longer than this period for surfaces to exhibit any 'ozone aging' or lowering of ozone-surface reactivity. However, all surfaces in three houses exhibited a significant decrease in reaction probabilities from summer 2006 to winter 2007. The total yield of aldehydes for the summer of 2005 were nearly identical to that for summer of 2006, but were significantly higher than for winter 2007. We also observed that older carpets were consistently less reactive than in newer carpets, but that countertops remained consistently reactive, probably because of occupant activities such as cooking and cleaning. Ozone reactions taking place at indoor surfaces significantly influence personal exposure to ozone and volatile reaction products. These field studies show that indoor surfaces only slowly lose their ability to react with ozone over several year time frames, and that this is probably because of a combination of large reservoirs of reactive coatings and periodic additions of reactive coatings in the form of cooking, cleaning, and skin-oil residues. When considering exposure to ozone and its reaction products and in the absence of dramatic changes in occupancy, activities or furnishings, indoor surface reactivity is expected to change very slowly.

  13. Reaction analysis of initial oxidation of silicon by UV-light-excited ozone and the application to rapid and uniform SiO2 film growth

    International Nuclear Information System (INIS)

    Tosaka, Aki; Nonaka, Hidehiko; Ichimura, Shingo; Nishiguchi, Tetsuya

    2007-01-01

    UV-light-excited O 3 prepared by irradiation of nearly 100% pure O 3 with a KrF excimer laser (λ=248 nm, irradiated area=30x10 mm 2 ) was utilized for low-temperature Si oxidation. The initial oxidation rate was determined, and the activation energy was shown to be almost zero (0.049 eV). To clarify the optimum oxidation conditions, the dependence of the SiO 2 film growth rate on the total photon number and the photon density was investigated. The evolution of O 3 density after UV-light irradiation was experimentally measured, and the O( 1 D) density change is discussed. O( 1 D) density changes are successfully explained by using a second-order reaction model, indicating that a pulse supply of oxygen atoms is essential in the initial oxidation process. The uniform oxidation of 8 in. Si wafer has been carried out using a wafer-transfer type chamber by irradiating the wafer with KrF excimer laser light expanded linearly to the wafer width by a concave lens

  14. Secondary organic aerosols from ozone-initiated reactions with emissions from wood-based materials and a ‘‘green’’ paint

    DEFF Research Database (Denmark)

    Toftum, Jørn; Freund, Sarah; Salthammer, Tunga

    2008-01-01

    This study examined the formation and growth of secondary organic aerosols (SOA) generated when ozone was added to a 1 m3 glass chamber that contained either pine shelving, oriented strand board (OSB), beech boards, or beach boards painted with an ‘‘eco’’ paint. The experiments were conducted...... dramatically; the mass concentration reached w15 mgm3 at w20 ppb O3, and w95 mgm3 at w40 ppb O3. The OSB emitted primarily limonene and a-pinene. Although the particle counts increased when O3 was introduced, the increase was not as large as anticipated based on the terpene concentrations. The beech boards...

  15. Nicotiana tabacum as model for ozone - plant surface reactions

    Science.gov (United States)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  16. Impact of human presence on secondary organic aerosols derived from ozone-initiated chemistry in a simulated office environment

    DEFF Research Database (Denmark)

    Fadeyi, Moshood O.; Weschler, Charles J.; Tham, Kwok W.

    2013-01-01

    's reactions with various indoor pollutants. The present study examines this possibility for secondary organic aerosols (SOA) derived from ozone-initiated chemistry with limonene, a commonly occurring indoor terpene. The experiments were conducted at realistic ozone and limonene concentrations in a 240 m3...

  17. Ozone-initiated chemistry in an occupied simulated aircraft cabin.

    Science.gov (United States)

    Weschler, Charles J; Wisthaler, Armin; Cowlin, Shannon; Tamás, Gyöngyi; Strøm-Tejsen, Peter; Hodgson, Alfred T; Destaillats, Hugo; Herrington, Jason; Zhang, Junfeng; Nazaroff, William W

    2007-09-01

    We have used multiple analytical methods to characterize the gas-phase products formed when ozone was added to cabin air during simulated 4-hour flights that were conducted in a reconstructed section of a B-767 aircraft containing human occupants. Two separate groups of 16 females were each exposed to four conditions: low air exchange (4.4 (h-1)), exchange, 61-64 ppb ozone; high air exchange (8.8 h(-1)), exchange, 73-77 ppb ozone. The addition of ozone to the cabin air increased the levels of identified byproducts from approximately 70 to 130 ppb at the lower air exchange rate and from approximately 30 to 70 ppb at the higher air exchange rate. Most of the increase was attributable to acetone, nonanal, decanal, 4-oxopentanal (4-OPA), 6-methyl-5-hepten-2-one (6-MHO), formic acid, and acetic acid, with 0.25-0.30 mol of quantified product volatilized per mol of ozone consumed. Several of these compounds reached levels above their reported odor thresholds. Most byproducts were derived from surface reactions with occupants and their clothing, consistent with the inference that occupants were responsible for the removal of >55% of the ozone in the cabin. The observations made in this study have implications for other indoor settings. Whenever human beings and ozone are simultaneously present, one anticipates production of acetone, nonanal, decanal, 6-MHO, geranyl acetone, and 4-OPA.

  18. Ozone reactions with indoor materials during building disinfection

    DEFF Research Database (Denmark)

    Poppendieck, D.; Hubbard, H.; Ward, M.

    2007-01-01

    , and particularly after several hours of disinfection, surface reaction resistance dominated the overall resistance to ozone deposition for nearly all materials. Total building disinfection by-products (all carbonyls) were quantified per unit area of each material for the experimental period. Paper, office...... partition, and medium density fiberboard each released greater than 38 mg m(-2) of by-products....

  19. Reaction of gadolinium chelates with ozone and hydroxyl radicals.

    Science.gov (United States)

    Cyris, Maike; Knolle, Wolfgang; Richard, Jessica; Dopp, Elke; von Sonntag, Clemens; Schmidt, Torsten C

    2013-09-03

    Gadolinium chelates are used in increasing amounts as contrast agents in magnetic resonance imaging, and their fate in wastewater treatment has recently become the focus of research. Oxidative processes, in particular the application of ozone, are currently discussed or even implemented for advanced wastewater treatment. However, reactions of the gadolinium chelates with ozone are not yet characterized. In this study, therefore, rate constants with ozone were determined for the three commonly used chelates Gd-DTPA, Gd-DTPA-BMA, and Gd-BT-DO3A, which were found to be 4.8 ± 0.88, 46 ± 2.5, and 24 ± 1.5 M(-1) s(-1), respectively. These low rate constants indicate that a direct reaction with ozone in wastewater is negligible. However, application of ozone in wastewater leads to substantial yields of (•)OH. Different methods have been applied and compared for determination of k((•)OH+Gd chelate). From rate constants determined by pulse radiolysis experiments (k((•)OH+Gd-DTPA) = 2.6 ± 0.2 × 10(9) M(-1) s(-1), k((•)OH+Gd-DTPA-BMA) = 1.9 ± 0.7 × 10(9) M(-1) s(-1), k((•)OH+Gd-BT-DO3A) = 4.3 ± 0.2 × 10(9) M(-1) s(-1)), it is concluded that a reaction in wastewater via (•)OH radicals is feasible. Toxicity has been tested for educt and product mixtures of both reactions. Cytotoxicity (MTT test) and genotoxicity (micronuclei assay) were not detectable.

  20. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment.

    Directory of Open Access Journals (Sweden)

    Ruijuan Qu

    Full Text Available Tetrabromobisphenol A (TBBPA is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters.

  1. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment

    Science.gov (United States)

    Wang, Xinghao; Huang, Qingguo; Lu, Junhe; Wang, Liansheng; Wang, Zunyao

    2015-01-01

    Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters. PMID:26430733

  2. Ozone production in the reaction of T2 and O2 gas: A comparison of experimental results and model predictions

    International Nuclear Information System (INIS)

    Failor, R.A.; Souers, P.C.; Magnotta, F.

    1992-01-01

    Ozone, predicted to be an important intermediate species in T 2 oxidation, was monitored in situ by UV absorption spectroscopy for 0.01-1.0 mol % T 2 in O 2 (1 atm, 298 K). These are the first measurements of a tritium oxidation reaction intermediate. The experimental results were compared with the predictions of the author's comprehensive model of tritium oxidation. The experimentally determined temporal variation in ozone concentration is qualitatively reproduced by the model. As predicted, the measured initial rate of ozone production varied linearly with the initial T 2 concentration ([T 2 ] o ), but with a value one-third of that predicted. The steady-state ozone concentration ([O 3 ] ss ) a factor of 4 larger than predicted for a 1.0% T 2 -O 2 mixture. Addition of H 2 to the T 2 O 2 mixture, to differentiate between the radiolytic and chemical behavior of the tritium, produced a decrease in [O 3 ] ss which was larger than predicted. Changing the reaction cell surface-to-volume ratio showed indications of minor surface removal of ozone. No reasonable variation in model input parameters brought both the predicted initial ozone production rates and steady-state concentrations of ozone into agreement with the experimental results. Though qualitative agreement was achieved, further studies, with emphasis on surface effects, are necessary to explain quantitative differences and gain a greater understanding of the oxidation mechanism. 27 refs., 11 figs., 4 tabs

  3. Reactivity and selectivity of arenes in reactions with ozone

    International Nuclear Information System (INIS)

    Vysotskii, Yu.B.; Mestechkin, M.M.; Sivyakova, L.N.; Tyupalo, N.F.

    1987-01-01

    The reactions of arenes with ozone, distinguished by the variety of products (quinones, aldehydes, acids), are of interest not only from the theoretical standpoint but also are of preparative value in the case of polycyclic hydrocarbons. In this work a quantitative treatment of this reaction is given on the basis of direct kinetic measurements and simple quantum chemical means, permitting its rate constants and the yield of the products to be related to the elements of electronic structure readily subject to quantum mechanical calculation

  4. Ozonation of norfloxacin and levofloxacin in water: Specific reaction rate constants and defluorination reaction.

    Science.gov (United States)

    Ling, Wencui; Ben, Weiwei; Xu, Ke; Zhang, Yu; Yang, Min; Qiang, Zhimin

    2018-03-01

    The degradation kinetics and mechanism of two typical fluoroquinolones (FQs), norfloxacin (NF) and levofloxacin (LOF), by ozone in water were investigated. Semi-continuous mode and competition kinetics mode experiments were conducted to determine the reaction rate constants of target FQs with ozone and OH, separately. Results indicate that both NF and LOF were highly reactive toward ozone, and the reactivity was strongly impacted by the solution pH. The specific reaction rate constants of the diprotonated, monoprotonated and deprotonated species were determined to be 7.20 × 10 2 , 8.59 × 10 3 , 4.54 × 10 5  M -1  s -1 respectively for NF and 1.30 × 10 3 , 1.40 × 10 4 , 1.33 × 10 6  M -1  s -1 respectively for LOF. The reaction rate constants of target FQs toward OH were measured to be (4.81-7.41) × 10 9  M -1  s -1 in the pH range of 6.3-8.3. Furthermore, NF was selected as a model compound to clarify the degradation pathways, with a particular focus on the defluorination reaction. The significant release of F - ions and the formation of three F-free organic byproducts indicated that defluorination was a prevalent pathway in ozonation of FQs, while six F-containing organic byproducts indicated that ozone also attacked the piperazinyl and quinolone moieties. Escherichia coli growth inhibition tests revealed that ozonation could effectively eliminate the antibacterial activity of target FQ solutions, and the residual antibacterial activity had a negative linear correlation with the released F - concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Intrapulmonary reactions of workers exposed to dust and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, T; Nakadate, T; Sakurai, M; Sakurai, Y

    1984-01-01

    Forty-one dust-and-ozone-exposed and 37 nonexposed workers, belonging to the Research and Development Division of a photo-copier manufacturing industry, were examined to assess the effect of the exposure to carbon, iron and resin dust and ozone in the air of the work environment by means of questionnaires on their physical condition, smoking habits and exposure history by interview, chest X-rays, testing of ventilatory functions, transcutaneous PO2 (tcPO2) test and H2O2-induced hemolysis test. The following results were obtained. Respirable dust concentrations in the air of the work place were 0.1-1.0 mg/m3, total dust concentrations 0.2-2.0 mg/m3, and ozone concentrations 0.004-0.06 ppm (0.008-0.12 mg/m3). According to the Japanese Classification of Radiographs of Pneumoconioses, the exposed workers showed a higher rate of profusion 0/1 and over, and category 1 and over (1/0 and over) than the nonexposed workers. Ventilatory function testing revealed no difference between exposed workers and nonexposed workers, but small airway narrowing was suspected in smoking workers in comparison with nonsmoking workers. Transcutaneous PO2 showed no difference between exposed and nonexposed workers, between smoking and nonsmoking workers, and between any of the paired six combinations out of the four groups of workers, i.e., nonsmoking and nonexposed, nonsmoking and exposed, smoking and nonexposed, and smoking and exposed. It was estimated by H2O2-induced hemolysis test that smoking and/or dust exposure, especially long-term exposure, gave rise to aggravation of fragility of the erythrocyte membrane by lipid peroxidation with ozone or active oxygen produced by the reaction of dust and alveolar macrophages.

  6. Sunflower oil ozonation. Following of the reaction by proton Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Diaz Gomez, Maritza F.

    2005-01-01

    Previous studies have demonstrated that the technique of Proton Nuclear Magnetic Resonance can be used for the pursuit of the reaction between the ozone and the unsaturated fatty acids. It's carried out the sunflower oil ozonization to different applied dose of ozone and the index of peroxides and the concentration of aldehydes are determined. The main reaction products were identified by Proton Nuclear Magnetic Resonance Spectroscopy (NMR 1 H). The intensities of the signs were used to follow the advance of the reaction between the ozone and the sunflower oil. It is was carried out until obtaining an index of peroxides of 1 202 mmol-equiv/kg. The intensities of the signs of the olefinic protons diminish with a gradual increment in the dose of applied ozone, but without ending up disappearing completely. The ozonides of Criegee obtained to applied dose of ozone of 107,1 mg/g were approximately bigger 7,4 times that those obtained at the beginning from the reaction to applied dose of ozone of 15,3 mg/g. The aldehydes protons were observed as a sign of weak intensity in all the spectra. The signs belonging to the olenifics protons of the hydroperoxides in d = 5,55 ppm increases with the increment of the applied dose of ozone. You concludes that to higher applied dose of ozone, haggler is the advance of the ozonization reaction, what belongs together with a bigger formation of oxygenated compounds

  7. Effect of Substrate Character on Heterogeneous Ozone Reaction Rate with Individual PAHs and Their Reaction Mixtures

    Science.gov (United States)

    Holmen, B. A.; Stevens, T.

    2009-12-01

    Vehicle exhaust contains many unregulated chemical compounds that are harmful to human health and the natural environment, including polycyclic aromatic hydrocarbons (PAH), a class of organic compounds derived from fuel combustion that can be carcinogenic and mutagenic. PAHs have been quantified in vehicle-derived ultrafine particles (Dpsolid, reacting the samples with gas-phase ozone, and determining both PAH loss over time and products formed, using thermal-desorption gas chromatography / mass spectrometry (TD-GC/MS). The individual PAHs anthracene, phenanthrene, and fluorene, adsorbed to a QFF were also separately reacted with 0.4 ppm ozone. A volatilization control and the collection of volatilized PAHs using a Tenax-packed thermal desorption vial completed the mass balance and aided determination parent-product relationships. Heterogeneous reaction products analyzed directly without derivatization indicate the formation of 9,10-anthracenedione, 9H-fluoren-9-one, and (1,1’-biphenyl)-2,2’-dicarboxaldehyde from the reaction of ozone with the PAH mix on a QFF, but only 9,10-anthracenedione was detected for the diesel PM reaction. The implications of these results for aging of diesel particulate in urban environments will be discussed.

  8. Ozonization, Amination and Photoreduction of Graphene Oxide for Triiodide Reduction Reaction: An Experimental and Theoretical Study

    International Nuclear Information System (INIS)

    Jing, Hongyu; Ren, Suzhen; Shi, Yantao; Song, Xuedan; Yang, Ying; Guo, Yanan; An, Yonglin; Hao, Ce

    2017-01-01

    This work proposes a mild and environmentally-friendly approach to prepare a highly efficient functional graphene (termed as AGO-hv) using methods of ozone oxidation, solvothermal synthesis, and photoreduction. The use of ozone oxidation in the first step can effectively increase the interlaminar distance between graphite oxide sheets, and create active sites for nucleophilic attack on the epoxy carbon from ammonia. The amino groups were successfully grafted on the surface of graphene as evidenced by the amidation reaction, with a maximum nitrogen content of 10.46 wt% and a C/N molar ratio of 8.46. After further photoreduction of the aminated graphite oxide (AGO), the residual oxygen functionalities, such as C-OH, were effectively removed and the conductivity of the graphene sheet was further recovered. The dye-sensitized solar cell (DSC) exhibited a power conversion efficiency (PCE) of 7.51% based on AGO-hv counter electrode (CE), close to that of Pt counterpart (7.79%). The experimental results indicated that the amidation and photoreduction processes were significantly facilitated by the initial ozonization of graphene oxide, and this process significantly improved the electrochemical activity and the conductivity of graphene oxide. Density functional theory (DFT) calculations revealed that AGO-hv had the lowest ionization energy (a better electron-donating ability) and also suitable binding energy with I atoms as well. The combination of ozonization, amination and photoreduction is an efficient route to obtain electrocatalysts with desired compositional distributions and performance for triiodide reduction reaction in DSCs.

  9. Catalyst Initiation in the Oscillatory Carbonylation Reaction

    Directory of Open Access Journals (Sweden)

    Katarina Novakovic

    2011-01-01

    Full Text Available Palladium(II iodide is used as a catalyst in the phenylacetylene oxidative carbonylation reaction that has demonstrated oscillatory behaviour in both pH and heat of reaction. In an attempt to extract the reaction network responsible for the oscillatory nature of this reaction, the system was divided into smaller parts and they were studied. This paper focuses on understanding the reaction network responsible for the initial reactions of palladium(II iodide within this oscillatory reaction. The species researched include methanol, palladium(II iodide, potassium iodide, and carbon monoxide. Several chemical reactions were considered and applied in a modelling study. The study revealed the significant role played by traces of water contained in the standard HPLC grade methanol used.

  10. Products of Ozone-initiated Chemistry during 4-hour Exposures of Human Subjects in a Simulated Aircraft Cabin

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Wisthaler, Armin; Tamás, Gyöngyi

    2006-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) was used to examine organic compounds in the air of a simulated aircraft cabin under four conditions: low ozone, low air exchange rate; low ozone, high air exchange rate; high ozone, low air exchange rate; high ozone, high air exchange rate....... The results showed large differences in the chemical composition of the cabin air between the low and high ozone conditions. These differences were more pronounced at the low air exchange condition....

  11. Standard Gibbs free energies of reactions of ozone with free radicals in aqueous solution: quantum-chemical calculations.

    Science.gov (United States)

    Naumov, Sergej; von Sonntag, Clemens

    2011-11-01

    Free radicals are common intermediates in the chemistry of ozone in aqueous solution. Their reactions with ozone have been probed by calculating the standard Gibbs free energies of such reactions using density functional theory (Jaguar 7.6 program). O(2) reacts fast and irreversibly only with simple carbon-centered radicals. In contrast, ozone also reacts irreversibly with conjugated carbon-centered radicals such as bisallylic (hydroxycylohexadienyl) radicals, with conjugated carbon/oxygen-centered radicals such as phenoxyl radicals, and even with nitrogen- oxygen-, sulfur-, and halogen-centered radicals. In these reactions, further ozone-reactive radicals are generated. Chain reactions may destroy ozone without giving rise to products other than O(2). This may be of importance when ozonation is used in pollution control, and reactions of free radicals with ozone have to be taken into account in modeling such processes.

  12. Reaction of a phospholipid monolayer with gas-phase ozone at the air-water interface: measurement of surface excess and surface pressure in real time.

    Science.gov (United States)

    Thompson, Katherine C; Rennie, Adrian R; King, Martin D; Hardman, Samantha J O; Lucas, Claire O M; Pfrang, Christian; Hughes, Brian R; Hughes, Arwel V

    2010-11-16

    The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known about the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface, suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of (1)H-POPC on D(2)O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air-water interface leading to the formation of OH radicals. The highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation of oxidized lipids with shorter alkyl tails.

  13. Kinetics study of heterogeneous reactions of ozone with erucic acid using an ATR-IR flow reactor.

    Science.gov (United States)

    Leng, Chunbo; Hiltner, Joseph; Pham, Hai; Kelley, Judas; Mach, Mindy; Zhang, Yunhong; Liu, Yong

    2014-03-07

    The ozone initiated heterogeneous oxidation of erucic acid (EA) thin film was investigated using a flow system combined with attenuated total reflection infrared spectroscopy (ATR-IR) over wide ranges of ozone concentrations (0.25-60 ppm), thin film thickness (0.1-1.0 μm), temperatures (263-298 K), and relative humidities (0-80% RH) for the first time. Pseudo-first-order rate constants, kapp, and overall reactive uptake coefficients, γ, were obtained through changes in the absorbance of C[double bond, length as m-dash]O stretching bands at 1695 cm(-1), which is assigned to the carbonyl group in carboxylic acid. Results showed that the reaction followed the Langmuir-Hinshelwood mechanism and kapp was largely dominated by surface reaction over bulk phase reaction. In addition, both the kapp and the γ values showed very strong temperature dependences (∼two orders of magnitude) over the temperature range; in contrast, they only slightly increased with increasing RH values from 0-80%. According to the kapp values as a function of temperature, the activation energy for the heterogeneous reaction was estimated to be 80.6 kJ mol(-1). Our results have suggested that heterogeneous reactions between ozone and unsaturated solid surfaces likely have a substantially greater temperature dependence than liquid ones. Moreover, the hygroscopic properties of EA thin films before and after exposure to ozone were also studied by measurement of water uptake. Based on the hygroscopicity data, the insignificant RH effect on reaction kinetics was probably due to the relatively weak water uptake by the unreacted and reacted EA thin films.

  14. Ozone-Initiated Chemistry in an Occupied Simulated Aircraft Cabin

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Wisthaler, Armin; Cowlin, Shannon

    2007-01-01

    We have used multiple analytical methods to characterize the gas-phase products formed when ozone was added to cabin air during simulated 4-hour flights that were conducted in a reconstructed section of a B-767 aircraft containing human occupants. Two separate groups of 16 females were each expos...

  15. Laboratory measurement of secondary pollutant yields from ozone reaction with HVAC filters

    International Nuclear Information System (INIS)

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, Jeremie; Zhang, Jianshun Jensen; Fisk, William J.

    2009-01-01

    We used Proton Transfer Reaction - Mass Spectrometry (PTR-MS) and conventional sampling methods to monitor and identify trace level organic pollutants formed in heterogeneous reactions between ozone and HVAC filters in real time. Experiments were carried out using a bench-scale flow tube reactor operating with dry air and humidified air (50% RH), at realistically high ozone concentrations (150 ppbv). We explored different filter media (i.e., fiberglass and cotton/polyester blends) and different particle loadings (i.e., clean filter and filters loaded with particles for 3 months at the Lawrence Berkeley National Laboratory and the Port of Oakland, CA). Detailed emission dynamics of very low levels of certain organic pollutants from filter media upon ozone exposure in the presence of moisture have been obtained and analyzed.

  16. Impact of supersonic and subsonic aircraft on ozone: Including heterogeneous chemical reaction mechanisms

    International Nuclear Information System (INIS)

    Kinnison, D.E.; Wuebbles, D.J.

    1992-01-01

    Preliminary calculations suggest that heterogeneous reactions are important in calculating the impact on ozone from emissions of trace gases from aircraft fleets. In this study, three heterogeneous chemical processes that occur on background sulfuric acid aerosols are included and their effects on O 3 , NO x , Cl x , HCl, N 2 O 5 , ClONO 2 are calculated

  17. Products of Ozone-Initiated Chemistry in a Simulated Aircraft Environment

    DEFF Research Database (Denmark)

    Wisthaler, Armin; Tamás, Gyöngyi; Wyon, David P.

    2005-01-01

    We used proton-transfer-reaction mass spectrometry (PTR-MS) to examine the products formed when ozone reacted with the materials in a simulated aircraft cabin, including a loaded high-efficiency particulate air (HEPA) filter in the return air system. Four conditions were examined: cabin (baseline...

  18. Dependence of Initial Oxygen Concentration on Ozone Yield Using Inductive Energy Storage System Pulsed Power Generator

    Science.gov (United States)

    Go, Tomio; Tanaka, Yasushi; Yamazaki, Nobuyuki; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya

    Dependence of initial oxygen concentration on ozone yield using streamer discharge reactor driven by an inductive energy storage system pulsed power generator is described in this paper. Fast recovery type diodes were employed as semiconductor opening switch to interrupt a circuit current within 100 ns. This rapid current change produced high-voltage short pulse between a secondary energy storage inductor. The repetitive high-voltage short pulse was applied to a 1 mm diameter center wire electrode placed in a cylindrical pulse corona reactor. The streamer discharge successfully occurred between the center wire electrode and an outer cylinder ground electrode of 2 cm inner diameter. The ozone was produced with the streamer discharge and increased with increasing pulse repetition rate. The ozone yield changed in proportion to initial oxygen concentration contained in the injected gas mixture at 800 ns forward pumping time of the current. However, the decrease of the ozone yield by decreasing oxygen concentration in the gas mixture at 180 ns forward pumping time of the current was lower than the decrease at 800 ns forward pumping time of the current. This dependence of the initial oxygen concentration on ozone yield at 180 ns forward pumping time is similar to that of dielectric barrier discharge reactor.

  19. The formation of ultra-fine particles during ozone-initiated oxidations with terpenes emitted from natural paint

    International Nuclear Information System (INIS)

    Lamorena, Rheo B.; Jung, Sang-Guen; Bae, Gwi-Nam; Lee, Woojin

    2007-01-01

    The formation of secondary products during the ozone-initiated oxidations with biogenic VOCs emitted from natural paint was investigated in this study. Mass spectrometry and infrared spectroscopy measurements have shown that the major components of gas-phase chemicals emitted from natural paint are monoterpenes including α- and β-pinenes, camphene, p-cymene, and limonene. A significant formation of gaseous carbonyl products and nano-sized particles (4.4-168 nm) was observed in the presence of ozone. Carboxylic acids were also observed to form during the reactions (i.e. formic acid at 0.170 ppm and acetic acid at 0.260 ppm). The formation of particles increased as the volume of paint introduced into a reaction chamber increased. A secondary increase in the particle number concentration was observed after 440 min, which suggests further partitioning of oxidation products (i.e. carboxylic acids) into the particles previously existing in the reaction chamber. The growth of particles increased as the mean particle diameter and particle mass concentrations increased during the reaction. The experimental results obtained in this study may provide insight into the potential exposure of occupants to irritating chemical compounds formed during the oxidations of biogenic VOCs emitted from natural paint in indoor environments

  20. Reaction Control Engine for Space Launch Initiative

    Science.gov (United States)

    2002-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.

  1. The Ozone Budget in the Upper Troposphere from Global Modeling Initiative (GMI)Simulations

    Science.gov (United States)

    Rodriquez, J.; Duncan, Bryan N.; Logan, Jennifer A.

    2006-01-01

    Ozone concentrations in the upper troposphere are influenced by in-situ production, long-range tropospheric transport, and influx of stratospheric ozone, as well as by photochemical removal. Since ozone is an important greenhouse gas in this region, it is particularly important to understand how it will respond to changes in anthropogenic emissions and changes in stratospheric ozone fluxes.. This response will be determined by the relative balance of the different production, loss and transport processes. Ozone concentrations calculated by models will differ depending on the adopted meteorological fields, their chemical scheme, anthropogenic emissions, and treatment of the stratospheric influx. We performed simulations using the chemical-transport model from the Global Modeling Initiative (GMI) with meteorological fields from (It)h e NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), (2) the atmospheric GCM from NASA's Global Modeling and Assimilation Office(GMAO), and (3) assimilated winds from GMAO . These simulations adopt the same chemical mechanism and emissions, and adopt the Synthetic Ozone (SYNOZ) approach for treating the influx of stratospheric ozone -. In addition, we also performed simulations for a coupled troposphere-stratosphere model with a subset of the same winds. Simulations were done for both 4degx5deg and 2degx2.5deg resolution. Model results are being tested through comparison with a suite of atmospheric observations. In this presentation, we diagnose the ozone budget in the upper troposphere utilizing the suite of GMI simulations, to address the sensitivity of this budget to: a) the different meteorological fields used; b) the adoption of the SYNOZ boundary condition versus inclusion of a full stratosphere; c) model horizontal resolution. Model results are compared to observations to determine biases in particular simulations; by examining these comparisons in conjunction with the derived budgets, we may pinpoint

  2. Products and mechanisms of the reaction of gas phase ozone with organic colorants

    Energy Technology Data Exchange (ETDEWEB)

    Grosjean, D. (DGA, Inc., Ventura, CA (USA)); Druzik, J.R. (Getty Conservation Institute, Marina del Rey, CA (USA)); Sensharma, D.K. (Univ. of California, Los Angeles (USA)); Whitmore, P.M.; DeMoor, C.P.; Cass, G.R. (California Institute of Technology, Pasadena (USA))

    1988-09-01

    Studies carried out in this laboratory have shown that many artists organic colorants fade substantially when exposed to ozone in the dark. These studies typically involved pigment exposure for 12 weeks to purified air containing 0.3-0.4 ppm of ozone at ambient temperature and humidity. These laboratory conditions are equivalent to about six years of exposure inside a typical air-conditioned building in Los Angeles, and the observed fading is therefore directly relevant to possible damage to works of arts in museum settings. Organic colorants that were most ozone-fugitive included natural colorants, such as curcumin and indigo, as well as modern synthetic colorants such as alizarin lakes and triphenylmethane dyes. Thus, these colorants were selected for further study with emphasis on the nature of the reaction products. Exposures were carried out on different substrates including watercolor paper, cellulose, silica gel, and Teflon. The experiments involved long-term exposure to low levels of ozone (e.g. {approximately} 0.3 ppm for 90 days) or shorter-term exposure to higher ozone concentrations (e.g. 10 ppm for 24 hours). Exposed and control samples, along with solvent and substrate blanks, were analyzed by mass spectrometry using a Kratos Scientific Instruments MS25 hexapole mass spectrometer operated in either methane chemical ionization (CI) or electron impact (EI) modes.

  3. Products and kinetics of the heterogeneous reaction of suspended vinclozolin particles with ozone.

    Science.gov (United States)

    Gan, Jie; Yang, Bo; Zhang, Yang; Shu, Xi; Liu, Changgeng; Shu, Jinian

    2010-11-25

    Vinclozolin is a widely used fungicide that can be released into the atmosphere via application and volatilization. This paper reports an experimental investigation on the heterogeneous ozonation of vinclozolin particles. The ozonation of vinclozolin adsorbed on azelaic acid particles under pseudo-first-order conditions is investigated online with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The ozonation products are analyzed with a combination of VUV-ATOFMS and GC/MS. Two main ozonation products are observed. The formation of the ozonation products results from addition of O(3) on the C-C double bond of the vinyl group. The heterogeneous reactive rate constant of vinclozolin particles under room temperature is (2.4 ± 0.4) × 10(-17) cm(3) molecules(-1) s(-1), with a corresponding lifetime at 100 ppbv O(3) of 4.3 ± 0.7 h, which is almost comparable with the estimated lifetime due to the reaction with atmospheric OH radicals (∼1.7 h). The reactive uptake coefficient for O(3) on vinclozolin particles is (6.1 ± 1.0) × 10(-4).

  4. Evaluating the Credibility of Transport Processes in Simulations of Ozone Recovery using the Global Modeling Initiative Three-dimensional Model

    Science.gov (United States)

    Strahan, Susan E.; Douglass, Anne R.

    2004-01-01

    The Global Modeling Initiative (GMI) has integrated two 36-year simulations of an ozone recovery scenario with an offline chemistry and tra nsport model using two different meteorological inputs. Physically ba sed diagnostics, derived from satellite and aircraft data sets, are d escribed and then used to evaluate the realism of temperature and transport processes in the simulations. Processes evaluated include barri er formation in the subtropics and polar regions, and extratropical w ave-driven transport. Some diagnostics are especially relevant to sim ulation of lower stratospheric ozone, but most are applicable to any stratospheric simulation. The global temperature evaluation, which is relevant to gas phase chemical reactions, showed that both sets of me teorological fields have near climatological values at all latitudes and seasons at 30 hPa and below. Both simulations showed weakness in upper stratospheric wave driving. The simulation using input from a g eneral circulation model (GMI(GCM)) showed a very good residual circulation in the tropics and Northern Hemisphere. The simulation with inp ut from a data assimilation system (GMI(DAS)) performed better in the midlatitudes than it did at high latitudes. Neither simulation forms a realistic barrier at the vortex edge, leading to uncertainty in the fate of ozone-depleted vortex air. Overall, tracer transport in the offline GML(GCM) has greater fidelity throughout the stratosphere tha n it does in the GMI(DAS)

  5. Ozone deposition velocities, reaction probabilities and product yields for green building materials

    Science.gov (United States)

    Lamble, S. P.; Corsi, R. L.; Morrison, G. C.

    2011-12-01

    Indoor surfaces can passively remove ozone that enters buildings, reducing occupant exposure without an energy penalty. However, reactions between ozone and building surfaces can generate and release aerosols and irritating and carcinogenic gases. To identify desirable indoor surfaces the deposition velocity, reaction probability and carbonyl product yields of building materials considered green (listed, recycled, sustainable, etc.) were quantified. Nineteen separate floor, wall or ceiling materials were tested in a 10 L, flow-through laboratory reaction chamber. Inlet ozone concentrations were maintained between 150 and 200 ppb (generally much lower in chamber air), relative humidity at 50%, temperature at 25 °C and exposure occurred over 24 h. Deposition velocities ranged from 0.25 m h -1 for a linoleum style flooring up to 8.2 m h -1 for a clay based paint; reaction probabilities ranged from 8.8 × 10 -7 to 6.9 × 10 -5 respectively. For all materials, product yields of C 1 thru C 12 saturated n-aldehydes, plus acetone ranged from undetectable to greater than 0.70 The most promising material was a clay wall plaster which exhibited a high deposition velocity (5.0 m h -1) and a low product yield (

  6. Effect of ozone to remineralize initial enamel caries: in situ study.

    Science.gov (United States)

    Samuel, S R; Dorai, S; Khatri, S G; Patil, S T

    2016-06-01

    Effect of ozonated water in remineralizing artificially created initial enamel caries was investigated using laser fluorescence and polarized light microscopy in an in situ study. Teeth specimens (buccal sections) were immersed in 5-ml solution of 2 mM CaCl2, 2 mM NaH2P04, and 50 mM CH3COOH at pH of 4.55 for 5 h in an incubator at 37° to create subsurface demineralization. After which, they were randomly allocated into one of the following remineralization regimens: ozone (ozonated water 0.1 mg/l and 10 % nano-hydroxyapatite paste, Aclaim(TM)), without ozone (only 10 % nano-hydroxyapatite paste, Aclaim(TM)), and control (subjects' saliva alone). Specimens were embedded in acrylic retainers worn by orthodontic patients throughout the 21-day study duration and constantly exposed to their saliva. Laser fluorescence was recorded for all the specimens at baseline, after demineralization, and remineralization using DIAGNOdent, and the results were validated using polarized microscopic examination. The results were analyzed using repeated measures, one-way ANOVA with post hoc multiple comparisons. Reduced DIAGNOdent scores and greater depth of remineralization following application of ozonated water and nano-hydroxyapatite were found compared to those of the without ozone and control groups (P nano-hydroxyapatite compared to nano-hydroxyapatite alone and saliva. Ozone water can be used to remineralize incipient carious lesions, and it enhances the remineralizing potential of nano-hydroxyapatite thereby preventing the tooth from entering into the repetitive restorative cycle.

  7. Heterogeneous ozonation reactions of PAHs and fatty acid methyl esters in biodiesel particulate matter

    Science.gov (United States)

    Kasumba, John; Holmén, Britt A.

    2018-02-01

    Numerous studies have examined the oxidation of PAHs found in diesel particulate matter (PM) by ozone, but no studies have investigated the ozone oxidation of biodiesel exhaust PM. Fatty acid methyl esters (FAMEs), found in high abundance in biodiesel PM, can potentially alter the kinetics of the reactions between atmospheric oxidants such as ozone and particle-phase PAHs. In this study, the heterogeneous reactivity of 16 EPA PAHs upon 24 h exposure to 0.4 ppm ozone in the presence (PAH + FAMES) and absence (PAH-only) of FAMEs was investigated at room temperature and 50% relative humidity. The ozone-reactivity of the PAHs detected in 20% biodiesel (B20) exhaust PM was also investigated. In the absence of FAMEs, the pseudo-first order ozone reaction rate constant, kO 3 , of PAHs varied from 0.086 ± 0.030 hr-1 (chrysene) to 0.184 ± 0.078 hr-1 (anthracene). In the presence of FAMEs, kO 3 of the PAHs varied between 0.013 ± 0.012 hr-1 (benzo[b]fluoranthene) and 0.168 ± 0.028 hr-1 (benzo[a]pyrene), and with the exception of benzo[a]pyrene, the kO 3 of PAHs were 1.2-8 times lower compared to those obtained during the PAH-only ozone exposure. Only one PAH, benzo[a]pyrene (BaP), did not show a significant change in kO3 with addition of FAMEs. Phenanthrene, fluoranthene, and pyrene, the only PAHs detected in the B20 PM, had kO 3 values about 4 times lower in B20 PM than those obtained when spiked PAHs-only were exposed to ozone. The kO 3 values of phenanthrene and fluoranthene in the B20 PM were 2 times higher than rates obtained when the PAH mix was exposed to ozone in the presence of the FAMEs. In contrast, pyrene's kO 3 in the B20 PM was about 2 times lower than that obtained for the PAH + FAMEs exposure. Observed differences in PAH behavior demonstrate individual PAH heterogeneous reactivity with gas-phase ozone is sensitive to PAH (vapor pressure, solubility/sorption to matrix components, chemical reactivity) as well as substrate properties (PAH and O3 diffusivity

  8. Reaction Mechanisms of the Atomic Layer Deposition of Tin Oxide Thin Films Using Tributyltin Ethoxide and Ozone.

    Science.gov (United States)

    Nanayakkara, Charith E; Liu, Guo; Vega, Abraham; Dezelah, Charles L; Kanjolia, Ravindra K; Chabal, Yves J

    2017-06-20

    Uniform and conformal deposition of tin oxide thin films is important for several applications in electronics, gas sensing, and transparent conducting electrodes. Thermal atomic layer deposition (ALD) is often best suited for these applications, but its implementation requires a mechanistic understanding of the initial nucleation and subsequent ALD processes. To this end, in situ FTIR and ex situ XPS have been used to explore the ALD of tin oxide films using tributyltin ethoxide and ozone on an OH-terminated, SiO 2 -passivated Si(111) substrate. Direct chemisorption of tributyltin ethoxide on surface OH groups and clear evidence that subsequent ligand exchange are obtained, providing mechanistic insight. Upon ozone pulse, the butyl groups react with ozone, forming surface carbonate and formate. The subsequent tributyltin ethoxide pulse removes the carbonate and formate features with the appearance of the bands for CH stretching and bending modes of the precursor butyl ligands. This ligand-exchange behavior is repeated for subsequent cycles, as is characteristic of ALD processes, and is clearly observed for deposition temperatures of 200 and 300 °C. On the basis of the in situ vibrational data, a reaction mechanism for the ALD process of tributyltin ethoxide and ozone is presented, whereby ligands are fully eliminated. Complementary ex situ XPS depth profiles confirm that the bulk of the films is carbon-free, that is, formate and carbonate are not incorporated into the film during the deposition process, and that good-quality SnO x films are produced. Furthermore, the process was scaled up in a cross-flow reactor at 225 °C, which allowed the determination of the growth rate (0.62 Å/cycle) and confirmed a self-limiting ALD growth at 225 and 268 °C. An analysis of the temperature-dependence data reveals that growth rate increases linearly between 200 and 300 °C.

  9. Reactions of thiocarbamate, triazine and urea herbicides, RDX and benzenes on EPA Contaminant Candidate List with ozone and with hydroxyl radicals

    Science.gov (United States)

    Second-order rate constants of the direct ozone reactions (kO3,M) and the indirect OH radical reactions (kOH,M) for nine chemicals on the US EPA’s Drinking Water Contaminant Candidate List (CCL) were studied during the ozonation and ozone/hydrogen peroxide a...

  10. The atmospheric chemistry of methyl salicylate - reactions with atomic chlorine and with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Canosa-Mas, C.E.; Duffy, J.M.; Thompson, K.C.; Wayne, R.P. [Physical and Theoretical Chemical Lab., Oxford (United Kingdom); King, M.D. [King' s College, London (United Kingdom). Dept. of Chemistry

    2002-05-01

    Methyl salicylate is one of a number of semiochemicals, signal molecules, emitted by herbivore-infested plants. These signal molecules attract predators of the herbivore, and the chemicals thus act indirectly as part of the defence mechanism of the plant. Previous studies have shown that ozone damage to plants can also elicit the emission of signal molecules. The fate of these signal molecules in the atmosphere is not known. Preliminary studies have been undertaken to examine the atmospheric chemistry of methyl salicylate for the first time. Rate coefficients for the reaction of methyl salicylate with atomic chlorine and with ozone have been determined; the values are (2.8()+-(0.3)x10{sup -12} and )approx4x10{sup -21} cm{sup 3} molecule{sup -1} s{sup -1}. These results suggest that neither reaction with atomic chlorine nor reaction with ozone will provide important loss routes for methyl salicylate in the atmosphere. The possible importance of photolysis of methyl salicylate in the atmosphere is considered. (Author)

  11. The atmospheric chemistry of methyl salicylate—reactions with atomic chlorine and with ozone

    Science.gov (United States)

    Canosa-Mas, Carlos E.; Duffy, Justin M.; King, Martin D.; Thompson, Katherine C.; Wayne, Richard P.

    Methyl salicylate is one of a number of semiochemicals, signal molecules, emitted by herbivore-infested plants. These signal molecules attract predators of the herbivore, and the chemicals thus act indirectly as part of the defence mechanism of the plant. Previous studies have shown that ozone damage to plants can also elicit the emission of signal molecules. The fate of these signal molecules in the atmosphere is not known. Preliminary studies have been undertaken to examine the atmospheric chemistry of methyl salicylate for the first time. Rate coefficients for the reaction of methyl salicylate with atomic chlorine and with ozone have been determined; the values are (2.8±0.3)×10 -12 and ˜4×10 -21 cm 3 molecule -1 s -1. These results suggest that neither reaction with atomic chlorine nor reaction with ozone will provide important loss routes for methyl salicylate in the atmosphere. The possible importance of photolysis of methyl salicylate in the atmosphere is considered.

  12. Heterogeneous reactions of ozone with methoxyphenols, in presence and absence of light

    Science.gov (United States)

    Net, Sopheak; Alvarez, Elena Gómez; Gligorovski, Sasho; Wortham, Henri

    2011-06-01

    In this work, we investigated the heterogeneous reactions between gaseous ozone and seven particulate methoxyphenols, biomass tracers. The ozonolysis of silica particles coated with vanillin, vanillic acid, syringaldehyde, syringic acid, acetovanillone, acetonsyringone and coniferyl alcohol was studied successively and was carried out both in total darkness and under illumination with simulated solar light at 297 K. The condensed-phase products which emerged in such heterogeneous reactions were analyzed by gas chromatography-mass spectrometry (GC/MS). No reaction product was detected during the ozonolysis of vanillic acid, syringic acid, acetovanillone and acetosyringone under our experimental conditions. The main tranformation of pathway vanillin and syringaldehyde was the conversion of an aldehyde group to a carboxylic fonction. Thus, syringic acid and vanillic acid were respectively the main oxidation products of syringaldehyde and vanillin. The oxidation of coniferyl alcohol was relatively fast and the total degradation was observed after 16 h of ozone exposure. Five oxidation products: glycolic acid, oxalic acid, vanillin, vanillic acid and 3,4-dihydroxybenzoic acid, were identified and confirmed by their corresponding standards. It is interesting to note that 3,4-dihydroxybenzoic acid was detected only in the experiment performed under combined ozone and light exposure of the particles coated with coniferyl alcohol. Vanillin and vanillic acid also absorb light in the tropospheric actinic window and therefore they can be photochemically active which in turn can induce further modifications of the aerosol particles. A mechanistic pathway was proposed in order to elucidate the ozonolysis reaction of coniferyl alcohol and to explain the identified reaction products.

  13. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    Science.gov (United States)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  14. Variational data assimilation for the optimized ozone initial state and the short-time forecasting

    Directory of Open Access Journals (Sweden)

    S.-Y. Park

    2016-03-01

    Full Text Available In this study, we apply the four-dimensional variational (4D-Var data assimilation to optimize initial ozone state and to improve the predictability of air quality. The numerical modeling systems used for simulations of atmospheric condition and chemical formation are the Weather Research and Forecasting (WRF model and the Community Multiscale Air Quality (CMAQ model. The study area covers the capital region of South Korea, where the surface measurement sites are relatively evenly distributed. The 4D-Var code previously developed for the CMAQ model is modified to consider background error in matrix form, and various numerical tests are conducted. The results are evaluated with an idealized covariance function for the appropriateness of the modified codes. The background error is then constructed using the NMC method with long-term modeling results, and the characteristics of the spatial correlation scale related to local circulation are analyzed. The background error is applied in the 4D-Var research, and a surface observational assimilation is conducted to optimize the initial concentration of ozone. The statistical results for the 12 h assimilation periods and the 120 observatory sites show a 49.4 % decrease in the root mean squared error (RMSE, and a 59.9 % increase in the index of agreement (IOA. The temporal variation of spatial distribution of the analysis increments indicates that the optimized initial state of ozone concentration is transported to inland areas by the clockwise-rotating local circulation during the assimilation windows. To investigate the predictability of ozone concentration after the assimilation window, a short-time forecasting is carried out. The ratios of the RMSE (root mean squared error with assimilation versus that without assimilation are 8 and 13 % for the +24 and +12 h, respectively. Such a significant improvement in the forecast accuracy is obtained solely by using the optimized initial state. The potential

  15. SMM mesospheric ozone measurements

    Science.gov (United States)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  16. Laboratory investigations of the alpha-pinene/ozone gas-phase reaction

    International Nuclear Information System (INIS)

    Benner, C.L.

    1985-01-01

    In order to provide more insight into terpene photooxidation or ozonolysis reaction mechanisms, a radiotracer technique was developed. This technique was applied to an investigation of the 14 C-alpha-pinene/ozone reaction. In the first phase of the research, the carbon distribution at the conclusion of the ozonolysis reaction was determined by separating carbon-14-labelled gaseous products from labelled aerosols, and counting each phase by liquid scintillation methods. The resulting carbon balance was 38% to 60% filtered aerosols, 6% to 20% gas phase compounds, and 11% to 29% products absorbed on the reaction chamber walls. Recoveries of the alpha-pinene carbon-14 ranging from 79% to 97% were achieved using this method. The alpha-pinene concentrations in these experiments were close to ambient (1 part per billion), yet the carbon balance was similar to that observed at much higher concentrations (>1 part per million). In the second phase of the alpha-pinene study, both gas and aerosol products of the ozonolysis reaction were collected on cartridges impregnated with 2,4-dinitrophenylhydrazine, then analyzed by HPLC. In the final experiments, alpha-pinene aerosol was reacted with a silylating agent to improve the detection of organic acids and alcohols. The gas chromatographic/mass spectrometric analysis of the silylated aerosol products showed evidence of dimer/polymer formation occurring in the ozonolysis reaction

  17. Pulmonary effects of inhaled limonene ozone reaction products in elderly rats.

    Science.gov (United States)

    Sunil, Vasanthi R; Laumbach, Robert J; Patel, Kinal J; Turpin, Barbara J; Lim, Ho-Jin; Kipen, Howard M; Laskin, Jeffrey D; Laskin, Debra L

    2007-07-15

    d-Limonene is an unsaturated volatile organic chemical found in cleaning products, air fresheners and soaps. It is oxidized by ozone to secondary organic aerosols consisting of aldehydes, acids, oxidants and fine and ultra fine particles. The lung irritant effects of these limonene ozone reaction products (LOP) were investigated. Female F344 rats (2- and 18-month-old) were exposed for 3 h to air or LOP formed by reacting 6 ppm d-limonene and 0.8 ppm ozone. BAL fluid, lung tissue and cells were analyzed 0 h and 20 h later. Inhalation of LOP increased TNF-alpha, cyclooxygenase-2, and superoxide dismutase in alveolar macrophages (AM) and Type II cells. Responses of older animals were attenuated when compared to younger animals. LOP also decreased p38 MAP kinase in AM from both younger and older animals. In contrast, while LOP increased p44/42 MAP kinase in AM from younger rats, expression decreased in AM and Type II cells from older animals. NF-kappaB and C/EBP activity also increased in AM from younger animals following LOP exposure but decreased or was unaffected in Type II cells. Whereas in younger animals LOP caused endothelial cell hypertrophy, perivascular and pleural edema and thickening of alveolar septal walls, in lungs from older animals, patchy accumulation of fluid within septal walls in alveolar sacs and subtle pleural edema were noted. LOP are pulmonary irritants inducing distinct inflammatory responses in younger and older animals. This may contribute to the differential sensitivity of these populations to pulmonary irritants.

  18. Pulmonary effects of inhaled limonene ozone reaction products in elderly rats

    International Nuclear Information System (INIS)

    Sunil, Vasanthi R.; Laumbach, Robert J.; Patel, Kinal J.; Turpin, Barbara J.; Lim, Ho-Jin; Kipen, Howard M.; Laskin, Jeffrey D.; Laskin, Debra L.

    2007-01-01

    d-Limonene is an unsaturated volatile organic chemical found in cleaning products, air fresheners and soaps. It is oxidized by ozone to secondary organic aerosols consisting of aldehydes, acids, oxidants and fine and ultra fine particles. The lung irritant effects of these limonene ozone reaction products (LOP) were investigated. Female F344 rats (2- and 18-month-old) were exposed for 3 h to air or LOP formed by reacting 6 ppm d-limonene and 0.8 ppm ozone. BAL fluid, lung tissue and cells were analyzed 0 h and 20 h later. Inhalation of LOP increased TNF-α, cyclooxygenase-2, and superoxide dismutase in alveolar macrophages (AM) and Type II cells. Responses of older animals were attenuated when compared to younger animals. LOP also decreased p38 MAP kinase in AM from both younger and older animals. In contrast, while LOP increased p44/42 MAP kinase in AM from younger rats, expression decreased in AM and Type II cells from older animals. NF-κB and C/EBP activity also increased in AM from younger animals following LOP exposure but decreased or was unaffected in Type II cells. Whereas in younger animals LOP caused endothelial cell hypertrophy, perivascular and pleural edema and thickening of alveolar septal walls, in lungs from older animals, patchy accumulation of fluid within septal walls in alveolar sacs and subtle pleural edema were noted. LOP are pulmonary irritants inducing distinct inflammatory responses in younger and older animals. This may contribute to the differential sensitivity of these populations to pulmonary irritants

  19. Effect of initial microbial density on inactivation of Giardia muris by ozone.

    Science.gov (United States)

    Haas, Charles N; Kaymak, Baris

    2003-07-01

    Inactivation of microorganisms by disinfectants frequently shows non-linear behavior on a semilogarithmic plot of log survival ratio versus time. A number of models have been developed to depict these deviations from Chick's Law. Some of the models predict that the log survival ratio (at a particular disinfectant dose and contact time, even in absence of demand) would be a function of the initial concentration of microorganisms (N(0)), while other models do not predict such an effect. The effect of N(0) on the survival ratio has not been deliberately tested. This work examined the inactivation of Giardia muris by ozone in batch systems, deliberately varying the disinfectant dose and N(0). It was found that the models predicting a dependency of survival on N(0) gave a better description to the data than models that did not predict such a dependency. Hence there is an apparent decrease in disinfection efficiency of ozone against Giardia muris (at pH 8 and 15 degrees C) as the initial microorganism concentration decreases. This phenomena should be taken into account by both disinfection researchers and by process design engineers.

  20. Ultrafine and fine particle formation in a naturally ventilated office as a result of reactions between ozone and scented products

    DEFF Research Database (Denmark)

    Toftum, Jørn; Dijken, F. v.

    2003-01-01

    Ultrafine and fine particle formation as a result of chemical reactions between ozone and four different air fresheners and a typical lemon-scented domestic cleaner was studied in a fully furnished, naturally ventilated office. The study showed that under conditions representative of those...

  1. Chemical kinetics of multiphase reactions between ozone and human skin lipids: Implications for indoor air quality and health effects.

    Science.gov (United States)

    Lakey, P S J; Wisthaler, A; Berkemeier, T; Mikoviny, T; Pöschl, U; Shiraiwa, M

    2017-07-01

    Ozone reacts with skin lipids such as squalene, generating an array of organic compounds, some of which can act as respiratory or skin irritants. Thus, it is important to quantify and predict the formation of these products under different conditions in indoor environments. We developed the kinetic multilayer model that explicitly resolves mass transport and chemical reactions at the skin and in the gas phase (KM-SUB-Skin). It can reproduce the concentrations of ozone and organic compounds in previous measurements and new experiments. This enabled the spatial and temporal concentration profiles in the skin oil and underlying skin layers to be resolved. Upon exposure to ~30 ppb ozone, the concentrations of squalene ozonolysis products in the gas phase and in the skin reach up to several ppb and on the order of ~10 mmol m -3 . Depending on various factors including the number of people, room size, and air exchange rates, concentrations of ozone can decrease substantially due to reactions with skin lipids. Ozone and dicarbonyls quickly react away in the upper layers of the skin, preventing them from penetrating deeply into the skin and hence reaching the blood. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Ozone damage to crops in southern Africa: An initial modeling study

    CSIR Research Space (South Africa)

    Zunckel, M

    2006-06-01

    Full Text Available The Cross Border Impact Assessment Project (CAPIA) was designed to develop an understanding of regional surface ozone concentrations and their potential risk to agriculture in southern Africa. Surface ozone concentrations were estimated using...

  3. Kinetics of chemical reactions initiated by hot atoms

    International Nuclear Information System (INIS)

    Firsova, L.P.

    1977-01-01

    Modern ideas about kinetics of chemical reactions of hot atoms are generalized. The main points of the phenomenological theories (''kinetic theory'' of Wolfgang-Estrup hot reactions and the theory of ''reactions integral probability'' of Porter) are given. Physico-chemical models of elastic and non-elastic collisions are considered which are used in solving Boltzmann integro-differential equations and stochastic equations in the Porter theory. The principal formulas are given describing probabilities or yields of chemical reactions, initiated with hot atoms, depending on the distribution functions of hot particles with respect to energy. Briefly described are the techniques and the results of applying the phenomenological theories for interpretation of the experimental data obtained during nuclear reactions with hot atoms, photochemical investigations, etc. 96 references are given

  4. Reaction-diffusion fronts with inhomogeneous initial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bena, I [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Droz, M [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Martens, K [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Racz, Z [Institute for Theoretical Physics, Eoetvoes University, 1117 Budapest (Hungary)

    2007-02-14

    Properties of reaction zones resulting from A+B {yields} C type reaction-diffusion processes are investigated by analytical and numerical methods. The reagents A and B are separated initially and, in addition, there is an initial macroscopic inhomogeneity in the distribution of the B species. For simple two-dimensional geometries, exact analytical results are presented for the time evolution of the geometric shape of the front. We also show using cellular automata simulations that the fluctuations can be neglected both in the shape and in the width of the front.

  5. Kinetics of nitrosamine and amine reactions with NO3 radical and ozone related to aqueous particle and cloud droplet chemistry

    Science.gov (United States)

    Weller, Christian; Herrmann, Hartmut

    2015-01-01

    Aqueous phase reactivity experiments with the amines dimethylamine (DMA), diethanolamine (DEA) and pyrrolidine (PYL) and their corresponding nitrosamines nitrosodimethylamine (NDMA), nitrosodiethanolamine (NDEA) and nitrosopyrrolidine (NPYL) have been performed. NO3 radical reaction rate coefficients for DMA, DEA and PYL were measured for the first time and are 3.7 × 105, 8.2 × 105 and 8.7 × 105 M-1 s-1, respectively. Rate coefficients for NO3 + NDMA, NDEA and NPYL are 1.2 × 108, 2.3 × 108 and 2.4 × 108 M-1 s-1. Compared to OH radical rate coefficients for reactions with amines, the NO3 radical will most likely not be an important oxidant but it is a potential nighttime oxidant for nitrosamines in cloud droplets or deliquescent particles. Ozone is unreactive towards amines and nitrosamines and upper limits of rate coefficients suggest that aqueous ozone reactions are not important in atmospheric waters.

  6. What is Eating Ozone? Thermal Reactions between SO2 And O3: Implications for Icy Environments

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2016-01-01

    Laboratory studies are presented, showing for the first time that thermally driven reactions in solid H2O+SO2+O3 mixtures can occur below 150 K, with the main sulfur-containing product being bisulfate (HSO4(-)). Using a technique not previously applied to the low-temperature kinetics of either interstellar or solar system ice analogs, we estimate an activation energy of 32 kJ per mol for HSO4(-) formation. These results show that at the temperatures of the Jovian satellites, SO2 and O3 will efficiently react making detection of these molecules in the same vicinity unlikely. Our results also explain why O3 has not been detected on Callisto and why the SO2 concentration on Callisto appears to be highest on that world's leading hemisphere. Furthermore, our results predict that the SO2 concentration on Ganymede will be lowest in the trailing hemisphere, where the concentration of O3 is the highest. Our work suggests that thermal reactions in ices play a much more important role in surface and sub-surface chemistry than generally appreciated, possibly explaining the low abundance of sulfur-containing molecules and the lack of ozone observed in comets and interstellar ices.

  7. Comparing removal efficiency and reaction rates of organic micro-pollutants during ozonation from different municipal waste water treatment plants effluents in Sweden

    DEFF Research Database (Denmark)

    El-taliawy, Haitham; Ekblad, Maja; Nilsson, Filip

    2015-01-01

    The Removal of about 50 micro-pollutants from 7 waste water treatment plant effluents –in Sweden- was tested on pilot scale. Different ozone doses and two different pilots with different reactor sizes and retention times were tested. Ozone reaction rates depended on DOC concentration in the water...

  8. Overview of the Ozone Water-Land Environmental Transition Study: Summary of Observations and Initial Results

    Science.gov (United States)

    Berkoff, T.; Sullivan, J.; Pippin, M. R.; Gronoff, G.; Knepp, T. N.; Twigg, L.; Schroeder, J.; Carrion, W.; Farris, B.; Kowalewski, M. G.; Nino, L.; Gargulinski, E.; Rodio, L.; Sanchez, P.; Desorae Davis, A. A.; Janz, S. J.; Judd, L.; Pusede, S.; Wolfe, G. M.; Stauffer, R. M.; Munyan, J.; Flynn, J.; Moore, B.; Dreessen, J.; Salkovitz, D.; Stumpf, K.; King, B.; Hanisco, T. F.; Brandt, J.; Blake, D. R.; Abuhassan, N.; Cede, A.; Tzortziou, M.; Demoz, B.; Tsay, S. C.; Swap, R.; Holben, B. N.; Szykman, J.; McGee, T. J.; Neilan, J.; Allen, D.

    2017-12-01

    The monitoring of ozone (O3) in the troposphere is of pronounced interest due to its known toxicity and health hazard as a photo-chemically generated pollutant. One of the major difficulties for the air quality modeling, forecasting and satellite communities is the validation of O3 levels in sharp transition regions, as well as near-surface vertical gradients. Land-water gradients of O3 near coastal regions can be large due to differences in surface deposition, boundary layer height, and cloud coverage. Observations in horizontal and vertical directions over the Chesapeake Bay are needed to better understand O3 formation and redistribution within regional recirculation patterns. The O3 Water-Land Environmental Transition Study (OWLETS) was a field campaign conducted in the summer 2017 in the VA Tidewater region to better characterize O3 across the coastal boundary. To obtain over-water measurements, the NASA Langley Ozone Lidar as well as supplemental measurements from other sensors (e.g. Pandora, AERONET) were deployed on the Chesapeake Bay Bridge Tunnel (CBBT) 7-8 miles offshore. These observations were complimented by NASA Goddard's Tropospheric Ozone Lidar along with ground-based measurements over-land at the NASA Langley Research Center (LaRC) in Hampton, VA. On measurement days, time-synchronized data were collected, including launches of ozonesondes from CBBT and LaRC sites that provided additional O3, wind, and temperature vertical distribution differences between land and water. These measurements were complimented with: in-situ O3 sensors on two mobile cars, a micro-pulse lidar at Hampton University, an in-situ O3 sensor on a small UAV-drone, and Virginia DEQ air-quality sites. Two aircraft and a research vessel also contributed to OWLETS at various points during the campaign: the NASA UC-12B with the GeoTASO passive remote sensor, the NASA C-23 with an in-situ chemistry analysis suite, and a SERC research vessel with both remote and in-situ sensors. This

  9. Reaction enhancement of initially distant scalars by Lagrangian coherent structures

    International Nuclear Information System (INIS)

    Pratt, Kenneth R.; Crimaldi, John P.; Meiss, James D.

    2015-01-01

    Turbulent fluid flows have long been recognized as a superior means of diluting initial concentrations of scalars due to rapid stirring. Conversely, experiments have shown that the structures responsible for this rapid dilution can also aggregate initially distant reactive scalars and thereby greatly enhance reaction rates. Indeed, chaotic flows not only enhance dilution by shearing and stretching but also organize initially distant scalars along transiently attracting regions in the flow. To show the robustness of this phenomenon, a hierarchical set of three numerical flows is used: the periodic wake downstream of a stationary cylinder, a chaotic double gyre flow, and a chaotic, aperiodic flow consisting of interacting Taylor vortices. We demonstrate that Lagrangian coherent structures (LCS), as identified by ridges in finite time Lyapunov exponents, are directly responsible for this coalescence of reactive scalar filaments. When highly concentrated filaments coalesce, reaction rates can be orders of magnitude greater than would be predicted in a well-mixed system. This is further supported by an idealized, analytical model that was developed to quantify the competing effects of scalar dilution and coalescence. Chaotic flows, known for their ability to efficiently dilute scalars, therefore have the competing effect of organizing initially distant scalars along the LCS at timescales shorter than that required for dilution, resulting in reaction enhancement

  10. Influence of mass transfer and chemical reaction on ozonation of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, I.S.; Wiesmann, U. [Dept. of Environmental Engineering, Technical Univ. of Berlin, Berlin (Germany)

    2003-07-01

    Azo dyes can be only mineralised by chemical oxidation. In this paper the oxidation of reactive black 5 (RB 5) and reactive orange 96 (RO 96) with concentrations between 35 and 5700 mgL{sup -1} (RB 5) and between 20 and 2050 mgL{sup -1} (RO 96) is investigated. A lab scale bubble column was used, which was gassed by a mixture of O{sub 2} and O{sub 3}. The oxidation rate was influenced by mass transfer for all dye concentrations used. For lower dye concentrations mass transfer alone was decisive for reaction rate showing an enhancement factor of E {approx} 1. However, in the region of higher dye concentrations, the slope of the decreasing ozone concentration inside the liquid boundary layer increases more and more with increasing dye concentration as a result of a chemical oxidation. Therefore, the enhancement factor depends on the kind and concentration of the azo dyes. For RB 5 as an diazo dye an enhancement factor of E = 9 was observed for 3800 mgL{sup -1}, RO 96 as a mono azo dye with a remarkable higher chemical oxidation rate shows an E = 17 already for 2050 mgL{sup -1}. (orig.)

  11. Pulmonary response to ozone: Reaction of bronchus-associated lymphoid tissue and lymph node lymphocytes in the rat

    International Nuclear Information System (INIS)

    Dziedzic, D.; Wright, E.S.; Sargent, N.E.

    1990-01-01

    The purpose of this work is to assess the effect of ozone, a reactive product of environmental photochemical oxidation, on lymphocytes of the lung. We exposed male Fischer rats to ozone at a concentration of 0.5 ppm for 20 hr/day for 1-14 days. Animals were treated with radioactive thymidine and were sacrificed at Day 1, 2, 3, 7, or 14 of exposure. Lungs and mediastinal lymph nodes were removed and prepared for histologic examination, evaluation of labeling indexes, and morphometric measurement. We examined two components of the lymphocyte response of the lung: the airway-related response, represented by the reaction of the bronchus-associated lymphoid tissue (BALT), and the deep lung-related response, represented by reaction of the mediastinal lymph node. Lymphocytes of both the BALT and the mediastinal lymph node showed elevated radioactive thymidine uptake; however, no evidence of cell death was observed at either site. The cells of the specialized epithelium covering the BALT (lymphoepithelium) showed increased vacuolization, indicating altered cellular function. The average size of BALTs was unchanged by ozone exposure. Under experimental conditions ozone can affect a variety of cells in the lung including bronchial epithelial cells, macrophages, and Type 1 cells. We have shown for the first time that in addition to these cells, the rat BALT also proliferates in response to ozone. In addition we confirm previous work in the mouse which shows that the mediastinal lymph node reacts as well. The airways can be affected by inflammation, can be targets of infection, and can respond to chemical irritants with bronchoconstrictive responses. They are an important target organ for hypersensitivity responses and are a primary site for pulmonary cancer formation. A role for lymphocytes has been implicated in each of these processes

  12. Transformation of ranitidine during water chlorination and ozonation: Moiety-specific reaction kinetics and elimination efficiency of NDMA formation potential.

    Science.gov (United States)

    Jeon, Dahee; Kim, Jisoo; Shin, Jaedon; Hidayat, Zahra Ramadhany; Na, Soyoung; Lee, Yunho

    2016-11-15

    Ranitidine can produce high yields of N-nitrosodimethylamine (NDMA) upon chloramination and its presence in water resources is a concern for water utilities using chloramine disinfection. This study assessed the efficiency of water chlorination and ozonation in transforming ranitidine and eliminating its NDMA formation potential (NDMA-FP) by determining moiety-specific reaction kinetics, stoichiometric factors, and elimination levels in real water matrices. Despite the fact that chlorine reacts rapidly with the acetamidine and thioether moieties of ranitidine (k>10(8)M(-1)s(-1) at pH 7), the NDMA-FP decreases significantly only when chlorine reacts with the less reactive tertiary amine (k=3×10(3)M(-1)s(-1) at pH 7) or furan moiety (k=81M(-1)s(-1) at pH 7). Ozone reacts rapidly with all four moieties of ranitidine (k=1.5×10(5)-1.6×10(6)M(-1)s(-1) at pH 7) and its reaction with the tertiary amine or furan moiety leads to complete elimination of the NDMA-FP. Treatments of ranitidine-spiked real water samples have shown that ozonation can efficiently deactivate ranitidine in water and wastewater treatment, while chlorination can be efficient for water containing low concentration of ammonia. This result can be applied to the other structurally similar, potent NDMA precursors. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models

    Science.gov (United States)

    Son, Seok-Woo; Han, Bo-Reum; Garfinkel, Chaim I.; Kim, Seo-Yeon; Park, Rokjin; Abraham, N. Luke; Akiyoshi, Hideharu; Archibald, Alexander T.; Butchart, N.; Chipperfield, Martyn P.; Dameris, Martin; Deushi, Makoto; Dhomse, Sandip S.; Hardiman, Steven C.; Jöckel, Patrick; Kinnison, Douglas; Michou, Martine; Morgenstern, Olaf; O’Connor, Fiona M.; Oman, Luke D.; Plummer, David A.; Pozzer, Andrea; Revell, Laura E.; Rozanov, Eugene; Stenke, Andrea; Stone, Kane; Tilmes, Simone; Yamashita, Yousuke; Zeng, Guang

    2018-05-01

    The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling.

  14. Four years of ozone measurements in the Central Amazon - Absorption mechanisms and reactions within the rainforest

    Science.gov (United States)

    Wolff, Stefan; Ganzeveld, Laurens; Tsokankunku, Anywhere; Saturno, Jorge; Souza, Rodrigo; Trebs, Ivonne; Sörgel, Matthias

    2017-04-01

    The ATTO (Amazon Tall Tower Observatory) site (02°08'38.8''S, 58°59'59.5''W) is located in the remote Amazon rainforest, allowing atmospheric and forest studies away from nearby anthropogenic emission sources. Starting with continuous measurements of vertical mixing ratio profiles of H2O, CO2 and O3 in April 2012 at 8 heights between 0.05 m and 80 m above ground, the longest continuous record of near surface O3 in the Amazon rainforest was established. Black carbon (BC), CO and micrometeorological measurements are available for the same period. During intensive campaigns, NOx was measured as well using the same profile system, and therefore several month of parallel NOx measurements are available. This data allows the analyses of diverse patterns regarding emission, deposition, turbulence and chemical reactions of trace gases within and above the rainforest for several rainy and dry seasons. The remote Amazon generally serves as a sink for O3 which is mainly deposited to the canopy. The deposition depends to a large extent on the aperture of the leaf stomata, which is correlated to temperature, humidity, solar radiation and water availability. Comparing these parameters with the in-canopy and above canopy gradients of O3, considering the turbulent conditions and further chemical reactions of O3 with NOx and VOC molecules, we estimated the role of the forest for the removal of ozone from the atmosphere under different meteorological conditions. We applied the Multi-Layer Canopy Chemical Exchange Model - MLC-CHEM to support the analysis of the observed profiles of NOx and O3. Under pristine conditions, the forest soil is the major source for NO emissions, which are directly reacting with O3 molecules, affecting the O3 gradient within the sub-canopy. We have analyzed differences between model and measurements in sub-canopy NO and O3 mixing ratios by the application of different NO soil emission scenarios and by the performance of several sensitivity analyses to

  15. Gas-phase rate coefficients of the reaction of ozone with four sesquiterpenes at 295 ± 2 K.

    Science.gov (United States)

    Richters, Stefanie; Herrmann, Hartmut; Berndt, Torsten

    2015-05-07

    The rate coefficients of the reaction of ozone with the four atmospherically relevant sesquiterpenes β-caryophyllene, α-humulene, α-cedrene and isolongifolene were investigated at 295 ± 2 K and atmospheric pressure by at least two independent experimental investigations for each reaction. Relative rate experiments were carried out in a flow tube using two different experimental approaches with GC-MS detection (RR 1) and PTR-MS analysis (RR 2) as the analytical techniques. Absolute rate coefficients were determined in a stopped-flow experiment following the ozone depletion by means of UV spectroscopy. The average rate coefficients from the combined investigations representing the mean values of the different experimental methods are (unit: cm(3) molecule(-1) s(-1)): k(O3+β-caryophyllene) = (1.1 ± 0.3) × 10(-14) (methods: RR 1, RR 2, absolute), k(O3+α-humulene) = (1.2 ± 0.3) × 10(-14) (RR 1, RR 2), k(O3+α-cedrene) = (1.7 ± 0.5) × 10(-16) (RR 2, absolute) and k(O3+isolongifolene) = (1.1 ± 0.5) × 10(-17) (RR 2, absolute). The high ozonolysis rate coefficients for β-caryophyllene and α-humulene agree well with the results by Shu and Atkinson (Int. J. Chem. Kinet., 1994, 26) and lead to short atmospheric lifetimes of about two minutes with respect to the ozone reaction. The relatively small rate coefficients for α-cedrene and isolongifolene differ from the available literature values by a factor of about 2.5-6. Possible reasons for the deviations are discussed. Finally, calibrated sesquiterpene FT-IR spectra were recorded for the first time.

  16. Surface reaction rate and probability of ozone and alpha-terpineol on glass, polyvinyl chloride, and latex paint surfaces.

    Science.gov (United States)

    Shu, Shi; Morrison, Glenn C

    2011-05-15

    Ozone can react homogeneously with unsaturated organic compounds in buildings to generate undesirable products. However, these reactions can also occur on indoor surfaces, especially for low-volatility organics. Conversion rates of ozone with α-terpineol, a representative low-volatility compound, were quantified on surfaces that mimic indoor substrates. Rates were measured for α-terpineol adsorbed to beads of glass, polyvinylchloride (PVC), and dry latex paint, in a plug flow reactor. A newly defined second-order surface reaction rate coefficient, k(2), was derived from the flow reactor model. The value of k(2) ranged from 0.68 × 10(-14) cm(4)s(-1)molecule(-1) for α-terpineol adsorbed to PVC to 3.17 × 10(-14) cm(4)s(-1)molecule(-1) for glass, but was insensitive to relative humidity. Further, k(2) is only weakly influenced by the adsorbed mass but instead appears to be more strongly related to the interfacial activity α-terpineol. The minimum reaction probability ranged from 3.79 × 10(-6) for glass at 20% RH to 6.75 × 10(-5) for PVC at 50% RH. The combination of high equilibrium surface coverage and high reactivity for α-terpineol suggests that surface conversion rates are fast enough to compete with or even overwhelm other removal mechanisms in buildings such as gas-phase conversion and air exchange.

  17. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3

  18. Transformation products and reaction kinetics of fragrances in advanced wastewater treatment with ozone

    DEFF Research Database (Denmark)

    Janzen, Niklas; Dopp, Elke; Hesse, Julia

    2011-01-01

    ) ethanone (musk ketone/MK), and 1-(2,3,8,8-tetramethyl-1,3,4,5,6,7-hexahydronaphthalen-2-yl)ethanone (OTNE) with ozone in tap water as well as waste water treatment plant (WWTP) effluents is described. Several transformation products are characterized by means of gas chromatography coupled to mass...

  19. Physics of Fresh Produce Safety: Role of Diffusion and Tissue Reaction in Sanitization of Leafy Green Vegetables with Liquid and Gaseous Ozone-Based Sanitizers.

    Science.gov (United States)

    Shynkaryk, Mykola V; Pyatkovskyy, Taras; Mohamed, Hussein M; Yousef, Ahmed E; Sastry, Sudhir K

    2015-12-01

    Produce safety has received much recent attention, with the emphasis being largely on discovery of how microbes invade produce. However, the sanitization operation deserves more attention than it has received. The ability of a sanitizer to reach the site of pathogens is a fundamental prerequisite for efficacy. This work addresses the transport processes of ozone (gaseous and liquid) sanitizer for decontamination of leafy greens. The liquid sanitizer was ineffective against Escherichia coli K-12 in situations where air bubbles may be trapped within cavities. A model was developed for diffusion of sanitizer into the interior of produce. The reaction rate of ozone with the surface of a lettuce leaf was determined experimentally and was used in a numerical simulation to evaluate ozone concentrations within the produce and to determine the time required to reach different locations. For aqueous ozone, the penetration depth was limited to several millimeters by ozone self-decomposition due to the significant time required for diffusion. In contrast, gaseous sanitizer was able to reach a depth of 100 mm in several minutes without depletion in the absence of reaction with surfaces. However, when the ozone gas reacted with the produce surface, gas concentration was significantly affected. Simulation data were validated experimentally by measuring ozone concentrations at the bottom of a cylinder made of lettuce leaf. The microbiological test confirmed the relationship between ozone transport, its self-decomposition, reaction with surrounding materials, and the degree of inactivation of E. coli K-12. Our study shows that decontamination of fresh produce, through direct contact with the sanitizer, is more feasible with gaseous than with aqueous sanitizers. Therefore, sanitization during a high-speed washing process is effective only for decontaminating the wash water.

  20. Investigating Initial Disclosures and Reactions to Unexpected, Positive HPV Diagnosis.

    Science.gov (United States)

    Smith, Rachel A; Hernandez, Rachael; Catona, Danielle

    2014-07-01

    Initial disclosures of health conditions are critical communication moments. Existing research focuses on disclosers; integrating confidants into studies of initial disclosures is needed. Guided by the disclosure decision-making model (DD-MM; Greene, 2009), this study examined what diagnosed persons and confidants may say when faced with unexpected test results and unexpected disclosures, respectively. Participants ( N = 151) recorded an audio-visual message for another person, after imagining that they or the other person had just received unexpected, positive HPV test results. The qualitative analysis revealed four themes: (1) impression management and social distance, (2) invisible symptoms and advice regarding future disclosures, (3) expressing and acknowledging emotional reactions, and (4) misunderstandings and lacking knowledge about HPV. These findings suggested that DD-MM may be a relevant framework for understanding not only when disclosers share, but what disclosers and confidants say in early conversations about new diagnoses. While disclosers' and confidants' messages showed marked similarities, important differences appeared. For example, confidants focused on assuaging disclosers' fear about the consequences, whereas disclosers expressed distress related to their uncertainty about the prognosis of an HPV infection and how to prepare for next steps. The discussion highlighted implications for the DD-MM, HPV disclosures, and future interventions.

  1. The gas phase reaction of ozone with 1,3-butadiene: formation yields of some toxic products

    Science.gov (United States)

    Kramp, Franz; Paulson, Suzanne E.

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product yields. In separate experiments, small quantities of 1,3,5-trimethyl benzene were added as a tracer for OH. Formation yields of acrolein of (52±7)%, 1,2-epoxy-3-butene of (3.1±0.5)% and OH radicals of (13±3)% were observed. In addition, the rate coefficient of the gas-phase reaction of ozone with 1,2-epoxy-3-butene was measured both directly and relative to propene, finding an average of (1.6±0.4)×10 -18 cm 3 molecule -1 s -1, respectively, at 296±2 K. The results are briefly discussed in terms of the effect of atmospheric processing on the toxicity of 1,3-butadiene.

  2. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  3. Ozone modeling

    Energy Technology Data Exchange (ETDEWEB)

    McIllvaine, C M

    1994-07-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO{sub 2}), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO{sub x} concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO{sub x} coordinates of the point, known as the NMOC/NO{sub x} ratio. Results obtained by the described model are presented.

  4. Ozone modeling

    International Nuclear Information System (INIS)

    McIllvaine, C.M.

    1994-01-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO 2 ), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO x concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO x coordinates of the point, known as the NMOC/NO x ratio. Results obtained by the described model are presented

  5. OZONE ABSORPTION IN RAW WATERS

    Directory of Open Access Journals (Sweden)

    LJILJANA TAKIĆ

    2008-03-01

    Full Text Available The ozone absorption in raw water entering the main ozonization step at the Belgrade drinking water supply plant was investigated in a continuous stirred tank reactor (CSTR. A slow chemical reaction rate of dissolved ozone and pollutants present in raw water have been experimentally determined. The modified Hatta number was defined and calculated as a criterion which determines whether and to which extent the reactions of ozone and pollutants influence the rate of the pure physical ozone absorption.

  6. Oxidation of ammonium sulfite in aqueous solutions using ozone technology

    Science.gov (United States)

    Li, Yue; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    How to deal with unstable ammonium sulfite, the byproduct of flue gas desulfuration by ammonia absorption methods, has been a difficult problem in recent years. Oxidation of ammonium sulfite in aqueous solutions using ozone produced by a surface discharge system was investigated in the paper. The oxidation efficiency of ammonium sulfite by ozone and traditional air aeration were compared, and the factors including ozone concentration, gas flow rate, initial concentration of ammonium sulfite solution and reaction temperature were discussed. The results show that the oxidation efficiency of ammonium sulfite by ozone technology reached nearly 100% under the optimum conditions, which had a significant increase compared with that by air aeration.

  7. Study of n-Butyl Acrylate Self-Initiation Reaction Experimentally and via Macroscopic Mechanistic Modeling

    Directory of Open Access Journals (Sweden)

    Ahmad Arabi Shamsabadi

    2016-04-01

    Full Text Available This paper presents an experimental study of the self-initiation reaction of n-butyl acrylate (n-BA in free-radical polymerization. For the first time, the frequency factor and activation energy of the monomer self-initiation reaction are estimated from measurements of n-BA conversion in free-radical homo-polymerization initiated only by the monomer. The estimation was carried out using a macroscopic mechanistic mathematical model of the reactor. In addition to already-known reactions that contribute to the polymerization, the model considers a n-BA self-initiation reaction mechanism that is based on our previous electronic-level first-principles theoretical study of the self-initiation reaction. Reaction rate equations are derived using the method of moments. The reaction-rate parameter estimates obtained from conversion measurements agree well with estimates obtained via our purely-theoretical quantum chemical calculations.

  8. Derivation of the reduced reaction mechanisms of ozone depletion events in the Arctic spring by using concentration sensitivity analysis and principal component analysis

    Directory of Open Access Journals (Sweden)

    L. Cao

    2016-12-01

    Full Text Available The ozone depletion events (ODEs in the springtime Arctic have been investigated since the 1980s. It is found that the depletion of ozone is highly associated with an auto-catalytic reaction cycle, which involves mostly the bromine-containing compounds. Moreover, bromide stored in various substrates in the Arctic such as the underlying surface covered by ice and snow can be also activated by the absorbed HOBr. Subsequently, this leads to an explosive increase of the bromine amount in the troposphere, which is called the “bromine explosion mechanism”. In the present study, a reaction scheme representing the chemistry of ozone depletion and halogen release is processed with two different mechanism reduction approaches, namely, the concentration sensitivity analysis and the principal component analysis. In the concentration sensitivity analysis, the interdependence of the mixing ratios of ozone and principal bromine species on the rate of each reaction in the ODE mechanism is identified. Furthermore, the most influential reactions in different time periods of ODEs are also revealed. By removing 11 reactions with the maximum absolute values of sensitivities lower than 10 %, a reduced reaction mechanism of ODEs is derived. The onsets of each time period of ODEs in simulations using the original reaction mechanism and the reduced reaction mechanism are identical while the maximum deviation of the mixing ratio of principal bromine species between different mechanisms is found to be less than 1 %. By performing the principal component analysis on an array of the sensitivity matrices, the dependence of a particular species concentration on a combination of the reaction rates in the mechanism is revealed. Redundant reactions are indicated by principal components corresponding to small eigenvalues and insignificant elements in principal components with large eigenvalues. Through this investigation, aside from the 11 reactions identified as

  9. N-nitrosodimethylamine (NDMA) formation during ozonation of N,N-dimethylhydrazine compounds: Reaction kinetics, mechanisms, and implications for NDMA formation control.

    Science.gov (United States)

    Lim, Sungeun; Lee, Woongbae; Na, Soyoung; Shin, Jaedon; Lee, Yunho

    2016-11-15

    Compounds with N,N-dimethylhydrazine moieties ((CH 3 ) 2 N-N-) form N-nitrosodimethylamine (NDMA) during ozonation, but the relevant reaction chemistry is hitherto poorly understood. This study investigated the reaction kinetics and mechanisms of NDMA formation during ozonation of unsymmetrical dimethylhydrazine (UDMH) and daminozide (DMZ) as structural model N,N-dimethylhydrazine compounds. The reaction of ozone with these NDMA precursor compounds was fast, and k O3 at pH 7 was 2 × 10 6  M -1  s -1 for UDMH and 5 × 10 5  M -1  s -1 for DMZ. Molar NDMA yields (i.e., Δ[NDMA]/Δ[precursor] × 100) were 84% and 100% for UDMH and DMZ, respectively, determined at molar ozone dose ratio ([O 3 ] 0 /[precursor] 0 ) of ≥4 in the presence of tert-butanol as hydroxyl radical (OH) scavenger. The molar NDMA yields decreased significantly in the absence of tert-butanol, indicating OH formation and its subsequent reaction with the parent precursors forming negligible NDMA. The k OH at pH 7 was 4.9 × 10 9  M -1  s -1 and 3.4 × 10 9  M -1  s -1 for UDMH and DMZ, respectively. Reaction mechanisms are proposed in which an ozone adduct is formed at the nitrogen next to N,N-dimethylamine which decomposes via homolytic and heterolytic cleavages of the -N + -O-O-O - bond, forming NDMA as a final product. The heterolytic cleavage pathway explains the significant OH formation via radical intermediates. Overall, significant NDMA formation was found to be unavoidable during ozonation or even O 3 /H 2 O 2 treatment of waters containing N,N-dimethylhydrazine compounds due to their rapid reaction with ozone forming NDMA with high yield. Thus, source control or pre-treatment of N,N-dimethylhydrazine precursors and post-treatment of NDMA are proposed as the mitigation options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The Solubility of Ozone in Deionized Water and its Cleaning Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.H.; Park, J.G. [Hanyang University, Seoul (Korea, Republic of); Kwak, Y.S. [Hanyang Technology Co., Ltd., Ansan (Korea, Republic of)

    1998-06-01

    The purpose of this study was to investigate the behavior of ozone in DI water and the reaction with wafers during the semiconductor wet cleaning process. The solubility of ozone in DI water was not only dependent on the temperature but also directly proportional to the input concentration of ozone. The lower the initial ozone concentration and the temperature, the longer the half-life time of ozone. The reaction order of ozone in DI water was calculated to be around 1.5. The redox potential reached a saturation value in 5min and slightly increased as the input ozone concentrations increased. The completely hydrophilic surface was created in 1min when HF etched silicon wafer was cleaned in ozonized DI water containing higher ozone concentrations than 2ppm. Spectroscopic ellipsometry measurements showed that the chemical oxide formed by ozonized DI water was measured to be thicker than that by piranha solution. The wafers contaminated with a non-ionic surfactant were more effectively cleaned in ozonized DI water than in piranha and ozonized piranha solutions. (author). 19 refs., 11 figs., 1 tab.

  11. Plasmachemical and heterogeneous processes in ozonizers with oxygen activation by a dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Mankelevich, Yu. A., E-mail: ymankelevich@mics.msu.su; Voronina, E. N.; Poroykov, A. Yu.; Rakhimov, T. V.; Voloshin, D. G.; Chukalovsky, A. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2016-10-15

    Plasmachemical and heterogeneous processes of generation and loss of ozone in the atmosphericpressure dielectric barrier discharge in oxygen are studied theoretically. Plasmachemical and electronic kinetics in the stage of development and decay of a single plasma filament (microdischarge) are calculated numerically with and without allowance for the effects of ozone vibrational excitation and high initial ozone concentration. The developed analytical approach is applied to determine the output ozone concentration taking into account ozone heterogeneous losses on the Al{sub 2}O{sub 3} dielectric surface. Using the results of quantummechanical calculations by the method of density functional theory, a multistage catalytic mechanism of heterogeneous ozone loss based on the initial passivation of a pure Al{sub 2}O{sub 3} surface by ozone and the subsequent interaction of O{sub 3} molecules with the passivated surface is proposed. It is shown that the conversion reaction 2O{sub 3} → 3O{sub 2} of a gas-phase ozone molecule with a physically adsorbed ozone molecule can result in the saturation of the maximum achievable ozone concentration at high specific energy depositions, the nonstationarity of the output ozone concentration, and its dependence on the prehistory of ozonizer operation.

  12. The stereodynamics of photon-initiated bimolecular reactions

    International Nuclear Information System (INIS)

    Hughes, D.W.

    1999-01-01

    This thesis concerns the stereodynamics of the product state resolved reaction: H( 2 S) + CO 2 → (HOCO) → OH(X 2 Π Ω ; v, N, f) + CO( 1 Σ + ). Translationally excited hydrogen atoms were generated from HBr and HCl precursor molecules, via polarised laser photolysis, and the Doppler lineshapes of nascent OH products were monitored using polarised laser radiation. Four different OH product channels were investigated at a collision energy of 2.5 eV, and two OH product channels were studied at a collision energy of 1.8 eV. Three main sources of product state specific information were recovered from the Doppler profiles: Differential cross-sections (DCS); Product translational energy distributions (P(f)); Product rotational angular momentum distributions. Product state specific differential cross-sections (generated through collisions at 2.5 eV) suggest that OH( 2 Π 1/2 ) products may be produced through a more 'direct' route than OH( 2 Π 3/2 ) products. Differential cross-sections recorded for OH products generated through collisions at 1.8 eV, however, imply that neither OH spin-orbit state is populated through a 'direct' mechanism. The P(f t ) distributions for all OH product channels exhibit more product translational excitation than would be expected on the basis of phase space theory. This may imply either that the lifetimes of the collision complexes are short with respect to the timescale for intramolecular internal energy randomisation, or that there are significant exit channel interactions. The polarisation of the OH rotational angular momentum distribution is seen to be highly sensitive to the rotational and spin-orbit state of the OH products, but less sensitive to the collision energy and lambda-doublet state of the OH product. This thesis outlines the scope of present day experimental stereodynamical studies of gas-phase reactions (chapter 1), the theory of vector correlations in photoninitiated bimolecular reactions (chapter 2) and the

  13. The effect of composition of mixture on rate of radiation initiation of chain reactions

    International Nuclear Information System (INIS)

    Poluehktov, V.A.; Begishev, I.R.; Podkhalyuzin, A.T.; Babkina, Eh.I.; Morozov, V.A.; Shapovalov, V.V.

    1977-01-01

    The effect of the composition of starting components on the rate of a number of chain liquid-phase reactions initiated by γ-quanta of Co 60 has been investigated at constant temperature and dosage rate. In regard to 1,1-difluoroethane chlorination, cyclohexene phosphorylation and adamantane alkylation with hexafluoropropylene reactions, abnormal effect of the reagent compositions on reaction rates has been discovered. The possible radical - starting molecule complexing reaction and molecular complexing from the starting components have been considered

  14. Treatability study of the effluent containing reactive blue 21 dye by ozonation and the mass transfer study of ozone

    Science.gov (United States)

    Velpula, Priyadarshini; Ghuge, Santosh; Saroha, Anil K.

    2018-04-01

    Ozonation is a chemical treatment process in which ozone reacts with the pollutants present in the effluent by infusion of ozone into the effluent. This study includes the effect of various parameters such as inlet ozone dose, pH of solution and initial concentration of dye on decolorization of dye in terms CRE. The maximum CRE of 98.62% with the reaction rate constant of 0.26 min-1 is achieved in 18 minutes of reaction time at inlet ozone dose of 11.5 g/m3, solution pH of 11 and 30 mg/L of initial concentration of dye. The presence of radical scavenger (Tertiary Butyl Alcohol) suppressed the CRE from 98.62% to 95.4% at high pH values indicates that the indirect mechanism dominates due to the presence of hydroxyl radicals which are formed by the decomposition of ozone. The diffusive and convective mass transfer coefficients of ozone are calculated as 1.78 × 10-5 cm2/sec and 0.075 min-1. It is observed that the fraction of resistance offered by liquid is very much high compared to gas phase indicates that the ozonation is a liquid phase mass transfer controlled operation.

  15. Investigation of Na-CO{sub 2} Reaction with Initial Reaction in Various Reacting Surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of); Wi, Myung-Hwan [KAERI, Daejeon (Korea, Republic of)

    2015-10-15

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO{sub 2} reaction according to various experimental parameter. Unlike SWR, Na-CO{sub 2} reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO{sub 2} reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO{sub 2} gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO{sub 2} interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO{sub 2} brayton cycle energy conversion system for Na-CO{sub 2} heat exchanger. And next parameter is sodium surface area which contact between sodium and CO{sub 2} when CO{sub 2} is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm{sup 2}. Additionally, it has been reported in recent years that CO{sub 2} Flow rate affects reactivity less significantly and CO{sub 2} flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO{sub 2} flow rate. Na-CO{sub 2} reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO{sub 2}. Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a

  16. Investigation of Na-CO2 Reaction with Initial Reaction in Various Reacting Surface

    International Nuclear Information System (INIS)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan; Wi, Myung-Hwan

    2015-01-01

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO 2 reaction according to various experimental parameter. Unlike SWR, Na-CO 2 reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO 2 reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO 2 gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO 2 interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO 2 brayton cycle energy conversion system for Na-CO 2 heat exchanger. And next parameter is sodium surface area which contact between sodium and CO 2 when CO 2 is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm 2 . Additionally, it has been reported in recent years that CO 2 Flow rate affects reactivity less significantly and CO 2 flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO 2 flow rate. Na-CO 2 reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO 2 . Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a database for the SFR safety analysis and additional experiments are needed

  17. [Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].

    Science.gov (United States)

    Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng

    2013-04-01

    The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH.

  18. Optimal control of the initiation of a pericyclic reaction in the ...

    Indian Academy of Sciences (India)

    Abstract. Pericyclic reactions in the electronic ground state may be initiated by down-chirped pump-dump ... Figure 1. Cope rearrangement of semibullvalene, with pincer-motion-type ... investigations which have centred attention on the simp-.

  19. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao; Croue, Jean-Philippe

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation

  20. Incidence and associated factors to adverse reactions of the initial antiretroviral treatment in patients with HIV

    OpenAIRE

    Astuvilca, Juan; Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Lima, Perú. Sociedad Científica de San Fernando. Lima, Perú. Estudiantes de medicina.; Arce-Villavicencio, Yanet; Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Lima, Perú. Sociedad Científica de San Fernando. Lima, Perú. Estudiantes de medicina.; Sotelo, Raúl; Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Lima, Perú. Sociedad Científica de San Fernando. Lima, Perú. Estudiantes de medicina.; Quispe, José; Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Lima, Perú. Sociedad Científica de San Fernando. Lima, Perú. Estudiantes de medicina.; Guillén, Regina; Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Lima, Perú. Estudiantes de medicina.; Peralta, Lillian; Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Lima, Perú. Estudiantes de medicina.; Huaringa, Jorge; Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Lima, Perú. Estudiantes de medicina.; Gutiérrez, César; Departamento Académico de Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Lima-Perú. Médico epidemiólogo.

    2007-01-01

    The high incidence of adverse reactions to the high activity antiretroviral treatment (HAART) in patients with HIV/AIDS, can affect their quality of life and adherence to the treatment. Objectives: To determinate the incidence of adverse reactions to the initial HAART and to identify the factors associated to the occurrence of adverse reactions when receiving this therapy. Material and methods: Historic cohort study. The population was conformed by all the HIV-infected adult patients (≥18...

  1. Temporally resolved ozone distribution of a time modulated RF atmospheric pressure argon plasma jet: flow, chemical reaction, and transient vortex

    International Nuclear Information System (INIS)

    Zhang, S; Sobota, A; Van Veldhuizen, E M; Bruggeman, P J

    2015-01-01

    The ozone density distribution in the effluent of a time modulated RF atmospheric pressure plasma jet (APPJ) is investigated by time and spatially resolved by UV absorption spectroscopy. The plasma jet is operated with an averaged dissipated power of 6.5 W and gas flow rate 2 slm argon  +2% O 2 . The modulation frequency of the RF power is 50 Hz with a duty cycle of 50%. To investigate the production and destruction mechanism of ozone in the plasma effluent, the atomic oxygen and gas temperature is also obtained by TALIF and Rayleigh scattering, respectively. A temporal increase in ozone density is observed close to the quartz tube exit when the plasma is switched off due to the decrease in O density and gas temperature. Ozone absorption at different axial positions indicates that the ozone distribution is dominated by the convection induced by the gas flow and allows estimating the on-axis local gas velocity in the jet effluent. Transient vortex structures occurring during the switch on and off of the RF power also significantly affect the ozone density in the far effluent. (paper)

  2. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process.

    Science.gov (United States)

    Yang, Yi; Jiang, Jin; Lu, Xinglin; Ma, Jun; Liu, Yongze

    2015-06-16

    In this work, simultaneous generation of hydroxyl radical (•OH) and sulfate radical (SO4•−) by the reaction of ozone (O3) with peroxymonosulfate (PMS; HSO5−) has been proposed and experimentally verified. We demonstrate that the reaction between the anion of PMS (i.e.,SO52−) and O3 is primarily responsible for driving O3 consumption with a measured second order rate constant of (2.12 ± 0.03) × 10(4) M(-1) s(-1). The formation of both •OH and SO4•− from the reaction between SO52− and O3 is confirmed by chemical probes (i.e., nitrobenzene for •OH and atrazine forb oth •OH and SO4•−). The yields of •OH and SO4•− are determined to be 0.43 ± 0.1 and 0.45 ± 0.1 per mol of O3 consumption, respectively. An adduct,−O3SOO− + O3 → −O3SO5−, is assumed as the first step, which further decomposes into SO5•− and O3•−. The subsequent reaction of SO5•− with O3is proposed to generate SO4•−, while O3•− converts to •OH. A definition of R(ct,•OH) and R(ct,SO4•−) (i.e., respective ratios of •OH and SO4•− exposures to O3 exposure) is adopted to quantify relative contributions of •OH and SO4•−. Increasing pH leads to increases in both values of R(ct,•OH) and R(ct,SO4•−) but does not significantly affect the ratio of R(ct,SO4•−) to R(ct,•OH) (i.e., R(ct,SO4•−)/R(ct,•OH)), which represents the relative formation of SO4•− to •OH. The presence of bicarbonate appreciably inhibits the degradation of probes and fairly decreases the relative contribution of •OH for their degradation, which may be attributed to the conversion of both •OH and SO4•− to the more selective carbonate radical (CO3•−).Humic acid promotes O3 consumption to generate •OH and thus leads to an increase in the R(ct,•OH) value in the O3/PMS process,w hile humic acid has negligible influence on the R(ct,SO4•−) value. This discrepancy is reasonably explained by the negligible effect of humic acid on SO

  3. Degradation of 4-chlorophenol by ozonation, γ radiation as well as ozonation combined with γ radiation

    International Nuclear Information System (INIS)

    Hu, J.; Wang, J.L.

    2005-01-01

    The radiolysis of aqueous 4-chlorophenol (4-CP) by gamma radiation in the presence of air and ozone was investigated. The 4-CP degradation, release of chloride ion, UV absorption spectrum, total organic carbon (TOC) and adsorbable organic halogens (AOX) was measured. Under the conditions of synergistic effect of ozone and radiation a complete degradation of 100 mg/L 4-CP was obtained at a dose of 6 kGy, without ozone the 4-chlorophenol was completely decomposed at 15 kGy. The total organic carbon (TOC) was reduced by 26% when ionizing radiation (at 15 kGy) combined with ozonation, and by 17% without ozone, respectively. Analysis of intermediate products resulting from synergistic effect of ozone and radiation of 4-CP was performed by using the GC/MS method. Some primary influencing factors such as irradiation time and initial 4-CP concentration were also discussed. The results showed that the degradation of 4-chlorophenol could described by first-order reaction kinetic model. There is potential for combination of irradiation with ozonation, which can remarkably reduce the irradiation dose increase the degradation efficiency of 4-CP.

  4. Errors in Postural Preparation Lead to Increased Choice Reaction Times for Step Initiation in Older Adults

    Science.gov (United States)

    Nutt, John G.; Horak, Fay B.

    2011-01-01

    Background. This study asked whether older adults were more likely than younger adults to err in the initial direction of their anticipatory postural adjustment (APA) prior to a step (indicating a motor program error), whether initial motor program errors accounted for reaction time differences for step initiation, and whether initial motor program errors were linked to inhibitory failure. Methods. In a stepping task with choice reaction time and simple reaction time conditions, we measured forces under the feet to quantify APA onset and step latency and we used body kinematics to quantify forward movement of center of mass and length of first step. Results. Trials with APA errors were almost three times as common for older adults as for younger adults, and they were nine times more likely in choice reaction time trials than in simple reaction time trials. In trials with APA errors, step latency was delayed, correlation between APA onset and step latency was diminished, and forward motion of the center of mass prior to the step was increased. Participants with more APA errors tended to have worse Stroop interference scores, regardless of age. Conclusions. The results support the hypothesis that findings of slow choice reaction time step initiation in older adults are attributable to inclusion of trials with incorrect initial motor preparation and that these errors are caused by deficits in response inhibition. By extension, the results also suggest that mixing of trials with correct and incorrect initial motor preparation might explain apparent choice reaction time slowing with age in upper limb tasks. PMID:21498431

  5. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    Science.gov (United States)

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-05

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Self-reported adverse reactions among patients initiating antiretroviral therapy in Brazil

    Directory of Open Access Journals (Sweden)

    Cristiane A. Menezes de Pádua

    Full Text Available A cross-sectional analysis was carried out to describe adverse reactions to antiretroviral therapy (ART reported by HIV-infected patients initiating treatment at two public health AIDS referral centers in Belo Horizonte, Brazil, 2001-2003 and to verify their association with selected variables. Adverse reactions were obtained through interview at the first follow-up visit (first month after the antiretroviral prescription. Socio-demographic and behavioral variables related to ART were obtained from baseline and follow-up interviews and clinical variables from medical charts. Patients with four or more reactions were compared to those with less than four. Odds ratio with 95% confidence interval were estimated using logistic regression model for both univariate and multivariate analyses. At least one adverse reaction was reported by 92.2% of the participants while 56.2% reported four or more different reactions. Antiretroviral regimens including indinavir/ritonavir, irregular use of antiretrovirals and switch in regimens were independently associated with four or more adverse reactions (OR=7.92, 5.73 and 2.03, respectively. The initial period of ARV treatment is crucial and patients´ perception of adverse reactions should be carefully taken into account. Strategies for monitoring and management of adverse reactions including the choice of regimens and the prevention of irregular ART should be developed in AIDS/HIV referral centers in Brazil to promote better adherence to antiretroviral therapy.

  7. Self-reported adverse reactions among patients initiating antiretroviral therapy in Brazil

    OpenAIRE

    Pádua,Cristiane A. Menezes de; César,Cibele C.; Bonolo,Palmira F.; Acurcio,Francisco A.; Guimarães,Mark Drew C.

    2007-01-01

    A cross-sectional analysis was carried out to describe adverse reactions to antiretroviral therapy (ART) reported by HIV-infected patients initiating treatment at two public health AIDS referral centers in Belo Horizonte, Brazil, 2001-2003 and to verify their association with selected variables. Adverse reactions were obtained through interview at the first follow-up visit (first month) after the antiretroviral prescription. Socio-demographic and behavioral variables related to ART were obtai...

  8. Formation of molecular bromine from the reaction of ozone with deliquesced NaBr aerosol: Evidence for interface chemistry

    Czech Academy of Sciences Publication Activity Database

    Hunt, S. W.; Roeselová, Martina; Wang, W.; Wingen, L. M.; Knipping, E. M.; Tobias, D. J.; Dabdub, D.; Finlayson-Pitts, B. J.

    2004-01-01

    Roč. 108, - (2004), s. 11559-11572 ISSN 1089-5639 Grant - others:NSF(US) 0209719; NSF(US) 0431512 Institutional research plan: CEZ:AV0Z4055905 Keywords : ozone * sea-salt aerosol * molecular dynamics simulation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.639, year: 2004

  9. The similar hexheimer reaction during initial treatment of pulmonary tuberculosis: CT appearances

    International Nuclear Information System (INIS)

    Lu Yan; Zhou Xinhua; Xie Ruming; Xu Jinping

    2009-01-01

    Objective: To investigate CT features of similar Hexheimer's reaction during initial treatment of active pulmonary tuberculosis. Methods: The similar Hexheimer's reaction in 44 patients diagnosed by clinic and follow-up CT scans were retrospectively reviewed by three radiologists. Results: During initial treatment of active pulmonary tuberculosis, development of radiographic progression were observed in 57 foci, including 28 pulmonary lesions increased at the site of their original lesion or new opacities elsewhere, ipsilateral or contralateral to the original lesion or both, 10 lesions related to the pleura (pleural effusion, pleural tuberculoma), 15 lymphadenectasis, 3 thymus reactions, and 1 cardiac pericardium thickening, respectively. These reactions appeared from the 20 days to 3.5 months, then with continuation of the initial chemotherapy for 1.0-3.0 months, the radiographic response was excellent with the areas of progression and the original lesions demonstrating resolution or improvement. Conclusion: The CT appearances of similar Hexheimer's reaction during initial treatment of active tuberculosis are specific to a certainty. (authors)

  10. Ion-molecular reactions initiated by β-decay of tritium in tritiated compounds

    International Nuclear Information System (INIS)

    Akulov, G.P.

    1976-01-01

    Ion-molecular reactions initiated by β-decay of tritium and tritiated hydrocarbons have been systematized. The review describes the theoretical and experimental foundation of the radiochemical method of this important type of chemical interactions investigation. The reactions of the molecular ions of HeT + with methane, ethane, propane, butane and also with cycloalkanes from C 3 to C 6 are discussed. The reactions under consideration have been united into two groups: reactions involving HeT + ions and those involving carbonic ions. From the experimental results available, the conclusions have been drawn about the reactivity of these intermediate formations, about the mechanism of their interaction with organic substances, and also about the perspectives of using the radiochemical method in studies of ion-molecular reactions. The experimental results published before May 1974 are examined. The bibliography includes 162 references

  11. Ozone decomposition kinetics on alumina: effects of ozone partial pressure, relative humidity and repeated oxidation cycles

    Directory of Open Access Journals (Sweden)

    R. C. Sullivan

    2004-01-01

    Full Text Available The room temperature kinetics of gas-phase ozone loss via heterogeneous interactions with thin alumina films has been studied in real-time using 254nm absorption spectroscopy to monitor ozone concentrations. The films were prepared from dispersions of fine alumina powder in methanol and their surface areas were determined by an in situ procedure using adsorption of krypton at 77K. The alumina was found to lose reactivity with increasing ozone exposure. However, some of the lost reactivity could be recovered over timescales of days in an environment free of water, ozone and carbon dioxide. From multiple exposures of ozone to the same film, it was found that the number of active sites is large, greater than 1.4x1014 active sites per cm2 of surface area or comparable to the total number of surface sites. The films maintain some reactivity at this point, which is consistent with there being some degree of active site regeneration during the experiment and with ozone loss being catalytic to some degree. The initial uptake coefficients on fresh films were found to be inversely dependent on the ozone concentration, varying from roughly 10-6 for ozone concentrations of 1014 molecules/cm3 to 10-5 at 1013 molecules/cm3. The initial uptake coefficients were not dependent on the relative humidity, up to 75%, within the precision of the experiment. The reaction mechanism is discussed, as well as the implications these results have for assessing the effect of mineral dust on atmospheric oxidant levels.

  12. Kinetic and Mechanistic Studies for the Gas-phase Reaction of Ozone with 2, 3-Dimethyl-2-Butene and 1, 3-Butadiene

    Directory of Open Access Journals (Sweden)

    Ismael Abdulsatar AL Mulla

    2017-09-01

    Full Text Available The reactions of ozone with 2,3-Dimethyl-2-Butene (CH32C=C(CH32 and 1,3-Butadiene CH2=CHCH=CH2 have been investigated under atmospheric conditions at 298±3K in air using both relative and absolute rate techniques, and the measured rate coefficients are found to be in good agreement in both techniques used. The obtained results show the addition of ozone to the double bond in these compounds and how it acts as function of the methyl group substituent situated on the double bond. The yields of all the main products have been determined using FTIR and GC-FID and the product studies of these reactions establish a very good idea for the decomposition pathways for the primary formed compounds (ozonides and give a good information for the effect of the methyl group on the degradation pathways. The results have been discussed from the view point of their importance in the atmospheric oxidation of these pollutants.

  13. Raney copper catalysts for the water-gas shift reaction - II. Initial catalyst optimisation

    CSIR Research Space (South Africa)

    Mellor, JR

    1997-12-23

    Full Text Available The initial Raney copper WGS activity based on catalyst volume has been shown to be comparable to industrial and co-precipitated alternatives under varying reaction conditions. The presence of zinc oxide in the Raney copper structure was shown...

  14. Follow-Up Study to Family Members' Reactions to the Initial Special Education Meeting

    Science.gov (United States)

    Ingalls, Lawrence; Hammond, Helen; Paez, Carlos; Rodriguez, Ivan

    2016-01-01

    Family involvement is a central component of Individuals with Disabilities Education Act (IDEA). Family members are to be integrated in all aspects of the special education process. At the onset, of family involvement, it is imperative for educators to be aware of possible reactions family members may experience in this initial stage. This…

  15. Advanced treatment of acrylic fiber manufacturing wastewater with a combined microbubble-ozonation/ultraviolet irradiation process

    KAUST Repository

    Zheng, Tianlong; Zhang, Tao; Wang, Qunhui; Tian, Yanli; Shi, Zhining; Smale, Nicholas; Xu, Banghua

    2015-01-01

    This work investigated the effectiveness of a combination of microbubble-ozonation and ultraviolet (UV) irradiation for the treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under reactor condition (ozone dosage of 48 mg L-1, UV fluence rate of 90 mW cm-2, initial pH of 8.0, and reaction time of 120 min), the biodegradability (represented as BOD5/CODcr) of the wastewater improved from 0.18 to 0.47. This improvement in biodegradability is related to the degradation of alkanes, aromatic compounds, and other bio-refractory organic compounds. The combination of microbubble-ozonation and UV irradiation synergistically improved treatment efficiencies by 228%, 29%, and 142% for CODcr, UV254 removal and BOD5/CODcr respectively after 120 min reaction time, as compared with the sum efficiency of microbubble-ozonation alone and UV irradiation alone. Hydroxyl radical production in the microbubble-ozonation/UV process was about 1.8 times higher than the sum production in microbubble-ozonation alone and UV irradiation alone. The ozone decomposition rate in the combined process was about 4.1 times higher than that in microbubble-ozonation alone. The microbubble-ozonation/UV process could be a promising technique for the treatment of bio-refractory organics in the acrylic fiber manufacturing industry. © 2015 Royal Society of Chemistry.

  16. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation. It is unknown whether this process is effective for all carboxylates or selective to special molecule structures. In this work, the selectivity was confirmed using O3/(CuO/CeO2) and six distinct ozone-resistant probe carboxylates (i.e., acetate, citrate, malonate, oxalate, pyruvate and succinate). Among these probe compounds, pyruvate, oxalate, and citrate were readily degraded following the rate order of oxalate>citrate>pyruvate, while the degradation of acetate, malonate, and succinate was not promoted. The selectivity was independent on carboxylate group number of the probe compounds and solution pH. Competitive degradation was observed for carboxylate mixtures following the preference order of citrate, oxalate, and finally pyruvate. The competitive degradation was ascribed to competitive adsorption on the catalyst surface. It was revealed that the catalytically degradable compounds formed bidentate chelating or bridging complexes with surface copper sites of the catalyst, i.e., the active sites. The catalytically undegradable carboxylates formed monodentate complexes with surface copper sites or just electrostatically adsorbed on the catalyst surface. The selectivity, relying on the structure of surface metal-carboxylate complex, should be considered in the design of catalytic ozonation process. © 2013 Elsevier B.V.

  17. Exchange reaction between hydrogen and deuterium. II - Proposal for an heterogeneous initiation mechanism of gaseous phase reactions

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, Chantal; Gaillard-Cusin, Francoise; James, Henri [Centre National de la Recherche Scientifique, 45 - Orleans-la-Source (France). Centre de Recherches sur la Chimie de Combustion et des Hautes Temperatures

    1978-05-01

    Investigation of experimental data related to evolution period exhibited by H/sub 2/-D/sub 2/ exchange process requires to take into account the variation against time of every atomic species -adsorbed or not- implied in the reaction mechanism. The formation of first chain carriers involves: - chemisorption of either gaseous reactant on the surface active centres (..sigma..), e.g.: ..sigma.. + 1/2 H/sub 2/ reversible ..sigma..H; - consecutive generation of atomic species through hetero-homogeneous transfer between chemisorbed species (..sigma..H) and gaseous molecules: ..sigma..H+H/sub 2/..--> sigma..+H/sub 2/+H/sup 0/, ..sigma..H+D/sub 2/..--> sigma..+HD+D/sup 0/. Therefore, it can be shown that the heterogeneous initiation process of a gas phase reaction identifies to a chain linear mechanism. Such an heterogeneous sequence conditions the further proceeding of the homogeneous chain reaction; both evolutions being kinematically connected. Rate constant of hydrogen adsorption on silica glass: ksub(a1) approximately 10/sup 14/ exp(-47/RT)Isup(0,5).molesup(-0,5).S/sup -1/ has been evaluated.

  18. X-ray Crystal Structures Elucidate the Nucleotidyl Transfer Reaction of Transcript Initiation Using Two Nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    M Gleghorn; E Davydova; R Basu; L Rothman-Denes; K Murakami

    2011-12-31

    We have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groups of substrates for the nucleotidyl transfer reaction. Although all nucleic acid polymerases use two divalent metals for catalysis, they differ in the requirements and the timing of binding of each metal. In the case of bacteriophage RNA polymerase, we propose that catalytic metal binding is the last step before the nucleotidyl transfer reaction.

  19. The competition between cathodic oxygen and ozone reduction and its role in dictating the reaction mechanisms of an electro-peroxone process.

    Science.gov (United States)

    Xia, Guangsen; Wang, Yujue; Wang, Bin; Huang, Jun; Deng, Shubo; Yu, Gang

    2017-07-01

    Previous studies indicate that effective generation of hydrogen peroxide (H 2 O 2 ) from cathodic oxygen (O 2 ) reduction is critical for the improved water treatment performance (e.g., enhanced pollutant degradation and reduced bromate formation) during the electro-peroxone (E-peroxone) process (a combined process of electrolysis and ozonation). However, undesired reactions (e.g., O 3 , H 2 O 2 , and H 2 O reductions) may occur in competition with O 2 reduction at the cathode. To get a better understanding of how these side reactions would affect the process, this study investigated the cathodic reaction mechanisms during electrolysis with O 2 /O 3 gas mixture sparging using various electrochemical techniques (e.g., linear sweep voltammetry and stepped-current chronopotentiometry). Results show that when a carbon brush cathode was used during electrolysis with O 2 /O 3 sparging, H 2 O and H 2 O 2 reductions were usually negligible cathodic reactions. However, O 3 can be preferentially reduced at much more positive potentials (ca. 0.9 V vs. SCE) than O 2 (ca. -0.1 V vs. SCE) at the carbon cathode. Therefore, cathodic O 2 reduction was inhibited when the process was operated under current limited conditions for cathodic O 3 reduction. The inhibition of O 2 reduction prevented the desired E-peroxone process (cathodic O 2 reduction to H 2 O 2 and ensuing reaction of H 2 O 2 with O 3 to OH) from occurring. In contrast, when cathodic O 3 reduction was limited by O 3 mass transfer to the cathode, cathodic O 2 reduction to H 2 O 2 could occur, thus enabling the E-peroxone process to enhance pollutant degradation and mineralization. Many process and water parameters (applied current, ozone dose, and reactivity of water constituents with O 3 ) can cause fundamental changes in the cathodic reaction mechanisms, thus profoundly influencing water treatment performance during the E-peroxone process. To exploit the benefits of H 2 O 2 in water treatment, reaction conditions

  20. Ozonation performance of WWTP secondary effluent of antibiotic manufacturing wastewater.

    Science.gov (United States)

    Zheng, Shaokui; Cui, Cancan; Liang, Qianjin; Xia, Xinghui; Yang, Fan

    2010-11-01

    The ozonation performance of wastewater treatment plant secondary effluent of oxytetracycline (OTC) manufacturing wastewater was investigated in terms of ozone dosage and initial pH levels when OTC contributed to a negligible fraction in the chemical oxygen demand (COD) ingredients of the medium-organic-strength wastewater with low biodegradability. A particular emphasis was placed on ammonia, OTC, and residual antibacterial activity (RAA) (evaluated using the objective pathogenic bacterium Staphylococcus aureus). It appears that an ozone dosage of 657 mg L⁻¹ (120 min of reaction) was enough to achieve an OTC abatement of 96%, and COD and biochemical oxygen demand removals of 29% and 33%, respectively, at initial levels of 10.4, 1360, and 300 mg L⁻¹ , respectively. There is a clear correlation between complete OTC depletion and complete RAA disappearance with an increase of ozone dosage. The presence of plentiful non-antibiotic refractory substances influenced the determination of the optimum ozone dosage for biodegradability enhancement and OTC/RAA reduction as well as the ozonation transformation of NH(3). The initial pH adjustment from the original level (pH 9) to pH 11 significantly reduced COD removal while RAA and NH(3) levels were not significantly influenced. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Becoming the denigrated other: Group relations perspectives on initial reactions to a bipolar disorder diagnosis

    Directory of Open Access Journals (Sweden)

    Susan G. Goldberg

    2012-09-01

    Full Text Available The initial reactions to a bipolar disorder diagnosis of research participants in a small, qualitative study consisted of astonishment, dread of being mad, and extremely negative associations. All had prior mental health diagnoses, including episodes of severe depression (all but one and alcoholism (one. All participants reported mental health histories prediagnosis and most had spent years contending with mental health labels, medications, symptoms, and hospitalizations. In addition, most participants were highly educated health professionals, quite familiar with the behaviors that the medical system considered to comprise bipolar disorder. Their negative associations to the initial bipolar disorder diagnosis, therefore, appeared inconsistent with their mental health histories and professional knowledge. This article contextualizes these initial reactions of shock and distress and proposes interpretations of these findings from societal and psychodynamic group relations perspectives. The participants’ initial negative reactions are conceptualized as involving the terror of being transported from the group of normal people into the group of mad or crazy people, i.e., people with mental illnesses, who may constitute a societal denigrated other.

  2. Accurate label-free reaction kinetics determination using initial rate heat measurements

    Science.gov (United States)

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R.

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity. PMID:26574737

  3. Use of nanostructure initiator mass spectrometry (NIMS to deduce selectivity of reaction in glycoside hydrolases

    Directory of Open Access Journals (Sweden)

    Kai eDeng

    2015-10-01

    Full Text Available Chemically synthesized nanostructure-initiator mass spectrometry (NIMS probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements.

  4. Mix and Inject: Reaction Initiation by Diffusion for Time-Resolved Macromolecular Crystallography

    Directory of Open Access Journals (Sweden)

    Marius Schmidt

    2013-01-01

    Full Text Available Time-resolved macromolecular crystallography unifies structure determination with chemical kinetics, since the structures of transient states and chemical and kinetic mechanisms can be determined simultaneously from the same data. To start a reaction in an enzyme, typically, an initially inactive substrate present in the crystal is activated. This has particular disadvantages that are circumvented when active substrate is directly provided by diffusion. However, then it is prohibitive to use macroscopic crystals because diffusion times become too long. With small micro- and nanocrystals diffusion times are adequately short for most enzymes and the reaction can be swiftly initiated. We demonstrate here that a time-resolved crystallographic experiment becomes feasible by mixing substrate with enzyme nanocrystals which are subsequently injected into the X-ray beam of a pulsed X-ray source.

  5. Impact of the new HNO3-forming channel of the HO2+NO reaction on tropospheric HNO3, NOx, HOx and ozone

    Directory of Open Access Journals (Sweden)

    A. Kukui

    2008-07-01

    Full Text Available We have studied the impact of the recently observed reaction NO+HO2→HNO3 on atmospheric chemistry. A pressure and temperature-dependent parameterisation of this minor channel of the NO+HO2→NO2+OH reaction has been included in both a 2-D stratosphere-troposphere model and a 3-D tropospheric chemical transport model (CTM. Significant effects on the nitrogen species and hydroxyl radical concentrations are found throughout the troposphere, with the largest percentage changes occurring in the tropical upper troposphere (UT. Including the reaction leads to a reduction in NOx everywhere in the troposphere, with the largest decrease of 25% in the tropical and Southern Hemisphere UT. The tropical UT also has a corresponding large increase in HNO3 of 25%. OH decreases throughout the troposphere with the largest reduction of over 20% in the tropical UT. The mean global decrease in OH is around 13%, which is very large compared to the impact that typical photochemical revisions have on this modelled quantity. This OH decrease leads to an increase in CH4 lifetime of 5%. Due to the impact of decreased NOx on the OH:HO2 partitioning, modelled HO2 actually increases in the tropical UT on including the new reaction. The impact on tropospheric ozone is a decrease in the range 5 to 12%, with the largest impact in the tropics and Southern Hemisphere. Comparison with observations shows that in the region of largest changes, i.e. the tropical UT, the inclusion of the new reaction tends to degrade the model agreement. Elsewhere the model comparisons are not able to critically assess the impact of including this reaction. Only small changes are calculated in the minor species distributions in the stratosphere.

  6. Acceleration of Intended Pozzolanic Reaction under Initial Thermal Treatment for Developing Cementless Fly Ash Based Mortar

    Directory of Open Access Journals (Sweden)

    Yang-Hee Kwon

    2017-02-01

    Full Text Available Without using strong alkaline solution or ordinary Portland cement, a new structural binder consisting of fly ash and hydrated lime was hardened through an intensified pozzolanic reaction. The main experimental variables are the addition of silica fume and initial thermal treatment (60 °C for 3 days. A series of experiments consisting of mechanical testing (compressive and flexural strength, modulus of elasticity, X-ray diffraction, and measurements of the heat of hydration, pore structure, and shrinkage were conducted. These tests show that this new fly ash-based mortar has a compressive strength of 15 MPa at 91 days without any silica fume addition or initial thermal treatment. The strength increased to over 50 MPa based on the acceleration of the intensified pozzolanic reaction from the silica fume addition and initial thermal treatment. This is explained by a significant synergistic effect induced by the silica fume. It intensifies the pozzolanic reaction under thermal treatment and provides a space filling effect. This improved material performance can open a new pathway to utilize the industrial by-product of fly ash in cementless construction materials.

  7. Comparison of four different chemical reaction schemes (CBM-IV, EMEP, Euro-RADM, RADM II) for the modelling of ozone formation

    International Nuclear Information System (INIS)

    Musalek, G.; Winiwarter, W.

    1995-08-01

    Four different chemical reaction schemes (mechanisms) were tested for their applicability for inclusion in an ozone model for Eastern Austria (Pannonia) which is being developed within the Pannonian Ozone Project (POP). For this task, a box model (OZIP-W) was used. Input data were taken from actual meteorology, from background measurements and from an emission inventory for Austria. A number of scenarios were tested with all four mechanisms (CBM-IV, EMEP, RADM-II and Euro-RADM). A nine-hour daytime summer period was modelled in every case. Distinctive differences could be observed between the respective scenarios. Large influences of emission levels, of a short-term intrusion of polluted urban air, of precursor entrainment from an upper layer and of the way certain compounds like ethanol were attributed into the chemistry scheme were seen. Little difference was observed for using a detailed temporal resolution in the inventory and for the actual temperature. These differences, however, were almost identical for each of the chemical mechanisms. The mechanisms mainly differed in secondary reaction products like HO 2 and H 2 O 2 concentrations. Comparison with measurement results (airborne as well as ground based) therefore were not able to support a selection, especially since H 2 O 2 measurerment data (which otherwise seem to support RADM or EuroRADM) are only available for a different time period. Therefore the general characteristics of the mechanisms had to be taken as criteria. Special consideration was put on the comparison of measurement resu1ts with model runs. As within the POP detailed measurements of VOC will be available, the mechanism which has the most detailed VOC speciation seemed most appropriate. A decision was taken to apply the Euro-RADM chemical scheme for the POP-Model. (author)

  8. Measurement of the initial phase of ozone decomposition in water and wastewater by means of a continuous quench-flow system: application to disinfection and pharmaceutical oxidation.

    Science.gov (United States)

    Buffle, Marc-Olivier; Schumacher, Jochen; Salhi, Elisabeth; Jekel, Martin; von Gunten, Urs

    2006-05-01

    Due to a lack of adequate experimental techniques, the kinetics of the first 20s of ozone decomposition in natural water and wastewater is still poorly understood. Introducing a continuous quench-flow system (CQFS), measurements starting 350 ms after ozone addition are presented for the first time. Very high HO. to O3 exposures ratios (Rct=integralHO.dt/integralO3dt) reveal that the first 20s of ozonation present oxidation conditions that are similar to ozone-based advanced oxidation processes (AOP). The oxidation of carbamazepine could be accurately modeled using O3 and HO. exposures measured with CQFS during wastewater ozonation. These results demonstrate the applicability of bench scale determined second-order rate constants for wastewater ozonation. Important degrees of pharmaceutical oxidation and microbial inactivation are predicted, indicating that a significant oxidation potential is available during wastewater ozonation, even when ozone is entirely decomposed in the first 20s.

  9. Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes

    Energy Technology Data Exchange (ETDEWEB)

    Kusvuran, Erdal, E-mail: erdalkusvuran@yahoo.com [Chemistry Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey); Gulnaz, Osman [Biology Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey); Samil, Ali [Chemistry Department, Arts and Sciences Faculty, Sutcu Imam University, 46100 Kahramanmaras (Turkey); Yildirim, Ozlem [Chemistry Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey)

    2011-02-15

    This study aimed to identify degradation intermediates and to investigate the stoichiometry of decolorization and degradation, decolorization kinetics, and removal of antibacterial activity of malachite green (MG) using ozonization processes. The decolorization of MG was optimal at an acidic pH value of 3 based on molecular ozone attack on MG molecules. The stoichiometric ratio of decolorization between ozone and MG was calculated to be 7.0 with a regression coefficient of 0.995, whereas the ratio for degradation was calculated as 13.1 with a regression coefficient of 0.998. With MG concentrations in the range of 0.30-1.82 mM, the concentration of decolorized MG increased with higher initial concentrations of MG, whereas the ozonolytic decolorization rates of MG, decreased with increasing initial concentration. The pseudo-first-order degradation rate constants (k') decreased with the initial concentration and ranged from 0.769 to 0.223 min{sup -1}. Twelve different intermediates were produced during the ozonation of MG with ozonation times between 5 min and 30 min and were identified by GC-MS. Although 86% of MG in the reaction mixture was removed by ozonation after 10 min, the decrease of antibacterial activity was very low (10%) for Bacillus subtilis and Staphylococcus epidermidis because the degradation intermediates, phenol and benzoic acid, also have antibacterial activity. The antibacterial activity of both MG and its intermediates were removed successfully with ozonation times above 26 min.

  10. Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes

    International Nuclear Information System (INIS)

    Kusvuran, Erdal; Gulnaz, Osman; Samil, Ali; Yildirim, Ozlem

    2011-01-01

    This study aimed to identify degradation intermediates and to investigate the stoichiometry of decolorization and degradation, decolorization kinetics, and removal of antibacterial activity of malachite green (MG) using ozonization processes. The decolorization of MG was optimal at an acidic pH value of 3 based on molecular ozone attack on MG molecules. The stoichiometric ratio of decolorization between ozone and MG was calculated to be 7.0 with a regression coefficient of 0.995, whereas the ratio for degradation was calculated as 13.1 with a regression coefficient of 0.998. With MG concentrations in the range of 0.30-1.82 mM, the concentration of decolorized MG increased with higher initial concentrations of MG, whereas the ozonolytic decolorization rates of MG, decreased with increasing initial concentration. The pseudo-first-order degradation rate constants (k') decreased with the initial concentration and ranged from 0.769 to 0.223 min -1 . Twelve different intermediates were produced during the ozonation of MG with ozonation times between 5 min and 30 min and were identified by GC-MS. Although 86% of MG in the reaction mixture was removed by ozonation after 10 min, the decrease of antibacterial activity was very low (10%) for Bacillus subtilis and Staphylococcus epidermidis because the degradation intermediates, phenol and benzoic acid, also have antibacterial activity. The antibacterial activity of both MG and its intermediates were removed successfully with ozonation times above 26 min.

  11. Determination of the number of radicals in the initial chain reactions by mathematical methods

    Directory of Open Access Journals (Sweden)

    Pejović Branko B.

    2009-01-01

    Full Text Available Starting from the fact that the real mechanism in a chemical equation takes places through a certain number of radicals which participate in simultaneous reactions and initiate chain reactions according to a particular pattern, the aim of this study is to determine their number in the first couple of steps of the reaction. Based on this, the numbers of radicals were determined in the general case, in the form of linear difference equations, which, by certain mathematical transformations, were reduced to one equation that satisfies a particular numeric series, entirely defined if its first members are known. The equation obtained was solved by a common method developed in the theory of numeric series, in which its solutions represent the number of radicals in an arbitrary step of the reaction observed, in the analytical form. In the final part of the study, the method was tested and verified using two characteristic examples from general chemistry. The study also gives a suggestion of a more efficient procedure by reducing the difference equation to a lower order.

  12. Initiation Temperature for Runaway Tri-n-Butyl Phosphate/Nitric Acid Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.S.

    2000-11-28

    During a review of the H-Canyon authorization basis, Defense Nuclear Facility Safety Board (DNFSB) staff members questioned the margin of safety associated with a postulated tri-n-butyl phosphate (TBP)/nitric acid runaway reaction due to the inadvertent heating of a canyon tank containing greater than 3000 lbs (1362 kg) of TBP. The margin of safety was partially based on experiments and calculations performed by the Actinide Technology Section (ATS) to support deletion of indication of tank agitation as a Safety Class System. In the technical basis for deletion of this system, ATS personnel conservatively calculated the equilibrium temperature distribution of a canyon tank containing TBP and nitric acid layers which were inadvertently heated by a steam jet left on following a transfer. The maximum calculated temperature (128 degrees C) was compared to the minimum initiation temperature for a runaway reaction (greater than 130 degrees C) documented by experimental work in the mid 195 0s. In this work, the initiation temperature as a function of nitric acid concentration was measured for 0 and 20 wt percent dissolved solids. The DNFSB staff members were concerned that data for 0 wt percent dissolved solids were not conservative given the facts that data for 20 wt percent dissolved solids show initiation temperatures at or below 130 degrees C and H-Canyon solutions normally contained a small amount of dissolved solids.

  13. Lower limb ice application alters ground reaction force during gait initiation

    Directory of Open Access Journals (Sweden)

    Thiago B. Muniz

    2015-04-01

    Full Text Available BACKGROUND: Cryotherapy is a widely used technique in physical therapy clinics and sports. However, the effects of cryotherapy on dynamic neuromuscular control are incompletely explained. OBJECTIVES: To evaluate the effects of cryotherapy applied to the calf, ankle and sole of the foot in healthy young adults on ground reaction forces during gait initiation. METHOD: This study evaluated the gait initiation forces, maximum propulsion, braking forces and impulses of 21 women volunteers through a force platform, which provided maximum and minimum ground reaction force values. To assess the effects of cooling, the task - gait initiation - was performed before ice application, immediately after and 30 minutes after removal of the ice pack. Ice was randomly applied on separate days to the calf, ankle and sole of the foot of the participants. RESULTS: It was demonstrated that ice application for 30 minutes to the sole of the foot and calf resulted in significant changes in the vertical force variables, which returned to their pre-application values 30 minutes after the removal of the ice pack. Ice application to the ankle only reduced propulsion impulse. CONCLUSIONS: These results suggest that although caution is necessary when performing activities that require good gait control, the application of ice to the ankle, sole of the foot or calf in 30-minute intervals may be safe even preceding such activities.

  14. The OH-initiated atmospheric oxidation of divinyl sulfoxide: A theoretical investigation on the reaction mechanism

    Science.gov (United States)

    Zhang, Weichao; Zhang, Dongju

    2012-08-01

    The potential energy surfaces for the OH + divinyl sulfoxide reaction in the presence of O2/NO are theoretically characterized at the CCSD(T)/6-311+G(d,p)//BH&HLYP/6-311++G(d,p)+ZPE level of theory. Various possible pathways including the direct hydrogen abstraction channels and the addition-elimination channels are considered. The calculations show that the exclusive feasible entrance channel is the formation of adduct CH2(OH)CHS(O)CHdbnd CH2 (IM1) in the initial reaction pathways. In the atmosphere, the newly formed adduct IM1 can further react with O2/NO to form the dominant products HCHO + C(O)HS(O)CHdbnd CH2 (P9). The calculated results confirm the experimental studies.

  15. The impact of nudging coefficient for the initialization on the atmospheric flow field and the photochemical ozone concentration of Seoul, Korea

    Science.gov (United States)

    Choi, Hyun-Jung; Lee, Hwa Woon; Sung, Kyoung-Hee; Kim, Min-Jung; Kim, Yoo-Keun; Jung, Woo-Sik

    In order to incorporate correctly the large or local scale circulation in the model, a nudging term is introduced into the equation of motion. Nudging effects should be included properly in the model to reduce the uncertainties and improve the air flow field. To improve the meteorological components, the nudging coefficient should perform the adequate influence on complex area for the model initialization technique which related to data reliability and error suppression. Several numerical experiments have been undertaken in order to evaluate the effects on air quality modeling by comparing the performance of the meteorological result with variable nudging coefficient experiment. All experiments are calculated by the upper wind conditions (synoptic or asynoptic condition), respectively. Consequently, it is important to examine the model response to nudging effect of wind and mass information. The MM5-CMAQ model was used to assess the ozone differences in each case, during the episode day in Seoul, Korea and we revealed that there were large differences in the ozone concentration for each run. These results suggest that for the appropriate simulation of large or small-scale circulations, nudging considering the synoptic and asynoptic nudging coefficient does have a clear advantage over dynamic initialization, so appropriate limitation of these nudging coefficient values on its upper wind conditions is necessary before making an assessment. The statistical verifications showed that adequate nudging coefficient for both wind and temperature data throughout the model had a consistently positive impact on the atmospheric and air quality field. On the case dominated by large-scale circulation, a large nudging coefficient shows a minor improvement in the atmospheric and air quality field. However, when small-scale convection is present, the large nudging coefficient produces consistent improvement in the atmospheric and air quality field.

  16. Co-formation of hydroperoxides and ultra-fine particles during the reactions of ozone with a complex VOC mixture under simulated indoor conditions

    DEFF Research Database (Denmark)

    Fan, Z.H.; Weschler, Charles J.; Han, IK

    2005-01-01

    In this study we examined the co-formation of hydrogen peroxide and other hydroperoxides (collectively presented as H2O2*) as well as submicron particles, including ultra-fine particles (UFP), resulting from the reactions of ozone (O-3) with a complex mixture of volatile organic compounds (VOCs...... higher than typical indoor levels. When O-3 was added to a 25-m(3) controlled environmental facility (CEF) containing the 23 VOC mixture, both H2O2* and submicron particles were formed. The 2-h average concentration of H2O2* was 1.89 +/- 0.30ppb, and the average total particle number concentration was 46...... to achieve saturated concentrations of the condensable organics. When the 2 terpenes were removed from the O-3/23 VOCs mixture, no H2O2* or particles were formed, indicating that the reactions of O-3 With the two terpenes were the key processes contributing to the formation of H2O2* and submicron particles...

  17. New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available Spiral wave initiation in the heart muscle is a mechanism for the onset of dangerous cardiac arrhythmias. A standard protocol for spiral wave initiation is the application of a stimulus in the refractory tail of a propagating excitation wave, a region that we call the "classical vulnerable zone." Previous studies of vulnerability to spiral wave initiation did not take the influence of deformation into account, which has been shown to have a substantial effect on the excitation process of cardiomyocytes via the mechano-electrical feedback phenomenon. In this work we study the effect of deformation on the vulnerability of excitable media in a discrete reaction-diffusion-mechanics (dRDM model. The dRDM model combines FitzHugh-Nagumo type equations for cardiac excitation with a discrete mechanical description of a finite-elastic isotropic material (Seth material to model cardiac excitation-contraction coupling and stretch activated depolarizing current. We show that deformation alters the "classical," and forms a new vulnerable zone at longer coupling intervals. This mechanically caused vulnerable zone results in a new mechanism of spiral wave initiation, where unidirectional conduction block and rotation directions of the consequently initiated spiral waves are opposite compared to the mechanism of spiral wave initiation due to the "classical vulnerable zone." We show that this new mechanism of spiral wave initiation can naturally occur in situations that involve wave fronts with curvature, and discuss its relation to supernormal excitability of cardiac tissue. The concept of mechanically induced vulnerability may lead to a better understanding about the onset of dangerous heart arrhythmias via mechano-electrical feedback.

  18. New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.

    Science.gov (United States)

    Weise, Louis D; Panfilov, Alexander V

    2011-01-01

    Spiral wave initiation in the heart muscle is a mechanism for the onset of dangerous cardiac arrhythmias. A standard protocol for spiral wave initiation is the application of a stimulus in the refractory tail of a propagating excitation wave, a region that we call the "classical vulnerable zone." Previous studies of vulnerability to spiral wave initiation did not take the influence of deformation into account, which has been shown to have a substantial effect on the excitation process of cardiomyocytes via the mechano-electrical feedback phenomenon. In this work we study the effect of deformation on the vulnerability of excitable media in a discrete reaction-diffusion-mechanics (dRDM) model. The dRDM model combines FitzHugh-Nagumo type equations for cardiac excitation with a discrete mechanical description of a finite-elastic isotropic material (Seth material) to model cardiac excitation-contraction coupling and stretch activated depolarizing current. We show that deformation alters the "classical," and forms a new vulnerable zone at longer coupling intervals. This mechanically caused vulnerable zone results in a new mechanism of spiral wave initiation, where unidirectional conduction block and rotation directions of the consequently initiated spiral waves are opposite compared to the mechanism of spiral wave initiation due to the "classical vulnerable zone." We show that this new mechanism of spiral wave initiation can naturally occur in situations that involve wave fronts with curvature, and discuss its relation to supernormal excitability of cardiac tissue. The concept of mechanically induced vulnerability may lead to a better understanding about the onset of dangerous heart arrhythmias via mechano-electrical feedback.

  19. Pressure-dependent kinetics of initial reactions in iso-octane pyrolysis.

    Science.gov (United States)

    Ning, HongBo; Gong, ChunMing; Li, ZeRong; Li, XiangYuan

    2015-05-07

    This study focuses on the studies of the main pressure-dependent reaction types of iso-octane (iso-C8H18) pyrolysis, including initial C-C bond fission of iso-octane, isomerization, and β-scission reactions of the alkyl radicals produced by the C-C bond fission of iso-octane. For the C-C bond fission of iso-octane, the minimum energy potentials are calculated at the CASPT2(2e,2o)/6-31+G(d,p)//CAS(2e,2o)/6-31+G(d,p) level of theory. For the isomerization and the β-scission reactions of the alkyl radicals, the optimization of the geometries and the vibrational frequencies of the reactants, transition states, and products are performed at the B3LYP/CBSB7 level, and their single point energies are calculated by using the composite CBS-QB3 method. Variable reaction coordinate transition state theory (VRC-TST) is used for the high-pressure limit rate constant calculation and Rice-Ramsperger-Kassel-Marcus/master equation (RRKM/ME) is used to calculate the pressure-dependent rate constants of these channels with pressure varying from 0.01-100 atm. The rate constants obtained in this work are in good agreement with those available from literatures. We have updated the rate constants and thermodynamic parameters for species involved in these reactions into a current chemical kinetic mechanism and also have improved the concentration profiles of main products such as C3H6 and C4H6 in the shock tube pyrolysis of iso-octane. The results of this study provide insight into the pyrolysis of iso-octane and will be helpful in the future development of branched paraffin kinetic mechanisms.

  20. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    International Nuclear Information System (INIS)

    Shan, Tzu-Ray; Thompson, Aidan P

    2014-01-01

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO 2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N 2 and H 2 O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  1. Performance of an HF chain-reaction laser with high initiation efficiency

    International Nuclear Information System (INIS)

    Whittier, J.S.; Kerber, R.L.

    1974-01-01

    Output-pulse observations are presented for a transverse electrically initiated, helium-diluted HF laser pumped by the H 2 + F 2 chain reaction. Performance of this laser is studied over a wide range of the gas composition and for initial pressures between 0.1 and 0.5 atm. The gas mixture was stabilized by premixing O 2 , F 2 , and He and flowing this mixture into a cold trap (84 0 K) before mixing with H 2 . Optimum conversion of electrical-initiation energy into laser energy was found for a 240-torr mixture with a mole ratio 1 F 2 :0.23 H 2 :0.08 O 2 :12 He which, when initiated with a 25-kV, 333-pF discharge, gave a pulse energy of 0.150 J. This corresponds to a ratio of laser output energy to electrical input energy of 144 percent. After unnecessary losses are taken into account, this ratio becomes 160 percent. (U.S.)

  2. Influencing factors on microbubble ozonation treatment of acid red 3R wastewater

    Directory of Open Access Journals (Sweden)

    Yurong YA

    2017-08-01

    Full Text Available The microbubble ozonation was used to treat acid red 3R wastewater in order to investigate the influencing factors on its performance. The effects of ozone dose, initial acid red 3R concentration and activated carbon on the performance of microbubble ozonation treatment of acid red 3R wastewater are investigated. The decolorization rate, TOC removal rate, pH variation and ozone utilization efficiency in the microbubble ozonation treatment are compared under different treatment conditions. The results indicate that when increasing ozone dose or decreasing initial acid red 3R concentration, both decolorization rate and TOC removal rate of acid red 3R wastewater increase, but ozone utilization efficiency decreases. The coal-based activated carbon shows strong catalytic activity for microbubble ozonation, which could enhance the decolorization rate and TOC removal rate of acid red 3R wastewater. The better performance of microbubble ozonation treatment is achieved when the ozone dose is 48.3 mg/min and the initial acid red 3R mass concentration is 100 mg/L. Under these conditions, the decolorization efficiency reaches to 100% after treatment for 30 min, the TOC removal efficiency reaches to 78.0% after treatment for 120 min, the reaction rate constant of TOC removal is 0.015 min-1 and the ozone utilization efficiency is higher than 99%. With addition of the coal-based activated carbon of 5 g/L, the decolorization efficiency reaches to 100% after treatment for 15 min, the TOC removal efficiency reaches to 91.2% after treatment for 120 min and the reaction rate constant of TOC removal increases to 0037 min-1.The accumulation and following degradation of intermediate products of small molecule organic acid happens during treatment process, and as a result, the solution pH decreases initially and then increases. Therefore, the optimization of influencing factors for microbubble ozonation could increase both contaminant removal

  3. Contribution of ozone to airborne aldehyde formation in Paris homes.

    Science.gov (United States)

    Rancière, Fanny; Dassonville, Claire; Roda, Célina; Laurent, Anne-Marie; Le Moullec, Yvon; Momas, Isabelle

    2011-09-15

    Indoor aldehydes may result from ozone-initiated chemistry, mainly documented by experimental studies. As part of an environmental investigation included in the PARIS birth cohort, the aim of this study was to examine ozone contribution to airborne aldehyde formation in Paris homes. Formaldehyde, acetaldehyde and hexaldehyde levels, as well as styrene, nitrogen dioxide and nicotine concentrations, comfort parameters and carbon dioxide levels, were measured twice during the first year of life of the babies. Ambient ozone concentrations were collected from the closest background station of the regional air monitoring network. Traffic-related nitrogen oxide concentrations in front of the dwellings were estimated by an air pollution dispersion model. Home characteristics and families' way of life were described by questionnaires. Stepwise multiple linear regression models were used to link aldehyde levels with ambient ozone concentrations and a few aldehyde precursors involved in oxidation reactions, adjusting for other indoor aldehyde sources, comfort parameters and traffic-related nitrogen oxides. A 4 and 11% increase in formaldehyde and hexaldehyde levels was pointed out when 8-hour ozone concentrations increased by 20 μg/m(3). The influence of potential precursors such as indoor styrene level and frequent use of air fresheners, containing unsaturated volatile organic compounds as terpenes, was also found. Thus, our results suggest that ambient ozone can significantly impact indoor air quality, especially with regard to formaldehyde and hexaldehyde levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Fast chemical reaction in two-dimensional Navier-Stokes flow: initial regime.

    Science.gov (United States)

    Ait-Chaalal, Farid; Bourqui, Michel S; Bartello, Peter

    2012-04-01

    This paper studies an infinitely fast bimolecular chemical reaction in a two-dimensional biperiodic Navier-Stokes flow. The reactants in stoichiometric quantities are initially segregated by infinite gradients. The focus is placed on the initial stage of the reaction characterized by a well-defined one-dimensional material contact line between the reactants. Particular attention is given to the effect of the diffusion κ of the reactants. This study is an idealized framework for isentropic mixing in the lower stratosphere and is motivated by the need to better understand the effect of resolution on stratospheric chemistry in climate-chemistry models. Adopting a Lagrangian straining theory approach, we relate theoretically the ensemble mean of the length of the contact line, of the gradients along it, and of the modulus of the time derivative of the space-average reactant concentrations (here called the chemical speed) to the joint probability density function of the finite-time Lyapunov exponent λ with two times τ and τ[over ̃]. The time 1/λ measures the stretching time scale of a Lagrangian parcel on a chaotic orbit up to a finite time t, while τ measures it in the recent past before t, and τ[over ̃] in the early part of the trajectory. We show that the chemical speed scales like κ(1/2) and that its time evolution is determined by rare large events in the finite-time Lyapunov exponent distribution. The case of smooth initial gradients is also discussed. The theoretical results are tested with an ensemble of direct numerical simulations (DNSs) using a pseudospectral model.

  5. Temporal predictive mechanisms modulate motor reaction time during initiation and inhibition of speech and hand movement.

    Science.gov (United States)

    Johari, Karim; Behroozmand, Roozbeh

    2017-08-01

    Skilled movement is mediated by motor commands executed with extremely fine temporal precision. The question of how the brain incorporates temporal information to perform motor actions has remained unanswered. This study investigated the effect of stimulus temporal predictability on response timing of speech and hand movement. Subjects performed a randomized vowel vocalization or button press task in two counterbalanced blocks in response to temporally-predictable and unpredictable visual cues. Results indicated that speech and hand reaction time was decreased for predictable compared with unpredictable stimuli. This finding suggests that a temporal predictive code is established to capture temporal dynamics of sensory cues in order to produce faster movements in responses to predictable stimuli. In addition, results revealed a main effect of modality, indicating faster hand movement compared with speech. We suggest that this effect is accounted for by the inherent complexity of speech production compared with hand movement. Lastly, we found that movement inhibition was faster than initiation for both hand and speech, suggesting that movement initiation requires a longer processing time to coordinate activities across multiple regions in the brain. These findings provide new insights into the mechanisms of temporal information processing during initiation and inhibition of speech and hand movement. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Kinetics of the glucose/glycine Maillard reaction pathways: influences of pH and reactant initial concentrations

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2005-01-01

    A previously proposed kinetic model for the glucose/glycine Maillard reaction pathways has been validated by changing the initial pH (4.8, 5.5, 6.0, 6.8 and 7.5) of the reaction and reactant initial concentrations (1:2 and 2:1 molar ratios were compared to the 1:1 ratio). The model consists of 10

  7. Ozone depletion calculations

    International Nuclear Information System (INIS)

    Luther, F.M.; Chang, J.S.; Wuebbles, D.J.; Penner, J.E.

    1992-01-01

    Models of stratospheric chemistry have been primarily directed toward an understanding of the behavior of stratospheric ozone. Initially this interest reflected the diagnostic role of ozone in the understanding of atmospheric transport processes. More recently, interest in stratospheric ozone has arisen from concern that human activities might affect the amount of stratospheric ozone, thereby affecting the ultraviolet radiation reaching the earth's surface and perhaps also affecting the climate with various potentially severe consequences for human welfare. This concern has inspired a substantial effort to develop both diagnostic and prognostic models of stratospheric ozone. During the past decade, several chemical agents have been determined to have potentially significant impacts on stratospheric ozone if they are released to the atmosphere in large quantities. These include oxides of nitrogen, oxides of hydrogen, chlorofluorocarbons, bromine compounds, fluorine compounds and carbon dioxide. In order to assess the potential impact of the perturbations caused by these chemicals, mathematical models have been developed to handle the complex coupling between chemical, radiative, and dynamical processes. Basic concepts in stratospheric modeling are reviewed

  8. syk kinase activation by a src kinase-initiated activation loop phosphorylation chain reaction

    Science.gov (United States)

    El-Hillal, O.; Kurosaki, T.; Yamamura, H.; Kinet, J.-P.; Scharenberg, A. M.

    1997-01-01

    Activation of the syk tyrosine kinase occurs almost immediately following engagement of many types of antigen receptors, including Fc receptors, but the mechanism through which syk is activated is currently unclear. Here we demonstrate that Fc receptor-induced syk activation occurs as the result of phosphorylation of the syk activation loop by both src family kinases and other molecules of activated syk, suggesting that syk activation occurs as the result of a src kinase-initiated activation loop phosphorylation chain reaction. This type of activation mechanism predicts that syk activation would exhibit exponential kinetics, providing a potential explanation for its rapid and robust activation by even weak antigen receptor stimuli. We propose that a similar mechanism may be responsible for generating rapid activation of other cytoplasmic tyrosine kinases, such as those of the Bruton tyrosine kinase/tec family, as well. PMID:9050880

  9. Initiation of the microgene polymerization reaction with non-repetitive homo-duplexes

    International Nuclear Information System (INIS)

    Itsko, Mark; Zaritsky, Arieh; Rabinovitch, Avinoam; Ben-Dov, Eitan

    2008-01-01

    Microgene Polymerization Reaction (MPR) is used as an experimental system to artificially simulate evolution of short, non-repetitive homo-duplex DNA into multiply-repetitive products that can code for functional proteins. Blunt-end ligation by DNA polymerase is crucial in expansion of homo-duplexes (HDs) into head-to-tail multiple repeats in MPR. The propagation mechanism is known, but formation of the initial doublet (ID) by juxtaposing two HDs and polymerization through the gap has been ambiguous. Initiation events with pairs of HDs using Real-Time PCR were more frequent at higher HD concentrations and slightly below the melting temperature. A process molecularity of about 3.1, calculated from the amplification efficiency and the difference in PCR cycles at which propagation was detected at varying HD concentrations, led to a simple mechanism for ID formation: the gap between two HDs is bridged by a third. Considering thermodynamic aspects of the presumed intermediate 'nucleation complex' can predict relative propensity for the process with other HDs

  10. Mechanism and kinetic considerations of TOC removal from the powdered activated carbon ozonation of diclofenac aqueous solutions.

    Science.gov (United States)

    Beltrán, Fernando J; Pocostales, J Pablo; Alvarez, Pedro M; Jaramillo, Josefa

    2009-09-30

    Ozonation of DCF in aqueous solution in the presence of powdered activated carbon (PAC) has been studied for mechanistic and kinetic purposes. The effects of gas flow rate, ozone gas concentration and initial TOC on the TOC elimination rate were then investigated. The use of PAC allows liquid-solid and internal diffusion mass transfer resistances being eliminated. Gas-liquid mass transfer resistance is also eliminated when ozonation is applied to DCF preozonated solutions. In the absence of mass transfer resistances a mechanism of reactions involving homogeneous and heterogeneous steps for TOC removal was proposed. From this mechanism a mathematical model constituted by mass balances of main species in water was established. Considerations about the changing nature of ozonation intermediates, as being promoters or inhibitors of ozone decomposition, is a key point to better predict the experimental concentrations of species present in this system.

  11. Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products

    Science.gov (United States)

    Huang, Yu; Lee, Shun Cheng; Ho, Kin Fai; Ho, Steven Sai Hang; Cao, Nanying; Cheng, Yan; Gao, Yuan

    2012-11-01

    Biogenic volatile organic compounds (BVOCs) emitted from cleaning products and air fresheners indoors are prone to oxidation resulting in the formation of secondary pollutants that can pose health risks on residents. Ammonia (NH3) is ubiquitous in ambient and indoor environments. In this study, we investigated the effect of ammonia (NH3) on secondary pollutants formation from the ozonolysis of BVOCs emitted from cleaning products including floor cleaner (FC), kitchen cleaner (KC) and dishwashing detergent (DD) in a large environmental chamber. Our results demonstrated that the presence of NH3 (maximum concentration is 240 ppb) could significantly enhance secondary organic aerosols (SOAs) formation from the ozonolysis of all the three categories of cleaning products. For example, for the FC sample, the maximum total particle concentration was up to 2.0 × 104 # cm-3 in the presence of NH3, while it was 1.3 × 104 # cm-3 which was 35% lower without NH3. However, it was found that the extent of NH3 effect on SOAs formation from the ozonolysis of BVOCs emissions was component-dependent. The presence of NH3 in the reaction systems could increase the consumptions of d-limonene that is the dominant BVOC species as identified in cleaning products. The percent yields (%) of secondary carbonyl compounds generated from the ozonolysis of BVOCs emitted from three categories of cleaning products were identified in the presence and absence of NH3, respectively. The increase in SOAs particle number concentration can be attributed to the formation of condensable salts from reactions between NH3 and organic compounds generated from the BVOCs ozonolysis processes. By investigating the NH3 effect on the ozonolysis of BVOCs mixtures in contrast to the chemistry of individual compounds, a better assessment can be made of the overall impact cleaning products have on real indoor environments.

  12. The catalytic ozonization of model lignin compounds in the presence of Fe(III) ions

    Science.gov (United States)

    Ben'ko, E. M.; Mukovnya, A. V.; Lunin, V. V.

    2007-05-01

    The ozonization of several model lignin compounds (guaiacol, 2,6-dimethoxyphenol, phenol, and vanillin) was studied in acid media in the presence of iron(III) ions. It was found that Fe3+ did not influence the initial rate of the reactions between model phenols and ozone but accelerated the oxidation of intermediate ozonolysis products. The metal concentration dependences of the total ozone consumption and effective rate constants of catalytic reaction stages were determined. Data on reactions in the presence of oxalic acid as a competing chelate ligand showed that complex formation with Fe3+ was the principal factor that accelerated the ozonolysis of model phenols at the stage of the oxidation of carboxylic dibasic acids and C2 aldehydes formed as intermediate products.

  13. Enhanced removal of ethanolamine from secondary system of nuclear power plant wastewater by novel hybrid nano zero-valent iron and pressurized ozone initiated oxidation process.

    Science.gov (United States)

    Lee, Son Dong; Mallampati, Srinivasa Reddy; Lee, Byoung Ho

    2017-07-01

    Monoethanolamine (shortly ethanolamine (ETA)), usually used as a corrosion inhibitor, is a contaminant of wastewater from the secondary cooling system of nuclear power plants (NPPs) and is not readily biodegradable. We conducted various experiments, including treatments with nano zero-valent iron (nZVI), nano-iron/calcium, and calcium oxide (nFe/Ca/CaO) with ozone (O 3 ) or hydrogen peroxide (H 2 O 2 ) to reduce the concentration of ETA and to decrease the chemical demand of oxygen (COD) of these wastewaters. During this study, wastewater with ETA concentration of 7465 mg L -1 and COD of 6920 mg L -1 was used. As a result, the ETA concentration was reduced to 5 mg L -1 (a decrease of almost 100%) and COD was reduced to 2260 mg L -1 , a reduction of 67%, using doses of 26.8 mM of nZVI and 1.5 mM of H 2 O 2 at pH 3 for 3 h. Further treatment for 48 h allowed a decrease of COD by almost 97%. Some mechanistic considerations are proposed in order to explain the degradation pathway. The developed hybrid nano zero-valent iron-initiated oxidation process with H 2 O 2 is promising in the treatment of ETA-contaminated wastewaters.

  14. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15

    International Nuclear Information System (INIS)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-01-01

    Highlights: • Clofibric acid (CA) is efficiently mineralized by O 3 /MnO x /SBA-15. • Adsorption of CA and its intermediates on MnO x /SBA-15 is proved unimportant. • Initiation of hydroxyl radicals (·OH) is enhanced in O 3 /MnO x /SBA-15. • Uniformly distributed MnO x accounts for the high activity of MnO x /SBA-15. • Degradation routes of CA in ozonation alone and catalytic ozonation are proposed. - Abstract: Comparative experiments were conducted to investigate the catalytic ability of MnO x /SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O 3 /MnO x /SBA-15). Adsorption of CA and its intermediates by MnO x /SBA-15 was proved unimportant in O 3 /MnO x /SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO 3 ) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO x /SBA-15 facilitated the generation of hydroxyl radicals (·OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO x on SBA-15 were believed to be the main active component in MnO x /SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more ·OH

  15. Kinetics of the epoxy–thiol click reaction initiated by a tertiary amine: Calorimetric study using monofunctional components

    International Nuclear Information System (INIS)

    Loureiro, Roi Meizoso; Amarelo, Tánia Carballeira; Abuin, Senen Paz; Soulé, Ezequiel R.; Williams, Roberto J.J.

    2015-01-01

    Graphical abstract: - Highlights: • Reaction kinetics of a monoepoxy and a monothiol was studied by DSC. • Benzyldimethylamine (BDMA) was used as initiator. • Reaction exhibited a long induction period followed by a fast autocatalytic rate. • A mechanistic kinetic model provided a reasonable fitting of the kinetic behavior. • The formulation simulates the behavior of room-temperature-cure commercial epoxies. - Abstract: An analysis of the kinetics of the epoxy–thiol reaction in a model stoichiometric system of monofunctional reagents, 3-mercaptopropionate (BMP) and phenylglycidylether (PGE) is reported. Benzyldimethylamine (BDMA) was employed as initiator in amounts ranging from 0.5 to 2 wt%. These formulations showed a kinetic behavior qualitatively similar to that of commercial adhesives and coatings formulated for a room-temperature cure. Isothermal DSC scans revealed the existence of a relatively long induction period preceding a fast autocatalytic reaction step. Dynamic DSC scans showed that the reaction was shifted to a lower temperature range by increasing the storage period of the initial formulation at 20 °C. This unusual kinetic behavior could be modeled assuming that thiolate anions, slowly generated during the induction period, initiated a fast autocatalytic propagation/proton transfer reaction. The kinetic model included a pseudo-steady state for the initiator concentration and an equilibrium reaction between epoxy and OH groups generated by reaction. A reasonable fitting of isothermal and dynamic DSC runs was achieved in a broad range of temperatures and amine concentrations. In particular, both the length of the induction time and the effect of the storage period were correctly predicted

  16. Kinetics of the epoxy–thiol click reaction initiated by a tertiary amine: Calorimetric study using monofunctional components

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Roi Meizoso; Amarelo, Tánia Carballeira [Gairesa, Outeiro 1, Lago (Valdoviño), 15551 A Coruña (Spain); Abuin, Senen Paz, E-mail: senen@gairesa.com [Gairesa, Outeiro 1, Lago (Valdoviño), 15551 A Coruña (Spain); Soulé, Ezequiel R. [Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), J. B. Justo 4302, 7600 Mar del Plata (Argentina); Williams, Roberto J.J., E-mail: williams@fi.mdp.edu.ar [Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), J. B. Justo 4302, 7600 Mar del Plata (Argentina)

    2015-09-20

    Graphical abstract: - Highlights: • Reaction kinetics of a monoepoxy and a monothiol was studied by DSC. • Benzyldimethylamine (BDMA) was used as initiator. • Reaction exhibited a long induction period followed by a fast autocatalytic rate. • A mechanistic kinetic model provided a reasonable fitting of the kinetic behavior. • The formulation simulates the behavior of room-temperature-cure commercial epoxies. - Abstract: An analysis of the kinetics of the epoxy–thiol reaction in a model stoichiometric system of monofunctional reagents, 3-mercaptopropionate (BMP) and phenylglycidylether (PGE) is reported. Benzyldimethylamine (BDMA) was employed as initiator in amounts ranging from 0.5 to 2 wt%. These formulations showed a kinetic behavior qualitatively similar to that of commercial adhesives and coatings formulated for a room-temperature cure. Isothermal DSC scans revealed the existence of a relatively long induction period preceding a fast autocatalytic reaction step. Dynamic DSC scans showed that the reaction was shifted to a lower temperature range by increasing the storage period of the initial formulation at 20 °C. This unusual kinetic behavior could be modeled assuming that thiolate anions, slowly generated during the induction period, initiated a fast autocatalytic propagation/proton transfer reaction. The kinetic model included a pseudo-steady state for the initiator concentration and an equilibrium reaction between epoxy and OH groups generated by reaction. A reasonable fitting of isothermal and dynamic DSC runs was achieved in a broad range of temperatures and amine concentrations. In particular, both the length of the induction time and the effect of the storage period were correctly predicted.

  17. Catalytic Ozonation of Phenolic Wastewater: Identification and Toxicity of Intermediates

    Directory of Open Access Journals (Sweden)

    Mahdi Farzadkia

    2014-01-01

    Full Text Available A new strategy in catalytic ozonation removal method for degradation and detoxification of phenol from industrial wastewater was investigated. Magnetic carbon nanocomposite, as a novel catalyst, was synthesized and then used in the catalytic ozonation process (COP and the effects of operational conditions such as initial pH, reaction time, and initial concentration of phenol on the degradation efficiency and the toxicity assay have been investigated. The results showed that the highest catalytic potential was achieved at optimal neutral pH and the removal efficiency of phenol and COD is 98.5% and 69.8%, respectively. First-order modeling demonstrated that the reactions were dependent on the initial concentration of phenol, with kinetic constants varying from 0.038 min−1  ([phenol]o = 1500 mg/L to 1.273 min−1 ([phenol]o = 50 mg/L. Bioassay analysis showed that phenol was highly toxic to Daphnia magna (LC50 96 h=5.6 mg/L. Comparison of toxicity units (TU of row wastewater (36.01 and the treated effluent showed that TU value, after slightly increasing in the first steps of ozonation for construction of more toxic intermediates, severely reduced at the end of reaction (2.23. Thus, COP was able to effectively remove the toxicity of intermediates which were formed during the chemical oxidation of phenolic wastewaters.

  18. Low energy electron-initiated ion-molecule reactions of ribose analogues

    International Nuclear Information System (INIS)

    Mozejko, P.

    2003-01-01

    Recent experiments in which plasmid DNA samples were bombarded with low energy ( 2 O, DNA bases, and sugar-phosphate backbone analogues. To this end, the cyclic molecule tetrahydrofuran, and its derivatives, provide useful models for the sugar-like molecules contained in the backbone of DNA. In addition to LEE induced dissociation by processes such as dissociative electron attachment (DEA), molecules may be damaged by ions and neutral species of non-thermal energies created by LEE in the surrounding environment. In this contribution, we investigate with electron stimulated desorption techniques, LEE damage to films of desoxy-ribose analogues in the presence of various molecular coadsorbates, that simulate changes in local molecular environment. In one type of experiments tetrahydrofuran is deposited onto multilayer O2. A desorbed signal of OH - indicates ion-molecule reactions of the type O - + C 4 H 8 O -> OH - + C 4 H 7 O, where the O - was formed initially by DEA to O 2 . Further electron stimulated desorption measurements for tetrahydrofuran and derivatives adsorbed on H 2 O, Kr, N 2 O and CH 3 OH will be presented and discussed

  19. Influence of the initial grain size of silicon on microstructure and mechanical properties of reaction-sintered silicon nitride

    International Nuclear Information System (INIS)

    Heinrich, J.

    1977-01-01

    The influence of the initial grain size of the silicon powder on the microstructure and the resulting mechanical properties are studied. The smaller the grain size of the silicon powders used, the higher will be the degree of reaction at the beginning of the nitridation reaction and the higher the amount of α-modification in the fully nitridated samples. Moreover, the nitrification time can be considerably shortened when fine-grained silicon powders ( [de

  20. Mechanisms for formation of organic acids in gas-phase reactions of ozone and hydroxyl radical with dialkenes and unsaturated carbonyls

    Science.gov (United States)

    Chien, Chao-Jung

    2001-07-01

    Carboxylic acids are ubiquitous throughout the troposphere and may contribute significant fractions of the free acidity in some remote areas. One of the important sources of these carboxylic acids is thought to be photochemical transformation of biogenic hydrocarbons such as isoprene. For the work reported here, atmospheric samples from University of North Carolina dual outdoor environmental chamber under simulated urban atmospheric conditions were analyzed for carboxylic acids. Both OH radicals and O3 initiated photooxidation reaction experiments were performed for isoprene, along with its structural analogs, 1,3-butadiene and 2,3-dimethyl-1,3-butadiene, and their primary photooxidation products, methacrolein, acrolein, and methyl vinyl ketone. Among the detected carboxylic acids were formic, acetic, and several multifunctional carboxylic acids, including methacrylic, acrylic, glyoxylic, and glycolic acids. Quantification of most carboxylic acid products was also established. Formation yields of carboxylic acids from the reactions of O3 with studied compounds were determined, and time-concentration series of the reactants and carboxylic acid products were measured to facilitate mechanism formulation. While the reaction mechanisms of Criegee biradicals arising from decomposition of primary ozonides are proposed to account for the observed carboxylic acid products in the ozonolysis of unsaturated hydrocarbons, reactions of peroxy acyl radicals with HO2 and/or other peroxy radicals are thought to be responsible for the formation of carboxylic acids during the OH-initiated reactions in the presence of NOx. In this study, smog chamber simulations have also been performed for selected compounds using Morpho, a photochemical kinetic simulation software package. Explicit photochemical mechanisms with O 3 and OH radicals that lead to formation of carboxylic acids were elaborated and implemented, and the simulation results were compared with those from other chemical

  1. Physical parameters effect on ozone-initiated formation of indoor secondary organic aerosols with emissions from cleaning products.

    Science.gov (United States)

    Huang, Yu; Ho, Kin Fai; Ho, Steven Sai Hang; Lee, Shun Cheng; Yau, P S; Cheng, Yan

    2011-09-15

    The effect of air exchange rate (ACH), temperature (T), and relative humidity (RH) on the formation of indoor secondary organic aerosols (SOAs) through ozonolysis of biogenic organic compounds (BVOCs) emitted from floor cleaner was investigated in this study. The total particle count (with D(p) of 6-225 nm) was up to 1.2 × 10(3)#cm(-3) with ACH of 1.08 h(-1), and it became much more significant with ACH of 0.36 h(-1) (1.1 × 10(4)#cm(-3)). This suggests that a higher ventilation rate can effectively dilute indoor BVOCs, resulting in a less ultrafine particle formation. The total particle count increased when temperature changed from 15 to 23 °C but it decreased when the temperature further increased to 30 °C. It could be explained that high temperature restrained the condensation of formed semi-volatile compounds resulting in low yields of SOAs. When the RH was at 50% and 80%, SOA formation (1.1-1.2 × 10(4)#cm(-3)) was the more efficient compared with that at RH of 30% (5.9 × 10(3)#cm(-3)), suggesting higher RH facilitating the initial nucleation processes. Oxidation generated secondary carbonyl compounds were also quantified. Acetone was the most abundant carbonyl compound. The formation mechanisms of formaldehyde and acetone were proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Ozone Pollution

    Science.gov (United States)

    Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.

  3. Source attribution of tropospheric ozone

    Science.gov (United States)

    Butler, T. M.

    2015-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both

  4. OZONE CONCENTRATION ATTRIBUTABLE PREMATURE DEATH IN POLAND

    Directory of Open Access Journals (Sweden)

    Krzysztof Skotak

    2010-03-01

    Full Text Available Ozone in the lower part of the atmosphere (troposphere, strong photochemical oxidant, is not directly emitted to the atmosphere but formed through a series of complex reactions. Ozone concentrations depends on ozone precursors air contamination (mainly nitrogen dioxide and non-methane volatile organic compounds and meteorological conditions (temperature and solar radiation. The main sectors emitted ozone precursors are road transport, power and heat generation plants, household (heating, industry, and petrol storage and distribution. Ozone and some of its precursors are also transported long distances in the atmosphere and are therefore considered a transboundary problem. As a result, the ozone concentrations are often low in busy urban areas and higher in suburban and rural areas. Nowadays, instead of particulate matter, ozone is one of the most widespread global air pollution problems. In and around urban areas, relatively large gradients of ozone can be observed. Because of its high reactivity in elevated concentrations ozone causes serious health problems and damage to ecosystems, agricultural crops and materials. Main ill-health endpoints as a results of ozone concentrations can be characterised as an effect of pulmonary and cardiovascular system, time morbidity and mortality series, development of atherosclerosis and asthma and finally reduction in life expectancy. The associations with increased daily mortality due to ozone concentrations are confirmed by many researches and epidemiological studies. Estimation of the level selected ill-health endpoints (mortality in total and due to cardiovascular and respiratory causes as a result of the short-term ozone exposure in Poland was the main aim of the project. Final results have been done based on estimation method elaborated by WHO, ozone measurements from National Air Quality Monitoring System and statistical information such as mortality rate and populations. All analysis have been done in

  5. Degradation of sulfamethoxazole using ozone and chlorine dioxide - Compound-specific stable isotope analysis, transformation product analysis and mechanistic aspects.

    Science.gov (United States)

    Willach, Sarah; Lutze, Holger V; Eckey, Kevin; Löppenberg, Katja; Lüling, Michelle; Terhalle, Jens; Wolbert, Jens-Benjamin; Jochmann, Maik A; Karst, Uwe; Schmidt, Torsten C

    2017-10-01

    The sulfonamide antibiotic sulfamethoxazole (SMX) is a widely detected micropollutant in surface and groundwaters. Oxidative treatment with e.g. ozone or chlorine dioxide is regularly applied for disinfection purposes at the same time exhibiting a high potential for removal of micropollutants. Especially for nitrogen containing compounds such as SMX, the related reaction mechanisms are largely unknown. In this study, we systematically investigated reaction stoichiometry, product formation and reaction mechanisms in reactions of SMX with ozone and chlorine dioxide. To this end, the neutral and anionic SMX species, which may occur at typical pH-values of water treatment were studied. Two moles of chlorine dioxide and approximately three moles of ozone were consumed per mole SMX degraded. Oxidation of SMX with ozone and chlorine dioxide leads in both cases to six major transformation products (TPs) as revealed by high-resolution mass spectrometry (HRMS). Tentatively formulated TP structures from other studies could partly be confirmed by compound-specific stable isotope analysis (CSIA). However, for one TP, a hydroxylated SMX, it was not possible by HRMS alone to identify whether hydroxylation occurred at the aromatic ring, as suggested in literature before, or at the anilinic nitrogen. By means of CSIA and an analytical standard it was possible to identify sulfamethoxazole hydroxylamine unequivocally as one of the TPs of the reaction of SMX with ozone as well as with chlorine dioxide. H-abstraction and electron transfer at the anilinic nitrogen are suggested as likely initial reactions of ozone and chlorine dioxide, respectively, leading to its formation. Oxidation of anionic SMX with ozone did not show any significant isotopic fractionation whereas the other reactions studied resulted in a significant carbon isotope fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems.

    Science.gov (United States)

    Hou, Li; Xie, Jianchun; Zhao, Jian; Zhao, Mengyao; Fan, Mengdie; Xiao, Qunfei; Liang, Jingjing; Chen, Feng

    2017-10-01

    To explore initial Maillard reaction pathways and mechanisms for maximal formation of meaty flavors in heated cysteine-xylose-glycine systems, model reactions with synthesized initial Maillard intermediates, Gly-Amadori, TTCA (2-threityl-thiazolidine-4-carboxylic acids) and Cys-Amadori, were investigated. Relative relativities were characterized by spectrophotometrically monitoring the development of colorless degradation intermediates and browning reaction products. Aroma compounds formed were determined by solid-phase microextraction combined with GC-MS and GC-olfactometry. Gly-Amadori showed the fastest reaction followed by Cys-Amadori then TTCA. Free glycine accelerated reaction of TTCA, whereas cysteine inhibited that of Gly-Amadori due to association forming relatively stable thiazolidines. Cys-Amadori/Gly had the highest reactivity in development of both meaty flavors and brown products. TTCA/Gly favored yielding meaty flavors, whereas Gly-Amadori/Cys favored generation of brown products. Conclusively, initial formation of TTCA and pathway involving TTCA with glycine were more applicable to efficiently produce processed-meat flavorings in a cysteine-xylose-glycine system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Revisiting Antarctic Ozone Depletion

    Science.gov (United States)

    Grooß, Jens-Uwe; Tritscher, Ines; Müller, Rolf

    2015-04-01

    Antarctic ozone depletion is known for almost three decades and it has been well settled that it is caused by chlorine catalysed ozone depletion inside the polar vortex. However, there are still some details, which need to be clarified. In particular, there is a current debate on the relative importance of liquid aerosol and crystalline NAT and ice particles for chlorine activation. Particles have a threefold impact on polar chlorine chemistry, temporary removal of HNO3 from the gas-phase (uptake), permanent removal of HNO3 from the atmosphere (denitrification), and chlorine activation through heterogeneous reactions. We have performed simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) employing a recently developed algorithm for saturation-dependent NAT nucleation for the Antarctic winters 2011 and 2012. The simulation results are compared with different satellite observations. With the help of these simulations, we investigate the role of the different processes responsible for chlorine activation and ozone depletion. Especially the sensitivity with respect to the particle type has been investigated. If temperatures are artificially forced to only allow cold binary liquid aerosol, the simulation still shows significant chlorine activation and ozone depletion. The results of the 3-D Chemical Transport Model CLaMS simulations differ from purely Lagrangian longtime trajectory box model simulations which indicates the importance of mixing processes.

  8. The effect of the initial exciton numbers on 54,56Fe(p, xp) Pre-Equilibrium Reactions

    International Nuclear Information System (INIS)

    Bölükdemir, M. H.; Tel, E.; Aydın, A.; Okuducu, S.; Kaplan, A.

    2011-01-01

    In pre-equilibrium nuclear reactions, the geometry-dependent hybrid model is applied with the use of the neutron and proton densities to investigate the effect of initial exciton numbers on the nucleon emission spectra. The initial exciton numbers calculated with the theoretical neutron and proton densities have been obtained within the Skryme-Hartree-Fock method with SKM* and SLy4 forces on target nuclei in the 54,56 Fe(p, xp) reaction at 61.5-MeV incident proton energy by using a new calculationmethod of Tel et al. Also, the differences between the initial exciton numbers for protons and neutrons as a function of nuclear radius, focusing on systematic discrepancies correlated to differences in the proton and neutron densities have been investigated.

  9. MRI-guided percutaneous cervical discectomy and discolysis with oxygen-ozone mixture for treatment of cervical disc herniation: an initial experience

    International Nuclear Information System (INIS)

    Liu Ming; Li Chengli; Lu Yubo; Huang Jie; Song Jiqing; Li Lei; Bao Shougang; Cao Qianqian; Wu Lebin

    2010-01-01

    Objective: To explore the value of MR imaging-guided percutaneous cervical discectomy and discolysis with oxygen-ozone mixture for treatment of cervical disc herniation. Methods: Eight herniated cervical discs in 7 patients were diagnosed by MRI, inclluding 5 discs of lateral protruding type, 2 discs of paramedian protruding type and one disc of central protruding type. All patients underwent MR imaging-guided percutaneous cervical discectomy and discolysis with oxygen-ozone mixture. The procedures were guided by a set of 0.23 T open MR system mounted with iPath 200 optical tracking system. The herniated portion of the disc was punctured with a 14 G MR-comparible needle in the healthy side via anterolateral oblique route. The interventional steps were as follows: firstly, cut herniated part with percutaneous discectomy probe and inject 2ml oxygen-ozone mixture of 60 μg/ml; secondly, retreat the needle to the disc center, resect nucleus pulposus, and inject 2 ml oxygen-ozone mixture of 60 μg/ml; secondly, retreat the needle to the disc center, resect nucleus pulposus, and inject 2 ml oxygen-ozone mixture of 60 μg/ml. All patients were followed up for 6 months, with 4 patients by telephone and 3 patients in outpatient clinic. The effect of treatment was evaluated according to Williams postoperative assessment standard. Results: All procedures were performed successfully. The clinical outcome was evaluated as excellent in 5 cases, good in 1 cases and fair in 1 case. The total ratio of excellent and good was 85.7%. No serious complication occurred expect 1 case with intraoperative paroxysmal pain. Conclusion: MR imaging-guided percutaneous cervical discectomy and discolysis with oxygen-ozone mixture was a safe, effective and minimally invasive method for the treatment of cervical disc herniation. (authors)

  10. Anthropogenous modifications of the atmosphere. The atmospheric ozone threat

    International Nuclear Information System (INIS)

    Aimedieu, P.

    1991-01-01

    Ozone role and atmospheric chemistry are first reviewed: chemical reactions and vertical distribution of ozone in the atmosphere. The origins of chlorofluorocarbon air pollution and the role of the various types of CFC on ozone depletion, greenhouse effect, cancer, etc. are then discussed. The political and environmental discussions concerning these phenomena are also reviewed

  11. Ozone direct oxidation kinetics of Cationic Red X-GRL in aqueous solution

    International Nuclear Information System (INIS)

    Zhao Weirong; Wu Zhongbiao; Wang Dahui

    2006-01-01

    This study characterizes the ozonation of the azo dye Cationic Red X-GRL in the presence of TBA (tert-butyl alcohol), a scavenger of hydroxyl radical, in a bubble column reactor. Effects of oxygen flow rate, temperature, initial dye concentration, and pH were investigated through a series of batch tests. Generally, enhancing oxygen flow rate enhanced the removal of dye. However, there was a minimum removal of dye at temperature 298 K. Increasing or decreasing temperature enhanced the degradation of dye. Increasing the initial dye concentration decreased the removal of dye while the ozonation rate increased. The rate constants and the kinetic regime of the reaction between ozone and dye were obtained by fitting the experimental data to a kinetics model based on a second order overall reaction, first order with respect to both ozone and dye. The Hatta numbers of the reactions were between 0.039 and 0.083, which indicated that the reaction occurred in the liquid bulk. The direct oxidation rate constant k D was correlated with temperature by a modified Arrhenius Equation with an activation energy E a of 15.538 kJ mol -1

  12. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma

    International Nuclear Information System (INIS)

    Labaune, C.; Baccou, C.; Loisel, G.; Yahia, V.; Depierreux, S.; Goyon, C.; Rafelski, J.

    2013-01-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments. (authors)

  13. Ozone decomposition in water studied by pulse radiolysis. 2. OH and HO4 as chain intermediates

    International Nuclear Information System (INIS)

    Staehelin, J.; Buehler, R.E.; Hoigne, J.

    1984-01-01

    Ozone decomposition in pure water involves a chain mechanism, initiated by the reaction OH - +O 3 and propogated by O 2 - and OH. In the present studies this chain is initiated by pulse radiolysis of aqueous solutions of ozone. The chain propogation steps were studied in two parts. By computer simulation of the rate curves, it is shown that from OH + O 3 and intermediate HO 4 must be formed, most likely a charge-transfer complex (HO.O 3 ), which eventually decays into HO 2 . The derived rate constants for the formation of the various species are included. The spectrum of HO 4 is derived. It is similar to the one of ozone, but the absorption coefficients are about 50% larger. In the presence of high ozone concentration, the dominant chain termination reactions are HO 4 + HO 4 and HO 4 + HO 3 . The effect on chain length, dose, overall rate, and pH and of added scavengers is described. The implications for the natural ozone decay mechanism are discussed

  14. Fast and quantitative differentiation of single-base mismatched DNA by initial reaction rate of catalytic hairpin assembly.

    Science.gov (United States)

    Li, Chenxi; Li, Yixin; Xu, Xiao; Wang, Xinyi; Chen, Yang; Yang, Xiaoda; Liu, Feng; Li, Na

    2014-10-15

    The widely used catalytic hairpin assembly (CHA) amplification strategy generally needs several hours to accomplish one measurement based on the prevailingly used maximum intensity detection mode, making it less practical for assays where high throughput or speed is desired. To make the best use of the kinetic specificity of toehold domain for circuit reaction initiation, we developed a mathematical model and proposed an initial reaction rate detection mode to quantitatively differentiate the single-base mismatch. Using the kinetic mode, assay time can be reduced substantially to 10 min for one measurement with the comparable sensitivity and single-base mismatch differentiating ability as were obtained by the maximum intensity detection mode. This initial reaction rate based approach not only provided a fast and quantitative differentiation of single-base mismatch, but also helped in-depth understanding of the CHA system, which will be beneficial to the design of highly sensitive and specific toehold-mediated hybridization reactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Evaluation of the extent of initial Maillard reaction during cooking some vegetables by direct measurement of the Amadori compounds.

    Science.gov (United States)

    Yu, Jiahao; Zhang, Shuqin; Zhang, Lianfu

    2018-01-01

    During vegetable cooking, one of the most notable and common chemical reactions is the Maillard reaction, which occurs as a result of thermal treatment and dehydration. Amadori compound determination provides a very sensitive indicator for early detection of quality changes caused by the Maillard reaction, as well as to retrospectively assess the heat treatment or storage conditions to which the product has been subjected. In this paper, a hydrophilic interaction liquid chromatographic-electrospray ionization-tandem mass spectrometric method was developed for the analysis of eight Amadori compounds, and the initial steps of the Maillard reaction during cooking (steaming, frying and baking) bell pepper, red pepper, yellow onion, purple onion, tomato and carrot were also assessed by quantitative determination of these Amadori compounds. These culinary treatments reduced moisture and increased the total content of Amadori compounds, which was not dependent on the type of vegetable or cooking method. Moreover, the effect of steaming on Amadori compound content and water loss was less than that by baking and frying vegetables. Further studies showed that the combination of high temperature and short time may lead to lower formation of Amadori compounds when baking vegetables. Culinary methods differently affected the extent of initial Maillard reaction when vegetables were made into home-cooked products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. The OH-initiated atmospheric chemical reactions of polyfluorinated dibenzofurans and polychlorinated dibenzofurans: A comparative theoretical study.

    Science.gov (United States)

    Zeng, Xiaolan; Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2017-02-01

    The atmospheric chemical reactions of some polyfluorinated dibenzofurans (PFDFs) and polychlorinated dibenzofurans (PCDFs), initiated by OH radical, were investigated by performing theoretical calculations using density functional theory (DFT) and B3LYP/6-311++G(2df,p) method. The obtained results indicate that OH addition reactions of PFDFs and PCDFs occurring at C 1∼4 and C A sites are thermodynamic spontaneous changes and the branching ratio of the PF(C)DF-OH adducts is decided primarily by kinetic factor. The OH addition reactions of PFDFs taking place at fluorinated C 1∼4 positions are kinetically comparable with those occurring at nonfluorinated C 1∼4 positions, while OH addition reactions of PCDFs occurring at chlorinated C 1∼4 sites are negligible. The total rate constants of the addition reactions of PFDFs or PCDFs become smaller with consecutive fluorination or chlorination, and substituting at C 1 position has more adverse effects than substitution at other sites. The succedent O 2 addition reactions of PF(C)DF-OH adducts are thermodynamic nonspontaneous processes under the atmospheric conditions, and have high Gibbs free energies of activation (Δ r G ≠ ). The substituted dibenzofuranols are the primary oxidation products for PCDFs under the atmospheric conditions. However, other oxidative products may also be available for PFDFs besides substituted dibenzofuranols. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Modeling intercontinental transport of ozone in North America with CAMx for the Air Quality Model Evaluation International Initiative (AQMEII) Phase 3

    Science.gov (United States)

    Nopmongcol, Uarporn; Liu, Zhen; Stoeckenius, Till; Yarwood, Greg

    2017-08-01

    Intercontinental ozone (O3) transport extends the geographic range of O3 air pollution impacts and makes local air pollution management more difficult. Phase 3 of the Air Quality Modeling Evaluation International Initiative (AQMEII-3) is examining the contribution of intercontinental transport to regional air quality by applying regional-scale atmospheric models jointly with global models. We investigate methods for tracing O3 from global models within regional models. The CAMx photochemical grid model was used to track contributions from boundary condition (BC) O3 over a North American modeling domain for calendar year 2010 using a built-in tracer module called RTCMC. RTCMC can track BC contributions using chemically reactive tracers and also using inert tracers in which deposition is the only sink for O3. Lack of O3 destruction chemistry in the inert tracer approach leads to overestimation biases that can exceed 10 ppb. The flexibility of RTCMC also allows tracking O3 contributions made by groups of vertical BC layers. The largest BC contributions to seasonal average daily maximum 8 h averages (MDA8) of O3 over the US are found to be from the mid-troposphere (over 40 ppb) with small contributions (a few ppb) from the upper troposphere-lower stratosphere. Contributions from the lower troposphere are shown to not penetrate very far inland. Higher contributions in the western than the eastern US, reaching an average of 57 ppb in Denver for the 30 days with highest MDA8 O3 in 2010, present a significant challenge to air quality management approaches based solely on local or US-wide emission reductions. The substantial BC contribution to MDA8 O3 in the Intermountain West means regional models are particularly sensitive to any biases and errors in the BCs. A sensitivity simulation with reduced BC O3 in response to 20 % lower emissions in Asia found a near-linear relationship between the BC O3 changes and surface O3 changes in the western US in all seasons and across

  18. Modeling intercontinental transport of ozone in North America with CAMx for the Air Quality Model Evaluation International Initiative (AQMEII Phase 3

    Directory of Open Access Journals (Sweden)

    U. Nopmongcol

    2017-08-01

    Full Text Available Intercontinental ozone (O3 transport extends the geographic range of O3 air pollution impacts and makes local air pollution management more difficult. Phase 3 of the Air Quality Modeling Evaluation International Initiative (AQMEII-3 is examining the contribution of intercontinental transport to regional air quality by applying regional-scale atmospheric models jointly with global models. We investigate methods for tracing O3 from global models within regional models. The CAMx photochemical grid model was used to track contributions from boundary condition (BC O3 over a North American modeling domain for calendar year 2010 using a built-in tracer module called RTCMC. RTCMC can track BC contributions using chemically reactive tracers and also using inert tracers in which deposition is the only sink for O3. Lack of O3 destruction chemistry in the inert tracer approach leads to overestimation biases that can exceed 10 ppb. The flexibility of RTCMC also allows tracking O3 contributions made by groups of vertical BC layers. The largest BC contributions to seasonal average daily maximum 8 h averages (MDA8 of O3 over the US are found to be from the mid-troposphere (over 40 ppb with small contributions (a few ppb from the upper troposphere–lower stratosphere. Contributions from the lower troposphere are shown to not penetrate very far inland. Higher contributions in the western than the eastern US, reaching an average of 57 ppb in Denver for the 30 days with highest MDA8 O3 in 2010, present a significant challenge to air quality management approaches based solely on local or US-wide emission reductions. The substantial BC contribution to MDA8 O3 in the Intermountain West means regional models are particularly sensitive to any biases and errors in the BCs. A sensitivity simulation with reduced BC O3 in response to 20 % lower emissions in Asia found a near-linear relationship between the BC O3 changes and surface O3 changes in the

  19. Total ozone changes in the 1987 Antarctic ozone hole

    Science.gov (United States)

    Krueger, Arlin J.; Schoeberl, Mark R.; Doiron, Scott D.; Sechrist, Frank; Galimore, Reginald

    1988-01-01

    The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed.

  20. Ozone kinetics in low-pressure discharges

    Science.gov (United States)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  1. Volatile emission in dry seeds as a way to probe chemical reactions during initial asymptomatic deterioration.

    Science.gov (United States)

    Mira, Sara; Hill, Lisa M; González-Benito, M Elena; Ibáñez, Miguel Angel; Walters, Christina

    2016-03-01

    The nature and kinetics of reactions in dry seeds determines how long the seeds survive. We used gas chromatography to assay volatile organic compounds (VOCs) emitted from seeds of three unrelated species as a means to non-invasively probe chemical changes during very dry, dry, and humid storage (seeds were dried to 5.5, 33, and 75% relative humidity at room temperature). VOCs emitted from seeds stored in humid conditions reflected fermentation-type reactions, with methanol and ethanol being predominant in Lactuca sativa and Carum carvi, and acetaldehyde and acetone being predominant in Eruca vesicaria. Dried C. carvi seeds continued to emit fermentation-type products, although at slower rates than the seeds stored in humid conditions. In contrast, drying caused a switch in VOC emission in L. sativa and E. vesicaria seeds towards higher emission of pentane and hexanal, molecules considered to be byproducts from the peroxidation of polyunsaturated fatty acids. Longevity correlated best with the rate of fermentation-type reactions and appeared unrelated to the rate of lipid peroxidation. Emission of VOCs decreased when seed species were mixed together, indicating that seeds adsorbed VOCs. Adsorption of VOCs did not appear to damage seeds, as longevity was not affected in seed mixtures. Collectively, the study shows similarity among species in the types of reactions that occur in dry seeds, but high diversity in the substrates, and hence the byproducts, of the reactions. Moreover, the study suggests that the most abundant VOCs arise from degradation of storage reserves within seed cells, and that these reactions and their byproducts are not, in themselves, damaging. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Reaction

    African Journals Online (AJOL)

    abp

    19 oct. 2017 ... Reaction to Mohamed Said Nakhli et al. concerning the article: "When the axillary block remains the only alternative in a 5 year old child". .... Bertini L1, Savoia G, De Nicola A, Ivani G, Gravino E, Albani A et al ... 2010;7(2):101-.

  3. Initial pressure spike and its propagation phenomena in sodium-water reaction tests for MONJU steam generators

    International Nuclear Information System (INIS)

    Sato, M.; Hiroi, H.; Tanaka, N.; Hori, M.

    1977-01-01

    With the objective of demonstrating the safe design of steam generators for prototype LMFBR MONJU against the postulated large-leak accident, a number of large-leak sodium-water reaction tests have been conducted using the SWAT-1 and SWAT-3 rigs. Investigation of the potential effects of pressure load on the system is one of the major concerns in these tests. This paper reports the behavior of initial pressure spike in the reaction vessel, its propagation phenomena to the simulated secondary cooling system, and the comparisons with the computer code for one-dimensional pressure wave propagation problems. Both rigs used are the scaled-down models of the helically coiled steam generators of MONJU. The SWAT-1 rig is a simplified model and consists of a reaction vessel (1/8 scale of MONJU evaporator with 0.4 m dia. and 2.5 m height) and a pressure relief system i.e., a pressure relief line and a reaction products tank. On the other hand, the SWAT-3 rig is a 1/2.5 scale of MONJU SG system and consists of an evaporator (reaction vessel with 1.3 m dia. and 6.35 m height), a superheater, an intermediate heat exchanger (IHX), a piping system simulating the secondary cooling circuit and a pressure relief system. The both water injection systems consist of a water injection line with a rupture disk installed in front of injection hole and an electrically heated water tank. Choice of water injection rates in the scaled-down models is made based on the method of iso-velocity modeling. Test results indicated that the characteristics of the initial pressure spike are dominated by those of initial water injection which are controlled by the conditions of water heater and the size of water injection hole, etc

  4. Ozone modelling in Eastern Austria

    Energy Technology Data Exchange (ETDEWEB)

    Stohl, A.; Wotawa, G.; Kromp-Kolb, H. [Univ. of Agriculture, Vienna (Austria). Inst. of Meteorology and Physics; Winiwater, W. [Austrian Research Centre, Seibersdorf (Austria); Baumann, R.; Spangl, W. [Federal Environmental Agency, Vienna (Austria)

    1995-12-31

    High ozone concentrations are frequently observed in Eastern Austria, often exceeding local as well as international health standards, both for short-term as well as for long-term exposures. The maximum concentrations are produced in urban plumes, e.g. of the city of Vienna, whereas regional-scale transport and production of ozone is more important for the long-term concentrations. The Pannonian Ozone Project (POP) is an Austrian research initiative to model photochemical processes on a regional as well as on a local scale with a Lagrangian model to better understand the mechanisms leading to the high ozone concentrations and to develop abatement strategies. Up to now, focus has been on the regional scale. Aircraft, tethered balloon, tetroon and intensified ground measurements are carried out to validate the model. Although the major measurement campaign will be held in summer 1995, first results from a measurement campaign in summer 1994 are already available

  5. Carbamoyl anion-initiated cascade reaction for stereoselective synthesis of substituted α-hydroxy-β-amino amides.

    Science.gov (United States)

    Lin, Chao-Yang; Ma, Peng-Ju; Sun, Zhao; Lu, Chong-Dao; Xu, Yan-Jun

    2016-01-18

    A carbamoyl anion-initiated cascade reaction with acylsilanes and imines has been used to rapidly construct substituted α-hydroxy-β-amino amides. The Brook rearrangement-mediated cascade allows the formation of two C-C bonds and one O-Si bond in a single pot. Using this approach, a range of α-aryl α-hydroxy-β-amino amides has been synthesized in high yields with excellent diastereoselectivities.

  6. Self-sustained high-temperature reactions : Initiation, propagation and synthesis

    NARCIS (Netherlands)

    Martinez Pacheco, M.

    2007-01-01

    Self-Propagating High-Temperature Synthesis (SHS), also called combustion synthesis is an exothermic and self-sustained reaction between the constituents, which has assumed significance for the production of ceramics and ceramic-metallic materials (cermets), because it is a very rapid processing

  7. Pressure Dependent Product Formation in the Photochemically Initiated Allyl + Allyl Reaction

    Directory of Open Access Journals (Sweden)

    Thomas Zeuch

    2013-11-01

    Full Text Available Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn’s largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br, allyl chloride (C3H5Cl, and 1,5-hexadiene (CH2CH(CH22CHCH2 at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re- combination pathway C3H5+C3H5 → C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re- combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth.

  8. Initial Dynamics of The Norrish Type I Reaction in Acetone: Probing Wave Packet Motion

    DEFF Research Database (Denmark)

    Brogaard, Rasmus Y.; Sølling, Theis I.; Møller, Klaus Braagaard

    2011-01-01

    The Norrish Type I reaction in the S1 (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels...

  9. Exciplexes versus Loose Ion Pairs: How Does the Driving Force Impact the Initial Product Ratio of Photoinduced Charge Separation Reactions?

    Science.gov (United States)

    2014-01-01

    Many donor–acceptor systems can undergo a photoinduced charge separation reaction, yielding loose ion pairs (LIPs). LIPs can be formed either directly via (distant) electron transfer (ET) or indirectly via the dissociation of an initially formed exciplex or tight ion pair. Establishing the prevalence of one of the reaction pathways is challenging because differentiating initially formed exciplexes from LIPs is difficult due to similar spectroscopic footprints. Hence, no comprehensive reaction model has been established for moderately polar solvents. Here, we employ an approach based on the time-resolved magnetic field effect (MFE) of the delayed exciplex luminescence to distinguish the two reaction channels. We focus on the effects of the driving force of ET and the solvent permittivity. We show that, surprisingly, the exciplex channel is significant even for an exergonic ET system with a free energy of ET of −0.58 eV and for the most polar solutions studied (butyronitrile). Our findings demonstrate that exciplexes play a crucial role even in polar solvents and at moderate driving forces, contrary to what is usually assumed. PMID:25243054

  10. Ozone Layer Protection

    Science.gov (United States)

    ... and Research Centers Contact Us Share Ozone Layer Protection The stratospheric ozone layer is Earth’s “sunscreen” – protecting ... GreenChill Partnership Responsible Appliance Disposal (RAD) Program Ozone Protection vs. Ozone Pollution This website addresses stratospheric ozone ...

  11. Anticipatory Postural Control of Stability during Gait Initiation Over Obstacles of Different Height and Distance Made Under Reaction-Time and Self-Initiated Instructions.

    Science.gov (United States)

    Yiou, Eric; Artico, Romain; Teyssedre, Claudine A; Labaune, Ombeline; Fourcade, Paul

    2016-01-01

    Despite the abundant literature on obstacle crossing in humans, the question of how the central nervous system (CNS) controls postural stability during gait initiation with the goal to clear an obstacle remains unclear. Stabilizing features of gait initiation include anticipatory postural adjustments (APAs) and lateral swing foot placement. To answer the above question, 14 participants initiated gait as fast as possible in three conditions of obstacle height, three conditions of obstacle distance and one obstacle-free (control) condition. Each of these conditions was performed with two levels of temporal pressure: reaction-time (high-pressure) and self-initiated (low-pressure) movements. A mechanical model of the body falling laterally under the influence of gravity and submitted to an elastic restoring force is proposed to assess the effect of initial (foot-off) center-of-mass position and velocity (or "initial center-of-mass set") on the stability at foot-contact. Results showed that the anticipatory peak of mediolateral (ML) center-of-pressure shift, the initial ML center-of-mass velocity and the duration of the swing phase, of gait initiation increased with obstacle height, but not with obstacle distance. These results suggest that ML APAs are scaled with swing duration in order to maintain an equivalent stability across experimental conditions. This statement is strengthened by the results obtained with the mechanical model, which showed how stability would be degraded if there was no adaptation of the initial center-of-mass set to swing duration. The anteroposterior (AP) component of APAs varied also according to obstacle height and distance, but in an opposite way to the ML component. Indeed, results showed that the anticipatory peak of backward center-of-pressure shift and the initial forward center-of-mass set decreased with obstacle height, probably in order to limit the risk to trip over the obstacle, while the forward center-of-mass velocity at foot

  12. ANTICIPATORY POSTURAL CONTROL OF STABILITY DURING GAIT INITIATION OVER OBSTACLES OF DIFFERENT HEIGHT AND DISTANCE MADE UNDER REACTION-TIME AND SELF-INITIATED INSTRUCTIONS

    Directory of Open Access Journals (Sweden)

    Eric Yiou

    2016-09-01

    Full Text Available Despite the abundant literature on obstacle crossing in humans, the question of how the central nervous system (CNS controls postural stability during gait initiation with the goal to clear an obstacle remains unclear. Stabilizing features of gait initiation include anticipatory postural adjustments (APAs and lateral swing foot placement. To answer the above question, fourteen participants initiated gait as fast as possible in three conditions of obstacle height, three conditions of obstacle distance, and one obstacle-free (control condition. Each of these conditions was performed with two levels of temporal pressure: reaction-time (high-pressure and self-initiated (low-pressure movements. A mechanical model of the body falling laterally under the influence of gravity and submitted to an elastic restoring force is proposed to assess the effect of initial (foot-off center-of-mass position and velocity (or initial center-of-mass set on stability at foot-contact. Results showed that the anticipatory peak of mediolateral center-of-pressure shif, the initial mediolateral center-of-mass velocity and the duration of the swing phase of gait initiation increased with obstacle height, but not with obstacle distance. These results suggest that mediolateral APAs are scaled with swing duration in order to maintain an equivalent stability across experimental conditions. This statement is strengthened by the results obtained with the mechanical model, which showed how stability would be degraded if there was no adaptation of the initial center-of-mass set to swing duration. The anteroposterior component of APAs varied also according to obstacle height and distance, but in an opposite way to the mediolateral component. Indeed, results showed that the anticipatory peak of backward center-of-pressure shift and the initial forward center-of-mass set decreased with obstacle height, probably in order to limit the risk to trip over the obstacle, while the forward

  13. Sum frequency generation and catalytic reaction studies of the removal of the organic capping agents from Pt nanoparticles by UV-ozone treatment

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, Cesar; Park, Jeong Y.; Yamada, Yusuke; Lee, Hyun Sook; Tsung, Chia-Kuang; Yang, Peidong; Somorjai, Gabor A.

    2009-12-10

    We report the structure of the organic capping layers of platinum colloid nanoparticles and their removal by UV-ozone exposure. Sum frequency generation vibrational spectroscopy (SFGVS) studies identify the carbon-hydrogen stretching modes on poly(vinylpyrrolidone) (PVP) and tetradecyl tributylammonium bromide (TTAB)-capped platinum nanoparticles. We found that the UV-ozone treatment technique effectively removes the capping layer on the basis of several analytical measurements including SFGVS, X-ray photoelectron spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The overall shape of the nanoparticles was preserved after the removal of capping layers, as confirmed by transmission electron microscopy (TEM). SFGVS of ethylene hydrogenation on the clean platinum nanoparticles demonstrates the existence of ethylidyne and di-{sigma}-bonded species, indicating the similarity between single-crystal and nanoparticle systems.

  14. Study of initial stage in coal liquefaction. Increase in oil yield with suppression of retrogressive reaction during initial stage; Ekika hanno no shoki katei ni kansuru kenkyu. 1.

    Energy Technology Data Exchange (ETDEWEB)

    Uesugi, K.; Kanaji, M.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    For the coal liquefaction, improvement of liquefaction conditions and increase of liquefied oil yield are expected by suppressing the recombination through rapid stabilization of pyrolytic radicals which are formed at the initial stage of liquefaction. Two-stage liquefaction combining prethermal treatment and liquefaction was performed under various conditions, to investigate the effects of reaction conditions on the yields and properties of products as well as to increase liquefied oil yield. Consequently, it was found that the catalyst contributes greatly to the hydrogen transfer to coal at the prethermal treatment. High yield of n-hexane soluble fraction with products having low condensation degree could be obtained by combining the prethermal treatment in the presence of hydrogen and catalyst with the concentration of slurry after the treatment. This was considered to be caused by the synergetic effect between the improvement of liquefaction by suppressing polymerization/condensation at the initial stage of reaction through the prethermal treatment and the effective hydrogen transfer accompanied with the improvement of contact efficiency of coal/catalyst by the concentration of slurry at the stage of liquefaction. 4 refs., 8 figs.

  15. Products of BVOC oxidation: ozone and organic aerosols

    Science.gov (United States)

    Wildt, Jürgen; Andres, Stefanie; Carriero, Giulia; Ehn, Mikael; Fares, Silvano; Hoffmann, Thorsten; Hacker, Lina; Kiendler-Scharr, Astrid; Kleist, Einhard; Paoletti, Elena; Pullinen, Iida; Rohrer, Franz; Rudich, Yinon; Springer, Monika; Tillmann, Ralf; Wahner, Andreas; Wu, Cheng; Mentel, Thomas

    2015-04-01

    Biogenic Volatile Organic Compounds (BVOC) are important precursors in photochemical O3 and secondary organic aerosol (SOA) formation. We conducted a series of laboratory experiments with OH-induced oxidation of monoterpenes to elucidate pathways and efficiencies of O3 and SOA formation. At high NOx conditions ([BVOC] / [NOx] monoterpene mixes emitted from different plant species we observed increasing ozone formation with increasing [NOX]. Between 2 and 3 O3-molecules were formed from 1 monoterpene when ozone formation was BVOC limited. Under such high NOX conditions, new particle formation was suppressed. Increasing [BVOC] / [NOX] ratios caused increasing efficiency of new particle formation indicating that peroxy radicals are the key intermediates in both, photochemical ozone- and new particle formation. The classical chemistry of peroxy radicals is well established (e.g. Master Chemical Mechanism). Peroxy radicals are produced by addition of molecular oxygen to the alkyl radical formed after OH attack at the BVOC. They either react with NO which leads to ozone formation or they react with other peroxy radicals and form chemically stable products (hydroperoxides, alkoholes and ketones). Much less knowledge exists on such reactions for Highly Oxidized Peroxy Radicals, (HOPR). Such HOPR were observed during ozonolysis of several volatiles and, in case of monoterpenes as precursors, they can contain more than 12 Oxygen atoms (Mentel et al., 2015). Although the OH-initiated formation of HOPR is yet not fully understood, their basic gas phase reactions seem to follow classical photochemical rules. In reactions with NO they can act as precursor for O3 and in reactions with other HOPR or with classical less oxidized peroxy radicals they can form highly oxidized stable products and alkoxy radicals. In addition, HOPR-HOPR reactions lead to the formation of dimers that, in case of monoterpenes as reactants, consist of a skeleton with 20 carbon atoms. These dimers seem to

  16. o-Iodoxybenzoic acid mediated oxidative desulfurization initiated domino reactions for synthesis of azoles.

    Science.gov (United States)

    Chaudhari, Pramod S; Pathare, Sagar P; Akamanchi, Krishnacharaya G

    2012-04-20

    A systematic exploration of thiophilic ability of o-iodoxybenzoic acid (IBX) for oxidative desulfurization to trigger domino reactions leading to new methodologies for synthesis of different azoles is described. A variety of highly substituted oxadiazoles, thiadiazoles, triazoles, and tetrazoles have been successfully synthesized in good to excellent yields, starting from readily accessible thiosemicarbazides, bis-diarylthiourea, 1,3-disubtituted thiourea, and thioamides. © 2012 American Chemical Society

  17. Reductive and oxidative reactions with inorganic colloids in aqueous solution initiated by ultrasound

    International Nuclear Information System (INIS)

    Mulvaney, P.C.; Sostaric, J.Z.; Ashokkumar, M.; Grieser, F.

    1998-01-01

    Full text: The absorption of ultrasound in an aqueous solution can lead to the formation of H and OH radicals which can act as redox species or react with solutes to produce secondary radicals which themselves may participate in electron transfer reactions. The radical formation occurs through the growth then rapid collapse of microbubbles a process that produces localised hot spots with an internal temperature of the order of 5000 K. We have examined two colloidal systems one involving the reductive dissolution of MnO 2 colloids and the other the oxidative dissolution of CdS colloids. In the case of MnO 2 dissolution we found that the reduction of the colloidal metal oxide was considerably enhanced in the presence of aliphatic alcohols in solution and the longer the alkyl chain length on the alcohol the greater its effect. The dissolution of CdS colloids which we ascribe to the reaction of H 2 O 2 and O 2 - with the metal sulfide lo yield Cd 2+ and S could be significantly retarded by the presence of excess S 2- in solution. The mechanisms involved in these two dissolution processes will he presented. Our results clearly show that sonochemical reactions are quite efficient in colloidal solutions and this fact needs to be considered when using sonication to disperse colloidal material in solution, a common practice among colloid chemists

  18. Chemiluminescence development after initiation of Maillard reaction in aqueous solutions of glycine and glucose: nonlinearity of the process and cooperative properties of the reaction system

    Science.gov (United States)

    Voeikov, Vladimir L.; Naletov, Vladimir I.

    1998-06-01

    Nonenzymatic glycation of free or peptide bound amino acids (Maillard reaction, MR) plays an important role in aging, diabetic complications and atherosclerosis. MR taking place at high temperatures is accompanied by chemiluminescence (CL). Here kinetics of CL development in MR proceeding in model systems at room temperature has been analyzed for the first time. Brief heating of glycine and D-glucose solutions to t greater than 93 degrees Celsius results in their browning and appearance of fluorescencent properties. Developed In solutions rapidly cooled down to 20 degrees Celsius a wave of CL. It reached maximum intensity around 40 min after the reaction mixture heating and cooling it down. CL intensity elevation was accompanied by certain decoloration of the solution. Appearance of light absorbing substances and development of CL depended critically upon the temperature of preincubation (greater than or equal to 93 degrees Celsius), initial pH (greater than or equal to 11,2), sample volume (greater than or equal to 0.5 ml) and reagents concentrations. Dependence of total counts accumulation on a system volume over the critical volume was non-monotonous. After reaching maximum values CL began to decline, though only small part of glucose and glycin had been consumed. Brief heating of such solutions to the critical temperature resulted in emergence of a new CL wave. This procedure could be repeated in one and the same reaction system for several times. Whole CL kinetic curve best fitted to lognormal distribution. Macrokinetic properties of the process are characteristic of chain reactions with delayed branching. Results imply also, that self-organization occurs in this system, and that the course of the process strongly depends upon boundary conditions and periodic interference in its course.

  19. Lignin transformations and reactivity upon ozonation in aqueous media

    Science.gov (United States)

    Khudoshin, A. G.; Mitrofanova, A. N.; Lunin, V. V.

    2012-03-01

    The reaction of ozone with lignin in aqueous acidic solutions is investigated. The Danckwerst model is used to describe the kinetics of gas/liquid processes occurring in a bubble reactor. The efficient ozonation rate of a soluble lignin analog, sodium lignosulfate, is determined. The main lines of the reaction between ozone and lignin are revealed on the basis of kinetic analysis results and IR and UV spectroscopy data.

  20. Role of carbene complexes in initiation and chain propagation in double bond redistribution reactions

    International Nuclear Information System (INIS)

    Dolgoplosk, K.L.; Makovetskij, E.I.; Tinyakova, E.I.; Golenko, T.G.; Oreshkin, I.A.

    1976-01-01

    A study has been made of the role of carbene complexes of tungsten in initiation and propagation of the ring-opening polymerization of cycloolefins. Data are given on polymerization of cyclopentene and cycloocterdiene-1,5 in the presence of the system tungsten chloride-diazo-compound (DAC)

  1. Physicochemical characteristics of ozonated sunflower oils obtained by different procedures

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, M. F.; Sanchez, Y.; Gomez, M.; Hernandez, F.; Veloso, M. C.; Pereira, P. A.; Mangrich, A. S.; Andrade, J. B.

    2012-07-01

    Two ozonation procedures for sunflower oils at different applied ozone dosages were carried out. Ozone was obtained from medicinal oxygen and from air. Peroxide, acidity, and iodine indexes, along with density, viscosity and antimicrobial activity were determined. The fatty acid compositions of the samples were analyzed using GC. The content of oxygen was determined using an elemental analysis. Electronic Paramagnetic Resonance was used to measure the organic free radicals. The reactions were achieved up to peroxide index values of 658 and 675 mmolequiv kg1 using medicinal oxygen and air for 5 and 8 hours, respectively. The samples of ozonized sunflower oil did not present organic free radicals, which is a very important issue if these oils are to be used as drugs. The ozonation reaction is more rapid with medicinal oxygen (5 hours) than with air (8 hours). Ozonized sunflower oil with oxygen as an ozone source was obtained with high potential for antimicrobial activity. (Author) 34 refs.

  2. Initial reaction between CaO and SO2 under carbonating and non-carbonating conditions

    DEFF Research Database (Denmark)

    Rasmussen, Martin Hagsted; Wedel, Stig; Pedersen, Kim H.

    2015-01-01

    The initial kinetics of the CaO/SO2 reaction have been investigated for reaction times shorter than 1s and in the temperature interval between 450 and 600°C under both carbonating and non-carbonating conditions (0-20 vol% CO2) to clarify how recirculating CaO influences the emission of SO2 from...... showed that the CaO conversion with respect to SO2 declined when the CO2 concentration was increased. Under all conditions, larger specific surface areas of CaO gave higher reaction rates with SO2. Higher temperatures had a positive effect on the reaction between SO2 and CaO under non......-carbonating conditions, but no or even a negative effect under carbonating conditions. The results led to the conclusion that SO2 released from raw meal in the upper stages of the preheater does not to any significant extent react with CaO recirculating in the preheater tower....

  3. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  4. Modulations of stratospheric ozone by volcanic eruptions

    Science.gov (United States)

    Blanchette, Christian; Mcconnell, John C.

    1994-01-01

    We have used a time series of aerosol surface based on the measurements of Hofmann to investigate the modulation of total column ozone caused by the perturbation to gas phase chemistry by the reaction N2O5(gas) + H2O(aero) yields 2HNO3(gas) on the surface of stratospheric aerosols. We have tested a range of values for its reaction probability, gamma = 0.02, 0.13, and 0.26 which we compared to unperturbed homogeneous chemistry. Our analysis spans a period from Jan. 1974 to Oct. 1994. The results suggest that if lower values of gamma are the norm then we would expect larger ozone losses for highly enhanced aerosol content that for larger values of gamma. The ozone layer is more sensitive to the magnitude of the reaction probability under background conditions than during volcanically active periods. For most conditions, the conversion of NO2 to HNO3 is saturated for reaction probability in the range of laboratory measurements, but is only absolutely saturated following major volcanic eruptions when the heterogeneous loss dominates the losses of N2O5. The ozone loss due to this heterogeneous reaction increases with the increasing chlorine load. Total ozone losses calculated are comparable to ozone losses reported from TOMS and Dobson data.

  5. New-Generation NASA Aura Ozone Monitoring Instrument (OMI) Volcanic SO2 Dataset: Algorithm Description, Initial Results, and Continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS)

    Science.gov (United States)

    Li, Can; Krotkov, Nickolay A.; Carn, Simon; Zhang, Yan; Spurr, Robert J. D.; Joiner, Joanna

    2017-01-01

    Since the fall of 2004, the Ozone Monitoring Instrument (OMI) has been providing global monitoring of volcanic SO2 emissions, helping to understand their climate impacts and to mitigate aviation hazards. Here we introduce a new-generation OMI volcanic SO2 dataset based on a principal component analysis (PCA) retrieval technique. To reduce retrieval noise and artifacts as seen in the current operational linear fit (LF) algorithm, the new algorithm, OMSO2VOLCANO, uses characteristic features extracted directly from OMI radiances in the spectral fitting, thereby helping to minimize interferences from various geophysical processes (e.g., O3 absorption) and measurement details (e.g., wavelength shift). To solve the problem of low bias for large SO2 total columns in the LF product, the OMSO2VOLCANO algorithm employs a table lookup approach to estimate SO2 Jacobians (i.e., the instrument sensitivity to a perturbation in the SO2 column amount) and iteratively adjusts the spectral fitting window to exclude shorter wavelengths where the SO2 absorption signals are saturated. To first order, the effects of clouds and aerosols are accounted for using a simple Lambertian equivalent reflectivity approach. As with the LF algorithm, OMSO2VOLCANO provides total column retrievals based on a set of predefined SO2 profiles from the lower troposphere to the lower stratosphere, including a new profile peaked at 13 km for plumes in the upper troposphere. Examples given in this study indicate that the new dataset shows significant improvement over the LF product, with at least 50% reduction in retrieval noise over the remote Pacific. For large eruptions such as Kasatochi in 2008 (approximately 1700 kt total SO2/ and Sierra Negra in 2005 (greater than 1100DU maximum SO2), OMSO2VOLCANO generally agrees well with other algorithms that also utilize the full spectral content of satellite measurements, while the LF algorithm tends to underestimate SO2. We also demonstrate that, despite the

  6. Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?

    Directory of Open Access Journals (Sweden)

    J.-U. Grooß

    2011-12-01

    Full Text Available Balloon-borne observations of ozone from the South Pole Station have been reported to reach ozone mixing ratios below the detection limit of about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios increase to above 1 ppmv on the 70 hPa level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes determining how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS. As ozone falls below about 0.5 ppmv, a balance is maintained by gas phase production of both HCl and HOCl followed by heterogeneous reaction between these two compounds in these simulations. Thereafter, a very rapid, irreversible chlorine deactivation into HCl can occur, either when ozone drops to values low enough for gas phase HCl production to exceed chlorine activation processes or when temperatures increase above the polar stratospheric cloud (PSC threshold. As a consequence, the timing and mixing ratio of the minimum ozone depends sensitively on model parameters, including the ozone initialisation. The subsequent ozone increase between October and December is linked mainly to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.

  7. Kinetics of the gas-phase tritium oxidation reaction

    International Nuclear Information System (INIS)

    Failor, R.A.

    1989-01-01

    Homogeneous gas-phase kinetics of tritium oxidation (2T 2 + O 2 →2T 2 O) have been studied with a model that accounts explicitly for radiolysis of the major species and the kinetics of the subsequent reactions of ionic, excited-state, and neutral species. Results from model calculations are given for 10 -4 -1.0 mol% T 2 in O 2 (298 K, 1 atm). As the reaction evolves three different mechanisms control T 2 O production, each with a different overall rate expression and a different order with respect to the T 2 concentration. The effects of self-radiolysis of pure T 2 on the tritium oxidation reaction were calculated. Tritium atoms, the primary product of T 2 self-radiolysis, altered the oxidation mechanism only during the first few seconds following the initiation of the T 2 -O 2 reaction. Ozone, an important intermediate in T 2 oxidation, was monitored in-situ by U.V. absorption spectroscopy for 0.01-1.0 mol% T 2 an 1 atm O 2 . The shape of the experimental ozone time profile agreed with the model predictions. As predicted, the measured initial rate of ozone production varied linearly with initial T 2 concentration ([T 2 ] 0.6 o ), but at an initial rate one-third the predicted value. The steady-state ozone concentration ([O 3 ]ss) was predicted to be dependent on [T 2 ] 0.3 o , but the measured value was [T 2 ] 0.6 o , resulting in four times higher [O 3 ]ss than predicted for a 1.0% T 2 -O 2 mixture. Adding H 2 to the T 2 -O 2 mixture, to provide insight into the differences between the radiolytic and chemical behavior of the tritium, produced a greater decrease in [O 3 ]ss than predicted. Adjusting the reaction cell surface-to-volume ratio showed implications of minor surface removal of ozone

  8. Chemical reactions involved in the initiation of hot corrosion of IN-738

    Science.gov (United States)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1984-01-01

    Sodium-sulfate-induced hot corrosion of preoxidized IN-738 was studied at 975 C with special emphasis placed on the processes occurring during the long induction period. Thermogravimetric tests were run for predetermined periods of time, and then one set of specimens was washed with water. Chemical analysis of the wash solutions yielded information about water soluble metal salts and residual sulfate. A second set of samples was cross sectioned dry and polished in a nonaqueous medium. Element distributions within the oxide scale were obtained from electron microprobe X-ray micrographs. Evolution of SO was monitored throughout the thermogravimetric tests. Kinetic rate studies were performed for several pertinent processes; appropriate rate constants were obtained from the following chemical reactions; Cr203 + 2 Na2S04(1) + 3/2 02 yields 2 Na2Cr04(1) + 2 S03(g)n TiO2 + Na2S04(1) yields Na20(T102)n + 503(g)n T102 + Na2Cro4(1) yields Na2(T102)n + Cr03(g).

  9. Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.

    Science.gov (United States)

    Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B

    2011-02-10

    The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.

  10. Protecting the ozone layer.

    Science.gov (United States)

    Munasinghe, M; King, K

    1992-06-01

    Stratospheric ozone layer depletion has been recognized as a problem by the Vienna Convention for the Protection of the Ozone Layer and the 1987 Montreal Protocol (MP). The ozone layer shields the earth from harmful ultraviolet radiation (UV-B), which is more pronounced at the poles and around the equator. Industrialized countries have contributed significantly to the problem by releasing chlorofluorocarbons (CFCs) and halons into the atmosphere. The effect of these chemicals, which were known for their inertness, nonflammability, and nontoxicity, was discovered in 1874. Action to deal with the effects of CFCs and halons was initiated in 1985 in a 49-nation UN meeting. 21 nations signed a protocol limiting ozone depleting substances (ODS): CFCs and halons. Schedules were set based on each country's use in 1986; the target phaseout was set for the year 2000. The MP restricts trade in ODSs and weights the impact of substances to reflect the extent of damage; i.e., halons are 10 times more damaging than CFCs. ODS requirements for developing countries were eased to accommodate scarce resources and the small fraction of ODS emissions. An Interim Multilateral Fund under the Montreal Protocol (IMFMP) was established to provide loans to finance the costs to developing countries in meeting global environmental requirements. The IMFMP is administered by the World Bank, the UN Environmental Program, and the UN Development Program. Financing is available to eligible countries who use .3 kg of ODS/person/year. Rapid phaseout in developed countries has occurred due to strong support from industry and a lower than expected cost. Although there are clear advantages to rapid phaseout, there were no incentives included in the MP for rapid phaseout. Some of the difficulties occur because the schedules set minimum targets at the lowest possible cost. Also, costs cannot be minimized by a country-specific and ODS-specific process. The ways to improve implementation in scheduling and

  11. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    Science.gov (United States)

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  12. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum.

    Science.gov (United States)

    Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing

    2016-10-01

    The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Initial chemical transport of reducing elements and chemical reactions in oxide cathode base metal

    International Nuclear Information System (INIS)

    Roquais, J.M.; Poret, F.; Doze, R. le; Dufour, P.; Steinbrunn, A.

    2002-01-01

    In the present work, the formation of compounds associated to the diffusion of reducing elements (Mg and Al) to the nickel surface of a one-piece oxide cathode has been studied. Those compounds have been evidenced after the annealing steps at high temperature performed on cathode base metal prior to the emitting coating deposition. Therefore, they form the ''initial'' interface between the nickel and the coating, in other words, the interface existing at the beginning of cathode life. Extensive analysis to characterize the nickel base prior to coating deposition has been performed by means of scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and glow discharge optical emission spectroscopy (GDOES). TEM and AES analysis have allowed to identify for the first time a spinel compound of MgAl 2 O 4 . The preferential distribution of the different compounds on the nickel surface has been studied by EDX mapping. Experimental profiles of diffusion of the reducing elements in the nickel have been obtained over the entire thickness of the material by GDOES. The mechanism of formation of these compounds together with a related diffusion model are proposed

  14. Temperature dependence of bromine activation due to reaction of bromide with ozone in a proxy for organic aerosols and its importance for chemistry in surface snow.

    Science.gov (United States)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Trachsel, Jürg; Avak, Sven; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2017-04-01

    Tropospheric ozone depletion events (ODEs) via halogen activation are observed in both cold and warm climates [1-3]. Very recently, it was suggested that this multiphase halogen activation chemistry dominates in the tropical and subtropical upper troposphere [4]. These occurrences beg the question of temperature dependence of halogen activation in sea-salt aerosol, which are often mixtures of sea-salt and organic molecules [3, 5]. With the application of flow-tubes, the aim of this study is to investigate the temperature dependence of bromine activation via ozone interaction in a bromide containing film as a proxy for mixed organic - sea-salt aersol. Citric acid is used in this study as a hygroscopically characterized matrix and a proxy for oxidized organics, which is of relevance to atmospheric chemistry. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. With available knowledge, we have reproduced the measured uptake with modelled bulk uptake while accounting for temperature dependence of the substrate's properties as diffusivity, viscosity, and gas solubility. This work is part of a cross-disciplinary project with the aim to investigate the impact of metamorphism on impurity location in aging snow and its consequences for chemical reactivity. Metamorphism drastically shapes the structure and physical properties of snow, which has impacts on heat transfer, albedo, and avalanche formation. Such changes can be driven by water vapour fluxes in dry metamorphism with a mass turnover of as much as 60% per day - much greater than previously thought [6]. The consequences for atmospheric science are a current question of research [7]. Here, we show first results of a joint experiment to probe the re-distribution of impurities during snow metamorphism in artificial snow combined with an investigation of the samples structural changes. Future work is planned with the goal to investigate to which extend the observed re

  15. Secondary maxima in ozone profiles

    Directory of Open Access Journals (Sweden)

    R. Lemoine

    2004-01-01

    Full Text Available Ozone profiles from balloon soundings as well as SAGEII ozone profiles were used to detect anomalous large ozone concentrations of ozone in the lower stratosphere. These secondary ozone maxima are found to be the result of differential advection of ozone-poor and ozone-rich air associated with Rossby wave breaking events. The frequency and intensity of secondary ozone maxima and their geographical distribution is presented. The occurrence and amplitude of ozone secondary maxima is connected to ozone variability and trend at Uccle and account for a large part of the total ozone and lower stratospheric ozone variability.

  16. Ozone mass transfer and kinetics experiments

    International Nuclear Information System (INIS)

    Bollyky, L.J.; Beary, M.M.

    1981-12-01

    Experiments were conducted at the Hanford Site to determine the most efficient pH and temperature levels for the destruction of complexants in Hanford high-level defense waste. These complexants enhance migration of radionuclides in the soil and inhibit the growth of crystals in the evaporator-crystallizer. Ozone mass transfer and kinetics tests have been outlined for the determination of critical mass transfer and kinetics parameters of the ozone-complexant reaction

  17. Ozone sensitivity of plants in natural communities

    Energy Technology Data Exchange (ETDEWEB)

    Treshow, M; Stewart, D

    1973-07-01

    Field fumigation studies conducted in grassland, oak, aspen, and conifer, communities established the injury threshold of prevalent plant species to ozone. Several important species, including Bromus tectorum, Quercus gambelii, and Populus tremuloides, were injured by a single 2-hours exposure to 15 pphM ozone. Over half the perennial forbs and woody species studied were visibly injured at concentrations of 30 pphM ozone or less. It is postulated that lower concentrations at prolonged or repeated exposures to ozone may impair growth and affect community vigor and stability. Continued exposure of natural plant communities to ozone is expected to initiate major shifts in the plant composition of communities. 10 references, 4 figures, 1 table.

  18. Importance of energetic solar protons in ozone depletion

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, J A.E.; Scourfield, M W.J. [Natal Univ., Durban (South Africa). Space Physics Research Inst.

    1991-07-11

    CHLORINE-catalysed depletion of the stratospheric ozone layer has commanded considerable attention since 1985, when Farman et al. observed a decrease of 50% in the total column ozone over Antarctica in the austral spring. Here we examine the depletion of stratospheric ozone caused by the reaction of ozone with nitric oxide generated by energetic solar protons, associated with solar flares. During large solar flares in March 1989, satellite observations indicated that total column ozone was depleted by {approx} 9% over {approx} 20% of the total area between the South Pole and latitude 70{sup o}S. Chlorine-catalysed ozone depletion takes place over a much larger area, but our results indicate that the influence of solar protons on atmospheric ozone concentrations should not be ignored. (author).

  19. Importance of energetic solar protons in ozone depletion

    International Nuclear Information System (INIS)

    Stephenson, J.A.E.; Scourfield, M.W.J.

    1991-01-01

    CHLORINE-catalysed depletion of the stratospheric ozone layer has commanded considerable attention since 1985, when Farman et al. observed a decrease of 50% in the total column ozone over Antarctica in the austral spring. Here we examine the depletion of stratospheric ozone caused by the reaction of ozone with nitric oxide generated by energetic solar protons, associated with solar flares. During large solar flares in March 1989, satellite observations indicated that total column ozone was depleted by ∼ 9% over ∼ 20% of the total area between the South Pole and latitude 70 o S. Chlorine-catalysed ozone depletion takes place over a much larger area, but our results indicate that the influence of solar protons on atmospheric ozone concentrations should not be ignored. (author)

  20. Ozone pretreatment and fermentative hydrolysis of wheat straw

    Science.gov (United States)

    Ben'ko, E. M.; Chukhchin, D. G.; Lunin, V. V.

    2017-11-01

    Principles of the ozone pretreatment of wheat straw for subsequent fermentation into sugars are investigated. The optimum moisture contents of straw in the ozonation process are obtained from data on the kinetics of ozone absorbed by samples with different contents of water. The dependence of the yield of reducing sugars in the fermentative reaction on the quantity of absorbed ozone is established. The maximum conversion of polysaccharides is obtained at ozone doses of around 3 mmol/g of biomass, and it exceeds the value for nonozonated samples by an order of magnitude. The yield of sugar falls upon increasing the dose of ozone. The process of removing lignin from the cell walls of straw during ozonation is visualized by means of scanning electron microscopy.

  1. Iron doped fibrous-structured silica nanospheres as efficient catalyst for catalytic ozonation of sulfamethazine.

    Science.gov (United States)

    Bai, Zhiyong; Wang, Jianlong; Yang, Qi

    2018-04-01

    Sulfonamide antibiotics are ubiquitous pollutants in aquatic environments due to their large production and extensive application. In this paper, the iron doped fibrous-structured silica (KCC-1) nanospheres (Fe-KCC-1) was prepared, characterized, and applied as a catalyst for catalytic ozonation of sulfamethazine (SMT). The effects of ozone dosage, catalyst dosage, and initial concentration of SMT were examined. The experimental results showed that Fe-KCC-1 had large surface area (464.56 m2 g -1 ) and iron particles were well dispersed on the catalyst. The catalyst had high catalytic performance especially for the mineralization of SMT, with mineralization ratio of about 40% in a wide pH range. With addition of Fe-KCC-1, the ozone utilization increased nearly two times than single ozonation. The enhancement of SMT degradation was mainly due to the surface reaction, and the increased mineralization of SMT was due to radical mechanism. Fe-KCC-1 was an efficient catalyst for SMT degradation in catalytic ozonation system.

  2. Atmospheric Oxidation Mechanism and Kinetic Studies for OH and NO3 Radical-Initiated Reaction of Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Rui Gao

    2014-03-01

    Full Text Available The mechanism for OH and NO3 radical-initiated oxidation reactions of methyl methacrylate (MMA was investigated by using density functional theory (DFT molecular orbital theory. Geometrical parameters of the reactants, intermediates, transition states, and products were fully optimized at the B3LYP/6-31G(d,p level. Detailed oxidation pathways were presented and discussed. The rate constants were deduced by the canonical variational transition-state (CVT theory with the small-curvature tunneling (SCT correction and the multichannel Rice-Ramspergere-Kassele-Marcus (RRKM theory, based on the potential energy surface profiles over the general atmospheric temperature range of 180–370 K. The calculated results were in reasonable agreement with experimental measurement.

  3. Reaction of Tri-methylaluminum on Si (001) Surface for Initial Aluminum Oxide Thin-Film Growth

    International Nuclear Information System (INIS)

    Kim, Dae Hee; Kim, Dae Hyun; Jeong, Yong Chan; Seo, Hwa Il; Kim, Yeong Cheol

    2010-01-01

    We studied the reaction of tri-methylaluminum (TMA) on hydroxyl (OH)-terminated Si (001) surfaces for the initial growth of aluminum oxide thin-films using density functional theory. TMA was adsorbed on the oxygen atom of OH due to the oxygen atom's lone pair electrons. The adsorbed TMA reacted with the hydrogen atom of OH to produce a di-methylaluminum group (DMA) and methane with an energy barrier of 0.50 eV. Low energy barriers in the range of 0 - 0.11 eV were required for DMA migration to the inter-dimer, intra-dimer, and inter-row sites on the surface. A unimethylaluminum group (UMA) was generated at each site with low energy barriers in the range of 0.21 - 0.25 eV. Among the three sites, the inter-dimer site was the most probable for UMA formation

  4. Domino reactions initiated by intramolecular hydride transfers from tri(di)arylmethane fragments to ketenimine and carbodiimide functions.

    Science.gov (United States)

    Alajarin, Mateo; Bonillo, Baltasar; Ortin, Maria-Mar; Sanchez-Andrada, Pilar; Vidal, Angel; Orenes, Raul-Angel

    2010-10-21

    The ability of triarylmethane and diarylmethane fragments to behave as hydride donors participating in thermal [1,5]-H shift/6π-ERC tandem processes involving ketenimine and carbodiimide functions is disclosed. C-Alkyl-C-phenyl ketenimines N-substituted by a triarylmethane substructure convert into a variety of 3,3,4,4-tetrasubstituted-3,4-dihydroquinolines, as structurally related carbodiimides transform into 3,4,4-trisubstituted-3,4-dihydroquinazolines via transient ortho-azaxylylenes. The first step of these one-pot conversions, the [1,5]-H shift, is considered to be a hydride migration on the basis of the known hydricity of the tri(di)arylmethane fragment and the electrophilicity of the central heterocumulenic carbon atom, whereas the final electrocyclization involves the formation of a sterically congested C-C or C-N bond. In the cases of C,C-diphenyl substituted triarylmethane-ketenimines the usual 6π-ERC becomes prohibited by the presence of two phenyl rings at each end of the azatrienic system. This situation opens new reaction channels: (a) following the initial hydride shift, the tandem sequence continues with an alternative electrocyclization mode to give 9,10-dihydroacridines, (b) the full sequence is initiated by a rare 1,5 migration of an electron-rich aryl group, followed by a 6π-ERC which leads to 2-aryl-3,4-dihydroquinolines, or (c) a different [1,5]-H shift/6π-ERC sequence involving the initial migration of a hydrogen atom from a methyl group at the ortho position to the nitrogen atom of the ketenimine function. Diarylmethane-ketenimines bearing a methyl group at the benzylic carbon atom experience a tandem double [1,5]-H shift, the first one being the usual benzylic hydride transfer whereas the second one involves the methyl group at the initial benzylic carbon atom, the reaction products being 2-aminostyrenes. Diarylmethane-ketenimines lacking such a methyl group convert into 3,4-dihydroquinolines by the habitual tandem [1,5]-H shift/6

  5. Surface reactivity of Ge[111] for organic functionalization by means of a radical-initiated reaction: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Pereda, Pamela, E-mail: rubio.pereda@gmail.com [Centro de Investigación Científica y de Educación Superior de Ensenada 3918, Código Postal 22860, Ensenada, Baja California (Mexico); Takeuchi, Noboru, E-mail: takeuchi@cnyn.unam.mx [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Apartado Postal 14, Código Postal 22800, Ensenada, Baja California (Mexico)

    2016-08-30

    Highlights: • The surface reactivity of the Ge [111] surface is studied with DFT for the attachment of organic molecules by means of a radical-initiated reaction. • A hydrogen vacancy in the hydrogen terminated Ge [111] surface exhibits an accumulation of charge and electron pairing. • These characteristics make the hydrogen vacancy less reactive for the attachment of unsaturated organic molecules. • The adsorption of acetylene is probable to occur while the adsorption of ethylene and styrene is substantially less probable to occur. • The hydrogen terminated Ge [111] surface is found to be less reactive than its two-dimensional analogue, the hydrogen-terminated germanene. - Abstract: The study of interfacial chemistry at semiconductor surfaces has become an important area of research. Functionalities such as molecular recognition, biocompatibility of surfaces, and molecular computing, could be achieved by the combinations of organic chemistry with the semiconductor technology. One way to accomplish this goal is by means of organic functionalization of semiconductor surfaces such as the bulk-terminated germanium surfaces, more specifically the Ge[111]. In this work, we theoretically study, by applying density functional theory, the surface reactivity of the bulk-terminated Ge[111] surface for organic functionalization by means of a radical-initiated reaction of unsaturated molecules such as acetylene, ethylene and styrene with a hydrogen vacancy on a previously hydrogen-terminated Ge[111] surface. Results derived from this work are compared with those obtained in our previous calculations on the germanene surface, following the same chemical route. Our calculations show an accumulation of electronic charge at the H-vacancy having as a result electron pairing due to strong lattice-electron coupling and therefore a diminished surface reactivity. Calculation of the transition states for acetylene and ethylene indicates that the surface reactivity of the

  6. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, C.S.

    1995-01-05

    Two of the most important chemically reactive tropospheric gases are ozone (O{sub 3}) and the hydroxyl radical (OH). Although ozone in the stratosphere is a necessary protector against the sun`s radiation, tropospheric ozone is actually a pollutant which damages materials and vegetation, acts as a respiratory irritant, and is a greenhouse gas. One of the two main sources of ozone in the troposphere is photochemical production. The photochemistry is initiated when hydrocarbons and carbon monoxide (CO) react with nitrogen oxides (NO{sub x} = NO + NO{sub 2}) in the presence of sunlight. Reaction with the hydroxyl radical, OH, is the main sink for many tropospheric gases. The hydroxyl radical is highly reactive and has a lifetime on the order of seconds. Its formation is initiated by the photolysis of tropospheric ozone. Tropospheric chemistry involves a complex, non-linear set of chemical reactions between atmospheric species that vary substantially in time and space. To model these and other species on a global scale requires the use of a global, three-dimensional chemistry, transport, and deposition (CTD) model. In this work, I developed two such three dimensional CTD models. The first model incorporated the chemistry necessary to model tropospheric ozone production from the reactions of nitrogen oxides with carbon monoxide (CO) and methane (CH{sub 4}). The second also included longer-lived alkane species and the biogenic hydrocarbon isoprene, which is emitted by growing plants and trees. The models` ability to predict a number of key variables (including the concentration of O{sub 3}, OH, and other species) were evaluated. Then, several scenarios were simulated to understand the change in the chemistry of the troposphere since preindustrial times and the role of anthropogenic NO{sub x} on present day conditions.

  7. Measurements of acetone yields from the OH-initiated oxidation of terpenes by proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Wisthaler, A.; Lindinger, W.; Jensen, N.R.; Winterhalter, R.; Hjorth, J.

    2002-01-01

    Biogenic VOCs (Volatile Organic Compounds) are known to be emitted in large quantities from vegetation exceeding largely global emissions of anthropogenic VOCs. Monoterpenes (C 10 H 16 ) are important constituents of biogenic VOC emissions. The atmospheric oxidation of Monoterpenes appears to be a potentially relevant source of acetone in the atmosphere. Acetone is present as a significant trace gas in the whole troposphere and influences in particular the atmospheric chemistry in the upper troposphere by substantially contributing to the formation of HO x radicals and peroxyacetyl nitrate (PAN). Acetone is formed promptly, following attack by the OH-radical on the terpene, via a series of highly unstable radical intermediates, but it is also formed slowly via the degradation of stable non-radical intermediates such as pinonaldehyde and nopinone. In order to investigate the relative importance of these processes, the OH-initiated oxidation of α-pinene and β-pinene was investigated in a chamber study, where the concentrations of monoterpenes, acetone, pinonaldehyde and nopinone were monitored by proton-transfer-reaction mass spectrometry (PTR-MS). It was found that significant amounts of acetone are formed directly, whenα-pinene and β-pinene are oxidized by the OH radical, but also secondary chemistry (degradation of primary reaction products) gives a significant contribution to the formation of acetone from monoterpenes. It can be concluded that atmospheric oxidation of monoterpenes contributes a significant fraction to the global acetone source strength. (nevyjel)

  8. Initiation of nuclear reactions under laser irradiation of Au nanoparticles in the aqueous solution of Uranium salt

    Energy Technology Data Exchange (ETDEWEB)

    Simakin, A.V.; Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow (Russian Federation)

    2010-10-15

    Laser exposure of a suspension of either gold or palladium nanoparticles in aqueous solutions of UO{sub 2}Cl{sub 2} of natural isotope abundance was experimentally studied. Picosecond Nd:YAG lasers at peak power of 10{sup 11}-10{sup 13} W/cm{sup 2} at the wavelength of 1.06-0.355 {mu}m were used as well as a visible-range Cu vapor laser at a peak power of 10{sup 10} W/cm{sup 2}. The composition of colloidal solutions before and after laser exposure was analyzed using atomic absorption and gamma spectroscopy in the 0.06-1 MeV range of photon energy. Real-time gamma spectroscopy was used to characterize the kinetics of nuclear reactions during laser exposure. It was found that laser exposure initiated nuclear reactions involving both {sup 238}U and {sup 235}U nuclei via different channels in H{sub 2}O and D{sub 2}O. The influence of saturation of both the liquid and nanoparticles by gaseous H{sub 2} and D{sub 2} on the kinetics of nuclear transformations was found. Possible mechanisms of observed processes are discussed. (orig.)

  9. A hybrid treatment of ozonation with limestone adsorption processes for the removal of Fe2+ in groundwater: Fixed bed column study

    Science.gov (United States)

    Akbar, Nor Azliza; Aziz, Hamidi Abdul; Adlan, Mohd Nordin

    2017-10-01

    During pumping of groundwater to the surface, the reaction between dissolved iron (Fe2+) and oxygen causes oxidation to ferric iron (Fe3+), thereby increasing the concentration of Fe2+. In this research, the potential application of ozonation with limestone adsorption to remove Fe2+ from groundwater was investigated through batch ozonation and fixed-bed-column studies. Groundwater samples were collected from a University Science Malaysia tube well (initial concentration of Fe2+, Co=1.563 mg/L). The effect of varying ozone dosages (10, 12.5, 15, 17.5, 20, 22.5, and 25 g/Nm3) was analyzed to determine the optimum ozone dosage for treatment. The characteristics of the column data and breakthrough curve were analyzed and predicted using mathematical models, such as Adam Bohart, Thomas, and Yoon-Nelson models. The data fitted well to the Thomas and Yoon-Nelson models, with correlation coefficient r2>0.93, but not to the Adam Bohart (r2=0.47). The total Fe2+ removed was 72% (final concentration of Fe2+, Ct=0.426 mg/L) at the maximum dosage of 25 g/Nm3 through ozonation only. However, the efficiency of Fe2+ removal was increased up to 99.5% (Ct=0.008 mg/L) when the hybrid treatment of ozonation with limestone adsorption was applied in this study. Thus, this integrated treatment was considerably more effective in removing Fe2+ than single ozonation treatment.

  10. The Antarctic ozone hole

    International Nuclear Information System (INIS)

    Jones, Anna E

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For the historical perspective, the events leading up to the discovery of the 'hole' are presented, as well as the response from the international community and the measures taken to protect the ozone layer now and into the future

  11. Degradation efficiency and mechanism of azo dye RR2 by a novel ozone aerated internal micro-electrolysis filter.

    Science.gov (United States)

    Zhang, Xian-Bing; Dong, Wen-Yi; Sun, Fei-Yun; Yang, Wei; Dong, Jiao

    2014-07-15

    A newly designed ozone aerated internal micro-electrolysis filter (OIEF) was developed to investigate its degradation efficiencies and correlated reaction mechanisms of RR2 dye. Complete decolorization and 82% TOC removal efficiency were stably achieved in OIEF process. Based on the comprehensive experimental results, an empirical equation was proposed to illustrate the effects of initial dye concentration and ozone dosage rate on color removal. The results indicated that OIEF process could be operated at wide pH range without significant treatment efficiencies change, while the optimum pH for RR2 dye degradation was 9.0. There were 15, 8 and 6 kinds of identified intermediates during ozonation, IE and OIEF treatment processes, respectively. Less identified intermediates and their lower concentrations in OIEF may attribute to its rather excellent mineralization performance. It was found that ozonation, Fe(2+)/Fe(3+) catalyzed ozonation, the redox reactions of electro-reduction and electro-oxidation are the most important mechanisms in OIEF process. The catalytic effect of Fe(2+)/Fe(3+) would induce mutual conversion between dissolved Fe(2+) and Fe(3+), and then decrease the dissolution rate of ZVI. The excellent treatment performance proved that the OIEF process is one promising technology applied for reactive azo dyes and other refractory wastewater treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Dependence of asymmetries for charge distribution with respect to the reaction plane on initial energy in heavy-ion collisions

    International Nuclear Information System (INIS)

    Okorokov, V.A.

    2013-01-01

    In this paper, two combinations of correlators are defined in order to investigate the evolution of possible C/CP invariance violation in strong interactions with initial energy for heavy-ion collisions. These combinations correspond to absolute and relative asymmetry of distribution of electrically charge particles with respect to the reaction plane in heavy-ion collisions. Energy dependence of parameters under study was derived from data of STAR and ALICE experiments. Significant decreasing both absolute and relative asymmetry is observed at energies √s NN < 20 GeV. This feature agrees qualitatively with other results of stage-I beam energy scan program in STAR experiment. General behavior of dependence of absolute asymmetry on initial energy agrees reasonably with behavior of similar dependence of Chern–Simons diffusion rate calculated at different values of external Abelian magnetic field. The observed behavior of parameters under study versus energy can be considered as indication on possible transition to predominance of hadronic states over quark–gluon degrees of freedom in the mixed phase created in heavy-ion collisions at intermediate energies. (author)

  13. The initial stages of the reaction between ZrCo and hydrogen studied by hot-stage microscopy

    International Nuclear Information System (INIS)

    Bloch, J.; Brill, M.; Ben-Eliahu, Y.; Gavra, Z.

    1998-01-01

    The development of hydride phase on the surface of ZrCo under 1 bar of hydrogen was investigated at temperatures between 75 and 300 C. Both surface modifications of the parent alloy and the nucleation and growth of hydride phase were observed. Surface modifications included: grain boundary outgrowth, intra-granular precipitation in the form of fine lamellar hydride phase and micro cracks. It is suggested that the surface modifications result from a combination of hydrogen solubility and the parent metal ductility. These modifications were enhanced near areas which had been previously transformed. The nucleation was self catalyzed, with new nuclei preferentially formed at the vicinity of growing former nuclei. All this suggested that the transport of hydrogen through the hydride phase is faster than its transfer through the surface passivation layer. The growth rate of the nuclei was similar to that of uranium. The activation energy for the growth was E a =24±3 kJ/mol. The results were compared with several other metal-hydrogen systems. It is suggested that the important physical factors controlling the mechanism of the initial hydriding reaction are hydrogen solubility and the brittleness of the parent metal/alloy. These parameters are responsible to the different changes observed during the initial hydriding stages which include: surface modifications, cracking, nucleation and growth. (orig.)

  14. The Tropospheric Ozone Assessment Report (TOAR): A community-wide effort to quantify tropospheric ozone in a rapidly changing world

    Science.gov (United States)

    Cooper, O. R.; Schultz, M.; Paoletti, E.; Galbally, I. E.; Naja, M. K.; Tarasick, D. W.; Evans, M. J.; Thompson, A. M.

    2017-12-01

    Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone has shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, left scientists unable to answer the most basic questions: Which regions of the world have the greatest human and plant exposure to ozone pollution? Is ozone continuing to decline in nations with strong emissions controls? To what extent is ozone increasing in the developing world? How can the atmospheric sciences community facilitate access to the ozone metrics necessary for quantifying ozone's impact on human health and crop/ecosystem productivity? To answer these questions the International Global Atmospheric Chemistry Project (IGAC) initiated the Tropospheric Ozone Assessment Report (TOAR). With over 220 member scientists and air quality specialists from 36 nations, TOAR's mission is to provide the research community with an up-to-date scientific assessment of tropospheric ozone's global distribution and trends from the surface to the tropopause. TOAR has also built the world's largest database of surface ozone observations and generated ozone exposure and dose metrics at thousands of measurement sites around the world, freely accessible for research on the global-scale impact of ozone on climate, human health and crop/ecosystem productivity. Plots of these metrics show the regions of the world with the greatest ozone exposure for humans and crops/ecosystems, at least in areas where observations are available. The results also highlight regions where air quality is improving and where it has degraded. TOAR has also conducted the first intercomparison of tropospheric column ozone from ozonesondes and multiple satellite instruments, which provide similar estimates of the present-day tropospheric ozone burden.

  15. Granular activated carbon assisted ozonation of cephalexin antibiotic

    International Nuclear Information System (INIS)

    Akhtar, J.; Amin, N.S.; Imran, M.

    2016-01-01

    This study investigates removal of cephalexin using ozonation in the presence of granular activated carbon. Initial experiments were carried out about adsorption of cephalexin onto granular activated carbon, effect of catalytic ozonation, and biodegradability of cephalexin solution. The effect of ozonation on pH, ozone utilization efficiency and decomposition byproducts, was observed. Response surface methodology was adopted to optimize three operating parameters pH of solution, ozone supply and cephalexin concentration. GAC assisted ozonation, was found to be effective in decomposing COD (chemical oxygen demand) and cephalexin from solution. Optimum values of variables were pH from 7-8, ozone supply 30 mg/L and 100 mg/L of cephalexin solution. The complete removal of cephalexin and 60% COD removal was achieved at these optimum input values. (author)

  16. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.

    Science.gov (United States)

    Fares, S; Loreto, F; Kleist, E; Wildt, J

    2008-01-01

    Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.

  17. Effects of ozone on the sporulation, germination, and pathogenicity of Botrytis cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C.R.; Weidensaul, T.C.

    1978-02-01

    Studies were initiated to determine if Botrytis cinerea conidia remain viable when grown in vivo and in vitro in the presence of ambient ozone levels and whether ozonized conidia retain pathogenicity. Experimental materials and methods used are described.

  18. The initial step of silicate versus aluminosilicate formation in zeolite synthesis: a reaction mechanism in water with a tetrapropylammonium template

    KAUST Repository

    Trinh, Thuat T.

    2012-01-01

    The initial step for silicate and aluminosilicate condensation is studied in water in the presence of a realistic tetrapropylammonium template under basic conditions. The model corresponds to the synthesis conditions of ZSM5. The free energy profile for the dimer formation ((OH) 3Si-O-Si-(OH) 2O - or [(OH) 3Al-O-Si-(OH) 3] -) is calculated with ab initio molecular dynamics and thermodynamic integration. The Si-O-Si dimer formation occurs in a two-step manner with an overall free energy barrier of 75 kJ mol -1. The first step is associated with the Si-O bond formation and results in an intermediate with a five-coordinated Si, and the second one concerns the removal of the water molecule. The template is displaced away from the Si centres upon dimer formation, and a shell of water molecules is inserted between the silicate and the template. The main effect of the template is to slow down the backward hydrolysis reaction with respect to the condensation one. The Al-O-Si dimer formation first requires the formation of a metastable precursor state by proton transfer from Si(OH) 4 to Al(OH) 4 - mediated by a solvent molecule. It then proceeds through a single step with an overall barrier of 70 kJ mol -1. The model with water molecules explicitly included is then compared to a simple calculation using an implicit continuum model for the solvent. The results underline the importance of an explicit and dynamical treatment of the water solvent, which plays a key role in assisting the reaction. © the Owner Societies 2012.

  19. Interaction of ozone with plastic and metallic materials in a dynamic flow system

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P; Wartburg, A F

    1961-01-01

    The loss of ozone in the p.p.h.m. range after passing through or over various plastic and metallic substances has been investigated. The materials used include Teflon, glass, stainless steel, aluminium, polyethylene and polyvinyl tubing, Mylar film, and aluminium foil. Unused Teflon passes ozone without loss. Glass tubing, after a short exposure to ozone, passes ozone without loss. Stainless steel tubing, aluminum tubing or foil and Mylar film must be exposed to ozone in the p.p.h.m. range for several hours before 90% or more of the ozone initially present can be passed through or over these materials. More rapid conditioning to ozone can be achieved by several five to fifteen-minute exposures to about 10 p.p.m. of ozone. Polyethylene and Nalgon tubing even after many hours of exposure to ozone will pass only 75 to 80% of the ozone initially present in the gas stream. Some types of polyvinyl tubing are unsatisfactory for use with ozone irrespective of the amount of exposure to ozone. Flowrates below 1000 c/sup 3//min. will increase losses of ozone. Except for Teflon and glass, materials should not be used in ozone analysis under any circumstances at low flowrates until they are thoroughly conditioned. Results obtained with stainless steel, aluminium and polyethylene indicate that conditioning to ozone once obtained will persist for at least two weeks.

  20. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    Science.gov (United States)

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  1. Application of computational fluid dynamics modelling to an ozone ...

    African Journals Online (AJOL)

    The turbulence effect induced by the gas injection was modelled by increasing the level of turbulence intensity at the ozone contactor inlet. The simulated tracer response corresponded closely to the experimental results. The framework of ozone reaction modelling was subsequently investigated using values of rate ...

  2. Dependence of the degree of antibacterial and antiphage action of ozone on cell and phage particle concentrations in nutrient media

    Energy Technology Data Exchange (ETDEWEB)

    Grits, N.V.; Fomichev, A.Iu.

    1985-05-01

    The work was aimed at studying the inactivating effect of ozone on Escherichia coli K-12 AB1157, Pseudomonas aeruginosa PA01, Erwinia herbicola EH103 and their phages T4, SM and I4. The degree of bacterial and phage inactivation was found to increase with a decrease in their initial concentration during the treatment. The effect depends on differences in the quantity of ozone per cell or per phage particle in the reaction medium. This conclusion is based on the fact that, irrespective of the suspension density, the amount of surviving bacteria and phages plotted versus O3 concentration and recalculated per one bacterial cell or phage particle is described graphically by one and the same curve typical of a strain under study. This technique for assessing the sensitivity of microbiological objects to ozone can be used in order to compare experimental data obtained in different laboratories.

  3. A passive sampler for atmospheric ozone

    International Nuclear Information System (INIS)

    Grosjean, D.; Hisham, M.W.M.

    1992-01-01

    A simple, cost-effective passive sampler has been developed for the determination of atmospheric ozone. This passive sampler is based on a colorant which fades upon reaction with ozone, whose concentration can be determined by reflectance measurement of the color change. Direct, on-site measurements are possible, and no chemical analyses are needed. Sampler design and validation studies have been carried out and included quantitative determination of color change vs exposure time (1-8 days), color change vs. ozone concentration (30-350 ppb), and response to changes in sampler configuration that modify the passive sampling rate. With indigo carmine as the colorant, the detection limits are 30 ppb. day and 120 ppb. day using a plastic grid and Teflon filter, respectively, as diffusion barriers. Interferences from nitrogen dioxide, formaldehyde and peroxyacetyl nitrate are 15, 4 and 16%, respectively, thus resulting in a negligible bias when measuring ozone in ambient air

  4. Performance Evaluation of Ozonation Combined with Persulfate Application for Removal of Furfural from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Alireza Rahmani

    2017-03-01

    Full Text Available Background: Furfural is an organic compound which derived from a variety industrial, including petrochemicals, pulping, pharmaceutical, food. Also is a main agent in many industries and aromatic organic compounds entrance in the environment. There are several methods of treating including physical, chemical, biological and physicochemical for remove this matter. Among advanced oxidation methods can be combined ozonation process with persulfate catalytic are noted. The purpose of this study was to evaluate the efficiency of ozonation process with the use of persulfate in removal furfural from aqueous solution. Materials and Methods: In this study, the efficiency of the process with a concentration furfural 5 to 30 mg/L, concentration persulfate 4 to 15 mM, pH = 3-11 and reaction time of 35 minutes in the semi-continuous reactor with a capacity of one liter was obtained. Results: The results of this study have been shown in  conditions of operation optimal , pH =,3 persulfate dosage 12 mM, ozone dosage of 1 g/min and the initial concentration of furfural  5 mg/L, this process is capable  remove of %93/34 percent Furfural and %70 of the initial COD. Conclusion: The results of this study showed that the ozone/persulfate process can be a suitable process for the removal of organic aromatic compounds including pollutants of interest.

  5. Degradation of p-nitrotoluene in aqueous solution by ozonation combined with sonolysis

    International Nuclear Information System (INIS)

    Song Shuang; Xia Min; He Zhiqiao; Ying Haiping; Lue Bosheng; Chen Jianmeng

    2007-01-01

    p-Nitrotoluene (PNT) is a nitroaromatic compound that is hazardous to humans and is a suspected hormone disrupter. The degradation of PNT in aqueous solution by ozonation (O 3 ) combined with sonolysis (US) was investigated in laboratory-scale experiments in which pH, initial concentration of PNT, O 3 dose and temperature were varied. The degradation of PNT followed pseudo-first-order kinetics, and degradation products were monitored during the process. The maximum degradation was observed at pH 10.0. As the initial concentration of PNT decreased, the degradation rate increased. Both temperature and ozone dose had a positive effect on the degradation of PNT. Of the total organic carbon (TOC) reduction, 8, 68, and 85% were observed with US, O 3 , and a combination of US and O 3 after reaction for 90 min, respectively, proving that ozonation combined with sonolysis for removal of TOC is more efficient than ozonation alone or ultrasonic irradiation alone. Major by-products, including p-cresol, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, 4-(oxomethylene) cyclohexa-2,5-dien-1-one, but-2-enedioic acid, and acetic acid were detected by gas chromatography coupled with mass spectrometry

  6. Ozone Antimicrobial Efficacy

    Science.gov (United States)

    Ozone is a potent germicide that has been used extensively for water purification. In Europe, 90 percent of the municipal water systems are treated with ozone, and in France, ozone has been used to treat drinking water since 1903. However, there is limited information on the bioc...

  7. Solution and surface chemistry of the Se(IV)-Fe(0) reactions: Effect of initial solution pH.

    Science.gov (United States)

    Xia, Xuefen; Ling, Lan; Zhang, Wei-Xian

    2017-02-01

    Aspects of solution and solid-phase reactions between selenite (Se(IV)) and nanoscale zero-valent iron (nZVI) were investigated. Experimental results on the effects of initial solution pH, formation and evolution of nZVI corrosion products, and speciation of selenium in nZVI were presented. In general, the rate of Se(IV) removal decreases with increasing initial pH. The observed rate constants of Se(IV) removal decreased from 0.3530 to 0.0364 min -1 as pH increased from 4.0 to 10.0. Composition and morphology of nZVI corrosion products and selenium species were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Results confirmed that Se(IV) was reduced to Se(0) and Se(-II) by nZVI. Lower solution pH favored further reduction of Se(0) to Se(-II). Amorphous FeOOH, magnetite/maghemite (Fe 3 O 4 /γ-Fe 2 O 3 ) and ferrous hydroxide (Fe(OH) 2 ) were identified as the main corrosion products. Under alkaline conditions, the corrosion products were mainly of Fe(OH) 2 along with small amounts of Fe 3 O 4 , while nZVI in acidic solutions was oxidized to mostly Fe 3 O 4 and amorphous FeOOH. Furthermore, these corrosion products acted as intermediates for electron transfer and reactive/sorptive sites for Se(IV) adsorption and reduction, thus played a crucial role in the removal of aqueous Se(IV). Copyright © 2016. Published by Elsevier Ltd.

  8. Ozone formation in a transverse-flow gas discharge

    International Nuclear Information System (INIS)

    Baranov, G.A.; Zinchenko, A.K.; Lednev, M.G.

    1994-01-01

    The measurements of the ozone concentration in flows of air and nitrogen-oxygen mixtures under transverse dc discharge are performed using an absorption spectroscopy technique. The mechanism of ozone formation in the discharge is discussed. A simple equation is suggested for the estimation of ozone concentration in the gas mixtures. The influence of water vapor on the kinetics of formation and decay of O 3 molecules is considered. The numerical estimates of the ozone concentration are made using the suggested model of plasma-chemical reactions

  9. Advanced treatment of biotreated textile industry wastewater with ozone, virgin/ozonated granular activated carbon and their combination.

    Science.gov (United States)

    Arslan-Alaton, Idil; Seremet, Ozden

    2004-01-01

    Biotreated textile wastewater (CODo = 248 mg L(-1); TOCo = 58 mg L(-1); A620 = 0.007 cm(-1); A525 = 0.181 cm(-1); A436 = 0.198 cm(-1)) was subjected to advanced treatment with ozonation, granular activated carbon (GAC) adsorption in serial and simultaneous applications. Experiments were conducted to investigate the effects of applied ozone dose, ozone absorption rate, specific ozone absorption efficiency, GAC dose, and reaction pH on the treatment performance of the selected tertiary treatment scheme. In separate experiments, the impact of virgin GAC ozonation on its adsorptive capacity for biotreated and biotreated + ozonated textile effluent was also investigated. Ozonation appeared to be more effective for decolorization (kd = 0.15 min(-1) at pH = 3), whereas GAC adsorption yielded higher COD removal rates (54% at pH = 3). It was also found that GAC addition (4 g/L) at pH = 7 and 9 enhanced the COD abatement rate of the ozonation process significantly and that the sequential application of ozonation (at pH = 3-11, 675 mg L(-1) O3) followed by GAC adsorption (at pH = 3-7, 10 g L(-1) GAC) resulted in the highest treatment performances both in terms of color and COD reduction. Simultaneous application of GAC and ozone at acidic and alkaline pH seriously inhibited COD abatement rates as a consequence of competitive adsorption and partial oxidation of textile components and GAC. It could also be established that ozone absorption efficiency decreased after color removal was complete. Ozonation of biotreated textile wastewater with 113 mg L(-1) ozone resulted in an appreciable enhancement of GAC adsorptive capacity in terms of residual color removal. Ozonation of GAC at relatively low doses (= 10.8 mg/g GAC) did not improve its overall adsorption capacity.

  10. Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system.

    Science.gov (United States)

    Gomes, Arlindo C; Nunes, José C; Simões, Rogério M S

    2010-06-15

    To study the fast kinetic decolourisation of textile dyes by ozone a continuous quench-flow system was used. This system has not been used before for these purposes. Reaction times in the range of 7-3000 ms were explored. The reaction was quenched with potassium iodide, which proved to be very effective, and the indigo method was used to follow the ozone concentration. Dyes from the most representative chemical classes currently used in the textile industry, i.e. azo and anthraquinone, were selected. Using the initial slope method, the effect of dye and ozone concentrations was researched and the kinetic equations thus established. Using tert-butyl alcohol, as radical scavenger, and pH close to 2.5, the second-order rate constant of the reactant dyes at 280 K varies in the range of 1.20x10(4)-7.09x10(5)M(-1)s(-1); the Acid Orange 7 exhibiting thus its lowest value, the Acid Blue 45 its highest value and the Acid Green 25 and 27 and Direct Yellow 4 intermediate values (approximately 1.6x10(5)M(-1)s(-1)). Without radical scavenger and the pH close to 4, the reaction rate increases one order of magnitude, but, on the reverse, the efficiency of ozone to decolourisation decreases. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid.

    Science.gov (United States)

    Rosal, Roberto; Gonzalo, María S; Boltes, Karina; Letón, Pedro; Vaquero, Juan J; García-Calvo, E

    2009-12-30

    The degradation of an aqueous solution of clofibric acid was investigated during catalytic and non-catalytic ozonation. The catalyst, TiO(2), enhanced the production of hydroxyl radicals from ozone and raised the fraction or clofibric acid degraded by hydroxyl radicals. The rate constant for the reaction of clofibric acid and hydroxyl radicals was not affected by the presence of the catalyst. The toxicity of the oxidation products obtained during the reaction was assessed by means of Vibrio fischeri and Daphnia magna tests in order to evaluate the potential formation of toxic by-products. The results showed that the ozonation was enhanced by the presence of TiO(2,) the clofibric acid being removed completely after 15 min at pH 5. The evolution of dissolved organic carbon, specific ultraviolet absorption at 254 nm and the concentration of carboxylic acids monitored the degradation process. The formation of 4-chlorophenol, hydroquinone, 4-chlorocatechol, 2-hydroxyisobutyric acid and three non-aromatic compounds identified as a product of the ring-opening reaction was assessed by exact mass measurements performed by liquid chromatography coupled to time-of-flight mass spectrometry (LC-TOF-MS). The bioassays showed a significant increase in toxicity during the initial stages of ozonation following a toxicity pattern closely related to the formation of ring-opening by-products.

  12. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  13. Ozone production process in pulsed positive dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ryo [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 227-8568 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2007-01-07

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O{sub 2} + M {yields} O{sub 3} + M, is estimated to be 2.5 x 10{sup -34} cm{sup 6} s{sup -1}.

  14. Ozone production process in pulsed positive dielectric barrier discharge

    Science.gov (United States)

    Ono, Ryo; Oda, Tetsuji

    2007-01-01

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O2 + M → O3 + M, is estimated to be 2.5 × 10-34 cm6 s-1.

  15. Ozone production process in pulsed positive dielectric barrier discharge

    International Nuclear Information System (INIS)

    Ono, Ryo; Oda, Tetsuji

    2007-01-01

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O 2 + M → O 3 + M, is estimated to be 2.5 x 10 -34 cm 6 s -1

  16. Cool diffusion flames of butane isomers activated by ozone in the counterflow

    KAUST Repository

    Alfazazi, Adamu

    2018-02-02

    Ignition in low temperature combustion engines is governed by a coupling between low-temperature oxidation kinetics and diffusive transport. Therefore, a detailed understanding of the coupled effects of heat release, low-temperature oxidation chemistry, and molecular transport in cool flames is imperative to the advancement of new combustion concepts. This study provides an understanding of the low temperature cool flame behavior of butane isomers in the counterflow configuration through the addition of ozone. The initiation and extinction limits of butane isomers’ cool flames have been investigated under a variety of strain rates. Results revealed that, with ozone addition, establishment of butane cool diffusion flames was successful at low and moderate strain rates. iso-Butane has lower reactivity than n-butane, as shown by higher fuel mole fractions needed for cool flame initiation and lower extinction strain rate limits. Ozone addition showed a significant influence on the initiation and sustenance of cool diffusion flames; as ozone-less cool diffusion flame of butane isomers could not be established even at high fuel mole fractions. The structure of a stable n-butane cool diffusion flame was qualitatively examined using a time of flight mass spectrometer. Numerical simulations were performed using a detailed chemical kinetic model and molecular transport to simulate the extinction limits of the cool diffusion flames of the tested fuels. The model qualitatively captured experimental trends for both fuels and ozone levels, but over-predicted extinction limits of the flames. Reactions involving low-temperature species predominantly govern extinction limits of cool flames. The simulations were used to understand the effects of methyl branching on the behavior of n-butane and iso-butane cool diffusion flames.

  17. Fast Flow Cavity Enhanced Ozone Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Naturally occurring in the stratosphere, ozone plays a significant role in many atmospheric reactions, cloud formation, and is the key player in shielding harmful UV...

  18. Rocket Ozone Data Recovery for Digital Archival

    Science.gov (United States)

    Hwang, S. H.; Krueger, A. J.; Hilsenrath, E.; Haffner, D. P.; Bhartia, P. K.

    2014-12-01

    Ozone distributions in the photochemically-controlled upper stratosphere and mesosphere were first measured using spectrometers on V-2 rockets after WWII. The IGY(1957-1958) spurred development of new optical and chemical instruments for flight on meteorological and sounding rockets. In the early 1960's, the US Navy developed an Arcas rocket-borne optical ozonesonde and NASA GSFC developed chemiluminescent ozonesonde onboard Nike_Cajun and Arcas rocket. The Navy optical ozone program was moved in 1969 to GSFC where rocket ozone research was expanded and continued until 1994 using Super Loki-Dart rocket at 11 sites in the range of 0-65N and 35W-160W. Over 300 optical ozone soundings and 40 chemiluminescent soundings were made. The data have been used to produce the US Standard Ozone Atmosphere, determine seasonal and diurnal variations, and validate early photochemical models. The current effort includes soundings conducted by Australia, Japan, and Korea using optical techniques. New satellite ozone sounding techniques were initially calibrated and later validated using the rocket ozone data. As satellite techniques superseded the rocket methods, the sponsoring agencies lost interest in the data and many of those records have been discarded. The current task intends to recover as much of the data as possible from the private records of the experimenters and their publications, and to archive those records in the WOUDC (World Ozone and Ultraviolet Data Centre). The original data records are handwritten tabulations, computer printouts that are scanned with OCR techniques, and plots digitized from publications. This newly recovered digital rocket ozone profile data from 1965 to 2002 could make significant contributions to the Earth science community in atmospheric research including long-term trend analysis.

  19. [Studies of ozone formation potentials for benzene and ethylbenzene using a smog chamber and model simulation].

    Science.gov (United States)

    Jia, Long; Xu, Yong-Fu

    2014-02-01

    Ozone formation potentials from irradiations of benzene-NO(x) and ethylbenzene-NO(x) systems under the conditions of different VOC/NO(x) ratios and RH were investigated using a characterized chamber and model simulation. The repeatability of the smog chamber experiment shows that for two sets of ethylbenzene-NO(x) irradiations with similar initial concentrations and reaction conditions, such as temperature, relative humidity and relative light intensity, the largest difference in O3 between two experiments is only 4% during the whole experimental run. On the basis of smog chamber experiments, ozone formation of photo-oxidation of benzene and ethylbenzene was simulated in terms of the master chemical mechanism (MCM). The peak ozone values for benzene and ethylbenzene simulated by MCM are higher than the chamber data, and the difference between the MCM-simulated results and chamber data increases with increasing RH. Under the conditions of sunlight irradiations, with benzene and ethylbenzene concentrations being in the range of (10-50) x 10(-9) and NO(x) concentrations in the range of (10-100) x 10(-9), the 6 h ozone contributions of benzene and ethylbenzene were obtained to be (3.1-33) x 10(-9) and (2.6-122) x 10(-9), whereas the peak O3 contributions of benzene and ethylbenzene were (3.5-54) x 10(-9) and (3.8-164) x 10(-9), respectively. The MCM-simulated maximum incremental reactivity (MIR) values for benzene and ethylbenzene were 0.25/C and 0.97/C (per carbon), respectively. The maximum ozone reactivity (MOR) values for these two species were obtained to be 0.73/C and 1.03/C, respectively. The MOR value of benzene from MCM is much higher than that obtained by carter from SAPRC, indicating that SAPRC may underestimate the ozone formation potential of benzene.

  20. Ozonation of aqueous solution containing bisphenol A: Effect of operational parameters

    International Nuclear Information System (INIS)

    Garoma, Temesgen; Matsumoto, Shinsyu

    2009-01-01

    The degradation of bisphenol A (BPA) in aqueous solution by ozonation was studied. The study was conducted experimentally in a semi-batch reactor under different operational conditions, i.e., varying influent ozone gas concentration, initial BPA concentration, pH, and bicarbonate ion concentration. The results of the study indicated that ozonation could be used to effectively remove BPA from contaminated water. Keeping other operational parameters constant, the rate of BPA degradation linearly increased with ozone dosage. At pH value of 7.0, the second-order rate constants for the reaction of BPA with aqueous ozone were determined as 1.22 x 10 5 , 1.71 x 10 5 , and 2.59 x 10 5 M -1 s -1 for ozone gas dosages of 1.4, 2.2, and 5.1 mg L -1 , respectively. Bicarbonate ion in the range of 1.0-8.0 mM (61-488 ppm) showed no significant effect on BPA degradation for concentrations of BPA used in the study (23.0-57.0 μM). It was also observed that the rate of BPA degradation increased with pH up to 7.0, resulting in rate constants of 0.48 x 10 5 , 0.94 x 10 5 , and 1.71 x 10 5 M -1 s -1 at pH values of 2.0, 5.0, and 7.0, respectively; and the rate constant decreased to 1.16 x 10 5 M -1 s -1 at pH of 10.0.

  1. Effect of ozonation on the reactivity of lignocellulose substrates in enzymatic hydrolyses to sugars

    Science.gov (United States)

    Ben'ko, E. M.; Manisova, O. R.; Lunin, V. V.

    2013-07-01

    The efficiency of pre-treatment of aspen wood with ozone for subsequent enzymatic hydrolysis into sugars is determined by the amount of absorbed ozone. The ozone absorption rate depended on the water content in the sample being ozonized and was maximum at a relative humidity of wood of ˜40%. As a result of ozone pre-treatment, the initial rate of the enzymatic hydrolysis of wood under the action of a cellulase complex increased eightfold, and the maximum yield of sugars increased tenfold depending on the ozone dose. The ozonation at ozone doses of more than 3 mol/PPU (phenylpropane structural unit of lignin) led to a decrease in the yield of sugars because of the oxidative destruction of cellulose and hemicellulose. The alkaline ozonation in 2 and 12% NaOH was inefficient because of the accompanying oxidation of carbohydrates and considerably decreased the yield of sugars.

  2. Time-resolved studies of free radicals and laser-initiated chain reactions: Final report, 1 April 1979-31 March 1988

    International Nuclear Information System (INIS)

    Leone, S.R.

    1988-03-01

    Pulsed lasers were used in this work to photofragment molecules or to initiate chain reactions. One of the major advances was the availability of high-powered rare gas halide excimer lasers. In addition, pulsed Nd:YAG lasers and dye lasers were used throughout. Results include: generalized kinetic formulations of the problem of laser-initiated chain reactions. Several studies were carried out to explore the details of chain combustion phenomena, slow chain reactions, chain branching behavior, and vibrational temperatures of combusting mixtures. A method to determine the rotational temperature of nitrogen molecules by laser multiphoton ionization was shown. The chain reaction methodology was applied to complex polyatomic systems, in which complete infrared spectra of the emitting species were obtained. Systems studied included, chlorine + HBr, HI, methane, hydrogen, ethane, propane, butane, cyclopropane, and cyclohexane. Photofragmentation studies involved the production and analysis of radical species, such as methyl, CH 2 I, and CCH. Molecules studied included methylene iodide, methyl iodide, dimethyl mercury, acetone, acetylene, vinyl chloride, dichloroethylene, and fluorochloroethylene. The first infrared characterization of a highly vibrationally excited radical was shown. Reactions of methyl radicals were studied in detail, in which a new method for obtaining absolute values of the methyl radical reaction rates were obtained

  3. The stratospheric ozone and the ozone layer

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez Jesus Antonio

    2000-01-01

    An overview is presented of the principal characteristics of the stratospheric ozone in the Earth's atmosphere, with particular emphasis on the tropics and the ozone hole over the poles. Some effects produced in the atmosphere as a consequence of the different human activities will be described, and some data on stratospheric ozone will be shown. We point out the existence of a nucleus of least ozone in the tropics, stretching from South America to central Africa, with annual mean values less than 240 DU, a value lower than in the middle latitudes and close to the mean values at the South Pole. The existence of such a minimum is confirmed by mean values from measurements made on satellites or with earthbound instruments, for different sectors in Colombia, like Medellin, Bogota and Leticia

  4. Electron attachment to molecules and clusters of atmospheric relevance: oxygen and ozone

    International Nuclear Information System (INIS)

    Matejcik, S.; Cicman, P.; Skalny, J.; Kiendler, A.; Stampfli, P.; Maerk, T.D.; Illenberger, E.; Chu, Y.; Stamatovic, A.

    1996-01-01

    Highly monochromatized electrons are used in a crossed beams experiment to investigate electron attachment to oxygen clusters (O 2 )-n at electron energies from approximately zero eV up to 2 eV. At energies close to zero the attachment cross section for the reaction (O 2 ) n + e → O 2 - varies inversely with the electron energy, indicative of s-wave electron capture to (O 2 ) n . Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for. In addition electron attachment to ozone and mixed oxygen/ozone clusters has been studied in the energy range up to 4 eV. Absolute attachment cross sections for both fragment ions anions, O - and O 2 - , from ozone could be deduced. Moreover, despite the initially large excess of oxygen molecules in the neutral oxygen/ozone clusters the dominant attachment products are un-dissociated cluster ions (O 3 ) m - including the O 3 - monomer while oxygen cluster ions (O 2 ) n appear with comparatively low intensity. (authors)

  5. Investigating ozone-induced decomposition of surface-bound permethrin for conditions in aircraft cabins.

    Science.gov (United States)

    Coleman, B K; Wells, J R; Nazaroff, W W

    2010-02-01

    The reaction of ozone with permethrin can potentially form phosgene. Published evidence on ozone levels and permethrin surface concentrations in aircraft cabins indicated that significant phosgene formation might occur in this setting. A derivatization technique was developed to detect phosgene with a lower limit of detection of 2 ppb. Chamber experiments were conducted with permethrin-coated materials (glass, carpet, seat fabric, and plastic) exposed to ozone under cabin-relevant conditions (150 ppb O(3), 4.5/h air exchange rate, means of material-balance modeling indicates that the upper limit on the phosgene level in aircraft cabins resulting from this chemistry is approximately 1 microg/m(3) or approximately 0.3 ppb. It was thus determined that phosgene formation, if it occurs in aircraft cabins, is not likely to exceed relevant, health-based phosgene exposure guidelines. Phosgene formation from ozone-initiated oxidation of permethrin in the aircraft cabin environment, if it occurs, is estimated to generate levels below the California Office of Environmental Health Hazard Assessment acute reference exposure level of 4 microg/m(3) or approximately 1 ppb.

  6. Ozone therapy in periodontics.

    Science.gov (United States)

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  7. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnO{sub x}/SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qiangqiang; Wang, Yu [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China); Li, Laisheng, E-mail: llsh@scnu.edu.cn [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China); Bing, Jishuai [Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Wang, Yingxin; Yan, Huihua [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China)

    2015-04-09

    Highlights: • Clofibric acid (CA) is efficiently mineralized by O{sub 3}/MnO{sub x}/SBA-15. • Adsorption of CA and its intermediates on MnO{sub x}/SBA-15 is proved unimportant. • Initiation of hydroxyl radicals (·OH) is enhanced in O{sub 3}/MnO{sub x}/SBA-15. • Uniformly distributed MnO{sub x} accounts for the high activity of MnO{sub x}/SBA-15. • Degradation routes of CA in ozonation alone and catalytic ozonation are proposed. - Abstract: Comparative experiments were conducted to investigate the catalytic ability of MnO{sub x}/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O{sub 3}/MnO{sub x}/SBA-15). Adsorption of CA and its intermediates by MnO{sub x}/SBA-15 was proved unimportant in O{sub 3}/MnO{sub x}/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO{sub 3}) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO{sub x}/SBA-15 facilitated the generation of hydroxyl radicals (·OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO{sub x} on SBA-15 were believed to be the main active component in MnO{sub x}/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more ·OH.

  8. Merged SAGE II, Ozone_cci and OMPS ozone profile dataset and evaluation of ozone trends in the stratosphere

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2017-10-01

    Full Text Available In this paper, we present a merged dataset of ozone profiles from several satellite instruments: SAGE II on ERBS, GOMOS, SCIAMACHY and MIPAS on Envisat, OSIRIS on Odin, ACE-FTS on SCISAT, and OMPS on Suomi-NPP. The merged dataset is created in the framework of the European Space Agency Climate Change Initiative (Ozone_cci with the aim of analyzing stratospheric ozone trends. For the merged dataset, we used the latest versions of the original ozone datasets. The datasets from the individual instruments have been extensively validated and intercompared; only those datasets which are in good agreement, and do not exhibit significant drifts with respect to collocated ground-based observations and with respect to each other, are used for merging. The long-term SAGE–CCI–OMPS dataset is created by computation and merging of deseasonalized anomalies from individual instruments. The merged SAGE–CCI–OMPS dataset consists of deseasonalized anomalies of ozone in 10° latitude bands from 90° S to 90° N and from 10 to 50 km in steps of 1 km covering the period from October 1984 to July 2016. This newly created dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997. The upper stratospheric trends are statistically significant at midlatitudes and indicate ozone recovery, as expected from the decrease of stratospheric halogens that started in the middle of the 1990s and stratospheric cooling.

  9. Diclofenac removal from water with ozone and activated carbon.

    Science.gov (United States)

    Beltrán, Fernando J; Pocostales, Pablo; Alvarez, Pedro; Oropesa, Ana

    2009-04-30

    Diclofenac (DCF) has been treated in water with ozone in the presence of various activated carbons. Activated carbon-free ozonation or single ozonation leads to a complete degradation of DCF in less than 15 min while in the presence of activated carbons higher degradation rates of TOC and DCF are noticeably achieved. Among the activated carbons used, P110 Hydraffin was found the most suitable for the catalytic ozonation of DCF. The influence of pH was also investigated. In the case of the single ozonation the increasing pH slightly increases the TOC removal rate. This effect, however, was not so clear in the presence of activated carbons where the influence of the adsorption process must be considered. Ecotoxicity experiments were performed, pointing out that single ozonation reduces the toxicity of the contaminated water but catalytic ozonation improved those results. As far as kinetics is concerned, DCF is removed with ozone in a fast kinetic regime and activated carbon merely acts as a simple adsorbent. However, for TOC removal the ozonation kinetic regime becomes slow. In the absence of the adsorbent, the apparent rate constant of the mineralization process was determined at different pH values. On the other hand, determination of the rate constant of the catalytic reaction over the activated carbon was not possible due to the effect of mass transfer resistances that controlled the process rate at the conditions investigated.

  10. Experimental investigation on oxidation kinetics of germanium by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaolei, E-mail: wangxiaolei@ime.ac.cn [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Zhao, Zhiqian; Xiang, Jinjuan [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Wang, Wenwu, E-mail: wangwenwu@ime.ac.cn [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Zhang, Jing, E-mail: zhangj@ncut.edu.cn [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Microelectronics Department, North China University of Technology, Beijing 100041 (China); Zhao, Chao; Ye, Tianchun [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2016-12-30

    Highlights: • Kinetics mechanism of Ge surface oxidation by ozone at low temperature is experimentally investigated. • The growth process contains initially linear growth region and following parabolic growth region. • The GeO{sub x} thickness vs. oxidation time plot obeys the well-known Deal-Grove or linear parabolic model. • The linear growth region includes the oxidation of two topmost Ge layers, and the oxidation of third layer and following layers of Ge is diffusion limited. • The activation energies for linear and parabolic regions are 0.04 and 0.55 eV, respectively. - Abstract: Oxidation kinetics of germanium surface by ozone at low temperature (≤400 °C) is experimentally investigated. The growth process contains two regions: initial linear growth region and following parabolic growth region. The GeO{sub x} thickness vs. oxidation time plot obeys the well-known Deal-Grove or linear parabolic model. The linear growth region contains reaction of oxygen atoms with surface bond and back bonds of outmost Ge layer. And the activation energy is experimentally estimated to be 0.06 eV. Such small activation energy indicates that the linear growth region is nearly barrier-less. The parabolic growth region starts when the oxygen atoms diffuse into back bonds of second outmost Ge layers. And the activation energy for this process is found to be 0.54 eV. Furthermore, in the ozone oxidation it is not O{sub 3} molecules but O radicals that go through the GeO{sub x} film.

  11. The biological effects of ozone on representative members of five groups of animal viruses

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, D.C.; Zee, Y.C.; Osebold, J.W.

    1982-04-01

    In an effort to establish the biological relevance of the reactions of ozone with soluble proteins and lipid bilayer membrane systems, representative viruses from five major virus groups were exposed to moderate concentrations of ozone. The virus suspensions were exposed at 37/sup 0/C to 0.00, 0.16, and 0.64 ppm ozone in the gas phase. The ozone reacted with the virus suspensions as a thin film of fluid on the surface of a rotating culture bottle as the gas was drawn through the bottle at a flow rate of 2 liters/min. The three enveloped viruses tested exhibited different susceptibilities to ozone inactivation which correlated with their thermolability in the absence of ozone. The order of susceptibility to ozone inactivation of the enveloped viruses was vesicular stomatitis virus (VSV) (Rhabdoviridae) > influenza A virus (WSN strain) (Orthomyxoviridae) > infectious bovine rhinotracheitis virus (IBRV) (Herpesviridae). The inactivation reactions of the enveloped viruses with ozone showed pseudo-first-order kinetics. A simple reaction model was used to derive a reaction rate expression from which rate constrants and reaction stoichiometry were estimated. In contrast to the enveloped viruses, the two nonenveloped viruses examined were relatively resistant to ozone inactivation. Polio virus type I (Picornaviridae) was found to be completely resistant to ozone inactivation after 60 hr exposure to either ozone concentration, while infectious canine hepatitis virus (Adenoviridae) showed only slight inactivation after exposure to 0.64 ppm ozone for 66 hr. The significance of these results with regard to the reactions of ozone with cell membranes and other components is discussed.

  12. Does increasing pressure always accelerate the condensed material decay initiated through bimolecular reactions? A case of the thermal decomposition of TKX-50 at high pressures.

    Science.gov (United States)

    Lu, Zhipeng; Zeng, Qun; Xue, Xianggui; Zhang, Zengming; Nie, Fude; Zhang, Chaoyang

    2017-08-30

    Performances and behaviors under high temperature-high pressure conditions are fundamentals for many materials. We study in the present work the pressure effect on the thermal decomposition of a new energetic ionic salt (EIS), TKX-50, by confining samples in a diamond anvil cell, using Raman spectroscopy measurements and ab initio simulations. As a result, we find a quadratic increase in decomposition temperature (T d ) of TKX-50 with increasing pressure (P) (T d = 6.28P 2 + 12.94P + 493.33, T d and P in K and GPa, respectively, and R 2 = 0.995) and the decomposition under various pressures initiated by an intermolecular H-transfer reaction (a bimolecular reaction). Surprisingly, this finding is contrary to a general observation about the pressure effect on the decomposition of common energetic materials (EMs) composed of neutral molecules: increasing pressure will impede the decomposition if it starts from a bimolecular reaction. Our results also demonstrate that increasing pressure impedes the H-transfer via the enhanced long-range electrostatic repulsion of H +δ H +δ of neighboring NH 3 OH + , with blue shifts of the intermolecular H-bonds. And the subsequent decomposition of the H-transferred intermediates is also suppressed, because the decomposition proceeds from a bimolecular reaction to a unimolecular one, which is generally prevented by compression. These two factors are the basic root for which the decomposition retarded with increasing pressure of TKX-50. Therefore, our finding breaks through the previously proposed concept that, for the condensed materials, increasing pressure will accelerate the thermal decomposition initiated by bimolecular reactions, and reveals a distinct mechanism of the pressure effect on thermal decomposition. That is to say, increasing pressure does not always promote the condensed material decay initiated through bimolecular reactions. Moreover, such a mechanism may be feasible to other EISs due to the similar intermolecular

  13. Ozone Sensitivity to Varying Greenhouse Gases and Ozone-Depleting Substances in CCMI-1 Simulations

    Science.gov (United States)

    Morgenstern, Olaf; Stone, Kane A.; Schofield, Robyn; Akiyoshi, Hideharu; Yamashita, Yousuke; Kinnison, Douglas E.; Garcia, Rolando R.; Sudo, Kengo; Plummer, David A.; Scinocca, John; hide

    2018-01-01

    Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  14. Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations

    Directory of Open Access Journals (Sweden)

    O. Morgenstern

    2018-01-01

    Full Text Available Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1 will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  15. A cloud-ozone data product from Aura OMI and MLS satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2017-11-01

    Full Text Available Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI and Microwave Limb Sounder (MLS satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004–April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of  ∼ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden–Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.

  16. Monitoring ambient ozone with a passive measurement technique method, field results and strategy

    NARCIS (Netherlands)

    Scheeren, BA; Adema, EH

    1996-01-01

    A low-cost, accurate and sensitive passive measurement method for ozone has been developed and tested. The method is based on the reaction of ozone with indigo carmine which results in colourless reaction products which are detected spectrophotometrically after exposure. Coated glass filters are

  17. Identifying the causes of differences in ozone production from the CB05 and CBMIV chemical mechanisms

    Directory of Open Access Journals (Sweden)

    R. D. Saylor

    2012-02-01

    Full Text Available An investigation was conducted to identify the mechanistic differences between two versions of the carbon bond gas-phase chemical mechanism (CB05 and CBMIV which consistently lead to larger ground-level ozone concentrations being produced in the CB05 version of the National Air Quality Forecasting Capability (NAQFC modeling system even though the two parallel forecast systems utilize the same meteorology and base emissions and similar initial and boundary conditions. Box models of each of the mechanisms as they are implemented in the NAQFC were created and a set of 12 sensitivity simulations was designed. The sensitivity simulations independently probed the conceptual mechanistic differences between CB05 and CBMIV and were exercised over a 45-scenario simulation suite designed to emulate the wide range of chemical regimes encountered in a continental-scale atmospheric chemistry model. Results of the sensitivity simulations indicate that two sets of reactions that were included in the CB05 mechanism, but which were absent from the CBMIV mechanism, are the primary causes of the greater ozone production in the CB05 version of the NAQFC. One set of reactions recycles the higher organic peroxide species of CB05 (ROOH, resulting in additional photochemically reactive products that act to produce additional ozone in some chemical regimes. The other set of reactions recycles reactive nitrogen from less reactive forms back to NO2, increasing the effective NOx concentration of the system. In particular, the organic nitrate species (NTR, which was a terminal product for reactive nitrogen in the CBMIV mechanism, acts as a reservoir species in CB05 to redistribute NOx from major source areas to potentially NOx-sensitive areas where additional ozone may be produced in areas remote from direct NOx sources.

  18. Theoretical investigation of the oxidation pathways of the Cl-initiated reaction of 2-methyl-3-buten-2-ol

    Science.gov (United States)

    Zhang, Weichao; Zhang, Dongju

    2012-12-01

    The mechanism and products of the reaction of 2-methyl-3-buten-2-ol (MBO232) with Cl atoms in the presence of O2 have been elucidated by performing high-level quantum chemistry calculations. The geometries of the reactants, intermediates, transition states, and products are optimized at the MP2(full)/6-311G(d, p) level, and their single-point energies are refined at the CCSD(T)/6-311 + G(d, p) level. The potential energy surface profiles have been constructed at the CCSD(T)/6-311 + G(d, p)//MP2(full)/6-311G(d, p) + 0.95 × ZPE level of theory, and the possible channels involved in the reaction are also discussed. The calculations indicate that the reaction predominantly proceeds via the addition of Cl atoms to the double bond rather than the direct abstraction of the H atoms in MBO232. The nascent adducts (CH3)2C(OH)CHCH2Cl (IM1) and (CH3)2C(OH)CHClCH2 (IM2) do not undergo subsequent isomerization and dissociation reactions, but rather react with O2. The theoretical results show that the major products are CH2ClCHO and CH3C(O)CH3 for the reaction of MBO232 + Cl in the presence of O2, which is in good agreement with the experimental finding.

  19. Treatment of diazo dye C.I. Reactive Black 5 in aqueous solution by combined process of interior microelectrolysis and ozonation.

    Science.gov (United States)

    Guo, Xiaoyan; Cai, Yaping; Wei, Zhongbo; Hou, Haifeng; Yang, Xi; Wang, Zunyao

    2013-01-01

    Interior microelectrolysis (IM) as a pretreatment process was effective to treat Reactive Black 5 (RB5) in this study. The removal rates of chemical oxygen demand (COD), total organic carbon (TOC) and color were 46.05, 39.99 and 98.77%, respectively, when this process was conducted under the following optimal conditions: the volumetric ratio between iron scraps and active carbon (AC) (V(Fe)/V(C)) 1.0, pH 2.0, aeration dosage 0.6 L/min, and reaction time 100 min. Contaminants could be further removed by ozonation. After subsequent ozonation for 200 min, the solution could be completely decolorized, and the COD and TOC removal rates were up to 77.78 and 66.51%, respectively. In addition, acute toxicity tests with Daphnia magna showed that pretreatment by IM generated effluents that were more toxic when compared with the initial wastewater, and the toxicity was reduced after subsequent ozonation.

  20. Pollution Control Using Ozone

    DEFF Research Database (Denmark)

    2017-01-01

    This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone.......This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone....

  1. The pollution by ozone

    International Nuclear Information System (INIS)

    1997-09-01

    Air pollution by ozone is increasing in spite of several points to reduce it. If the process of ozone formation are complex, the sources of this pollution are well known: first, mobile sources with automobiles (49%), boats , trains and planes (13%), then are following paints and solvents(18%), thermal power plants(11%), and finally industry processing with 5%. (N.C.)

  2. Ozone Decomposition on the Surface of Metal Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Batakliev Todor Todorov

    2014-12-01

    Full Text Available The catalytic decomposition of ozone to molecular oxygen over catalytic mixture containing manganese, copper and nickel oxides was investigated in the present work. The catalytic activity was evaluated on the basis of the decomposition coefficient which is proportional to ozone decomposition rate, and it has been already used in other studies for catalytic activity estimation. The reaction was studied in the presence of thermally modified catalytic samples operating at different temperatures and ozone flow rates. The catalyst changes were followed by kinetic methods, surface measurements, temperature programmed reduction and IR-spectroscopy. The phase composition of the metal oxide catalyst was determined by X-ray diffraction. The catalyst mixture has shown high activity in ozone decomposition at wet and dry O3/O2 gas mixtures. The mechanism of catalytic ozone degradation was suggested.

  3. Molecular storage of ozone in a clathrate hydrate: an attempt at preserving ozone at high concentrations.

    Directory of Open Access Journals (Sweden)

    Takahiro Nakajima

    Full Text Available This paper reports an experimental study of the formation of a mixed O(3+ O(2+ CO(2 hydrate and its frozen storage under atmospheric pressure, which aimed to establish a hydrate-based technology for preserving ozone (O(3, a chemically unstable substance, for various industrial, medical and consumer uses. By improving the experimental technique that we recently devised for forming an O(3+ O(2+ CO(2 hydrate, we succeeded in significantly increasing the fraction of ozone contained in the hydrate. For a hydrate formed at a system pressure of 3.0 MPa, the mass fraction of ozone was initially about 0.9%; and even after a 20-day storage at -25°C and atmospheric pressure, it was still about 0.6%. These results support the prospect of establishing an economical, safe, and easy-to-handle ozone-preservation technology of practical use.

  4. Trends of Ozone in Switzerland since 1992 (TROZOS)

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, C.; Mathis, H.; Furger, M.; Prevot, A.S.H

    2004-07-01

    This work reports on the trends of the daily afternoon (noon to midnight) maximum ozone concentrations at 15 of the 16 stations of the Swiss air quality monitoring network (NABEL) during the period 1992-2002. The use of numerous meteorological parameters and additional data allowed a detailed seasonal analysis of the influence of the weather on the ozone maxima at the different stations. An analysis of covariance (ANCOVA) was performed separately for each station and season in order to detect the parameters which best explain the variability of the daily ozone maximum concentrations. During the warm seasons (summer and spring) the most explanatory parameters are those related to the ozone production, in particular the afternoon temperature. In winter, the most explanatory variables are the ones influencing the vertical mixing and thus the ozone destruction by titration with NO and dry deposition, like the afternoon global radiation. The trends of both the measured and meteorologically corrected ozone maxima were calculated. The year-to-year variability in the ozone maxima was lowered by a factor of 3 by the meteorological correction. Significantly positive trends of corrected ozone maxima of 0.3 - 1.1 ppb/year were found at the low altitude stations in winter and autumn as well as at Lausanne - urban station - in all the seasons, mainly due to the lower loss of ozone by reaction with NO as a consequence of the decreased emissions of primary pollutants during the 90s. This could be partially confirmed by the lower trends of O{sub X} (sum O{sub 3} of and NO{sub 2}) maxima compared to the trends in ozone maxima. The absence of negative trends of the median or mean ozone maxima north of the Alps in summer suggests that the decrease in the emissions of ozone precursors did not have a strong impact on the afternoon maximum ozone concentrations during the last decade. In contrast to the project TOSS (Trends of Ozone in Southern Switzerland), no significantly negative

  5. Trends of Ozone in Switzerland since 1992 (TROZOS)

    International Nuclear Information System (INIS)

    Ordonez, C.; Mathis, H.; Furger, M.; Prevot, A.S.H.

    2004-07-01

    This work reports on the trends of the daily afternoon (noon to midnight) maximum ozone concentrations at 15 of the 16 stations of the Swiss air quality monitoring network (NABEL) during the period 1992-2002. The use of numerous meteorological parameters and additional data allowed a detailed seasonal analysis of the influence of the weather on the ozone maxima at the different stations. An analysis of covariance (ANCOVA) was performed separately for each station and season in order to detect the parameters which best explain the variability of the daily ozone maximum concentrations. During the warm seasons (summer and spring) the most explanatory parameters are those related to the ozone production, in particular the afternoon temperature. In winter, the most explanatory variables are the ones influencing the vertical mixing and thus the ozone destruction by titration with NO and dry deposition, like the afternoon global radiation. The trends of both the measured and meteorologically corrected ozone maxima were calculated. The year-to-year variability in the ozone maxima was lowered by a factor of 3 by the meteorological correction. Significantly positive trends of corrected ozone maxima of 0.3 - 1.1 ppb/year were found at the low altitude stations in winter and autumn as well as at Lausanne - urban station - in all the seasons, mainly due to the lower loss of ozone by reaction with NO as a consequence of the decreased emissions of primary pollutants during the 90s. This could be partially confirmed by the lower trends of O X (sum O 3 of and NO 2 ) maxima compared to the trends in ozone maxima. The absence of negative trends of the median or mean ozone maxima north of the Alps in summer suggests that the decrease in the emissions of ozone precursors did not have a strong impact on the afternoon maximum ozone concentrations during the last decade. In contrast to the project TOSS (Trends of Ozone in Southern Switzerland), no significantly negative trends of ozone

  6. Estonian total ozone climatology

    Directory of Open Access Journals (Sweden)

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  7. The initial step of silicate versus aluminosilicate formation in zeolite synthesis: a reaction mechanism in water with a tetrapropylammonium template

    KAUST Repository

    Trinh, Thuat T.; Rozanska, Xavier; Delbecq, Franç oise; Sautet, Philippe

    2012-01-01

    is then compared to a simple calculation using an implicit continuum model for the solvent. The results underline the importance of an explicit and dynamical treatment of the water solvent, which plays a key role in assisting the reaction. © the Owner Societies

  8. Connecting the dots: Semi-analytical and random walk numerical solutions of the diffusion–reaction equation with stochastic initial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Paster, Amir, E-mail: paster@tau.ac.il [Environmental Fluid Mechanics Laboratories, Dept. of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN (United States); School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 69978 (Israel); Bolster, Diogo [Environmental Fluid Mechanics Laboratories, Dept. of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN (United States); Benson, David A. [Hydrologic Science and Engineering, Colorado School of Mines, Golden, CO, 80401 (United States)

    2014-04-15

    We study a system with bimolecular irreversible kinetic reaction A+B→∅ where the underlying transport of reactants is governed by diffusion, and the local reaction term is given by the law of mass action. We consider the case where the initial concentrations are given in terms of an average and a white noise perturbation. Our goal is to solve the diffusion–reaction equation which governs the system, and we tackle it with both analytical and numerical approaches. To obtain an analytical solution, we develop the equations of moments and solve them approximately. To obtain a numerical solution, we develop a grid-less Monte Carlo particle tracking approach, where diffusion is modeled by a random walk of the particles, and reaction is modeled by annihilation of particles. The probability of annihilation is derived analytically from the particles' co-location probability. We rigorously derive the relationship between the initial number of particles in the system and the amplitude of white noise represented by that number. This enables us to compare the particle simulations and the approximate analytical solution and offer an explanation of the late time discrepancies. - Graphical abstract:.

  9. Exposure-Relevant Ozone Chemistry in Occupied Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Beverly Kaye [Univ. of California, Berkeley, CA (United States)

    2009-04-01

    Ozone, an ambient pollutant, is transformed into other airborne pollutants in the indoor environment. In this dissertation, the type and amount of byproducts that result from ozone reactions with common indoor surfaces, surface residues, and vapors were determined, pollutant concentrations were related to occupant exposure, and frameworks were developed to predict byproduct concentrations under various indoor conditions. In Chapter 2, an analysis is presented of secondary organic aerosol formation from the reaction of ozone with gas-phase, terpene-containing consumer products in small chamber experiments under conditions relevant for residential and commercial buildings. The full particle size distribution was continuously monitored, and ultrafine and fine particle concentrations were in the range of 10 to>300 mu g m-3. Particle nucleation and growth dynamics were characterized.Chapter 3 presents an investigation of ozone reactions with aircraft cabin surfaces including carpet, seat fabric, plastics, and laundered and worn clothing fabric. Small chamber experiments were used to determine ozone deposition velocities, ozone reaction probabilities, byproduct emission rates, and byproduct yields for each surface category. The most commonly detected byproducts included C1?C10 saturated aldehydes and skin oil oxidation products. For all materials, emission rates were higher with ozone than without. Experimental results were used to predict byproduct exposure in the cabin and compare to other environments. Byproduct levels are predicted to be similar to ozone levels in the cabin, which have been found to be tens to low hundreds of ppb in the absence of an ozone converter. In Chapter 4, a model is presented that predicts ozone uptake by and byproduct emission from residual chemicals on surfaces. The effects of input parameters (residue surface concentration, ozone concentration, reactivity of the residue and the surface, near-surface airflow conditions, and

  10. Ozone as an air pollutant

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  11. Formation of nitro products from the gas-phase OH radical-initiated reactions of toluene, naphthalene, and biphenyl: effect of NO2 concentration.

    Science.gov (United States)

    Nishino, Noriko; Atkinson, Roger; Arey, Janet

    2008-12-15

    Aromatic hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs), are released into the atmosphere principally during incomplete combustion and account for approximately 20% of nonmethane organic compounds in urban air. Reaction with OH radicals is the dominant atmospheric chemical loss process for aromatic hydrocarbons, leading mainly to the formation of an OH-aromatic or OH-PAH adduct which then reacts with O2 and/or NO2. For OH-monocyclic aromatic adducts, reaction with O2 dominates under atmospheric conditions; however, no data are available concerning the relative importance of reactions of OH-PAH adducts with O2 and NO2. We have measured formation yields of 3-nitrotoluene, 1- and 2-nitronaphthalene, and 3-nitrobiphenyl from the OH radical-initiated reactions of toluene, naphthalene, and biphenyl as a function of NO2 concentration. Our data showthatthe OH-aromatic adduct reactions with O2 and NO2 are of equal importance in the atmosphere at NO2 mixing ratios of approximately 3.3 ppmV for toluene, approximately 0.06 ppmV for naphthalene, and approximately 0.6 ppmV for biphenyl. Ambient concentrations of toluene, naphthalene, and biphenyl and their nitrated products measured at a site in the Los Angeles air basin are consistent with our laboratory measurements.

  12. Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the O2 addition reaction pathways.

    Science.gov (United States)

    Shiroudi, A; Deleuze, M S; Canneaux, S

    2015-05-28

    Atmospheric oxidation of the naphthalene-OH adduct [C10H8OH]˙ (R1) by molecular oxygen in its triplet electronic ground state has been studied using density functional theory along with the B3LYP, ωB97XD, UM05-2x and UM06-2x exchange-correlation functionals. From a thermodynamic viewpoint, the most favourable process is O2 addition at the C2 position in syn mode, followed by O2 addition at the C2 position in anti mode, O2 addition at the C4 position in syn mode, and O2 addition at the C4 position in anti mode, as the second, third and fourth most favourable processes. The syn modes of addition at these positions are thermodynamically favoured over the anti ones by the formation of an intramolecular hydrogen bond between the hydroxyl and peroxy substituents. Analysis of the computed structures, bond orders and free energy profiles demonstrate that the reaction steps involved in the oxidation of the naphthalene-OH adduct by O2 satisfy Hammond's principle. Kinetic rate constants and branching ratios under atmospheric pressure and in the fall-off regime have been supplied, using transition state and RRKM theories. By comparison with experiment, these data confirm the relevance of a two-step reaction mechanism. Whatever the addition mode, O2 addition in C4 position is kinetically favoured over O2 addition in C2 position, in contrast with the expectations drawn from thermodynamics and reaction energies. Under a kinetic control of the reaction, and in line with the computed reaction energy barriers, the most efficient process is O2 addition at the C4 position in syn mode, followed by O2 addition at the C2 position in syn mode, O2 addition at the C4 position in anti mode, and O2 addition at the C2 position in anti mode as the second, third and fourth most rapid processes. The computed branching ratios also indicate that the regioselectivity of the reaction decreases with increasing temperatures and decreasing pressures.

  13. On the link between martian total ozone and potential vorticity

    Science.gov (United States)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.

    2017-01-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.

  14. Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone

    DEFF Research Database (Denmark)

    Singer, B.C.; Coleman, B.K.; Destaillats, H.

    2006-01-01

    introduction. In the absence of reactive chemicals, the chamber ozone level was approximately 60 ppb. Ozone was substantially consumed following cleaning product use, mainly by homogeneous reaction. For the AFR, ozone consumption was weaker and heterogeneous reaction with sorbed AFR-constituent VOCs...... than 100 mu g m(-3)) in some experiments. Ozone consumption and elevated hydroxyl radical concentrations persisted for 10-12 h following brief cleaning events, indicating that secondary pollutant production can persist for extended periods. (c) 2006 Elsevier Ltd. All rights reserved....

  15. Ozone pollution: rising concentrations despite French and EU efforts

    International Nuclear Information System (INIS)

    Ba, M.; Elichegaray, Ch.

    2003-11-01

    Ozone is the main indicator of photochemical pollution which is caused by a complex combination of primary pollutants formed by chemical reactions in the troposphere, in the presence of sunlight. These primary pollutants, otherwise known as precursors of ozone (nitrogen oxides, volatile organic compounds and carbon monoxide), are emitted both by natural sources and human activities. In urban areas, during the summer months, ozone is often the main cause of deterioration in air quality. Directive 2002/3/EC relating to ozone in ambient air entered into force on 9 September 2003, superseding the first ozone Directive (92/72/CE) of 21 September 1992. In the last 10 years, monitoring of ozone pollution has considerably progressed in France (the number of analysers has increased tenfold). Emissions of the ozone precursors fell significantly (-27%) between 1990 and 2000 in France as a result of combined efforts in all sectors of activity. However, between 1994 and 2002, ozone levels remained above the information threshold for the protection of human health and vegetation on average more than 100 days a year in rural areas and over 40 days a year in urban and peri-urban areas. Efforts undertaken both in France and other European countries aim to improve the situation and ensure compliance with the requirements of Directive 2002/3/EC. (author)

  16. Enhanced effect of suction-cavitation on the ozonation of phenol

    International Nuclear Information System (INIS)

    Wu Zhilin; Franke, Marcus; Ondruschka, Bernd; Zhang, Yongchun; Ren Yanze; Braeutigam, Patrick; Wang, Weimin

    2011-01-01

    800 mL of 1.0 mM phenol-containing aqueous solution was circulated at 20 ° C for 30 min in a suction-reactor, while 3.2 mg min -1 ozone was introduced into the solution under the suction orifice. The removal rates of phenol vary polynomially with the orifice diameter as well as the suction pressure. The rate constant for the zero-order kinetics achieves the highest value at -0.070 MPa by using 5 mm orifice. Although the suction-cavitation alone cannot remove phenol in 30 min, it can considerably enhance the ozonation of phenol. The rate constants for the zero-order kinetics by the simple ozonation and the combined method are 0.018 and 0.028 min -1 , respectively. Furthermore, no ozone was observed in the tail gas during the first 15 min for the ozonation in the suction reactor, and then the concentration of unreacted ozone slowly increased, indicating that the utilization rate of ozone is significantly improved by the suction-cavitation. The increasing input concentration of ozone obviously accelerates the ozonation of phenol, but the total required quantities of ozone are very close by various ozone input concentrations to reach the same degradation rate, indicating the ozonation assisted by the suction-cavitation can be considered as a quantitative reaction.

  17. Ozone, greenhouse effect. Ozone, effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Aviam, A.M.; Arthaut, R.

    1992-12-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs.

  18. Satellite spectrophotometer for research of the atmospheric ozone

    International Nuclear Information System (INIS)

    Getzov, P.; Mardirossian, G.; Stoyanov, S.

    2014-01-01

    The measurement of atmospheric ozone and its influence upon climate and life on Earth is undoubtedly one of the most pressing issues of present time. A mathematical model of an optical tract of a spectrophotometer has been designed. The paper presents the functional scheme of a satellite optoelectronic spectrophotometer for measuring the total content of atmospheric ozone and other gas components of the atmosphere, which has increased precision, smaller weight and energy consumption, increased space and time resolution, quickness of reaction and increased volume of useful information. The object of the paper is the design of an appliance which ensures research of ozone content in atmosphere from the board of a satellite

  19. Automatic programmable air ozonizer

    International Nuclear Information System (INIS)

    Gubarev, S.P.; Klosovsky, A.V.; Opaleva, G.P.; Taran, V.S.; Zolototrubova, M.I.

    2015-01-01

    In this paper we describe a compact, economical, easy to manage auto air ozonator developed at the Institute of Plasma Physics of the NSC KIPT. It is designed for sanitation, disinfection of premises and cleaning the air from foreign odors. A distinctive feature of the developed device is the generation of a given concentration of ozone, approximately 0.7 maximum allowable concentration (MAC), and automatic maintenance of a specified level. This allows people to be inside the processed premises during operation. The microprocessor controller to control the operation of the ozonator was developed

  20. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Science.gov (United States)

    Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan

    2017-10-01

    A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion

  1. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Directory of Open Access Journals (Sweden)

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  2. Effect of excess ozone on UV-stimulated tritium oxidation

    International Nuclear Information System (INIS)

    Hasegawa, Kiyoshi; Horii, Kazuhiro; Matsuyama, Masao; Watanabe, Kuniaki.

    1995-01-01

    The authors have reported that the oxidation of tritium is considerably accelerated by irradiating a mixture gas of HT(H 2 )-O 2 with UV-photons, and this UV-stimulated HT oxidation is mainly due to the formation of intermediates such as ozone and activated oxygen species. This suggests that the oxidation will be much more enhanced in the presence of excess ozone in the reaction system. To examine this possibility, effects of the excess ozone on the UV-stimulated HT oxidation was experimentally studied on the one hand, and reaction mechanisms were investigated by developing a computer simulation program applicable to the three-component system of HT(H 2 )-O 2 -O 3 . The formation rate of HTO was measured for gas mixtures consisting of O 2 (75.5 Torr), O 3 (0.5-2% of O 2 ), H 2 (0.1-3% of O 2 ) and HT(H 2 /HT=12000). The experiments showed considerable enhancement of the HTO production rate in the presence of excess ozone by UV-photons from a low pressure mercury lamp(5W). The time course of the reaction was reproduced quite well by computer simulation, indicating that the assumed reaction mechanism is valid. This is also supported by observations that computer simulation reproduced the experimentally observed dependence of ozone decomposition rate on ozone and hydrogen pressures under the UV-irradiation. Those results showed that UV-stimulated HT oxidation was accelerated by about 14000 times in the presence of excess ozone. It strongly suggests that the UV-stimulated oxidation in the presence of excess ozone will be applicable to tritium handling systems as a non-catalytic tritium removal method. (author)

  3. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Glenn Charles [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, and separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10

  4. Comparative study of ozonized olive oil and ozonized sunflower oil

    Directory of Open Access Journals (Sweden)

    Díaz Maritza F.

    2006-01-01

    Full Text Available In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observed in both oils but they were higher in ozonized sunflower oil. Iodine value was zero in ozonized olive oil whereas in ozonized sunflower was 8.8 g Iodine per 100 g. The antimicrobial activity was similar for both ozonized oils except for Minimum Bactericidal Concentrations of Pseudomona aeruginosa. Composition of fatty acids in both ozonized oils showed gradual decrease in unsaturated fatty acids (C18:1, C18:2 with gradual increase in ozone doses.

  5. Spiral Wave Initiation in Reaction-Diffusion-Mechanics Systems: A Model for the Onset of Reentrant Cardiac Arrhythmia

    NARCIS (Netherlands)

    Weise, L.D.

    2012-01-01

    Heart failure due to cardiac arrhythmias is a major cause of death in the industrialized world. Cardiac arrhythmia is often caused by spi- ral waves of electrical activity in the cardiac muscle. Therefore, it is a major task in cardiology to understand the mechanisms of spiral wave initiation in the

  6. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    Science.gov (United States)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  7. Temperature thresholds for chlorine activation and ozone loss in the polar stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Drdla, K. [NASA Ames Research Center, Moffett Field, CA (United States); Mueller, R. [Forschungszentrum Juelich (DE). Inst. of Energy and Climate Research (IEK-7)

    2012-07-01

    Low stratospheric temperatures are known to be responsible for heterogeneous chlorine activation that leads to polar ozone depletion. Here, we discuss the temperature threshold below which substantial chlorine activation occurs. We suggest that the onset of chlorine activation is dominated by reactions on cold binary aerosol particles, without the formation of polar stratospheric clouds (PSCs), i.e. without any significant uptake of HNO{sub 3} from the gas phase. Using reaction rates on cold binary aerosol in a model of stratospheric chemistry, a chlorine activation threshold temperature, T{sub ACL}, is derived. At typical stratospheric conditions, T{sub ACL} is similar in value to T{sub NAT} (within 1-2 K), the highest temperature at which nitric acid trihydrate (NAT) can exist. T{sub NAT} is still in use to parameterise the threshold temperature for the onset of chlorine activation. However, perturbations can cause T{sub ACL} to differ from T{sub NAT}: T{sub ACL} is dependent upon H{sub 2} O and potential temperature, but unlike T{sub NAT} is not dependent upon HNO3. Furthermore, in contrast to T{sub NAT}, T{sub ACL} is dependent upon the stratospheric sulfate aerosol loading and thus provides a means to estimate the impact on polar ozone of strong volcanic eruptions and some geo-engineering options, which are discussed. A parameterisation of T{sub ACL} is provided here, allowing it to be calculated for low solar elevation (or high solar zenith angle) over a comprehensive range of stratospheric conditions. Considering T{sub ACL} as a proxy for chlorine activation cannot replace a detailed model calculation, and polar ozone loss is influenced by other factors apart from the initial chlorine activation. However, T{sub ACL} provides a more accurate description of the temperature conditions necessary for chlorine activation and ozone loss in the polar stratosphere than T{sub NAT}. (orig.)

  8. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  9. Ozone Therapy in Dentistry

    Science.gov (United States)

    Domb, William C

    2014-01-01

    Summary The 21st century dental practice is quite dynamic. New treatment protocols and new materials are being developed at a rapid pace. Ozone dental therapy falls into the category of new treatment protocols in dentistry, yet ozone is not new at all. Ozone therapy is already a major treatment modality in Europe, South America and a number of other countries. What is provided here will not be an exhaustive scientific treatise so much as a brief general introduction into what dentists are now doing with ozone therapies and the numerous oral/systemic links that make this subject so important for physicians so that, ultimately, they may serve their patients more effectively and productively. PMID:25363268

  10. Ozone health effects

    International Nuclear Information System (INIS)

    Easterly, C.

    1994-01-01

    Ozone is a principal component of photochemical air pollution endogenous to numerous metropolitan areas. It is primarily formed by the oxidation of NOx in the presence of sunlight and reactive organic compounds. Ozone is a highly active oxidizing agent capable of causing injury to the lung. Lung injury may take the form of irritant effects on the respiratory tract that impair pulmonary function and result in subjective symptoms of respiratory discomfort. These symptoms include, but are not limited to, cough and shortness of breath, and they can limit exercise performance. The effects of ozone observed in humans have been primarily limited to alterations in respiratory function, and a range of respiratory physiological parameters have been measured as a function of ozone exposure in adults and children. These affects have been observed under widely varying (clinical experimental and environmental settings) conditions

  11. 2001 Ozone Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ozone is generated by a complex atmoshperic chemical process. Industrial and automobile pollutants in the form of oxides of nitrogen and hydrocarbons react in the...

  12. Study of the reaction e(+)e(-) -> psi(2S)pi(+)pi(-) via initial-state radiation at BABAR

    NARCIS (Netherlands)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Tico, J. Garra; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schumm, B. A.; Seiden, A.; Chao, D. S.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Rakitin, A. Y.; Andreassen, R.; Huard, Z.; Meadows, B. T.; Sokoloff, M. D.; Sun, L.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Uwer, U.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Behera, P. K.; Mallik, U.; Cochran, J.; Meyer, W. T.; Prell, S.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Behn, E.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Dallapiccola, C.; Cowan, R.; Dujmic, D.; Sciolla, G.; Cheaib, R.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Neri, N.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Martinelli, M.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Buenger, C.; Gruenberg, O.; Leddig, T.; Schroeder, H.; Vo, C.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Ysche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Lund, P.; Spanier, S. M.; Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Zambito, S.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Choi, H. H. F.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.

    2014-01-01

    We study the process e+e−→ψ(2S)π+π− with initial-state-radiation events produced at the PEP-II asymmetric-energy collider. The data were recorded with the BABAR detector at center-of-mass energies at and near the Υ(nS) (n=2,3,4) resonances and correspond to an integrated luminosity of 520  fb−1. We

  13. Simplified procedure for the in vitro assay of the initial linear rate of the reaction of lecithin-cholesterol acyltransferase in human serum

    International Nuclear Information System (INIS)

    Mahadevan, V.; Soloff, L.A.

    1985-01-01

    A simple sensitive method for the determination of the initial rate of the reaction of lecithin-cholesterol acyltransferase by equilibrating [ 3 H]cholesterol with unesterified cholesterol of human serum is described. The resulting serum is incubated for various time periods at 37 degrees C and the increase of the label in the cholesterol ester fraction is measured. The labeling is effected by a fids at 37 degrees C and the increase of the label in the cholesterol ester fraction is measured. The labeling is effected by a filter paper method in which a paper strip containing the labeled cholesterol is placed in serum at 4 degrees C, thereby preventing the formation of labeled cholesterol esters by the action of the enzyme. The rate of the reaction was linear up to 30 min

  14. The ozone backlash

    International Nuclear Information System (INIS)

    Taubes, G.

    1993-01-01

    While evidence for the role of chlorofluorocarbons in ozone depletion grows stronger, researchers have recently been subjected to vocal public criticism of their theories-and their motives. Their understanding of the mechanisms of ozone destruction-especially the annual ozone hole that appears in the Antarctic-has grown stronger, yet everywhere they go these days, they seem to be confronted by critics attacking their theories as baseless. For instance, Rush Limbaugh, the conservative political talk-show host and now-best-selling author of The Way Things Ought to Be, regularly insists that the theory of ozone depletion by CFCs is a hoax: bladerdash and poppycock. Zoologist Dixy Lee Ray, former governor of the state of Washington and former head of the Atomic Energy Commission, makes the same argument in her book, Trashing the Planet. The Wall Street Journal and National Review have run commentaries by S. Fred Singer, a former chief scientists for the Department of Transportation, purporting to shoot holes in the theory of ozone depletion. Even the June issue of Omni, a magazine with a circulation of more than 1 million that publishes a mixture of science and science fiction, printed a feature article claiming to expose ozone research as a politically motivated scam

  15. Field and laboratory emission cell automation and control system for investigating surface chemistry reactions

    Science.gov (United States)

    Flemmer, Michael M.; Ham, Jason E.; Wells, J. R.

    2007-01-01

    A novel system [field and laboratory emission cell (FLEC) automation and control system] has been developed to deliver ozone to a surface utilizing the FLEC to simulate indoor surface chemistry. Ozone, humidity, and air flow rate to the surface were continuously monitored using an ultraviolet ozone monitor, humidity, and flow sensors. Data from these sensors were used as feedback for system control to maintain predetermined experimental parameters. The system was used to investigate the chemistry of ozone with α-terpineol on a vinyl surface over 72h. Keeping all other experimental parameters the same, volatile organic compound emissions from the vinyl tile with α-terpineol were collected from both zero and 100ppb(partsper109) ozone exposures. System stability profiles collected from sensor data indicated experimental parameters were maintained to within a few percent of initial settings. Ozone data from eight experiments at 100ppb (over 339h) provided a pooled standard deviation of 1.65ppb and a 95% tolerance of 3.3ppb. Humidity data from 17 experiments at 50% relative humidity (over 664h) provided a pooled standard deviation of 1.38% and a 95% tolerance of 2.77%. Data of the flow rate of air flowing through the FLEC from 14 experiments at 300ml/min (over 548h) provided a pooled standard deviation of 3.02ml/min and a 95% tolerance range of 6.03ml/min. Initial experimental results yielded long term emissions of ozone/α-terpineol reaction products, suggesting that surface chemistry could play an important role in indoor environments.

  16. Phenols removal using ozonation-adsorption with granular activated carbon (GAC) in rotating packed bed reactor

    Science.gov (United States)

    Karamah, E. F.; Leonita, S.; Bismo, S.

    2018-01-01

    Synthetic wastewater containing phenols was treated using combination method of ozonation-adsorption with GAC (Granular Activated Carbon) in a packed bed rotating reactor. Ozone reacts quickly with phenol and activated carbon increases the oxidation process by producing hydroxyl radicals. Performance parameters evaluated are phenol removal percentage, the quantity of hydroxyl radical formed, changes in pH and ozone utilization, dissolved ozone concentration and ozone concentration in off gas. The performance of the combination method was compared with single ozonation and single adsorption. The influence of GAC dose and initial pH of phenols were evaluated in ozonation-adsorption method. The results show that ozonation-adsorption method generates more OH radicals than a single ozonation. Quantity of OH radical formation increases with increasing pH and quantity of the GAC. The combination method prove better performance in removing phenols. At the same operation condition, ozonation-adsorption method is capable of removing of 78.62% phenols as compared with single ozonation (53.15%) and single adsorption (36.67%). The increasing percentage of phenol removal in ozonation-adsorption method is proportional to the addition of GAC dose, solution pH, and packed bed rotator speed. Maximum percentage of phenol removal is obtained under alkaline conditions (pH 10) and 125 g of GAC

  17. Massive global ozone loss predicted following regional nuclear conflict

    Science.gov (United States)

    Mills, Michael J.; Toon, Owen B.; Turco, Richard P.; Kinnison, Douglas E.; Garcia, Rolando R.

    2008-01-01

    We use a chemistry-climate model and new estimates of smoke produced by fires in contemporary cities to calculate the impact on stratospheric ozone of a regional nuclear war between developing nuclear states involving 100 Hiroshima-size bombs exploded in cities in the northern subtropics. We find column ozone losses in excess of 20% globally, 25–45% at midlatitudes, and 50–70% at northern high latitudes persisting for 5 years, with substantial losses continuing for 5 additional years. Column ozone amounts remain near or <220 Dobson units at all latitudes even after three years, constituting an extratropical “ozone hole.” The resulting increases in UV radiation could impact the biota significantly, including serious consequences for human health. The primary cause for the dramatic and persistent ozone depletion is heating of the stratosphere by smoke, which strongly absorbs solar radiation. The smoke-laden air rises to the upper stratosphere, where removal mechanisms are slow, so that much of the stratosphere is ultimately heated by the localized smoke injections. Higher stratospheric temperatures accelerate catalytic reaction cycles, particularly those of odd-nitrogen, which destroy ozone. In addition, the strong convection created by rising smoke plumes alters the stratospheric circulation, redistributing ozone and the sources of ozone-depleting gases, including N2O and chlorofluorocarbons. The ozone losses predicted here are significantly greater than previous “nuclear winter/UV spring” calculations, which did not adequately represent stratospheric plume rise. Our results point to previously unrecognized mechanisms for stratospheric ozone depletion. PMID:18391218

  18. Stratospheric ozone: an introduction to its study

    International Nuclear Information System (INIS)

    Nicolet, M.

    1975-01-01

    An analysis is made of the various reactions in which ozone and atomic oxygen are involved in the stratosphere. At the present time, hydrogen, nitrogen, and chlorine compounds in the ranges parts per million, parts per billion, and parts per trillion may have significant chemical effects. In the upper stratosphere, above the ozone peak, where there is no strong departure from photochemical equilibrium conditions, the action of hydroxyl and hydroperoxyl radicals of nitrogen dioxide and chlorine monoxide on atomic oxygen and of atomic chlorine on ozone can be introduced. A precise determination of their exact effects requires knowledge of the vertical distribution of the H 2 O, CH 4 , and H 2 dissociation by reaction of these molecules with electronically excited oxygen atom O( 1 D); the ratio of the OH and HO 2 concentrations and their absolute values, which depend on insufficiently known rate coefficients; the various origins of nitric oxide production, with their vertical distributions related to latitude and season; and the various sources giving different chlorine compounds that may be dissociated in the stratosphere. In the lower stratosphere, below the ozone peak, there is no important photochemical production of O 3 , but there exist various possibilities of transport. The predictability of the action of chemical reactions depends strongly on important interactions between OH and HO 2 radicals with CO and NO, respectively, which affect the ratio n(OH)/n(HO 2 ) at the tropopause level; between OH and NO 2 , which lead to the formation of nitric acid with its downward transport toward the troposphere; between NO and HO 2 , which lead to NO 2 and its subsequent photodissociation; between ClO and NO, which also lead to NO 2 and become more important than the reaction of ClO with O; and between Cl and various molecules, such as CH 4 and H 2 , which lead to HCl with its downward transportation toward the troposphere

  19. Ozone using outlook for efficiency increasing of transportation and processing of high viscous petroleum raw materials

    International Nuclear Information System (INIS)

    Nadirov, N.K.; Zajkina, R.F.; Mamonova, T.B.

    1997-01-01

    Main types of oxidation reactions preceding during petroleum feedstock ozonization are generalized. The slight ozone high paraffin-content petroleum processing sites in shown on the example will make possible to rise the pipe transport efficiency and to increase the light fraction contents in petroleums. The prospects are discussed to application of ozone forming as a by-product of radiation-chemical facilities action for petroleum feedstock processing. (author)

  20. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  1. Generation of 300 MeV Quasi-Monochromatic Electron Beams from Laser Wakefield and Initiation of Photonuclear Reactions

    Science.gov (United States)

    Maksimchuk, A.; Beene, J. R.

    2005-10-01

    In the interaction of 30 fs, 40 TW Ti:sapphire Hercules laser at the University of Michigan, which is focused to the intensity of 10^19 W/cm^2 onto a supersonic He gas jet with electron density close to the resonant density, we observed quasi-monoenergetic electron beams with energy up to 300 MeV and angular divergence of about 10 mrad. The results on characterization of relativistic electron beam in terms of energy spread, its charge, divergence and pointing stability will be presented. 2D PIC simulations performed for the parameters close to the experimental conditions show the evolution of the laser pulse in plasma, electron injection, and the specifics of electron acceleration observed in experiments. Resulted relativistic electron beams have been used to perform gamma-neutron activation of ^12C and ^63Cu and photo-fission of ^238U. We demonstrated that approximately 10^6 reaction per shot has been produced in each case. This work was supported by the NSF through the Physics Frontier Center FOCUS. JRB, DRS, DWS, and CRV acknowledge support by the DOE under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  2. Chemical Conversion Pathways and Kinetic Modeling for the OH-Initiated Reaction of Triclosan in Gas-Phase

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    2015-04-01

    Full Text Available As a widely used antimicrobial additive in daily consumption, attention has been paid to the degradation and conversion of triclosan for a long time. The quantum chemistry calculation and the canonical variational transition state theory are employed to investigate the mechanism and kinetic property. Besides addition and abstraction, oxidation pathways and further conversion pathways are also considered. The OH radicals could degrade triclosan to phenols, aldehydes, and other easily degradable substances. The conversion mechanisms of triclosan to the polychlorinated dibenzopdioxin and furan (PCDD/Fs and polychlorinated biphenyls (PCBs are clearly illustrated and the toxicity would be strengthened in such pathways. Single radical and diradical pathways are compared to study the conversion mechanism of dichlorodibenzo dioxin (DCDD. Furthermore, thermochemistry is discussed in detail. Kinetic property is calculated and the consequent ratio of kadd/ktotal and kabs/ktotal at 298.15 K are 0.955 and 0.045, respectively. Thus, the OH radical addition reactions are predominant, the substitute position of OH radical on triclosan is very important to generate PCDD and furan, and biradical is also a vital intermediate to produce dioxin.

  3. Chemical conversion pathways and kinetic modeling for the OH-initiated reaction of triclosan in gas-phase.

    Science.gov (United States)

    Zhang, Xue; Zhang, Chenxi; Sun, Xiaomin; Kang, Lingyan; Zhao, Yan

    2015-04-10

    As a widely used antimicrobial additive in daily consumption, attention has been paid to the degradation and conversion of triclosan for a long time. The quantum chemistry calculation and the canonical variational transition state theory are employed to investigate the mechanism and kinetic property. Besides addition and abstraction, oxidation pathways and further conversion pathways are also considered. The OH radicals could degrade triclosan to phenols, aldehydes, and other easily degradable substances. The conversion mechanisms of triclosan to the polychlorinated dibenzopdioxin and furan (PCDD/Fs) and polychlorinated biphenyls (PCBs) are clearly illustrated and the toxicity would be strengthened in such pathways. Single radical and diradical pathways are compared to study the conversion mechanism of dichlorodibenzo dioxin (DCDD). Furthermore, thermochemistry is discussed in detail. Kinetic property is calculated and the consequent ratio of k add/k total and k abs/k total at 298.15 K are 0.955 and 0.045, respectively. Thus, the OH radical addition reactions are predominant, the substitute position of OH radical on triclosan is very important to generate PCDD and furan, and biradical is also a vital intermediate to produce dioxin.

  4. Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor.

    Science.gov (United States)

    Lucas, Marco S; Peres, José A; Lan, Bing Yan; Li Puma, Gianluca

    2009-04-01

    The degradation of organic substances present in winery wastewater was studied in a pilot-scale, bubble column ozonation reactor. A steady reduction of chemical oxygen demand (COD) was observed under the action of ozone at the natural pH of the wastewater (pH 4). At alkaline and neutral pH the degradation rate was accelerated by the formation of radical species from the decomposition of ozone. Furthermore, the reaction of hydrogen peroxide (formed from natural organic matter in the wastewater) and ozone enhances the oxidation capacity of the ozonation process. The monitoring of pH, redox potential (ORP), UV absorbance (254 nm), polyphenol content and ozone consumption was correlated with the oxidation of the organic species in the water. The ozonation of winery wastewater in the bubble column was analysed in terms of a mole balance coupled with ozonation kinetics modeled by the two-film theory of mass transfer and chemical reaction. It was determined that the ozonation reaction can develop both in and across different kinetic regimes: fast, moderate and slow, depending on the experimental conditions. The dynamic change of the rate coefficient estimated by the model was correlated with changes in the water composition and oxidant species.

  5. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  6. Application of Resonant Converter in Ozone Generator Model

    Directory of Open Access Journals (Sweden)

    Mochammad Facta

    2008-04-01

    Full Text Available Ozone is one of the favorable oxidant to use in home appliance and industry as disinfectant for food processing, food storage, odor abatement, groundwater remediation, and drinking water purification. The common and previous technical method for generating ozone uses a high voltage and low frequency. This kind of method has disadvantage of energy efficiency, size and weight. This paper proposed the use power electronics in the inverter resonant circuit to produce alternating current with high frequency. The basic RLC resonance circuit is used for early study to determine resonance frequency for inverter. As the result, the ozone chamber terminal voltage had been achieved for initiation by using resonance frequency.

  7. CONTRIBUTION TO INDOOR OZONE LEVELS OF AN OZONE GENERATOR

    Science.gov (United States)

    This report gives results of a study of a commonly used commercially available ozone generator, undertaken to determine its impact on indoor ozone levels. xperiment were conducted in a typical mechanically ventilated office and in a test house. he generated ozone and the in-room ...

  8. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  9. Air Quality Guide for Ozone

    Science.gov (United States)

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Air Quality Guide for Ozone Ground-level ozone is one of our nation’s most common air pollutants. Use the chart below to help reduce ...

  10. Health Effects of Ozone Pollution

    Science.gov (United States)

    Inhaling ozone can cause coughing, shortness of breath, worse asthma or bronchitis symptoms, and irritation and damage to airways.You can reduce your exposure to ozone pollution by checking air quality where you live.

  11. Pulsed corona discharge: the role of ozone and hydroxyl radical in aqueous pollutants oxidation.

    Science.gov (United States)

    Preis, S; Panorel, I C; Kornev, I; Hatakka, H; Kallas, J

    2013-01-01

    Ozone and hydroxyl radical are the most active oxidizing species in water treated with gas-phase pulsed corona discharge (PCD). The ratio of the species dependent on the gas phase composition and treated water contact surface was the objective for the experimental research undertaken for aqueous phenol (fast reaction) and oxalic acid (slow reaction) solutions. The experiments were carried out in the reactor, where aqueous solutions showered between electrodes were treated with 100-ns pulses of 20 kV voltage and 400 A current amplitude. The role of ozone increased with increasing oxygen concentration and the oxidation reaction rate. The PCD treatment showed energy efficiency surpassing that of conventional ozonation.

  12. Impact of enhanced ozone deposition and halogen chemistry on model performance

    Science.gov (United States)

    In this study, an enhanced ozone deposition scheme due to the interaction of iodide in sea-water and atmospheric ozone and the detailed chemical reactions of organic and inorganic halogen species are incorporated into the hemispheric Community Multiscale Air Quality model. Prelim...

  13. Deriving a Linearised Ozone Chemistry Scheme for a 3-D Chemical ...

    African Journals Online (AJOL)

    A simple but computer efficient parameterized ozone chemistry is developed to account for up-dates in reaction rate recommendations, and also completely assess the contributions of the indi-vidual catalytic cycles to the ozone budget in the entire stratosphere. Two conceptual ap-proaches, namely total time approach and ...

  14. Use characterisation of a diatomite catalyst impregnated with iron in the heterogeneous catalytic ozonization process

    International Nuclear Information System (INIS)

    Garcia Herrera, Walter

    2014-01-01

    Advanced oxidation processes have had a promising option in the treatment of wastewater, mainly in the presence of emerging and persistent pollutants. Among these processes have highlighted the catalytic ozonization, which has showed positive results in water treatment. Heterogeneous catalytic ozonization was characterized using diatomite impregnated with iron at the Universidad de Costa Rica. Contaminant degradation model was quantified (spectrophotometrically) for ozonization process and catalytic ozonization with the catalyst studied (1.000 g / L) at three different pH 4, 7 and 10. The effect of the catalyst concentration in the solution (0.250, 0.500, 1000, 1500 and 2.000 g/L) was determined under the conditions of pH with better performance of the catalyst. Runs in the presence of tert-butyl alcohol (TBA), known hydroxyl radical scavenger were performed to evaluate the effect on ozone indirect reactions. The degree of mineralization obtained was measured in the catalytic process.The variation of the COD of the solution was quantified under the best working conditions obtained. Finally, the performance of the catalyst in 4 cycles of reuse was studied by monitoring the leached iron of the catalyst, which has turned out to be 12%. Most degradation of contaminant model in ozonization process was obtained at pH 10, in accordance with the above theory (Buhler, Stachelin, & Hoigne, 1984). In contrast, at pH 4 the catalyst has presented the best efficiency, to the 3 minutes the noncatalytic process was curettaged 35% of dye, while the catalytic process by 60% in the same time. The degradation of the contaminant was improved even in the case of noncatalytic process at pH 10, which the 3 minutes was degradated to 44%. The presence of the catalyst at initial pH of 7 and 10, has showed without significant improvements in the process. The solution concentration of catalyst has presented the best efficiency of degradation has been 2,000 g/L, which has increased 70% to 3

  15. Ozone bioindicator sampling and estimation

    Science.gov (United States)

    Gretchen C, Smith; William D. Smith; John W. Coulston

    2007-01-01

    Ozone is an important forest stressor that has been measured at known phytotoxic levels at forest locations across the United States. The percent forest exhibiting negative impacts from ozone air pollution is one of the Montreal Process indicators of forest health and vitality. The ozone bioindicator data of the U.S. Forest Service Forest Inventory and Analysis Program...

  16. Ozonated Olive Oils and Troubles

    Directory of Open Access Journals (Sweden)

    Bulent Uysal

    2014-04-01

    Full Text Available One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. [J Intercult Ethnopharmacol 2014; 3(2.000: 49-50

  17. Disappearing threat to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Gribbin, J

    1979-02-15

    Concern that human activities might disturb the dynamic natural equilibrium of the ozone layer has stemmed from the fact that this layer plays a key part in the ecology of the earth by absorbing harmful ultraviolet radiation which would otherwise penetrate to the ground. Apparently, however, a decline of as much at 15% in total global ozone would have very little effect on climate. A 50% reduction would produce a marked cooling of the stratosphere at 40 km altitude over the tropics, but barely detectable changes in temperature and rainfall in the lower atmosphere. Therefore, biological effects of more uv light at ground level is the only hazard associated with ozone depletion on the scale which might take place.

  18. Isotope effects in photo dissociation of ozone with visible light

    Science.gov (United States)

    Früchtl, Marion; Janssen, Christof; Röckmann, Thomas

    2014-05-01

    Ozone (O3) plays a key role for many chemical oxidation processes in the Earth's atmosphere. In these chemical reactions, ozone can transfer oxygen to other trace gases. This is particularly interesting, since O3 has a very peculiar isotope composition. Following the mass dependent fractionation equation δ17O = 0.52 * δ18O, most fractionation processes depend directly on mass. However, O3 shows an offset to the mass dependent fractionation line. Processes, which show such anomalies, are termed mass independent fractionations (MIF). A very well studied example for a chemical reaction that leads to mass independent fractionation is the O3 formation reaction. To what degree O3 destruction reactions need to be considered in order to understand the isotope composition of atmospheric O3 is still not fully understood and an open question within scientific community. We set up new experiments to investigate the isotope effect resulting from photo dissociation of O3 in the Chappuis band (R1). Initial O3 is produced by an electric discharge. After photolysis O3 is collected in a cold trap at the triple point temperature of nitrogen (63K). O3 is then converted to O2 in order to measure the oxygen isotopes of O3 using isotope ratio mass spectrometry. To isolate O3 photo dissociation (R1) from O3 decomposition (R2) and secondary O3 formation (R3), we use varying amounts of carbon monoxide (CO) as O atom quencher (R4). In this way we suppress the O + O3 reaction (R3) and determine the isotope fractionation in R1 and R2 separately. We present first results on the isotope effects in O3 photo dissociation with visible light in the presence of different bath gases. Results are interpreted based on chemical kinetics modeling. (R1) O3 + hυ → O (3P) + O2 (R2) O3 + O (3P) → 2 O2 (R3) O + O2 + M → O3 + M (R4) O (3P) + CO + M → CO2 + M

  19. Ozonation for source treatment of pharmaceuticals in hospital wastewater - ozone lifetime and required ozone dose

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Chhetri, Ravi Kumar

    2016-01-01

    Ozonation aimed at removing pharmaceuticals was studied in an effluent from an experimental pilot system using staged moving bed biofilm reactor (MBBR) tanks for the optimal biological treatment of wastewater from a medical care unit of Aarhus University Hospital. Dissolved organic carbon (DOC......) and pH in samples varied considerably, and the effect of these two parameters on ozone lifetime and the efficiency of ozone in removing pharmaceuticals were determined. The pH in the effluent varied from 5.0 to 9.0 resulting in approximately a doubling of the required ozone dose at the highest p......H for each pharmaceutical. DOC varied from 6 to 20 mg-DOC/L. The ozone required for removing each pharmaceutical, varied linearly with DOC and thus, ozone doses normalized to DOC (specific ozone dose) agreed between water samples (typically within 15%). At neutral pH the specific ozone dose required...

  20. Analysis of Ozone And CO2 Profiles Measured At A Diary Facility

    Science.gov (United States)

    Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.

    2015-12-01

    Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the

  1. Ground-level ozone: Our new environmental policy

    International Nuclear Information System (INIS)

    Schiff, H.

    1991-01-01

    The environmental problem of ground level ozone is discussed, and the Canadian strategy for dealing with it is explained. Ozone in the troposphere can cause serious health problems in susceptible persons, and is estimated to cause up to $70 million in crop damage per year. The Canadian Council of Ministers of the Environment (CCME) Plan calls for less than 82 ppB by volume of ozone in any one-hour period in all areas of Canada by 2005. Three areas of Canada regularly exceed this value: the Lower Frazer valley in British Columbia, Saint John in New Brunswick, and the Windsor-Quebec corridor along the lower Great Lakes and the St. Lawrence River. Ozone is formed by a photochemical reaction of ammonia gases, nitrogen oxides, hydrogen sulfide or sulfur dioxide. Historically, ozone control has concentrated on controlling hydrocarbon emissions, but to little effect. In most locations close to large cities, ozone production is nitrogen oxide-limited, and the most recent models predict that the best strategy for ozone reduction requires the simultaneous reduction of both hydrocarbons and nitrogen oxides. The CCME Management Plan suggests that the 82 ppB ozone target will require a reduction of 40-50% in nitrogen oxide emissions. The Windsor end of the Windsor-Quebec corridor is dominated by transport of ozone and precursors from the USA, particularly Detroit and Cleveland, so Canadian controls alone are unlikely to solve the problem. For the rest of the corridor, nitrogen oxide control is likely to be most effective in urban areas. 1 fig

  2. Ozone treatment of textile wastewater relevant to toxic effect elimination in marine environment

    OpenAIRE

    Guendy, H.R.

    2007-01-01

    Ozone is a powerful oxidizing agent. The reaction of ozone with organic compounds in aqueous media has achieved a variety of treatment goals. The advantage of ozonation over the other oxidants is that the degradable products of ozonation are generally non-toxic, its final products are CO2 and H2O, and also the residual O3 in the system changes in few minutes to O2 .Convential treatment of textile wastewater includes various combinations of biological (activated sludge), physical and chemical ...

  3. Synthesis of Cyclohexane-Fused Isocoumarins via Cationic Palladium(II)-Catalyzed Cascade Cyclization Reaction of Alkyne-Tethered Carbonyl Compounds Initiated by Intramolecular Oxypalladation of Ester-Substituted Aryl Alkynes.

    Science.gov (United States)

    Zhang, Jianbo; Han, Xiuling; Lu, Xiyan

    2016-04-15

    A cationic Pd(II)-catalyzed cascade cyclization reaction of alkyne-tethered carbonyl compounds was developed. This reaction is initiated by intramolecular oxypalladation of alkynes with an ester group followed by 1,2-addition of the formed C-Pd(II) bond to the carbonyl group, providing a highly efficient method for the synthesis of cyclohexane-fused isocoumarins.

  4. Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion

    International Nuclear Information System (INIS)

    Masurier, J.-B.; Foucher, F.; Dayma, G.; Dagaut, P.

    2015-01-01

    Highlights: • Ozone was useful to control combustion phasing of alcohol fuels in HCCI engine. • Ozone helps to improve the combustion and advance its phasing. • Butanol is more impacted by ozone than methanol and ethanol. • HCCI combustion parameters may be controlled by managing ozone concentration. • Kinetics demonstrates that alcohol fuels are initially oxidized by O-atoms. - Abstract: The present investigation examines the impact of seeding the intake of an HCCI engine with ozone, one of the most oxidizing chemical species, on the combustion of three alcohol fuels: methanol, ethanol and n-butanol. The research was performed through engine experiments and constant volume computations. The results showed that increasing the ozone concentration led to an improvement in combustion coupled with a combustion advance. It was also observed, by comparing the results for each fuel selected, that n-butanol is the most impacted by ozone seeding and methanol the least. Further analyses of the experimental results showed that the alcohol fuel combustion can be controlled with ozone, which presents an interesting potential. Finally, computation results confirmed the experimental results observed. They also showed that in presence of ozone, alcohol fuels are not initially oxidized by molecular oxygen but by O-atoms coming from the ozone decomposition.

  5. Activity of coals of different rank to ozone

    Directory of Open Access Journals (Sweden)

    Vladimir Kaminskii

    2017-12-01

    Full Text Available Coals of different rank were studied in order to characterize their activity to ozone decomposition and changes of their properties at interaction with ozone. Effects of coal rank on their reactivity to ozone were described by means of kinetic modeling. To this end, a model was proposed for evaluation of kinetic parameters describing coals activity to ozone. This model considers a case when coals surface properties change during interaction with ozone (deactivation processes. Two types of active sites (zones at the surface that are able to decompose ozone were introduced in the model differing by their deactivation rates. Activity of sites that are being deactivated at relatively higher rate increases with rank from 2400 1/min for lignite to 4000 1/min for anthracite. Such dependence is related to increase of micropores share in coals structure that grows from lignites to anthracites. Parameter characterizing initial total activity of coals to ozone decomposition also depends on rank by linear trend and vary between 2.40 for lignites up to 4.98 for anthracite. The proposed model could further be used in studies of coals oxidation processes and tendency to destruction under the weathering and oxidation conditions.

  6. Physicochemical patterns of ozone absorption by wood

    Science.gov (United States)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  7. Mass-dependent and non-mass-dependent isotope effects in ozone photolysis: Resolving theory and experiments

    International Nuclear Information System (INIS)

    Cole, Amanda S.; Boering, Kristie A.

    2006-01-01

    In addition to the anomalous 17 O and 18 O isotope effects in the three-body ozone formation reaction O+O 2 +M, isotope effects in the destruction of ozone by photolysis may also play a role in determining the isotopic composition of ozone and other trace gases in the atmosphere. While previous experiments on ozone photolysis at 254 nm were interpreted as evidence for preferential loss of light ozone that is anomalous (or 'non-mass-dependent'), recent semiempirical theoretical calculations predicted a preferential loss of heavy ozone at that wavelength that is mass dependent. Through photochemical modeling results presented here, we resolve this apparent contradiction between experiment and theory. Specifically, we show that the formation of ozone during the UV photolysis experiments is not negligible, as had been assumed, and that the well-known non-mass-dependent isotope effects in ozone formation can account for the non-mass-dependent enrichment of the heavy isotopologs of ozone observed in the experiment. Thus, no unusual non-mass-dependent fractionation in ozone photolysis must be invoked to explain the experimental results. Furthermore, we show that theoretical predictions of a mass-dependent preferential loss of the heavy isotopologs of ozone during UV photolysis are not inconsistent with the experimental data, particularly if mass-dependent isotope effects in the chemical loss reactions of ozone during the photolysis experiments or experimental artifacts enrich the remaining ozone in 17 O and 18 O. Before the calculated fractionation factors can be quantitatively evaluated, however, further investigation of possible mass-dependent isotope effects in the reactions of ozone with O( 1 D), O( 3 P), O 2 ( 1 Δ), and O 2 ( 1 Σ) is needed through experiments we suggest here

  8. Extraordinary Difference in Reactivity of Ozone (OOO) and Sulfur Dioxide (OSO): A Theoretical Study.

    Science.gov (United States)

    Lan, Yu; Wheeler, Steven E; Houk, K N

    2011-07-12

    Ozone and sulfur dioxide are valence isoelectronic yet show very different reactivity. While ozone is one of the most reactive 1,3-dipoles, SO2 does not react in this way at all. The activation energies of dipolar cycloadditions of sulfur dioxide with either ethylene or acetylene are predicted here by B3LYP, M06-2X, CBS-QB3, and CCSD(T) to be much higher than reactions of ozone. The dipolar cycloaddition of ozone is very exothermic, while that of than sulfur dioxide is endothermic. The prohibitive barriers in the case of SO2 arise from large distortion energies as well as unfavorable interaction energies in the transition states. This arises in part from the HOMO-LUMO gap of sulfur dioxide, which is larger than that of ozone. Valence bond calculations also show that while ozone has a high degree of diradical character, SO2 does not, and is better characterized as a dritterion.

  9. Mass spectrometric investigation of the isotopes of ozone in the laboratory and the stratosphere

    International Nuclear Information System (INIS)

    Mauersberger, K.; Morton, J.; Schueler, B.

    1991-01-01

    During the last few years information on the isotope anomalies of ozone has substantially increased. Whenever ozone is formed in a gas phase reaction, an enhancement in its heavy isotopes is found of magnitude 12-14% ( 50 O 3 ) above the statistically expected values. The mass-independent enhancement decreases toward higher pressures and also shows a pronounced temperature dependence. Toward lower temperatures the enhancement becomes less. Studies of all possible ozone isotopes have shown that molecular symmetry plays a major role. Even large enhancements, above the laboratory results, have been occasionally measured in the stratosphere using a number of different experimental techniques. A correlation between very high heavy ozone enhancement (> 30%) and high solar activity may exist. The behavior of ozone isotopes will provide information about the ozone formation process

  10. Impact of HVAC filter on indoor air quality in terms of ozone removal and carbonyls generation

    Science.gov (United States)

    Lin, Chi-Chi; Chen, Hsuan-Yu

    2014-06-01

    This study aims at detecting ozone removal rates and corresponding carbonyls generated by ozone reaction with HVAC filters from various building, i.e., shopping mall, school, and office building. Studies were conducted in a small-scale environmental chamber. By examining dust properties including organic carbon proportion and specific surface area of dusts adsorbed on filters along with ozone removal rates and carbonyls generation rate, the relationship among dust properties, ozone removal rates, and carbonyls generation was identified. The results indicate a well-defined positive correlation between ozone removal efficiency and carbonyls generation on filters, as well as a positive correlation among the mass of organic carbon on filters, ozone removal efficiency and carbonyls generations.

  11. Measurement of Ozone Production Sensor

    Directory of Open Access Journals (Sweden)

    M. Cazorla

    2010-05-01

    Full Text Available A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS, measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.

  12. Effect of fiber material on ozone removal and carbonyl production from carpets

    Science.gov (United States)

    Abbass, Omed A.; Sailor, David J.; Gall, Elliott T.

    2017-01-01

    Indoor air quality is affected by indoor materials such as carpets that may act as sources and/or sinks of gas-phase air pollutants. Heterogeneous reactions of ozone with carpets may result in potentially harmful products. In this study, indoor residential carpets of varying fiber types were tested to evaluate their ability to remove ozone, and to assess their role in the production of carbonyls when exposed to elevated levels of ozone. Tests were conducted with six types of new unused carpets. Two sets of experiments were conducted, the first measured ozone removal and ozone deposition velocities, and the second measured primary carbonyl production and secondary production as a result of exposure to ozone. The tests were conducted using glass chambers with volume of 52 L each. Air exchange rates for all tests were 3 h-1. The ozone removal tests show that, for the conditions tested, the polyester carpet sample had the lowest ozone removal (40%), while wool carpet had the greatest ozone removal (65%). Most carpet samples showed higher secondary than primary carbonyl emissions, with carpets containing polypropylene fibers being a notable exception. Carpets with polyester fibers had both the highest primary and secondary emissions of formaldehyde among all samples tested. While it is difficult to make blanket conclusions about the relative air quality merits of various carpet fiber options, it is clear that ozone removal percentages and emissions of volatile organic compounds can vary drastically as a function of fiber type.

  13. A sensitive mass spectrometric method for hypothesis-driven detection of peptide post-translational modifications: multiple reaction monitoring-initiated detection and sequencing (MIDAS).

    Science.gov (United States)

    Unwin, Richard D; Griffiths, John R; Whetton, Anthony D

    2009-01-01

    The application of a targeted mass spectrometric workflow to the sensitive identification of post-translational modifications is described. This protocol employs multiple reaction monitoring (MRM) to search for all putative peptides specifically modified in a target protein. Positive MRMs trigger an MS/MS experiment to confirm the nature and site of the modification. This approach, termed MIDAS (MRM-initiated detection and sequencing), is more sensitive than approaches using neutral loss scanning or precursor ion scanning methodologies, due to a more efficient use of duty cycle along with a decreased background signal associated with MRM. We describe the use of MIDAS for the identification of phosphorylation, with a typical experiment taking just a couple of hours from obtaining a peptide sample. With minor modifications, the MIDAS method can be applied to other protein modifications or unmodified peptides can be used as a MIDAS target.

  14. Rotational foot placement specifies the lever arm of the ground reaction force during the push-off phase of walking initiation.

    Science.gov (United States)

    Erdemir, Ahmet; Piazza, Stephen J

    2002-06-01

    The lever arm of the ground reaction force (GRF) about the talocrural joint axis is a functionally important indicator of the nature of foot loading. Walking initiation experiments (ten subjects; age, 23-29 years) were completed to demonstrate that rotational foot placement is a possible strategy to specify the lever arm. Externally-rotated foot placement resulted in larger lever arms during push-off. A computer simulation of push-off revealed that a decreased lever arm reduces the plantarflexion moment necessary to maintain a constant forward velocity, while increasing the required plantarflexion velocity. Shortening of the foot thus diminishes the muscular force demand but also requires high muscle fiber shortening velocities that may limit the force generating capacity of plantar flexors. Decreased plantar flexion moment and slow walking previously noted in partial-foot amputees may result from shortened lever arms in this manner.

  15. Use of Hybridization Chain Reaction-Fluorescent In Situ Hybridization To Track Gene Expression by Both Partners during Initiation of Symbiosis.

    Science.gov (United States)

    Nikolakakis, K; Lehnert, E; McFall-Ngai, M J; Ruby, E G

    2015-07-01

    The establishment of a productive symbiosis between Euprymna scolopes, the Hawaiian bobtail squid, and its luminous bacterial symbiont, Vibrio fischeri, is mediated by transcriptional changes in both partners. A key challenge to unraveling the steps required to successfully initiate this and many other symbiotic associations is characterization of the timing and location of these changes. We report on the adaptation of hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) to simultaneously probe the spatiotemporal regulation of targeted genes in both E. scolopes and V. fischeri. This method revealed localized, transcriptionally coregulated epithelial cells within the light organ that responded directly to the presence of bacterial cells while, at the same time, provided a sensitive means to directly show regulated gene expression within the symbiont population. Thus, HCR-FISH provides a new approach for characterizing habitat transition in bacteria and for discovering host tissue responses to colonization. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Formation yields of glyoxal and methylglyoxal from the gas-phase OH radical-initiated reactions of toluene, xylenes, and trimethylbenzenes as a function of NO2 concentration.

    Science.gov (United States)

    Nishino, Noriko; Arey, Janet; Atkinson, Roger

    2010-09-23

    Aromatic hydrocarbons comprise 20% of non-methane volatile organic compounds in urban areas and are transformed mainly by atmospheric chemical reactions with OH radicals during daytime. In this work we have measured the formation yields of glyoxal and methylglyoxal from the OH radical-initiated reactions of toluene, xylenes, and trimethylbenzenes over the NO2 concentration range (0.2-10.3) × 1013 molecules cm(-3). For toluene, o-, m-, and p-xylene, and 1,3,5-trimethylbenzene, the yields showed a dependence on NO2, decreasing with increasing NO2 concentration and with no evidence for formation of glyoxal or methylglyoxal from the reactions of the OH-aromatic adducts with NO2. In contrast, for 1,2,3- and 1,2,4-trimethylbenzene the glyoxal and methylglyoxal formation yields were independent of the NO2 concentration within the experimental uncertainties. Extrapolations of our results to NO2 concentrations representative of the ambient atmosphere results in the following glyoxal and methylglyoxal yields, respectively: for toluene, 26.0 ± 2.2% and 21.5 ± 2.9%; for o-xylene, 12.7 ± 1.9% and 33.1 ± 6.1%; for m-xylene, 11.4 ± 0.7% and 51.5 ± 8.5%; for p-xylene, 38.9 ± 4.7% and 18.7 ± 2.2%; for 1,2,3-trimethylbenzene, 4.7 ± 2.4% and 15.1 ± 3.3%; for 1,2,4-trimethylbenzene, 8.7 ± 1.6% and 27.2 ± 8.1%; and for 1,3,5-trimethylbenzene, 58.1 ± 5.3% (methylglyoxal).

  17. Initial deposition and electron paramagnetic resonance defects characterization of TiO{sub 2} films prepared using successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yiyong, E-mail: wuyiyong2001@yahoo.com.cn [National Key Laboratory of Materials Behaviors and Evaluation Technology in Space Environments, Harbin Institute of Technology, P.O. 432, Nan gang District, Harbin, 150080 (China); Shi Yaping [National Key Laboratory of Materials Behaviors and Evaluation Technology in Space Environments, Harbin Institute of Technology, P.O. 432, Nan gang District, Harbin, 150080 (China); Harbin University of Commerce, P.O. 493, Song bei District, Harbin, 150028 (China); Xu Xianbin; Sun Chengyue [National Key Laboratory of Materials Behaviors and Evaluation Technology in Space Environments, Harbin Institute of Technology, P.O. 432, Nan gang District, Harbin, 150080 (China)

    2012-06-01

    Successive ionic layer adsorption and reaction (SILAR) technique was considered promisingly to deposit ultra thin titanium dioxide (TiO{sub 2}) films under ambient condition. In this paper, the growth process, structures and paramagnetic defects of the films were characterized by complementary techniques of atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and electron paramagnetic resonance spectroscopy. The results indicate that on glass substrate the SILAR TiO{sub 2} film nucleates in an island mode within the initial five deposition cycles but grows in a layer-by-layer mode afterwards. The growth rate was measured as 4.6 A/cycle. In the as-deposited films, a kind of paramagnetic defects is detected at g (2.0029) and it can be attributed to oxygen vacancies. These as-received oxygen vacancies could be annealed out at 473 K. Ultraviolet irradiation on the as-deposited films can also decrease the density of the defects. The relative mechanisms on the phenomenon were discussed in this paper. - Highlights: Black-Right-Pointing-Pointer TiO{sub 2} films are deposited on glass at 25 Degree-Sign C by successive ionic layer adsorption and reaction method with a rate of 4.6 A/cycle. Black-Right-Pointing-Pointer The films nucleate in an island mode initially but grow in a layer mode afterwards. Black-Right-Pointing-Pointer The SILAR TiO{sub 2} films nucleation period is five cycles. Black-Right-Pointing-Pointer Electron paramagnetic resonance spectroscopy shows that TiO{sub 2} films paramagnetic defects are attributed to oxygen vacancies. Black-Right-Pointing-Pointer They will decrease by anneal or ultraviolet radiation and form hydroxyl or superoxide radicals.

  18. Initial deposition and electron paramagnetic resonance defects characterization of TiO2 films prepared using successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Wu Yiyong; Shi Yaping; Xu Xianbin; Sun Chengyue

    2012-01-01

    Successive ionic layer adsorption and reaction (SILAR) technique was considered promisingly to deposit ultra thin titanium dioxide (TiO 2 ) films under ambient condition. In this paper, the growth process, structures and paramagnetic defects of the films were characterized by complementary techniques of atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and electron paramagnetic resonance spectroscopy. The results indicate that on glass substrate the SILAR TiO 2 film nucleates in an island mode within the initial five deposition cycles but grows in a layer-by-layer mode afterwards. The growth rate was measured as 4.6 Å/cycle. In the as-deposited films, a kind of paramagnetic defects is detected at g (2.0029) and it can be attributed to oxygen vacancies. These as-received oxygen vacancies could be annealed out at 473 K. Ultraviolet irradiation on the as-deposited films can also decrease the density of the defects. The relative mechanisms on the phenomenon were discussed in this paper. - Highlights: ► TiO 2 films are deposited on glass at 25 °C by successive ionic layer adsorption and reaction method with a rate of 4.6 Å/cycle. ► The films nucleate in an island mode initially but grow in a layer mode afterwards. ► The SILAR TiO 2 films nucleation period is five cycles. ► Electron paramagnetic resonance spectroscopy shows that TiO 2 films paramagnetic defects are attributed to oxygen vacancies. ► They will decrease by anneal or ultraviolet radiation and form hydroxyl or superoxide radicals.

  19. Dual roles of hydroxyl radicals and effects of competition on ozonation kinetics of two phenazone-type pollutants

    Directory of Open Access Journals (Sweden)

    Siyu Zhang

    2015-11-01

    Full Text Available Ozonation has been proved to be a promising approach for eliminating emerging pollutants in wastewater. In previous studies, emerging pollutants including diverse pharmaceuticals were found to exhibit significantly different ozonation reactivity. However, how the structural differences of emerging pollutants determine ozonation reactivity and mechanisms are still ambiguous. In this work, ozonation of dimethylaminophenazone (DMP and acetylaminophenazone (AAA with the same parent structure of phenazone but different substitution groups was investigated, in order to probe influencing mechanisms of structural differences on ozonation reactivity. Results show that DMP reacts with ozone and HO·≡ almost 2 and 1 order of magnitude faster than AAA, respectively. At pH 8, HO·≡ accelerates ozonation of DMP, but decreases ozonation of AAA. Competition simultaneously decreases degradation rate of the two phenazones, but effects on AAA are more significant than that on DMP. According to theoretical calculation results, differences in ozonation reactivity and mechanisms of the two phenazones can be mainly attributed to different substitution groups. The dimethylamino group in the structure of DMP increases the ozonation reactivity of phenazone by increasing reaction orbital energies and altering reaction sites, while the acetylamino group in the structure of AAA decreases the reaction orbital energy and therefore lowers the reactivity.

  20. Timing differences in the generation of ground reaction forces between the initial and secondary landing phases of the drop vertical jump ☆

    Science.gov (United States)

    Bates, Nathaniel A.; Ford, Kevin R.; Myer, Gregory D.; Hewett, Timothy E.

    2014-01-01

    Background Rapid impulse loads imparted on the lower extremity from ground contact when landing from a jump may contribute to ACL injury prevalence in female athletes. The drop jump and drop landing tasks enacted in the first and second landings of drop vertical jumps, respectively, have been shown to elicit separate neuromechanical responses. We examined the first and second landings of a drop vertical jump for differences in landing phase duration, time to peak force, and rate of force development. Methods 239 adolescent female basketball players completed drop vertical jumps from an initial height of 31 cm. In-ground force platforms and a three dimensional motion capture system recorded force and positional data for each trial. Findings Between the first and second landing, rate of force development experienced no change (P > 0.62), landing phase duration decreased (P = 0.01), and time to peak ground reaction force increased (P 0.12). Interpretation The current results have important implications for the future assessment of ACL injury risk behaviors. Rate of force development remained unchanged between first and second landings from equivalent fall height, while time to peak reaction force increased during the second landing. Neither factor was dependent on the total time duration of landing phase, which decreased during the second landing. Shorter time to peak force may increase ligament strain and better represent the abrupt joint loading that is associated with ACL injury risk. PMID:23899938

  1. Timing differences in the generation of ground reaction forces between the initial and secondary landing phases of the drop vertical jump.

    Science.gov (United States)

    Bates, Nathaniel A; Ford, Kevin R; Myer, Gregory D; Hewett, Timothy E

    2013-08-01

    Rapid impulse loads imparted on the lower extremity from ground contact when landing from a jump may contribute to ACL injury prevalence in female athletes. The drop jump and drop landing tasks enacted in the first and second landings of drop vertical jumps, respectively, have been shown to elicit separate neuromechanical responses. We examined the first and second landings of a drop vertical jump for differences in landing phase duration, time to peak force, and rate of force development. 239 adolescent female basketball players completed drop vertical jumps from an initial height of 31cm. In-ground force platforms and a three dimensional motion capture system recorded force and positional data for each trial. Between the first and second landing, rate of force development experienced no change (P>0.62), landing phase duration decreased (P=0.01), and time to peak ground reaction force increased (P0.12). The current results have important implications for the future assessment of ACL injury risk behaviors. Rate of force development remained unchanged between first and second landings from equivalent fall height, while time to peak reaction force increased during the second landing. Neither factor was dependent on the total time duration of landing phase, which decreased during the second landing. Shorter time to peak force may increase ligament strain and better represent the abrupt joint loading that is associated with ACL injury risk. © 2013.

  2. Our Shrinking Ozone Layer

    Indian Academy of Sciences (India)

    Depletion of the ozone layer is therefore having significant effects on life on .... but there is always a net balance between the rate of formation and destruction ..... award of Commonwealth Fellowship during the present work and also being an ...

  3. Dobson ozone spectrophotometer modification.

    Science.gov (United States)

    Komhyr, W. D.; Grass, R. D.

    1972-01-01

    Description of a modified version of the Dobson ozone spectrophotometer in which several outdated electronic design features have been replaced by circuitry embodying more modern design concepts. The resulting improvement in performance characteristics has been obtained without changing the principle of operation of the original instrument.

  4. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  5. Ozone, greenhouse effect

    International Nuclear Information System (INIS)

    Aviam, A.M.; Arthaut, R.

    1992-01-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs

  6. Use of bioindicators and passive sampling devices to evaluate ambient ozone concentrations in north central Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Yuska, D.E.; Skelly, J.M.; Ferdinand, J.A.; Stevenson, R.E.; Savage, J.E.; Mulik, J.D.; Hines, A

    2003-09-01

    Passive samplers and bioindicator plants detect ozone air pollution in north central Pennsylvania. - Ambient concentrations of tropospheric ozone and ozone-induced injury to black cherry (Prunus serotina) and common milkweed (Asclepias syriaca) were determined in north central Pennsylvania from 29 May to 5 September 2000 and from 28 May to 18 September 2001. Ogawa passive ozone samplers were utilized within openings at 15 forested sites of which six were co-located with TECO model 49 continuous ozone monitors. A significant positive correlation was observed between the Ogawa passive samplers and the TECO model 49 continuous ozone monitors for the 2000 (r=0.959) and 2001 (r=0.979) seasons. In addition, a significant positive correlation existed in 2000 and 2001 between ozone concentration and elevation (r=0.720) and (r=0.802), respectively. Classic ozone-induced symptoms were observed on black cherry and common milkweed. In 2000, initial injury was observed in early June, whereas for the 2001 season, initial injury was initially observed in late June. During both seasons, injury was noted at most sites by mid- to late-July. Soil moisture potential was measured for the 2001 season and a significant positive relationship (P<0.001) showed that injury to black cherry was a function of cumulative ozone concentrations and available soil moisture.

  7. Use of bioindicators and passive sampling devices to evaluate ambient ozone concentrations in north central Pennsylvania

    International Nuclear Information System (INIS)

    Yuska, D.E.; Skelly, J.M.; Ferdinand, J.A.; Stevenson, R.E.; Savage, J.E.; Mulik, J.D.; Hines, A.

    2003-01-01

    Passive samplers and bioindicator plants detect ozone air pollution in north central Pennsylvania. - Ambient concentrations of tropospheric ozone and ozone-induced injury to black cherry (Prunus serotina) and common milkweed (Asclepias syriaca) were determined in north central Pennsylvania from 29 May to 5 September 2000 and from 28 May to 18 September 2001. Ogawa passive ozone samplers were utilized within openings at 15 forested sites of which six were co-located with TECO model 49 continuous ozone monitors. A significant positive correlation was observed between the Ogawa passive samplers and the TECO model 49 continuous ozone monitors for the 2000 (r=0.959) and 2001 (r=0.979) seasons. In addition, a significant positive correlation existed in 2000 and 2001 between ozone concentration and elevation (r=0.720) and (r=0.802), respectively. Classic ozone-induced symptoms were observed on black cherry and common milkweed. In 2000, initial injury was observed in early June, whereas for the 2001 season, initial injury was initially observed in late June. During both seasons, injury was noted at most sites by mid- to late-July. Soil moisture potential was measured for the 2001 season and a significant positive relationship (P<0.001) showed that injury to black cherry was a function of cumulative ozone concentrations and available soil moisture

  8. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Minghao, E-mail: suiminghao.sui@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xing, Sichu; Sheng, Li; Huang, Shuhang; Guo, Hongguang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. Black-Right-Pointing-Pointer MnOx were supported on MWCNTs to serve as catalyst for ozonation. Black-Right-Pointing-Pointer MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. Black-Right-Pointing-Pointer MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. Black-Right-Pointing-Pointer MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO{center_dot}) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide-OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on

  9. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms

    Directory of Open Access Journals (Sweden)

    Agnieszka Joanna Brodowska

    2017-10-01

    Full Text Available The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms (Bacillus subtilis, B. cereus, B. pumilus, Escherichia coli, Pseudomonas fluorescens, Aspergillus niger, Eupenicillium cinnamopurpureum on a heterogeneous matrix (juniper berries, cardamom seeds initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively. Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O3/m3 O2, with a flow rate of 0.4 L/min and contact time (up to 20 min. The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process.

  10. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms

    Science.gov (United States)

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Kondratiuk-Janyska, Alina; Piątkowski, Marcin; Śmigielski, Krzysztof

    2017-01-01

    The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms (Bacillus subtilis, B. cereus, B. pumilus, Escherichia coli, Pseudomonas fluorescens, Aspergillus niger, Eupenicillium cinnamopurpureum) on a heterogeneous matrix (juniper berries, cardamom seeds) initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively). Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O3/m3 O2, with a flow rate of 0.4 L/min) and contact time (up to 20 min). The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process. PMID:28991199

  11. Oxidation kinetics of hazelnut oil treated with ozone

    Directory of Open Access Journals (Sweden)

    H. Uzun

    2018-01-01

    Full Text Available The present study investigates the oxidation kinetics of hazelnut oil ozonated in different treatment periods (1, 5, 60 and 180 min. The kinetic rate constant (k was taken as the inverse of oxidation onset time (To observing a linear relationship from the plot of lnTo to isothermal temperatures (373, 383, 393, and 403 K carried out at differential scanning calorimetry. Kinetic parameters, activation energy (Ea, activation enthalpy (ΔH‡ and entropy (ΔS‡ were calculated based on the Arrhenius equation and activated complex theory. k values showed an exponential rise with the increase of ozone treatment time. The increase in k correlated well with the increase in the peroxide and free fatty acid values of all samples. Ea and ∆H‡ of the ozone treated oils showed a reducing trend and reflected an increased oxidation sensitivity after ozone treatment. Consistently, an increase in ∆S‡ indicated a faster oxidation reaction with an increase in ozone exposure time. However, no significant difference was observed in k, Ea, ΔH‡, ΔS‡ (p < 0.05 as a function of storage period, after the hazelnut oil was treated with ozone for 1 min.

  12. Oxidation kinetics of hazelnut oil treated with ozone

    International Nuclear Information System (INIS)

    Uzun, H.; Ibanoglu, E.

    2017-01-01

    The present study investigates the oxidation kinetics of hazelnut oil ozonated in different treatment periods (1, 5, 60 and 180 min). The kinetic rate constant (k) was taken as the inverse of oxidation onset time (To) observing a linear relationship from the plot of ln To to isothermal temperatures (373, 383, 393, and 403 K) carried out at differential scanning calorimetry. Kinetic parameters, activation energy (Ea), activation enthalpy (ΔH‡) and entropy (ΔS‡) were calculated based on the Arrhenius equation and activated complex theory. k values showed an exponential rise with the increase of ozone treatment time. The increase in k correlated well with the increase in the peroxide and free fatty acid values of all samples. Ea and ΔH‡ of the ozone treated oils showed a reducing trend and reflected an increased oxidation sensitivity after ozone treatment. Consistently, an increase in ΔS‡ indicated a faster oxidation reaction with an increase in ozone exposure time. However, no significant difference was observed in k, Ea, ΔH‡, ΔS‡ (p < 0.05) as a function of storage period, after the hazelnut oil was treated with ozone for 1 min. [es

  13. Trends in Surface Level Ozone Observations from Human-health Relevant Metrics: Results from the Tropospheric Ozone Assessment Report (TOAR)

    Science.gov (United States)

    Fleming, Z. L.; von Schneidemesser, E.; Doherty, R. M.; Malley, C.; Cooper, O. R.; Pinto, J. P.; Colette, A.; Xu, X.; Simpson, D.; Schultz, M.; Hamad, S.; Moola, R.; Solberg, S.; Feng, Z.

    2017-12-01

    Ozone is an air pollutant formed in the atmosphere from precursor species (NOx, VOCs, CH4, CO) that is detrimental to human health and ecosystems. The global Tropospheric Ozone Assessment Report (TOAR) initiative has assembled a global database of surface ozone observations and generated ozone exposure metrics at thousands of measurement sites around the world. This talk will present results from the assessment focused on those indicators most relevant to human health. Specifically, the trends in ozone, comparing different time periods and patterns across regions and among metrics will be addressed. In addition, the fraction of population exposed to high ozone levels and how this has changed between 2000 and 2014 will also be discussed. The core time period analyzed for trends was 2000-2014, selected to include a greater number of sites in East Asia. Negative trends were most commonly observed at many US and some European sites, whereas many sites in East Asia showed positive trends, while sites in Japan showed more of a mix of positive and negative trends. More than half of the sites showed a common direction and significance in the trends for all five human-health relevant metrics. The peak ozone metrics indicate a reduction in exposure to peak levels of ozone related to photochemical episodes in Europe and the US. A considerable number of European countries and states within the US have shown a decrease in population-weighted ozone over time. The 2000-2014 results will be augmented and compared to the trend analysis for additional time periods that cover a greater number of years, but by necessity are based on fewer sites. Trends are found to be statistically significant at a larger fraction of sites with longer time series, compared to the shorter (2000-2014) time series.

  14. [Ozone concentration distribution of urban].

    Science.gov (United States)

    Yin, Yong-quan; Li, Chang-mei; Ma, Gui-xia; Cui, Zhao-jie

    2004-11-01

    The increase of ozone concentration in urban is one of the most important research topics on environmental science. With the increase of nitrogen oxides and hydrogen-carbon compounds which are exhausted from cars, the ozone concentration in urban is obviously increased on sunlight, and threat of photochemistry smog will be possible. Therefore, it is very important to monitor and study the ozone concentration distribution in urban. The frequency-distribution, diurnal variation and monthly variation of ozone concentration were studied on the campus of Shandong University during six months monitoring. The influence of solar radiation and weather conditions on ozone concentration were discussed. The frequency of ozone concentration less than 200 microg/m3 is 96.88%. The ozone concentration has an obvious diurnal variation. The ozone concentration in the afternoon is higher than in the morning and in the evening. The maximum appears in June, when it is the strong solar radiation and high air-temperature. The weather conditions also influence the ozone concentration. The ozone concentration in clear day is higher than in rainy and cloudy day.

  15. Enhanced ozonation degradation of di-n-butyl phthalate by zero-valent zinc in aqueous solution: Performance and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Gang [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710050 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Wang, Sheng-Jun [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Beijing General Municipal Engineering Design and Research Institute, Beijing 100082 (China); Ma, Jun, E-mail: majun@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Huang, Ting-Lin [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710050 (China); Liu, Zheng-Qian, E-mail: liuzhengqian@gmail.com [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhao, Lei [School of Civil Engineering, Harbin Institute of Technology, Harbin 150090 (China); Su, Jun-Feng [State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Tsinghua University, Beijing 100084 (China)

    2014-01-30

    Highlights: • ZVZ showed an obvious enhanced effect on DBP degradation in ozonation. • The recycling use of ZVZ resulted in the enhancement of DBP degradation. • The formed ZnO and reactive intermediates were responsible for the enhanced effect. • The enhanced effect on DBP degradation by ZVZ was also effective in actual waters. -- Abstract: Enhanced ozonation degradation of di-n-butyl phthalate (DBP) by zero-valent zinc (ZVZ) has been investigated using a semi-continuous reactor in aqueous solution. The results indicated that the combination of ozone (O{sub 3}) and ZVZ showed an obvious synergetic effect, i.e. an improvement of 54.8% on DBP degradation was obtained by the O{sub 3}/ZVZ process after 10 min reaction compared to the cumulative effect of O{sub 3} alone and O{sub 2}/ZVZ. The degradation efficiency of DBP increased gradually with the increase of ZVZ dosage, enhanced as solution pH increasing from 2.0 to 10.0, and more amount of DBP was degraded with the initial concentration of DBP arising from 0.5 to 2.0 mg L{sup −1}. Recycling use of ZVZ resulted in the enhancement of DBP degradation, because the newly formed zinc oxide took part in the reaction. The mechanism investigation demonstrated that the enhancement effect was attributed to the introduction of ZVZ, which could promote the utilization of O{sub 3}, enhance the formation of superoxide radical by reducing O{sub 2} via one-electron transfer, accelerate the production of hydrogen peroxide and the generation of hydroxyl radical. Additionally, the newly formed zinc oxide on ZVZ surface also contributed to the enhancement of DBP degradation in the recycling use of ZVZ. Most importantly, the O{sub 3}/ZVZ process was also effective in enhanced ozonation degradation of DBP under the background of actual waters.

  16. Deposition velocities and impact of physical properties on ozone removal for building materials

    Science.gov (United States)

    Lin, Chi-Chi; Hsu, Shu-Chen

    2015-01-01

    This study aims to estimate the ozone deposition velocities of eight commonly used building materials (BMs) which include calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC), green mineral fiber ceiling (GMFC), gypsum board (GB), green gypsum board (GGB), wooden flooring (WF) and green wooden flooring (GWF). In addition, the impact of physical properties (specific surface area and total pore volume of BM) on ozone removal ability was also explored and discussed. Studies were conducted in a small-scale environmental stainless steel chamber. CSB and GCSB showed the highest ozone deposition velocities, while WF and GWF showed the lowest ozone deposition velocities among test BMs materials. All reaction probabilities were estimated to fall within the order of magnitude of 10-6. Green BMs showed lower reaction probabilities with ozone comparing with non-green BMs except for GGB. Consistent with the trends for deposition velocity, fleecy and porous materials exhibit higher reaction probabilities than smooth, non-porous surfaces. Specific surface area of BM is more closely related to ozone removal than total pore volume of BM with R2 of 0.93 vs. R2 of 0.84. Discussion of Thiele modulus for all test BMs indicates surface reactions are occurring quickly relative to internal diffusion and ozone removal is internal diffusion-limited.

  17. Some current problems in atmospheric ozone chemistry; role of chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Cox, R.A.

    1987-03-01

    A review is given on selected aspects of the reaction mechanisms of current interest in the chemistry of atmospheric ozone. Atmospheric ozone is produced and removed by a complex series of elementary gas-phase photochemical reactions involving O/sub x/, HO/sub x/, NO/sub x/, CIO/sub x/ and hydrocarbon species. At the present time there is a good knowledge of the basic processes involved in ozone chemistry in the stratosphere and the troposphere and the kinetics of most of the key reactions are well defined. There are a number of difficulties in the theoretical descriptions of observed ozone behaviour which may be due to uncertainties in the chemistry. Examples are the failure to predict present day ozone in the photochemically controlled region above 35 Km altitude and the large reductions in the ozone column in the Antartic Spring which has been observed in recent years. In the troposphere there is growing evidence that ozone and other trace gases have changed appreciably from pre-industrial concentrations, due to chemical reactions involving man-made pollutants. Quantitative investigation of the mechanisms by which these changes may occur requires a sound laboratory kinetics data base.

  18. Comparative study of ozonized olive oil and ozonized sunflower oil

    OpenAIRE

    Díaz,Maritza F.; Hernández,Rebeca; Martínez,Goitybell; Vidal,Genny; Gómez,Magali; Fernández,Harold; Garcés,Rafael

    2006-01-01

    In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observ...

  19. Application of computational fluid dynamics modelling to an ozone ...

    African Journals Online (AJOL)

    driniev

    2004-01-01

    Jan 1, 2004 ... Turbulent kinetic energy m2·s-2 km. Disinfection rate constant for .... modelling the kinetic reactions to achieve the most efficient use of the ozone dosed to the system. The USEPA techniques .... be globally categorised into off-gas losses, consumption, and loss by self-decomposition. (Bredtmann, 1982).

  20. Simplified Modeling of Tropospheric Ozone Formation Considering Alternative Fuels Using

    Directory of Open Access Journals (Sweden)

    Leonardo Aragão Ferreira da Silva

    2014-07-01

    Full Text Available Brazilian cities have been constantly exposed to air quality episodes of high ozone concentrations (O3 . Known for not be emitted directly into the environment, O3 is a result of several chemical reactions of other pollutants emitted to atmosphere. The growth of vehicle fleet and government incentives for using alternative fuels like ethanol and Compressed Natural Gas (CNG are changing the Brazilian Metropolitan Areas in terms of acetaldehyde and formaldehyde emissions, Volatile Organic Compounds (VOC's present in the atmosphere and known to act on the kinetics of ozone. Driven by high concentrations of tropospheric ozone in urban/industry centers and its implications for environment and population health, the target of this work is understand the kinetics of ozone formation through the creation of a mathematical model in FORTRAN 90, describing a system of coupled ordinary differential equations able to represent a simplified mechanism of photochemical reactions in the Brazilian Metropolitan Area. Evaluating the concentration results of each pollutant were possible to observe the precursor’s influence on tropospheric ozone formation, which seasons were more conducive to this one and which are the influences of weather conditions on formation of photochemical smog.

  1. Kinetic study of ozonation of molasses fermentation wastewater

    International Nuclear Information System (INIS)

    Coca, M.; Pena, M.; Gonzalez, G.

    2007-01-01

    A kinetic study of molasses wastewater ozonation was carried out in a stirred tank reactor to obtain the rate constants for the decolorization reaction and the regime through which ozone is absorbed. First, fundamental mass transfer parameters such as ozone solubility, volumetric mass transfer coefficients and ozone decomposition kinetics were determined from semi-batch experiments in organic-free solutions with an ionic composition similar that of industrial wastewater. The influence of operating variables such as the stirring rate and gas flow rate on the kinetic and mass transfer parameters was also studied. The application of film theory allows to establish that the reactions between ozone and colored compounds in wastewater take place in the fast and pseudo-first-order regime, within the liquid film. The decolorization rate constants were evaluated at pH 8.7 and 25 deg. C, varying from 0.6 x 10 7 to 3.8 x 10 7 L mol -1 s -1 , depending on the stirring rate and the inlet gas flow

  2. Atmospheric Ozone and Methane in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Ivar S. A. Isaksen

    2014-07-01

    Full Text Available Ozone and methane are chemically active climate-forcing agents affected by climate–chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere, produced and broken down mainly in the troposphere and stratosphre through chemical reactions involving atomic oxygen (O, NOx compounds (NO, NO2, CO, hydrogen radicals (OH, HO2, volatile organic compounds (VOC and chlorine (Cl, ClO and bromine (Br, BrO. Ozone is broken down through changes in the atmospheric distribution of the afore mentioned compounds. Methane is a primary compound emitted from different sources (wetlands, rice production, livestock, mining, oil and gas production and landfills.Methane is broken down by the hydroxyl radical (OH. OH is significantly affected by methane emissions, defined by the feedback factor, currently estimated to be in the range 1.3 to 1.5, and increasing with increasing methane emission. Ozone and methane changes are affected by NOx emissions. While ozone in general increase with increases in NOx emission, methane is reduced, due to increases in OH. Several processes where current and future changes have implications for climate-chemistry interactions are identified. It is also shown that climatic changes through dynamic processes could have significant impact on the atmospheric chemical distribution of ozone and methane, as we can see through the impact of Quasi Biennial Oscillation (QBO. Modeling studies indicate that increases in ozone could be more pronounced toward the end of this century. Thawing permafrost could lead to important positive feedbacks in the climate system. Large amounts of organic material are stored in the upper layers of the permafrost in the yedoma deposits in Siberia, where 2 to 5% of the deposits could be organic material

  3. National Plan for Stratospheric Ozone Monitoring and Early Detection of Change, 1981-1986

    International Nuclear Information System (INIS)

    1982-02-01

    A transition from reliance on a ground-based, geographically-biased ozone observing network operated by cooperating nations to a combined satellite and ground-based monitoring program that will provide global coverage of the vertical distribution of stratospheric ozone, as well as total ozone overburden is discussed. The strategy, instrumentation, and monitoring products to be prepared during this transition period are also discussed. Global atmospheric monitoring for protection of the ultraviolet shielding properties of atmospheric ozone is considered. The operational satellite ozone vertical profile monitoring system to be flown on the NOAA Tiros N operational satellite series to carry on ozone measurements initiated on the NASA R D satellites is also considered

  4. Temperature and Pressure Depences on the Isotopic Fractionation Effect in the Thermal Decomposition of Ozone

    Directory of Open Access Journals (Sweden)

    Su-Ju Kim

    1997-12-01

    Full Text Available To understand the mass-independent isotopic fractionation effects, thermal decomposition of ozone was performed. Initial oxygen gas was converted to ozone completely. Then, the ozone was decomposed to oxygen at various temperatures(30~150C. Isotopic compositions of product oxygen and residual ozone were measured using a stable isotope mass spectrometer. The experimental results were compared with the studies which were peformed at the similar conditions. From the raw experimental data, the functions of the instantaneous fractionation factors were calculated by the least square fit. The results clearly showed the temperature dependence. They also showed the pressure dependence and the surface effect. This study may play an important role in the study of ozone decomposition mechanism. It can be applied to explain the mass-independent isotopic pattern found in stratospheric ozone and in meteorites.

  5. The meteorological environment of the tropospheric ozone maximum over the tropical South Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurti, T N; Fuelberg, H E; Bensman, E L; Sinha, M C; Oosterhof, D; Kumar, V B [Florida State University, Tallahassee, FL (United States). Department of Meteorology

    1993-01-01

    This paper examines atmospheric flow patterns over the Southern Atlantic Ocean, where a maximum of tropospheric ozone is observed just west of Southern Africa. The climatology of the South Atlantic basin is shown to favour flow off from South America and Africa converging into the area of high tropospheric ozone. This ozone is initially attributable to byproducts of biomass burning over both these continents. A case study, carried out over 6 days during October 1989, was used to determine the effect of a purely advective scheme (no photochemistry) on the distribution of ozone over the basin. The results showed a pattern in which ozone accumulated off the west coast of South Africa within 72 hours after beginning with an homogenous, zonally-symmetric distribution of ozone. 11 refs.

  6. Health Effects of Ozone and Particle Pollution

    Science.gov (United States)

    ... this page: Health Effects of Ozone and Particle Pollution Two types of air pollution dominate in the ... So what are ozone and particle pollution? Ozone Pollution It may be hard to imagine that pollution ...

  7. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon

    International Nuclear Information System (INIS)

    Konsowa, A.H.; Ossman, M.E.; Chen, Yongsheng; Crittenden, John C.

    2010-01-01

    The decolorization of industrial wastewater containing direct dye (Drimarene Red CL-3B) by advanced oxidation process using ozonation in a semi-batch bubble column reactor followed by granule activated carbon (GAC) adsorption process was studied. The effect of initial dye concentration, ozone concentration, pH and ozone-air flow rate on the rate of dye decolorization were investigated. It was found that the rate of dye decolorization increases with increasing ozone concentration, ozone-air flow rate, and pH but decreases with increasing initial dye concentration. This study is a hybrid system conducted in combination between ozonation process and GAC adsorption to reveal higher and efficient removal of color and TOC. The process started with ozonation for efficient and rapid decolorization of dyeing wastewater, followed by GAC adsorption process to gain efficient removal of color and TOC. The adsorption process was found to be very efficient in removal of ozonation residual TOC, in view of high TOC removal, up to 37% TOC removal was obtained. Numerical correlation using regression analysis for decolorization time with the operating conditions of the ozonation process were presented.

  8. Explosion and detonation of ozone in mixtures with carrier gases employed in nuclear technology

    International Nuclear Information System (INIS)

    Weh, M.M.L.

    1988-09-01

    Explosive ozone is known to be formed during low temperature radiolysis of oxygen. Detailed knowledge on the explosion and the detonation of ozone is therefore required for safety considerations of nuclear installations such as proposed for the cryogenic separation of 85 krypton from the head end off gas of a reprocessing plant. The explosion properties of gaseous ozone in mixtures with oxygen, nitrogen, helium, argon, krypton, xenon and difluorodichloromethane were studied by varying the ozone concentration, the initial pressure and the shape of the vessel containing the gas. Detonation velocities were determined for gaseous mixtures of ozone with oxygen, argon, krypton or xenon as functions of the ozone concentration. In addition, the initial pressure was varied for ozone-xenon mixtures. The effect of a packing such as used in the 85 Kr-separation plant 'KRETA' in KfK on ozone-xenon detonation was investigated. In addition, the effect of low amounts of carbon monoxide, methane and nitrogen dioxide on the explosion (O 3 /Ar) and the detonation (O 3 /Xe) of an ozone-noble gas mixture was determined. (orig.) [de

  9. Kinetics of the degradation of 2-chlorophenol by ozonation at pH 3

    International Nuclear Information System (INIS)

    Sung Menghau; Huang, C.P.

    2007-01-01

    Prediction of byproduct distribution during ozonation is of importance to the design of treatment process. In this study, degradation products in direct ozonation of 2-chlorophenol in aqueous solution were identified by employing the chemical derivatization technique, specifically, silylation. Transient distribution of degradation products, in a semi-batch reactor under three ozone dosages were identified and determined by HPLC analysis. An empirical degradation pathway was proposed to describe the ozonation reaction. A mathematical protocol consisting of 11 equations and 12 rate constants was developed to solve and optimize the kinetic parameters. Modeling results revealed that the empirical pathway was capable of predicting the ozonation reaction at the beginning phase under a higher ozone dosage (e.g., greater than 6 mg/L g ). The degree of agreement between predicted and experimental data decreased as the ozone dosage decreased to 1.2 mg/L g . Results suggested that there was a dosage-dependent pathway in the direct ozonation of 2-chlorophenol

  10. Past changes in the vertical distribution of ozone – Part 1: Measurement techniques, uncertainties and availability

    Directory of Open Access Journals (Sweden)

    B. Hassler

    2014-05-01

    Full Text Available Peak stratospheric chlorofluorocarbon (CFC and other ozone depleting substance (ODS concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP/World Meteorological Organization (WMO Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument. Archive location information for each data set is also given.

  11. An assessment of ground-level ozone concentrations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1997-01-01

    Syncrude and Suncor have plans to develop new oil sands leases and to increase crude oil and bitumen recovery in the Athabasca oil sands region. A first air quality assessment was prepared as part of the Alberta Energy and Utilities Board application, in order to evaluate the emissions and potential impacts associated with the development. The Pembina Institute raised several issues with respect to potential future changes in ambient ozone levels as a result of the Aurora Mine operations. In response to these concerns, another more rigorous assessment was conducted to predict future ground-level ozone concentrations in the Fort McMurray area. This report includes: (1) ambient air quality guidelines for ozone, (2) emissions inventory for dispersion modelling, (3) dispersion modelling methodology, and (4) predicted ambient ozone concentrations. Ground level ozone (O 3 ) concentrations result from anthropogenically produced ozone, and from naturally occurring ozone. Ozone is not directly emitted to the atmosphere from industrial sources, but is formed as a result of chemical reactions between NO x and VOCs, which are emitted from industrial sources within the Athabasca oil sands region. NO x and VOC emissions associated with the Aurora Mine operation are predicted to increase hourly average ozone concentrations in the Fort McMurray area by only 0.001 ppm. 17 refs., 18 tabs., 5 figs

  12. Tropospheric Ozone Change from 1980 to 2010 Dominated by Equatorward Redistribution of Emissions

    Science.gov (United States)

    Zhang, Yuqiang; Cooper, Owen R.; Gaudel, Audrey; Thompson, Anne M.; Nedelec, Philippe; Ogino, Shin-Ya; West, J. Jason

    2016-01-01

    Ozone is an important air pollutant at the surface, and the third most important anthropogenic greenhouse gas in the troposphere. Since 1980, anthropogenic emissions of ozone precursors methane, non-methane volatile organic compounds, carbon monoxide and nitrogen oxides (NOx) have shifted from developed to developing regions. Emissions have thereby been redistributed equatorwards, where they are expected to have a stronger effect on the tropospheric ozone burden due to greater convection, reaction rates and NOx sensitivity. Here we use a global chemical transport model to simulate changes in tropospheric ozone concentrations from 1980 to 2010, and to separate the influences of changes in the spatial distribution of global anthropogenic emissions of short-lived pollutants, the magnitude of these emissions, and the global atmospheric methane concentration. We estimate that the increase in ozone burden due to the spatial distribution change slightly exceeds the combined influences of the increased emission magnitude and global methane. Emission increases in Southeast, East and South Asia may be most important for the ozone change, supported by an analysis of statistically significant increases in observed ozone above these regions. The spatial distribution of emissions dominates global tropospheric ozone, suggesting that the future ozone burden will be determined mainly by emissions from low latitudes.

  13. Near-ground ozone source attributions and outflow in central eastern China during MTX2006

    Science.gov (United States)

    Li, J.; Wang, Z.; Akimoto, H.; Yamaji, K.; Takigawa, M.; Pochanart, P.; Liu, Y.; Tanimoto, H.; Kanaya, Y.

    2008-12-01

    A 3-D regional chemical transport model, the Nested Air Quality Prediction Model System (NAQPMS), with an on-line tracer tagging module was used to study the source of the near-ground (pollutants, and it captured highly polluted and clean cases well. The simulated near-ground ozone level over CEC was 60-85 ppbv (parts per billion by volume), which was higher than values in Japan and over the North Pacific (20-50 ppbv). The simulated tagged tracer data indicated that the regional-scale transport of chemically produced ozone over other areas in CEC contributed to the greatest fraction (49%) of the near-ground mean ozone at Mt. Tai in June; in situ photochemistry contributed only 12%. Due to high anthropogenic and biomass burning emissions that occurred in the southern part of the CEC, the contribution to ground ozone levels from this area played the most important role (32.4 ppbv, 37.9% of total ozone) in the monthly mean ozone concentration at Mt. Tai; values reached 59 ppbv (62%) on 6-7 June 2006. The monthly mean horizontal distribution of chemically produced ozone from various ozone production regions indicated that photochemical reactions controlled the spatial distribution of O3 over CEC. The regional-scale transport of pollutants also played an important role in the spatial and temporal distribution of ozone over CEC. Chemically produced ozone from the southern part of the study region can be transported northeastwardly to the northern rim of CEC; the mean contribution was 5-10 ppbv, and it reached 25 ppbv during high ozone events. Studies of the outflow of CEC ozone and its precursors, as well as their influences and contributions to the ozone level over adjacent regions/countries, revealed that the contribution of CEC ozone to mean ozone mixing ratios over the Korean Peninsula and Japan was 5-15 ppbv, of which about half was due to the direct transport of ozone from CEC and half was produced locally by ozone precursors transported from CEC.

  14. Ozone tolerance in snap bean is associated with elevated ascorbic acid in the leaf apoplast

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, K.O. [North Carolina State Univ., United States Dept. of Agriculture-Agricultural Research Service, and Dept. of Crop Science, Raleigh, NC (United States); Eason, G. [North Carolina, State Univ., United States Dept. of Plant Pathology, Raleigh, NC (United States)

    2002-03-01

    Ascorbic acid (AA) in the leaf apoplast has the potential to limit ozone injury by participating in reactions that detoxify ozone and reactive oxygen intermediates and thus prevent plasma membrane damage. Genotypes of snap bean (Phaseolus vulgaris L) were compared in controlled environments and in open-top field chambers to assess the relationship between extracellular AA content and ozone tolerance. Vacuum infiltration methods were employed to separate leaf AA into extracellular and intracellular fractions. For plants grown in controlled environments at low ozone concentration (4 nmol mol{sup -1} ozone), leaf apoplast AA was significantly higher in tolerant genotypes (300-400 nmol g{sup -1} FW) compared with sensitive genotypes (approximately 50 nmol g{sup -1} FW), evidence that ozone tolerance is associated with elevated extracellular AA. For the open top chamber study, plants were grown in pots under charcoal-filtered air (CF) conditions and then either maintained under CF conditions (29 nmol mol{sup -1} ozone) or exposed to elevated ozone (67 nmol mol{sup -1} ozone). Following an 8-day treatment period, leaf apoplast AA was in the range of 100-190 nmol g{sup -1} FW for all genotypes, but no relationship was observed between apoplast AA content and ozone tolerance. The contrasting results in the two studies demonstrated a potential limitation in the interpretation of extracellular AA data. Apoplast AA levels presumably reflect the steady-state condition between supply from the cytoplasm and utilization within the cell wall. The capacity to detoxify ozone in the extracellular space may be underestimated under elevated ozone conditions where the dynamics of AA supply and utilization are not adequately represented by a steady-state measurement. (au)

  15. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry.

    Science.gov (United States)

    Stinson, Craig A; Zhang, Wenpeng; Xia, Yu

    2018-03-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. Graphical Abstract ᅟ.

  16. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Stinson, Craig A.; Zhang, Wenpeng; Xia, Yu

    2018-03-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. [Figure not available: see fulltext.

  17. ADVERSE DRUG REACTIONS DUE TO ANTITUBERCULAR DRUGS DURING THE INITIAL PHASE OF THERAPY IN HOSPITALISED PATIENTS FOR TUBERCULOSIS IN SRI KRISHNA MEDICAL COLLEGE, MUZAFFARPUR, BIHAR

    Directory of Open Access Journals (Sweden)

    Manish Ranjan Shrivastava

    2017-03-01

    Full Text Available BACKGROUND To improve patient care and safety in relation to the use of medicines and providing early warnings regarding ADR and the risk groups associated with its development, which might affect the success of the programme. It will thus support the safe and more effective use of medicine. MATERIALS AND METHODS A prospective study done from Indoor Patient Department (IPD Medicine and IPD Tuberculosis and Chest (including DOTS and DOTS Plus Centre in Sri Krishna Medical College and Hospital (SKMCH, Muzaffarpur, Bihar, from April 2015 to June 2016. Total of 500 patients included in the study and reviewed for at least first 2 months of initiation of treatment. Naranjo adverse drug reaction probability scale and Hartwig’s severity assessment scale were utilised for determination of probability and severity of ADR, respectively. RESULTS 500 patients included in study were analysed. ADR was found in 60 patients (incidence of ADR12%, mostly presented within first 30 days of initiation of treatment and mostly it is due to multidrug treatment and the most common drugs responsible were isoniazid, then rifampicin and pyrazinamide, which were more common in female patients (36 as compared to male patients (24, most cases were mild and had probable relationship. Most cases recovered spontaneously while some required symptomatic and very few required specific treatment. The most common ADR noted was hepatobiliary (increased in liver enzyme (54.69%.95% of cases showing ADR were between 31.2 to 56.8 years of age and between 26.47 to 76.87 kg weight. CONCLUSION In our study, incidences of ADR of antitubercular drug was around 12% and hepatobiliary manifestations in the form of raised liver enzymes is the most common manifestation. The most common drug responsible is isoniazid. ADRs are more common in females and in rural population with mean age 44 years and mean weight of 51.67 kg and mostly noticed within 30 days of initiation of treatment. Most of the

  18. Ozonation of clofibric acid catalyzed by titanium dioxide.

    Science.gov (United States)

    Rosal, Roberto; Gonzalo, María S; Rodríguez, Antonio; García-Calvo, Eloy

    2009-09-30

    The removal of clofibric acid from aqueous solution has been investigated in catalytic and non-catalytic semicontinuous ozonation runs. Kinetic data were analyzed using second order expressions for the reaction between organics and ozone or hydroxyl radicals. Catalytic runs used a commercial titanium dioxide catalyst consisting of fumed colloidal particles. The kinetic constant of the non-catalytic ozonation of clofibric acid at pH 3 was 8.16 x 10(-3)+/-3.4 x 10(-4)L mmol(-1)s(-1). The extent of mineralization during non-catalytic runs ranged from 50% at pH 7 to 20% at pH 3 in a reaction that essentially took place during the first 10-20 min. The catalyst increased the total extent of mineralization, its effect being more important during the first part of the reaction. The pseudo-homogeneous catalytic rate constant was 2.17 x 10(-2) L mmol(-1)s(-1) at pH 3 and 6.80 x 10(-1)L mmol(-1)s(-1) at pH 5, with up to a threefold increase with respect to non-catalytic constants using catalyst load of 1g/L. A set of stopped-flow experiments were designed to elucidate the role of catalyst, whose effect was probably due to the adsorption of organics on catalytic sites rather than to the promotion of ozone decomposition.

  19. Cyanide Containing Wastewater Treatment by Ozone Enhanced Catalytic Oxidation over Diatomite Catalysts

    Directory of Open Access Journals (Sweden)

    Lin Mingguo

    2018-01-01

    Full Text Available Cyanide containing wastewater that discharged from gold mining process creates environmental problems due to the toxicity of cyanide. As one of the promising advanced oxidation process, catalytic oxidation with ozone is considered to be effective on the purification of cyanide. Diatomite, a natural mineral, was used as catalyst in this study. The effect of O3 dosage, salinity, initial cyanide concentration and initial pH condition were investigated. It was observed that the removal rate of cyanide was much higher in the catalytic oxidation with ozone process than the one in zone alone process. Alkaline condition was especially favorable for cyanide in catalytic oxidation with ozone. The ozone and catalytic oxidation with ozone were simulated by pseudo-first-order kinetics model. The apparent first-order rate constant contribution of the diatomite catalyst was 0.0757 min-1, and the contribution percentage was 65.77%.

  20. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water.

    Science.gov (United States)

    Bourgin, Marc; Borowska, Ewa; Helbing, Jakob; Hollender, Juliane; Kaiser, Hans-Peter; Kienle, Cornelia; McArdell, Christa S; Simon, Eszter; von Gunten, Urs

    2017-10-01

    The efficiency of ozone-based processes under various conditions was studied for the treatment of a surface water (Lake Zürich water, Switzerland) spiked with 19 micropollutants (pharmaceuticals, pesticides, industrial chemical, X-ray contrast medium, sweetener) each at 1 μg L -1 . Two pilot-scale ozonation reactors (4-5 m 3  h -1 ), a 4-chamber reactor and a tubular reactor, were investigated by either conventional ozonation and/or the advanced oxidation process (AOP) O 3 /H 2 O 2 . The effects of selected operational parameters, such as ozone dose (0.5-3 mg L -1 ) and H 2 O 2 dose (O 3 :H 2 O 2  = 1:3-3:1 (mass ratio)), and selected water quality parameters, such as pH (6.5-8.5) and initial bromide concentration (15-200 μg L -1 ), on micropollutant abatement and bromate formation were investigated. Under the studied conditions, compounds with high second-order rate constants k O3 >10 4  M -1  s -1 for their reaction with ozone were well abated (>90%) even for the lowest ozone dose of 0.5 mg L -1 . Conversely, the abatement efficiency of sucralose, which only reacts with hydroxyl radicals (OH), varied between 19 and 90%. Generally, the abatement efficiency increased with higher ozone doses and higher pH and lower bromide concentrations. H 2 O 2 addition accelerated the ozone conversion to OH, which enables a faster abatement of ozone-resistant micropollutants. Interestingly, the abatement of micropollutants decreased with higher bromide concentrations during conventional ozonation due to competitive ozone-consuming reactions, except for lamotrigine, due to the suspected reaction of HOBr/OBr - with the primary amine moieties. In addition to the abatement of micropollutants, the evolution of the two main transformation products (TPs) of hydrochlorothiazide (HCTZ) and tramadol (TRA), chlorothiazide (CTZ) and tramadol N-oxide (TRA-NOX), respectively, was assessed by chemical analysis and kinetic modeling. Both selected TPs were quickly formed initially

  1. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    Science.gov (United States)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  2. Experimental study of ozone synthesis

    International Nuclear Information System (INIS)

    Garamoon, A A; Elakshar, F F; Nossair, A M; Kotp, E F

    2002-01-01

    A silent discharge ozonizer has been constructed with a design that enables the study of ozone concentration behaviour as a function of different parameters when oxygen used as a working gas. The behaviour of ozone concentration as a function of discharge current density has four characteristic regions. The concentration is enhanced by more than threefold whenever gas pressure is reduced by a factor of two. The flow rate of the working gas is a more effective parameter on ozone concentration than the gas pressure. When the flow rate is kept constant, and the pressure is decreased by 100%, the ozone concentration increases by only 10%. On the other hand, when the flow rate is decreased by 13%, the ozone concentration increases by 200%, whenever the gas pressure is kept constant. The concentration is nearly doubled when the gap space is increased by four times under the same conditions. The length of the discharge region, the thickness and the dielectric constant of the insulating materials are found to have a considerable effect on the generated ozone concentration. Also, the ozone concentration is ten times less when air is used instead of oxygen as a working gas. A maximum efficiency of 185 g/kWh, is obtained for the present system

  3. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  4. Are Antarctic ozone variations a manifestation of dynamics or chemistry?

    Science.gov (United States)

    Tung, K.-K.; Ko, M. K. W.; Rodriguez, J. M.; Sze, N. D.

    1986-01-01

    The existence of a reverse circulation cell with rising motion in the polar lower stratosphere is suggested as an explanation for the temporal behavior of the ozone column density in the Antarctic region. The upwelling brings ozone-poor air from below 100 mbar to the stratosphere, possibly contributing to the observed ozone decline in early spring. At the same time, the Antarctic stratosphere might contain a very low concentration of NO(x), a condition that could favor a greatly enhanced catalytic removal of O3 by halogen species. It is argued that heterogeneous processes and formation of OClO by the reaction BrO+ClO - OClO+Br before and after the polar night might help to suppress the NO(x) levels during the early spring period.

  5. Isoprene biosynthesis in hybrid poplar impacts ozone tolerance

    Science.gov (United States)

    Behnke, K.; Kleist, E.; Uerlings, R.; Wildt, J.; Rennenberg, H.; Schnitzler, J. P.

    2009-04-01

    Isoprene is the most abundant volatile compound emitted by vegetation. It influences air chemistry and is thought to take part in plant defense reactions against abiotic stress such as high temperature or ozone. However, whether or not isoprene emission interacts with ozone tolerance of plants is still in discussion. We exploited transgenic non-isoprene emitting Grey poplar (Populus x canescens) in a biochemical and physiological model study to investigate the effect of acute ozone stress on the elicitation of defense-related emissions of plant volatiles, photosynthesis and the antioxidative system. We recorded that non-isoprene emitting poplars are more resistant to ozone as indicated by less damaged leaf area and higher assimilation rates compared to ozone-exposed wild type plants. The integral of green leaf volatile (GLV) emissions was different between the two poplar phenotypes and a reliable early marker for subsequent leaf damage. For other stress-induced volatiles like mono-, homo-, and sesquiterpenes, and methyl salicylate similar time profiles, pattern and emission intensities were observed in both transgenic and wild type plants. However, un-stressed non-isoprene emitting poplars are characterized by elevated levels of ascorbate and α-tocopherol as well as a more effective de-epoxidation ratio of xanthophylls than in wild type plants. Since ozone quenching properties of ascorbate are much higher than those of isoprene and furthermore α-tocopherol also is an essential antioxidant, non-isoprene emitting poplars might benefit from changes within the antioxidative system by providing them with enhanced ozone tolerance.

  6. Concurrent validity and reliability of using ground reaction force and center of pressure parameters in the determination of leg movement initiation during single leg lift.

    Science.gov (United States)

    Aldabe, Daniela; de Castro, Marcelo Peduzzi; Milosavljevic, Stephan; Bussey, Melanie Dawn

    2016-09-01

    Postural adjustment evaluations during single leg lift requires the initiation of heel lift (T1) identification. T1 measured by means of motion analyses system is the most reliable approach. However, this method involves considerable workspace, expensive cameras, and time processing data and setting up laboratory. The use of ground reaction forces (GRF) and centre of pressure (COP) data is an alternative method as its data processing and setting up is less time consuming. Further, kinetic data is normally collected using frequency samples higher than 1000Hz whereas kinematic data are commonly captured using 50-200Hz. This study describes the concurrent-validity and reliability of GRF and COP measurements in determining T1, using a motion analysis system as reference standard. Kinematic and kinetic data during single leg lift were collected from ten participants. GRF and COP data were collected using one and two force plates. Displacement of a single heel marker was captured by means of ten Vicon(©) cameras. Kinetic and kinematic data were collected using a sample frequency of 1000Hz. Data were analysed in two stages: identification of key events in the kinetic data, and assessing concurrent validity of T1 based on the chosen key events with T1 provided by the kinematic data. The key event presenting the least systematic bias, along with a narrow 95% CI and limits of agreement against the reference standard T1, was the Baseline COPy event. Baseline COPy event was obtained using one force plate and presented excellent between-tester reliability. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Tropospheric ozone variations in polar regions; Troposphaerische Ozonvariationen in Polarregionen

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, S.

    1997-08-01

    An extensive analysis for the description of chemical and dynamical processes during tropospheric ozone minima in the Arctic and Antarctic was carried out in this work. One main task was the analysis of the source regions of tropospheric ozone destruction and the following transport of ozone depleted air masses to the measuring site. Furtheron the ozone destruction mechanism itself should be examined as well as the efficiency of heterogeneous reactions for the regeneration of non-reative bromine compounds, which seems to be necessary because bromine may be the key component in the destruction of tropospheric ozone in polar regions. (orig./KW) [Deutsch] In der vorliegenden Arbeit wurde eine umfangreiche Analyse zur Beschreibung der chemischen und dynamischen Prozesse waehrend troposphaerischer Ozonminima in der Arktis und Antarktis durchgefuehrt. Ziel war es, die Quellregion des Ozonabbaus sowie den ausloesenden ozonabbauenden Mechanismus zu benennen, die Effizienz heterogener Reaktionen zur Regenerierung nichtreaktiver Bromverbindungen waehrend des Ozonabbaus zu ermitteln und den Transport der ozonarmen Luftmassen zum Messort zu untersuchen. (orig./KW)

  8. Low temperature ozone oxidation of solid waste surrogates

    Science.gov (United States)

    Nabity, James A.; Lee, Jeffrey M.

    2015-09-01

    Solid waste management presents a significant challenge to human spaceflight and especially, long-term missions beyond Earth orbit. A six-month mission will generate over 300 kg of solid wastes per crewmember that must be dealt with to eliminate the need for storage and prevent it from becoming a biological hazard to the crew. There are several methods for the treatment of wastes that include oxidation via ozone, incineration, microbial oxidation or pyrolysis and physical methods such as microwave drying and compaction. In recent years, a low temperature oxidation process using ozonated water has been developed for the chemical conversion of organic wastes to CO2 and H2O. Experiments were conducted to evaluate the rate and effectiveness with which ozone oxidized several different waste materials. Increasing the surface area by chopping or shredding the solids into small pieces more than doubled the rate of oxidation. A greater flow of ozone and agitation of the ozonated water system also increased processing rates. Of the materials investigated, plastics have proven the most difficult to oxidize. The processing of plastics above the glass transition temperatures caused the plastics to clump together which reduced the exposed surface area, while processing at lower temperatures reduced surface reaction kinetics.

  9. Ozone and the oxidizing properties of the troposphere

    International Nuclear Information System (INIS)

    Megie, G.

    1996-01-01

    This article is about the rising concentration of ozone and photo-oxidizers observed in the troposphere, the atmosphere between the ground and a height of 10 to 15 km. This serious global environmental problem has up to now been less well known than the greenhouse effect or the decrease in stratospheric ozone. This is because it varies with time and place and involves many complicated physico-chemical and atmospheric processes. At our latitudes, the average ozone concentration in the air we breathe has quadrupled since the beginning of this century. In polluted areas it often exceeds the recommended norms. This increase in ozone concentrations in the lower atmosphere directly reflects the impact of man-made emissions of compounds like methane, carbon monoxide, hydrocarbons and nitrogen oxides. Sunlight acts on these compounds to form ozone via complicated chemical reactions. This change in oxidizing properties of the troposphere is beginning produce perceptible effects on vegetable production, human health and climate. (author). 24 refs., 5 figs., 4 tabs

  10. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    Science.gov (United States)

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  11. Effect of ozone concentration on silicon surface passivation by atomic layer deposited Al2O3

    International Nuclear Information System (INIS)

    Gastrow, Guillaume von; Li, Shuo; Putkonen, Matti; Laitinen, Mikko; Sajavaara, Timo; Savin, Hele

    2015-01-01

    Highlights: • The ALD Al 2 O 3 passivation quality can be controlled by the ozone concentration. • Ozone concentration affects the Si/Al 2 O 3 interface charge and defect density. • A surface recombination velocity of 7 cm/s is reached combining ozone and water ALD. • Carbon and hydrogen concentrations correlate with the surface passivation quality. - Abstract: We study the impact of ozone-based Al 2 O 3 Atomic Layer Deposition (ALD) on the surface passivation quality of crystalline silicon. We show that the passivation quality strongly depends on the ozone concentration: the higher ozone concentration results in lower interface defect density and thereby improved passivation. In contrast to previous studies, our results reveal that too high interface hydrogen content can be detrimental to the passivation. The interface hydrogen concentration can be optimized by the ozone-based process; however, the use of pure ozone increases the harmful carbon concentration in the film. Here we demonstrate that low carbon and optimal hydrogen concentration can be achieved by a single process combining the water- and ozone-based reactions. This process results in an interface defect density of 2 × 10 11 eV −1 cm −2 , and maximum surface recombination velocities of 7.1 cm/s and 10 cm/s, after annealing and after an additional firing at 800 °C, respectively. In addition, our results suggest that the effective oxide charge density can be optimized in a simple way by varying the ozone concentration and by injecting water to the ozone process.

  12. Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional representativeness

    Science.gov (United States)

    Yin, Xiufeng; Kang, Shichang; de Foy, Benjamin; Cong, Zhiyuan; Luo, Jiali; Zhang, Lang; Ma, Yaoming; Zhang, Guoshuai; Rupakheti, Dipesh; Zhang, Qianggong

    2017-09-01

    Ozone is an important pollutant and greenhouse gas, and tropospheric ozone variations are generally associated with both natural and anthropogenic processes. As one of the most pristine and inaccessible regions in the world, the Tibetan Plateau has been considered as an ideal region for studying processes of the background atmosphere. Due to the vast area of the Tibetan Plateau, sites in the southern, northern and central regions exhibit different patterns of variation in surface ozone. Here, we present continuous measurements of surface ozone mixing ratios at Nam Co Station over a period of ˜ 5 years (January 2011 to October 2015), which is a background site in the inland Tibetan Plateau. An average surface ozone mixing ratio of 47.6 ± 11.6 ppb (mean ± standard deviation) was recorded, and a large annual cycle was observed with maximum ozone mixing ratios in the spring and minimum ratios during the winter. The diurnal cycle is characterized by a minimum in the early morning and a maximum in the late afternoon. Nam Co Station represents a background region where surface ozone receives negligible local anthropogenic emissions inputs, and the anthropogenic contribution from South Asia in spring and China in summer may affect Nam Co Station occasionally. Surface ozone at Nam Co Station is mainly dominated by natural processes involving photochemical reactions, vertical mixing and downward transport of stratospheric air mass. Model results indicate that the study site is affected differently by the surrounding areas in different seasons: air masses from the southern Tibetan Plateau contribute to the high ozone levels in the spring, and enhanced ozone levels in the summer are associated with air masses from the northern Tibetan Plateau. By comparing measurements at Nam Co Station with those from other sites on the Tibetan Plateau, we aim to expand the understanding of ozone cycles and transport processes over the Tibetan Plateau. This work may provide a

  13. Ozone-UV-catalysis based advanced oxidation process for wastewater treatment.

    Science.gov (United States)

    Tichonovas, Martynas; Krugly, Edvinas; Jankunaite, Dalia; Racys, Viktoras; Martuzevicius, Dainius

    2017-07-01

    A bench-scale advanced oxidation (AO) reactor was investigated for the degradation of six pollutants (2-naphthol, phenol, oxalic acid, phthalate, methylene blue, and D-glucose) in a model wastewater at with the aim to test opportunities for the further upscale to industrial applications. Six experimental conditions were designed to completely examine the experimental reactor, including photolysis, photocatalysis, ozonation, photolytic ozonation, catalytic ozonation, and photocatalytic ozonation. The stationary catalyst construction was made from commercially available TiO 2 nanopowder by mounting it on a glass support and subsequently characterized for morphology (X-ray diffraction analysis and scanning electron microscopy) as well as durability. The ozone was generated in a dielectrical barrier discharge reactor using air as a source of oxygen. The degradation efficiency was estimated by the decrease in total organic carbon (TOC) concentration as well as toxicity using Daphnia magna, and degradation by-products by ultra-performance liquid chromatography-mass spectrometry. The photocatalytic ozonation was the most effective for the treatment of all model wastewater. The photocatalytic ozonation was most effective against ozonation and photolytic ozonation at tested pH values. A complete toxicity loss was obtained after the treatment using photocatalytic ozonation. The possible degradation pathway of the phthalate by oxidation was suggested based on aromatic ring opening reactions. The catalyst used at this experiment confirmed as a durable for continuous use with almost no loss of activity over time. The design of the reactor was found to be very effective for water treatment using photocatalytic ozonation. Such design has a high potential and can be further upscaled to industrial applications due to the simplicity and versatility of manufacturing and maintenance.

  14. Artificially ionized region as a source of ozone in the stratosphere

    International Nuclear Information System (INIS)

    Gurevich, Aleksandr V; Litvak, Aleksandr G; Vikharev, A L; Ivanov, O A; Borisov, Nikolai D; Sergeichev, Konstantin F

    2000-01-01

    A set of physical and chemical processes occurring in a microwave stratospheric discharge of nanosecond duration is discussed in connection with the effect they may have locally on the ozone layer in the artificially ionized region (AIR) in the stratosphere. The AIR, to be created at altitudes of 18 - 20 km by the microwave breakdown of air with ground-produced powerful electromagnetic wave beams, is planned for use in the natural physical experiment aimed at active monitoring of the ozone layer (its internal state and a set of plasma-chemical and photochemical processes) by controllably generating a considerable amount of ozone in the stratosphere. Results of relevant theoretical studies are presented, as are those of a large series of laboratory experiments performed under conditions similar to those prevailing in the stratosphere. Discharge regimes securing the efficient growth of ozone concentration are identified and studied in detail. It is demonstrated that such a stratospheric ozonizer is about as efficient as the best ground-based ozonizers used at present. For typical stratospheric conditions (low pressures and temperatures T ∼ 200 - 220 K), it is shown that the intense generation of ozone in a microwave breakdown effected by groups of short nanosecond pulses does not virtually increase the density of nitrogen oxides - gases that play a vital role in catalytic ozone-decomposing reactions. The possibility of effectively producing ozone in prebreakdown electric fields is established experimentally. It is demonstrated that due to its long lifetime, ozone produced locally at altitudes of 18 - 20 km may spread widely under the action of winds and turbulent diffusion, thus leading to an additional - artificial - ozonization of the stratosphere. (reviews of topical problems)

  15. Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process

    Energy Technology Data Exchange (ETDEWEB)

    Ferre-Aracil, J. [Universitat Politècnica de València – EPSA, Department of Chemical and Nuclear Engineering. Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Pl. Ferrandiz i Carbonell, 03801 Alcoi, Alicante (Spain); Valcárcel, Y. [Environmental Health and Ecotoxicology Research Group, Universidad Rey Juan Carlos, Avd. Atenas s/n, Móstoles, 28922 Alcorcón (Spain); Negreira, N.; López de Alda, M. [Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona (Spain); Barceló, D. [Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona (Spain); Cardona, S.C. [Universitat Politècnica de València – EPSA, Department of Chemical and Nuclear Engineering. Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Pl. Ferrandiz i Carbonell, 03801 Alcoi, Alicante (Spain); Navarro-Laboulais, J., E-mail: jnavarla@iqn.upv.es [Universitat Politècnica de València – EPSA, Department of Chemical and Nuclear Engineering. Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Pl. Ferrandiz i Carbonell, 03801 Alcoi, Alicante (Spain)

    2016-06-15

    The kinetics of the ozone consumption for the pretreatment of hospital wastewater has been analysed in order to determine the reaction rate coefficients between the ozone and the readily oxidisabled organic matter and cytostatic compounds. The wastewater from a medium size hospital was treated with ozone and peroxone methodologies, varying the ozone concentration, the reaction time and the hydrogen peroxide doses. The analysis shows that there are four cytostatic compounds, i.e. irinotecan, ifosfamide, cyclophosphamide and capecitabine, detected in the wastewaters and they are completely removed with reasonably short times after the ozone treatment. Considering the reactor geometry, the gas hydrodynamics, the mass transfer of ozone from gas to liquid and the reaction of all oxidisable compounds of the wastewater it is possible to determine the chemical ozone demand, COzD, of the sample as 256 mg O{sub 3} L{sup −1} and the kinetic rate coefficient with the dissolved organic matter as 8.4 M{sup −1} s{sup −1}. The kinetic rate coefficient between the ozone and the cyclophosphamide is in the order of 34.7 M{sup −1} s{sup −1} and higher for the other cytostatics. The direct economic cost of the treatment was evaluated considering this reaction kinetics and it is below 0.3 €/m{sup 3} under given circumstances. - Highlights: • 17 cytostatic compounds were analysed and 4 detected by SPE-LC/MS-MS. • The ozonation is 100% effective on the removal of the detected cytostatics. • The kinetics of cytostatic ozonation reaction is modeled by competitive kinetics. • The economic cost of the treatment of hospital wastewater was assessed.

  16. Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process

    International Nuclear Information System (INIS)

    Ferre-Aracil, J.; Valcárcel, Y.; Negreira, N.; López de Alda, M.; Barceló, D.; Cardona, S.C.; Navarro-Laboulais, J.

    2016-01-01

    The kinetics of the ozone consumption for the pretreatment of hospital wastewater has been analysed in order to determine the reaction rate coefficients between the ozone and the readily oxidisabled organic matter and cytostatic compounds. The wastewater from a medium size hospital was treated with ozone and peroxone methodologies, varying the ozone concentration, the reaction time and the hydrogen peroxide doses. The analysis shows that there are four cytostatic compounds, i.e. irinotecan, ifosfamide, cyclophosphamide and capecitabine, detected in the wastewaters and they are completely removed with reasonably short times after the ozone treatment. Considering the reactor geometry, the gas hydrodynamics, the mass transfer of ozone from gas to liquid and the reaction of all oxidisable compounds of the wastewater it is possible to determine the chemical ozone demand, COzD, of the sample as 256 mg O 3 L −1 and the kinetic rate coefficient with the dissolved organic matter as 8.4 M −1 s −1 . The kinetic rate coefficient between the ozone and the cyclophosphamide is in the order of 34.7 M −1 s −1 and higher for the other cytostatics. The direct economic cost of the treatment was evaluated considering this reaction kinetics and it is below 0.3 €/m 3 under given circumstances. - Highlights: • 17 cytostatic compounds were analysed and 4 detected by SPE-LC/MS-MS. • The ozonation is 100% effective on the removal of the detected cytostatics. • The kinetics of cytostatic ozonation reaction is modeled by competitive kinetics. • The economic cost of the treatment of hospital wastewater was assessed.

  17. Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe.

    Science.gov (United States)

    Jung, Youmi; Yoon, Yeojoon; Hong, Eunkyung; Kwon, Minhwan; Kang, Joon-Wun

    2013-07-15

    Since ballast water affects the ocean ecosystem, the International Maritime Organization (IMO) sets a standard for ballast water management and might impose much tighter regulations in the future. The aim of this study is to evaluate the inactivation efficiency of ozonation, electrolysis, and an ozonation-electrolysis combined process, using B. subtilis spores. In seawater ozonation, HOBr is the key active substance for inactivation, because of rapid reactivity of ozone with Br(-) in seawater. In seawater electrolysis, it is also HOBr, but not HOCl, because of the rapid reaction of HOCl with Br(-), which has not been recognized carefully, even though many electrolysis technologies have been approved by the IMO. Inactivation pattern was different in ozonation and electrolysis, which has some limitations with the tailing or lag-phase, respectively. However, each deficiency can be overcome with a combined process, which is most effective as a sequential application of ozonation followed by electrolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Oxidation and Destruction of Polyvinyl Alcohol under the Combined Action of Ozone-Oxygen Mixture and Hydrogen Peroxide

    Science.gov (United States)

    Zimin, Yu. S.; Kutlugil'dina, G. G.; Mustafin, A. G.

    2018-03-01

    The oxidative transformations of a polyvinyl alcohol in aqueous solutions are studied under the simultaneous action of the two oxidizing agents, an ozone-oxygen mixture and a hydrogen peroxide. Effective parameters a and b, which characterize the first and second channels of carboxyl group accumulation, respectively, grow linearly upon an increase in the initial concentration of H2O2. After the temperature dependence of a and b parameters (331-363 K) in a PVA + O3 + O2 + H2O2 + H2O reaction system is studied, the parameters of the activation of COOH group accumulation are found (where PVA is a polyvinyl alcohol). New data on the effect process conditions (length of oxidation, temperature, and hydrogen peroxide concentration) have on the degree of destructive transformations of polyvinyl alcohol in the investigated reaction system are obtained.

  19. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15.

    Science.gov (United States)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-04-09

    Comparative experiments were conducted to investigate the catalytic ability of MnO(x)/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O3/MnO(x)/SBA-15). Adsorption of CA and its intermediates by MnO(x)/SBA-15 was proved unimportant in O3/MnO(x)/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO3) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO(x)/SBA-15 facilitated the generation of hydroxyl radicals (OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO(x) on SBA-15 were believed to be the main active component in MnO(x)/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more OH. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Passive sampling of ambient ozone by solid phase microextraction with on-fiber derivatization

    International Nuclear Information System (INIS)

    Lee, I-S.; Tsai, S.-W.

    2008-01-01

    The solid phase microextraction (SPME) device with the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used as a passive sampler for ambient ozone. Both O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) and 1,2-di-(4-pyridyl)ethylene (DPE) were loaded onto the fiber before sampling. The SPME fiber assembly was then inserted into a PTFE tubing as a passive sampler. Known concentrations of ozone around the ambient ground level were generated by a calibrated ozone generator. Laboratory validations of the SPME passive sampler with the direct-reading ozone monitor were performed side-by-side in an exposure chamber at 25 deg. C. After exposures, pyriden-4-aldehyde was formed due to the reaction between DPE and ozone. Further on-fiber derivatizations between pyriden-4-aldehyde and PFBHA were followed and the derivatives, oximes, were then determined by portable gas chromatography with electron capture detector. The experimental sampling rate of the SPME ozone passive sampler was found to be 1.10 x 10 -4 cm 3 s -1 with detection limit of 58.8 μg m -3 h -1 . Field validations with both SPME device and the direct-reading ozone monitor were also performed. The correlations between the results from both methods were found to be consistent with r = 0.9837. Compared with other methods, the current designed sampler provides a convenient and sensitive tool for the exposure assessments of ozone

  1. Ozonation of acid yellow 17 dye in a semi-batch bubble column

    International Nuclear Information System (INIS)

    Lackey, Laura W.; Mines, Richard O.; McCreanor, Philip T.

    2006-01-01

    A semi-batch bubble column was used to evaluate the effect of ozonation on the removal of acid yellow 17 dye from water. Results indicate that ozonation is very effective at removing acid yellow 17 dye from synthetic textile wastewater. The ozone consumed to apparent dye removal ratio ranged from 2 to 15,000 mg ozone per mg of dye decolorized and was dependent on both ozonation time and apparent dye concentration. The biodegradability of the dye wastewater was evaluated by monitoring changes in 5-day biochemical oxygen demand (BOD 5 ) with respect to chemical oxygen demand (COD). Results indicate that the wastewater biodegradability increased with an increase in ozonation time. Film theory was used to kinetically model the gas-liquid reactions occurring in the reactor. Modeling results indicated that during the first 10-15 min of ozonation, the system could be characterized by a fast, pseudo-first-order regime. With continued ozonation, system kinetics transitioned through a moderate then to a slow regime. Successful modeling of this period required use of a kinetic equation corresponding to a more inclusive condition. Model results are presented

  2. Impact of future nitrous oxide and carbon dioxide emissions on the stratospheric ozone layer

    International Nuclear Information System (INIS)

    Stolarski, Richard S; Waugh, Darryn W; Douglass, Anne R; Oman, Luke D

    2015-01-01

    The atmospheric levels of human-produced chlorocarbons and bromocarbons are projected to make only small contributions to ozone depletion by 2100. Increases in carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) will become increasingly important in determining the future of the ozone layer. N 2 O increases lead to increased production of nitrogen oxides (NO x ), contributing to ozone depletion. CO 2 increases cool the stratosphere and affect ozone levels in several ways. Cooling decreases the rate of many photochemical reactions, thus slowing ozone loss rates. Cooling also increases the chemical destruction of nitrogen oxides, thereby moderating the effect of increased N 2 O on ozone depletion. The stratospheric ozone level projected for the end of this century therefore depends on future emissions of both CO 2 and N 2 O. We use a two-dimensional chemical transport model to explore a wide range of values for the boundary conditions for CO 2 and N 2 O, and find that all of the current scenarios for growth of greenhouse gases project the global average ozone to be larger in 2100 than in 1960. (letter)

  3. Application of ozonation for pharmaceuticals and personal care products removal from water.

    Science.gov (United States)

    Gomes, João; Costa, Raquel; Quinta-Ferreira, Rosa M; Martins, Rui C

    2017-05-15

    Due to the shortening on natural water resources, reclaimed wastewater will be an important water supply source. However, suitable technologies must be available to guaranty its proper detoxification with special concern for the emerging pharmaceutical and personal care products that are continuously reaching municipal wastewater treatment plants. While conventional biological systems are not suitable to remove these compounds, ozone, due to its interesting features involving molecular ozone oxidation and the possibility of generating unselective hydroxyl radicals, has a wider range of action on micropollutants removal and water disinfection. This paper aims to review the studies dealing with ozone based processes for water reuse by considering municipal wastewater reclamation as well as natural and drinking water treatment. A comparison with alternative technologies is given. The main drawback of ozonation is related with the low mineralization achieved that may lead to the production of reaction intermediates with toxic features. The use of hydrogen peroxide and light aided systems enhance ozone action over pollutants. Moreover, scientific community is focused on the development of solid catalysts able to improve the mineralization level achieved by ozone. Special interest is now being given to solar light catalytic ozonation systems with interesting results both for chemical and biological contaminants abatement. Nowadays the integration between ozonation and sand biofiltration seems to be the most interesting cost effective methodology for water treatment. However, further studies must be performed to optimize this system by understanding the biofiltration mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Photochemistry of the ozone-water complex in cryogenic neon, argon, and krypton matrixes.

    Science.gov (United States)

    Tsuge, Masashi; Tsuji, Kazuhide; Kawai, Akio; Shibuya, Kazuhiko

    2013-12-12

    The photochemistry of ozone-water complexes and the wavelength dependence of the reactions were studied by matrix isolation FTIR spectrometry in neon, argon, and krypton matrixes. Hydrogen peroxide was formed upon the irradiation of UV light below 355 nm. Quantitative analyses of the reactant and product were performed to evaluate the matrix cage effect of the photoreaction. In argon and krypton matrixes, a bimolecular O((1)D) + H2O → H2O2 reaction was found to occur to form hydrogen peroxide, where the O((1)D) atom generated by the photolysis of ozone diffused in the cryogenic solids to encounter water. In a neon matrix, hydrogen peroxide was generated through intracage photoreaction of the ozone-water complex, indicating that a neon matrix medium is most appropriate to study the photochemistry of the ozone-water complex.

  5. Photocatalytic ozonation of terephthalic acid: a by-product-oriented decomposition study.

    Science.gov (United States)

    Fuentes, Iliana; Rodríguez, Julia L; Poznyak, Tatyana; Chairez, Isaac

    2014-11-01

    Terephthalic acid (TA) is considered as a refractory model compound. For this reason, the TA degradation usually requires a prolonged reaction time to achieve mineralization. In this study, vanadium oxide (VxOy) supported on titanium oxide (TiO2) served as a photocatalyst in the ozonation of the TA with light-emitting diodes (LEDs), having a bandwidth centered at 452 nm. The modified catalyst (VxOy/TiO2) in combination with ozone and LEDs improved the TA degradation and its by-products. The results obtained by this system were compared with photolysis, single ozonation, catalytic ozonation, and photocatalytic ozonation of VxOy/TiO2 with UV lamp. The LED-based photocatalytic ozonation showed almost the same decomposition efficiency of the TA, but it was better in comparison with the use of UV lamp. The oxalic acid accumulation, as the final product of the TA decomposition, was directly influenced by either the presence of VxOy or/and the LED irradiation. Several by-products formed during the TA degradation, such as muconic, fumaric, and oxalic acids, were identified. Besides, two unidentified by-products were completely removed during the observed time (60 min). It was proposed that the TA elimination in the presence of VxOy/TiO2 as catalyst was carried out by the combination of different mechanisms: molecular ozone reaction, indirect mechanism conducted by ·OH, and the surface complex formation.

  6. Correlative studies of satellite ozone sensor measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.

    1983-01-01

    Comparisons are made between total ozone measurements made by four satellite ozone sensors (TOMS, SBUV, TOVS and MFR). The comparisons were made during July 1979 when all sensors were operating simultaneously. The TOMS and SBUV sensors were observed to measure less total ozone than the MFR sensor, 10 and 15 Dobson units (DU) respectively. The MFR and TOMS sensors measured less ozone than the TOVS sensor, 19 an 28 DU, respectively. Latitudinal variability of the total ozone comparisons is discussed

  7. Nitrate formation during ozonation as a surrogate parameter for abatement of micropollutants and the N-nitrosodimethylamine (NDMA) formation potential.

    Science.gov (United States)

    Song, Yang; Breider, Florian; Ma, Jun; von Gunten, Urs

    2017-10-01

    In this study, nitrate formation from ammonium and/or dissolved organic nitrogen (DON) was investigated as a novel surrogate parameter to evaluate the abatement of micropollutants during ozonation of synthetic waters containing natural organic matter (NOM) isolates, a natural water and secondary wastewater effluents. Nitrate formation during ozonation was compared to the changes in UV absorbance at 254 nm (UVA 254 ) including the effect of pH. For low specific ozone doses UVA 254 was abated more efficiently than nitrate was formed. This is due to a relatively slow rate-limiting step for nitrate formation from the reaction between ozone and a proposed nitrogen-containing intermediate. This reaction cannot compete with the fast reactions between ozone and UV-absorbing moieties (e.g., activated aromatic compounds). To further test the kinetics of nitrate formation, two possible intermediates formed during ozonation of DON were tested. At pH 7, nitrate was formed during ozonation of acetone oxime and methyl nitroacetate with second-order rate constants of 256.7 ± 4.7 M -1  s -1 and 149.5 ± 5.8 M -1  s -1 , respectively. The abatement of the selected micropollutants (i.e., 17α-ethinylestradiol (EE2), carbamazepine (CBZ), bezafibrate (BZF), ibuprofen (IBU), and p-chlorobenzoic acid (pCBA)) was investigated for specific ozone doses ≤1.53 mgO 3 /mgDOC and its efficiency depended strongly on the reactivity of the selected compounds with ozone. The relative abatement of micropollutants (i.e., EE2 and CBZ) with high ozone reactivity showed linear relationships with nitrate formation. The abatement of micropollutants with intermediate-low ozone reactivity (BZF, IBU, and pCBA) followed one- and two-phase behaviors relative to nitrate formation during ozonation of water samples containing high and low concentrations of nitrate-forming DON, respectively. During ozonation of a wastewater sample, the N-nitrosodimethylamine formation potential (NDMA-FP) during

  8. Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison

    Science.gov (United States)

    Parsons, C. L.

    1980-01-01

    Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.

  9. Determination of the Optimum Ozone Product on the Plasma Ozonizer

    International Nuclear Information System (INIS)

    Agus Purwadi; Widdi Usada; Suryadi; Isyuniarto; Sri Sukmajaya

    2002-01-01

    An experiment of the optimum ozone product determination on the cylindrical plasma ozonizer has been done. The experiment is carried out by using alternating high voltage power supply, oscilloscope CS-1577 A, flow meter and spectronik-20 instrument for the absorbance solution samples which produced by varying the physics parameter values of the discharge alternating high voltage and velocity of oxygen gas input. The plasma ozonizer is made of cylinder stainless steel as the electrode and cylinder glass as the dielectric with 1.00 mm of the discharge gap and 7.225 mm 3 of the discharge tube volume. The experiment results shows that the optimum ozone product is 0.360 mg/s obtained at the the discharge of alternating high voltage of 25.50 kV, the frequency of 1.00 kHz and the rate of oxygen gas input of 1.00 lpm. (author)

  10. Ozone Formation in Laser Flash Photolysis of Oxoacids and Oxoanions of Chlorine and Bromine

    DEFF Research Database (Denmark)

    Kläning, Ulrik; Sehested, Knud; Wolff, Thomas

    1984-01-01

    The kinetics of ozone formation in the photolysis of oxygen-containing solutions of HClO, ClO–, ClO–2, ClO–3, HBrO, BrO– and BrO–3 has been studied by laser flash photolysis and conventional flash photolysis. The usual assumption, that ozone only forms in the reaction of oxygen atoms in the spin-...

  11. The DMSP/MFR total ozone and radiance data base

    International Nuclear Information System (INIS)

    Ellis, J.S.; Lovill, J.E.; Luther, F.M.; Sullivan, T.J.; Taylor, S.S.; Weichel, R.L.

    1992-01-01

    The radiance measurements by the multichannel filter radiometer (MFR), a scanning instrument carried on the Defense Meteorological Satellite Program (DMSP) Block 5D series of satellites (flight models F1, F2, F3 and F4), were used to calculate the total column ozone globally for the period March 1977 through February 1980. These data were then calibrated and mapped to earth coordinates at LLNL. Total column ozone was derived from these calibrated radiance data and placed both the ozone and calibrated radiance data into a computer data base called SOAC (Satellite Ozone Analysis Center) using the FRAMIS database manager. The uncalibrated radiance data tapes were initially sent on to the National Climate Center, Asheville, North Carolina and then to the Satellite Data Services Branch /EDS/NOAA in Suitland, Maryland where they were archived. Copies of the data base containing the total ozone and the calibrated radiance data reside both at LLNL and at the National Space Science Data Center, NASA Goddard Space Flight Center, Greenbelt, Maryland. This report describes the entries into the data base in sufficient detail so that the data base might be useful to others. The characteristics of the MFR sensor are briefly discussed and a complete index to the data base tapes is given

  12. Disinfection of Escherichia coli bacteria using hybrid method of ozonation and hydrodynamic cavitation with orifice plate

    Science.gov (United States)

    Karamah, Eva F.; Ghaudenson, Rioneli; Amalia, Fitri; Bismo, Setijo

    2017-11-01

    This research aims to evaluate the performance of hybrid method of ozonation and hydrodynamic cavitation with orifice plate on E.coli bacteria disinfection. In this research, ozone dose, circulation flowrate, and disinfection method were varied. Ozone was produced by commercial ozonator with ozone dose of 64.83 mg/hour, 108.18 mg/hour, and 135.04 mg/hour. Meanwhile, hydrodynamic cavitation was generated by an orifice plate. The disinfection method compared in this research were: hydrodynamic cavitation, ozonation, and the combination of both. The best result on each method was achieved on the 60th minutes and with a circulation flowrate of 7 L/min. The hybrid method attained final concentration of 0 CFU/mL from the initial concentration of 2.10 × 105 CFU/mL. The ozonation method attained final concentration of 0 CFU/mL from the initial concentration of 1.32 × 105 CFU/mL. Cavitation method gives the least disinfection with final concentration of 5.20 × 104 CFU/mL from the initial concentration of 2.17 × 105 CFU/mL. In conclusion, hybrid method gives a faster and better disinfection of E.coli than each method on its own.

  13. Comparative evaluation of effects of ozonated and chlorinated thermal discharges on estuarine and freshwater organisms

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, C.R.; Sugam, R.; Meldrim, J.W.; Holmstrom, E.R.; Balog, G.E.

    1980-08-01

    As a part of a program at PSE and G designed to examine the feasibility of ozonation as an alternative to chlorination for control of biofouling in once-through cooling systems, the biological effects of ozonated and chlorinated thermal discharges were evaluated with estuarine and freshwater organisms. Mortality at salinities between 0.5 to 2.5 ppt with mummichog and white perch indicated greater toxicity for chlorine while the alewife, spottail shiner, rainbow trout and white perch in freshwater were more sensitive to ozone. Behavioral and physograhic results were consistent with those observed in toxicity studies. Initial cough response and avoidance concentrations of mummicog and white perch in estuarine waters were lower when exposed to chlorine than to ozone. In freshwater, blueback herring, alewife, rainbow trout, spottail shiner, banded killifish, and white perch avoided lower concentrations of ozone than chlorine.

  14. Role of ozone and granular activated carbon in the removal of mutagenic compounds.

    Science.gov (United States)

    Bourbigot, M M; Hascoet, M C; Levi, Y; Erb, F; Pommery, N

    1986-01-01

    The identification of certain organic compounds in drinking water has led water treatment specialists to be increasingly concerned about the eventual risks of such pollutants to the health of consumers. Our experiments focused on the role of ozone and granular activated carbon in removing mutagenic compounds and precursors that become toxic after chlorination. We found that if a sufficient dose of ozone is applied, its use does not lead to the creation of mutagenic compounds in drinking water and can even eliminate the initial mutagenicity of the water. The formation of new mutagenic compounds seems to be induced by ozonation that is too weak, although these mutagens can be removed by GAC filtration. Ozone used with activated carbon can be one of the best means for eliminating the compounds contributing to the mutagenicity of water. A combined treatment of ozone and activated carbon also decreases the chlorine consumption of the treated water and consequently reduces the formation of chlorinated organic compounds. PMID:3816720

  15. Participation of the Halogens in Photochemical Reactions in Natural and Treated Waters

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-10-01

    Full Text Available Halide ions are ubiquitous in natural waters and wastewaters. Halogens play an important and complex role in environmental photochemical processes and in reactions taking place during photochemical water treatment. While inert to solar wavelengths, halides can be converted into radical and non-radical reactive halogen species (RHS by sensitized photolysis and by reactions with secondary reactive oxygen species (ROS produced through sunlight-initiated reactions in water and atmospheric aerosols, such as hydroxyl radical, ozone, and nitrate radical. In photochemical advanced oxidation processes for water treatment, RHS can be generated by UV photolysis and by reactions of halides with hydroxyl radicals, sulfate radicals, ozone, and other ROS. RHS are reactive toward organic compounds, and some reactions lead to incorporation of halogen into byproducts. Recent studies indicate that halides, or the RHS derived from them, affect the concentrations of photogenerated reactive oxygen species (ROS and other reactive species; influence the photobleaching of dissolved natural organic matter (DOM; alter the rates and products of pollutant transformations; lead to covalent incorporation of halogen into small natural molecules, DOM, and pollutants; and give rise to certain halogen oxides of concern as water contaminants. The complex and colorful chemistry of halogen in waters will be summarized in detail and the implications of this chemistry for global biogeochemical cycling of halogen, contaminant fate in natural waters, and water purification technologies will be discussed.

  16. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway

    International Nuclear Information System (INIS)

    Khan, M. Hammad; Bae, Hyokwan; Jung, Jin-Young

    2010-01-01

    During the ozonation of tetracycline (TC) in aqueous media at pHs 2.2 and 7.0, the effects of pH variations, protonation and dissociation of functional groups and variation in free radical exposure were investigated to elucidate the transformation pathway. Liquid chromatography-triple quadrupole mass spectrometry detected around 15 ozonation products, and uncovered their production and subsequent degradation patterns. During ozonation at pH 2.2, the TC degradation pathway was proposed on the basis of the structure, ozonation chemistry and mass spectrometry data of TC. Ozonation of TC at the C11a-C12 and C2-C3 double bonds, aromatic ring and amino group generated products of m/z 461, 477, 509 and 416, respectively. Further ozonation at the above mentioned sites gave products of m/z 432, 480, 448, 525 and 496. The removal of TOC reached a maximum of ∼40% after 2 h of ozonation, while TC was completely removed within 4-6 min at both pHs. The low TOC removal efficiency might be due to the generation of recalcitrant products and the low ozone supply for high TC concentration. Ozonation decreased the acute toxicity of TC faster at pH 7.0 than pH 2.2, but the maximum decrease was only about 40% at both pHs after 2 h of ozonation. In this study, attempts were made to understand the correlation between the transformation products, pathway, acute toxicity and quantity of residual organics in solution. Overall, ozonation was found to be a promising process for removing TC and the products initially generated.

  17. Modeled population exposures to ozone

    Data.gov (United States)

    U.S. Environmental Protection Agency — Population exposures to ozone from APEX modeling for combinations of potential future air quality and demographic change scenarios. This dataset is not publicly...

  18. Ecosystem Effects of Ozone Pollution

    Science.gov (United States)

    Ground level ozone is absorbed by the leaves of plants, where it can reduce photosynthesis, damage leaves and slow growth. It can also make sensitive plants more susceptible to certain diseases, insects, harsh weather and other pollutants.

  19. Ozone - Current Air Quality Index

    Science.gov (United States)

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Current AQI Forecast AQI Loop More Maps AQI: Good (0 - 50) ... resources for Hawaii residents and visitors more announcements Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke ...

  20. Ozone Nonattainment Areas - 1 Hour

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for Ozone - 1hour (Legacy...

  1. Ozone as an ecotoxicological problem

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, L. [National Environmental Research Inst., Dept. of Atmospheric Environment, Roskilde (Denmark)

    1996-11-01

    Ozone is quantitatively the dominating oxidant in photochemical air pollution. Other compounds like hydrogen peroxide, aldehydes, formate, peroxyacetyl nitrate (PAN) and nitrogen dioxide are present too, and several of these are known to be phytotoxic, but under Danish conditions the concentration of these gases are without significance for direct effects on vegetation. Therefore, it is the effects of ozone on plant growth that will be described below. (EG) 65 refs.

  2. Aromatic VOCs global influence in the ozone production

    Science.gov (United States)

    Cabrera-Perez, David; Pozzer, Andrea

    2016-04-01

    Aromatic hydrocarbons are a subgroup of Volatile Organic Compounds (VOCs) of special interest in the atmosphere of urban and semi-urban areas. Aromatics form a high fraction of VOCs, are highly reactive and upon oxidation they are an important source of ozone. These group of VOCs are released to the atmosphere by processes related to biomass burning and fossil fuel consumption, while they are removed from the atmosphere primarily by OH reaction and by dry deposition. In addition, a branch of aromatics (ortho-nitrophenols) produce HONO upon photolysis, which is responsible of certain amount of the OH recycling. Despite their importance in the atmosphere in anthropogenic polluted areas, the influence of aromatics in the ozone production remains largely unknown. This is of particular relevance, being ozone a pollutant with severe side effects on air quality, health and climate. In this work the atmospheric impacts at global scale of the most emitted aromatic VOCs in the gas phase (benzene, toluene, xylenes, ethylbenzene, styrene, phenol, benzaldehyde and trimethylbenzenes) are analysed and assessed. Specifically, the impact on ozone due to aromatic oxidation is estimated, as this is of great interest in large urban areas and can be helpful for developing air pollution control strategies. Further targets are the quantification of the NOx loss and the OH recycling due to aromatic oxidation. In order to investigate these processes, two simulations were performed with the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The simulations compare two cases, one with ozone concentrations when aromatics are present or the second one when they are missing. Finally, model simulated ozone is compared against a global set of observations in order to better constrain the model accuracy.

  3. The 2002 Antarctic Ozone Hole

    Science.gov (United States)

    Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.

    2003-01-01

    Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.

  4. Stomatal and Non-Stomatal Turbulent Deposition Flux of Ozone to a Managed Peatland

    Directory of Open Access Journals (Sweden)

    Tarek S. El-Madany

    2017-09-01

    Full Text Available Ozone is a key trace gas in the troposphere; because it is a greenhouse gas, it is very reactive, and it is potentially toxic to humans, fauna, and vegetation. The main sink processes for ozone are chemical reactions and the turbulent deposition flux to the earth’s surface. The deposition process itself is rather complex: The interactions between co-varying drivers such as the tropospheric ozone concentration, turbulence, and chemical reactions are not well understood. In the case of ozone deposition to vegetation, another aspect that must be studied is the role of stomatal regulation for a wide range of conditions. Therefore, we measured turbulent deposition fluxes of ozone with the eddy covariance technique during the peak of the growing season in 2014 over a managed, rewetted peatland in NW Germany. The deposition flux was large during the day (up to −15 nmol m−2 s−1 and relatively small during the night (between −1 and −2 nmol m−2 s−1. Flux partitioning by applying the surface resistance analogy and further analysis showed that the stomatal uptake was smaller than non-stomatal deposition. The correction of stomatal conductance with the gross primary production (GPP improved the estimation of day- and nighttime stomatal deposition fluxes. Statistical analysis confirmed that the friction velocity (u* was the single most important driver of non-stomatal ozone deposition and that relationships with other environmental drivers are not linear and highly variable. Further research is needed to develop a better process understanding of non-stomatal ozone deposition, to quantify the role of surface deposition to the ozone budget of the atmospheric boundary layer, and to estimate uncertainties associated with the partitioning of ozone deposition into stomatal and non-stomatal fluxes.

  5. Interactions involving ozone, Botrytis cinerea, and B. squamosa on onion leaves

    Energy Technology Data Exchange (ETDEWEB)

    Rist, D.L.

    1983-01-01

    Interactions involving Botrytis cinerea Pers., B. squamosa Walker, and ozone on onion (alium cepae L.) were investigated. Initially, threshold dosages of ozone required to predispose onion leaves to greater infection by B. cinerea and B. squamosa were determined under controlled conditions in an ozone-exposure chamber. Subsequent experiments supported the hypothesis that nutrients leaking out of ozone-injured cells stimulated lesion production by B. cinerea. The electrical conductivity of, and carbohydrate concentration in, dew collected from leaves of onion plants which had been exposed to ozone were greater than the electrical conductivity of, and carbohydrate concentration in, dew collected from leaves of other, non-exposed onion plants. When conidia of B. cinerea were suspended in dew collected from leaves of plants which had been exposed to ozone and the resulting suspension atomized onto leaves of non-exposed plants, more lesions were induced than on leaves of other non-exposed plants inoculated with conidia suspended in dew collected from plants which had not been exposed to ozone. EDU protected onion leaves from ozone-induced predisposition to these fungi under controlled conditions. Experiments designed to detect interaction between B. cinerea and B. squamosa in onion leaf blighting indicated that such interaction did not occur. Leaves were blighted rapidly when inoculated with B. squamosa whether B. cinerea was present or absent.

  6. New dynamic NNORSY ozone profile climatology

    Science.gov (United States)

    Kaifel, A. K.; Felder, M.; Declercq, C.; Lambert, J.-C.

    2012-01-01

    Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995-2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of

  7. Wastewater purification. Combined electron-beam and ozone action in the aerosol flow

    International Nuclear Information System (INIS)

    Podzorova, E.A.; Pikaev, A.K.

    1998-01-01

    Complete text of publication follows. Ozone is forming with high enough radiation chemical yield during work of electron accelerator. It is useful to use oxidizing properties of ozone with combination of ionizing radiation. The combined action of ionized radiation and ozone on aqueous solutions increases efficiency of water purification. But at the same time, this kind process of water purification is characterized by some limited stages: 1. Ozone mass transfer rate from gaseous phase (where it is formed) into liquid phase (where pollutants present); 2. Small solubility ozone in water; 3. High rate constant of radiation induced decomposition of ozone. We have proposed some optimizations for this kind of process. The most effective action of ionized radiation and radiolytic ozone on polluted water is running this process in aerosol flow. The highly developed surface of phase division is provided the maximum rate of reaction of ozone with pollutants. The volatile pollutants react with radiolytic ozone in gaseous phase in ozone creation moment. Ozonoradiolysis of real municipal wastewater in an aerosol flow was investigated on a facility with electron accelerator with electron energy E=0,3 MeV, power up to 15 kWatt, productivity 500 m 3 /day. Density of the irradiated aerosol was 0,02-0,05 g/cm 3 . It is increase low-energy electron range on 1-2 orders of magnitude as compared with liquid water and increases effective depth of uniformed irradiated layer. Because aerosol density is much higher compare with air density, it is clear, that water drops in aerosol flow absorbed main energy. The treated municipal wastewater in this facility was cleaned from organic and inorganic pollutants. COD and BOD values were reduced. Water disinfecting is achieved to sanitary standards

  8. Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems

    International Nuclear Information System (INIS)

    Tizaoui, Chedly; Bouselmi, Latifa; Mansouri, Loubna; Ghrabi, Ahmed

    2007-01-01

    In the search for an efficient and economical method to treat a leachate generated from a controlled municipal solid waste landfill site (Jebel Chakir) in the region of greater Tunis in Tunisia, ozone alone and ozone combined with hydrogen peroxide were studied. The leachate was characterised by high COD, low biodegradability and intense dark colour. A purpose-built reactor, to avoid foaming, was used for the study. It was found that ozone efficacy was almost doubled when combined with hydrogen peroxide at 2 g/L but higher H 2 O 2 concentrations gave lower performances. Enhancement in the leachate biodegradability from about 0.1 to about 0.7 was achieved by the O 3 /H 2 O 2 system. Insignificant changes in pH that may due to buffering effect of bicarbonate was found. A small decrease in sulphate concentrations were also observed. In contrast, chloride concentration declined at the beginning of the experiment then increased to reach its initial value. Estimates of the operating costs were made for comparison purposes and it was found that the O 3 /H 2 O 2 system at 2 g/L H 2 O 2 gave the lowest cost of about 3.1 TND (∼2.3 USD)/kg COD removed

  9. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    X. Pan

    2009-06-01

    Full Text Available Photodegradation of secondary organic aerosol (SOA prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone (0.1–300 ppm and D-limonene (0.02–3 ppm concentrations used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA prepared in these experiments. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  10. Laboratory testing of ozone oxidation of Hanford site waste

    International Nuclear Information System (INIS)

    Delegard, C.H.; Stubbs, A.M.; Bolling, S.D.; Colby, S.A.

    1994-01-01

    Organic constituents in radioactive waste stored in underground tanks at the U.S. Department of Energy's Hanford Site provoke safety concerns arising from their low-temperature reactions with nitrate and nitrite oxidants. Destruction of the organics would eliminate both safety problems. Oxone oxidation was investigated to destroy organic species present in simulated and genuine waste from Hanford Site Tank 241-SY-101. Bench-scale tests showed high-shear mixing apparatus achieved efficient gas-to-solution mass transfer and utilization of the ozone reagent. Oxidations of nitrite (to form nitrate) and organic species were observed. The organics formed carbonate and oxalate as well as nitrate and nitrogen gas from organic nitrogen. Formate, acetate and oxalate were present both in source waste and as reaction intermediates. Metal species oxidations also were observed directly or inferred by solubilities. Chemical precipitations of metal ions such as strontium and americium occurred as the organic species were destroyed by ozone. Reaction stoichiometries were consistent with the reduction of one oxygen atom per ozone molecule

  11. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Shimizu, Tetsuji; Zimmermann, Julia L; Morfill, Gregor E; Sakiyama, Yukinori; Graves, David B

    2012-01-01

    We present the transient, dynamic behavior of ozone production in surface micro-discharge (SMD) plasma in ambient air. Ultraviolet absorption spectroscopy at 254 nm was used to measure the time development of ozone density in a confined volume. We observed that ozone density increases monotonically over 1000 ppm for at least a few minutes when the input power is lower than ∼0.1 W/cm 2 . Interestingly, when input power is higher than ∼0.1 W/cm 2 , ozone density starts to decrease in a few tens of seconds at a constant power density, showing a peak ozone density. A model calculation suggests that the ozone depletion at higher power density is caused by quenching reactions with nitrogen oxides that are in turn created by vibrationally excited nitrogen molecules reacting with O atoms. The observed mode transition is significantly different from classical ozone reactors in that the transition takes place over time at a constant power. In addition, we observed a positive correlation between time-averaged ozone density and the inactivation rate of Escherichia coli on adjacent agar plates, suggesting that ozone plays a key role in inactivating bacteria under the conditions considered here. (paper)

  12. Variations of Ground-level Ozone Concentration in Malaysia: A Case Study in West Coast of Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Hashim Nur Izzah Mohamad

    2017-01-01

    Full Text Available Hourly ground ozone concentration, measured from the monitoring stations in the West Coast of Peninsular Malaysia for the period of 10 years (2003-2012 were used to analyse the ozone characteristic in Nilai, Melaka and Petaling Jaya. The prediction of tropospheric ozone concentrations is very important due to the negative impacts of ozone on human health, climate and vegetation. The mean concentration of ozone at the studied areas had not exceeded the recommended value of Malaysia Ambient Air Quality Guideline (MAAQG for 8-hour average (0.06 ppm, however some of the measurements exceeded the hourly permitted concentration by MAAQG that is 0.1 ppm. Higher concentration of ozone can be observed during the daytime since ozone needs sunlight for the photochemical reactions. The diurnal cycle of ozone concentration has a mid-day peak (14:00-15:00 and lower night-time concentrations. The ozone concentration slowly rises after the sun rises (08:00, reaching a maximum during daytime and then decreases until the next morning.

  13. Issues in Stratospheric Ozone Depletion.

    Science.gov (United States)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  14. Advanced oxidative process with ozone of effluents contaminated by MN and other heavy metals originated in the acid drainage in uranium mine

    International Nuclear Information System (INIS)

    Silva, Mirna Marienne Suzin e

    2016-01-01

    During a mine exploration the environment can be affected by different ways being one of them the mine acid drainage(DAM), that is formed by the exposition of sulphated minerals to the atmospheric air, water and iron-oxidation microorganisms. This exposition results in oxidation reactions and formation of sulphuric acid that dissolves all kind of metals present at the mineral that will result in the contamination of the ground and waters. The object of this research work is to test a technological solution of the mine acid drainage problem applying ozone advanced oxidation of the heavy metals present at the mine drainage of a uranium mine with special focus in the manganese removal. This study is applied to the material from the uranium mine of the Brazilian Nuclear Industry - INB, at Caldas- MG. The INB Industry has serious DAM contamination being the main contaminants of the superficial waters the elements, aluminium (Al), manganese (Mn), zinc (Zn), iron (Fe), sulfates(SO 4 +2 ), fluorides(F-), rare earth metals besides uranium (U) and thorium (Th). The Caldas unity is being used as research and testing field for the treatment of areas with environment degradation formed by the mining activity. The ozone testing showed a high efficiency for the removal of iron(Fe), manganese(Mn) and cerium (Ce) up to 99%. The manganese total concentration was reduced to values bellow the ones determined by CONAMA resolution. Elements as neodymium (Nd), zinc (Zn) and lanthanium (La) are also oxidated in presence of ozone but with lower efficiency. The aluminium remained unaffected by the ozone while Thorium and Uranium show an initial decay but at the end present only a concentration slight lower than the initial. The solid material formed after the ozone treatment consists mainly of manganese oxide (85%). In order to dispose, after the ozonization, the liquid effluent to the environment is necessary a pH correction in order to be within the CONAMA legislation, being used less

  15. Observing Tropospheric Ozone From Space

    Science.gov (United States)

    Fishman, Jack

    2000-01-01

    The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry

  16. Potential For Stratospheric Ozone Depletion During Carboniferous

    Science.gov (United States)

    Bill, M.; Goldstein, A. H.

    Methyl bromide (CH3Br) constitutes the largest source of bromine atoms to the strato- sphere whereas methyl chloride (CH3Cl) is the most abundant halocarbon in the tro- posphere. Both gases play an important role in stratospheric ozone depletion. For in- stance, Br coupled reactions are responsible for 30 to 50 % of total ozone loss in the polar vortex. Currently, the largest natural sources of CH3Br and CH3Cl appear to be biological production in the oceans, inorganic production during biomass burning and plant production in salt marsh ecosystems. Variations of paleofluxes of CH3Br and CH3Cl can be estimated by analyses of oceanic paleoproductivity, stratigraphic analyses of frequency and distribution of fossil charcoal indicating the occurrence of wildfires, and/or by paleoreconstruction indicating the extent of salt marshes. Dur- ing the lower Carboniferous time (Tournaisian-Visean), the southern margin of the Laurasian continent was characterized by charcoal deposits. Estimation on frequency of charcoal layers indicates that wildfires occur in a range of 3-35 years (Falcon-Lang 2000). This suggests that biomass burning could be an important source of CH3Br and CH3Cl during Tournaisian-Viesan time. During Tounaisian and until Merame- cian carbon and oxygen isotope records have short term oscillations (Bruckschen et al. 1999, Mii et al. 1999). Chesterian time (mid- Carboniferous) is marked by an in- crease in delta18O values ( ~ 2 permil) and an increase of glacial deposit frequency suggesting lower temperatures. The occurrence of glacial deposits over the paleopole suggests polar conditions and the associated special features of polar mete- orology such as strong circumpolar wind in the stratosphere (polar vortex) and polar stratospheric clouds. Thus, conditions leading to polar statospheric ozone depletion can be found. Simultaneously an increase in delta13C values is documented. We interpret the positive shift in delta13C as a result of higher bioproductivity

  17. Asking for work adjustments or initiating behavioural changes - what makes a 'problematic co-worker' score Brownie points? An experimental study on the reactions towards colleagues with a personality disorder.

    Science.gov (United States)

    Muschalla, Beate; Fay, Doris; Seemann, Anne

    2016-10-01

    People with mental disorders, especially personality disorders, often face low acceptance at work. This is particularly problematic when returning to work after sick leave, because it impedes reintegration into the former workplace. This study explores colleagues' reactions towards a problematic worker dependent on the returning person's reintegration strategy: The returning person undertaking changes in their behaviour is compared with the person requesting adjustments of the workplace. In an experimental study, 188 employed persons read one of four vignettes that described a return-to-work-situation of a problematic co-worker. Across all vignettes, the co-worker was depicted as having previously caused problems in the work team. In the first vignette, the co-worker did not change anything (control condition) when she returned to work; in the second, she asked for workplace adjustments; in the third vignette she initiated efforts to change her own behaviour; and the fourth vignette combined both workplace adjustments and behavioural change. Study participants were asked for their reactions towards the problematic co-worker. Vignettes that included a behavioural change evoked more positive reactions towards the co-worker than vignettes without any behavioural change. Asking for workplace adjustments alone did not yield more positive reactions compared to not initiating any change. When preparing employees with interactional problems for their return to work, it is not effective to only instruct them on their statutory entitlement for workplace adjustments. Instead, it is advisable to encourage them to proactively strive for behaviour changes.

  18. Error analysis of Dobson spectrophotometer measurements of the total ozone content

    Science.gov (United States)

    Holland, A. C.; Thomas, R. W. L.

    1975-01-01

    A study of techniques for measuring atmospheric ozone is reported. This study represents the second phase of a program designed to improve techniques for the measurement of atmospheric ozone. This phase of the program studied the sensitivity of Dobson direct sun measurements and the ozone amounts inferred from those measurements to variation in the atmospheric temperature profile. The study used the plane - parallel Monte-Carlo model developed and tested under the initial phase of this program, and a series of standard model atmospheres.

  19. Isotope effects of reactions in quantum solids initiated by IR + UV lasers: quantum model simulations for Cl((2)P(3/2)) + X(2)(ν) → XCl + X in X(2) matrices (X = H, D).

    Science.gov (United States)

    Korolkov, M V; Manz, J; Schild, A

    2010-09-16

    Six isotope effects (i)-(vi) are discovered for the reactions Cl + H(2)(ν) → HCl + H in solid para-H(2) ( 1 ) versus Cl + D(2)(ν) → DCl + D in ortho-D(2) ( 2 ), by means of quantum reaction dynamics simulations, within the frame of our simple model ( J. Phys. Chem. A 2009 , 113 , 7630 . ). Experimentally, the reactions may be initiated for ν = 0 and ν ≥ 1, by means of "UV only" photodissociation of the matrix-isolated precursor, Cl(2), or by "IR + UV" coirradiation ( Kettwich , S. C. , Raston , P. L. , and Anderson , D. T. J. Phys. Chem. A 2009 , 113 , 7621 . ), respectively. Specifically, (i) various shape and Feshbach reaction resonances correlate with vibrational thresholds of reactants and products, due to the near-thermoneutrality and low barrier of the system. The energetic density of resonances increases as the square root of mass, from M(X) = M(H) to M(D). (ii) The state selective reaction ( 1 ), ν = 1, is supported by a shape resonance, whereas this type of resonance is absent in ( 2 ), ν = 1. As a consequence, time-resolved measurements should monitor different three-step versus direct error-function type evolutions of the formation of the products. (iii) The effective barrier is lower for reaction 1 , ν = 0, enhancing the tunneling rate, as compared to that for reaction 2 , ν = 0. (iv) For reference, the reaction probabilities P versus total energy E(tot) in the gas exhibit sharp resonance peaks or zigzag behaviors of the reaction probability P versus total energy, near the levels of resonances ( Persky , A. and Baer , M. J. Chem. Phys . 1974 , 60 , 133 . ). These features tend to be washed out and broadened for reaction 1 , and even more so for reaction 2 . For comparison, they disappear for reactions in classical solids. (v) The slopes of P versus E(tot) below the potential barrier increase more steeply for reaction 1 , ν = 0, than for reaction 2 , ν = 0. This enhances the tunneling rate of the heavier isotopomer, reaction 2 , ν = 0

  20. Revised estimates for ozone reduction by shuttle operation

    Science.gov (United States)

    Potter, A. E.

    1978-01-01

    Previous calculations by five different modeling groups of the effect of space shuttle operations on the ozone layer yielded an estimate of 0.2 percent ozone reduction for the Northern Hemisphere at 60 launches per year. Since these calculations were made, the accepted rate constant for the reaction between hydroperoxyl and nitric oxide to yield hydroxyl and nitrogen dioxide, HO2 + NO yields OH + NO2, was revised upward by more than an order of magnitude, with a resultant increase in the predicted ozone reduction for chlorofluoromethanes by a factor of approximately 2. New calculations of the shuttle effect were made with use of the new rate constant data, again by five different modeling groups. The new value of the shuttle effect on the ozone layer was found to be 0.25 percent. The increase resulting from the revised rate constant is considerably less for space shuttle operations than for chlorofluoromethane production, because the new rate constant also increases the calculated rate of downward transport of shuttle exhaust products out of the stratosphere.

  1. Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds.

    Science.gov (United States)

    McCurry, Daniel L; Quay, Amanda N; Mitch, William A

    2016-02-02

    Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations.

  2. Direct Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Austern, N. [University of Pittsburgh, Pittsburgh, PA (United States)

    1963-01-15

    In order to give a unified presentation of one point of view, these lectures are devoted only to a detailed development of the standard theories of direct reactions, starting from basic principles. Discussion is given of the present status of the theories, of the techniques used for practical calculation, and of possible future developments. The direct interaction (DI) aspects of a reaction are those which involve only a few of the many degrees of freedom of a nucleus. In fact the minimum number of degrees of freedom which must be involved in a reaction are those required to describe the initial and final channels, and DI studies typically consider these degrees of freedom and no others. Because of this simplicity DI theories may be worked out in painstaking detail. DI processes concern only part of the wave function for a problem. The other part involves complicated excitations of many degrees of freedom, and gives the compound nucleus (CN) effects. While it is extremely interesting to learn how to separate DI and CN effects in an orderly manner, if they are both present in a reaction, no suitable method has yet been found. Instead, current work stresses the kinds of reactions and the kinds of final states in which DI effects dominate and in which CN effects may almost be forgotten. The DI cross-sections which are studied are often extremely large, comparable to elastic scattering cross-sections. (author)

  3. Bromate formation in a hybrid ozonation-ceramic membrane filtration system.

    Science.gov (United States)

    Moslemi, Mohammadreza; Davies, Simon H; Masten, Susan J

    2011-11-01

    The effect of pH, ozone mass injection rate, initial bromide concentration, and membrane molecular weight cut off (MWCO) on bromate formation in a hybrid membrane filtration-ozonation reactor was studied. Decreasing the pH, significantly reduced bromate formation. Bromate formation increased with increasing gaseous ozone mass injection rate, due to increase in dissolved ozone concentrations. Greater initial bromide concentrations resulted in higher bromate concentrations. An increase in the bromate concentration was observed by reducing MWCO, which resulted in a concomitant increase in the retention time in the system. A model to estimate the rate of bromate formation was developed. Good correlation between the model simulation and the experimental data was achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. OZONE GENERATORS IN INDOOR AIR SETTINGS

    Science.gov (United States)

    The report gives information on home/office ozone generators. It discusses their current uses as amelioratives for environmental tobacco smoke, biocontaminants, volatile organic compounds, and odors and details the advantages and disadvantages of each. Ozone appears to work well ...

  5. Cryptosporidiosis associated with ozonated apple cider.

    Science.gov (United States)

    Blackburn, Brian G; Mazurek, Jacek M; Hlavsa, Michele; Park, Jean; Tillapaw, Matt; Parrish, MaryKay; Salehi, Ellen; Franks, William; Koch, Elizabeth; Smith, Forrest; Xiao, Lihua; Arrowood, Michael; Hill, Vince; da Silva, Alex; Johnston, Stephanie; Jones, Jeffrey L

    2006-04-01

    We linked an outbreak of cryptosporidiosis to ozonated apple cider by using molecular and epidemiologic methods. Because ozonation was insufficient in preventing this outbreak, its use in rendering apple cider safe for drinking is questioned.

  6. Cryptosporidiosis Associated with Ozonated Apple Cider

    OpenAIRE

    Blackburn, Brian G.; Mazurek, Jacek M.; Hlavsa, Michele; Park, Jean; Tillapaw, Matt; Parrish, MaryKay; Salehi, Ellen; Franks, William; Koch, Elizabeth; Smith, Forrest; Xiao, Lihua; Arrowood, Michael; Hill, Vince; da Silva, Alex; Johnston, Stephanie

    2006-01-01

    We linked an outbreak of cryptosporidiosis to ozonated apple cider by using molecular and epidemiologic methods. Because ozonation was insufficient in preventing this outbreak, its use in rendering apple cider safe for drinking is questioned.

  7. Ozone flux of an urban orange grove: multiple scaled measurements and model comparisons

    Science.gov (United States)

    Alstad, K. P.; Grulke, N. E.; Jenerette, D. G.; Schilling, S.; Marrett, K.

    2009-12-01

    There is significant uncertainty about the ozone sink properties of the phytosphere due to a complexity of interactions and feedbacks with biotic and abiotic factors. Improved understanding of the controls on ozone fluxes is critical to estimating and regulating the total ozone budget. Ozone exchanges of an orange orchard within the city of Riverside, CA were examined using a multiple-scaled approach. We access the carbon, water, and energy budgets at the stand- to leaf- level to elucidate the mechanisms controlling the variability in ozone fluxes of this agro-ecosystem. The two initial goals of the study were 1. To consider variations and controls on the ozone fluxes within the canopy; and, 2. To examine different modeling and scaling approaches for totaling the ozone fluxes of this orchard. Current understanding of the total ozone flux between the atmosphere near ground and the phytosphere (F-total) include consideration of a fraction which is absorbed by vegetation through stomatal uptake (F-absorb), and fractional components of deposition on external, non-stomatal, surfaces of the vegetation (F-external) and soil (F-soil). Multiplicative stomatal-conductance models have been commonly used to estimate F-absorb, since this flux cannot be measured directly. We approach F-absorb estimates for this orange orchard using chamber measurement of leaf stomatal-conductance, as well as non-chamber sap-conductance collected on branches of varied aspect and sun/shade conditions within the canopy. We use two approaches to measure the F-total of this stand. Gradient flux profiles were measured using slow-response ozone sensors collecting within and above the canopy (4.6 m), and at the top of the tower (8.5 m). In addition, an eddy-covariance system fitted with a high-frequency chemiluminescence ozone system will be deployed (8.5 m). Preliminary ozone gradient flux profiles demonstrate a substantial ozone sink strength of this orchard, with diurnal concentration differentials

  8. Tropospheric Ozone from the TOMS TDOT (TOMS-Direct-Ozone-in-Troposphere) Technique During SAFARI-2000

    Science.gov (United States)

    Stone, J. B.; Thompson, A. M.; Frolov, A. D.; Hudson, R. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    There are a number of published residual-type methods for deriving tropospheric ozone from TOMS (Total Ozone Mapping Spectrometer). The basic concept of these methods is that within a zone of constant stratospheric ozone, the tropospheric ozone column can be computed by subtracting stratospheric ozone from the TOMS Level 2 total ozone column, We used the modified-residual method for retrieving tropospheric ozone during SAFARI-2000 and found disagreements with in-situ ozone data over Africa in September 2000. Using the newly developed TDOT (TOMS-Direct-Ozone-in-Troposphere) method that uses TOMS radiances and a modified lookup table based on actual profiles during high ozone pollution periods, new maps were prepared and found to compare better to soundings over Lusaka, Zambia (15.5 S, 28 E), Nairobi and several African cities where MOZAIC aircraft operated in September 2000. The TDOT technique and comparisons are described in detail.

  9. The holes in the ozone scare

    Energy Technology Data Exchange (ETDEWEB)

    Maduro, R.; Schauerhamer, R.

    1992-05-01

    For the authors, the ozone hole is more politic than scientific, and is caused by anthropogenic CFC, the ozone concentration reduction measured in the antarctic stratosphere is a natural phenomena: ozone destruction by chlorides and bromides coming from volcanos and oceans. The ozone hole was discovered in 1956 and not in 1985. For the greenhouse effect, the CO[sub 2] part is very small in comparison with the atmospheric water vapour part. (A.B.). refs., figs., tabs.

  10. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    Directory of Open Access Journals (Sweden)

    Stylianos K. Stylianou

    2015-01-01

    Full Text Available The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical background regarding the transformation of target organic pollutants by ozone. Next, a novel ceramic membrane contactor, bringing into contact the gas phase (ozone and water phase without the creation of bubbles (bubbleless ozonation, is presented. Experimental data showing the membrane contactor efficiency for oxidation of atrazine, endosulfan, and methyl tert-butyl ether (MTBE are shown and discussed. Almost complete endosulfan degradation was achieved with the use of the ceramic contactor, whereas atrazine degradation higher than 50% could not be achieved even after 60 min of reaction time. Single ozonation of water containing MTBE could not result in a significant MTBE degradation. MTBE mineralization by O3/H2O2 combination increased at higher pH values and O3/H2O2 molar ratio of 0.2 reaching a maximum of around 65%.

  11. The Role of Lightning in Controlling Interannual Variability of Tropical Tropospheric Ozone and OH and its Implications for Climate

    Science.gov (United States)

    Murray, Lee T.; Jacob, Daniel J.; Logan, Jennifer A.; Hudman, Rynda C.; Koshak, William J.

    2012-01-01

    OH is explained using photochemical reaction rates which show a "magnification" effect of the initial lightning NO perturbation on OH primary production, HO(x) recycling, and OH loss frequencies. This influence on OH may represent a negative feedback, if lightning increases in a warming world..

  12. A Review of Atmospheric Ozone and Current Thinking on the Antarctic Ozone Hole.

    Science.gov (United States)

    1987-01-01

    UNIVERSITY OF CALIFORNIA 0 A Review of Atmospheric ozone and Current Thinking on the Antartic Ozone Hole A thesis submitted in partial satisfaction of the...4. TI TLE (Pit 5,1tlfie) S. TYPE OF REPORT & PFRIOO COVERED A Review of Atmospheric Ozone and Current THESIS/DA/;J.At1AAU00 Thinking on the Antartic ...THESIS A Review of Atmospheric Ozone and Current Thinking on the Antartic Ozone Hole by Randolph Antoine Fix Master of Science in Atmospheric Science

  13. Development of a portable instrument to measure ozone production rates in the troposphere

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip; Kumar, Vinod; Sinha, Vinayak; Dusanter, Sébastien

    2015-04-01

    Ground-level ozone is a key species related to air pollution, causing respiratory problems, damaging crops and forests, and affecting the climate. Our current understanding of the tropospheric ozone-forming chemistry indicates that net ozone production occurs via reactions of peroxy radicals (HO2 + RO2) with NO producing NO2, whose photolysis leads to O3 formation. Production rates of tropospheric ozone, P(O3), depend on concentrations of oxides of nitrogen (NOx = NO + NO2) and Volatile Organic Compounds (V OCs), but also on production rates of ROx radicals (OH + HO2 + RO2). The formation of ozone follows a complex nonlinear chemistry that makes strategies for reducing ozone difficult to implement. In this context, atmospheric chemistry models are used to develop emission regulations, but there are still uncertainties associated with the chemical mechanisms used in these models. Testing the ozone formation chemistry in atmospheric models is needed, in order to ensure the development of effective strategies for ozone reduction. We will present the development of an instrument for direct measurements of ozone production rates (OPR) in ambient air. The OPR instrument is made of three components: (i) two quartz flow tubes to sample ambient air, one exposed to solar radiation and one covered by a UV filter, (ii) a NO2-to-O3 conversion unit, and (iii) an ozone analyzer. The total amount of ozone exiting each flow tube is conserved in the form of Ox = NO2 + O3. Ozone production rates P(O3) are derived from the difference in Ox concentration between the two flow tubes, divided by the exposure time of air inside the flow tubes. We will present studies that were carried out in the laboratory to characterize each part of the instrument and we will discuss the performances of the OPR instrument based on experiments carried out using synthetic air mixtures of known composition (NOx and V OCs). Chemical modeling will also be presented to assess the reliability of ozone

  14. Evaluation of ozone generation and indoor organic compounds removal by air cleaners based on chamber tests

    Science.gov (United States)

    Yu, Kuo-Pin; Lee, Grace Whei-May; Hsieh, Ching-Pei; Lin, Chi-Chi

    2011-01-01

    Ozone can cause many health problems, including exacerbation of asthma, throat irritation, cough, chest ache, shortness of breath, and respiratory infections. Air cleaners are one of the sources of indoor ozone, and thus the evaluation of ozone generated by air cleaners is desired significant issue. Most evaluation methods proposed are based on chamber tests. However, the adsorption and desorption of ozone on the wall of test chamber and the deposition of ozone resulted from the surface reaction can influence the evaluation results. In this study, we developed a mass balance model that took the adsorption, desorption and deposition of ozone into consideration to evaluate the effective ozone emission rates of six selected air cleaners. The experiments were conducted in a stainless steel chamber with a volume of 11.3 m 3 at 25 °C and 60% relative humidity. The adsorption, desorption and deposition rate constants of ozone obtained by fittin