WorldWideScience

Sample records for ozone formation elevated

  1. Simulation of ozone formation at different elevations in mountainous area of Hong Kong using WRF-CMAQ model.

    Science.gov (United States)

    Wang, N; Guo, H; Jiang, F; Ling, Z H; Wang, T

    2015-02-01

    Field measurements were simultaneously conducted at a mountain (Mt.) site (Tai Mao Shan, TMS) and an urban site (Tsuen Wan, TW) at the foot of the Mt. TMS in Hong Kong. An interesting event with consecutive high-ozone (O₃) days from 08:00 on 28 Oct. to 23:00 on 03 Nov., 2010 was observed at Mt. TMS, while no such polluted event was found at the foot of the mountain. The Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) models were used to understand this event. Model performance evaluation showed that the simulated meteorological parameters and air pollutants were well in agreement with the observations. The index of agreement (IOA) of temperature, relative humidity, wind direction and wind speed were 0.93, 0.83, 0.46 and 0.60, respectively. The multi-day high O₃ episode at Mt. TMS was also reasonably reproduced (IOA=0.68). Horizontally, the photochemical processes determined the O₃ levels in southwestern Pearl River Delta (PRD) and the Pearl River Estuary (PRE), while in eastern and northern PRD, the O₃ destruction was over the production during the event. Vertically, higher O₃ values at higher levels were found at both Mt. TMS and TW, indicating a vertical O₃ gradient over Hong Kong. With the aid of the process analysis module, we found positive contribution of vertical transport including advection and diffusion to O₃ mixing ratios at the two sites, suggesting that O₃ values at lower locations could be affected by O₃ at higher locations via vertical advection and diffusion over Hong Kong. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Tropospheric ozone. Formation, properties, effects. Expert opinion

    International Nuclear Information System (INIS)

    Elstner, E.F.

    1996-01-01

    The formation and dispersion of tropospheric ozone are discussed only marginally in this expert opinion; the key interest is in the effects of ground level ozone on plants, animals, and humans. The expert opinion is based on an analysis of the available scientific publications. (orig./MG) [de

  3. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  4. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  5. Ozone formation in a transverse-flow gas discharge

    International Nuclear Information System (INIS)

    Baranov, G.A.; Zinchenko, A.K.; Lednev, M.G.

    1994-01-01

    The measurements of the ozone concentration in flows of air and nitrogen-oxygen mixtures under transverse dc discharge are performed using an absorption spectroscopy technique. The mechanism of ozone formation in the discharge is discussed. A simple equation is suggested for the estimation of ozone concentration in the gas mixtures. The influence of water vapor on the kinetics of formation and decay of O 3 molecules is considered. The numerical estimates of the ozone concentration are made using the suggested model of plasma-chemical reactions

  6. Tropospheric ozone. Formation, properties, effects. Expert opinion; Ozon in der Troposphaere. Bildung, Eigenschaften, Wirkungen. Gutachten

    Energy Technology Data Exchange (ETDEWEB)

    Elstner, E.F. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Phytopathologie

    1996-06-01

    The formation and dispersion of tropospheric ozone are discussed only marginally in this expert opinion; the key interest is in the effects of ground level ozone on plants, animals, and humans. The expert opinion is based on an analysis of the available scientific publications. (orig./MG) [Deutsch] Das Gutachten nimmt nur am Rande die Problematik der Bildung und Ausbreitung von troposphaerischen Ozon auf; Im Mittelpunkt steht die Auseinandersetzung mit den Wirkungen des bodennahen Ozons auf Pflanze, Tier und Mensch. Das Gutachten basiert auf einer Analyse der zugaenglichen wissenschaftlichen Arbeiten. (orig./MG)

  7. ambient volatile organic compounds pollution and ozone formation

    African Journals Online (AJOL)

    OLUMAYEDE

    2013-08-01

    Aug 1, 2013 ... Volatile organic compound (VOC) species react at different rate and exhibit differences in reactivity with respect to ozone formation in polluted urban atmosphere. To assess this, the variations pattern, reactivity relative to OH radical and ozone creation potential of ambient VOCs were investigated in field.

  8. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China

    Science.gov (United States)

    Li, Kangwei; Chen, Linghong; Ying, Fang; White, Stephen J.; Jang, Carey; Wu, Xuecheng; Gao, Xiang; Hong, Shengmao; Shen, Jiandong; Azzi, Merched; Cen, Kefa

    2017-11-01

    Regional ozone pollution has become one of the most challenging problems in China, especially in the more economically developed and densely populated regions like Hangzhou. In this study, measurements of O3, CO, NOx and non-methane hydrocarbons (NMHCs), together with meteorological data, were obtained for the period July 1, 2013-August 15, 2013 at three sites in Hangzhou. These sites included an urban site (Zhaohui ;ZH;), a suburban site (Xiasha ;XS;) and a rural site (Qiandaohu ;QDH;). During the observation period, both ZH and XS had a higher ozone level than QDH, with exceeding rates of 41.3% and 47.8%, respectively. Elevated O3 levels in QDH were found at night, which could be explained by less prominent NO titration effect in rural area. Detailed statistical analysis of meteorological and chemical impacts on ozone formation was carried out for ZH, and higher ozone concentration was observed when the wind direction was from the east. This is possibly due to emissions of VOCs from XS, a typical chemical industrial park located in 30 km upwind area of ZH. A comprehensive comparison between three ozone episode periods and one non-episode period were made in ZH. It was concluded that elevated concentrations of precursors and temperatures, low relative humidity and wind speed and easterly-dominated wind direction contribute to urban ozone episodes in Hangzhou. VOCs reactivity analysis indicated that reactive alkenes like isoprene and isobutene contributed most to ozone formation. Three methods were applied to evaluate O3-VOCs-NOx sensitivity in ZH: VOCs/NOx ratio method, Smog Production Model (SPM) and Relative Incremental Reactivity (RIR). The results show that summer ozone in urban Hangzhou mostly presents VOCs-limited and transition region alternately. Our study implies that the increasing automobiles and VOCs emissions from upwind area could result in ozone pollution in urban Hangzhou, and synergistic reduction of VOCs and NOx will be more effective.

  9. Observations of ozone formation in power plant plumes and implications for ozone control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, T.B.; Trainer, M.; Holloway, J.S.; Parrish, D.D.; Huey, L.G.; Sueper, D.T.; Frost, G.J.; Donnelly, S.G.; Schauffler, S.; Atlas, E.L.; Kuster, W.C.; Goldan, P.D.; Huebler, G.; Meagher, J.F.; Fehsenfeld, F.C. [NOAA, Boulder, CO (USA). Aeronomy Lab.

    2001-04-27

    Data taken in aircraft transects of emissions plumes from rural US coal-fired power plants were used to confirm and quantify the nonlinear dependence of tropospheric ozone formation on plume NOx (NO plus NO{sub 2}) concentration, which is determined by plant NOx emission rate and atmospheric dispersion. The ambient availability of reactive volatile organic compounds, principally biogenic isoprene, was also found to modular ozone production rate and yield in these rural plumes. Differences of a factor of 2 or greater in plume ozone formation rates and yields as a function of NOx and volatile organic compound concentrations were consistently observed. These large differences suggest that consideration of power plant NOx emission rates and geographic locations in current and future US ozone control strategies could substantially enhance the efficacy of NOx reductions from these sources. 18 refs., 4 figs.

  10. Ozone tolerance in snap bean is associated with elevated ascorbic acid in the leaf apoplast

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, K.O. [North Carolina State Univ., United States Dept. of Agriculture-Agricultural Research Service, and Dept. of Crop Science, Raleigh, NC (United States); Eason, G. [North Carolina, State Univ., United States Dept. of Plant Pathology, Raleigh, NC (United States)

    2002-03-01

    Ascorbic acid (AA) in the leaf apoplast has the potential to limit ozone injury by participating in reactions that detoxify ozone and reactive oxygen intermediates and thus prevent plasma membrane damage. Genotypes of snap bean (Phaseolus vulgaris L) were compared in controlled environments and in open-top field chambers to assess the relationship between extracellular AA content and ozone tolerance. Vacuum infiltration methods were employed to separate leaf AA into extracellular and intracellular fractions. For plants grown in controlled environments at low ozone concentration (4 nmol mol{sup -1} ozone), leaf apoplast AA was significantly higher in tolerant genotypes (300-400 nmol g{sup -1} FW) compared with sensitive genotypes (approximately 50 nmol g{sup -1} FW), evidence that ozone tolerance is associated with elevated extracellular AA. For the open top chamber study, plants were grown in pots under charcoal-filtered air (CF) conditions and then either maintained under CF conditions (29 nmol mol{sup -1} ozone) or exposed to elevated ozone (67 nmol mol{sup -1} ozone). Following an 8-day treatment period, leaf apoplast AA was in the range of 100-190 nmol g{sup -1} FW for all genotypes, but no relationship was observed between apoplast AA content and ozone tolerance. The contrasting results in the two studies demonstrated a potential limitation in the interpretation of extracellular AA data. Apoplast AA levels presumably reflect the steady-state condition between supply from the cytoplasm and utilization within the cell wall. The capacity to detoxify ozone in the extracellular space may be underestimated under elevated ozone conditions where the dynamics of AA supply and utilization are not adequately represented by a steady-state measurement. (au)

  11. Effects of elevated CO2 and ozone on phenolic glycosides of trembling aspen

    Science.gov (United States)

    James K. Nitao; Muraleedharan G. Nair; William J. Mattson; Daniel A. Herms; Bruce A. Birr; Mark D. Coleman; Terry M. Trier; J. G. Isebrands

    1996-01-01

    We tested the effects of elevated CO2 and ozone on concentrations of the phenolic glycosides salicortin and tremulacin in immature and mature foliage of the trembling aspen (Populus tremuloides) clones 216, 259, and 271.

  12. Ozone formation in pulsed SDBD in a wide pressure range

    Science.gov (United States)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  13. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Llusia, J.; Penuelas, J. [Universitat Autonoma de Barcelona (Spain). Unitat Ecofisiologia CSIC-CEAB-CREAF; Gimeno, R.S. [CIEMAT, Madrid (Spain). Ecotoxicologia de la Contaminacion Atmosferica

    2002-08-01

    %) and total VOC (45%) emission rates in ozone-fumigated plants, whereas stomatal conductance did not change. Since VOCs are precursors of ozone, the increase in BVOC emission as a consequence of elevated tropospheric ozone concentrations may lead to positive feedback mechanisms in ozone formation. (author)

  14. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Science.gov (United States)

    Llusià, J.; Peñuelas, J.; Gimeno, B. S.

    %) emission rates in ozone-fumigated plants, whereas stomatal conductance did not change. Since VOCs are precursors of ozone, the increase in BVOC emission as a consequence of elevated tropospheric ozone concentrations may lead to positive feedback mechanisms in ozone formation.

  15. Anaerobic effluent disinfection using ozone: Byproducts formation

    NARCIS (Netherlands)

    Silva, G.H.R.; Daniel, L.A.; Bruning, H.; Rulkens, W.H.

    2010-01-01

    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15

  16. Reduction of Bromate Formation During Ozonation of Drinking Water

    DEFF Research Database (Denmark)

    Antoniou, Maria; Sichel, C.; Andre, K.

    This study focused on the prevention of carcinogenic bromate formation during ozonation of tap water from the DTU university campus. To achieve this, different pre-treatments including pH-adjustment, ammonia addition and chlorine-ammonia addition, were tested. Formation of bromated was drastically...

  17. Process-scale modeling of elevated wintertime ozone in Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, V. R.; Holdridge, D. J.; Environmental Science Division

    2007-12-31

    Measurements of meteorological variables and trace gas concentrations, provided by the Wyoming Department of Environmental Quality for Daniel, Jonah, and Boulder Counties in the state of Wyoming, were analyzed for this project. The data indicate that highest ozone concentrations were observed at temperatures of -10 C to 0 C, at low wind speeds of about 5 mph. The median values for nitrogen oxides (NOx) during these episodes ranged between 10 ppbv and 20 ppbv (parts per billion by volume). Measurements of volatile organic compounds (VOCs) during these periods were insufficient for quantitative analysis. The few available VOCs measurements indicated unusually high levels of alkanes and aromatics and low levels of alkenes. In addition, the column ozone concentration during one of the high-ozone episodes was low, on the order of 250 DU (Dobson unit) as compared to a normal column ozone concentration of approximately 300-325 DU during spring for this region. Analysis of this observation was outside the scope of this project. The data analysis reported here was used to establish criteria for making a large number of sensitivity calculations through use of a box photochemical model. Two different VOCs lumping schemes, RACM and SAPRC-98, were used for the calculations. Calculations based on this data analysis indicated that the ozone mixing ratios are sensitive to (a) surface albedo, (b) column ozone, (c) NOx mixing ratios, and (d) available terminal olefins. The RACM model showed a large response to an increase in lumped species containing propane that was not reproduced by the SAPRC scheme, which models propane as a nearly independent species. The rest of the VOCs produced similar changes in ozone in both schemes. In general, if one assumes that measured VOCs are fairly representative of the conditions at these locations, sufficient precursors might be available to produce ozone in the range of 60-80 ppbv under the conditions modeled.

  18. Simplified Modeling of Tropospheric Ozone Formation Considering Alternative Fuels Using

    Directory of Open Access Journals (Sweden)

    Leonardo Aragão Ferreira da Silva

    2014-07-01

    Full Text Available Brazilian cities have been constantly exposed to air quality episodes of high ozone concentrations (O3 . Known for not be emitted directly into the environment, O3 is a result of several chemical reactions of other pollutants emitted to atmosphere. The growth of vehicle fleet and government incentives for using alternative fuels like ethanol and Compressed Natural Gas (CNG are changing the Brazilian Metropolitan Areas in terms of acetaldehyde and formaldehyde emissions, Volatile Organic Compounds (VOC's present in the atmosphere and known to act on the kinetics of ozone. Driven by high concentrations of tropospheric ozone in urban/industry centers and its implications for environment and population health, the target of this work is understand the kinetics of ozone formation through the creation of a mathematical model in FORTRAN 90, describing a system of coupled ordinary differential equations able to represent a simplified mechanism of photochemical reactions in the Brazilian Metropolitan Area. Evaluating the concentration results of each pollutant were possible to observe the precursor’s influence on tropospheric ozone formation, which seasons were more conducive to this one and which are the influences of weather conditions on formation of photochemical smog.

  19. Contribution of ozone to airborne aldehyde formation in Paris homes.

    Science.gov (United States)

    Rancière, Fanny; Dassonville, Claire; Roda, Célina; Laurent, Anne-Marie; Le Moullec, Yvon; Momas, Isabelle

    2011-09-15

    Indoor aldehydes may result from ozone-initiated chemistry, mainly documented by experimental studies. As part of an environmental investigation included in the PARIS birth cohort, the aim of this study was to examine ozone contribution to airborne aldehyde formation in Paris homes. Formaldehyde, acetaldehyde and hexaldehyde levels, as well as styrene, nitrogen dioxide and nicotine concentrations, comfort parameters and carbon dioxide levels, were measured twice during the first year of life of the babies. Ambient ozone concentrations were collected from the closest background station of the regional air monitoring network. Traffic-related nitrogen oxide concentrations in front of the dwellings were estimated by an air pollution dispersion model. Home characteristics and families' way of life were described by questionnaires. Stepwise multiple linear regression models were used to link aldehyde levels with ambient ozone concentrations and a few aldehyde precursors involved in oxidation reactions, adjusting for other indoor aldehyde sources, comfort parameters and traffic-related nitrogen oxides. A 4 and 11% increase in formaldehyde and hexaldehyde levels was pointed out when 8-hour ozone concentrations increased by 20 μg/m(3). The influence of potential precursors such as indoor styrene level and frequent use of air fresheners, containing unsaturated volatile organic compounds as terpenes, was also found. Thus, our results suggest that ambient ozone can significantly impact indoor air quality, especially with regard to formaldehyde and hexaldehyde levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. [Effects of elevated ozone on Pinus armandii growth: a simulation study with open-top chamber].

    Science.gov (United States)

    Liu, Chang-Fu; Liu, Chen; He, Xing-Yuan; Ruan, Ya-Nan; Xu, Sheng; Chen, Zhen-Ju; Peng, Jun-Jie; Li, Teng

    2013-10-01

    By using open-top chamber (OTC) and the techniques of dendrochronology, this paper studied the growth of Pinus armandii under elevated ozone, and explored the evolution dynamics and adaptation mechanisms of typical forest ecosystems to ozone enrichment. Elevated ozone inhibited the stem growth of P. armandii significantly, with the annual growth of the stem length and diameter reduced by 35.0% and 12.9%, respectively. The annual growth of tree-ring width and the annual ring cells number decreased by 11.5% and 54.1%, respectively, but no significant change was observed in the diameter of tracheid. At regional scale, the fluctuation of ozone concentration showed significant correlation with the variation of local vegetation growth (NDVI).

  1. Fine root dynamics of mature European beech (Fagus sylvatica L.) as influenced by elevated ozone concentrations

    International Nuclear Information System (INIS)

    Mainiero, Raphael; Kazda, Marian; Haeberle, Karl-Heinz; Nikolova, Petia Simeonova; Matyssek, Rainer

    2009-01-01

    Fine root dynamics (diameter < 1 mm) in mature Fagus sylvatica, with the canopies exposed to ambient or twice-ambient ozone concentrations, were investigated throughout 2004. The focus was on the seasonal timing and extent of fine root dynamics (growth, mortality) in relation to the soil environment (water content, temperature). Under ambient ozone concentrations, a significant relationship was found between fine root turnover and soil environmental changes indicating accelerated fine root turnover under favourable soil conditions. In contrast, under elevated ozone, this relationship vanished as the result of an altered temporal pattern of fine root growth. Fine root survival and turnover rate did not differ significantly between the different ozone regimes, although a delay in current-year fine root shedding was found under the elevated ozone concentrations. The data indicate that increasing tropospheric ozone levels can alter the timing of fine root turnover in mature F. sylvatica but do not affect the turnover rate. - Doubling of ozone concentrations in mature European beech affected the seasonal timing of fine root turnover rather than the turnover rate.

  2. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone

    International Nuclear Information System (INIS)

    Riikonen, J.; Holopainen, T.; Oksanen, E.; Lindsberg, M-M.; Lappi, J.; Peltonen, P.; Vapaavuori, E.

    2004-01-01

    The effects of elevated concentrations of carbon dioxide and ozone were studied on growth, biomass allocation and leaf area of field-grown ozone-tolerant (Clone 4) and ozone-sensitive (Clone 80) European silver birch trees. Seven-year old trees of both types were exposed for three years to outside and chamber control, (1) twice ambient ozone, (2) twice ambient carbon dioxide, and (3) twice ambient carbon dioxide and twice ambient ozone. No effect on biomass allocation was observed when results of the two clones were analyzed together. Total leaf area showed an increase, and leaf abscission appeared delayed in response to elevated carbon dioxide. Elevated ozone caused the dry mass of roots, branches and mean leaf size to decrease, and autumnal leaf abscission occurred earlier than usual in both clones. In general. the effects of elevated ozone were small, however, the interaction between elevated carbon dioxide and elevated oxygen were significant. When results from the two clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 increased when exposed to elevated concentrations of carbon dioxide; elevated concentrations of ozone appeared to have no effect. In Clone 4 elevated ozone caused significant decrease in root and branch biomass, but the effects of elevated carbon dioxide were minimal. Responses to elevated ozone exposure were observed only under ambient carbon dioxide conditions. This response is believed to reflect the greater quantity of carbohydrates available for detoxification and repair under elevated carbon dioxide conditions. Alternatively, the response may be due to decreased stomatal conductance, thus decreased ozone uptake under elevated carbon dioxide conditions. 45 refs., 6 tabs., 4 figs

  3. Cultivar specific plant-soil feedback overrules soil legacy effects of elevated ozone in a rice-wheat rotation system

    NARCIS (Netherlands)

    Li, Qi; Yang, Yue; Bao, Xuelian; Zhu, Jianguo; Liang, Wenju; Bezemer, T. Martijn

    2016-01-01

    Abstract Tropospheric ozone has been recognized as one of the most important air pollutants. Many studies have shown that elevated ozone negatively impacts yields of important crops such as wheat or rice, but how ozone influences soil ecosystems of these crops and plant growth in rotation systems is

  4. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

    Science.gov (United States)

    Alan F. Talhelm; Kurt S. Pregitzer; Mark E. Kubiske; Donald R. Zak; Courtney E. Campany; Andrew J. Burton; Richard E. Dickson; George R. Hendrey; J. G. Isebrands; Keith F. Lewin; John Nagy; David F. Karnosky

    2014-01-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment...

  5. Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds.

    Science.gov (United States)

    McCurry, Daniel L; Quay, Amanda N; Mitch, William A

    2016-02-02

    Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations.

  6. Ozone concentrations at a selected high-elevation forest site downwind Mexico City

    Science.gov (United States)

    Torres-JArdon, R.

    2013-05-01

    Torres-Jardón, R.*, Rosas-Pérez, I., Granada-Macías, L. M., Ruiz-Suárez, L. G. Centro de Ciencias de la Atmósfera, UNAM, México D. F. México * rtorres@unam.mx For many years, the vegetation of forest species such as Abies religiosa in natural parks located in the southwest mountains of Mexico City has attracted much attention since these parks have been experiencing a severe decline of unclear etiology. The high ozone levels in the area and the observed naked eye macroscopic, histological and cytological injuries on these species, strongly suggest an important contribution of tropospheric ozone to this deterioration process. Apart of historical short monitoring campaigns for measuring ozone levels in these mountains, it is known just a little is known about the present exposure levels at which the local vegetation is exposed. A continuous ozone analyzer has been in operation since 2011 at a high-elevation forest site (Parque Nacional Miguel Hidalgo, PNMH; 3110 m above mean sea level) located downwind of Mexico City Metropolitan Area (MCMA), in order to characterize the local ozone diel amplitude and its seasonal trend, as well as the influence of MCMA on the local O3 concentrations. Hourly average ozone data in PNMH shows that in general, the diel of ozone concentrations in the forest site has a statistical significant correlation with the pattern of ozone levels observed in several monitoring sites (smog receptor sites) within the MCMA, although the high elevation O3 levels are relatively lower than those in the urban area (around 2200 m above mean sea level). It is possible that a part of the oxidants in the air masses are removed by sink deposition processes during the air mass transport across the hills. The diel amplitude of ozone concentrations is small in the cold season, increasing as the seasons advance to June. As in the city, the highest ozone concentrations occur in April or May and the lowest levels during the rainy season, which extends from

  7. Dynamic of ozone formation in nanosecond microwave discharges

    International Nuclear Information System (INIS)

    Akhmedzhanov, R.A.; Vikharev, A.L.; Gorbachev, A.M.

    1995-01-01

    Nanosecond gas discharges are efficient sources of chemically active plasma. Studies of the nanosecond microwave discharge are interesting for remote modification of the chemical composition of the atmosphere in term of its purification, for diagnostics of impurities and ozone replenishment in the regions of local open-quotes ozone holesclose quotes. In this connection a study of plasma chemical processes in such a discharge seems appropriate, as well as modeling of ecological consequences of the effect of powerful microwave radiation on the atmosphere. The present paper contains generalized results of studying the process of ozone formation in a pulse-periodic freely localized nanosecond microwave discharge. The experiments were performed in a wide range of parameters: microwave radiation wavelength λ = 0.8 and 3cm, pulse duration τ = 6 and 500ns, pulse power P = 50kW and 20MW, pulse repetition rate F = 1-10 3 Hz. The working gases were air and oxygen under pressure P = 10-100Torr. As a source of the microwave radiation a pulse magnetron was used with a device for pulse compression based on the waveguide resonator, and a relativistic microwave generator. The discharge was produced in the focus of the parabolic mirror and had the form of homogeneous cylinder. The plasma chemical processes were studied in two cases. The discharge was created either in the quartz tube placed along the focal line of the mirror or in the free air. Dynamics of formation of ozone and nitrogen oxides in the discharge was studied by means of absorption spectroscopy in the regime of accumulation of the products of chemical reactions (in a closed volume) and their diffusion spreading

  8. Effects of elevated ozone on CO2 uptake and leaf structure in sugar maple under two light environments

    International Nuclear Information System (INIS)

    Bäck, J.; Vanderklein, D.W.; Topa, M.A.

    1999-01-01

    The interactive effects of ozone and light on leaf structure, carbon dioxide uptake and short-term carbon allocation of sugar maple (Acer saccharum Marsh.) seedlings were examined using gas exchange measurements and 14 C-macroautoradiographic techniques. Two-year-old sugar maple seedlings were fumigated from budbreak for 5 months with ambient or 3 × ambient ozone in open-top chambers, receiving either 35% (high light) or 15% (low light) of full sunlight. Ozone accelerated leaf senescence, and reduced net photosynthesis, 14 CO 2 uptake and stomatal conductance, with the effects being most pronounced under low light. The proportion of intercellular space increased in leaves of seedlings grown under elevated ozone and low light, possibly enhancing the susceptibility of mesophyll cells to ozone by increasing the cumulative dose per mesophyll cell. Indeed, damage to spongy mesophyll cells in the elevated ozone × low light treatment was especially frequent. 14 C macroautoradioraphy revealed heterogeneous uptake of 14 CO 2 in well defined areole regions, suggesting patchy stomatal behaviour in all treatments. However, in seedlings grown under elevated ozone and low light, the highest 14 CO 2 uptake occurred along larger veins, while interveinal regions exhibited little or no uptake. Although visible symptoms of ozone injury were not apparent in these seedlings, the cellular damage, reduced photosynthetic rates and reduced whole-leaf chlorophyll levels corroborate the visual scaling of whole-plant senescence, suggesting that the ozone × low light treatment accelerated senescence or senescence-like injury in sugar maple. (author)

  9. Laboratory studies on the effect of ozonation on THM formation in swimming pool water

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Cheema, Waqas Akram

    2015-01-01

    Water samples from indoor swimming pool were ozonated at different pH values to evaluate the effect of pH on decomposition of ozone in swimming pool water. Furthermore, drinking and pool water were repeatedly ozonated followed by chlorination to evaluate THM formation. Decomposition of ozone...... was not affected by pH in the range relevant to swimming pools (pH 6.8 – 7.8) and a half-life time at 10-12 min was obtained. Repeating the ozonation, the decomposition of ozone increased at the second dose of ozone added (t½,2=8 min) and then decreased again at the third and fourth dose of ozone (t½,3=17 min; t...... chlorine for drinking water as lower TTHM formation occurred than in non-ozonated samples. For pool water, a higher TTHM formation was observed in ozonated than non-ozonated pool water. Thus, it was observed that ozone reacts markedly different in swimming pool water from the known pattern in drinking...

  10. Elevated CO{sub 2} and ozone reduce nitrogen acquisition by Pinus halepensis from its mycorrhizal symbiont

    Energy Technology Data Exchange (ETDEWEB)

    Kytoeviita, M.M. [Oulu Univ., Dept. of Biology, Oulu (Finland); Thiec, D. Le [Univ. Henri Poincare-Nancy, Lab. de Biologie Forestiere, Vandoeuvre-les-Nancy (France); Dizengremel, P. [Unite Ecophysiologie Forestiere-Lab. de Pollution Atmospherique, INRA-Centre de Recherches Forestieres, Champenoux (France)

    2001-07-01

    The effects of 700 {mu}mol mol{sup -1} CO{sub 2} and 200 nmol mol{sup -1} ozone on photosynthesis in Pinus halepensis seedlings and on N translocation from its mycorrhizal symbiont, Paxillus involutus, were studied under nutrient-poor conditions. After 79 days of exposure, ozone reduced and elevated CO{sub 2} increased net assimilation rate. However, the effect was dependent on daily accumulated exposure. No statistically significant differences in total plant mass accumulation were observed, although ozone-treated plants tended to be smaller. Changes in atmospheric gas concentrations induced changes in allocation of resources: under elevated ozone, shoots showed high priority over roots and had significantly elevated N concentrations. As a result of different shoot N concentration and net carbon assimilation rates, photosynthetic N use efficiency was significantly increased under elevated CO{sub 2} and decreased under ozone. The differences in photosynthesis were mirrored in the growth of the fungus in symbiosis with the pine seedlings. However, exposure to CO{sub 2} and ozone both reduced the symbiosis-mediated N uptake. The results suggest an increased carbon cost of symbiosis-mediated N uptake under elevated CO{sub 2} while under ozone, plant N acquisition is preferentially shifted towards increased root uptake. (au)

  11. Effects of elevated ozone, carbon dioxide, and the combination of both on the grain quality of Chinese hybrid rice

    International Nuclear Information System (INIS)

    Wang, Yunxia; Song, Qiling; Frei, Michael; Shao, Zaisheng; Yang, Lianxin

    2014-01-01

    The effects of CO 2 and/or O 3 elevation on rice grain quality were investigated in chamber experiments with gas fumigation performed from transplanting until maturity in 2011 and 2012. Compared with the control (current CO 2 and O 3 concentration), elevated CO 2 caused a tendency of an increase in grain chalkiness and a decrease in mineral nutrient concentrations. In contrast, elevated O 3 significantly increased grain chalkiness and the concentrations of essential nutrients, while changes in starch pasting properties indicated a trend of deterioration in the cooking and eating quality. In the combination of elevated CO 2 and O 3 treatment, only chalkiness degree was significantly affected. It is concluded that the O 3 concentration projected for the coming few decades will have more substantial effects on grain quality of Chinese hybrid rice than the projected high CO 2 concentration alone, and the combination of two gases caused fewer significant changes in grain quality than individual gas treatments. - Highlights: • We investigated the effects of carbon dioxide and/or ozone elevation on rice grain quality. • Elevated ozone concentration had substantial effects on grain quality under current carbon dioxide concentration. • Elevated carbon dioxide concentration mitigated the impact of elevated ozone concentration on rice grain quality. - Exposure of Chinese hybrid rice to elevated ozone and CO 2 during growth causes fewer changes in grain quality than ozone exposure alone

  12. International regime formation: Ozone depletion and global climate change

    International Nuclear Information System (INIS)

    Busmann, N.E.

    1994-03-01

    Two theoretical perspectives, neorealism and neoliberal institutionalism, dominate in international relations. An assessment is made of whether these perspectives provide compelling explanations of why a regime with specific targets and timetables was formed for ozone depletion, while a regime with such specificity was not formed for global climate change. In so doing, the assumptions underlying neorealism and neoliberal institutionalism are examined. A preliminary assessment is offered of the policymaking and institutional bargaining process. Patterns of interstate behavior are evolving toward broader forms of cooperation, at least with regard to global environmental issues, although this process is both slow and cautious. State coalitions on specific issues are not yet powerful enough to create a strong community of states in which states are willing to devolve power to international institutions. It is shown that regime analysis is a useful analytic framework, but it should not be mistaken for theory. Regime analysis provides an organizational framework offering a set of questions regarding the principles and norms that govern cooperation and conflict in an issue area, and whether forces independent of states exist which affect the scope of state behavior. An examination of both neorealism and neoliberal institutionalism, embodied by four approaches to regime formation, demonstrates that neither has sufficient scope to account for contextual dynamics in either the ozone depletion or global climate change regime formation processes. 261 refs

  13. Nitrate formation during ozonation as a surrogate parameter for abatement of micropollutants and the N-nitrosodimethylamine (NDMA) formation potential.

    Science.gov (United States)

    Song, Yang; Breider, Florian; Ma, Jun; von Gunten, Urs

    2017-10-01

    In this study, nitrate formation from ammonium and/or dissolved organic nitrogen (DON) was investigated as a novel surrogate parameter to evaluate the abatement of micropollutants during ozonation of synthetic waters containing natural organic matter (NOM) isolates, a natural water and secondary wastewater effluents. Nitrate formation during ozonation was compared to the changes in UV absorbance at 254 nm (UVA 254 ) including the effect of pH. For low specific ozone doses UVA 254 was abated more efficiently than nitrate was formed. This is due to a relatively slow rate-limiting step for nitrate formation from the reaction between ozone and a proposed nitrogen-containing intermediate. This reaction cannot compete with the fast reactions between ozone and UV-absorbing moieties (e.g., activated aromatic compounds). To further test the kinetics of nitrate formation, two possible intermediates formed during ozonation of DON were tested. At pH 7, nitrate was formed during ozonation of acetone oxime and methyl nitroacetate with second-order rate constants of 256.7 ± 4.7 M -1  s -1 and 149.5 ± 5.8 M -1  s -1 , respectively. The abatement of the selected micropollutants (i.e., 17α-ethinylestradiol (EE2), carbamazepine (CBZ), bezafibrate (BZF), ibuprofen (IBU), and p-chlorobenzoic acid (pCBA)) was investigated for specific ozone doses ≤1.53 mgO 3 /mgDOC and its efficiency depended strongly on the reactivity of the selected compounds with ozone. The relative abatement of micropollutants (i.e., EE2 and CBZ) with high ozone reactivity showed linear relationships with nitrate formation. The abatement of micropollutants with intermediate-low ozone reactivity (BZF, IBU, and pCBA) followed one- and two-phase behaviors relative to nitrate formation during ozonation of water samples containing high and low concentrations of nitrate-forming DON, respectively. During ozonation of a wastewater sample, the N-nitrosodimethylamine formation potential (NDMA-FP) during

  14. Reduction of N-nitrosodimethylamine formation from ranitidine by ozonation preceding chloramination: influencing factors and mechanisms.

    Science.gov (United States)

    Zou, Rusen; Liao, Xiaobin; Zhao, Lei; Yuan, Baoling

    2018-05-01

    Formation of toxic N-nitrosodimethylamine (NDMA) by chloramination of ranitidine, a drug to block histamine, was still an ongoing issue and posed a risk to human health. In this study, the effect of ozonation prior to chloramination on NDMA formation and the transformation pathway were determined. Influencing factors, including ozone dosages, pH, hydroxyl radical scavenger, bromide, and NOM, were studied. The results demonstrated that small ozone dosage (0.5 mg/L) could effectively control NDMA formation from subsequent chloramination (from 40 to 0.8%). The NDMA molar conversion was not only influenced by pH but also by ozone dosages at various pre-ozonation pH (reached the highest value of 5% at pH 8 with 0.5 mg/L O 3 but decreased with the increasing pH with 1 mg/L O 3 ). The NDMA molar yield by chloramination of ranitidine without pre-ozonation was reduced by the presence of bromide ion due to the decomposition of disinfectant. However, due to the formation of brominated intermediate substances (i.e., dimethylamine (DMA), dimethyl-aminomethyl furfuryl alcohol (DFUR)) with higher NDMA molar yield than their parent substances, more NDMA was formed than that without bromide ion upon ozonation. Natural organic matter (NOM) and hydroxyl radical scavenger (tert-butyl alcohol, tBA) enhanced NDMA generation because of the competition of ozone and more ranitidine left. The NDMA reduction mechanism by pre-ozonation during chloramination of ranitidine may be due to the production of oxidation products with less NDMA yield (such as DMA) than parent compound. Based on the result of Q-TOF and GC-MS/MS analysis, three possible transformation pathways were proposed. Different influences of oxidation conditions and water quality parameters suggest that strategies to reduce NDMA formation should vary with drinking water sources and choose optimal ozone dosage.

  15. Bromate formation in a hybrid ozonation-ceramic membrane filtration system.

    Science.gov (United States)

    Moslemi, Mohammadreza; Davies, Simon H; Masten, Susan J

    2011-11-01

    The effect of pH, ozone mass injection rate, initial bromide concentration, and membrane molecular weight cut off (MWCO) on bromate formation in a hybrid membrane filtration-ozonation reactor was studied. Decreasing the pH, significantly reduced bromate formation. Bromate formation increased with increasing gaseous ozone mass injection rate, due to increase in dissolved ozone concentrations. Greater initial bromide concentrations resulted in higher bromate concentrations. An increase in the bromate concentration was observed by reducing MWCO, which resulted in a concomitant increase in the retention time in the system. A model to estimate the rate of bromate formation was developed. Good correlation between the model simulation and the experimental data was achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Emissions lifetimes and ozone formation in power plant plumes

    International Nuclear Information System (INIS)

    Ryerson, T.B.; Buhr, M.P.; Frost, G.J.; Goldan, P.D.; Holloway, J.S.; Huebler, G.; Jobson, B.T.; Kuster, W.C.; McKeen, S.A.; Parrish, D.D.; Roberts, J.M.; Sueper, D.T.; Trainer, M.; Williams, J.; Fehsenfeld, F.C.

    1998-01-01

    The concept of ozone production efficiency (OPE) per unit NO x is based on photochemical models and provides a tool with which to assess potential regional tropospheric ozone control strategies involving NO x emissions reductions. An aircraft study provided data from which power plant emissions removal rates and measurement-based estimates of OPE are estimated. This study was performed as part of the Southern Oxidants Study - 1995 Nashville intensive and focuses on the evolution of NO x , SO 2 , and ozone concentrations in coal-fired power plant plumes during transport. Two approaches are examined. A mass balance approach accounts for mixing effects within the boundary layer and is used to calculate effective boundary layer removal rates for NO x and SO 2 and to estimate net OPE, Net OPE is more directly comparable to photochemical model results than previous measurement-based estimates. Derived net production efficiencies from mass balance range from 1 to 3 molecules of ozone produced per molecule of NO x emitted. A concentration ratio approach provides an estimate of removal rates of primary emissions relative to a tracer species. This approach can be combined with emissions ratio information to provide upper limit estimates of OPE that range from 2 to 7. Both approaches illustrate the dependence of ozone production on NO x source strength in these large point source plumes. The dependence of total ozone production, ozone production efficiency, and the rate of ozone production on NO x source strength is examined. These results are interpreted in light of potential ozone control strategies for the region. 42 refs., 8 figs., 5 tabs

  17. Emissions lifetimes and ozone formation in power plant plumes

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, T.B.; Buhr, M.P.; Frost, G.J.; Goldan, P.D.; Holloway, J.S.; Huebler, G.; Jobson, B.T.; Kuster, W.C.; McKeen, S.A.; Parrish, D.D.; Roberts, J.M.; Sueper, D.T.; Trainer, M.; Williams, J.; Fehsenfeld, F.C. [NOAA Aeronomy Laboratory, Boulder, CO (United States)

    1998-09-20

    The concept of ozone production efficiency (OPE) per unit NO{sub x} is based on photochemical models and provides a tool with which to assess potential regional tropospheric ozone control strategies involving NO{sub x} emissions reductions. An aircraft study provided data from which power plant emissions removal rates and measurement-based estimates of OPE are estimated. This study was performed as part of the Southern Oxidants Study - 1995 Nashville intensive and focuses on the evolution of NO{sub x}, SO{sub 2}, and ozone concentrations in coal-fired power plant plumes during transport. Two approaches are examined. A mass balance approach accounts for mixing effects within the boundary layer and is used to calculate effective boundary layer removal rates for NO{sub x} and SO{sub 2} and to estimate net OPE, Net OPE is more directly comparable to photochemical model results than previous measurement-based estimates. Derived net production efficiencies from mass balance range from 1 to 3 molecules of ozone produced per molecule of NO{sub x} emitted. A concentration ratio approach provides an estimate of removal rates of primary emissions relative to a tracer species. This approach can be combined with emissions ratio information to provide upper limit estimates of OPE that range from 2 to 7. Both approaches illustrate the dependence of ozone production on NO{sub x} source strength in these large point source plumes. The dependence of total ozone production, ozone production efficiency, and the rate of ozone production on NO{sub x} source strength is examined. These results are interpreted in light of potential ozone control strategies for the region. 42 refs., 8 figs., 5 tabs.

  18. Inter- and intra-specific responses to elevated ozone and chamber climate in northern birches

    International Nuclear Information System (INIS)

    Manninen, S.; Huttunen, S.; Vanhatalo, M.; Pakonen, T.; Haemaelaeinen, A.

    2009-01-01

    We studied the responses of micropropagated, northern provenances of downy, mountain and silver birches to elevated ozone (O 3 ) and changing climate using open-top chambers (OTCs). Contrary to our hypothesis, northern birches were sensitive to O 3 , i.e. O 3 levels of 31-36 ppb reduced the leaf and root biomasses by -10%, whereas wood biomass was affected to a lesser extent. The warmer and drier OTC climate enhanced growth in general, though there were differences among the species and clones, e.g. in bud burst and biomass production. Inter- and intra-specific responses to O 3 and changing climate relate to traits such as allocation patterns between the above- and belowground parts (i.e. root/shoot ratio), which further relate to nutrient and water economy. Our experiments may have mimicked future conditions quite well, but only long-term field studies can yield the information needed to forecast responses at both tree and ecosystem levels. - Northern birches are responsive to ambient ozone levels.

  19. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

    Science.gov (United States)

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-01-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3. Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r2 = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m−2) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (ΔNPP/ΔN) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2. Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. PMID:24604779

  20. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests.

    Science.gov (United States)

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-08-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  1. Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone.

    Science.gov (United States)

    Pregitzer, Kurt; Loya, Wendy; Kubiske, Mark; Zak, Donald

    2006-06-01

    The aspen free-air CO2 and O3 enrichment (FACTS II-FACE) study in Rhinelander, Wisconsin, USA, is designed to understand the mechanisms by which young northern deciduous forest ecosystems respond to elevated atmospheric carbon dioxide (CO2) and elevated tropospheric ozone (O3) in a replicated, factorial, field experiment. Soil respiration is the second largest flux of carbon (C) in these ecosystems, and the objective of this study was to understand how soil respiration responded to the experimental treatments as these fast-growing stands of pure aspen and birch + aspen approached maximum leaf area. Rates of soil respiration were typically lowest in the elevated O3 treatment. Elevated CO2 significantly stimulated soil respiration (8-26%) compared to the control treatment in both community types over all three growing seasons. In years 6-7 of the experiment, the greatest rates of soil respiration occurred in the interaction treatment (CO2 + O3), and rates of soil respiration were 15-25% greater in this treatment than in the elevated CO2 treatment, depending on year and community type. Two of the treatments, elevated CO2 and elevated CO2 + O3, were fumigated with 13C-depleted CO2, and in these two treatments we used standard isotope mixing models to understand the proportions of new and old C in soil respiration. During the peak of the growing season, C fixed since the initiation of the experiment in 1998 (new C) accounted for 60-80% of total soil respiration. The isotope measurements independently confirmed that more new C was respired from the interaction treatment compared to the elevated CO2 treatment. A period of low soil moisture late in the 2003 growing season resulted in soil respiration with an isotopic signature 4-6 per thousand enriched in 13C compared to sample dates when the percentage soil moisture was higher. In 2004, an extended period of low soil moisture during August and early September, punctuated by a significant rainfall event, resulted in soil

  2. Distributions of chemical reactive compounds: Effects of different emissions on the formation of ozone

    International Nuclear Information System (INIS)

    Vogel, H.; Fiedler, F.; Vogel, B.

    1993-01-01

    By using the model system the concentration distributions are simulated in accordance to the conditions of the beginning of August 1990. For this situation the influence of the emissions outside of the modelling region and the influence of biogenic emissions of hydrocarbons on the ozone formation in the modeling region was investigated. Comparing the results of the different simulations one can find differences concerning the netto production of the oxidants. For the first simulation day the emissions outside of the modeling region show a strong influence on the ozone production. Integrated over the whole boundary layer the ozone mass increases by 24%. If additionally the biogenic emissions are taken into account one can find only an increase of 7% for the 1. day. In contrast at the 2. simulation day the ozone production increases by 81%. For this case the ozone concentration near the ground is up to 20 ppb higher than for the model rund without biogenic emissions. (orig./BBR) [de

  3. Can elevated CO2 and ozone shift the genetic composition of aspen (Populus tremuloides) stands? New Phytologist

    Science.gov (United States)

    Emily V. Moran; Mark E. Kubiske

    2013-01-01

    The world's forests are currently exposed to increasing concentrations of carbon dioxide (CO2) and ozone (O3). Both pollutants can potentially exert a selective effect on plant populations. This, in turn, may lead to changes in ecosystem properties, such as carbon sequestration. Here, we report how elevated CO

  4. N-nitrosodimethylamine (NDMA) formation from the ozonation of model compounds.

    Science.gov (United States)

    Marti, Erica J; Pisarenko, Aleksey N; Peller, Julie R; Dickenson, Eric R V

    2015-04-01

    Nitrosamines are a class of toxic disinfection byproducts commonly associated with chloramination, of which several were included on the most recent U.S. EPA Contaminant Candidate List. Nitrosamine formation may be a significant barrier to ozonation in water reuse applications, particularly for direct or indirect potable reuse, since recent studies show direct formation during ozonation of natural water and treated wastewaters. Only a few studies have identified precursors which react with ozone to form N-nitrosodimethylamine (NDMA). In this study, several precursor compound solutions, prepared in ultrapure water and treated wastewater, were subjected to a 10 M excess of ozone. In parallel experiments, the precursor solutions in ultrapure water were exposed to gamma radiation to determine NDMA formation as a byproduct of reactions of precursor compounds with hydroxyl radicals. The results show six new NDMA precursor compounds that have not been previously reported in the literature, including compounds with hydrazone and carbamate moieties. Molar yields in deionized water were 61-78% for 3 precursors, 12-23% for 5 precursors and NDMA formation for the other precursors. NDMA formation due to chloramination was minimal compared to formation due to ozonation, suggesting distinct groups of precursor compounds for these two oxidants. Hydroxyl radical reactions with the precursors will produce NDMA, but formation is much greater in the presence of molecular ozone. Also, hydroxyl radical scavenging during ozonation leads to increased NDMA formation. Molar conversion yields were higher for several precursors in wastewater as compared to deionized water, which could be due to catalyzed reactions with constituents found in wastewater or hydroxyl radical scavenging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Characterization of N-nitrosodimethylamine formation from the ozonation of ranitidine.

    Science.gov (United States)

    Lv, Juan; Wang, Lin; Li, Yongmei

    2017-08-01

    N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product which is formed during water disinfection in the presence of amine-based precursors. Ranitidine, as one kind of amine-based pharmaceuticals, has been identified as NDMA precursor with high NDMA molar conversion during chloramination. This study focused on the characterization of NDMA formation during ozonation of ranitidine. Influences of operational variables (ozone dose, pH value) and water matrix on NDMA generation as well as ranitidine degradation were evaluated. The results indicate high reactivity of ranitidine with ozone. Dimethylamine (DMA) and NDMA were generated due to ranitidine oxidation. High pH value caused more NDMA accumulation. NDMA formation was inhibited under acid conditions (pH≤5) mainly due to the protonation of amines. Water matrix such as HCO 3 - and humic acid impacted NDMA generation due to OH scavenging. Compared with OH, ozone molecules dominated the productions of DMA and NDMA. However, OH was a critical factor in NDMA degradation. Transformation products of ranitidine during ozonation were identified using gas chromatography-mass spectrometry. Among these products, just DMA and N,N-dimethylformamide could contribute to NDMA formation due to the DMA group in the molecular structures. The NDMA formation pathway from ranitidine ozonation was also proposed. Copyright © 2017. Published by Elsevier B.V.

  6. Effect of ozonation on minocycline degradation and N-Nitrosodimethylamine formation.

    Science.gov (United States)

    Lv, Juan; Li, Yong M

    2018-06-07

    The objective of this study was to assess reactivity of Minocycline (MNC) towards ozone and determine the effects of ozone dose, pH value, and water matrix on MNC degradation as well as to characterize N-Nitrosodimethylamine (NDMA) formation from MNC ozonation. The MNC initial concentration of the solution was set in the range of 2-20 mg/L to investigate NDMA formation during MNC ozonation. Four ozone doses (22.5, 37.2, 58.0, and 74.4 mg/min) were tested to study the effect of ozone dose. For the evaluation of effects of pH value, pH was adjusted from 5 to 9 in the presence of phosphate buffer. MNC ozonation experiments were also conducted in natural water to assess the influence of water matirx. The influence of the typical component of natural water was also investigated with the addition of HA and NaHCO 3 solution. Results indicated that ozone was effective in MNC removal. Consequently, NDMA and dimethylamine (DMA) were generated from MNC oxidation. Increasing pH value enhanced MNC removal but led to greater NDMA generation. Water matrices, such as HCO 3 - and humic acid, affected MNC degradation. Conversely, more NDMA accumulated due to the inhibition of NDMA oxidation by oxidant consumption. Though ⋅OH can enhance MNC degradation, ozone molecules were heavily involved in NDMA production. Seven transformation products were identified. However, only DMA and the unidentified tertiary amine containing DMA group contributed to NDMA formation.

  7. Elevated levels of environmental ozone and their effects on the lung function in selected collectives of the population

    International Nuclear Information System (INIS)

    Hoeppe, P.; Lindner, J.; Praml, G.; Broenner, N.

    1993-01-01

    Lung function parameters (measured with a bodyplethysmograph) and subjective votes on complaints and irritations are taken on location from 200 subjects where they spend the daytime. The subjects belong to five collectives of equal size consisting of four assumed ozone risk groups (senior citizens, juvenile asthmatics, forestry workers and athletes) and a control group (clerks). Every subject is examined one eight days both in the morning and in the afternoon - the objective is to obtain an equal distribution of measuring days with elevated ozone concentrations (max. half hour mean values between 1 p.m. and 4 p.m. at least 100 μg/m 3 ) and low ozone concentrations (max. half hour mean values between 1 and 4 p.m. at most 80 μg/m 3 ) for every subject. At present the measurements of the 'senior citizens' are completed and the first results are evaluated. They show no relevant acute ozone effect as far as the lung function parameters or the subjective votes on irritations are concerned. Thus there is no indication that senior citizens represent a particular risk group in respect to moderately elevated levels of environmental ozone, as they occur in Central Europe. (orig.) [de

  8. The formation of ozone and UV radiation from high-power pulsed electric discharges

    Science.gov (United States)

    Piskarev, I. M.; Ushkanov, V. A.; Selemir, V. D.; Spirov, G. M.; Malevannaya Pikar', I. A.; Zuimach, E. A.

    2008-09-01

    High-power electric discharges with pulse energies of from 0.15 J to 4 kJ were studied. The yields of UV photons and ozone were found to be approximately equal, which led us to conclude that discharge conditions under which UV radiation and ozone fully destroyed each other were possible. If ozone formation was suppressed, as when a negative volume charge was created in the spark gap region, the flux of UV photons reached 3 × 1023 photons/(cm2 s).

  9. Ozone Formation in Laser Flash Photolysis of Oxoacids and Oxoanions of Chlorine and Bromine

    DEFF Research Database (Denmark)

    Kläning, Ulrik; Sehested, Knud; Wolff, Thomas

    1984-01-01

    The kinetics of ozone formation in the photolysis of oxygen-containing solutions of HClO, ClO–, ClO–2, ClO–3, HBrO, BrO– and BrO–3 has been studied by laser flash photolysis and conventional flash photolysis. The usual assumption, that ozone only forms in the reaction of oxygen atoms in the spin-...

  10. Ozone formation by gaseous corona discharge generated above aqueous solution

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Člupek, Martin; Babický, Václav; Šunka, Pavel

    2004-01-01

    Roč. 54, suppl. C (2004), C909-C913 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /21st/. Praha, 14.06.2004-17.06.2004] R&D Projects: GA ČR GA202/02/1026 Keywords : corona discharg, ozone Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004

  11. Ozonation of humic substances: Effects on molecular weight distributions of organic carbon and trihalomethane formation potential

    International Nuclear Information System (INIS)

    Amy, G.L.; Kuo, C.J.; Sierka, R.A.

    1988-01-01

    Four different sources of humic substances were studied to determine the effects of ozonation on molecular weight distributions, based on dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP). Solutions of two soil-derived fulvic acids and a one soil-derived humic acid, as well as dissolved organic matter (DOM) associated with a natural water source were studied. Both gel permeation chromatography (GPC) and ultrafiltration (UF) were employed to define apparent molecular weight (AMW). Applied ozone doses ranged from 2.0 to 2.5 mg O 3 /mg DOC. Overall samples of untreated and ozonated waters, as well as individual molecular weight fractions, were characterized according to DOC, uv absorbance, and THMFP. Ozonation resulted in a significant disappearance of higher AMW material with a corresponding increase in lower AMW material. Although little overall reduction in DOC concentration was observed, significant overall reductions in UV absorbance and THMFP levels were observed

  12. Direct observation of ozone formation on SiO2 surfaces in O2 discharges

    Science.gov (United States)

    Marinov, D.; Guaitella, O.; Booth, J. P.; Rousseau, A.

    2013-01-01

    Ozone production is studied in a pulsed O2 discharge at pressures in the range 1.3-6.7 mbar. Time-resolved absolute concentrations of O3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O2 pressure and is favoured by the presence of OH groups and adsorbed H2O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface.

  13. Direct observation of ozone formation on SiO2 surfaces in O2 discharges

    International Nuclear Information System (INIS)

    Marinov, D; Guaitella, O; Booth, J P; Rousseau, A

    2013-01-01

    Ozone production is studied in a pulsed O 2 discharge at pressures in the range 1.3-6.7 mbar. Time-resolved absolute concentrations of O 3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O 2 pressure and is favoured by the presence of OH groups and adsorbed H 2 O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface.

  14. Impact of near-surface atmospheric composition on ozone formation in Russia

    Science.gov (United States)

    Berezina, Elena; Moiseenko, Konstantin; Skorokhod, Andrey; Belikov, Igor; Pankratova, Natalia; Elansky, Nikolai

    2017-04-01

    One of the consequences of the human impact on the atmosphere is increasing in tropospheric ozone concentration, with the highest ozone level being observed in industrially developed and highly populated regions of the world. In these regions, main anthropogenic sources of carbon monoxide (CO), methane (CH4) and volatile organic compounds (VOCs) are concentrated. The oxidation of these compounds, when interacting with hydroxyl and nitrogen oxides at rather high temperature and sunlight, leads to ozone formation. CO and CH4 are slowly oxidized in the atmosphere and cause an increase in global and regional background ozone. However, the oxidation of some VOCs occurs during daylight hours and is accompanied by an increase in ozone concentration near VOCs sources, particularly in urban and industrial areas. The contribution of biogenic VOCs to ozone generation is estimated to be from 40 to 70% of the total contribution of all chemical ozone precursors in the troposphere [1], with isoprene playing the main role in ozone formation [2]. The impact of aromatic hydrocarbons to ozone formation is reported to be about 40% of the total ozone generation from the oxidation of anthropogenic VOCs [3]. In this study, the results of VOCs measurements (isoprene, benzene, toluene, phenol, styrene, xylene and propilbenzene) by proton mass spectrometry in different regions of Russia along the Trans-Siberian railway from Moscow to Vladivostok from TROICA-12 campaign on a mobile laboratory in summer 2008 are analyzed. It is shown that the TROICA-12 measurements were carried out mostly in moderately polluted (2≤NOx20 ppb) conditions ( 20 and 2% of measurements, correspondingly). The lower troposphere chemical regime in the campaign is found to be mainly NOx sensitive, both in rural and urban environments, with typical morning NMHC/NOx ratios being well above 20. Hence, ozone production rates are expected to be controlled by regional NOx emissions and their complex interplay with both

  15. Effects of Elevated Ozone on Polka Dot Plant (Hypoestes phyllostachya) with Variegated Leaves.

    Science.gov (United States)

    Sui, J X; Wen, M X; Jia, L L; Chen, Y J; Li, C H; Zhang, L

    2017-10-01

    In this study, impacts of O 3 on four cultivars ('Rose', 'Pink', 'Blush' and 'White') of the polka dot plant with variegated leaves were investigated for the first time. Ozone fumigation [(120 ± 20 ppb) for 14 days (8 h day -1 , from 8:30 to 16:30)] resulted in visible foliar injuries, decreased contents of pigments (chlorophyll a and b, and carotenoid), the inhibition of photosynthesis, the increase of quantum yield of non-regulated heat dissipation and fluorescence emission (Y(NO)), and the damage of cell membrane. Elevated O 3 increased the content of anthocyanin (Ant). 'White' showed the highest, and 'Rose' the lowest amount of injured leaf area, indicating that the former was the most sensitive, and the latter the most tolerant to O 3 stress. After O 3 exposure, the highest Ant content was found in 'Rose', followed by 'Pink', 'Blush', and 'White'. Levels of Ant were likely responsible for the different sensitivities to O 3 due to their roles in photoprotection.

  16. Impacts of elevated ozone on growth and photosynthesis of Metasequoia glyptostroboides Hu et Cheng.

    Science.gov (United States)

    Zhang, Weiwei; Feng, Zhaozhong; Wang, Xiaoke; Niu, Junfeng

    2014-09-01

    One-year-old Metasequoia glyptostroboides seedlings were exposed to non-filtered ambient air (NF) and elevated ozone (E-O3, NF+60 ppb) in open-top chambers for two years. E-O3 accelerated leaf senescence, as indicated by significant decreases in photosynthetic pigment contents with the elongation of O3 exposure. E-O3 significantly affected gas exchange and carboxylation, inducing reductions in light-saturated photosynthesis (Asat), the maximum activity of Rubisco (Vc,max) and the maximum electron transport rate (Jmax). Chl a/b, Vc,max/Jmax and stomatal limitation (l) were not affected. Stomatal conductance (gs) was significantly decreased by E-O3 in the first year, but remained unchanged in the second year. It can be inferred that the decrease in Asat by E-O3 was mainly attributed to the changes in non-stomatal factors. After two years' exposure, E-O3 caused significant decreases in canopy photosynthesis and leaf mass per area, and a significant increase in the number of branches, but induced slight, not significant decreases in growth and biomass. Therefore, it can be concluded that the carbon accumulation of the species M. glyptostroboides could be negatively affected after long-term exposure to high O3 concentration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Inter- and intra-specific responses to elevated ozone and chamber climate in northern birches.

    Science.gov (United States)

    Manninen, S; Huttunen, S; Vanhatalo, M; Pakonen, T; Hämäläinen, A

    2009-05-01

    We studied the responses of micropropagated, northern provenances of downy, mountain and silver birches to elevated ozone (O(3)) and changing climate using open-top chambers (OTCs). Contrary to our hypothesis, northern birches were sensitive to O(3), i.e. O(3) levels of 31-36 ppb reduced the leaf and root biomasses by -10%, whereas wood biomass was affected to a lesser extent. The warmer and drier OTC climate enhanced growth in general, though there were differences among the species and clones, e.g. in bud burst and biomass production. Inter- and intra-specific responses to O(3) and changing climate relate to traits such as allocation patterns between the above- and belowground parts (i.e. root/shoot ratio), which further relate to nutrient and water economy. Our experiments may have mimicked future conditions quite well, but only long-term field studies can yield the information needed to forecast responses at both tree and ecosystem levels.

  18. Modeling and experimental validation of TCE abatement and ozone formation with non thermal plasma

    OpenAIRE

    Vandenbroucke, Arne; Aerts, Robby; Morent, Rino; De Geyter, Nathalie; Bogaerts, Annemie; Leys, Christophe

    2012-01-01

    In this study, the formation of ozone and the abatement of trichloroethylene (TCE) with non thermal plasma was experimentally and theoretically investigated. The model predicts that the ozone formation increases with the energy deposition and decreases with the relative humidity (RH) of the air, which is qualitatively in agreement with experimental data. For an energy deposition of 0.136 J/cm³, the abatement of 1000 ppm TCE in air with 5 % RH is dominated by atomic oxygen and to a lesser exte...

  19. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration

    International Nuclear Information System (INIS)

    McGrath, Justin M.; Karnosky, David F.; Ainsworth, Elizabeth A.

    2010-01-01

    Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO 2 ]) and elevated ozone concentration ([O 3 ]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO 2 ] and [O 3 ] predicted for ∼2050. The responses of two clones were compared during the first month of spring leaf out when CO 2 fumigation had begun, but O 3 fumigation had not. Trees in elevated [CO 2 ] plots showed a stimulation of leaf area index (36%), while trees in elevated [O 3 ] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO 2 ], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO 2 ]; however, the two clones responded differently to long-term growth at elevated [O 3 ]. The O 3 -sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O 3 ] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O 3 ] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O 3 ], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions. - Spring leaf flush is stimulated by elevated [CO 2 ] and suppressed by elevated [O 3 ] in aspen (Populus tremuloides).

  20. Bromate Formation Characteristics of UV Irradiation, Hydrogen Peroxide Addition, Ozonation, and Their Combination Processes

    Directory of Open Access Journals (Sweden)

    Naoyuki Kishimoto

    2012-01-01

    Full Text Available Bromate formation characteristics of six-physicochemical oxidation processes, UV irradiation, single addition of hydrogen peroxide, ozonation, UV irradiation with hydrogen peroxide addition (UV/H2O2, ozonation with hydrogen peroxide addition (O3/H2O2, and ozonation with UV irradiation (O3/UV were investigated using 1.88 μM of potassium bromide solution with or without 6.4 μM of 4-chlorobenzoic acid. Bromate was not detected during UV irradiation, single addition of H2O2, and UV/H2O2, whereas ozone-based treatments produced . Hydroxyl radicals played more important role in bromate formation than molecular ozone. Acidification and addition of radical scavengers such as 4-chlorobenzoic acid were effective in inhibiting bromate formation during the ozone-based treatments because of inhibition of hydroxyl radical generation and consumption of hydroxyl radicals, respectively. The H2O2 addition was unable to decompose 4-chlorobenzoic acid, though O3/UV and O3/H2O2 showed the rapid degradation, and UV irradiation and UV/H2O2 showed the slow degradation. Consequently, if the concentration of organic contaminants is low, the UV irradiation and/or UV/H2O2 are applicable to organic contaminants removal without bromate formation. However, if the concentration of organic contaminants is high, O3/H2O2 and O3/UV should be discussed as advanced oxidation processes because of their high organic removal efficiency and low bromate formation potential at the optimum condition.

  1. Effects Of Elevated Ozone On Leaf {delta} {sup 13} C And Leaf Conductance Of Plant Species Grown In Semi-Natural Grassland With Or Without Irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Saurer, M.; Volk, M. [Agroscope-FAL (Switzerland); Fuhrer, J. [Agroscope-FAL (Switzerland)

    2005-03-01

    At the Swiss prealpine site Le Mouret (754 m a.s.l. 46deg 45min N / 7deg 10min E), semi-natural grassland species were kept under ambient or elevated ozone, paired with or without additional irrigation. Two of the four investigated grassland species showed an additive increase in {sup 13}C-values under drought and elevated ozone conditions. (author)

  2. [Studies of ozone formation potentials for benzene and ethylbenzene using a smog chamber and model simulation].

    Science.gov (United States)

    Jia, Long; Xu, Yong-Fu

    2014-02-01

    Ozone formation potentials from irradiations of benzene-NO(x) and ethylbenzene-NO(x) systems under the conditions of different VOC/NO(x) ratios and RH were investigated using a characterized chamber and model simulation. The repeatability of the smog chamber experiment shows that for two sets of ethylbenzene-NO(x) irradiations with similar initial concentrations and reaction conditions, such as temperature, relative humidity and relative light intensity, the largest difference in O3 between two experiments is only 4% during the whole experimental run. On the basis of smog chamber experiments, ozone formation of photo-oxidation of benzene and ethylbenzene was simulated in terms of the master chemical mechanism (MCM). The peak ozone values for benzene and ethylbenzene simulated by MCM are higher than the chamber data, and the difference between the MCM-simulated results and chamber data increases with increasing RH. Under the conditions of sunlight irradiations, with benzene and ethylbenzene concentrations being in the range of (10-50) x 10(-9) and NO(x) concentrations in the range of (10-100) x 10(-9), the 6 h ozone contributions of benzene and ethylbenzene were obtained to be (3.1-33) x 10(-9) and (2.6-122) x 10(-9), whereas the peak O3 contributions of benzene and ethylbenzene were (3.5-54) x 10(-9) and (3.8-164) x 10(-9), respectively. The MCM-simulated maximum incremental reactivity (MIR) values for benzene and ethylbenzene were 0.25/C and 0.97/C (per carbon), respectively. The maximum ozone reactivity (MOR) values for these two species were obtained to be 0.73/C and 1.03/C, respectively. The MOR value of benzene from MCM is much higher than that obtained by carter from SAPRC, indicating that SAPRC may underestimate the ozone formation potential of benzene.

  3. Comparison of N-nitrosodimethylamine formation mechanisms from dimethylamine during chloramination and ozonation: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong Dong, E-mail: ydliu@bjut.edu.cn; Zhong, Rugang

    2017-01-05

    Highlights: • NDMA formation mechanisms from dimethylamine in chloramination/ozonation were reinvestigated by G4 method. • The reactivity order of halo-/hydroxyl-amines reacting with dimethylamine is NHCl{sub 2} ∼ NHBrCl > NH{sub 2}Cl >> NH{sub 2}OH. • Nitrene compound is an important intermediate to form NDMA in oxidation reaction. • Oxidation of unsymmetrical dimethylhydrazine by O{sub 2} is significantly less feasible compared to that by O{sub 3}. • The amines containing the second nitrogen source are potential NDMA precursors in ozonation. - Abstract: N-nitrosodimethylamine (NDMA) as a disinfection by-product has recently become the focus of considerable research interest due to its unusually high carcinogenicity. In this study, the formation mechanisms of NDMA from dimethylamine (DMA) during chloramination and ozonation were investigated by using the quantum chemical G4 method. The reactivity of haloamines and hydroxylamine reacting with DMA was found in the order: NHCl{sub 2} ∼ NHBrCl (Br{sup -}leaving) > NHBr{sub 2} > NH{sub 2}Cl ∼ NH{sub 2}Br >> NH{sub 2}OH. This offers a theoretical support for the experimentally proposed mechanism that dimethylamine reacts with NHCl{sub 2} rather than NH{sub 2}Cl to form chlorinated unsymmetrical dimethylhydrazine intermediate and the existence of bromochloramine in the presence of bromide during chloramination, and explains the observation that NDMA yield during ozonation is much lower than that during chloramination. Importantly, an N,N-dimethylaminonitrene was found to be a significant intermediate to form NDMA in oxidation reactions by molecular oxygen and ozone. Additionally, results suggest that the amines containing the second nitrogen source directly connecting or close to the N-(CH{sub 3}){sub 2} moiety are potential significant NDMA precursors upon ozonation. The findings of this study are helpful for expanding the knowledge of NDMA formation mechanism, and predicting potential NDMA precursors

  4. Combined cadmium and elevated ozone affect concentrations of cadmium and antioxidant systems in wheat under fully open-air conditions

    International Nuclear Information System (INIS)

    Guo, Hongyan; Tian, Ran; Zhu, Jianguo; Zhou, Hui; Pei, Daping; Wang, Xiaorong

    2012-01-01

    Highlights: ► Combined effect of elevated O 3 and Cd levels on wheat was studied using the free-air concentration enrichment system. ► Elevated O 3 levels result in an increased concentration of Cd in wheat plants grown on Cd-contaminated soils. ► Combined cadmium and elevated O 3 have a significantly synergic effect on oxidative stress in wheat shoots. - Abstract: Pollution of the environment with both ozone (O 3 ) and heavy metals has been steadily increasing. An understanding of their combined effects on plants, especially crops, is limited. Here we studied the effects of elevated O 3 on oxidative stress and bioaccumulation of cadmium (Cd) in wheat under Cd stress using a free-air concentration enrichment (FACE) system. In this field experiment in Jiangdu (Jiangsu Province, China), wheat plants were grown in pots containing soil with various concentrations of cadmium (0, 2, and 10 mg kg −1 Cd was added to the soil) under ambient conditions and under elevated O 3 levels (50% higher than the ambient O 3 ). Present results showed that elevated O 3 led to higher concentrations of Cd in wheat tissues (shoots, husk and grains) with respect to contaminated soil. Combined exposure to Cd and elevated O 3 levels strongly affected the antioxidant isoenzymes POD, APX and CAT and accelerated oxidative stress in wheat leaves. Our results suggest that elevated O 3 levels cause a reduction in food quality and safety.

  5. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China.

    Science.gov (United States)

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter

  6. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China.

    Directory of Open Access Journals (Sweden)

    Jingxin Xu

    Full Text Available Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L. at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb, Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb, and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb, with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system. These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2 = 0.85 & T2: R(2 = 0.89 of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2 of cumulative ozone uptake. At the regional level, dry matter

  7. The impact of biogenic VOC emissions on photochemical ozone formation during a high ozone pollution episode in the Iberian Peninsula in the 2003 summer season

    Directory of Open Access Journals (Sweden)

    N. Castell

    2008-04-01

    Full Text Available Throughout Europe the summer of 2003 was exceptionally warm, especially July and August. The European Environment Agency (EEA reported several ozone episodes, mainly in the first half of August. These episodes were exceptionally long-lasting, spatially extensive, and associated to high temperatures. In this paper, the 10$ndash;15 August 2003 ozone pollution event has been analyzed using meteorological and regional air quality modelling. During this period the threshold values of the European Directive 2002/3/EC were exceeded in various areas of the Iberian Peninsula.

    The aim of this paper is to computationally understand and quantify the influence of biogenic volatile organic compound (BVOC emissions in the formation of tropospheric ozone during this high ozone episode. Being able to differentiate how much ozone comes from biogenic emissions alone and how much comes from the interaction between anthropogenic and biogenic emissions would be helpful to develop a feasible and effective ozone control strategy. The impact on ozone formation was also studied in combination with various anthropogenic emission reduction strategies, i.e., when anthropogenic VOC emissions and/or NOx emissions are reduced. The results show a great dependency of the BVOC contribution to ozone formation on the antropoghenic reduction scenario. In rural areas, the impact due to a NOx and/or VOC reduction does not change the BVOC impact. Nevertheless, within big cities or industrial zones, a NOx reduction results in a decrease of the biogenic impact in ozone levels that can reach 85 μg/m3, whereas an Anthropogenic Volatile Organic Compound (AVOC reduction results in a decrease of the BVOC contribution on ozone formation that varies from 0 to 30 μg/m3 with respect to the contribution at the same points in the 2003 base scenario. On the other hand, downwind of the big cities, a decrease in NOx produces

  8. Exploration of the formation mechanism and source attribution of ambient ozone in Chongqing with an observation-based model

    Institute of Scientific and Technical Information of China (English)

    SU Rong; ZHAI ChongZhi; ZHANG YuanHang; LU KeDing; YU JiaYan; TAN ZhaoFeng; JIANG MeiQing; LI Jing; XIE ShaoDong; WU YuSheng; ZENG LiMin

    2018-01-01

    An intensive field campaign was conducted in Chongqing during the summer of 2015 to explore the formation mechanisms of ozone pollution.The sources of ozone,the local production rates,and the controlling factors,as well as key species of volatile organic compounds (VOCs),were quantified by integrating a local ozone budget analysis,calculations of the relative incremental reactivity,and an empirical kinetic model approach.It was found that the potential for rapid local ozone formation exists in Chongqing.During ozone pollution episodes,the ozone production rates were found to be high at the upwind station Nan Quan,the urban station Chao Zhan,and the downwind station Jin-Yun Shan.The average local ozone production rate was 30× 10-9 V/V h1 and the daily integration of the produced ozone was greater than 180× 10-9 V/V.High ozone concentrations were associated with urban and downwind air masses.At most sites,the local ozone production was VOC-limited and the key species were aromatics and alkene,which originated mainly from vehicles and solvent usage.In addition,the air masses at the northwestern rural sites were NOx-limited and the local ozone production rates were significantly higher during the pollution episodes due to the increased NOx concentrations.In summary,the ozone abatement strategies of Chongqing should be focused on the mitigation of VOCs.Nevertheless,a reduction in NOx is also beneficial for reducing the regional ozone peak values in Chongqing and the surrounding areas.

  9. Impact of biogenic emissions on ozone formation in the Mediterranean area - a BEMA modelling study

    International Nuclear Information System (INIS)

    Thunis, P.; Cuvelier, C.

    2000-01-01

    The aim of this modelling study is to understand and quantify the influence of biogenic volatile organic compound (BVOC) emissions on the formation of tropospheric ozone in the Burriana area (north of Valencia) on the east coast of Spain. The mesoscale modelling system used consists of the meteorology/transport module TVM and the chemical reaction mechanism RACM. The results of the model simulations are validated and compared with the data collected during the biogenic emissions in the mediterranean area (BEMA) field campaign that took place in June 1997. Anthropogenic and biogenic emission inventories have been constructed with an hourly resolution. Averaged (over the land area and over 24 h) emission fluxes for AVOC, anthropogenic NO x , BVOC and biogenic NO x are given by 16.0, 9.9, 6.2, and 0.7 kg km -2 day -1 , respectively. The impact of biogenic emissions is investigated on peak ozone values by performing simulations with and without biogenic emissions; while keeping anthropogenic emissions constant. The impact on ozone formation is also studied in combination with some anthropogenic emissions reduction strategies, i.e. when anthropogenic VOC emissions and/or NO x emissions are reduced. A factor separation technique is applied to isolate the impact due to biogenic emissions from the overall impact due to biogenic and anthropogenic emissions together. The results indicate that the maximum impact of biogenic emissions on ozone formation represents at the most 10 ppb, while maximum ozone values are of the order of 100 ppb. At different locations the maximum impact is reached at different times of the day depending on the arrival time of the sea breeze. It is also shown that this impact does not coincide in time with the maximum simulated ozone concentrations that are reached over the day. By performing different emission reduction scenarios, BVOC impacts are found to be sensitive mainly to NO x , and not to AVOC. Finally, it is shown that amongst the various

  10. Effect of ozonation of swimming pool water on formation of volatile disinfection by-products - A laboratory study

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Cheema, Waqas Akram

    2016-01-01

    Ozonation experiments were performed using unchlorinated tap water used for filling municipal swimming pools, actual pool water and pool water polluted by addition of fresh tap water and artificial body fluid to evaluate ozone kinetics and water quality effects on formation of volatile disinfecti...

  11. Aromatic volatile organic compounds and their role in ground-level ozone formation in Russia

    Science.gov (United States)

    Berezina, E. V.; Moiseenko, K. B.; Skorokhod, A. I.; Elansky, N. F.; Belikov, I. B.

    2017-05-01

    This paper reports proton mass spectrometry data on aromatic volatile organic compounds (VOCs) (benzene, toluene, phenol, styrene, xylene, and propylbenzene) obtained in different Russian regions along the Trans-Siberian Railway from Moscow to Vladivostok, based on expedition data retrieved using the TRO-ICA-12 mobile laboratory in the summer of 2008. The contribution of aromatic VOCs to ozone formation in the cities and regions along the measurement route has been estimated quantitatively. The greatest contribution of aromatic VOCs to ozone formation is characteristic of large cities along the Trans-Siberian Railway (up to 7.5 ppbv O3) specified by the highest concentrations of aromatic VOCs (1-1.7 ppbv) and nitrogen oxides (>20 ppbv). The results obtained are indicative of a considerable contribution (30-50%) of anthropogenic emissions of VOCs to photochemical ozone generation in the large cities along the Trans-Siberian Railway in hot and dry weather against the background of a powerful natural factor such as isoprene emissions controlling the regional balance of ground-level ozone in warm seasons.

  12. Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke

    Science.gov (United States)

    Sleiman, Mohamad; Destaillats, Hugo; Smith, Jared D.; Liu, Chen-Lin; Ahmed, Musahid; Wilson, Kevin R.; Gundel, Lara A.

    2010-11-01

    We used controlled laboratory experiments to evaluate the aerosol-forming potential of ozone reactions with nicotine and secondhand smoke. Special attention was devoted to real-time monitoring of the particle size distribution and chemical composition of SOA as they are believed to be key factors determining the toxicity of SOA. The experimental approach was based on using a vacuum ultraviolet photon ionization time-of-flight aerosol mass spectrometer (VUV-AMS), a scanning mobility particle sizer (SMPS) and off-line thermal desorption coupled to mass spectrometry (TD-GC-MS) for gas-phase byproducts analysis. Results showed that exposure of SHS to ozone induced the formation of ultrafine particles (smoke that is associated with the formation of ultrafine particles (UFP) through oxidative aging of secondhand smoke. The significance of this chemistry for indoor exposure and health effects is highlighted.

  13. Growth responses of Populus tremuloides clones to interacting elevated carbon dioxide and tropospheric ozone

    Science.gov (United States)

    J. G. Isebrands; E. P. McDonald; E. Kruger; G. Hendrey; K. Percy; K. Pregitzer; J. Sober; D. F. Karnosky

    2001-01-01

    The Intergovernmental Panel of Climate Change (IPCC) has concluded that the greenhouse gases carbon dioxide (CO2) and tropospheric ozone (O3) are increasing concomitantly globally. Little is known about the effect of these interacting gases on growth, survival, and productivity of forest ecosystems. In this study we assess...

  14. Legacy effects of elevated ozone on soil biota and plant growth

    NARCIS (Netherlands)

    Li, Q.; Yang, Y.; Bao, X.; Liu, F.; Liang, W.; Zhu, J.; Bezemer, T.M.; Putten, van der W.H.

    2015-01-01

    Many studies have examined how human-induced atmospheric changes will influence ecosystems. The long-term consequences of human induced climate changes on terrestrial ecosystems may be determined to a large extend by how the belowground compartment will respond to these changes. In a free-air ozone

  15. Missing ozone-induced potential aerosol formation in a suburban deciduous forest

    Science.gov (United States)

    Nakayama, T.; Kuruma, Y.; Matsumi, Y.; Morino, Y.; Sato, K.; Tsurumaru, H.; Ramasamy, S.; Sakamoto, Y.; Kato, S.; Miyazaki, Y.; Mochizuki, T.; Kawamura, K.; Sadanaga, Y.; Nakashima, Y.; Matsuda, K.; Kajii, Y.

    2017-12-01

    As a new approach to investigating formation processes of secondary organic aerosol (SOA) in the atmosphere, ozone-induced potential aerosol formation was measured in summer at a suburban forest site surrounded by deciduous trees, near Tokyo, Japan. After passage through a reactor containing high concentrations of ozone, increases in total particle volume (average of 1.4 × 109 nm3/cm3, which corresponds to 17% that of pre-existing particles) were observed, especially during daytime. The observed aerosol formations were compared with the results of box model simulations using simultaneously measured concentrations of gaseous and particulate species. According to the model, the relative contributions of isoprene, monoterpene, and aromatic hydrocarbon oxidation to SOA formation in the reactor were 24, 21, and 55%, respectively. However, the model could explain, on average, only ∼40% of the observed particle formation, and large discrepancies between the observations and model were found, especially around noon and in the afternoon when the concentrations of isoprene and oxygenated volatile organic compounds were high. The results suggest a significant contribution of missing (unaccounted-for) SOA formation processes from identified and/or unidentified volatile organic compounds, especially those emitted during daytime. Further efforts should be made to explore and parameterize this missing SOA formation to assist in the improvement of atmospheric chemistry and climate models.

  16. Seasonal differences and within-canopy variations of antioxidants in mature spruce (Picea abies) trees under elevated ozone in a free-air exposure system

    International Nuclear Information System (INIS)

    Hofer, Nora; Alexou, Maria; Heerdt, Christian; Loew, Markus; Werner, Herbert; Matyssek, Rainer; Rennenberg, Heinz; Haberer, Kristine

    2008-01-01

    The effect of free-air ozone fumigation and crown position on antioxidants were determined in old-growth spruce (Picea abies) trees in the seasonal course of two consecutive years (2003 and 2004). Levels of total ascorbate and its redox state in the apoplastic washing fluid (AWF) were increased under double ambient ozone concentrations (2 x O 3 ), whilst ascorbate concentrations in needle extracts were unchanged. Concentrations of apoplastic and symplastic ascorbate were significantly higher in 2003 compared to 2004 indicating a combined effect of the drought conditions in 2003 with enhanced ozone exposure. Elevated ozone had only weak effects on total glutathione levels in needle extracts, phloem exudates and xylem saps. Total and oxidised glutathione concentrations were higher in 2004 compared to 2003 and seemed to be more affected by enhanced ozone influx in the more humid year 2004 compared to the combined effect of elevated ozone and drought in 2003 as observed for ascorbate. - Antioxidant defence in sun and shade needles of Picea abies under free-air ozone fumigation in the seasonal course of two consecutive years

  17. Effects of chronic elevated ozone concentration on the redox state and fruit yield of red pepper plant Capsicum baccatum.

    Science.gov (United States)

    Bortolin, Rafael Calixto; Caregnato, Fernanda Freitas; Divan, Armando Molina; Reginatto, Flávio Henrique; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2014-02-01

    Ozone (O3) is one of the most harmful air pollutants to crops, contributing to high losses on crop yield. Tropospheric O3 background concentrations have increased since pre-industrial times reaching phytotoxic concentrations in many world regions. Capsicum peppers are the second most traded spice in the world, but few studies concerning the O3 effects in this genus are known. Thereby, the aim of this work was to evaluate the effects of chronic exposure to elevated O3 concentrations in red pepper plant Capsicum baccatum L. var. pendulum with especial considerations on the leaf redox state and fruit yield. Fifteen C. baccatum plants were exposed to O3 in open-top chambers during fruit ripening (62 days) at a mean concentration of 171.6 µg/m(3) from 10:00 am to 4:00 pm. We found that O3 treated plants significantly decreased the amount and the total weight of fruits, which were probably a consequence of the changes on leaf oxidative status induced by ozone exposure. Ozone exposed plants increased the reactive oxygen species (ROS) levels on the leaves, which may be associated with the observed decrease on the activity of enzymatic antioxidant defense system, as well with lower levels of polyphenol and reduced thiol groups. Enhanced ROS production and the direct O3 reaction lead to biomacromolecules damages as seen in the diminished chlorophyll content and in the elevated lipid peroxidation and protein carbonylation levels. Through a correlation analysis it was possible to observe that polyphenols content was more important to protect pepper plants against oxidative damages to lipids than to proteins. © 2013 Published by Elsevier Inc.

  18. Elevated CO{sub 2} does not ameliorate effects of ozone on carbon allocation in Pinus halepensis and Betula pendula in symbiosis with Paxillus involutus

    Energy Technology Data Exchange (ETDEWEB)

    Kytoeviita, M.M. [Oulu Univ., Dept. of Biology, Oulu (Finland); Pelloux, J.; Fontaine, V.; Botton, B.; Dizengremel, P. [Univ. Henri Poincare-Nancy, Lab. de Biologie Forestiere Associe INRA, Vandoeuvre-les-Nancy (France)

    1999-07-01

    The effect of 700 {mu}mol CO{sub 2} mol{sup -1}, 200 nmol ozone mol{sup -1} and a combination of the two on carbon allocation was examined in Pinus halepensis co-cultured with Betula pendula in symbiosis with the ectomycorrhizal fungus Paxillus involutus. The results show that under low nutrient and ozone levels, elevated CO{sub 2} has no effect on the growth of B. pendula or P. halepensis seedlings nor on net carbon partitioning between plant parts. Elevated CO{sub 2} did not enhance the growth of the fungus in symbiosis with the birch. On the other hand, ozone had a strong negative effect on the growth of the birch, which corresponded with the significantly reduced growth rates of the fungus. Exposure to elevated CO{sub 2} did not ameliorate the negative effects of ozone on birch; in contrast, it acted as an additional stress factor. Neither ozone nor CO{sub 2} had significant effects on biomass accumulation in the pine seedlings. Ozone stimulated the spread of mycorrhizal infection from the birch seedlings to neighbouring pines and had no statistically significant effects on phosphoenolpyruvate carboxylase (PEPC) or ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity in the pine needles or on PEPC activity in pine roots. (au)

  19. [Smog chamber simulation of ozone formation from atmospheric photooxidation of propane].

    Science.gov (United States)

    Huang, Li-hua; Mo, Chuang-rong; Xu, Yong-fu; Jia, Long

    2012-08-01

    Atmospheric photochemical reactions of propane and NO, were simulated with a self-made smog chamber. The effects of relative humidity (RH) and [C3H8]0/[NOx]0 ratio on ozone formation were studied. The results showed that both the maximum ozone concentration and the maximum value of incremental reactivity (IRmax) of propane decreased linearly with increasing RH. Under lower RH conditions, the occurrence time of peak ozone concentration was about 22 h after the beginning of reaction, and IRmax varied from 0.0231 to 0.0391, while under higher RH conditions the occurrence time of peak ozone concentration was 16 h, and IRmax ranged from 0.0172 to 0.0320. During the 20 h of reaction, within the first 12 h RH did not significantly affect the yield of acetone, whereas after 12 h the lower RH condition could lead to relatively greater amount of acetone. During the first 4-20 h of experiments, acetone concentrations ranged from 153 x 10(-9) to 364 x 10(-9) at 17% RH and from 167 x 10(-9) to 302 x 10(-9) at 62% RH, respectively. Maximum ozone concentrations decreased with increasing [C3H8]0/[NOx]0 ratio and a better negative linear relationship between them was obtained under the lower RH conditions. The smog chamber data and the results from simulation of the C3H8-NOx reactions using the sub-mechanism of MCM were compared, and a significant deviation was found between these two results.

  20. Emission characteristics of VOCs emitted from consumer and commercial products and their ozone formation potential.

    Science.gov (United States)

    Dinh, Trieu-Vuong; Kim, Su-Yeon; Son, Youn-Suk; Choi, In-Young; Park, Seong-Ryong; Sunwoo, Young; Kim, Jo-Chun

    2015-06-01

    The characteristics of volatile organic compounds (VOCs) emitted from several consumer and commercial products (body wash, dishwashing detergent, air freshener, windshield washer fluid, lubricant, hair spray, and insecticide) were studied and compared. The spray products were found to emit the highest amount of VOCs (~96 wt%). In contrast, the body wash products showed the lowest VOC contents (~1.6 wt%). In the spray products, 21.6-96.4 % of the VOCs were propane, iso-butane, and n-butane, which are the components of liquefied petroleum gas. Monoterpene (C10H16) was the dominant component of the VOCs in the non-spray products (e.g., body wash, 53-88 %). In particular, methanol was present with the highest amount of VOCs in windshield washer fluid products. In terms of the number of carbon, the windshield washer fluids, lubricants, insecticides, and hair sprays comprised >95 % of the VOCs in the range C2-C5. The VOCs in the range C6-C10 were predominantly found in the body wash products. The dishwashing detergents and air fresheners contained diverse VOCs from C2 to C11. Besides comprising hazardous VOCs, VOCs from consumer products were also ozone precursors. The ozone formation potential of the consumer and commercial spray products was estimated to be higher than those of liquid and gel materials. In particular, the hair sprays showed the highest ozone formation potential.

  1. Study on the formation of ozone gas in industrial irradiation process

    Energy Technology Data Exchange (ETDEWEB)

    Uzueli, Daniel H., E-mail: daniel.uzueli@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Centro de Medicina Nuclear. Hospital das Clinicas; Rela, Paulo R.; Vasquez, Pablo A.S.; Hamada, Margarida M.; Costa, Fabio E. da, E-mail: fecosta@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In industrial irradiators, the generated electromagnetic radiation or particles, such as gamma or X rays and electrons interact with air during the irradiation of products. In this gas layer, these effects cause the radiolysis in the constituent atoms, affecting mainly the oxygen atoms. This interaction is similar to what occurs in the stratosphere, when the diatomic molecule of oxygen (O{sub 2}) absorbs ultraviolet radiation from the sun, breaking the connection and separating it into two highly reactive atoms, which combined with another molecule of oxygen produce ozone (O{sub 3}). Ozone, at high altitudes, is beneficial and protects us from ultraviolet radiation. At low altitudes, it is a highly oxidizing gas and harmful to living beings. Aiming to study the formation and behavior of this gas in gamma irradiators, the measurements were made at a Multipurpose Gamma Facility from IPEN / CNEN-SP, which has cobalt-60 sources with a total activity of 5.22 PBq. (author)

  2. The effect of clouds on photolysis rates and ozone formation in the unpolluted troposphere

    Science.gov (United States)

    Thompson, A. M.

    1984-01-01

    The photochemistry of the lower atmosphere is sensitive to short- and long-term meteorological effects; accurate modeling therefore requires photolysis rates for trace gases which reflect this variability. As an example, the influence of clouds on the production of tropospheric ozone has been investigated, using a modification of Luther's two-stream radiation scheme to calculate cloud-perturbed photolysis rates in a one-dimensional photochemical transport model. In the unpolluted troposphere, where stratospheric inputs of odd nitrogen appear to represent the photochemical source of O3, strong cloud reflectance increases the concentration of NO in the upper troposphere, leading to greatly enhanced rates of ozone formation. Although the rate of these processes is too slow to verify by observation, the calculation is useful in distinguishing some features of the chemistry of regions of differing mean cloudiness.

  3. Study on the formation of ozone gas in industrial irradiation process

    International Nuclear Information System (INIS)

    Uzueli, Daniel H.

    2013-01-01

    In industrial irradiators, the generated electromagnetic radiation or particles, such as gamma or X rays and electrons interact with air during the irradiation of products. In this gas layer, these effects cause the radiolysis in the constituent atoms, affecting mainly the oxygen atoms. This interaction is similar to what occurs in the stratosphere, when the diatomic molecule of oxygen (O 2 ) absorbs ultraviolet radiation from the sun, breaking the connection and separating it into two highly reactive atoms, which combined with another molecule of oxygen produce ozone (O 3 ). Ozone, at high altitudes, is beneficial and protects us from ultraviolet radiation. At low altitudes, it is a highly oxidizing gas and harmful to living beings. Aiming to study the formation and behavior of this gas in gamma irradiators, the measurements were made at a Multipurpose Gamma Facility from IPEN / CNEN-SP, which has cobalt-60 sources with a total activity of 5.22 PBq. (author)

  4. Effect of Pre-ozonation on Haloacetic Acids Formation in Ganga River Water at Kanpur, India

    Science.gov (United States)

    Naladala, Nagasrinivasa Rao; Singh, Rambabu; Katiyar, Kumud Lata Devi; Bose, Purnendu; Dutta, Venkatesh

    2017-11-01

    Almost all natural water bodies which are considered to be sustainable sources of drinking water contain organic matter in dissolved form and pathogens. This dissolved organic matter and pathogens cannot be removed effectively through traditional filtering processes in drinking water treatment plants. Chlorination of such water for disinfection results in large amounts of disinfection by-products (DBPs), mainly trihalomethanes and haloacetic acids (HAAs), which showed many health effects like cancer and reproductive problems in lab animals and in human beings as well. Complete removal of dissolved organic carbon (DOC), which is a precursor compound for HAAs formation, is impossible from a practical point of view; hence, it will be better if DOC activity towards DBPs formation can be reduced via some process. The present article describes the process of pre-ozonating post-coagulated Ganga River water at Kanpur in a continuous flow mode and its effect on HAAs formation. Nearly 58% reduction in HAAs formation was observed during this study at higher doses of ozone.

  5. OZONE PRECURSORS, SOURCE REGIONS, AND O(3) FORMATION DURING THE TEXAQS 2000 STUDY

    International Nuclear Information System (INIS)

    DAUM, P.H.; KLEINMAN, L.I.; BRECHTEL, F.; LEE, Y.N.; NUNNERMACKER, L.J.; SPRINGSTON, S.R.; WEINSTEIN-LLOYD, J.

    2001-01-01

    The DOE G-1 aircraft made flights on 14 days during the TexAQS 2000 study. On 7 of those days, the aircraft encountered highly localized plumes exhibiting O(sub 3) concentrations in excess of 150 ppb; on some days, peak O(sub 3) concentrations were in excess of 200 ppb. These ozone plumes were rapidly formed with an efficiency (O(sub 3) per NO(sub x) molecule consumed) much higher (7-20) than observed in other urban areas (3-4), and were frequently associated with high concentrations ( and gt;20 ppb) of secondary hydrocarbon species such as formaldehyde. Back trajectory analysis showed that the plumes were invariably associated with emissions from one or more of the large industrial complexes clustered about the Houston Ship Channel and Galveston Bay. Very high hydrocarbon reactivities were found in the vicinity of these facilities during morning flights. These hydrocarbon reactivities, in combination with local NO(sub x) emissions, were large enough to support instantaneous O(sub 3) production rates as high as 200 ppb/h. It is hypothesized that the combination of nitrogen oxides and hydrocarbon emissions emanating from this complex of industries provided a potent mixture of chemicals that caused the rapid formation of very high concentrations of ozone which, depending on the prevailing meteorology, could cause exceedance of the NAAQS ozone standard anywhere in the Houston metropolitan area

  6. Elevated CO2 response of photosynthesis depends on ozone concentration in aspen

    Science.gov (United States)

    Asko Noormets; Olevi Kull; Anu Sober; Mark E. Kubiske; David F. Karnosky

    2010-01-01

    The effect of elevated CO2 and O3 on apparent quantum yield (ø), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus...

  7. Elevated CO2 response of photosynthesis depends on ozone concentration in aspen

    International Nuclear Information System (INIS)

    Noormets, Asko; Kull, Olevi; Sober, Anu; Kubiske, Mark E.; Karnosky, David F.

    2010-01-01

    The effect of elevated CO 2 and O 3 on apparent quantum yield (φ), maximum photosynthesis (P max ), carboxylation efficiency (V cmax ) and electron transport capacity (J max ) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O 3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO 2 alone did not affect φ or P max , and increased J max in the O 3 -sensitive, but not in the O 3 -tolerant clone. Elevated O 3 decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O 3 increased through time. Significant interaction effect, whereby the negative impact of elevated O 3 was exaggerated by elevated CO 2 was seen in Chl, N and J max , and occurred in both O 3 -tolerant and O 3 -sensitive clones. The clonal differences in the level of CO 2 x O 3 interaction suggest a relationship between photosynthetic acclimation and background O 3 concentration. - Photosynthetic acclimation to elevated CO 2 depends on the background oxidant levels.

  8. The contrasting responses of soil microorganisms in two rice cultivars to elevated ground-level ozone

    International Nuclear Information System (INIS)

    Feng, Youzhi; Yu, Yongjie; Tang, Haoye; Zu, Qianhui; Zhu, Jianguo; Lin, Xiangui

    2015-01-01

    Although elevated ground-level O 3 has a species–specific impact on plant growth, the differences in soil biota responses to O 3 pollution among rice cultivars are rarely reported. Using O 3 Free-Air Concentration Enrichment, the responses of the rhizospheric bacterial communities in the O 3 -tolerant (YD6) and the O 3 -sensitive (IIY084) rice cultivars to O 3 pollution and their differences were assessed by pyrosequencing at rice tillering and anthesis stages. Elevated ground-level O 3 negatively influenced the bacterial community in cultivar YD6 at both rice growth stages by decreasing the bacterial phylogenetic diversities and response ratios. In contrast, in cultivar IIY084, the bacterial community responded positively at the rice tillering stage under O 3 pollution. However, several keystone bacterial guilds were consistently negatively affected by O 3 pollution in two rice cultivars. These findings indicate that continuously O 3 pollution would negatively influence rice agroecosystem and the crop cultivar is important in determining the soil biota responses to elevated O 3 . - Highlights: • We investigated the soil biota in two rice cultivars in presence of elevated O 3 . • The contrasting responses of soil biota were found between two rice cultivars. • Some keystone bacterial guilds were consistently negatively affected by O 3 pollution. • The crop cultivar is important in determining soil biota responses to elevated O 3 . - The crop cultivar is important in determining the soil biota responses to elevated O 3

  9. Evaluation of pre-treatments for inhibiting bromate formation during ozonation

    DEFF Research Database (Denmark)

    Antoniou, Maria; Andersen, Henrik Rasmus

    2011-01-01

    This study compared several pre-treatment methods for inhibiting BrO3- formation during ozonation of tap water, from the DTU campus, including H2O2 addition (perozone), pH-depression, NH4+ and Cl2/NH4+ addition. At the same time, the inhibition of atrazine and carbamazepine removal was evaluated...... close to the 10 μg/L limit, however atrazine removal did not exceed 75%. Carbamazepine was completely removed under all the tested experimental conditions with the 3.5 mg/L O3 dose....

  10. Chemical composition and digestibility of Trifolium exposed to elevated ozone and carbon dioxide in a free-air (FACE) fumigation system

    Science.gov (United States)

    R.B. Muntifering; A.H. Chappelka; J.C. Lin; D.F. Karnosky; G.L. Somers

    2006-01-01

    Tropospheric ozone (O3) and carbon dioxide (CO2) are significant drivers of plant growth and chemical composition. We hypothesized that exposure to elevated concentrations of O3 and CO2, singly and in combination, would modify the chemical composition of Trifolium...

  11. Stem wood properties of Populus tremuloides, Betula papyrifera and Acer saccharum saplings after three years of treatments to elevated carbon dioxide and ozone

    Science.gov (United States)

    Seija Kaakinen; Katri Kostiainen; Fredrik Ek; Pekka Saranpaa; Mark E. Kubiske; Jaak Sober; David F. Karnosky; Elina Vapaavuori

    2004-01-01

    The aim of this study was to examine the effects of elevated carbon dioxide [CO2] and ozone [O3] and their interaction on wood chemistry and anatomy of five clones of 3-year-old trembling aspen (Populus tremuloides Michx.). Wood chemistry was studied also on paper birch (Betula papyrifera...

  12. Role of photoexcited nitrogen dioxide chemistry on ozone formation and emission control strategy over the Pearl River Delta, China

    Science.gov (United States)

    A new hydroxyl radical formation pathway via photo-excited nitrogen dioxide chemistry is incorporated into a chemistry-only box model as well as a 3D air quality model to examine its potential role on ozone formation and emission control strategy over the Pearl River Delta region...

  13. Cr(VI) formation during ozonation of Cr-containing materials in ...

    African Journals Online (AJOL)

    Ozonation, or advanced oxidation processes (utilising ozone decomposition products as oxidants) are widely used in industrial wastewater and drinking water treatment plants. In these applications the use of ozone is based on ozone and its decomposition by-products being strong oxidants. In this paper, the possible ...

  14. Formation of Ozonic Compound and Used as Therapeutic Agent in Medicine

    Science.gov (United States)

    Zhu, Lei; Ye, Chunyong; Min, Xinmin

    2018-03-01

    It has some encouraging results to use ozone in medicine. However, as ozone is usually in gas state, unstable and strong oxidability, it is difficult to be stored and used commonly. Ozone, ethylene, acrylic acid and the ozonic compounds were calculated to study the interaction between ozone and carrier material to form ozonide. The stability of the ozonide, or the bond strength between ozone and ions of carrier are controlled felicitously to release ozone from the ozonide with proper velocity. Ozone antimicrobial has been composed on the above principle. It can be used conveniently, especially for common families. There are some characteristics of ozone antimicrobial or ozone, such as universal applicability, efficiency and rapidity, security, strong penetrability, no drug resistance and sterilization and treatment simultaneity.

  15. Effect of isoprene emissions from major forests on ozone formation in the city of Shanghai, China

    Directory of Open Access Journals (Sweden)

    F. Geng

    2011-10-01

    Full Text Available Ambient surface level concentrations of isoprene (C5H8 were measured in the major forest regions located south of Shanghai, China. Because there is a large coverage of broad-leaved trees in this region, high concentrations of isoprene were measured, ranging from 1 to 6 ppbv. A regional dynamical/chemical model (WRF-Chem is applied for studying the effect of such high concentrations of isoprene on the ozone production in the city of Shanghai. The evaluation of the model shows that the calculated isoprene concentrations agree with the measured concentrations when the measured isoprene concentrations are lower than 3 ppb, but underestimate the measurements when the measured values are higher than 3 ppb. Isoprene was underestimated only at sampling sites near large bamboo plantations, a high isoprene source, indicating the need to include geospatially resolved bamboo distributions in the biogenic emission model. The assessment of the impact of isoprene on ozone formation suggests that the concentrations of peroxy radicals (RO2 are significantly enhanced due to the oxidation of isoprene, with a maximum of 30 ppt. However, the enhancement of RO2 is confined to the forested regions. Because the concentrations of NOx were low in the forest regions, the ozone production due to the oxidation of isoprene (C5H8 + OH → → RO2 + NO → → O3 is low (less than 2–3 ppb h−1. The calculation further suggests that the oxidation of isoprene leads to the enhancement of carbonyls (such as formaldehyde and acetaldehyde in the regions downwind of the forests, due to continuous oxidation of isoprene in the forest air. As a result, the concentrations of HO2 radical are enhanced, resulting from the photo-disassociation of formaldehyde and acetaldehyde. Because the enhancement of HO2 radical occurs in regions downwind of the forests

  16. Long-term leaf production response to elevated atmospheric carbon dioxide and tropospheric ozone

    Science.gov (United States)

    Alan F. Talhelm; Kurt S. Pregitzer; Christian P. Giardina

    2011-01-01

    Elevated concentrations of atmospheric CO2 and tropospheric O3 will profoundly influence future forest productivity, but our understanding of these influences over the long-term is poor. Leaves are key indicators of productivity and we measured the mass, area, and nitrogen concentration of leaves collected in litter traps...

  17. ELEVATED CO2 AND TEMPERATURE ALTER THE RESPONSE OF PINUS PONDEROSA TO OZONE: A SIMULATION ANALYSIS

    Science.gov (United States)

    Forests regulate numerous biogeochemical cycles, storing and cycling large quantities of carbon, water, and nutrients, however, there is concern how climate change, elevated CO2 and tropospheric O3 will affect these processes. We investigated the potential impact of O3 in combina...

  18. Enhancement of bromate formation by pH depression during ozonation of bromide-containing water in the presence of hydroxylamine.

    Science.gov (United States)

    Yang, Jingxin; Li, Ji; Dong, Wenyi; Ma, Jun; Yang, Yi; Li, Jiayin; Yang, Zhichao; Zhang, Xiaolei; Gu, Jia; Xie, Wanying; Cang, Yan

    2017-02-01

    This work investigated the fate of bromate formation during ozonation in the presence of hydroxylamine (HA). Results indicated that pH depression, as a commonly feasible control strategy for bromate formation during ozonation, unexpectedly enhanced the bromate formation during ozonation in the presence of HA. A dramatically high level of bromate was observed at acidic pH in the ozone/HA process. The scavenging experiments demonstrated the essential role of OH produced in the reaction of ozone with HA in bromate formation. In the process, OH mainly oxidizes bromide to Br, which is further oxidized by ozone and eventually converts to bromate. Further investigations suggested that the unexpected enhancement on bromate formation by pH depression can be mainly ascribed to the pH-dependent ozone decay, OH exposures and formation rate of Br. As pH decreased from 7 to 5, the reduced OH scavenging capacity of HA led to higher OH exposures, which contributed to the enhancement of bromate formation. As pH decreased from 5 to 3, the enhanced formation rate of Br largely augmented the formation of bromate. In addition, the ozone decay slowed down by pH depression provided more available ozone for the oxidation of the formed Br to bromate. The enhanced effect of pH depression on bromate formation was still observed in the real water samples in the ozone/HA process. Accordingly, pH depression might be avoided to control the bromate formation during ozonation in the presence of HA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Volatile organic compounds in pesticide formulations: Methods to estimate ozone formation potential

    Science.gov (United States)

    Zeinali, Mazyar; McConnell, Laura L.; Hapeman, Cathleen J.; Nguyen, Anh; Schmidt, Walter F.; Howard, Cody J.

    2011-05-01

    The environmental fate and toxicity of active ingredients in pesticide formulations has been investigated for many decades, but relatively little research has been conducted on the fate of pesticide co-formulants or inerts. Some co-formulants are volatile organic compounds (VOCs) and can contribute to ground-level ozone pollution. Effective product assessment methods are required to reduce emissions of the most reactive VOCs. Six emulsifiable concentrate pesticide products were characterized for percent VOC by thermogravimetric analysis (TGA) and gas chromatography-mass spectrometry (GC-MS). TGA estimates exceeded GC-MS by 10-50% in all but one product, indicating that for some products a fraction of active ingredient is released during TGA or that VOC contribution was underestimated by GC-MS. VOC profiles were examined using TGA-Fourier transform infrared (FTIR) evolved gas analysis and were compared to GC-MS results. The TGA-FTIR method worked best for products with the simplest and most volatile formulations, but could be developed into an effective product screening tool. An ozone formation potential ( OFP) for each product was calculated using the chemical composition from GC-MS and published maximum incremental reactivity ( MIR) values. OFP values ranged from 0.1 to 3.1 g ozone g -1 product. A 24-h VOC emission simulation was developed for each product assuming a constant emission rate calculated from an equation relating maximum flux rate to vapor pressure. Results indicate 100% VOC loss for some products within a few hours, while other products containing less volatile components will remain in the field for several days after application. An alternate method to calculate a product OFP was investigated utilizing the fraction of the total mass of each chemical emitted at the end of the 24-h simulation. The ideal assessment approach will include: 1) unambiguous chemical composition information; 2) flexible simulation models to estimate emissions under

  20. Bromide Sources and Loads in Swiss Surface Waters and Their Relevance for Bromate Formation during Wastewater Ozonation.

    Science.gov (United States)

    Soltermann, Fabian; Abegglen, Christian; Götz, Christian; von Gunten, Urs

    2016-09-20

    Bromide measurements and mass balances in the catchments of major Swiss rivers revealed that chemical industry and municipal waste incinerators are the most important bromide sources and account for ∼50% and ∼20%, respectively, of the ∼2000 tons of bromide discharged in the Rhine river in 2014 in Switzerland. About 100 wastewater treatment plants (WWTPs) will upgrade their treatment for micropollutant abatement in the future to comply with Swiss regulations. An upgrade with ozonation may lead to unintended bromate formation in bromide-containing wastewaters. Measured bromide concentrations were industry). Wastewater ozonation formed little bromate at specific ozone doses of ≤0.4 mg O3/mg DOC, while the bromate yields were almost linearly correlated to the specific ozone dose for higher ozone doses. Molar bromate yields for typical specific ozone doses in wastewater treatment (0.4-0.6 mg O3/mg DOC) are ≤3%. In a modeled extreme scenario (in which all upgraded WWTPs release 10 μg L(-1) of bromate), bromate concentrations increased by major Swiss rivers and by several micrograms per liter in receiving water bodies with a high fraction of municipal wastewater.

  1. An insight into the formation of severe ozone episodes: modeling the 21/03/01 event in the ESCOMPTE region

    Science.gov (United States)

    Lasry, Fanny; Coll, Isabelle; Buisson, Emmanuel

    2005-03-01

    High ozone concentrations are observed more and more frequently in the lower troposphere. The development of such polluted episodes is linked to a complex set of chemical, physical and dynamical parameters that interact with each other. To improve air quality, it is necessary to understand and quantify the role of all these processes on the intensity of ozone formation. The ESCOMPTE program, especially dedicated to the numerical simulation of photochemical episodes, offers an ideal frame to investigate details of the roles of many of these processes through 3D modeling. This paper presents the analysis, with a 3D eulerian model, of a severe and local episode of ozone pollution that occurred on the 21st of March 2001 in the ESCOMPTE region. This episode is particularly interesting due to the intensity of the observed ozone peaks (450 μg/m 3 during 15 mn) but also because it did not occur in summer but at the beginning of spring. As part of the premodeling work of the ESCOMPTE program, this study focuses on the sensitivity of the simulated ozone peaks to various chemical and physical phenomena (long-range transport, industrial emissions, local dynamic phenomena…) to determine their influence on the rise of high local photooxidant concentrations and to better picture the photochemistry of the ESCOMPTE region. Through sensitivity tests to dynamical calculation resolution and emissions, this paper shows how the combination of sea and pond breezes with emissions of reactive VOCs can generate local intense ozone peaks.

  2. Host location behavior of Cotesia plutellae Kurdjumov (Hymenoptera: Braconidae) in ambient and moderately elevated ozone in field conditions

    International Nuclear Information System (INIS)

    Pinto, D.M.; Himanen, S.J.; Nissinen, A.; Nerg, A.-M.; Holopainen, J.K.

    2008-01-01

    In field O 3 -enrichment experiments increased herbivore densities have been reported, which could be due to negatively affected host location behavior of natural enemies. We addressed the impact of doubling background O 3 on the host location of the parasitoid Cotesia plutellae by conducting 24-h trials in an open-air O 3 -fumigation system during two consecutive years. Two circles (radii 1.40 and 4.00 m) of Plutella xylostella-infested potted cabbage plants were placed in the O 3 and ambient plots. Female wasps were released into each plot from the center, and observed 5 times over a 24-h period to assess their host location capability. Thereafter, plants were kept in laboratory conditions until larvae pupation to determine parasitism rates. No significant differences were detected between ambient and O 3 -enriched environments either in the number of wasps found in the field, or in the percentages of parasitized larvae. This suggests that moderately elevated O 3 will not affect the behavior of this parasitoid. - Atmospheric ozone increases do not directly affect the biological control of the cabbage pest, Plutella xylostella

  3. Host location behavior of Cotesia plutellae Kurdjumov (Hymenoptera: Braconidae) in ambient and moderately elevated ozone in field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, D.M. [Department of Environmental Science, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland)], E-mail: delia.pinto@uku.fi; Himanen, S.J. [Department of Environmental Science, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland); Nissinen, A. [Department of Environmental Science, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland); Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen (Finland); Nerg, A.-M.; Holopainen, J.K. [Department of Environmental Science, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland)

    2008-11-15

    In field O{sub 3}-enrichment experiments increased herbivore densities have been reported, which could be due to negatively affected host location behavior of natural enemies. We addressed the impact of doubling background O{sub 3} on the host location of the parasitoid Cotesia plutellae by conducting 24-h trials in an open-air O{sub 3}-fumigation system during two consecutive years. Two circles (radii 1.40 and 4.00 m) of Plutella xylostella-infested potted cabbage plants were placed in the O{sub 3} and ambient plots. Female wasps were released into each plot from the center, and observed 5 times over a 24-h period to assess their host location capability. Thereafter, plants were kept in laboratory conditions until larvae pupation to determine parasitism rates. No significant differences were detected between ambient and O{sub 3}-enriched environments either in the number of wasps found in the field, or in the percentages of parasitized larvae. This suggests that moderately elevated O{sub 3} will not affect the behavior of this parasitoid. - Atmospheric ozone increases do not directly affect the biological control of the cabbage pest, Plutella xylostella.

  4. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate.

    Science.gov (United States)

    Ramseier, Maaike K; Peter, Andreas; Traber, Jacqueline; von Gunten, Urs

    2011-02-01

    Five oxidants, ozone, chlorine dioxide, chlorine, permanganate, and ferrate were studied with regard to the formation of assimilable organic carbon (AOC) and oxalate in absence and presence of cyanobacteria in lake water matrices. Ozone and ferrate formed significant amounts of AOC, i.e. more than 100 μg/L AOC were formed with 4.6 mg/L ozone and ferrate in water with 3.8 mg/L dissolved organic carbon. In the same water samples chlorine dioxide, chlorine, and permanganate produced no or only limited AOC. When cyanobacterial cells (Aphanizomenon gracile) were added to the water, an AOC increase was detected with ozone, permanganate, and ferrate, probably due to cell lysis. This was confirmed by the increase of extracellular geosmin, a substance found in the selected cyanobacterial cells. AOC formation by chlorine and chlorine dioxide was not affected by the presence of the cells. The formation of oxalate upon oxidation was found to be a linear function of the oxidant consumption for all five oxidants. The following molar yields were measured in three different water matrices based on oxidant consumed: 2.4-4.4% for ozone, 1.0-2.8% for chlorine dioxide and chlorine, 1.1-1.2% for ferrate, and 11-16% for permanganate. Furthermore, oxalate was formed in similar concentrations as trihalomethanes during chlorination (yield ∼ 1% based on chlorine consumed). Oxalate formation kinetics and stoichiometry did not correspond to the AOC formation. Therefore, oxalate cannot be used as a surrogate for AOC formation during oxidative water treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Identification of volatile organic compounds in suburban Bangkok, Thailand and their potential for ozone formation

    Science.gov (United States)

    Suthawaree, Jeeranut; Tajima, Yosuke; Khunchornyakong, Alisa; Kato, Shungo; Sharp, Alice; Kajii, Yoshizumi

    2012-02-01

    Measurement of Volatile Organic Compound (VOC) was carried out in suburban Bangkok during July 2-8, 2008. Analysis was performed using GC-FID and GC-MS. High mixing ratios of VOCs detected during the morning and evening are most likely due to vehicular emissions. Averaged VOC mixing ratios revealed distinct difference between mixing ratios of weekdays and weekend, which the latter were found to be lower. The most abundance species were propane and toluene. Ratios of benzene over toluene suggested that additional toluene mixing ratios was owing to industrial emission, which was particularly larger during weekdays. Comparison between C2Cl4 and CH3Cl mixing ratios obtained for suburban Tokyo reveal a relatively lower influence of biomass burning than suburban Bangkok. Elucidating by Ozone Formation Potential, toluene was found to contribute the most to O3 production followed by ethylene, m-,p-xylene, and propylene.

  6. Ultrafine and fine particle formation in a naturally ventilated office as a result of reactions between ozone and scented products

    DEFF Research Database (Denmark)

    Toftum, Jørn; Dijken, F. v.

    2003-01-01

    Ultrafine and fine particle formation as a result of chemical reactions between ozone and four different air fresheners and a typical lemon-scented domestic cleaner was studied in a fully furnished, naturally ventilated office. The study showed that under conditions representative of those...

  7. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent

    International Nuclear Information System (INIS)

    Himanen, Sari J.; Nerg, Anne-Marja; Nissinen, Anne; Stewart, C. Neal; Poppy, Guy M.; Holopainen, Jarmo K.

    2009-01-01

    Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. - Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants

  8. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent

    Energy Technology Data Exchange (ETDEWEB)

    Himanen, Sari J. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)], E-mail: sari.himanen@uku.fi; Nerg, Anne-Marja [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); Nissinen, Anne [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); MTT Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen (Finland); Stewart, C. Neal [University of Tennessee, Department of Plant Sciences, Knoxville, TN 37996-4561 (United States); Poppy, Guy M. [University of Southampton, School of Biological Sciences, Southampton SO16 7PX (United Kingdom); Holopainen, Jarmo K. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)

    2009-01-15

    Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. - Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants.

  9. Growth, yield and quality attributes of a tropical potato variety (Solanum tuberosum L. cv Kufri chandramukhi) under ambient and elevated carbon dioxide and ozone and their interactions.

    Science.gov (United States)

    Kumari, Sumita; Agrawal, Madhoolika

    2014-03-01

    The present study was designed to study the growth and yield responses of a tropical potato variety (Solanum tuberosum L. cv. Kufri chandramukhi) to different levels of carbon dioxide (382 and 570ppm) and ozone (50 and 70ppb) in combinations using open top chambers (OTCs). Plants were exposed to three ozone levels in combination with ambient CO2 and two ozone levels at elevated CO2. Significant increments in leaf area and total biomass were observed under elevated CO2 in combination with ambient O3 (ECO2+AO3) and elevated O3 (ECO2+EO3), compared to the plants grown under ambient concentrations (ACO2+AO3). Yield measured as fresh weight of potato also increased significantly under ECO2+AO3 and ECO2+EO3. Yield, however, reduced under ambient (ACO2+AO3) and elevated ozone (ACO2+EO3) compared to ACO2 (filtered chamber). Number, fresh and dry weights of tubers of size 35-50mm and>50mm used for direct consumption and industrial purposes, respectively increased maximally under ECO2+AO3. Ambient as well as elevated levels of O3 negatively affected the growth parameters and yield mainly due to reductions in number and weight of tubers of sizes >35mm. The quality of potato tubers was also modified under different treatments. Starch content increased and K, Zn and Fe concentrations decreased under ECO2+AO3 and ECO2+EO3 compared to ACO2+AO3. Starch content reduced under ACO2+AO3 and ACO2+EO3 treatments compared to ACO2. These results clearly suggest that elevated CO2 has provided complete protection to ambient O3 as the potato yield was higher under ECO2+AO3 compared to ACO2. However, ambient CO2 is not enough to protect the plants under ambient O3 levels. Elevated CO2 also provided protection against elevated O3 by improving the yield. Quality of tubers is modified by both CO2 and O3, which have serious implications on human health at present and in future. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. LaRC Modeling of Ozone Formation in San Antonio, Texas

    Science.gov (United States)

    Guo, F.; Griffin, R. J.; Bui, A.; Schulze, B.; Wallace, H. W., IV; Flynn, J. H., III; Erickson, M.; Kotsakis, A.; Alvarez, S. L.; Usenko, S.; Sheesley, R. J.; Yoon, S.

    2017-12-01

    Ozone (O3) is one of the most important trace species within the troposphere and results from photochemistry involving emissions from a complex array of sources. Ground-level O3 is detrimental to ecosystems and causes a variety of human health problems including respiratory irritation, asthma and reduction in lung capacity. However, the O3 Design Value in San Antonio, Texas, was in violation of the federal threshold set by the EPA (70 ppb, 8-hr max) based on the average for the most recent three-year period (2014-2016). To understand the sources of high O3 concentrations in this nonattainment area, we assembled and deployed a mobile air quality laboratory and operated it in two locations in the southeast (Traveler's World RV Park) and northwest (University of Texas at San Antonio) of downtown San Antonio during summer 2017 to measure O3 and its precursors, including total nitrogen oxides (NOx) and volatile organic compounds (VOCs). Additional measurements included temperature, relative humidity, pressure, solar radiation, wind speed, wind direction, total reactive nitrogen (NOy), carbon monoxide (CO), and aerosol composition and concentration. We will use the campaign data and the NASA Langley Research Center (LaRC) Zero-Dimensional Box Model (Crawford et al., 1999; Olson et al., 2006) to calculate O3 production rate, NOx and hydroxyl radical chain length, and NOx versus VOCs sensitivity at different times of a day with different photochemical and meteorological conditions. A key to our understanding is to combine model results with measurements of precursor gases, particle chemistry and particle size to support the identification of O3 sources, its major formation pathways, and how the ozone production efficiency (OPE) depends on various factors. The resulting understanding of the causes of high O3 concentrations in the San Antonio area will provide insight into future air quality protection.

  11. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination.

    Science.gov (United States)

    Mao, Yuqin; Guo, Di; Yao, Weikun; Wang, Xiaomao; Yang, Hongwei; Xie, Yuefeng F; Komarneni, Sridhar; Yu, Gang; Wang, Yujue

    2018-03-01

    The electro-peroxone (E-peroxone) process is an emerging ozone-based electrochemical advanced oxidation process that combines conventional ozonation with in-situ cathodic hydrogen peroxide (H 2 O 2 ) production for oxidative water treatment. In this study, the effects of the E-peroxone pretreatment on disinfection by-product (DBP) formation from chlorination of a synthetic surface water were investigated and compared to conventional ozonation. Results show that due to the enhanced transformation of ozone (O 3 ) to hydroxyl radicals (OH) by electro-generated H 2 O 2 , the E-peroxone process considerably enhanced dissolved organic carbon (DOC) abatement and significantly reduced bromate (BrO 3 - ) formation compared to conventional ozonation. However, natural organic matter (NOM) with high UV 254 absorbance, which is the major precursors of chlorination DBPs, was less efficiently abated during the E-peroxone process than conventional ozonation. Consequently, while both conventional ozonation and the E-peroxone process substantially reduced the formation of DBPs (trihalomethanes and haloacetic acids) during post-chlorination, higher DBP concentrations were generally observed during chlorination of the E-peroxone pretreated waters than conventional ozonation treated. In addition, because of conventional ozonation or the E-peroxone treatment, DBPs formed during post-chlorination shifted to more brominated species. The overall yields of brominated DBPs exhibited strong correlations with the bromide concentrations in water. Therefore, while the E-peroxone process can effectively suppress bromide transformation to bromate, it may lead to higher formation of brominated DBPs during post-chlorination compared to conventional ozonation. These results suggest that the E-peroxone process can lead to different DBP formation and speciation during water treatment trains compared to conventional ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Response of humic acid formation to elevated nitrate during chicken manure composting.

    Science.gov (United States)

    Shi, Mingzi; Wei, Zimin; Wang, Liqin; Wu, Junqiu; Zhang, Duoying; Wei, Dan; Tang, Yu; Zhao, Yue

    2018-06-01

    Nitrate can stimulate microbes to degrade aromatic compounds, whereas humic acid (HA) as a high molecular weight aromatic compound, its formation may be affected by elevated nitrate during composting. Therefore, this study is conducted to determine the effect of elevated nitrate on HA formation. Five tests were executed by adding different nitrate concentrations to chicken manure composting. Results demonstrate that the concentration of HA in treatment group is significantly decreased compared with control group (p < 0.05), especially in the highest nitrate concentration group. RDA indicates that the microbes associated with HA and environmental parameters are influenced by elevated nitrate. Furthermore, structural equation model reveals that elevated nitrate reduces HA formation by mediating microbes directly, or by affecting ammonia and pH as the indirect drivers to regulate microbial community structure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Photochemically consumed hydrocarbons and their relationship with ozone formation in two megacities of China

    Science.gov (United States)

    Chang, C.; Wang, J.; Liu, S.; Shao, M.; Zhang, Y.; Zhu, T.; Shiu, C.; Lai, C.

    2010-12-01

    Two on-site continuous measurements of ozone and its precursors in two megacities of China were carried out in an urban site of Beijing and a suburban site near Guangzhou in the Pearl River Delta (PRD) to estimate precursor consumption and to assess its relationship with oxidant (O3+NO2) formation level. An observation-based method (OBM) with the precursor consumption concept was adopted to assess the relationship between oxidant production and amounts of photochemically consumed non-methane hydrocarbons (NMHCs). In this approach, the ratio of ethylbenzene to m,p-xylenes was used to estimate the degree of photochemical processing, as well as the amounts of photochemically consumed NMHCs by reacting with OH. By trying to correlate the observed oxidant with the observed NMHC concentration, the two areas both revealed nearly no to low correlation between them. However, it existed fair to good correlations (R2=0.68 for Beijing, 0.53 for PRD) between the observed oxidant level and the degree of photochemical processing (ethylbenzene/m,p-xylenes). Furthermore, after taking the approach of consumption to estimate the consumed amounts of NMHCs, an interesting finding reveals that the definite correlation existed between the observed oxidant level and the total consumed NMHCs. The good correlations (R2=0.83 for Beijing, 0.81 for PRD) implies that the ambient oxidant level correlated to the amount of consumed NMHCs. The results of the two megacities in China by using the OBM with the precursor consumption concept can provide another pathway to explore the relationship between photochemically produced oxidant and consumed precursors, and will be helpful to validate model results and to reduce uncertainty of model predictions. However, the method has some room for uncertainty, as injection of fresh precursor emissions and additional boundary ozone involved, etc. could affect the estimation of consumed NMHCs and observed oxidant levels. Assistance of approaches in assessing the

  14. N-nitrosodimethylamine (NDMA) formation during ozonation of N,N-dimethylhydrazine compounds: Reaction kinetics, mechanisms, and implications for NDMA formation control.

    Science.gov (United States)

    Lim, Sungeun; Lee, Woongbae; Na, Soyoung; Shin, Jaedon; Lee, Yunho

    2016-11-15

    Compounds with N,N-dimethylhydrazine moieties ((CH 3 ) 2 N-N-) form N-nitrosodimethylamine (NDMA) during ozonation, but the relevant reaction chemistry is hitherto poorly understood. This study investigated the reaction kinetics and mechanisms of NDMA formation during ozonation of unsymmetrical dimethylhydrazine (UDMH) and daminozide (DMZ) as structural model N,N-dimethylhydrazine compounds. The reaction of ozone with these NDMA precursor compounds was fast, and k O3 at pH 7 was 2 × 10 6  M -1  s -1 for UDMH and 5 × 10 5  M -1  s -1 for DMZ. Molar NDMA yields (i.e., Δ[NDMA]/Δ[precursor] × 100) were 84% and 100% for UDMH and DMZ, respectively, determined at molar ozone dose ratio ([O 3 ] 0 /[precursor] 0 ) of ≥4 in the presence of tert-butanol as hydroxyl radical (OH) scavenger. The molar NDMA yields decreased significantly in the absence of tert-butanol, indicating OH formation and its subsequent reaction with the parent precursors forming negligible NDMA. The k OH at pH 7 was 4.9 × 10 9  M -1  s -1 and 3.4 × 10 9  M -1  s -1 for UDMH and DMZ, respectively. Reaction mechanisms are proposed in which an ozone adduct is formed at the nitrogen next to N,N-dimethylamine which decomposes via homolytic and heterolytic cleavages of the -N + -O-O-O - bond, forming NDMA as a final product. The heterolytic cleavage pathway explains the significant OH formation via radical intermediates. Overall, significant NDMA formation was found to be unavoidable during ozonation or even O 3 /H 2 O 2 treatment of waters containing N,N-dimethylhydrazine compounds due to their rapid reaction with ozone forming NDMA with high yield. Thus, source control or pre-treatment of N,N-dimethylhydrazine precursors and post-treatment of NDMA are proposed as the mitigation options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Formation and emissions of carbonyls during and following gas-phase ozonation of indoor materials

    DEFF Research Database (Denmark)

    Poppendieck, D.G.; Hubbard, H.F.; Weschler, Charles J.

    2007-01-01

    at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged...

  16. Effects of elevated ozone concentration on CH4 and N2O emission from paddy soil under fully open-air field conditions.

    Science.gov (United States)

    Tang, Haoye; Liu, Gang; Zhu, Jianguo; Kobayashi, Kazuhiko

    2015-04-01

    We investigated the effects of elevated ozone concentration (E-O3) on CH4 and N2O emission from paddies with two rice cultivars: an inbred Indica cultivar Yangdao 6 (YD6) and a hybrid one II-you 084 (IIY084), under fully open-air field conditions in China. A mean 26.7% enhancement of ozone concentration above the ambient level (A-O3) significantly reduced CH4 emission at tillering and flowering stages leading to a reduction of seasonal integral CH4 emission by 29.6% on average across the two cultivars. The reduced CH4 emission is associated with O3-induced reduction in the whole-plant biomass (-13.2%), root biomass (-34.7%), and maximum tiller number (-10.3%), all of which curbed the carbon supply for belowground CH4 production and its release from submerged soil to atmosphere. Although no significant difference was detected between the cultivars in the CH4 emission response to E-O3, a larger decrease in CH4 emission with IIY084 (-33.2%) than that with YD6 (-7.0%) was observed at tillering stage, which may be due to the larger reduction in tiller number in IIY084 by E-O3. Additionally, E-O3 reduced seasonal mean NOx flux by 5.7% and 11.8% with IIY084 and YD6, respectively, but the effects were not significant statistically. We found that the relative response of CH4 emission to E-O3 was not significantly different from those reported in open-top chamber experiments. This study has thus confirmed that increasing ozone concentration would mitigate the global warming potential of CH4 and suggested consideration of the feedback mechanism between ozone and its precursor emission into the projection of future ozone effects on terrestrial ecosystem. © 2014 John Wiley & Sons Ltd.

  17. Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007

    Directory of Open Access Journals (Sweden)

    Ø. Hodnebrog

    2012-09-01

    Full Text Available The hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors using state-of-the-art inventories for anthropogenic, biogenic and forest fire emissions. The models have been evaluated against measurement data, and processes leading to ozone formation have been quantified. Heat wave episodes are projected to occur more frequently in a future climate, and therefore this study also makes a contribution to climate change impact research.

    The plume from the Greek forest fires in August 2007 is clearly seen in satellite observations of CO and NO2 columns, showing extreme levels of CO in and downwind of the fires. Model simulations reflect the location and influence of the fires relatively well, but the modelled magnitude of CO in the plume core is too low. Most likely, this is caused by underestimation of CO in the emission inventories, suggesting that the CO/NOx ratios of fire emissions should be re-assessed. Moreover, higher maximum values are seen in WRF-Chem than in EMEP MSC-W, presumably due to differences in plume rise altitudes as the first model emits a larger fraction of the fire emissions in the lowermost model layer. The model results are also in fairly good agreement with surface ozone measurements.

    Biogenic VOC emissions reacting with anthropogenic NOx emissions are calculated to contribute significantly to the levels of ozone in the region, but the magnitude and geographical distribution depend strongly on the model and biogenic emission module used. During the July and August heat waves, ozone levels increased substantially due to a combination of forest fire emissions and the effect of high temperatures. We found that the largest temperature impact on

  18. The effects of welding parameters on ultra-violet light emissions, ozone and CrVI formation in MIG welding.

    Science.gov (United States)

    Dennis, J H; Mortazavi, S B; French, M J; Hewitt, P J; Redding, C R

    1997-01-01

    This paper describes the relationships between ultra-violet emission, ozone generation and CrVI production in MIG welding which were measured as a function of shield gas flow rate, welding voltage, electrode stick-out and shield gas composition using an automatic welding rig that permitted MIG welding under reproducible conditions. The experimental results are interpreted in terms of the physico-chemical processes occurring in the micro- and macro-environments of the arc as part of research into process modification to reduce occupational exposure to ozone and CrVI production rates in MIG welding. We believe the techniques described here, and in particular the use of what we have termed u.v.-ozone measurements, will prove useful in further study of ozone generation and CrVI formation and may be applied in the investigation of engineering control of occupational exposure in MIG and other welding process such as Manual Metal Arc (MMA) and Tungsten Inert Gas (TIG).

  19. Summertime ozone formation in Xi'an and surrounding areas, China

    Directory of Open Access Journals (Sweden)

    T. Feng

    2016-04-01

    Full Text Available In this study, the ozone (O3 formation in China's northwest city of Xi'an and surrounding areas is investigated using the Weather Research and Forecasting atmospheric chemistry (WRF-Chem model during the period from 22 to 24 August 2013, corresponding to a heavy air pollution episode with high concentrations of O3 and PM2.5. The model generally performs well compared to measurements in simulating the surface temperature, relative humidity, and wind speed and direction, near-surface O3 and PM2.5 mass concentrations, and aerosol constituents. High aerosol concentrations in Xi'an and surrounding areas significantly decrease the photolysis frequencies and can reduce O3 concentrations by more than 50 µg m−3 (around 25 ppb on average. Sensitivity studies show that the O3 production regime in Xi'an and surrounding areas is complicated, varying from NOx to VOC (volatile organic compound-sensitive chemistry. The industrial emissions contribute the most to the O3 concentrations compared to biogenic and other anthropogenic sources, but neither individual anthropogenic emission nor biogenic emission plays a dominant role in the O3 formation. Under high O3 and PM2.5 concentrations, a 50 % reduction in all the anthropogenic emissions only decreases near-surface O3 concentrations by about 14 % during daytime. The complicated O3 production regime and high aerosol levels pose a challenge for O3 control strategies in Xi'an and surrounding areas. Further investigation regarding O3 control strategies will need to be performed, taking into consideration the rapid changes in anthropogenic emissions that are not reflected in the current emission inventories and the uncertainties in the meteorological field simulations.

  20. Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign

    Directory of Open Access Journals (Sweden)

    X. Tie

    2013-06-01

    Full Text Available The MIRAGE-Shanghai experiment was designed to characterize the factors controlling regional air pollution near a Chinese megacity (Shanghai and was conducted during September 2009. This paper provides information on the measurements conducted for this study. In order to have some deep analysis of the measurements, a regional chemical/dynamical model (version 3 of Weather Research and Forecasting Chemical model – WRF-Chemv3 is applied for this study. The model results are intensively compared with the measurements to evaluate the model capability for calculating air pollutants in the Shanghai region, especially the chemical species related to ozone formation. The results show that the model is able to calculate the general distributions (the level and the variability of air pollutants in the Shanghai region, and the differences between the model calculation and the measurement are mostly smaller than 30%, except the calculations of HONO (nitrous acid at PD (Pudong and CO (carbon monoxide at DT (Dongtan. The main scientific focus is the study of ozone chemical formation not only in the urban area, but also on a regional scale of the surrounding area of Shanghai. The results show that during the experiment period, the ozone photochemical formation was strongly under the VOC (volatile organic compound-limited condition in the urban area of Shanghai. Moreover, the VOC-limited condition occurred not only in the city, but also in the larger regional area. There was a continuous enhancement of ozone concentrations in the downwind of the megacity of Shanghai, resulting in a significant enhancement of ozone concentrations in a very large regional area in the surrounding region of Shanghai. The sensitivity study of the model suggests that there is a threshold value for switching from VOC-limited condition to NOx (nitric oxide and nitrogen dioxide-limited condition. The threshold value is strongly dependent on the emission ratio of NOx / VOCs. When the

  1. Simulated changes in biogenic VOC emissions and ozone formation from habitat expansion of Acer Rubrum (red maple)

    International Nuclear Information System (INIS)

    Drewniak, Beth A; Snyder, Peter K; Twine, Tracy E; Steiner, Allison L; Wuebbles, Donald J

    2014-01-01

    A new vegetation trend is emerging in northeastern forests of the United States, characterized by an expansion of red maple at the expense of oak. This has changed emissions of biogenic volatile organic compounds (BVOCs), primarily isoprene and monoterpenes. Oaks strongly emit isoprene while red maple emits a negligible amount. This species shift may impact nearby urban centers because the interaction of isoprene with anthropogenic nitrogen oxides can lead to tropospheric ozone formation and monoterpenes can lead to the formation of particulate matter. In this study the Global Biosphere Emissions and Interactions System was used to estimate the spatial changes in BVOC emission fluxes resulting from a shift in forest composition between oak and maple. A 70% reduction in isoprene emissions occurred when oak was replaced with maple. Ozone simulations with a chemical box model at two rural and two urban sites showed modest reductions in ozone concentrations of up to 5–6 ppb resulting from a transition from oak to red maple, thus suggesting that the observed change in forest composition may benefit urban air quality. This study illustrates the importance of monitoring and representing changes in forest composition and the impacts to human health indirectly through changes in BVOCs. (paper)

  2. Elevation of susceptibility to ozone-induced acute tracheobronchial injury in transgenic mice deficient in Clara cell secretory protein

    International Nuclear Information System (INIS)

    Plopper, C.G.; Mango, G.W.; Hatch, G.E.; Wong, V.J.; Toskala, E.; Reynolds, S.D.; Tarkington, B.K.; Stripp, B.R.

    2006-01-01

    Increases in Clara cell abundance or cellular expression of Clara cell secretory protein (CCSP) may cause increased tolerance of the lung to acute oxidant injury by repeated exposure to ozone (O 3 ). This study defines how disruption of the gene for CCSP synthesis affects the susceptibility of tracheobronchial epithelium to acute oxidant injury. Mice homozygous for a null allele of the CCSP gene (CCSP-/-) and wild type (CCSP+/+) littermates were exposed to ozone (0.2 ppm, 8 h; 1 ppm, 8 h) or filtered air. Injury was evaluated by light and scanning electron microscopy, and the abundance of necrotic, ciliated, and nonciliated cells was estimated by morphometry. Proximal and midlevel intrapulmonary airways and terminal bronchioles were evaluated. There was no difference in airway epithelial composition between CCSP+/+ and CCSP-/- mice exposed to filtered air, and exposure to 0.2 ppm ozone caused little injury to the epithelium of both CCSP+/+ and CCSP-/- mice. After exposure to 1.0 ppm ozone, CCSP-/- mice suffered from a greater degree of epithelial injury throughout the airways compared to CCSP+/+ mice. CCSP-/- mice had both ciliated and nonciliated cell injury. Furthermore, lack of CCSP was associated with a shift in airway injury to include proximal airway generations. Therefore, we conclude that CCSP modulates the susceptibility of the epithelium to oxidant-induced injury. Whether this is due to the presence of CCSP on the acellular lining layer surface and/or its intracellular distribution in the secretory cell population needs to be defined

  3. Ozone modeling

    Energy Technology Data Exchange (ETDEWEB)

    McIllvaine, C M

    1994-07-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO{sub 2}), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO{sub x} concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO{sub x} coordinates of the point, known as the NMOC/NO{sub x} ratio. Results obtained by the described model are presented.

  4. Ozone modeling

    International Nuclear Information System (INIS)

    McIllvaine, C.M.

    1994-01-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO 2 ), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO x concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO x coordinates of the point, known as the NMOC/NO x ratio. Results obtained by the described model are presented

  5. Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Loew, Markus; Heerdt, Christian; Grams, Thorsten E.E.; Haeberle, Karl-Heinz; Matyssek, Rainer

    2009-01-01

    The effects of elevated O 3 on photosynthetic properties in adult beech trees (Fagus sylvatica) were investigated in relation to leaf mass per area as a measure of the gradually changing, within-canopy light availability. Leaves under elevated O 3 showed decreased stomatal conductance at unchanged carboxylation capacity of Rubisco, which was consistent with enhanced δ 13 C of leaf organic matter, regardless of the light environment during growth. In parallel, increased energy demand for O 3 detoxification and repair was suggested under elevated O 3 owing to enhanced dark respiration. Only in shade-grown leaves, light-limited photosynthesis was reduced under elevated O 3 , this effect being accompanied by lowered F v /F m . These results suggest that chronic O 3 exposure primarily caused stomatal closure to adult beech trees in the field regardless of the within-canopy light gradient. However, light limitation apparently raised the O 3 sensitivity of photosynthesis and accelerated senescence in shade leaves. - Across leaf differentiation in adult beech crowns, elevated ozone acted through stomatal closure on gas exchange although enhancing photosynthetic sensitivity of shaded leaves

  6. Regional impacts of oil and gas development on ozone formation in the western United States.

    Science.gov (United States)

    Rodriguez, Marco A; Barna, Michael G; Moore, Tom

    2009-09-01

    The Intermountain West is currently experiencing increased growth in oil and gas production, which has the potential to affect the visibility and air quality of various Class I areas in the region. The following work presents an analysis of these impacts using the Comprehensive Air Quality Model with extensions (CAMx). CAMx is a state-of-the-science, "one-atmosphere" Eulerian photochemical dispersion model that has been widely used in the assessment of gaseous and particulate air pollution (ozone, fine [PM2.5], and coarse [PM10] particulate matter). Meteorology and emissions inventories developed by the Western Regional Air Partnership Regional Modeling Center for regional haze analysis and planning are used to establish an ozone baseline simulation for the year 2002. The predicted range of values for ozone in the national parks and other Class I areas in the western United States is then evaluated with available observations from the Clean Air Status and Trends Network (CASTNET). This evaluation demonstrates the model's suitability for subsequent planning, sensitivity, and emissions control strategy modeling. Once the ozone baseline simulation has been established, an analysis of the model results is performed to investigate the regional impacts of oil and gas development on the ozone concentrations that affect the air quality of Class I areas. Results indicate that the maximum 8-hr ozone enhancement from oil and gas (9.6 parts per billion [ppb]) could affect southwestern Colorado and northwestern New Mexico. Class I areas in this region that are likely to be impacted by increased ozone include Mesa Verde National Park and Weminuche Wilderness Area in Colorado and San Pedro Parks Wilderness Area, Bandelier Wilderness Area, Pecos Wilderness Area, and Wheeler Peak Wilderness Area in New Mexico.

  7. Ozone Sensitivity in Hybrid Poplar Correlates with Insensitivity to Both Salicylic Acid and Jasmonic Acid. The Role of Programmed Cell Death in Lesion Formation1

    Science.gov (United States)

    Koch, Jennifer Riehl; Creelman, Robert A.; Eshita, Steven M.; Seskar, Mirjana; Mullet, John E.; Davis, Keith R.

    2000-01-01

    Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response. PMID:10859179

  8. Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation.

    Science.gov (United States)

    Koch, J R; Creelman, R A; Eshita, S M; Seskar, M; Mullet, J E; Davis, K R

    2000-06-01

    Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response.

  9. Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions

    Science.gov (United States)

    Li, Weihua; Li, Lijie; Chen, Chia-li; Kacarab, Mary; Peng, Weihan; Price, Derek; Xu, Jin; Cocker, David R.

    2018-04-01

    Emissions of certain low vapor pressure-volatile organic compounds (LVP-VOCs) are considered exempt to volatile organic compounds (VOC) regulations due to their low evaporation rates. However, these compounds may still play a role in ambient secondary organic aerosol (SOA) and ozone formation. The LVP-VOCs selected for this work are categorized as intermediate-volatility organic compounds (IVOCs) according to their vapor pressures and molecular formulas. In this study, the evaporation rates of 14 select IVOCs are investigated with half of them losing more than 95% of their mass in less than one month. Further, SOA and ozone formation are presented from 11 select IVOCs and 5 IVOC-containing generic consumer products under atmospherically relevant conditions using varying radical sources (NOx and/or H2O2) and a surrogate reactive organic gas (ROG) mixture. Benzyl alcohol (0.41), n-heptadecane (0.38), and diethylene glycol monobutyl ether (0.16) are determined to have SOA yields greater than 0.1 in the presence of NOx and a surrogate urban hydrocarbon mixture. IVOCs also influence ozone formation from the surrogate urban mixture by impacting radical levels and NOx availability. The addition of lab created generic consumer products has a weak influence on ozone formation from the surrogate mixture but strongly affects SOA formation. The overall SOA and ozone formation of the generic consumer products could not be explained solely by the results of the pure IVOC experiments.

  10. Transformation of ranitidine during water chlorination and ozonation: Moiety-specific reaction kinetics and elimination efficiency of NDMA formation potential.

    Science.gov (United States)

    Jeon, Dahee; Kim, Jisoo; Shin, Jaedon; Hidayat, Zahra Ramadhany; Na, Soyoung; Lee, Yunho

    2016-11-15

    Ranitidine can produce high yields of N-nitrosodimethylamine (NDMA) upon chloramination and its presence in water resources is a concern for water utilities using chloramine disinfection. This study assessed the efficiency of water chlorination and ozonation in transforming ranitidine and eliminating its NDMA formation potential (NDMA-FP) by determining moiety-specific reaction kinetics, stoichiometric factors, and elimination levels in real water matrices. Despite the fact that chlorine reacts rapidly with the acetamidine and thioether moieties of ranitidine (k>10(8)M(-1)s(-1) at pH 7), the NDMA-FP decreases significantly only when chlorine reacts with the less reactive tertiary amine (k=3×10(3)M(-1)s(-1) at pH 7) or furan moiety (k=81M(-1)s(-1) at pH 7). Ozone reacts rapidly with all four moieties of ranitidine (k=1.5×10(5)-1.6×10(6)M(-1)s(-1) at pH 7) and its reaction with the tertiary amine or furan moiety leads to complete elimination of the NDMA-FP. Treatments of ranitidine-spiked real water samples have shown that ozonation can efficiently deactivate ranitidine in water and wastewater treatment, while chlorination can be efficient for water containing low concentration of ammonia. This result can be applied to the other structurally similar, potent NDMA precursors. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Volatile organic compounds speciation and their influence on ozone formation potential in an industrialized urban area in Brazil.

    Science.gov (United States)

    Galvão, Elson Silva; Santos, Jane Meri; Reis Junior, Neyval Costa; Stuetz, Richard Michael

    2016-09-01

    Speciation and the influence on the ozone formation potential (OFP) from volatile organic compounds (VOCs) have been studied between February June 2013 in Vitória, ES, Brazil. Passive samplers were installed at three air-quality monitoring stations and a total of 96 samplings were collected. A total of 78 VOCs were characterized by gas chromatograph-mass spectrometer. The predominant group was organic acids, followed by alcohols and substituted aromatics and 14 precursor species were quantified. An analysis correlating concentrations with wind direction was conducted to identify possible sources. The OFP was calculated applying the scale of maximum incremental reactivity proposed by Carter.[ 23 ] Ozone precursors with the greatest OFP such as undecane, toluene, ethylbenzene and m, p-xylene compounds were the most abundant with means of 0.855, 0.365, 0.259 and 0.289 µg m(-3), respectively. The benzene, toluene, ethylbenzene and xylene (BTEX) group was found below the limits considered harmful to the health of the population living in Vitória. The OFP calculated for the precursors group was 22.55 µg m(-3) for the rainy season and 32.11 µg m(-3) for the dry season. The VOC/NOx ratio in Vitória is approximately 1.71, indicating that the region has a VOC-limiting condition for the production of ozone.

  12. Three air quality studies: Great Lakes ozone formation and nitrogen dry deposition; and Tucson aerosol chemical characterization

    Science.gov (United States)

    Foley, Theresa

    The Clean Air Act of 1970 was promulgated after thousands of lives were lost in four catastrophic air pollution events. It authorized the establishment of National Ambient Air Quality Standards or (NAAQS) for six pollutants that are harmful to human health and welfare: carbon monoxide, lead, nitrogen dioxide, particulate matter, ozone and sulfur dioxide. The Clean Air Act also led to the establishment of the United Stated Environmental Protection Agency (US EPA) to set and enforce regulations. The first paper in this dissertation studies ozone in the Lake Michigan region (Foley, T., Betterton, E.A., Jacko, R., Hillery, J., 2011. Lake Michigan air quality: The 1994-2003 LADCO Aircraft Project (LAP). Atmospheric Environment 45, 3192-3202.) The Chicago-Milwaukee-Gary metropolitan area has been unable to meet the ozone NAAQS since the Clean Air Act was implemented. The Lake Michigan Air Directors' Consortium (LADCO) hypothesized that land breezes transport ozone precursor compounds over the lake, where a large air/water temperature difference creates a shallow conduction layer, which is an efficient reaction chamber for ozone formation. In the afternoon, lake breezes and prevailing synoptic winds then transport ozone back over the land. To further evaluate this hypothesis, LADCO sponsored the 1994-2003 LADCO Aircraft Project (LAP) to measure the air quality over Lake Michigan and the surrounding areas. This study has found that the LAP data supports this hypothesis of ozone formation, which has strong implications for ozone control strategies in the Lake Michigan region. The second paper is this dissertation (Foley, T., Betterton, E.A., Wolf, A.M.A., 2012. Ambient PM10 and metal concentrations measured in the Sunnyside Unified School District, Tucson, Arizona. Journal of the Arizona-Nevada Academy of Science, 43, 67-76) evaluated the airborne concentrations of PM10 (particulate matter with an aerodynamic diameter of 10 microns or less) and eight metalloids and metals

  13. The formation of ultra-fine particles during ozone-initiated oxidations with terpenes emitted from natural paint

    International Nuclear Information System (INIS)

    Lamorena, Rheo B.; Jung, Sang-Guen; Bae, Gwi-Nam; Lee, Woojin

    2007-01-01

    The formation of secondary products during the ozone-initiated oxidations with biogenic VOCs emitted from natural paint was investigated in this study. Mass spectrometry and infrared spectroscopy measurements have shown that the major components of gas-phase chemicals emitted from natural paint are monoterpenes including α- and β-pinenes, camphene, p-cymene, and limonene. A significant formation of gaseous carbonyl products and nano-sized particles (4.4-168 nm) was observed in the presence of ozone. Carboxylic acids were also observed to form during the reactions (i.e. formic acid at 0.170 ppm and acetic acid at 0.260 ppm). The formation of particles increased as the volume of paint introduced into a reaction chamber increased. A secondary increase in the particle number concentration was observed after 440 min, which suggests further partitioning of oxidation products (i.e. carboxylic acids) into the particles previously existing in the reaction chamber. The growth of particles increased as the mean particle diameter and particle mass concentrations increased during the reaction. The experimental results obtained in this study may provide insight into the potential exposure of occupants to irritating chemical compounds formed during the oxidations of biogenic VOCs emitted from natural paint in indoor environments

  14. ISOTOPIC (14C) AND CHEMICAL COMPOSITION OF ATMOSPHERIC VOLATILE ORGANIC COMPOUND FRACTIONS - PRECURSORS TO OZONE FORMATION

    Science.gov (United States)

    Atmospheric volatile organic compounds (VOCs) are an important factor in the production of ozone near ground level [3]. Many hydrocarbons originate from auto exhaust. However, a number of VOCs, e.g., isoprene, are known to be natural in origin. To develop reliable models for un...

  15. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    Science.gov (United States)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  16. Effects of Single and Multifactor Treatments with Elevated Temperature, CO2 and Ozone on Oilseed Rape and Barley

    DEFF Research Database (Denmark)

    Clausen, Sabine Karin; Frenck, Georg; van der Linden, Leon Gareth

    2011-01-01

    We investigated the effect of elevated [CO2], [O3] and temperature on plant productivity and if these climate factors interacted with each other in multifactor treatments. The climate effects were studied in 14 different cultivars/lines of European spring oilseed rape (Brassica napus L.) and spring...... barley (Hordeum vulgare L.). Seven genotypes of each species were cultivated in six single- and multifactor treatments with ambient or elevated CO2 (385 ppm and 700 ppm), O3 (20 ppb and 60 ppb) and temperature (12/19 °C and 17/24 °C). Growth and production parameters were measured. Elevated CO2 increased....... A significantly decreased yield and thousand grain weight was also seen in barley due to elevated O3. The multifactor combination of elevated CO2, O3 and temperature showed a decrease in growth and production in the two species, though not statistically significant for all parameters. This trend suggests...

  17. Phenogenetic response of silver birch populations and half-sib families to elevated ozone and ultraviolet-B radiation at juvenile age

    International Nuclear Information System (INIS)

    Pliura, Alfas; Baliuckiene, Asta; Baliuckas, Virgilijus

    2008-01-01

    Phenogenetic response of silver birch populations and half-sib families to separate and combined elevated ozone (O 3 ) concentrations and ultraviolet-B (UV-B) radiation dozes was studied at juvenile age in the climatic chambers. Significant population and family effects were found for seedling height, lamina width, and leaf damage. The exposure to UV-B radiation decreased genetic variation at the stage of seed germination. Complex exposure to UV-B and O 3 caused an increase of genetic variation at the stage of intensive seedling growth: seedling height genetic variation in separate treatments increased from 23.7-38.6 to 33.7-65.7%, the increase for lamina width was from 10.2-13.9 to 13.6-31.8%. Different populations and families demonstrated differing response to elevated complex UV-B and O 3 exposure. Changes of genetic intra-population variation were population-specific. Such changes in genetic variation under the impact of stressors can alter adaptation, stability, and competitive ability of regenerating populations in a hardly predictive way. - Exposure to elevated UV-B and O 3 alters genetic variation of traits in progenies of silver birch populations

  18. Phenogenetic response of silver birch populations and half-sib families to elevated ozone and ultraviolet-B radiation at juvenile age

    Energy Technology Data Exchange (ETDEWEB)

    Pliura, Alfas [Lithuanian Forest Research Institute, Department of Tree Genetics and Breeding, Liepu 1, Girionys LT-53101, Kaunas District (Lithuania); Lithuanian University of Agriculture, Studentu 13, LT-53361 Akademija, Kaunas District (Lithuania)], E-mail: genetsk@mi.lt; Baliuckiene, Asta [Lithuanian Forest Research Institute, Department of Tree Genetics and Breeding, Liepu 1, Girionys LT-53101, Kaunas District (Lithuania); Baliuckas, Virgilijus [Lithuanian Forest Research Institute, Department of Tree Genetics and Breeding, Liepu 1, Girionys LT-53101, Kaunas District (Lithuania); Lithuanian University of Agriculture, Studentu 13, LT-53361 Akademija, Kaunas District (Lithuania)

    2008-11-15

    Phenogenetic response of silver birch populations and half-sib families to separate and combined elevated ozone (O{sub 3}) concentrations and ultraviolet-B (UV-B) radiation dozes was studied at juvenile age in the climatic chambers. Significant population and family effects were found for seedling height, lamina width, and leaf damage. The exposure to UV-B radiation decreased genetic variation at the stage of seed germination. Complex exposure to UV-B and O{sub 3} caused an increase of genetic variation at the stage of intensive seedling growth: seedling height genetic variation in separate treatments increased from 23.7-38.6 to 33.7-65.7%, the increase for lamina width was from 10.2-13.9 to 13.6-31.8%. Different populations and families demonstrated differing response to elevated complex UV-B and O{sub 3} exposure. Changes of genetic intra-population variation were population-specific. Such changes in genetic variation under the impact of stressors can alter adaptation, stability, and competitive ability of regenerating populations in a hardly predictive way. - Exposure to elevated UV-B and O{sub 3} alters genetic variation of traits in progenies of silver birch populations.

  19. Elevated ozone negatively affects photosynthesis of current-year leaves but not previous-year leaves in evergreen Cyclobalanopsis glauca seedlings

    International Nuclear Information System (INIS)

    Zhang, Weiwei; Feng, Zhaozhong; Wang, Xiaoke; Niu, Junfeng

    2014-01-01

    To assess the effects of leaf age/layer on the response of photosynthesis to chronic ozone (O 3 ), Cyclobalanopsis glauca seedlings, a dominant evergreen broadleaf tree species in sub-tropical regions, were exposed to either ambient air (AA) or elevated O 3 (AA + 60 ppb O 3 , E-O 3 ) for two growing seasons in open-top chambers. Chlorophyll content, gas exchange and chlorophyll a fluorescence were investigated three times throughout the 2nd year of O 3 exposure. Results indicated that E-O 3 decreased photosynthetic parameters, particularly light-saturated photosynthesis rate, stomatal conductance and effective quantum yield of PSII photochemistry of current-year leaves but not previous-year leaves. Stomatal conductance of plants grown under ambient conditions partially contributed to the different response to E-O 3 between leaf layers. Light radiation or other physiological and biochemical processes closely related to photosynthesis might play important roles. All suggested that leaf ages or layers should be considered when assessing O 3 risk on evergreen woody species. -- Highlights: • Response of evergreen Cyclobalanopsis glauca to O 3 was investigated. • Elevated O 3 significantly reduced photosynthesis of current-year leaves. • Previous-year leaves showed little response to O 3 . • Stomatal conductance contributes to the response difference to O 3 among leaf ages. -- Impacts of elevated O 3 on photosynthesis of evergreen woody species depend on leaf ages

  20. The gas phase reaction of ozone with 1,3-butadiene: formation yields of some toxic products

    Science.gov (United States)

    Kramp, Franz; Paulson, Suzanne E.

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product yields. In separate experiments, small quantities of 1,3,5-trimethyl benzene were added as a tracer for OH. Formation yields of acrolein of (52±7)%, 1,2-epoxy-3-butene of (3.1±0.5)% and OH radicals of (13±3)% were observed. In addition, the rate coefficient of the gas-phase reaction of ozone with 1,2-epoxy-3-butene was measured both directly and relative to propene, finding an average of (1.6±0.4)×10 -18 cm 3 molecule -1 s -1, respectively, at 296±2 K. The results are briefly discussed in terms of the effect of atmospheric processing on the toxicity of 1,3-butadiene.

  1. Modeling ozone and aerosol formation and transport in the pacific northwest with the community Multi-Scale Air Quality (CMAQ) modeling system.

    Science.gov (United States)

    O'Neill, Susan M; Lamb, Brian K; Chen, Jack; Claiborn, Candis; Finn, Dennis; Otterson, Sally; Figueroa, Cristiana; Bowman, Clint; Boyer, Mike; Wilson, Rob; Arnold, Jeff; Aalbers, Steven; Stocum, Jeffrey; Swab, Christopher; Stoll, Matt; Dubois, Mike; Anderson, Mary

    2006-02-15

    The Community Multi-Scale Air Quality (CMAQ) modeling system was used to investigate ozone and aerosol concentrations in the Pacific Northwest (PNW) during hot summertime conditions during July 1-15, 1996. Two emission inventories (El) were developed: emissions for the first El were based upon the National Emission Trend 1996 (NET96) database and the BEIS2 biogenic emission model, and emissions for the second El were developed through a "bottom up" approach that included biogenic emissions obtained from the GLOBEIS model. The two simulations showed that elevated PM2.5 concentrations occurred near and downwind of the Interstate-5 corridor along the foothills of the Cascade Mountains and in forested areas of central Idaho. The relative contributions of organic and inorganic aerosols varied by region, but generally organic aerosols constituted the largest fraction of PM2.5. In wilderness areas near the 1-5 corridor, organic carbon from anthropogenic sources contributed approximately 50% of the total organic carbon with the remainder from biogenic precursors, while in wilderness areas in Idaho, biogenic organic carbon accounted for 80% of the total organic aerosol. Regional analysis of the secondary organic aerosol formation in the Columbia River Gorge, Central Idaho, and the Olympics/Puget Sound showed that the production rate of secondary organic carbon depends on local terpene concentrations and the local oxidizing capacity of the atmosphere, which was strongly influenced by anthropogenic emissions. Comparison with observations from 12 IMPROVE sites and 21 ozone monitoring sites showed that results from the two El simulations generally bracketed the average observed PM parameters and that errors calculated for the model results were within acceptable bounds. Analysis across all statistical parameters indicated that the NW-AIRQUEST El solution performed better at predicting PM2.5, PM1, and beta(ext) even though organic carbon PM was over-predicted, and the NET96 El

  2. Reuse of sewage sludge as a catalyst in ozonation – Efficiency for the removal of oxalic acid and the control of bromate formation

    International Nuclear Information System (INIS)

    Wen, Gang; Pan, Zhi-Hui; Ma, Jun; Liu, Zheng-Qian; Zhao, Lei; Li, Jun-Jing

    2012-01-01

    Highlights: ► Sewage sludge was converted into catalyst (SBC) and characterized. ► SBC can enhance oxalic acid degradation in ozonation. ► Surface reaction mechanism is responsible for enhancement of ozonation by SBC. ► SBC can control the formation of bromate in ozonation. ► Several combined reasons for the control of bromate formation are proposed. - Abstract: Sewage derived sludge is produced with an annual amount increase of 2% all over the world and it is an urgent issue to be addressed by human being. In the present study, sludge was converted into sludge-based catalyst (SBC) with ZnCl 2 as activation agent and characterized by several methods (e.g., scanning electron microscope, X-ray photoelectron spectroscope and Fourier transform infrared spectroscope). Then it was used as a catalyst to enhance the removal of refractory organic matter, oxalic acid, and to control the formation of bromate (BrO 3 − ) in bench semi-continuous ozonation experiments. The effects of various operating parameters on the control of BrO 3 − formation were investigated. Furthermore, the mechanism for the enhancement of organic matter removal and the control of BrO 3 − formation was discussed as well. Results indicate that the combination of SBC with ozone shows a strong synergistic effect, resulting in a notable improvement on oxalic acid removal. A crucial surface reaction mechanism for the enhancement of organic matter removal is proposed on the basis of negative effect of higher pH and no inhibition effect of tert-butanol. The control for BrO 3 − formation was demonstrated and the reason for its control in the process of O 3 /SBC is the combined effect of SBC reductive properties, ozone exposure decrease and hydrogen peroxide concentration increase.

  3. Simultaneous coastal measurements of ozone deposition fluxes and iodine-mediated particle emission fluxes with subsequent CCN formation

    Directory of Open Access Journals (Sweden)

    J. D. Whitehead

    2010-01-01

    Full Text Available Here we present the first observations of simultaneous ozone deposition fluxes and ultrafine particle emission fluxes over an extensive infra-littoral zone. Fluxes were measured by the eddy covariance technique at the Station Biologique de Roscoff, on the coast of Brittany, north-west France. This site overlooks a very wide (3 km littoral zone controlled by very deep tides (9.6 m exposing extensive macroalgae beds available for significant iodine mediated photochemical production of ultrafine particles. The aspect at the Station Biologique de Roscoff provides an extensive and relatively flat, uniform fetch within which micrometeorological techniques may be utilized to study links between ozone deposition to macroalgae (and sea water and ultrafine particle production.

    Ozone deposition to seawater at high tide was significantly slower (vd[O3]=0.302±0.095 mm s−1 than low tidal deposition. A statistically significant difference in the deposition velocities to macroalgae at low tide was observed between night time (vd[O3]=1.00±0.10 mm s−1 and daytime (vd[O3]=2.05±0.16 mm s−1 when ultrafine particle formation results in apparent particle emission. Very high emission fluxes of ultrafine particles were observed during daytime periods at low tides ranging from 50 000 particles cm−2 s−1 to greater than 200 000 particles cm−2 s−1 during some of the lowest tides. These emission fluxes exhibited a significant relationship with particle number concentrations comparable with previous observations at another location. Apparent particle growth rates were estimated to be in the range 17–150 nm h−1 for particles in the size range 3–10 nm. Under certain conditions, particle growth may be inferred to continue to greater than 120 nm over tens

  4. (±)-2-Chloropropionic acid elevates reactive oxygen species formation in human neutrophil granulocytes

    International Nuclear Information System (INIS)

    Aam, B.B.; Fonnum, F.

    2006-01-01

    (±)-2-Chloropropionic acid (2-CPA) is a neurotoxic compound which kills cerebellar granule cells in vivo, and makes cerebellar granule cells in vitro produce reactive oxygen species (ROS). We have studied the effect of 2-CPA on ROS formation in human neutrophil granulocytes in vitro. We found an increased formation of ROS after 2-CPA exposure using three different methods; the fluorescent probe DCFH-DA and the chemiluminescent probes lucigenin and luminol. Four different inhibitors of ROS formation were tested on the cells in combination with 2-CPA to characterize the signalling pathways. The spin-trap s-PBN, the ERK1/2 inhibitor U0126 and the antioxidant Vitamin E inhibited the 2-CPA-induced ROS formation completely, while the mitochondrial transition permeability pore blocker cyclosporine A inhibited the ROS formation partly. We also found that 2-CPA induced an increased nitric oxide production in the cells by using the Griess reagent. The level of reduced glutathione, measured with the DTNB assay, was decreased after exposure to high concentrations of 2-CPA. Western blotting analysis showed that 2-CPA exposure led to an elevated phosphorylation of ERK MAP kinase. This phosphorylation was inhibited by U0126. Based on these experiments it seems like the mechanisms for 2-CPA induced toxicity involves ROS formation and is similar in neutrophil granulocytes as earlier shown in cerebellar granule cells. This also implies that 2-CPA may be immunotoxic

  5. Forests and ozone: productivity, carbon storage, and feedbacks.

    Science.gov (United States)

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-02-22

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.

  6. Hydrogen Peroxide and Ozone Formation in Hybrid Gas-Liquid Electrical Discharge Reactors

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Appleton, A. T.; Locke, B. R.

    2004-01-01

    Roč. 40, č. 1 (2004), s. 60-67 ISSN 0093-9994. [IEEE Industry Applications Society Annual Meeting 2002/37th./. Pittsburgh, Pennsylvania , 13.10.2002-18.10.2002] R&D Projects: GA ČR GA202/02/1026; GA MŠk ME 472 Grant - others:NSF(US) INT0086351 Keywords : hydrogen peroxide, ozone, corona discharge, water treatment, hybrid reactor Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.987, year: 2004

  7. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan

    Science.gov (United States)

    Wang, Qiaoli; Li, Sujing; Dong, Minli; Li, Wei; Gao, Xiang; Ye, Rongmin; Zhang, Dongxiao

    2018-06-01

    Zhoushan is an island city with booming tourism and service industry, but also has many developed VOCs and/or NOX emission industries. It is necessary to carry out regional VOCs and O3 pollution control in Zhoushan as the only new area owns the provincial economic and social administration rights. Anthropogenic VOCs emission inventories were built based on emission factor method and main emission sources were identified according to the emission inventories. Then, localized VOCs source profiles were built based on in-site sampling and referring to other studies. Furthermore, ozone formation potentials (OFPs) profiles were built through VOCs source profiles and maximum incremental reactivity (MIR) theory. At last, the priority control analysis results showed that industrial processes, especially surface coating, are the key of VOCs and O3 control. Alkanes were the most emitted group, accounting for 58.67%, while aromatics contributed the most to ozone production accounting for 69.97% in total OFPs. n-butane, m/p-xylene, i-pentane, n-decane, toluene, propane, n-undecane, o-xylene, methyl cyclohexane and ethyl benzene were the top 10 VOC species that should be preferentially controlled for VOCs emission control. However, m/p-xylene, o-xylene, ethylene, n-butane, toluene, propene, 1,2,4-trimethyl benzene, 1,3,5-trimethyl benzene, ethyl benzene and 1,2,3-trimethyl benzene were the top 10 VOC species that required preferential control for O3 pollution control.

  8. NCEP TOVS & SBUV/2 Column Ozone GRIB Format Daily L3 Global 1 Deg Lat/Lon

    Data.gov (United States)

    National Aeronautics and Space Administration — TOAST is a new near real-time operational ozone map generated by combining TOVS tropospheric and lower stratospheric (4 to 23 km) ozone retrievals with SBUV/2...

  9. Note: A method for minimizing oxide formation during elevated temperature nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, I. C.; Hodge, A. M., E-mail: ahodge@usc.edu [Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Avenue OHE430, Los Angeles, California 90089 (United States); Garcia-Sanchez, E. [Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Avenue OHE430, Los Angeles, California 90089 (United States); Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Universidad S/N, San Nicolás de los Garza, NL 66450 (Mexico)

    2014-09-15

    A standardized method to protect metallic samples and minimize oxide formation during elevated-temperature nanoindentation was adapted to a commercial instrument. Nanoindentation was performed on Al (100), Cu (100), and W (100) single crystals submerged in vacuum oil at 200 °C, while the surface morphology and oxidation was carefully monitored using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The results were compared to room temperature and 200 °C nanoindentation tests performed without oil, in order to evaluate the feasibility of using the oil as a protective medium. Extensive surface characterization demonstrated that this methodology is effective for nanoscale testing.

  10. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON THE RESPONSE OF PONDEROSA PINE TO OZONE: A SIMULATION ANALYSIS

    Science.gov (United States)

    Forests regulate numerous biogeochemical cycles, storing and cycling carbon, water, and nutrients, however, there is concern how climate change, elevated CO2 and tropospheric O3 will affect these processes. We investigated the potential impact of increased O3 in combination wit...

  11. Classical and quasi-classical trajectory calculations of isotope exchange and ozone formation proceeding through O+O2 collision complexes

    Science.gov (United States)

    Baker, Thomas A.; Gellene, Gregory I.

    2002-10-01

    The isotope exchange reaction, and the three-body ozone formation rate proceeding through an ozone complex, have been studied by classical and quasi-classical trajectory techniques. The exchange rate studies indicate that the rate of this reaction is dominantly sensitive to the O+O2 entrance channel characteristics of the potential energy surface. A detailed consideration of the dynamics of the intermediate ozone complex reveals three important classes. In one class, the complex adopts an ozonelike geometry, largely undergoing asymmetric stretchinglike motion until it dissociates. In a second class, the oxygen atom and molecule never visit the ozonelike geometry but rather remain separated by relatively large distances trapped near the angular momentum barrier in the entrance channel of a pseudo-effective potential. These complexes, which cannot undergo exchange, are, nevertheless, found to contribute significantly to ozone formation at high density of the third body suggesting that the association of the high-density effective formation rate constant with twice the exchange rate may not be valid. The third class can be considered a hybrid of the first two, spending some time as an ozonelike complex and some time as a large atom-diatomic complex. This third class provides a mechanism for rearranging atom locations in the complex (e.g., end and middle position swapping) and, consequently, would not be well accounted for by statistical treatments of the ozone complex based on a single ozonelike reference geometry. In general, the survival time distributions of the complexes are found to be nonexponential. However, when the detailed survival time distributions are coupled with a Lennard-Jones collision model for the stabilization step, the experimental ozone formation rate can be adequately modeled over a broad range of temperature and density.

  12. Analyzing ground ozone formation regimes using a principal axis factoring method: A case study of Kladno (Czech Republic) industrial area

    Energy Technology Data Exchange (ETDEWEB)

    Malec, L.; Skacel, F. [Department of Gas, Coke and Air Protection, Institute of Chemical Technology in Prague, (Czech Republic)]. E-mail: Lukas.Malec@vscht.cz; Fousek, T. [Institute of Public Health, District of Central Czech Republic, Kladno (Czech Republic); Tekac, V. [Department of Gas, Coke and Air Protection, Institute of Chemical Technology in Prague, (Czech Republic); Kral, P. [Institute of Public Health, District of Central Czech Republic, Kladno (Czech Republic)

    2008-07-15

    Tropospheric ozone is a secondary air pollutant, changes in the ambient content of which are affected by both, the emission rates of primary pollutants and the variability of meteorological conditions. In this paper, we use two multivariate statistical methods to analyze the impact of the meteorological conditions associated with pollutant transformation processes. First, we evaluated the variability of the spatial and temporal distribution of ozone precursor parameters by using discriminant analysis (DA) in locations close to the industrial area of Kladno (a city in the Czech Republic). Second, we interpreted the data set by using factor analysis (FA) to examine the differences between ozone formation processes in summer and in winter. To avoid temperature dependency between the variables, as well as to describe tropospheric washout processes, we used water vapour content rather than the more commonly employed relative humidity parameter. In this way, we were able to successfully determine and subsequently evaluate the various processes of ozone formation, together with the distribution of ozone precursors. High air temperature, radiation and low water content relate to summer pollution episodes, while radiation and wind speed prove to be the most important parameters during winter. [Spanish] El ozono troposferico es un contaminante fotoquimico secundario cuyos contenidos estan influidos tanto por las razones de emision de las sustancias contaminantes primarias como por la variabilidad de las condiciones meteorologicas. En este trabajo utilizamos dos metodos estadisticos multivariados para el analisis de la influencia de las condiciones meteorologicas relacionadas con los procesos de transformacion de las sustancias contaminantes. Primero, estimamos la variabilidad de la descomposicion espacial y temporal de los precursores de ozono mediante el analisis discriminante (DA) en las areas cercanas a la zona industrial de Kladno (una ciudad de la Republica Checa

  13. Inhibition of trihalomethane formation in city water by radiation-ozone treatment and rapid composting of radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Takehisa, M.; Arai, H.; Arai, M.

    1985-01-01

    Humic acid and Fulvic acid in natural water are precursors of carcinogenic THM which is formed during chlorine disinfection in city water processing. The radiation-oxidation process in the presence of ozone is effective to remove the precursors. The THM formation was reduced more than the decrease in TOC by the combination treatment. This is mainly due to a change in the chemical structure of the oxidation products. A composting of radiation disinfected sludge cake for agricultural reuse could be achieved within 3 days primary fermentation in a sewage plant. The rapid fermentation with use of radiation is effective to scale down of a fermentor of composting plant and the process reduces a health risk from the workers as well as final users. (author)

  14. Inhibition of trihalomethane formation in city water by radiation-ozone treatment and rapid composting of radiation disinfected sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Takehisa, M; Arai, H; Arai, M

    1985-01-01

    Humic acid and Fulvic acid in natural water are precursors of carcinogenic THM which is formed during chlorine disinfection in city water processing. The radiation-oxidation process in the presence of ozone is effective to remove the precursors. The THM formation was reduced more than the decrease in TOC by the combination treatment. This is mainly due to a change in the chemical structure of the oxidation products. A composting of radiation disinfected sludge cake for agricultural reuse could be achieved within 3 days primary fermentation in a sewage plant. The rapid fermentation with use of radiation is effective to scale down a fermentor of a composting plant and the process reduces health risk for the workers as well as final users.

  15. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China

    Science.gov (United States)

    Liu, Yiming; Fan, Qi; Chen, Xiaoyang; Zhao, Jun; Ling, Zhenhao; Hong, Yingying; Li, Weibiao; Chen, Xunlai; Wang, Mingjie; Wei, Xiaolin

    2018-02-01

    Chlorine radicals can enhance atmospheric oxidation, which potentially increases tropospheric ozone concentration. However, few studies have been done to quantify the impact of chlorine emissions on ozone formation in China due to the lack of a chlorine emission inventory used in air quality models with sufficient resolution. In this study, the Anthropogenic Chlorine Emissions Inventory for China (ACEIC) was developed for the first time, including emissions of hydrogen chloride (HCl) and molecular chlorine (Cl2) from coal combustion and prescribed waste incineration (waste incineration plant). The HCl and Cl2 emissions from coal combustion in China in 2012 were estimated to be 232.9 and 9.4 Gg, respectively, while HCl emission from prescribed waste incineration was estimated to be 2.9 Gg. Spatially the highest emissions of HCl and Cl2 were found in the North China Plain, the Yangtze River Delta, and the Sichuan Basin. Air quality model simulations with the Community Multiscale Air Quality (CMAQ) modeling system were performed for November 2011, and the modeling results derived with and without chlorine emissions were compared. The magnitude of the simulated HCl, Cl2 and ClNO2 agreed reasonably with the observation when anthropogenic chlorine emissions were included in the model. The inclusion of the ACEIC increased the concentration of fine particulate Cl-, leading to enhanced heterogeneous reactions between Cl- and N2O5, which resulted in the higher production of ClNO2. Photolysis of ClNO2 and Cl2 in the morning and the reaction of HCl with OH in the afternoon produced chlorine radicals which accelerated tropospheric oxidation. When anthropogenic chlorine emissions were included in the model, the monthly mean concentrations of fine particulate Cl-, daily maximum 1 h ClNO2, and Cl radicals were estimated to increase by up to about 2.0 µg m-3, 773 pptv, and 1.5 × 103 molecule cm-3 in China, respectively. Meanwhile, the monthly mean daily maximum 8 h O3

  16. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2018-02-01

    Full Text Available Chlorine radicals can enhance atmospheric oxidation, which potentially increases tropospheric ozone concentration. However, few studies have been done to quantify the impact of chlorine emissions on ozone formation in China due to the lack of a chlorine emission inventory used in air quality models with sufficient resolution. In this study, the Anthropogenic Chlorine Emissions Inventory for China (ACEIC was developed for the first time, including emissions of hydrogen chloride (HCl and molecular chlorine (Cl2 from coal combustion and prescribed waste incineration (waste incineration plant. The HCl and Cl2 emissions from coal combustion in China in 2012 were estimated to be 232.9 and 9.4 Gg, respectively, while HCl emission from prescribed waste incineration was estimated to be 2.9 Gg. Spatially the highest emissions of HCl and Cl2 were found in the North China Plain, the Yangtze River Delta, and the Sichuan Basin. Air quality model simulations with the Community Multiscale Air Quality (CMAQ modeling system were performed for November 2011, and the modeling results derived with and without chlorine emissions were compared. The magnitude of the simulated HCl, Cl2 and ClNO2 agreed reasonably with the observation when anthropogenic chlorine emissions were included in the model. The inclusion of the ACEIC increased the concentration of fine particulate Cl−, leading to enhanced heterogeneous reactions between Cl− and N2O5, which resulted in the higher production of ClNO2. Photolysis of ClNO2 and Cl2 in the morning and the reaction of HCl with OH in the afternoon produced chlorine radicals which accelerated tropospheric oxidation. When anthropogenic chlorine emissions were included in the model, the monthly mean concentrations of fine particulate Cl−, daily maximum 1 h ClNO2, and Cl radicals were estimated to increase by up to about 2.0 µg m−3, 773 pptv, and 1.5  ×  103 molecule cm−3 in China, respectively. Meanwhile

  17. Urban and Rural Ozone Pollution Over Lusaka (Zambia, 15.5S, 25E) During SAFARI-2000 (September 2000)

    Science.gov (United States)

    Thompson, Anne M.; Herman, J. R.; Witte, J. C.; Phahlane, A.; Coetzee, G. J. R.; Mukula, C.; Hudson, R. D.; Frolov, A. D.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka during a six-day period in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, interspersed by a frontal passage that reduced boundary layer ozone by 30 percent. Smoke aerosol column variations aloft and total ozone were monitored by a sun photometer. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39- 54 Dobson Units (note 1.3 km elevation at the launch site). High ozone concentrations above the mixed and inversion layers were advected from rural burning regions in western Zambia where SAFARI aircraft and ground-based instruments observed intense biomass fires and elevated aerosol and trace gas amounts. TOMS tropospheric ozone and smoke aerosols products show the distribution of biomass burning and associated pollution throughout southern Africa in September 2000. Animations of satellite images and trajectories confirm pollutant recirculation over south central African fires, exit of ozone from Mozambique and Tanzania to the Indian Ocean and the characteristic buildup of tropospheric ozone over the Atlantic from western African outflow.

  18. Arbuscular mycorrhiza formation and its function under elevated atmospheric O3: A meta-analysis.

    Science.gov (United States)

    Wang, Shuguang; Augé, Robert M; Toler, Heather D

    2017-07-01

    We quantitatively evaluated the effects of elevated O 3 on arbuscular mycorrhiza (AM) formation and on AM role in promoting plant growth in regard to several moderating variables (O 3 levels, O 3 exposure duration, plant types, AM fungi family, and additional stress) by means of meta-analysis of published data. The analysis consisted of 117 trials representing 20 peer-reviewed articles and 16 unpublished trials. Relative to non-mycorrhizal controls, AM inoculation did not significantly alter plant growth (shoot biomass, root biomass, total biomass and plant height) when O 3 concentration was less than 80 ppb, but at concentrations above 80 ppb symbiosis was associated with increases of 68% in shoot biomass and 131% in root biomass. AM effects on plant growth were affected by the duration of O 3 exposure but did not differ much with AM fungi taxa or plant type. AM symbiosis has also led to higher yields under O 3 stress, relative to the non-mycorrhizal plants, and the AM effects have been more pronounced as O 3 concentration increases. As with biomass, AM effects on yield have been affected by the duration of O 3 exposure, with the greatest increase (100%) occurring at 61-90 d. AM-induced promotion of yield differed with fungal species but not with plant type or other abiotic stress. Colonization of roots by AM fungi has been negatively affected by elevated O 3 compared to ambient O 3 ; total mycorrhizal colonization rate (MCR), arbuscular MCR, vesicular MCR and hyphal coil MCR declined as O 3 levels rose. AM colonization rates were affected by duration of O 3 exposure, plant type, AM fungal taxa and other concurrent stresses in most cases. The analysis showed that AM inoculation has the potential to ameliorate detrimental effects of elevated O 3 on plant growth and productivity, despite colonization rates being negatively affected by elevated O 3 . Copyright © 2017. Published by Elsevier Ltd.

  19. Efficient quantum-classical method for computing thermal rate constant of recombination: application to ozone formation.

    Science.gov (United States)

    Ivanov, Mikhail V; Babikov, Dmitri

    2012-05-14

    Efficient method is proposed for computing thermal rate constant of recombination reaction that proceeds according to the energy transfer mechanism, when an energized molecule is formed from reactants first, and is stabilized later by collision with quencher. The mixed quantum-classical theory for the collisional energy transfer and the ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the dynamics of molecule + quencher collision. Efficiency is achieved by sampling simultaneously (i) the thermal collision energy, (ii) the impact parameter, and (iii) the incident direction of quencher, as well as (iv) the rotational state of energized molecule. This approach is applied to calculate third-order rate constant of the recombination reaction that forms the (16)O(18)O(16)O isotopomer of ozone. Comparison of the predicted rate vs. experimental result is presented.

  20. The contribution to nitrogen deposition and ozone formation in South Norway from atmospheric emissions related to the petroleum activity in the North Sea

    International Nuclear Information System (INIS)

    Solberg, S.; Walker, S.-E.; Knudsen, S.; Lazaridis, M.; Beine, H.J.; Semb, A.

    1999-03-01

    A photochemical plume model has been developed and refined. The model is designed to simulate the advection and photochemistry for several simultaneous point sources as well as the atmospheric mixing. the model has been used to calculate nitrogen deposition and ozone formation due to offshore emissions in the North Sea. Based on meteorological data for 1992 the calculations give a total contribution of 60-80 mg (N)/m 2 at most in South Norway. Emission from British and Norwegian sector is calculated to contribute less than 5% each to the AOT40 index for ozone. (author)

  1. The contribution to nitrogen deposition and ozone formation in South Norway from atmospheric emissions related to the petroleum activity in the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Solberg, S; Walker, S -E; Knudsen, S; Lazaridis, M; Beine, H J; Semb, A

    1999-03-01

    A photochemical plume model has been developed and refined. The model is designed to simulate the advection and photochemistry for several simultaneous point sources as well as the atmospheric mixing. the model has been used to calculate nitrogen deposition and ozone formation due to offshore emissions in the North Sea. Based on meteorological data for 1992 the calculations give a total contribution of 60-80 mg (N)/m{sub 2} at most in South Norway. Emission from British and Norwegian sector is calculated to contribute less than 5% each to the AOT40 index for ozone. (author)

  2. Long-term effects of elevated ozone and UV-B radiation on vegetation and methane dynamics in northern peatland ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Morsky, S.K.

    2012-06-15

    In the stratosphere, ozone (O{sub 3}) forms an effective barrier against high energy ultraviolet radiation (UV), which is harmful to living cells. Despite the stratospheric O{sub 3} layer recovering due to international agreements, seasonal O{sub 3} depletion periods with high UV-B levels, may still occur, especially in the Polar regions. In the troposphere, O{sub 3} is a significant greenhouse gas contributing to global warming and also causing oxidative stress to animal- and plant cells. Global tropospheric O{sub 3} concentration has approximately doubled during the last century and the same trend is expected to continue. Northern peatlands are sinks of atmospheric carbon dioxide (CO{sub 2}) and sources of the powerful greenhouse gas methane (CH{sub 4}). Two multi-year open-field experiments were conducted to study the effects of elevated O{sub 3} concentration and UV-B radiation on peatland vegetation and CH{sub 4} dynamics in Finland. Peatland microcosms were used in the O{sub 3} experiment and the UV-B exposure study was conducted on a natural fen. Elevated O{sub 3} concentration significantly increased leaf cross-sections and the total number of Eriophorum vaginatum leaves towards the end of the experiment, but did not affect relative length growth, stomatal density or volume of aerenchymatous tissue of leaves. Elevated O{sub 3} did not affect relative length growth of Sphagnum papillosum shoots either. Concentrations of chlorophylls or carotenoids in E. vaginatum leaves or in S. papillosum shoots were not changed under elevated O{sub 3}. During the first growing season, elevated O{sub 3} concentration decreased methanol-extractable, UV-absorbing compounds in E. vaginatum leaves. Elevated O{sub 3} increased concentrations of organic acids and microbial biomass (estimated by phospholipid fatty acid biomarkers) in peat during the third growing season. In the first growing season net CH{sub 4} emission was temporarily decreased by elevated O{sub 3} concentration

  3. Mass tracking for chemical analysis: the causes of ozone formation in southern Ontario during BAQS-Met 2007

    Directory of Open Access Journals (Sweden)

    P. A. Makar

    2010-11-01

    Full Text Available A three-level nested regional air pollution model has been used to study the processes leading to high ozone concentrations in the southern Great Lakes region of North America. The highest resolution simulations show that complex interactions between the lake-breeze circulation and the synoptic flow lead to significant enhancements in the photochemical production and transport of ozone at the local scale. Mass tracking of individual model processes show that Lakes Erie and St. Clair frequently act as photochemical ozone production regions, with average mid-day production rates of up to 3 ppbv per hour. Enhanced ozone levels are evident over these two lakes in 23-day-average surface ozone fields. Analysis of other model fields and aircraft measurements suggests that vertical circulation enhances ozone levels at altitudes up to 1500 m over Lake St. Clair, whereas subsidence enhances ozone over Lake Erie in a shallow layer only 250 m deep. Mass tracking of model transport shows that lake-breeze surface convergence zones combined with the synoptic flow can then carry ozone and its precursors hundreds of kilometers from these source areas, in narrow, elongated features. Comparison with surface mesonet ozone observations confirm the presence, magnitude, and timing of these features, which can create local ozone enhancements on the order of 30 ppbv above the regional ozone levels. Sensitivity analyses of model-predicted ozone and HOx concentrations show that most of the region is VOC-limited, and that the secondary oxidation pathways of aromatic hydrocarbons have a key role in setting the region's ozone and HOx levels.

  4. Effects of ambient and elevated level of ozone on Brassica campestris L. with special reference to yield and oil quality parameters.

    Science.gov (United States)

    Tripathi, Ruchika; Agrawal, S B

    2012-11-01

    Tropospheric ozone (O(3)) has become a serious threat to growth and yield of important agricultural crops over Asian regions including India. Effect of elevated O(3) (ambient+10ppb) was studied on Brassica campestris L. (cv. Sanjukta and Vardan) in open top chambers under natural field conditions. Eight hourly mean ambient O(3) concentration varied from 26.3ppb to 69.5ppb during the growth period. Plants under O(3) exposure showed reductions in photosynthetic rate, reproductive parameters, yield as well as seed and oil quality. Cultivar Sanjukta showed more reduction in photosynthetic characteristics, reproductive structures and seed and oil quality. However, total yield was more affected in Vardan. Exposure of O(3) increased the degree of unsaturation and level of PUFA, ω-6fatty acid, linolenic acid and erucic acid in oil indicating the deterioration of its quality. The study further confirmed that there is a correspondence between O(3) induced change in photosynthetic processes, reproductive development and yield and did not find any compensatory response in the final yield. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Elevated temperature triggers human respiratory syncytial virus F protein six-helix bundle formation

    International Nuclear Information System (INIS)

    Yunus, Abdul S.; Jackson, Trent P.; Crisafi, Katherine; Burimski, Irina; Kilgore, Nicole R.; Zoumplis, Dorian; Allaway, Graham P.; Wild, Carl T.; Salzwedel, Karl

    2010-01-01

    Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection in infants, immunocompromised patients, and the elderly. The RSV fusion (F) protein mediates fusion of the viral envelope with the target cell membrane during virus entry and is a primary target for antiviral drug and vaccine development. The F protein contains two heptad repeat regions, HR1 and HR2. Peptides corresponding to these regions form a six-helix bundle structure that is thought to play a critical role in membrane fusion. However, characterization of six-helix bundle formation in native RSV F protein has been hindered by the fact that a trigger for F protein conformational change has yet to be identified. Here we demonstrate that RSV F protein on the surface of infected cells undergoes a conformational change following exposure to elevated temperature, resulting in the formation of the six-helix bundle structure. We first generated and characterized six-helix bundle-specific antibodies raised against recombinant peptides modeling the RSV F protein six-helix bundle structure. We then used these antibodies as probes to monitor RSV F protein six-helix bundle formation in response to a diverse array of potential triggers of conformational changes. We found that exposure of 'membrane-anchored' RSV F protein to elevated temperature (45-55 deg. C) was sufficient to trigger six-helix bundle formation. Antibody binding to the six-helix bundle conformation was detected by both flow cytometry and cell-surface immunoprecipitation of the RSV F protein. None of the other treatments, including interaction with a number of potential receptors, resulted in significant binding by six-helix bundle-specific antibodies. We conclude that native, untriggered RSV F protein exists in a metastable state that can be converted in vitro to the more stable, fusogenic six-helix bundle conformation by an increase in thermal energy. These findings help to better define the mechanism of

  6. Ozone Formation Induced by the Impact of Reactive Bromine and Iodine Species on Photochemistry in a Polluted Marine Environment.

    Science.gov (United States)

    Shechner, M; Tas, E

    2017-12-19

    Reactive iodine and bromine species (RIS and RBS, respectively) are known for altering atmospheric chemistry and causing sharp tropospheric ozone (O 3 ) depletion in polar regions and significant O 3 reduction in the marine boundary layer (MBL). Here we use measurement-based modeling to show that, unexpectedly, both RIS and RBS can lead to enhanced O 3 formation in a polluted marine environment under volatile organic compound (VOC)-limited conditions associated with high nitrogen oxide (NO X = [NO] + [NO 2 ]) concentrations. Under these conditions, the daily average O 3 mixing ratio increased to ∼44 and ∼28% for BrO and IO mixing ratios of up to ∼6.8 and 4.7 ppt, respectively. The increase in the level of O 3 was partially induced by enhanced ClNO 3 formation for higher Br 2 and I 2 emission flux. The increase in the level of O 3 was associated with an increased mixing ratio of hydroperoxyl radical to hydroxyl radical ([HO 2 ]/[OH]) and increased [NO 2 ]/[NO] with higher levels of RBS and/or RIS. NO X -rich conditions are typical of the polluted MBL, near coastlines and ship plumes. Considering that O 3 is toxic to humans, plants, and animals and is a greenhouse gas, our findings call for adequate updating of local and regional air-quality models with the effects of activities of RBS and RIS on O 3 mixing ratios in the polluted MBL.

  7. Effects of Relative Humidity on Ozone and Secondary Organic Aerosol Formation from the Photooxidation of Benzene and Ethylbenzene

    Science.gov (United States)

    Jia, L.; Xu, Y.

    2012-12-01

    The formation of ozone and secondary organic aerosol from benzene-NOx and ethylbenzene-NOx irradiations was investigated under different levels of relative humidity (RH) in a smog chamber. The results show that the increase in RH can greatly reduce the maximum O3 by the transformation of -NO2 and -ONO2-containing products into the particle phase. In benzene irradiations, the SOA number concentration increases over 26 times as RH rises from ethylbenzene irradiations, ethylglyoxal favors the formation of monohydrate, which limits the RH effects. During evaporating processes, the lost substances have similar structures for both benzene and ethylbenzene. This demonstrates that ethyl-containing substances are very stable and difficult to evaporate. For benzene some of glyoxal hydrates are left to form C-O-C and C=O-containing species like hemiacetal and acetal after evaporation, whereas for ethylbenzene, glyoxal favors cross reactions with ethylglyoxal during the evaporating process. It is concluded that the increase in RH can irreversibly enhance the yields of SOA from both benzene and ethylbenzene.

  8. Effect of Ozonation and Biological Activated Carbon Treatment of Wastewater Effluents on Formation of N-nitrosamines and Halogenated Disinfection Byproducts.

    Science.gov (United States)

    Chuang, Yi-Hsueh; Mitch, William A

    2017-02-21

    Ozonation followed by biological activated carbon (O 3 /BAC) is being considered as a key component of reverse osmosis-free advanced treatment trains for potable wastewater reuse. Using a laboratory-scale O 3 /BAC system treating two nitrified wastewater effluents, this study characterized the effect of different ozone dosages (0-1.0 mg O 3 /mg dissolved organic carbon) and BAC empty bed contact times (EBCT; 15-60 min) on the formation after chlorination or chloramination of 35 regulated and unregulated halogenated disinfection byproducts (DBPs), 8 N-nitrosamines, and bromate. DBP concentrations were remarkably similar between the two wastewaters across O 3 /BAC conditions. Ozonation increased bromate, TCNM, and N-nitrosodimethylamine, but ozonation was less significant for other DBPs. DBP formation generally decreased significantly with BAC treatment at 15 min EBCT, but little further reduction was observed at higher EBCT where low dissolved oxygen concentrations may have limited biological activity. The O 3 /BAC-treated wastewaters met regulatory levels for trihalomethanes (THMs), haloacetic acids (HAAs), and bromate, although N-nitrosodimethylamine exceeded the California Notification Level in one case. Regulated THMs and HAAs dominated by mass. When DBP concentrations were weighted by measures of their toxic potencies, unregulated haloacetonitriles, haloacetaldehydes, and haloacetamides dominated. Assuming toxicity is additive, the calculated DBP-associated toxicity of the O 3 /BAC-treated chloraminated effluents were comparable or slightly higher than those calculated in a recent evaluation of Full Advanced Treatment trains incorporating reverse osmosis.

  9. The Texas Air Quality Study: State of the Science of Ozone and Particulate Matter formation in Texas and Implications for Air Quality Policy

    Science.gov (United States)

    Allen, D. T.

    2002-05-01

    hydrocarbons in the presence of NOx. Finding 6. Industrial hydrocarbon emissions are significantly underestimated. Finding 7: The methods and data that current regulatory models use to calculate ozone formation in industrial plumes may not be adequate to explain the rapid and efficient ozone formation observed in industrial plumes.

  10. The pollution by ozone

    International Nuclear Information System (INIS)

    1997-09-01

    Air pollution by ozone is increasing in spite of several points to reduce it. If the process of ozone formation are complex, the sources of this pollution are well known: first, mobile sources with automobiles (49%), boats , trains and planes (13%), then are following paints and solvents(18%), thermal power plants(11%), and finally industry processing with 5%. (N.C.)

  11. Textured digital elevation model formation from low-cost UAV LADAR/digital image data

    Science.gov (United States)

    Bybee, Taylor C.; Budge, Scott E.

    2015-05-01

    Textured digital elevation models (TDEMs) have valuable use in precision agriculture, situational awareness, and disaster response. However, scientific-quality models are expensive to obtain using conventional aircraft-based methods. The cost of creating an accurate textured terrain model can be reduced by using a low-cost (processing step and enables both 2D- and 3D-image registration techniques to be used. This paper describes formation of TDEMs using simulated data from a small UAV gathering swaths of texel images of the terrain below. Being a low-cost UAV, only a coarse knowledge of position and attitude is known, and thus both 2D- and 3D-image registration techniques must be used to register adjacent swaths of texel imagery to create a TDEM. The process of creating an aggregate texel image (a TDEM) from many smaller texel image swaths is described. The algorithm is seeded with the rough estimate of position and attitude of each capture. Details such as the required amount of texel image overlap, registration models, simulated flight patterns (level and turbulent), and texture image formation are presented. In addition, examples of such TDEMs are shown and analyzed for accuracy.

  12. On-line monitoring of ozonation through estimation of Ct value and AOC formation with UV/Vis spectrometry

    NARCIS (Netherlands)

    Ross, P.S.; Van der Helm, A.W.C.; Van den Broeke, J.; Rietveld, L.C.

    2012-01-01

    The application of ozone in water treatment serves many purposes, such as disinfection, degradation of organic micro-pollutants and oxidation of taste, odour and colour producing compounds. A commonly used method to determine the disinfection capacity of ozonation is calculating the exposure of

  13. Tropospheric Ozone and Photochemical Smog

    Science.gov (United States)

    Sillman, S.

    2003-12-01

    emitted species, in a process that is driven by sunlight and is accelerated by warm temperatures. This smog is largely the product of gasoline-powered engines (especially automobiles), although coal-fired industry can also generate photochemical smog. The process of photochemical smog formation was first identified by Haagen-Smit and Fox (1954) in association with Los Angeles, a city whose geography makes it particularly susceptible to this type of smog formation. Sulfate aerosols and organic particulates are often produced concurrently with ozone, giving rise to a characteristic milky-white haze associated with this type of air pollution.Today ozone and particulates are recognized as the air pollutants that are most likely to affect human health adversely. In the United States, most major metropolitan areas have periodic air pollution events with ozone in excess of government health standards. Violations of local health standards also occur in major cities in Canada and in much of Europe. Other cities around the world (especially Mexico City) also experience very high ozone levels. In addition to urban-scale events, elevated ozone occurs in region-wide events in the eastern USA and in Western Europe, with excess ozone extending over areas of 1,000 km2 or more. Ozone plumes of similar extent are found in the tropics (especially in Central Africa) at times of high biomass burning (e.g., Jenkins et al., 1997; Chatfield et al., 1998). In some cases ozone associated with biomass burning has been identified at distances up to 104 km from its sources (Schultz et al., 1999).Ozone also has a significant impact on the global troposphere, and ozone chemistry is a major component of global tropospheric chemistry. Global background ozone concentrations are much lower than urban or regional concentrations during pollution events, but there is evidence that the global background has increased as a result of human activities (e.g., Wang and Jacob, 1998; Volz and Kley, 1988). A rise in

  14. Secondary organic aerosol formation by limonene ozonolysis: Parameterizing multi-generational chemistry in ozone- and residence time-limited indoor environments

    Science.gov (United States)

    Waring, Michael S.

    2016-11-01

    Terpene ozonolysis reactions can be a strong source of secondary organic aerosol (SOA) indoors. SOA formation can be parameterized and predicted using the aerosol mass fraction (AMF), also known as the SOA yield, which quantifies the mass ratio of generated SOA to oxidized terpene. Limonene is a monoterpene that is at sufficient concentrations such that it reacts meaningfully with ozone indoors. It has two unsaturated bonds, and the magnitude of the limonene ozonolysis AMF varies by a factor of ∼4 depending on whether one or both of its unsaturated bonds are ozonated, which depends on whether ozone is in excess compared to limonene as well as the available time for reactions indoors. Hence, this study developed a framework to predict the limonene AMF as a function of the ozone [O3] and limonene [lim] concentrations and the air exchange rate (AER, h-1), which is the inverse of the residence time. Empirical AMF data were used to calculate a mixing coefficient, β, that would yield a 'resultant AMF' as the combination of the AMFs due to ozonolysis of one or both of limonene's unsaturated bonds, within the volatility basis set (VBS) organic aerosol framework. Then, β was regressed against predictors of log10([O3]/[lim]) and AER (R2 = 0.74). The β increased as the log10([O3]/[lim]) increased and as AER decreased, having the physical meaning of driving the resultant AMF to the upper AMF condition when both unsaturated bonds of limonene are ozonated. Modeling demonstrates that using the correct resultant AMF to simulate SOA formation owing to limonene ozonolysis is crucial for accurate indoor prediction.

  15. Modeling the oxidative capacity of the atmosphere of the south coast air basin of California. 1. Ozone formation metrics.

    Science.gov (United States)

    Griffin, Robert J; Revelle, Meghan K; Dabdub, Donald

    2004-02-01

    Metrics associated with ozone (O3) formation are investigated using the California Institute of Technology (CIT) three-dimensional air-quality model. Variables investigated include the O3 production rate (P(O3)), O3 production efficiency (OPE), and total reactivity (the sum of the reactivity of carbon monoxide (CO) and all organic gases that react with the hydroxyl radical). Calculations are spatially and temporally resolved; surface-level and vertically averaged results are shown for September 9, 1993 for three Southern California locations: Central Los Angeles, Azusa, and Riverside. Predictions indicate increasing surface-level O3 concentrations with distance downwind, in line with observations. Surface-level and vertically averaged P(O3) values peak during midday and are highest downwind; surface P(O3) values are greater than vertically averaged values. Surface OPEs generally are highest downwind and peak during midday in downwind locations. In contrast, peaks occur in early morning and late afternoon in the vertically averaged case. Vertically averaged OPEs tend to be greater than those for the surface. Total reactivities are highest in upwind surface locations and peak during rush hours; vertically averaged reactivities are smaller and tend to be more uniform temporally and spatially. Total reactivity has large contributions from CO, alkanes, alkenes, aldehydes, unsubstituted monoaromatics, and secondary organics. Calculations using estimated emissions for 2010 result in decreases in P(O3) values and reactivities but increases in OPEs.

  16. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study

  17. Contribution of biogenic emissions to the formation of ozone and particulate matter in the eastern United States.

    Science.gov (United States)

    Pun, Betty K; Wu, Shiang-Yuh; Seigneur, Christian

    2002-08-15

    As anthropogenic emissions of ozone (O3) precursors, fine particulate matter (PM2.5), and PM2.5 precursors continue to decrease in the United States, the fraction of O3 and PM2.5 attributable to natural sources may become significant in some locations, reducing the efficacy that can be expected from future controls of anthropogenic sources. Modeling studies were conducted to estimate the contribution of biogenic emissions to the formation of O3 and PM2.5 in Nashville/TN and the northeastern United States. Two approaches were used to bound the estimates. In an anthropogenic simulation, biogenic emissions and their influence at the domain boundaries were eliminated. Contributions of biogenic compounds to the simulated concentrations of O3 and PM2.5 were determined by the deviation of the concentrations in the anthropogenic case from those in the base case. A biogenic simulation was used to assess the amounts of O3 and PM2.5 produced in an environment free from anthropogenic influences in emissions and boundary conditions. In both locations, the contribution of biogenic emissions to O3 was small (production of O3 was much more sensitive to biogenic emissions in urban areas (22-34%). Therefore, the effects of biogenic emissions on O3 manifested mostly via their interaction with anthropogenic emissions of NOx. In the anthropogenic simulations, the average contribution of biogenic and natural sources to PM2.5 was estimated at 9% in Nashville/TN and 12% in the northeast domain. Because of the long atmospheric lifetimes of PM2.5, the contribution of biogenic/natural PM2.5 from the boundary conditions was higher than the contribution of biogenic aerosols produced within the domain. The elimination of biogenic emissions also affected the chemistry of other secondary PM2.5 components. Very little PM2.5 was formed in the biogenic simulations.

  18. The role of water-vapour photodissociation on the formation of a deep minimum in mesopause ozone

    Directory of Open Access Journals (Sweden)

    I. M. Vardavas

    1998-02-01

    Full Text Available A one-dimensional atmospheric photochemical model with an altitude grid of about 1.5 km was used to examine the structure of the global mean vertical ozone profile and its night-time-to-daytime variation in the upper atmosphere. Two distinct ozone layers are predicted, separated by a sharp drop in the ozone concentration near the mesopause. This naturally occurring mesopause ozone deep minimum is primarily produced by the rapid increase in the destruction of water vapour, and hence increase in HOx, at altitudes between 80 and 85 km, a region where water-vapour photodissociation by ultraviolet radiation of the solar Lyman-alpha line is significant, and where the supply of water vapour is maintained by methane oxidation even for very dry conditions at the tropospheric-stratospheric exchange region. The model indicates that the depth of the mesopause ozone minimum is limited by the efficiency with which inactive molecular hydrogen is produced, either by the conversion of atomic hydrogen to molecular hydrogen via one of the reaction channels of H with HO2, or by Lyman-alpha photodissociation of water vapour via the channel that leads to the production of molecular hydrogen. The ozone concentration rapidly recovers above 85 km due to the rapid increase in O produced by the photodissociation of O2 by absorption of ultraviolet solar radiation in the Schumann-Runge bands and continuum. Above 90 km, there is a decrease in ozone due to photolysis as the production of ozone through the three-body recombination of O2 and O becomes slower with decreasing pressure. The model also predicts two peaks in the night-time/daytime ozone ratio, one near 75 km and the other near 110 km, plus a strong peak in the night-time/daytime ratio of OH near 110 km. Recent observational evidence supports the predictions of the model.Key words. Atmospheric composition and structure · Middle atmosphere · Thermosphere · Transmission and scattering of radiation

  19. Emission sources of non-methane volatile organic compounds (NMVOCs) and their contribution to photochemical ozone (O3) formation at an urban atmosphere in western India.

    Science.gov (United States)

    Yadav, R.; Sahu, L. K.; Tripathi, N.; Pal, D.

    2017-12-01

    Atmospheric non-methane volatile organic compounds (NMVOCs) were measured at a sampling site in Udaipur city of western India during 2015 to recognize their pollution levels, variation characteristics, sources and photochemical reactivity. The samples were analyzed for NMVOCs using a Gas Chromatograph equipped with Flame Ionization Detector (GC/FID) and Thermal Desorption (TD) system. The main focus on understand the sources responsible for NMVOC emissions, and evaluating the role of the identified sources towards ozone formation. Hourly variations of various NMVOC species indicate that VOCs mixing ratios were influenced by photochemical removal with OH radicals for reactive species, secondary formation for oxygenated VOCs. In general, higher mixing ratios were observed during winter/pre-monsoon and lower levels during the monsoon season due to the seasonal change in meteorological, transport path of air parcel and boundary layer conditions. The high levels of propane (C3H8) and butane (C4H10) show the dominance of LPG over the study location. The correlation coefficients of typical NMVOC pairs (ethylene/propylene, propylene/isoprene, and ethane/propane) depicted that vehicular emission and natural gas leakages were important sources for atmospheric hydrocarbons in Udaipur. Based on the annual data, PMF analysis suggest the source factors namely biomass burning/ bio-fuel, automobile exhaust, Industrial/ natural gas/power plant emissions, petrol/Diesel, gasoline evaporation, and use of liquid petroleum gas (LPG) contribute to NMVOCs loading. The propylene-equivalent and ozone formation potential of NMVOCs have also been calculated in order to find out their OH reactivity and contribution to the photochemical ozone formation.

  20. The effect of zero-point energy differences on the isotope dependence of the formation of ozone: a classical trajectory study.

    Science.gov (United States)

    Schinke, Reinhard; Fleurat-Lessard, Paul

    2005-03-01

    The effect of zero-point energy differences (DeltaZPE) between the possible fragmentation channels of highly excited O(3) complexes on the isotope dependence of the formation of ozone is investigated by means of classical trajectory calculations and a strong-collision model. DeltaZPE is incorporated in the calculations in a phenomenological way by adjusting the potential energy surface in the product channels so that the correct exothermicities and endothermicities are matched. The model contains two parameters, the frequency of stabilizing collisions omega and an energy dependent parameter Delta(damp), which favors the lower energies in the Maxwell-Boltzmann distribution. The stabilization frequency is used to adjust the pressure dependence of the absolute formation rate while Delta(damp) is utilized to control its isotope dependence. The calculations for several isotope combinations of oxygen atoms show a clear dependence of relative formation rates on DeltaZPE. The results are similar to those of Gao and Marcus [J. Chem. Phys. 116, 137 (2002)] obtained within a statistical model. In particular, like in the statistical approach an ad hoc parameter eta approximately 1.14, which effectively reduces the formation rates of the symmetric ABA ozone molecules, has to be introduced in order to obtain good agreement with the measured relative rates of Janssen et al. [Phys. Chem. Chem. Phys. 3, 4718 (2001)]. The temperature dependence of the recombination rate is also addressed.

  1. Elevated plasma factor VIII enhances venous thrombus formation in rabbits: contribution of factor XI, von Willebrand factor and tissue factor.

    Science.gov (United States)

    Sugita, Chihiro; Yamashita, Atsushi; Matsuura, Yunosuke; Iwakiri, Takashi; Okuyama, Nozomi; Matsuda, Shuntaro; Matsumoto, Tomoko; Inoue, Osamu; Harada, Aya; Kitazawa, Takehisa; Hattori, Kunihiro; Shima, Midori; Asada, Yujiro

    2013-07-01

    Elevated plasma levels of factor VIII (FVIII) are associated with increased risk of deep venous thrombosis. The aim of this study is to elucidate how elevated FVIII levels affect venous thrombus formation and propagation in vivo. We examined rabbit plasma FVIII activity, plasma thrombin generation, whole blood coagulation, platelet aggregation and venous wall thrombogenicity before and one hour after an intravenous infusion of recombinant human FVIII (rFVIII). Venous thrombus induced by the endothelial denudation of rabbit jugular veins was histologically assessed. Thrombus propagation was evaluated as indocyanine green fluorescence intensity. Argatroban, a thrombin inhibitor, and neutralised antibodies for tissue factor (TF), factor XI (FXI), and von Willebrand factor (VWF) were infused before or after thrombus induction to investigate their effects on venous thrombus formation or propagation. Recombinant FVIII (100 IU/kg) increased rabbit plasma FVIII activity two-fold and significantly enhanced whole blood coagulation and total plasma thrombin generation, but did not affect initial thrombin generation time, platelet aggregation and venous wall thrombogenicity. The rFVIII infusion also increased the size of venous thrombus 1 hour after thrombus induction. Argatroban and the antibodies for TF, FXI or VWF inhibited such enhanced thrombus formation and all except TF suppressed thrombus propagation. In conclusion, elevated plasma FVIII levels enhance venous thrombus formation and propagation. Excess thrombin generation by FXI and VWF-mediated FVIII recruitment appear to contribute to the growth of FVIII-driven venous thrombus.

  2. Organic aerosol formation in citronella candle plumes.

    Science.gov (United States)

    Bothe, Melanie; Donahue, Neil McPherson

    2010-09-01

    Citronella candles are widely used as insect repellants, especially outdoors in the evening. Because these essential oils are unsaturated, they have a unique potential to form secondary organic aerosol (SOA) via reaction with ozone, which is also commonly elevated on summer evenings when the candles are often in use. We investigated this process, along with primary aerosol emissions, by briefly placing a citronella tealight candle in a smog chamber and then adding ozone to the chamber. In repeated experiments, we observed rapid and substantial SOA formation after ozone addition; this process must therefore be considered when assessing the risks and benefits of using citronella candle to repel insects.

  3. Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007

    NARCIS (Netherlands)

    Hodnebrog, Ø.; Solberg, S.; Stordal, F.; Svendby, T.M.; Simpson, D.; Gauss, M.; Hilboll, A.; Pfister, G.G.; Turquety, S.; Richter, A.; Burrows, J.P.; Denier Van Der Gon, H.A.C.

    2012-01-01

    The hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors

  4. Influences of elevated carbon dioxide and ozone on soil respiration and carbon accumulation in a no-till soybean-wheat system after six years

    Science.gov (United States)

    Atmospheric carbon dioxide and ozone often have counteracting influences on many C3 crops depending on the concentration of the gases and sensitivity of the crop and variety, but effects of these gases on plant-soil processes are poorly understood. The objective of this six-year experiment was to d...

  5. Formation of molecular bromine from the reaction of ozone with deliquesced NaBr aerosol: Evidence for interface chemistry

    Czech Academy of Sciences Publication Activity Database

    Hunt, S. W.; Roeselová, Martina; Wang, W.; Wingen, L. M.; Knipping, E. M.; Tobias, D. J.; Dabdub, D.; Finlayson-Pitts, B. J.

    2004-01-01

    Roč. 108, - (2004), s. 11559-11572 ISSN 1089-5639 Grant - others:NSF(US) 0209719; NSF(US) 0431512 Institutional research plan: CEZ:AV0Z4055905 Keywords : ozone * sea-salt aerosol * molecular dynamics simulation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.639, year: 2004

  6. Process analysis and sensitivity study of regional ozone formation over the Pearl River Delta, China, during the PRIDE-PRD2004 campaign using the Community Multiscale Air Quality modeling system

    Directory of Open Access Journals (Sweden)

    X. Wang

    2010-05-01

    Full Text Available In this study, the Community Multiscale Air Quality (CMAQ modeling system is used to simulate the ozone (O3 episodes during the Program of Regional Integrated Experiments of Air Quality over the Pearl River Delta, China, in October 2004 (PRIDE-PRD2004. The simulation suggests that O3 pollution is a regional phenomenon in the Pearl River Delta (PRD. Elevated O3 levels often occurred in the southwestern inland PRD, Pearl River estuary (PRE, and southern coastal areas during the 1-month field campaign. Three evolution patterns of simulated surface O3 are summarized based on different near-ground flow conditions. More than 75% of days featured interactions between weak synoptic forcing and local sea-land circulation. Integrated process rate (IPR analysis shows that photochemical production is a dominant contributor to O3 enhancement from 09:00 to 15:00 local standard time in the atmospheric boundary layer over most areas with elevated O3 occurrence in the mid-afternoon. The simulated ozone production efficiency is 2–8 O3 molecules per NOx molecule oxidized in areas with high O3 chemical production. Precursors of O3 originating from different source regions in the central PRD are mixed during the course of transport to downwind rural areas during nighttime and early morning, where they then contribute to the daytime O3 photochemical production. The sea-land circulation plays an important role on the regional O3 formation and distribution over PRD. Sensitivity studies suggest that O3 formation is volatile-organic-compound-limited in the central inland PRD, PRE, and surrounding coastal areas with less chemical aging (NOx/NOy>0.6, but is NOx-limited in the rural southwestern PRD with aged air (NOx/NOy<0.3.

  7. Measurement of Ozone Production Sensor

    Directory of Open Access Journals (Sweden)

    M. Cazorla

    2010-05-01

    Full Text Available A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS, measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.

  8. Ozonization effects on trihalo methane formation during the disinfection of drinking water with chlorine; Efectos de la ozonizacion sobre la formacion de trihalometanos durante la desinfeccion final del agua potable con cloro

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Vidal, F. J.; Perez Serrano, A.; Orozco Barrentxea, C.; Sanllorente Santamaria, M. C.; Ibeas Reoyo, M. V.

    2001-07-01

    One of the main aspects in the control of drinking water treatment is the formation of disinfection by-products (DBP), some of the most important are the trihalomethanes (THM). The use of ozone as primary disinfectant in drinking water treatment plants reduces noticeably the amount of THM generated after the chlorination at the end of the treatment. The aim of this work is to study the main factors influencing the ozone effect in this process: the delay between the time of ozonization and chlorination, the applied ozone dose and the presence of bromide ion ind the raw water. These factors have been studied on natural waters (Uzquiza Reservoir-Burgos) and on synthetic waters (fulvic and humic acids extracted from the mentioned reservoir). (Author) 36 refs.

  9. BOREAS Elevation Contours over the NSA and SSA in ARC/INFO Generate Format

    Science.gov (United States)

    Knapp, David; Nickeson, Jaime; Hall, Forrest G. (Editor)

    2000-01-01

    This data set was prepared by BORIS Staff by reformatting the original data into the ARC/INFO Generate format. The original data were received in SIF at a scale of 1:50,000. BORIS staff could not find a format document or commercial software for reading SIF; the BOREAS HYD-08 team pro-vided some C source code that could read some of the SIF files. The data cover the BOREAS NSA and SSA. The original data were compiled from information available in the 1970s and 1980s. The data are available in ARC/INFO Generate format files.

  10. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol

    Science.gov (United States)

    Chatani, Satoru; Matsunaga, Sou N.; Nakatsuka, Seiji

    2015-11-01

    A new gridded database has been developed to estimate the amount of isoprene, monoterpene, and sesquiterpene emitted from all the broadleaf and coniferous trees in Japan with the Model of Emissions of Gases and Aerosols from Nature (MEGAN). This database reflects the vegetation specific to Japan more accurately than existing ones. It estimates much lower isoprene emitted from other vegetation than trees, and higher sesquiterpene emissions mainly emitted from Cryptomeria japonica, which is the most abundant plant type in Japan. Changes in biogenic emissions result in the decrease in ambient ozone and increase in organic aerosol simulated by the air quality simulation over the Tokyo Metropolitan Area in Japan. Although newly estimated biogenic emissions contribute to a better model performance on overestimated ozone and underestimated organic aerosol, they are not a single solution to solve problems associated with the air quality simulation.

  11. Effect of 3 years' free-air exposure to elevated ozone on mature Norway spruce (Picea abies (L.) Karst.) needle epicuticular wax physicochemical characteristics

    International Nuclear Information System (INIS)

    Percy, Kevin E.; Manninen, Sirkku; Haeberle, Karl-Heinz; Heerdt, C.; Werner, H.; Henderson, Gary W.; Matyssek, Rainer

    2009-01-01

    We examined the effect of ozone (O 3 ) on Norway spruce (Picea abies) needle epicuticular wax over three seasons at the Kranzberg Ozone Fumigation Experiment. Exposure to 2x ambient O 3 ranged from 64.5 to 74.2 μl O 3 l -1 h AOT40, and 117.1 to 123.2 nl O 3 l -1 4th highest daily maximum 8-h average O 3 concentration. The proportion of current-year needle surface covered by wax tubes, tube aggregates, and plates decreased (P = 0.011) under 2x O 3 . Epistomatal chambers had increased deposits of amorphous wax. Proportion of secondary alcohols varied due to year (P = 0.004) and O 3 treatment (P = 0.029). Secondary alcohols were reduced by 9.1% under 2x O 3 . Exposure to 2x O 3 increased (P = 0.037) proportions of fatty acids by 29%. Opposing trends in secondary alcohols and fatty acids indicate a direct action of O 3 on wax biosynthesis. These results demonstrate O 3 -induced changes in biologically important needle surface characteristics of 50-year-old field-grown trees. - Free-air ozone exposure induced changes in needle wax characteristics of mature Picea abies.

  12. Effect of 3 years' free-air exposure to elevated ozone on mature Norway spruce (Picea abies (L.) Karst.) needle epicuticular wax physicochemical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Percy, Kevin E., E-mail: kpercy@nbnet.nb.c [Natural Resources Canada, Canadian Forest Service-Atlantic Forestry Centre, 1350 Regent Street, Fredericton, NB, E3B 5P7 (Canada); Manninen, Sirkku [Department of Biological and Environmental Sciences, P.O. Box 56, University of Helsinki, 00014 Helsinki (Finland); Department of Biology, P.O. Box 3000, University of Oulu, 90014 Oulu (Finland); Haeberle, Karl-Heinz [Ecophysiology of Plants, Department of Ecology, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany); Heerdt, C.; Werner, H. [Ecoclimatology, Department of Ecology, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany); Henderson, Gary W. [Natural Resources Canada, Canadian Forest Service-Atlantic Forestry Centre, 1350 Regent Street, Fredericton, NB, E3B 5P7 (Canada); Matyssek, Rainer [Ecophysiology of Plants, Department of Ecology, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany)

    2009-05-15

    We examined the effect of ozone (O{sub 3}) on Norway spruce (Picea abies) needle epicuticular wax over three seasons at the Kranzberg Ozone Fumigation Experiment. Exposure to 2x ambient O{sub 3} ranged from 64.5 to 74.2 mul O{sub 3} l{sup -1} h AOT40, and 117.1 to 123.2 nl O{sub 3} l{sup -1} 4th highest daily maximum 8-h average O{sub 3} concentration. The proportion of current-year needle surface covered by wax tubes, tube aggregates, and plates decreased (P = 0.011) under 2x O{sub 3}. Epistomatal chambers had increased deposits of amorphous wax. Proportion of secondary alcohols varied due to year (P = 0.004) and O{sub 3} treatment (P = 0.029). Secondary alcohols were reduced by 9.1% under 2x O{sub 3}. Exposure to 2x O{sub 3} increased (P = 0.037) proportions of fatty acids by 29%. Opposing trends in secondary alcohols and fatty acids indicate a direct action of O{sub 3} on wax biosynthesis. These results demonstrate O{sub 3}-induced changes in biologically important needle surface characteristics of 50-year-old field-grown trees. - Free-air ozone exposure induced changes in needle wax characteristics of mature Picea abies.

  13. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin

    Science.gov (United States)

    Matichuk, Rebecca; Tonnesen, Gail; Luecken, Deborah; Gilliam, Rob; Napelenok, Sergey L.; Baker, Kirk R.; Schwede, Donna; Murphy, Ben; Helmig, Detlev; Lyman, Seth N.; Roselle, Shawn

    2017-12-01

    The Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models were used to simulate a 10 day high-ozone episode observed during the 2013 Uinta Basin Winter Ozone Study (UBWOS). The baseline model had a large negative bias when compared to ozone (O3) and volatile organic compound (VOC) measurements across the basin. Contrary to other wintertime Uinta Basin studies, predicted nitrogen oxides (NOx) were typically low compared to measurements. Increases to oil and gas VOC emissions resulted in O3 predictions closer to observations, and nighttime O3 improved when reducing the deposition velocity for all chemical species. Vertical structures of these pollutants were similar to observations on multiple days. However, the predicted surface layer VOC mixing ratios were generally found to be underestimated during the day and overestimated at night. While temperature profiles compared well to observations, WRF was found to have a warm temperature bias and too low nighttime mixing heights. Analyses of more realistic snow heat capacity in WRF to account for the warm bias and vertical mixing resulted in improved temperature profiles, although the improved temperature profiles seldom resulted in improved O3 profiles. While additional work is needed to investigate meteorological impacts, results suggest that the uncertainty in the oil and gas emissions contributes more to the underestimation of O3. Further, model adjustments based on a single site may not be suitable across all sites within the basin.

  14. Urban and Rural Ozone Collect over Lusaka (Zambia, 15.5 S, 28 E) during SAFARI-2000 (September 2000)

    Science.gov (United States)

    Thompson, Anne M.; Witte, Jacquelyn C.; Freiman, M. Tai; Phalane, N. Agnes; Coetzee, Gert J. R.

    2002-01-01

    In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, broken by a frontal passage that reduced boundary layer ozone by 30%. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39-54 Dobson Units (note 1.3 km elevation at the launch site). A stable layer of high ozone at 2-5 km was advected from rural burning regions in western Zambia and neighboring countries, making Lusaka a collection point for transboundary pollution. This is confirmed by trajectories that show ozone leaving Angola, Namibia, Botswana and South Africa before heading toward the Indian Ocean and returning to Lusaka via Mozambique and Zimbabwe. Ozone in the mixed layer at Lusaka is heavily influenced by local sources.

  15. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin with Intensive Oil and Gas Production

    Science.gov (United States)

    Matichuk, R.; Tonnesen, G.; Luecken, D.; Roselle, S. J.; Napelenok, S. L.; Baker, K. R.; Gilliam, R. C.; Misenis, C.; Murphy, B.; Schwede, D. B.

    2015-12-01

    The western United States is an important source of domestic energy resources. One of the primary environmental impacts associated with oil and natural gas production is related to air emission releases of a number of air pollutants. Some of these pollutants are important precursors to the formation of ground-level ozone. To better understand ozone impacts and other air quality issues, photochemical air quality models are used to simulate the changes in pollutant concentrations in the atmosphere on local, regional, and national spatial scales. These models are important for air quality management because they assist in identifying source contributions to air quality problems and designing effective strategies to reduce harmful air pollutants. The success of predicting oil and natural gas air quality impacts depends on the accuracy of the input information, including emissions inventories, meteorological information, and boundary conditions. The treatment of chemical and physical processes within these models is equally important. However, given the limited amount of data collected for oil and natural gas production emissions in the past and the complex terrain and meteorological conditions in western states, the ability of these models to accurately predict pollution concentrations from these sources is uncertain. Therefore, this presentation will focus on understanding the Community Multiscale Air Quality (CMAQ) model's ability to predict air quality impacts associated with oil and natural gas production and its sensitivity to input uncertainties. The results will focus on winter ozone issues in the Uinta Basin, Utah and identify the factors contributing to model performance issues. The results of this study will help support future air quality model development, policy and regulatory decisions for the oil and gas sector.

  16. Effects of ozone on crops in north-west Pakistan

    International Nuclear Information System (INIS)

    Ahmad, Muhammad Nauman; Büker, Patrick; Khalid, Sofia; Van Den Berg, Leon; Shah, Hamid Ullah; Wahid, Abdul; Emberson, Lisa; Power, Sally A.; Ashmore, Mike

    2013-01-01

    Although ozone is well-documented to reduce crop yields in the densely populated Indo-Gangetic Plain, there is little knowledge of its effects in other parts of south Asia. We surveyed crops close to the city of Peshawar, in north-west Pakistan, for visible injury, linking this to passive measurements of ozone concentrations. Foliar injury was found on potato, onion and cotton when mean monthly ozone concentrations exceeded 45 ppb. The symptoms on onion were reproduced in ozone fumigation experiments, which also showed that daytime ozone concentrations of 60 ppb significantly reduce the growth of a major Pakistani onion variety. Aphid infestation on spinach was also reduced at these elevated ozone concentrations. The ozone concentrations measured in April–May in Peshawar, and used in the fumigation experiment, are comparable to those that have been modelled to occur over many parts of south Asia, where ozone may be a significant threat to sensitive crops. -- Highlights: ► Visible ozone injury to onion, cotton and potato was identified in north-west Pakistan. ► The symptoms on onion were reproduced by exposure to elevated ozone. ► Elevated ozone levels also significantly reduced onion growth. ► Levels of aphid infestation on spinach were lower under elevated ozone. ► These effects were observed at ozone levels that have been modelled to occur widely across south Asia. -- Ozone concentrations in NW Pakistan have adverse effects on sensitive crop species

  17. Elevance of PCDD/PCDF formation for the evaluation of POPs destruction technologies - Necessity and current status

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R. [Tuebingen Univ. (Germany)

    2004-09-15

    The Stockholm Convention on Persistent Organic Pollutants (POPs) states in Article 6 that POPs waste should be destroyed or disposed of in a way that the POPs content is destroyed or irreversibly transformed. In this context it is critical that the destruction methods used do not create by-products that are themselves POPs. Therefore one important criterion for assessment of a POPs destruction technology is the potential formation of POPs and other toxic by-products, in particular if higher toxic PCDDs/PCDFs are formed and under which operation conditions their formation is relevant (for the respective POPs destruction technology). A detailed evaluation of non-combustion technologies with respect to PCDD/PCDF formation is lacking to date. Most information with respect to PCDD/PCDF formation in non-combustion technologies in the present stage of evaluation is provided by the companies developing or selling the facility. In a laboratory study it was discovered that super critical water oxidation (SCWO), a technology listed from United Nations Environmental Programme UNEP as ''Commercialised Technology with Considerable Experience'' and from United Nations Industrial Development Organization (UNIDO) as ''Emerging and Innovative Technologies'', has the potential to form high concentrations of PCDFs (in the % range) during PCB destruction. Such elevated PCDF formations might occur even at temperatures of potential application. This highlights the necessity of a more rigorous assessment of non-combustion technologies with respect to their PCDD/PCDF formation potential and their actual applicability for PCB/POPs destruction. The present paper provides a critical impulse in this respect, discusses the relevant formation pathways with respect to POPs destruction technologies and proposes a basic framework on how evaluations may be performed.

  18. Remote measurement of canopy reflectance shows the effects of elevated carbon dioxide and ozone on the structure and functioning of soybeans in a field setting.

    Science.gov (United States)

    Gray, S.; Dermody, O.; Delucia, E.

    2006-12-01

    By altering physiological processes and modifying canopy structure, elevated atmospheric CO2 and O3 directly and indirectly change the productivity of agroecosystems. Remote sensing of canopy reflectance can be used to monitor physiological and structural changes in an ecosystem over a growing season. To examine effects of changing tropospheric chemistry on water content, chlorophyll content, and changes in leaf area index (LAI), Free-Air Concentration Enrichment (FACE) technology was used to expose large plots of soybean (Glycine max) to elevated atmospheric CO2, elevated O3 (1.5 x ambient), and combined elevated CO2 and O3. The following indices were calculated from weekly measurements of reflectance: water index (WI), photochemical reflectance index (PRI), chlorophyll index, near-infrared/ red (NIR/red), and normalized difference vegetation index (NDVI). NIR/red and LAI were strongly correlated throughout the growth season; however NDVI and LAI were highly correlated only up to LAI of 3. Exposure to elevated CO2 accelerated early-season canopy development and delayed late-season senescence. Growth in elevated O3 had the opposite effect. Additionally, elevated CO2 compensated for negative effects of O3 when the canopy was exposed to both gases simultaneously. Reflectance indices revealed several physiological and structural responses of this agroecosystem to tropospheric change, and ultimately that elevated CO2 and O3 significantly affected this system's productivity and period for carbon gain.

  19. Elevation or Suppression? The Resolved Star Formation Main Sequence of Galaxies with Two Different Assembly Modes

    Science.gov (United States)

    Liu, Qing; Wang, Enci; Lin, Zesen; Gao, Yulong; Liu, Haiyang; Berhane Teklu, Berzaf; Kong, Xu

    2018-04-01

    We investigate the spatially resolved star formation main sequence in star-forming galaxies using Integral Field Spectroscopic observations from the Mapping Nearby Galaxies at the Apache Point Observatory survey. We demonstrate that the correlation between the stellar mass surface density (Σ*) and star formation rate surface density (ΣSFR) holds down to the sub-galactic scale, leading to the sub-galactic main sequence (SGMS). By dividing galaxies into two populations based on their recent mass assembly modes, we find the resolved main sequence in galaxies with the “outside-in” mode is steeper than that in galaxies with the “inside-out” mode. This is also confirmed on a galaxy-by-galaxy level, where we find the distributions of SGMS slopes for individual galaxies are clearly separated for the two populations. When normalizing and stacking the SGMS of individual galaxies on one panel for the two populations, we find that the inner regions of galaxies with the “inside-out” mode statistically exhibit a suppression in star formation, with a less significant trend in the outer regions of galaxies with the “outside-in” mode. In contrast, the inner regions of galaxies with “outside-in” mode and the outer regions of galaxies with “inside-out” mode follow a slightly sublinear scaling relation with a slope ∼0.9, which is in good agreement with previous findings, suggesting that they are experiencing a universal regulation without influences of additional physical processes.

  20. Elevated extracellular pH during early shell formation in the blue mussel Mytilus edulis

    Science.gov (United States)

    Ramesh, K.; Melzner, F.; Himmerkus, N.; Hu, M.; Bleich, M.

    2016-02-01

    Marine calcifiers are amongst the most vulnerable organisms to ocean acidification (OA). However, limited studies investigate the mechanisms underlying their hindered performance under OA stress. Working with larval stages of the blue mussel, Mytilus edulis, we use microsensors to study the pH and calcium conditions necessary for shell deposition. Using 45-48 hour, D-veliger stages, we discover alkaline conditions with respect to ambient seawater pH by 0.28 pH units and higher calcium concentrations (by 0.54mM) in the extra pallial space beneath the growing shell that likely promotes the rapid synthesis of the first shell. We further use enzyme assays in combination with immuno-stainings of sodium-potassium ATPase (NKA) and proton ATPase (VHA) to provide information on the major ion regulatory pathways that enable transport of calcium carbonate required for shell formation and pH homeostasis. We also use the juvenile stages of M. edulis to understand how extracellular pH regulation close to the shell formation site will be influenced by OA stress. This allows us to describe the pH dependency of early shell formation and to begin to develop a model of the ion regulatory network that facilitates biomineralisation in the organism. The results are discussed in the context of environmental change and consequences for mollusc developmental success.

  1. Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts.

    Science.gov (United States)

    Tsai, Wen-Tien

    2017-09-21

    Among the halogenated hydrocarbons, chloromethanes (i.e., methyl chloride, CH₃Cl; methylene chloride, CH₂Cl₂; chloroform, CHCl₃; and carbon tetrachloride, CCl₄) play a vital role due to their extensive uses as solvents and chemical intermediates. This article aims to review their main chemical/physical properties and commercial/industrial uses, as well as the environment and health hazards posed by them and their toxic decomposition products. The environmental properties (including atmospheric lifetime, radiative efficiency, ozone depletion potential, global warming potential, photochemical ozone creation potential, and surface mixing ratio) of these chlorinated methanes are also reviewed. In addition, this paper further discusses their atmospheric fates and human health implications because they are apt to reside in the lower atmosphere when released into the environment. According to the atmospheric degradation mechanism, their toxic degradation products in the troposphere include hydrogen chloride (HCl), carbon monoxide (CO), chlorine (Cl₂), formyl chloride (HCOCl), carbonyl chloride (COCl₂), and hydrogen peroxide (H₂O₂). Among them, COCl₂ (also called phosgene) is a powerful irritating gas, which is easily hydrolyzed or thermally decomposed to form hydrogen chloride.

  2. Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts

    Science.gov (United States)

    Tsai, Wen-Tien

    2017-01-01

    Among the halogenated hydrocarbons, chloromethanes (i.e., methyl chloride, CH3Cl; methylene chloride, CH2Cl2; chloroform, CHCl3; and carbon tetrachloride, CCl4) play a vital role due to their extensive uses as solvents and chemical intermediates. This article aims to review their main chemical/physical properties and commercial/industrial uses, as well as the environment and health hazards posed by them and their toxic decomposition products. The environmental properties (including atmospheric lifetime, radiative efficiency, ozone depletion potential, global warming potential, photochemical ozone creation potential, and surface mixing ratio) of these chlorinated methanes are also reviewed. In addition, this paper further discusses their atmospheric fates and human health implications because they are apt to reside in the lower atmosphere when released into the environment. According to the atmospheric degradation mechanism, their toxic degradation products in the troposphere include hydrogen chloride (HCl), carbon monoxide (CO), chlorine (Cl2), formyl chloride (HCOCl), carbonyl chloride (COCl2), and hydrogen peroxide (H2O2). Among them, COCl2 (also called phosgene) is a powerful irritating gas, which is easily hydrolyzed or thermally decomposed to form hydrogen chloride. PMID:29051455

  3. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2013-08-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1

  4. Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars.

    Science.gov (United States)

    Niles, Paul B; Michalski, Joseph; Ming, Douglas W; Golden, D C

    2017-10-17

    Large Hesperian-aged (~3.7 Ga) layered deposits of sulfate-rich sediments in the equatorial regions of Mars have been suggested to be evidence for ephemeral playa environments. But early Mars may not have been warm enough to support conditions similar to what occurs in arid environments on Earth. Instead cold, icy environments may have been widespread. Under cryogenic conditions sulfate formation might be blocked, since kinetics of silicate weathering are typically strongly retarded at temperatures well below 0 °C. But cryo-concentration of acidic solutions may counteract the slow kinetics. Here we show that cryo-concentrated acidic brines rapidly chemically weather olivine minerals and form sulfate minerals at temperatures as low as -60 °C. These experimental results demonstrate the viability of sulfate formation under current Martian conditions, even in the polar regions. An ice-hosted sedimentation and weathering model may provide a compelling description of the origin of large Hesperian-aged layered sulfate deposits on Mars.

  5. Exhaust emissions of volatile organic compounds of powered two-wheelers: effect of cold start and vehicle speed. Contribution to greenhouse effect and tropospheric ozone formation.

    Science.gov (United States)

    Costagliola, M Antonietta; Murena, Fabio; Prati, M Vittoria

    2014-01-15

    Powered two-wheeler (PTW) vehicles complying with recent European type approval standards (stages Euro 2 and Euro 3) were tested on chassis dynamometer in order to measure exhaust emissions of about 25 volatile organic compounds (VOCs) in the range C1-C7, including carcinogenic compounds as benzene and 1,3-butadiene. The fleet consists of a moped (engine capacity ≤ 50 cm(3)) and three fuel injection motorcycles of different engine capacities (150, 300 and 400 cm(3)). Different driving conditions were tested (US FPT cycle, constant speed). Due to the poor control of the combustion and catalyst efficiency, moped is the highest pollutant emitter. In fact, fuel injection strategy and three way catalyst with lambda sensor are able to reduce VOC motorcycles' emission of about one order of magnitude with respect to moped. Cold start effect, that is crucial for the assessment of actual emission of PTWs in urban areas, was significant: 30-51% of extra emission for methane. In the investigated speed range, moped showed a significant maximum of VOC emission factor at minimum speed (10 km/h) and a slightly decreasing trend from 20 to 60 km/h; motorcycles showed on the average a less significant peak at 10 km/h, a minimum at 30-40 km/h and then an increasing trend with a maximum emission factor at 90 km/h. Carcinogenic VOCs show the same pattern of total VOCs. Ozone Formation Potential (OFP) was estimated by using Maximum Incremental Reactivity scale. The greatest contribution to tropospheric ozone formation comes from alkenes group which account for 50-80% to the total OFP. VOC contribution effect on greenhouse effect is negligible with respect to CO2 emitted. © 2013.

  6. Cerium incorporated MCM-48 (Ce-MCM-48) as a catalyst to inhibit bromate formation during ozonation of bromide-containing water: Efficacy and mechanism.

    Science.gov (United States)

    Li, Weiwei; Lu, Xiaowei; Xu, Ke; Qu, Jiuhui; Qiang, Zhimin

    2015-12-01

    The composite mesoporous sieve Ce-MCM-48 (cerium incorporated MCM-48) with different Si/Ce molar ratios were synthesized hydrothermally and characterized with X-ray diffraction, X-ray photoelectron spectroscopy, BET surface area, and pHpzc. Results indicate that Ce-MCM-48, especially with a Si/Ce molar ratio of 66 (i.e., Ce66-MCM-48), could significantly inhibit bromate (BrO3(-)) formation during ozonation of Br(-)-containing water, achieving 91% of inhibition efficiency at pH 7.6 and 25 °C. An acidic or alkaline pH decreased the inhibition efficiency of Ce66-MCM-48 to some extent, but reaction temperature ranging from 15 to 30 °C had no significant impact. By comparing the bromine mass balance, aqueous O3 decomposition, and newly formed H2O2 between O3 and O3/Ce66-MCM-48 processes, the inhibition mechanism was proposed: Ce66-MCM-48 promoted aqueous O3 decomposition to generate hydroxyl radicals (OH) that could merge into H2O2, so the oxidative transformation of Br(-) and HOBr/OBr(-) by O3 and OH was primarily suppressed. The catalytic ability of Ce66-MCM-48 was continuously regenerated through the circulating reactions between Ce(III) and Ce(IV) occurring on the catalyst surface. Besides its inhibition on BrO3(-) formation, Ce66-MCM-48 could also enhance the degradation of refractory organic micropollutants. Because of these distinct merits, Ce66-MCM-48 has potential applications to water treatment by ozone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Lusaka, Zambia during SAFARI-2000: A Collection Point for Ozone Pollution

    Science.gov (United States)

    Thompson, Anne M.; Witte, Jacquelyn C.; Freiman, M. Tal; Phahlane, N. Agnes; Coetzee, G. J. R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    In August and September, throughout south central Africa, seasonal clearing of dry vegetation and other fire-related activities lead to intense smoke haze and ozone formation. The first ozone soundings in the heart of the southern African burning region were taken at Lusaka, Zambia (155 deg S, 28 deg E) in early September 2000. Over 90 ppbv ozone was recorded at the surface (1.3 km elevation) and column tropospheric ozone was greater than 50 DU during a stagnant period. These values are much higher than concurrent measurements over Nairobi (1 deg S, 38 deg E) and Irene (25 deg S, 28 deg E, near Pretoria). The heaviest ozone pollution layer (800-500 hPa) over Lusaka is due to recirculated trans-boundary ozone. Starting out over Zambia, Angola, and Namibia, ozone heads east to the Indian Ocean, before turning back over Mozambique and Zimbabwe, heading toward Lusaka. Thus, Lusaka is a collection point for pollution, consistent with a picture of absolutely stable layers recirculating in a gyre over southern Africa.

  8. Effect of hydrocarbons and nitrogen oxides on ozone formation in smog chambers exposed to solar irradiance of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval F, J; Marroquin de la R, O; Jaimes L, J. L; Zuniga L, V. A; Gonzalez O, E; Guzman Lopez-Figueroa, F [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2001-01-01

    Outdoor smog chambers experiments were performed on air to determine the answer of maximum ozone levels, to changes in the initial hydrocarbons, HC, and nitrogen oxide NO{sub x}. These captive-air experiments under natural irradiation were carried out. Typically, eight chambers were filled with Mexico city air in the morning. In some of those chambers, the initial HC and/or Nox concentrations were varied by {+-}25% to {+-}50% by adding various combinations of a mixture of HC, clean air, or NO{sub x} (perturbed chambers). The O{sub 3} and NO{sub x} concentration in each chamber was monitored throughout the day to determine O{sub 3} (max). The initial HC and NO{sub x} concentration effects were determined by comparing the maximum ozone concentrations measured in the perturbed and unperturbed chambers. Ozone isopleths were constructed from the empirical model obtained of measurements of the eight chambers and plotted in a graph whose axe were the initial HC and NO{sub x} values. For the average initial conditions that were measured in Mexico City, it was found that the most efficient strategy to reduce the maximum concentration of O{sub 3} is the one that reduces NO{sub x}. [Spanish] Se realizaron experimentos de camaras de esmog con el aire de la ciudad de Mexico para determinar las respuestas de los niveles maximos de ozono a los cambios en las concentraciones iniciales de hidrocarburos, HC y oxido de nitrogeno, NO{sub x}. Por lo general, se llenaron 8 bolsas con aire matutino de la Ciudad de Mexico. En algunas camaras, las concentraciones iniciales fueron cambiadas de 25% a 50%, anadiendo varias concentraciones de una mezcla de HC, aire limpio y/o NO{sub x}. La concentracion de O{sub 3} y NO{sub x}, en cada camara, fueron monitoreadas a lo largo del dia para determinar el maximo de O{sub 3}. El efecto de los HC y el NO{sub x} fue determinado por comparacion del maximo de ozono formado en las camaras, que fueron perturbadas por adicion o reduccion de HC y/o Nox

  9. Our Shrinking Ozone Layer

    Indian Academy of Sciences (India)

    Depletion of the ozone layer is therefore having significant effects on life on .... but there is always a net balance between the rate of formation and destruction ..... award of Commonwealth Fellowship during the present work and also being an ...

  10. Photolysis of allene-ozone mixtures at 647 nm in cryogenic matrices. Part 1. Formation of allene oxide

    Science.gov (United States)

    Singmaster, Karen A.; Pimentel, George C.

    1989-03-01

    Matrix studies of the photolytic reaction at 647 nm between allene and ozone were carried out at 12 K. Primary photoproducts include carbon monoxide, acrolein ( cis and trans), cyclopropanone, ketene, ethylene, allene oxide and formaldehyde. In Ar and Kr matrices both acrolein and cyclopropanone are produced in high yields, whereas in Xe matrices cyclopropanone is the major product. Infrared spectra for cyclopropanone and its oxygen-18 and deuterium substitutes are reported. The carbonyl stretch for cyclopropanone is observed at 1815 cm -1 in an Ar matrix. Also reported is the first synthesis of allene oxide. The carbon—carbon double bond stretch is observed at 1823.4 cm -1 and it exhibits a small oxygen-18 shift. The change in product distribution is discussed in terms of heavy atom spin—orbit enhancement of singlet—triplet excitation, so that in xenon reaction takes place on a triplet surface, whereas in argon it occurs on a singlet surface.

  11. Correlation between GDF-15 gene polymorphism and the formation of collateral circulation in acute ST-elevation myocardial infarction.

    Science.gov (United States)

    Chen, Xiao-Ping; Shang, Xiao-Sen; Wang, Yan-Bin; Fu, Zhi-Hua; Gao, Yu; Feng, Tao

    2017-12-01

    To explore the correlation between growth differentiation factor 15 (GDF-15) -3148C/G polymorphism and the formation of collateral circulation in acute ST-elevation myocardial infarction (STEMI) in Han population of Taiyuan area. The present study included 92 STEMI patients and 56 normal controls based on coronary angiography; STEMI group was divided into collateral group and non-collateral group according to Rentrop's grading method. Polymerase chain reaction (PCR) and DNA sequencing methods were used to detect and analyze the GDF-15 -3148C/G polymorphism in all participants. There was significant difference in GDF-15 -3148C/G CC and GC distribution between STEMI group and control group (p=0.009); the allele frequencies between these two groups were also significant different (p=0.016); and the risk genotype for STEMI was CC with increased OR=2.660. For STEMI group, GDF-15 -3148C/G CC and GC distribution was also significantly different between patients with and without collateral (p=0.048), and CC genotype significantly promote the formation of collateral circulation. However, there were no significant differences in allele frequencies between these two subgroups of STEMI. There was correlation between GDF-15-3148C/G polymorphism and the formation of collateral circulation in patients with acute STEMI.

  12. Correlation between GDF-15 gene polymorphism and the formation of collateral circulation in acute ST-elevation myocardial infarction

    Directory of Open Access Journals (Sweden)

    Xiao-ping Chen

    Full Text Available Summary Objective: To explore the correlation between growth differentiation factor 15 (GDF-15 -3148C/G polymorphism and the formation of collateral circulation in acute ST-elevation myocardial infarction (STEMI in Han population of Taiyuan area. Method: The present study included 92 STEMI patients and 56 normal controls based on coronary angiography; STEMI group was divided into collateral group and non-collateral group according to Rentrop's grading method. Polymerase chain reaction (PCR and DNA sequencing methods were used to detect and analyze the GDF-15 -3148C/G polymorphism in all participants. Results: There was significant difference in GDF-15 -3148C/G CC and GC distribution between STEMI group and control group (p=0.009; the allele frequencies between these two groups were also significant different (p=0.016; and the risk genotype for STEMI was CC with increased OR=2.660. For STEMI group, GDF-15 -3148C/G CC and GC distribution was also significantly different between patients with and without collateral (p=0.048, and CC genotype significantly promote the formation of collateral circulation. However, there were no significant differences in allele frequencies between these two subgroups of STEMI. Conclusion: There was correlation between GDF-15-3148C/G polymorphism and the formation of collateral circulation in patients with acute STEMI.

  13. Carbonate deposition, Pyramid Lake subbasin, Nevada: 1. Sequence of formation and elevational distribution of carbonate deposits (Tufas)

    Science.gov (United States)

    Benson, L.

    1994-01-01

    During the late Quarternary, the elevation of terrace cutting and carbonate deposition in the Pyramid Lake subbasin were controlled by constancy of lake level imposed by spill to adjoining subbasins. Sill elevations are 1177-1183 m (Mud Lake Slough Sill), 1207 m (Emerson Pass Sill), and 1265 m (Darwin Pass Sill). Carbonate deposition was favored by: (1) hydrologic closure, (2) proximity to a source of calcium, (3) elevated water temperature, and (4) a solid substrate. The thickness and aspect of tufa are a function oflake-level dynamics. Relatively thin sheets and pendant sheets were deposited during a rising or falling lake. The upper parts of thick reef-form tufas have a horizontal aspect and were deposited in a lake which was stabilized by spill to the Carson Desert subbasin. The lower parts of the reef-form tufas are thinner and their outer surface has a vertical aspect, indicating that the lower part formed in a receding lake. The thickest and most complete sequences of tufa are mounds that border the Pyramid Lake shore. The tops of the tallest mounds reach the elevation of the Darwin Pass Sill and many mounds have been eroded to the elevations of the Mud Lake Slough Sill of the Emerson Pass Sill. The sequence of tufa formation (from oldest to youngest) displayed in these mounds is: (1) a beachrock containing carbonate-cemented volcanic cobbles, (2) broken and eroded old spheroids that contain thinolitic tufa and an outer rind of dense laminated tufa, (3) large cylindrical (tubular) tufas capped by (4) coatings of old dense tufas, and (5) several generations of old branching tufa commonly associated with thin, platy tufas and coatings of thinolitic tufa, (6) young spheroids that contain poorly oriented young thinolitic tufa in the center and several generations of radially oriented young thinolitic tufas near the outer edge, (7) a transitional thinolite-to-branching tufa, (8) two or more layers of young branching tufa, (9) a 0.5-cm-thick layer of fine

  14. Formation and destruction of nitrogen oxides at elevated pressures with mixed fuels; Typenoksidimuodostus ja tuhoaminen paineistetuissa olosuhteissa ja ongelmapolttoaineilla

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Haemaelaeinen, J.; Paakkinen, K.; Rantanen, J. [VTT Energy, Jyvaeskylae (Finland)

    1997-10-01

    Destruction of NO with NH{sub 3} (Thermal DeNO{sub x}) and formation of nitrogen oxides (especially NO{sub 2}) from fuel nitrogen were studied at elevated pressure (up to 15 bar) with a pressurized entrained flow reactor (PEFR) at conditions simulating freeboard area of pressurized fluidized bed boiler. Effect of HCl on the oxidation of CO was studied at atmospheric pressure. These results give information about emission formation during combustion of chlorine-containing wastes. N{sub x}O{sub y} formation from fuel mixtures will be studied with a new fluidized bed reactor (FBR) in 1997. Thermal DeNox-experiments were performed at p= 2-15 bar, T= 700-950 deg C. Concentrations of NO, N{sub 2}O, NO{sub 2} and NH{sub 3} were measured at different residence times (0.2-2s). After the experiments with the bare NH{sub 3}/NO mixture, the effects of two additional gases (N{sub 2}O and CO) were measured. A new reaction tube made of quartz was employed to prevent catalytic destruction of NH{sub 3}. Formation of NO{sub 2} was studied with eleven solid fuels. The first experiments were carried out at 12 bar, O{sub 2}=20-19 %, PO{sub 2}=2.4 bar and the additional ones at p=8 bar, O{sub 2}=4-5 % => PO{sub 2}=0.4 bar at 800- 900 deg C. PCA analysis was used for finding dependency between fuel properties and the convention of fuel-N to NO{sub 2}

  15. Indoor transient SOA formation from ozone + α-pinene reactions: Impacts of air exchange and initial product concentrations, and comparison to limonene ozonolysis

    Science.gov (United States)

    Youssefi, Somayeh; Waring, Michael S.

    2015-07-01

    The ozonolysis of reactive organic gases (ROG), e.g. terpenes, generates secondary organic aerosol (SOA) indoors. The SOA formation strength of such reactions is parameterized by the aerosol mass fraction (AMF), a.k.a. SOA yield, which is the mass ratio of generated SOA to oxidized ROG. AMFs vary in magnitude both among and for individual ROGs. Here, we quantified dynamic SOA formation from the ozonolysis of α-pinene with 'transient AMFs,' which describe SOA formation due to pulse emission of a ROG in an indoor space with air exchange, as is common when consumer products are intermittently used in ventilated buildings. We performed 19 experiments at low, moderate, and high (0.30, 0.52, and 0.94 h-1, respectively) air exchange rates (AER) at varying concentrations of initial reactants. Transient AMFs as a function of peak SOA concentrations ranged from 0.071 to 0.25, and they tended to increase as the AER and product of the initial reactant concentrations increased. Compared to our similar research on limonene ozonolysis (Youssefi and Waring, 2014), for which formation strength was driven by secondary ozone reactions, the AER impact for α-pinene was opposite in direction and weaker, while the initial reactant product impact was in the same direction but stronger for α-pinene than for limonene. Linear fits of AMFs for α-pinene ozonolysis as a function of the AER and initial reactant concentrations are provided so that future indoor models can predict SOA formation strength.

  16. SOIL RESPIRED D13C SIGNATURES REFLECT ROOT EXUDATE OR ROOT TURNOVER SIGNATURES IN AN ELEVATED CO2 AND OZONE MESOCOSM EXPERIMENT

    Science.gov (United States)

    Bulk tissue and root and soil respired d13C signatures were measured throughout the soil profile in a Ponderosa Pine mesocosm experiment exposed to ambient and elevated CO2 concentrations. For the ambient treatment, root (0-1mm, 1-2mm, and >2mm) and soil d13C signatures were ?24...

  17. Impacts of ozone on trees and crops

    International Nuclear Information System (INIS)

    Felzer, B.S.; Cronina, T.; Melillo, J.M.; Reilly, J.M.; Xiaodong, Wang

    2007-01-01

    In this review article, we explore how surface-level ozone affects trees and crops with special emphasis on consequences for productivity and carbon sequestration. Vegetation exposure to ozone reduces photosynthesis, growth, and other plant functions. Ozone formation in the atmosphere is a product of NO x , which are also a source of nitrogen deposition. Reduced carbon sequestration of temperate forests resulting from ozone is likely offset by increased carbon sequestration from nitrogen fertilization. However, since fertilized crop-lands are generally not nitrogen-limited, capping ozone-polluting substances in the USA, Europe, and China can reduce future crop yield loss substantially. (authors)

  18. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  19. Effects of elevated ozone on leaf {delta}{sup 13}C and leaf conductance of plant species grown in semi-natural grassland with or without irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, CH-8046 Zurich (Switzerland)]. E-mail: maya.jaeggi@psi.ch; Saurer, M. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Volk, M. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, CH-8046 Zurich (Switzerland); Fuhrer, J. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, CH-8046 Zurich (Switzerland)

    2005-03-01

    Stable carbon isotope ratios ({delta}{sup 13}C) and leaf conductance (g{sub s}) were measured (2002, 2003) in Holcus lanatus L., Plantago lanceolata L. Ranunculus friesianus (Jord.), and Trifolium pratense L. at two levels of ozone (O{sub 3}) with or without irrigation. In non-irrigated control plots, R. friesianus showed the least negative {delta}{sup 13}C, and the smallest response to the treatments. Irrigation caused more negative {delta}{sup 13}C, especially in H. lanatus. Irrespective of irrigation, O{sub 3} increased {delta}{sup 13}C in relationship to a decrease in g{sub s} in P. lanceolata and T. pratense. The strongest effect of O{sub 3} on {delta}{sup 13}C occurred in the absence of irrigation, suggesting that under field conditions lack of moisture in the top soil does not always lead to protection from O{sub 3} uptake. It is concluded that in species such as T. pratense plants can maintain stomatal O{sub 3} uptake during dry periods when roots can reach deeper soil layers where water is not limiting. - Under natural field conditions, lack of precipitation may not protect semi-natural vegetation from O{sub 3} effects on leaf gas exchange.

  20. Effects of elevated ozone on leaf δ13C and leaf conductance of plant species grown in semi-natural grassland with or without irrigation

    International Nuclear Information System (INIS)

    Jaeggi, M.; Saurer, M.; Volk, M.; Fuhrer, J.

    2005-01-01

    Stable carbon isotope ratios (δ 13 C) and leaf conductance (g s ) were measured (2002, 2003) in Holcus lanatus L., Plantago lanceolata L. Ranunculus friesianus (Jord.), and Trifolium pratense L. at two levels of ozone (O 3 ) with or without irrigation. In non-irrigated control plots, R. friesianus showed the least negative δ 13 C, and the smallest response to the treatments. Irrigation caused more negative δ 13 C, especially in H. lanatus. Irrespective of irrigation, O 3 increased δ 13 C in relationship to a decrease in g s in P. lanceolata and T. pratense. The strongest effect of O 3 on δ 13 C occurred in the absence of irrigation, suggesting that under field conditions lack of moisture in the top soil does not always lead to protection from O 3 uptake. It is concluded that in species such as T. pratense plants can maintain stomatal O 3 uptake during dry periods when roots can reach deeper soil layers where water is not limiting. - Under natural field conditions, lack of precipitation may not protect semi-natural vegetation from O 3 effects on leaf gas exchange

  1. Co-formation of hydroperoxides and ultra-fine particles during the reactions of ozone with a complex VOC mixture under simulated indoor conditions

    DEFF Research Database (Denmark)

    Fan, Z.H.; Weschler, Charles J.; Han, IK

    2005-01-01

    In this study we examined the co-formation of hydrogen peroxide and other hydroperoxides (collectively presented as H2O2*) as well as submicron particles, including ultra-fine particles (UFP), resulting from the reactions of ozone (O-3) with a complex mixture of volatile organic compounds (VOCs...... higher than typical indoor levels. When O-3 was added to a 25-m(3) controlled environmental facility (CEF) containing the 23 VOC mixture, both H2O2* and submicron particles were formed. The 2-h average concentration of H2O2* was 1.89 +/- 0.30ppb, and the average total particle number concentration was 46...... to achieve saturated concentrations of the condensable organics. When the 2 terpenes were removed from the O-3/23 VOCs mixture, no H2O2* or particles were formed, indicating that the reactions of O-3 With the two terpenes were the key processes contributing to the formation of H2O2* and submicron particles...

  2. OZONE CONCENTRATION ATTRIBUTABLE PREMATURE DEATH IN POLAND

    Directory of Open Access Journals (Sweden)

    Krzysztof Skotak

    2010-03-01

    Full Text Available Ozone in the lower part of the atmosphere (troposphere, strong photochemical oxidant, is not directly emitted to the atmosphere but formed through a series of complex reactions. Ozone concentrations depends on ozone precursors air contamination (mainly nitrogen dioxide and non-methane volatile organic compounds and meteorological conditions (temperature and solar radiation. The main sectors emitted ozone precursors are road transport, power and heat generation plants, household (heating, industry, and petrol storage and distribution. Ozone and some of its precursors are also transported long distances in the atmosphere and are therefore considered a transboundary problem. As a result, the ozone concentrations are often low in busy urban areas and higher in suburban and rural areas. Nowadays, instead of particulate matter, ozone is one of the most widespread global air pollution problems. In and around urban areas, relatively large gradients of ozone can be observed. Because of its high reactivity in elevated concentrations ozone causes serious health problems and damage to ecosystems, agricultural crops and materials. Main ill-health endpoints as a results of ozone concentrations can be characterised as an effect of pulmonary and cardiovascular system, time morbidity and mortality series, development of atherosclerosis and asthma and finally reduction in life expectancy. The associations with increased daily mortality due to ozone concentrations are confirmed by many researches and epidemiological studies. Estimation of the level selected ill-health endpoints (mortality in total and due to cardiovascular and respiratory causes as a result of the short-term ozone exposure in Poland was the main aim of the project. Final results have been done based on estimation method elaborated by WHO, ozone measurements from National Air Quality Monitoring System and statistical information such as mortality rate and populations. All analysis have been done in

  3. Tropospheric Enhancement of Ozone over the UAE

    Science.gov (United States)

    Abbasi, Naveed Ali; Majeed, Tariq; Iqbal, Mazhar; Kaminski, Jacek; Struzewska, Joanna; Durka, Pawel; Tarasick, David; Davies, Jonathan

    2015-04-01

    We use the Global Environmental Multiscale - Air Quality (GEM-AQ) model to interpret the vertical profiles of ozone acquired with ozone sounding experiments at the meteorological site located at the Abu Dhabi airport. The purpose of this study is to gain insight into the chemical and dynamical structures in the atmosphere of this unique subtropical location (latitude 24.45N; longitude 54.22E). Ozone observations for years 2012 - 2013 reveal elevated ozone abundances in the range from 70 ppbv to 120 ppbv near 500-400 hPa during summer. The ozone abundances in other seasons are much lower than these values. The preliminary results indicate that summertime enhancement in ozone is associated with the Arabian anticyclones centered over the Zagros Mountains in Iran and the Asir and Hijaz Mountain ranges in Saudi Arabia, and is consistent with TES observations of deuterated water. The model also shows considerable seasonal variation in the tropospheric ozone which is transported from the stratosphere by dynamical processes. The domestic production of ozone in the middle troposphere is estimated and compared GEM-AQ model. It is estimated that about 40-50% of ozone in the UAE is transported from the neighbouring petrochemical industries in the Gulf region. We will present ozone sounding data and GEM-AQ results including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  4. Ozone Pollution

    Science.gov (United States)

    Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.

  5. The maintenance of elevated active chlorine levels in the Antarctic lower stratosphere through HCl null cycles

    Science.gov (United States)

    Müller, Rolf; Grooß, Jens-Uwe; Mannan Zafar, Abdul; Robrecht, Sabine; Lehmann, Ralph

    2018-03-01

    The Antarctic ozone hole arises from ozone destruction driven by elevated levels of ozone destroying (active) chlorine in Antarctic spring. These elevated levels of active chlorine have to be formed first and then maintained throughout the period of ozone destruction. It is a matter of debate how this maintenance of active chlorine is brought about in Antarctic spring, when the rate of formation of HCl (considered to be the main chlorine deactivation mechanism in Antarctica) is extremely high. Here we show that in the heart of the ozone hole (16-18 km or 85-55 hPa, in the core of the vortex), high levels of active chlorine are maintained by effective chemical cycles (referred to as HCl null cycles hereafter). In these cycles, the formation of HCl is balanced by immediate reactivation, i.e. by immediate reformation of active chlorine. Under these conditions, polar stratospheric clouds sequester HNO3 and thereby cause NO2 concentrations to be low. These HCl null cycles allow active chlorine levels to be maintained in the Antarctic lower stratosphere and thus rapid ozone destruction to occur. For the observed almost complete activation of stratospheric chlorine in the lower stratosphere, the heterogeneous reaction HCl + HOCl is essential; the production of HOCl occurs via HO2 + ClO, with the HO2 resulting from CH2O photolysis. These results are important for assessing the impact of changes of the future stratospheric composition on the recovery of the ozone hole. Our simulations indicate that, in the lower stratosphere, future increased methane concentrations will not lead to enhanced chlorine deactivation (through the reaction CH4 + Cl → HCl + CH3) and that extreme ozone destruction to levels below ≈ 0.1 ppm will occur until mid-century.

  6. Grains of Nonferrous and Noble Metals in Iron-Manganese Formations and Igneous Rocks of Submarine Elevations of the Sea of Japan

    Science.gov (United States)

    Kolesnik, O. N.; Astakhova, N. V.

    2018-01-01

    Iron-manganese formations and igneous rocks of submarine elevations in the Sea of Japan contain overlapping mineral phases (grains) with quite identical morphology, localization, and chemical composition. Most of the grains conform to oxides, intermetallic compounds, native elements, sulfides, and sulfates in terms of the set of nonferrous, noble, and certain other metals (Cu, Zn, Sn, Pb, Ni, Mo, Ag, Pd, and Pt). The main conclusion that postvolcanic hydrothermal fluids are the key sources of metals is based upon a comparison of the data of electron microprobe analysis of iron-manganese formations and igneous rocks dredged at the same submarine elevations in the Sea of Japan.

  7. Ozone as an ecotoxicological problem

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, L. [National Environmental Research Inst., Dept. of Atmospheric Environment, Roskilde (Denmark)

    1996-11-01

    Ozone is quantitatively the dominating oxidant in photochemical air pollution. Other compounds like hydrogen peroxide, aldehydes, formate, peroxyacetyl nitrate (PAN) and nitrogen dioxide are present too, and several of these are known to be phytotoxic, but under Danish conditions the concentration of these gases are without significance for direct effects on vegetation. Therefore, it is the effects of ozone on plant growth that will be described below. (EG) 65 refs.

  8. Physical parameters effect on ozone-initiated formation of indoor secondary organic aerosols with emissions from cleaning products.

    Science.gov (United States)

    Huang, Yu; Ho, Kin Fai; Ho, Steven Sai Hang; Lee, Shun Cheng; Yau, P S; Cheng, Yan

    2011-09-15

    The effect of air exchange rate (ACH), temperature (T), and relative humidity (RH) on the formation of indoor secondary organic aerosols (SOAs) through ozonolysis of biogenic organic compounds (BVOCs) emitted from floor cleaner was investigated in this study. The total particle count (with D(p) of 6-225 nm) was up to 1.2 × 10(3)#cm(-3) with ACH of 1.08 h(-1), and it became much more significant with ACH of 0.36 h(-1) (1.1 × 10(4)#cm(-3)). This suggests that a higher ventilation rate can effectively dilute indoor BVOCs, resulting in a less ultrafine particle formation. The total particle count increased when temperature changed from 15 to 23 °C but it decreased when the temperature further increased to 30 °C. It could be explained that high temperature restrained the condensation of formed semi-volatile compounds resulting in low yields of SOAs. When the RH was at 50% and 80%, SOA formation (1.1-1.2 × 10(4)#cm(-3)) was the more efficient compared with that at RH of 30% (5.9 × 10(3)#cm(-3)), suggesting higher RH facilitating the initial nucleation processes. Oxidation generated secondary carbonyl compounds were also quantified. Acetone was the most abundant carbonyl compound. The formation mechanisms of formaldehyde and acetone were proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Rapid Formation of Molecular Bromine from Deliquesced NaBr Aerosol in the Presence of Ozone and UV Light

    Science.gov (United States)

    The formation of gas-phase bromine from aqueous sodium bromide aerosols is investigated through a combination of chamber experiments and chemical kinetics modeling. Experiments show that Br2(g) is produced rapidly from deliquesced NaBr aerosols in the presence of OH radicals prod...

  10. Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products

    Science.gov (United States)

    Huang, Yu; Lee, Shun Cheng; Ho, Kin Fai; Ho, Steven Sai Hang; Cao, Nanying; Cheng, Yan; Gao, Yuan

    2012-11-01

    Biogenic volatile organic compounds (BVOCs) emitted from cleaning products and air fresheners indoors are prone to oxidation resulting in the formation of secondary pollutants that can pose health risks on residents. Ammonia (NH3) is ubiquitous in ambient and indoor environments. In this study, we investigated the effect of ammonia (NH3) on secondary pollutants formation from the ozonolysis of BVOCs emitted from cleaning products including floor cleaner (FC), kitchen cleaner (KC) and dishwashing detergent (DD) in a large environmental chamber. Our results demonstrated that the presence of NH3 (maximum concentration is 240 ppb) could significantly enhance secondary organic aerosols (SOAs) formation from the ozonolysis of all the three categories of cleaning products. For example, for the FC sample, the maximum total particle concentration was up to 2.0 × 104 # cm-3 in the presence of NH3, while it was 1.3 × 104 # cm-3 which was 35% lower without NH3. However, it was found that the extent of NH3 effect on SOAs formation from the ozonolysis of BVOCs emissions was component-dependent. The presence of NH3 in the reaction systems could increase the consumptions of d-limonene that is the dominant BVOC species as identified in cleaning products. The percent yields (%) of secondary carbonyl compounds generated from the ozonolysis of BVOCs emitted from three categories of cleaning products were identified in the presence and absence of NH3, respectively. The increase in SOAs particle number concentration can be attributed to the formation of condensable salts from reactions between NH3 and organic compounds generated from the BVOCs ozonolysis processes. By investigating the NH3 effect on the ozonolysis of BVOCs mixtures in contrast to the chemistry of individual compounds, a better assessment can be made of the overall impact cleaning products have on real indoor environments.

  11. The use of biodiesel blends on a non-road generator and its impacts on ozone formation potentials based on carbonyl emissions

    International Nuclear Information System (INIS)

    Chai, Ming; Lu, Mingming; Liang, Fuyan; Tzillah, Aisha; Dendramis, Nancy; Watson, Libya

    2013-01-01

    In this study, emissions of carbonyl compounds from the use B50 and B100 were measured with a non-road diesel generator. A total of 25 carbonyl compounds were identified in the exhaust, including 10 with laboratory-synthesized standards. Formaldehyde, acetaldehyde, and acrolein were found as the most abundant carbonyl compounds emitted for both diesel and biodiesel. The sulphur content of diesel fuels and the source of biodiesel fuels were not found to have a significant impact on the emission of carbonyl compounds. The overall maximum incremental reactivity (MIR) was the highest at 0 kW and slightly increased from 25 to 75 kW. The MIR of B100 was the highest, followed by diesel and B50, which is consistent with the emission rates of total carbonyl compounds. This suggests that the use of biodiesel blends may be more beneficial to the environment than using pure biodiesel. -- Highlights: •Carbonyl compound emission from biodiesel blends combustion on a non-road generator. •25 compounds were identified, including 10 by laboratory-synthesized standards. •Sources of biodiesel have insignificant impacts on carbonyl compounds emission. •Sulphur contents have insignificant impacts on carbonyl compounds emission. •MIR of emitted carbonyls decreases in the following order: B100, diesel, B50. -- The study found that B50 resulted in lower total carbonyl emission rates and ozone formation potential resultant from these compounds, whereas both increased with B100

  12. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K

    2004-09-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-{beta}-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation.

  13. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    International Nuclear Information System (INIS)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K.

    2004-01-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-β-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation

  14. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water.

    Science.gov (United States)

    Bourgin, Marc; Borowska, Ewa; Helbing, Jakob; Hollender, Juliane; Kaiser, Hans-Peter; Kienle, Cornelia; McArdell, Christa S; Simon, Eszter; von Gunten, Urs

    2017-10-01

    The efficiency of ozone-based processes under various conditions was studied for the treatment of a surface water (Lake Zürich water, Switzerland) spiked with 19 micropollutants (pharmaceuticals, pesticides, industrial chemical, X-ray contrast medium, sweetener) each at 1 μg L -1 . Two pilot-scale ozonation reactors (4-5 m 3  h -1 ), a 4-chamber reactor and a tubular reactor, were investigated by either conventional ozonation and/or the advanced oxidation process (AOP) O 3 /H 2 O 2 . The effects of selected operational parameters, such as ozone dose (0.5-3 mg L -1 ) and H 2 O 2 dose (O 3 :H 2 O 2  = 1:3-3:1 (mass ratio)), and selected water quality parameters, such as pH (6.5-8.5) and initial bromide concentration (15-200 μg L -1 ), on micropollutant abatement and bromate formation were investigated. Under the studied conditions, compounds with high second-order rate constants k O3 >10 4  M -1  s -1 for their reaction with ozone were well abated (>90%) even for the lowest ozone dose of 0.5 mg L -1 . Conversely, the abatement efficiency of sucralose, which only reacts with hydroxyl radicals (OH), varied between 19 and 90%. Generally, the abatement efficiency increased with higher ozone doses and higher pH and lower bromide concentrations. H 2 O 2 addition accelerated the ozone conversion to OH, which enables a faster abatement of ozone-resistant micropollutants. Interestingly, the abatement of micropollutants decreased with higher bromide concentrations during conventional ozonation due to competitive ozone-consuming reactions, except for lamotrigine, due to the suspected reaction of HOBr/OBr - with the primary amine moieties. In addition to the abatement of micropollutants, the evolution of the two main transformation products (TPs) of hydrochlorothiazide (HCTZ) and tramadol (TRA), chlorothiazide (CTZ) and tramadol N-oxide (TRA-NOX), respectively, was assessed by chemical analysis and kinetic modeling. Both selected TPs were quickly formed initially

  15. Ozone kinetics in low-pressure discharges

    Science.gov (United States)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  16. Modeling ozone bioindicator injury with microscale and landscape-scale explanatory variables: A logistic regression approach

    Science.gov (United States)

    John W. Coulston

    2011-01-01

    Tropospheric ozone occurs at phytotoxic levels in the United States (Lefohn and Pinkerton 1988). Several plant species, including commercially important timber species, are sensitive to elevated ozone levels. Exposure to elevated ozone can cause growth reduction and foliar injury and make trees more susceptible to secondary stressors such as insects and pathogens (...

  17. Total ozone changes in the 1987 Antarctic ozone hole

    Science.gov (United States)

    Krueger, Arlin J.; Schoeberl, Mark R.; Doiron, Scott D.; Sechrist, Frank; Galimore, Reginald

    1988-01-01

    The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed.

  18. Modeling and direct sensitivity analysis of biogenic emissions impacts on regional ozone formation in the Mexico-U.S. border area.

    Science.gov (United States)

    Mendoza-Dominguez, A; Wilkinson, J G; Yang, Y J; Russell, A G

    2000-01-01

    A spatially and temporally resolved biogenic hydrocarbon and nitrogen oxides (NOx) emissions inventory has been developed for a region along the Mexico-U.S. border area. Average daily biogenic non-methane organic gases (NMOG) emissions for the 1700 x 1000 km2 domain were estimated at 23,800 metric tons/day (62% from Mexico and 38% from the United States), and biogenic NOx was estimated at 1230 metric tons/day (54% from Mexico and 46% from the United States) for the July 18-20, 1993, ozone episode. The biogenic NMOG represented 74% of the total NMOG emissions, and biogenic NOx was 14% of the total NOx. The CIT photochemical airshed model was used to assess how biogenic emissions impact air quality. Predicted ground-level ozone increased by 5-10 ppb in most rural areas, 10-20 ppb near urban centers, and 20-30 ppb immediately downwind of the urban centers compared to simulations in which only anthropogenic emissions were used. A sensitivity analysis of predicted ozone concentration to emissions was performed using the decoupled direct method for three dimensional air quality models (DDM-3D). The highest positive sensitivity of ground-level ozone concentration to biogenic volatile organic compound (VOC) emissions (i.e., increasing biogenic VOC emissions results in increasing ozone concentrations) was predicted to be in locations with high NOx levels, (i.e., the urban areas). One urban center--Houston--was predicted to have a slight negative sensitivity to biogenic NO emissions (i.e., increasing biogenic NO emissions results in decreasing local ozone concentrations). The highest sensitivities of ozone concentrations to on-road mobile source VOC emissions, all positive, were mainly in the urban areas. The highest sensitivities of ozone concentrations to on-road mobile source NOx emissions were predicted in both urban (either positive or negative sensitivities) and rural (positive sensitivities) locations.

  19. Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS 2014

    Directory of Open Access Journals (Sweden)

    B. Yuan

    2016-02-01

    Full Text Available We describe the results from online measurements of nitrated phenols using a time-of-flight chemical ionization mass spectrometer (ToF-CIMS with acetate as reagent ion in an oil and gas production region in January and February of 2014. Strong diurnal profiles were observed for nitrated phenols, with concentration maxima at night. Based on known markers (CH4, NOx, CO2, primary emissions of nitrated phenols were not important in this study. A box model was used to simulate secondary formation of phenol, nitrophenol (NP, and dinitrophenols (DNP. The box model results indicate that oxidation of aromatics in the gas phase can explain the observed concentrations of NP and DNP in this study. Photolysis was the most efficient loss pathway for NP in the gas phase. We show that aqueous-phase reactions and heterogeneous reactions were minor sources of nitrated phenols in our study. This study demonstrates that the emergence of new ToF-CIMS (including PTR-TOF techniques allows for the measurement of intermediate oxygenates at low levels and these measurements improve our understanding on the evolution of primary VOCs in the atmosphere.

  20. UASB reactor effluent disinfection by ozone and chlorine

    NARCIS (Netherlands)

    Ribeiro da Silvia, G.H.; Bruning, H.; Gerrity, D.; Daniel, L.A.

    2015-01-01

    This research studied the sequential ozone and chlorine process with respect to, the inactivation of indicator bacteria and the formation of ozone disinfection byproducts in sanitary wastewater effluent. The applied ozone doses were 5, 8 and 10 mg.O3.L-1, followed by chlorine doses of 10, 20 and 30

  1. Ozone Layer Protection

    Science.gov (United States)

    ... and Research Centers Contact Us Share Ozone Layer Protection The stratospheric ozone layer is Earth’s “sunscreen” – protecting ... GreenChill Partnership Responsible Appliance Disposal (RAD) Program Ozone Protection vs. Ozone Pollution This website addresses stratospheric ozone ...

  2. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Rakha, Ihsan Allah

    2015-01-01

    The steady coflow diffusion flame is a widely used configuration for studying combustion kinetics, flame dynamics, and pollutant formation. In the current work, a set of diluted ethylene-air coflow flames are simulated to study the formation, growth

  3. Elevating your elevator talk

    Science.gov (United States)

    An important and often overlooked item that every early career researcher needs to do is compose an elevator talk. The elevator talk, named because the talk should not last longer than an average elevator ride (30 to 60 seconds), is an effective method to present your research and yourself in a clea...

  4. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China.

    Science.gov (United States)

    Yan, Yulong; Peng, Lin; Li, Rumei; Li, Yinghui; Li, Lijuan; Bai, Huiling

    2017-04-01

    Volatile organic compounds (VOCs) from two sampling sites (HB and XB) in a power station centralized area, in Shuozhou city, China, were sampled by stainless steel canisters and measured by gas chromatography-mass selective detection/flame ionization detection (GC-MSD/FID) in the spring and autumn of 2014. The concentration of VOCs was higher in the autumn (HB, 96.87 μg/m 3 ; XB, 58.94 μg/m 3 ) than in the spring (HB, 41.49 μg/m 3 ; XB, 43.46 μg/m 3 ), as lower wind speed in the autumn could lead to pollutant accumulation, especially at HB, which is a new urban area surrounded by residential areas and a transportation hub. Alkanes were the dominant group at both HB and XB in both sampling periods, but the contribution of aromatic pollutants at HB in the autumn was much higher than that of the other alkanes (11.16-19.55%). Compared to other cities, BTEX pollution in Shuozhou was among the lowest levels in the world. Because of the high levels of aromatic pollutants, the ozone formation potential increased significantly at HB in the autumn. Using the ratio analyses to identify the age of the air masses and analyze the sources, the results showed that the atmospheric VOCs at XB were strongly influenced by the remote sources of coal combustion, while at HB in the spring and autumn were affected by the remote sources of coal combustion and local sources of vehicle emission, respectively. Source analysis conducted using the Positive Matrix Factorization (PMF) model at Shuozhou showed that coal combustion and vehicle emissions made the two largest contributions (29.98% and 21.25%, respectively) to atmospheric VOCs. With further economic restructuring, the influence of vehicle emissions on the air quality should become more significant, indicating that controlling vehicle emissions is key to reducing the air pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The response of Plantago major ssp pleiosperma to elevated CO2 is modulated by the formation of secondary shoots

    NARCIS (Netherlands)

    Coelho Guerra da Fonseca, F.M; den Hertog, J; Stulen, G

    The effect of elevated CO2 on the relative growth rate (RGR) of Plantago major ssp. pleiosperma was studied during the vegetative stage, in relation to plant development, by growing plants at 350 mu l l(-1) or at 700 mu l l(-1) CO2 in non-limiting nutrient solution with nitrate. To minimize

  6. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  7. Concept Formation in Environmental Education: 14-Year Olds' Work on the Intensified Greenhouse Effect and the Depletion of the Ozone Layer. Research Report

    Science.gov (United States)

    Osterlind, Karolina

    2005-01-01

    A case study is presented describing the work of three pupils in the upper level of compulsory school. The pupils were learning about the intensified greenhouse effect and the depletion of the ozone layer. In their work, the need for certain domain-specific knowledge becomes apparent; for example, understanding such concepts as photosynthesis,…

  8. A novel wheat variety with elevated content of amylose increases resistant starch formation and may beneficially influence glycaemia in healthy subjects

    Directory of Open Access Journals (Sweden)

    Elin Östman

    2011-08-01

    Full Text Available Previous studies indicate that elevated amylose content in products from rice, corn, and barley induce lower postprandial glycaemic responses and higher levels of resistant starch (RS. Consumption of slowly digestible carbohydrates and RS has been associated with health benefits such as decreased risk of diabetes and cardiovascular disease.To evaluate the postprandial glucose and insulin responses in vivo to bread products based on a novel wheat genotype with elevated amylose content (38%.Bread was baked from a unique wheat genotype with elevated amylose content, using baking conditions known to promote amylose retrogradation. Included test products were bread based on whole grain wheat with elevated amylose content (EAW, EAW with added lactic acid (EAW-la, and ordinary whole grain wheat bread (WGW. All test breads were baked at pumpernickel conditions (20 hours, 120°C. A conventionally baked white wheat bread (REF was used as reference. Resistant starch (RS content was measured in vitro and postprandial glucose and insulin responses were tested in 14 healthy subjects.The results showed a significantly higher RS content (on total starch basis in breads based on EAW than in WGW (p<0.001. Lactic acid further increased RS (p<0.001 compared with both WGW and EAW. Breads baked with EAW induced lower postprandial glucose response than REF during the first 120 min (p<0.05, but there were no significant differences in insulin responses. Increased RS content per test portion was correlated to a reduced glycaemic index (GI (r= − 0.571, p<0.001.This study indicates that wheat with elevated amylose content may be preferable to other wheat genotypes considering RS formation. Further research is needed to test the hypothesis that bread with elevated amylose content can improve postprandial glycaemic response.

  9. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Abdelgadir, Ahmed; Rakha, Ihsan Allah; Steinmetz, Scott A.; Attili, Antonio; Bisetti, Fabrizio; Roberts, William L.

    2015-01-01

    , coupled with detailed transport and kinetic models, to reproduce experimental measurements of a series of ethylene-air coflow flames. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydro-carbons is used. Soot is modeled

  10. Observing Tropospheric Ozone From Space

    Science.gov (United States)

    Fishman, Jack

    2000-01-01

    The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry

  11. Secondary maxima in ozone profiles

    Directory of Open Access Journals (Sweden)

    R. Lemoine

    2004-01-01

    Full Text Available Ozone profiles from balloon soundings as well as SAGEII ozone profiles were used to detect anomalous large ozone concentrations of ozone in the lower stratosphere. These secondary ozone maxima are found to be the result of differential advection of ozone-poor and ozone-rich air associated with Rossby wave breaking events. The frequency and intensity of secondary ozone maxima and their geographical distribution is presented. The occurrence and amplitude of ozone secondary maxima is connected to ozone variability and trend at Uccle and account for a large part of the total ozone and lower stratospheric ozone variability.

  12. Ozone Transport Aloft Drives Surface Ozone Maxima Across the Mojave Desert

    Science.gov (United States)

    VanCuren, R. A.

    2014-12-01

    A persistent layer of polluted air in the lower free troposphere over the Mojave Desert (California and Nevada) drives spring and summer surface ozone maxima as deep afternoon mixing delivers ozone and ozone precursors to surface measurement sites 200 km or more downwind of the mountains that separate the deserts from the heavily populated coastal areas of California. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), and from long-range transport from Asia. Recognition of this poorly studied persistent layer explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, resolves an apparent paradox in the timing of ozone peaks due to transport from the upwind basins, and provides a new perspective on the long-range downwind impacts of megacity pollution plumes.

  13. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models

    Directory of Open Access Journals (Sweden)

    V. Eyring

    2010-10-01

    Full Text Available Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs and greenhouse gases (GHGs vary with time, sensitivity simulations with either ODS or GHG concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates and ozone no longer being influenced by ODSs (full ozone recovery. The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG-induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where CO2-induced stratospheric cooling increases ozone, full ozone recovery is projected to not likely have occurred by 2100 even though ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively. In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the midlatitude lower stratosphere the evolution differs from that in the tropics, and rather than a steady decrease in ozone, first a decrease in ozone is simulated from 1960 to 2000, which is then followed by a steady increase through the 21st century. Ozone in the midlatitude lower stratosphere returns to 1980 levels by ~2045 in the Northern Hemisphere (NH and by ~2055 in the Southern Hemisphere (SH, and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the

  14. Elevating Learner Achievement Using Formative Electronic Lab Assessments in the Engineering Laboratory: A Viable Alternative to Weekly Lab Reports

    Science.gov (United States)

    Chen, Baiyun; DeMara, Ronald F.; Salehi, Soheil; Hartshorne, Richard

    2018-01-01

    A laboratory pedagogy interweaving weekly student portfolios with onsite formative electronic laboratory assessments (ELAs) is developed and assessed within the laboratory component of a required core course of the electrical and computer engineering (ECE) undergraduate curriculum. The approach acts to promote student outcomes, and neutralize…

  15. Breeding of ozone resistant rice: Relevance, approaches and challenges

    International Nuclear Information System (INIS)

    Frei, Michael

    2015-01-01

    Tropospheric ozone concentrations have been rising across Asia, and will continue to rise during the 21st century. Ozone affects rice yields through reductions in spikelet number, spikelet fertility, and grain size. Moreover, ozone leads to changes in rice grain and straw quality. Therefore the breeding of ozone tolerant rice varieties is warranted. The mapping of quantitative trait loci (QTL) using bi-parental populations identified several tolerance QTL mitigating symptom formation, grain yield losses, or the degradation of straw quality. A genome-wide association study (GWAS) demonstrated substantial natural genotypic variation in ozone tolerance in rice, and revealed that the genetic architecture of ozone tolerance in rice is dominated by multiple medium and small effect loci. Transgenic approaches targeting tolerance mechanisms such as antioxidant capacity are also discussed. It is concluded that the breeding of ozone tolerant rice can contribute substantially to the global food security, and is feasible using different breeding approaches. - Highlights: • Tropospheric ozone affects millions of hectares of rice land. • Ozone affects rice yield and quality. • Breeding approaches to adapt rice to high ozone are discussed. • Challenges in the breeding of ozone resistant rice are discussed. - This review summarizes the effects of tropospheric ozone on rice and outlines approaches and challenges in the breeding of adapted varieties

  16. Diagnostic Evaluation of Ozone Production and Horizontal Transport in a Regional Photochemical Air Quality Modeling System

    Science.gov (United States)

    A diagnostic model evaluation effort has been performed to focus on photochemical ozone formation and the horizontal transport process since they strongly impact the temporal evolution and spatial distribution of ozone (O3) within the lower troposphere. Results from th...

  17. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Abdelgadir, Ahmed

    2015-03-30

    A set of coflow diffusion flames are simulated to study the formation, growth, and oxidation of soot in flames of diluted hydrocarbon fuels, with focus on the effects of pressure. Firstly, we assess the ability of a high performance CFD solver, coupled with detailed transport and kinetic models, to reproduce experimental measurements of a series of ethylene-air coflow flames. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydro-carbons is used. Soot is modeled with a moment method and the resulting moment transport equations are solved with a Lagrangian numerical scheme. Numerical and experimental results are compared for various pressures. Finally, a sensitivity study is performed assessing the effect of the boundary conditions and kinetic mechanisms on the flame structure and stabilization properties.

  18. The Antarctic ozone hole

    International Nuclear Information System (INIS)

    Jones, Anna E

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For the historical perspective, the events leading up to the discovery of the 'hole' are presented, as well as the response from the international community and the measures taken to protect the ozone layer now and into the future

  19. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Rakha, Ihsan Allah

    2015-05-01

    The steady coflow diffusion flame is a widely used configuration for studying combustion kinetics, flame dynamics, and pollutant formation. In the current work, a set of diluted ethylene-air coflow flames are simulated to study the formation, growth, and oxidation of soot, with a focus on the effects of pressure on soot yield. Firstly, we assess the ability of a high performance CFD solver, coupled with detailed transport and kinetic models, to reproduce experimental measurements, like the temperature field, the species’ concentrations and the soot volume fraction. Fully coupled conservation equations for mass, momentum, energy, and species mass fractions are solved using a low Mach number formulation. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydrocarbons up to cyclopenta[cd]pyrene is used. Soot is modeled using a moment method and the resulting moment transport equations are solved with a Lagrangian numerical scheme. Numerical and experimental results are compared for various pressures. Reasonable agreement is observed for the flame height, temperature, and the concentrations of various species. In each case, the peak soot volume fraction is predicted along the centerline as observed in the experiments. The predicted integrated soot mass at pressures ranging from 4-8 atm, scales as P2.1, in satisfactory agreement with the measured integrated soot pressure scaling (P2.27). Significant differences in the mole fractions of benzene and PAHs, and the predicted soot volume fractions are found, using two well-validated chemical kinetic mechanisms. At 4 atm, one mechanism over-predicts the peak soot volume fraction by a factor of 5, while the other under-predicts it by a factor of 5. A detailed analysis shows that the fuel tube wall temperature has an effect on flame stabilization.

  20. Nanoripple formation on GaAs (001) surface by reverse epitaxy during ion beam sputtering at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debasree; Ghose, Debabrata, E-mail: debabrata1.ghose@gmail.com

    2016-11-01

    Highlights: • GaAs (001) surfaces are sputtered by 1 keV Ar{sup +} at sample temperature of 450 °C. • Highly ordered defect-free ripples develop at near-normal incidence angles (θ ≈ 0–25{sup 0}). • Concurrent sample rotation does not alter the ripple orientation with respect to the ion beam. • At grazing incidence angles anisotropic structure is formed. • Concurrent sample rotation shows that the structure orientation depends on the beam direction. - Abstract: Self-organized pattern formation by the process of reverse epitaxial growth has been investigated on GaAs (001) surfaces during 1 keV Ar{sup +} bombardment at target temperature of 450 °C for a wide range of incident angles. Highly ordered ripple formation driven by diffusion instability is evidenced at near normal incidence angles. Concurrent sample rotation shows that the ripple morphology and its orientation do not depend on the incident beam direction; rather they are determined by the symmetry of the crystal face.

  1. Quantifying Ozone Production throughout the Boundary Layer from High Frequency Tethered Profile Measurements during a High Ozone Episode in the Uinta Basin, Utah

    Science.gov (United States)

    Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.

    2015-12-01

    During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen

  2. Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications.

    Science.gov (United States)

    Pisarenko, Aleksey N; Stanford, Benjamin D; Yan, Dongxu; Gerrity, Daniel; Snyder, Shane A

    2012-02-01

    An ozone and ozone/peroxide oxidation process was evaluated at pilot scale for trace organic contaminant (TOrC) mitigation and NDMA formation in both drinking water and water reuse applications. A reverse osmosis (RO) pilot was also evaluated as part of the water reuse treatment train. Ozone/peroxide showed lower electrical energy per order of removal (EEO) values for TOrCs in surface water treatment, but the addition of hydrogen peroxide increased EEO values during wastewater treatment. TOrC oxidation was correlated to changes in UV(254) absorbance and fluorescence offering a surrogate model for predicting contaminant removal. A decrease in N-nitrosodimethylamine (NDMA) formation potential (after chloramination) was observed after treatment with ozone and ozone/peroxide. However, during spiking experiments with surface water, ozone/peroxide achieved limited destruction of NDMA, while in wastewaters net direct formation of NDMA of 6-33 ng/L was observed after either ozone or ozone/peroxide treatment. Once formed during ozonation, NDMA passed through the subsequent RO membranes, which highlights the significance of the potential for direct NDMA formation during oxidation in reuse applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Ozone from fireworks: Chemical processes or measurement interference?

    Science.gov (United States)

    Xu, Zheng; Nie, Wei; Chi, Xuguang; Huang, Xin; Zheng, Longfei; Xu, Zhengning; Wang, Jiaping; Xie, Yuning; Qi, Ximeng; Wang, Xinfeng; Xue, Likun; Ding, Aijun

    2018-08-15

    Fireworks have been identified as one ozone source by photolyzing NO 2 or O 2 and are believed to potentially be important for the nighttime ozone during firework events. In this study, we conducted both lab and field experiments to test two types of fireworks with low and high energy with the goal to distinguish whether the visible ozone signal during firework displays is real. The results suggest that previous understanding of the ozone formation mechanism during fireworks is misunderstood. Ultraviolet ray (UV)-based ozone monitors are interfered by aerosols and some specific VOCs. High-energy fireworks emit high concentrations of particular matters and low VOCs that the artificial ozone can be easily removed by an aerosol filter. Low-energy fireworks emit large amounts of VOCs mostly from the combustion of the cardboard from fireworks that largely interferes with the ozone monitor. Benzene and phenol might be major contributors to the artificial ozone signal. We further checked the nighttime ozone concentration in Jinan and Beijing, China, during Chinese New Year, a period with intense fireworks. A signal of 3-8ppbv ozone was detected and positively correlated to NO and SO 2 , suggesting a considerable influence of these chemicals in interfering with ambient ozone monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effects of orbit and pointing geometry of a spaceborne formation for monostatic-bistatic radargrammetry on terrain elevation measurement accuracy.

    Science.gov (United States)

    Renga, Alfredo; Moccia, Antonio

    2009-01-01

    During the last decade a methodology for the reconstruction of surface relief by Synthetic Aperture Radar (SAR) measurements - SAR interferometry - has become a standard. Different techniques developed before, such as stereo-radargrammetry, have been experienced from space only in very limiting geometries and time series, and, hence, branded as less accurate. However, novel formation flying configurations achievable by modern spacecraft allow fulfillment of SAR missions able to produce pairs of monostatic-bistatic images gathered simultaneously, with programmed looking angles. Hence it is possible to achieve large antenna separations, adequate for exploiting to the utmost the stereoscopic effect, and to make negligible time decorrelation, a strong liming factor for repeat-pass stereo-radargrammetric techniques. This paper reports on design of a monostatic-bistatic mission, in terms of orbit and pointing geometry, and taking into account present generation SAR and technology for accurate relative navigation. Performances of different methods for monostatic-bistatic stereo-radargrammetry are then evaluated, showing the possibility to determine the local surface relief with a metric accuracy over a wide range of Earth latitudes.

  5. Ozone Antimicrobial Efficacy

    Science.gov (United States)

    Ozone is a potent germicide that has been used extensively for water purification. In Europe, 90 percent of the municipal water systems are treated with ozone, and in France, ozone has been used to treat drinking water since 1903. However, there is limited information on the bioc...

  6. Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system

    Directory of Open Access Journals (Sweden)

    L. Li

    2012-11-01

    Full Text Available A high O3 episode was detected in urban Shanghai, a typical city in the Yangtze River Delta (YRD region in August 2010. The CMAQ integrated process rate method is applied to account for the contribution of different atmospheric processes during the high pollution episode. The analysis shows that the maximum concentration of ozone occurs due to transport phenomena, including vertical diffusion and horizontal advective transport. Gas-phase chemistry producing O3 mainly occurs at the height of 300–1500 m, causing a strong vertical O3 transport from upper levels to the surface layer. The gas-phase chemistry is an important sink for O3 in the surface layer, coupled with dry deposition. Cloud processes may contribute slightly to the increase of O3 due to convective clouds or to the decrease of O3 due to scavenging. The horizontal diffusion and heterogeneous chemistry contributions are negligible during the whole episode. Modeling results show that the O3 pollution characteristics among the different cities in the YRD region have both similarities and differences. During the buildup period, the O3 starts to appear in the city regions of the YRD and is then transported to the surrounding areas under the prevailing wind conditions. The O3 production from photochemical reaction in Shanghai and the surrounding area is most significant, due to the high emission intensity in the large city; this ozone is then transported out to sea by the westerly wind flow, and later diffuses to rural areas like Chongming island, Wuxi and even to Nanjing. The O3 concentrations start to decrease in the cities after sunset, due to titration of the NO emissions, but ozone can still be transported and maintain a significant concentration in rural areas and even regions outside the YRD region, where the NO emissions are very small.

  7. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  8. Comparison of four different chemical reaction schemes (CBM-IV, EMEP, Euro-RADM, RADM II) for the modelling of ozone formation

    International Nuclear Information System (INIS)

    Musalek, G.; Winiwarter, W.

    1995-08-01

    Four different chemical reaction schemes (mechanisms) were tested for their applicability for inclusion in an ozone model for Eastern Austria (Pannonia) which is being developed within the Pannonian Ozone Project (POP). For this task, a box model (OZIP-W) was used. Input data were taken from actual meteorology, from background measurements and from an emission inventory for Austria. A number of scenarios were tested with all four mechanisms (CBM-IV, EMEP, RADM-II and Euro-RADM). A nine-hour daytime summer period was modelled in every case. Distinctive differences could be observed between the respective scenarios. Large influences of emission levels, of a short-term intrusion of polluted urban air, of precursor entrainment from an upper layer and of the way certain compounds like ethanol were attributed into the chemistry scheme were seen. Little difference was observed for using a detailed temporal resolution in the inventory and for the actual temperature. These differences, however, were almost identical for each of the chemical mechanisms. The mechanisms mainly differed in secondary reaction products like HO 2 and H 2 O 2 concentrations. Comparison with measurement results (airborne as well as ground based) therefore were not able to support a selection, especially since H 2 O 2 measurerment data (which otherwise seem to support RADM or EuroRADM) are only available for a different time period. Therefore the general characteristics of the mechanisms had to be taken as criteria. Special consideration was put on the comparison of measurement resu1ts with model runs. As within the POP detailed measurements of VOC will be available, the mechanism which has the most detailed VOC speciation seemed most appropriate. A decision was taken to apply the Euro-RADM chemical scheme for the POP-Model. (author)

  9. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    Energy Technology Data Exchange (ETDEWEB)

    Bernacchi, Carl J., E-mail: bernacch@illinois.edu [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Leakey, Andrew D.B. [Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kimball, Bruce A. [USDA-ARS US Arid-Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ 85238 (United States); Ort, Donald R. [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-06-15

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O{sub 3}]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O{sub 3}] on crop ecosystem energy fluxes and water use. Elevated [O{sub 3}] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: > Globally, tropospheric ozone is currently and will likely continue to increase into the future. > We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. > High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. > Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  10. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    International Nuclear Information System (INIS)

    Bernacchi, Carl J.; Leakey, Andrew D.B.; Kimball, Bruce A.; Ort, Donald R.

    2011-01-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O 3 ]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O 3 ] on crop ecosystem energy fluxes and water use. Elevated [O 3 ] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: → Globally, tropospheric ozone is currently and will likely continue to increase into the future. → We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. → High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. → Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  11. Nicotiana tabacum as model for ozone - plant surface reactions

    Science.gov (United States)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  12. CO2-gas-exchange and transpiration of open-grown Norway spruce during the year in higher elevations of the Southern Black Forest under local air-conditions with and without ozone

    International Nuclear Information System (INIS)

    Abetz, P.; Kuenstle, E.; Wolfart, A.

    1993-03-01

    Aim and method: CO 2 -gas-exchange and transpiration of open-grown Norway spruce (about 12 m high) on the top of the Black Forest (1230 m a.s.l.) near Freiburg under local conditions with and without ozone are being continiously measured through the whole year. In the same intensity are registered the temperature of soil, needles, twigs, stem and air, the humidity in soil and air and the diameter-changes of the stem. Nearby other institutions measure the quality of air and depositions. Results: In winter with less snowfall, higher temperature and higher insolation, the youngest twigs of the spruce had a lower net-photosynthesis but a higher respiration at night on the southern part versus nothern part (with more shade). Perhaps it happened an inactivity of the photosynthesis-apparatus because of too high insolation. In the same time the colour of the needles on the southern part changed to yellowish green (on the northern part they remained dark green). During dry summer periods the photosynthesis dropped earlier and deeper. The 'radial-increment' stagnated. There was no difference in the gas-exchange when the ozone concentration had been enlarged, neither in winter nor in summertime. (orig.). 57 figs., 12 tabs., 178 refs [de

  13. Triple oxygen and sulfur isotope analyses of sulfate extracted from voluminous volcanic ashes in the Oligocene John Day Formation: insight into dry climate conditions and ozone contribution to supereruptions

    Science.gov (United States)

    Workman, J.; Bindeman, I. N.; Martin, E.; Retallack, G.; Palandri, J. L.; Weldon, N.

    2014-12-01

    Large volume pyroclastic silicic eruptions emit hundreds of megatons of SO2 into the troposphere and stratosphere that is oxidized into sulfuric acid (H2SO4) by a variety of reactions with mass independent oxygen signatures (MIF), Δ17O>0. Sulfuric acid is then preserved as gypsum in parental volcanic deposits. Diagenic effects are mass dependent and can dilute, but otherwise do not affect MIF ratios. Pleistocene Yellowstone and Bishop tuffs and modern volcanic eruptions preserved under arid climate conditions in North American playa lakes, preserve small amounts of volcanic sulfate as gypsum. This gypsum's Δ17O>0, in combination with isotopic variations of δ18O, δ33S and δ34S is distinct from sedimentary sulfate and reveals its original MIF sulfate isotopic signal and the effect of super eruptions on the atmosphere, and ozone consumption in particular. We use linear algebraic equations to resolve volcanic versus sedimentary (MIF=0) sources. We have found that many large volume ignimbrites have very high initial Δ17O in volcanic sulfate that can only be acquired from reaction with stratospheric ozone. We here investigate nine thick (>2 m) ash beds ranging in age from ~33-23 Ma in the John Day Formation of central Oregon, including massive 28.6 Ma Picture Gorge tuff of newly identified Crooked River supercaldera. The 28.6 Ma Picture Gorge tuff (PGT) has the highest measured Δ17O of 3.5‰, and other tuffs (Tin Roof, Biotite, Deep Creek) have +1.3 to 3.4‰ Δ17O excesses. Sulfate from modern smaller tropospheric eruptions studied for comparison have a resolvable 0.4‰ range consistent with liquid-phase based H2O2 oxidation. The PGT is coeval with the ignimbrite flare-up in western N. America, the 28-29 Ma eruption of the 5000 km3 Fish Canyon tuff and the 28 Ma Never Summer Field eruption in Nebraska-Colorado that have the highest measured Δ17O of 6‰ (Bao et al. 2003). We speculate on the climatic/atmospheric effects of these multiple ~28 Ma supereruptions

  14. Greater Vancouver's water supply receives ozone treatment

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, J.; Singh, I.; Reil, D. D.; Neden, G.

    2000-10-01

    To improve the overall quality of the treated water delivered to the member municipalities of the Greater Vancouver Water District (GVWD), the GVWD implemented a phased drinking water quality improvement program. The phased treatment program is directed at attaining effective disinfection while minimizing the formation of chlorinated disinfection by-products. Accordingly, the current primary disinfection method of chlorination was reevaluated and an ozone primary disinfection without filtration was authorized. Ozonization provides increased protection against Giardia and Cryptosporidium and a decrease in the formation potential for disinfection by-products (DPBs). This paper describes the design for the ozonation facility at Coquitlam, construction of which began in 1998 and completed during the summer of 2000. The facility houses the liquid oxygen supply, ozone generation, cooling water, ozone injection, primary off-gas ozone destruct system, and provides a home for various office, electrical maintenance and diesel generating functions. The second site at Capilano is expected to start construction in the fall of 2000 and be completed late in 2002. Wit its kilometre long stainless steel ozone contactor and sidestream injector tower, the Coquitlam Ozonation Facility is the first ozone pressure injection system of its kind in North America. 1 tab., 2 figs.

  15. Modelled surface ozone over southern africa during the cross border air pollution impact assessment project

    CSIR Research Space (South Africa)

    Zunckel, M

    2006-07-01

    Full Text Available , T.S., Kasibhatla, P., Hao, W., Sistla, G., Mathur, R., Mc Henry, J., 2001. Evaluating the performance of regional-scale photochemical modelling systems: Part II-ozone predictions. Atmospheric Environment 35, 4175e4188. Jenkins, M.J., Clemitshaw, K.... These conditions are favourable to the formation of ozone and suggest that ozone concentrations over southern Africa may be relatively high. Ozone is an important constituent in tropospheric chemistry (Jenkins and Clemitshaw, 2000). It is also associated...

  16. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y A [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I V [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V U [Central Aerological Observatory, Moscow (Russian Federation)

    1996-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  17. The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations

    Science.gov (United States)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.

  18. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y.A. [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I.V. [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Moscow (Russian Federation)

    1995-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  19. The stratospheric ozone and the ozone layer

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez Jesus Antonio

    2000-01-01

    An overview is presented of the principal characteristics of the stratospheric ozone in the Earth's atmosphere, with particular emphasis on the tropics and the ozone hole over the poles. Some effects produced in the atmosphere as a consequence of the different human activities will be described, and some data on stratospheric ozone will be shown. We point out the existence of a nucleus of least ozone in the tropics, stretching from South America to central Africa, with annual mean values less than 240 DU, a value lower than in the middle latitudes and close to the mean values at the South Pole. The existence of such a minimum is confirmed by mean values from measurements made on satellites or with earthbound instruments, for different sectors in Colombia, like Medellin, Bogota and Leticia

  20. Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways

    Science.gov (United States)

    Drozd, Greg T.; Worton, David R.; Aeppli, Christoph; Reddy, Christopher M.; Zhang, Haofei; Variano, Evan; Goldstein, Allen H.

    2015-11-01

    Releases of hydrocarbons from oil spills have large environmental impacts in both the ocean and atmosphere. Oil evaporation is not simply a mechanism of mass loss from the ocean, as it also causes production of atmospheric pollutants. Monitoring atmospheric emissions from oil spills must include a broad range of volatile organic compounds (VOC), including intermediate-volatile and semivolatile compounds (IVOC, SVOC), which cause secondary organic aerosol (SOA) and ozone production. The Deepwater Horizon (DWH) disaster in the northern Gulf of Mexico during Spring/Summer of 2010 presented a unique opportunity to observe SOA production due to an oil spill. To better understand these observations, we conducted measurements and modeled oil evaporation utilizing unprecedented comprehensive composition measurements, achieved by gas chromatography with vacuum ultraviolet time of flight mass spectrometry (GC-VUV-HR-ToFMS). All hydrocarbons with 10-30 carbons were classified by degree of branching, number of cyclic rings, aromaticity, and molecular weight; these hydrocarbons comprise ˜70% of total oil mass. Such detailed and comprehensive characterization of DWH oil allowed bottom-up estimates of oil evaporation kinetics. We developed an evaporative model, using solely our composition measurements and thermodynamic data, that is in excellent agreement with published mass evaporation rates and our wind-tunnel measurements. Using this model, we determine surface slick samples are composed of oil with a distribution of evaporative ages and identify and characterize probable subsurface transport of oil.

  1. Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan

    International Nuclear Information System (INIS)

    Dozmorov, Mikhail G; Lin, Hsueh-Kung; Azzarello, Joseph T; Wren, Jonathan D; Fung, Kar-Ming; Yang, Qing; Davis, Jeffrey S; Hurst, Robert E; Culkin, Daniel J; Penning, Trevor M

    2010-01-01

    Aldo-keto reductase (AKR) 1C family member 3 (AKR1C3), one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa) aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression. To recapitulate elevated AKR1C3 expression in cancerous prostate, the human PCa PC-3 cell line was stably transfected with an AKR1C3 expression construct to establish PC3-AKR1C3 transfectants. Microarray and bioinformatics analysis were performed to identify AKR1C3-mediated pathways of activation and their potential biological consequences in PC-3 cells. Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and an in vitro Matrigel angiogenesis assays were applied to validate the pro-angiogenic activity of PC3-AKR1C3 transfectants identified by bioinformatics analysis. Microarray and bioinformatics analysis suggested that overexpression of AKR1C3 in PC-3 cells modulates estrogen and androgen metabolism, activates insulin-like growth factor (IGF)-1 and Akt signaling pathways, as well as promotes tumor angiogenesis and aggressiveness. Levels of IGF-1 receptor (IGF-1R) and Akt activation as well as vascular endothelial growth factor (VEGF) expression and secretion were significantly elevated in PC3-AKR1C3 transfectants in comparison to PC3-mock transfectants. PC3-AKR1C3 transfectants also promoted endothelial cell (EC) tube formation on Matrigel as compared to the AKR1C3-negative parental PC-3 cells and PC3-mock transfectants. Pre-treatment of PC3-AKR1C3 transfectants with a selective IGF-1R kinase inhibitor (AG1024) or a non-selective phosphoinositide 3-kinases (PI3K) inhibitor (LY294002) abolished ability of the cells to promote EC tube formation. Bioinformatics

  2. Ozone therapy in periodontics.

    Science.gov (United States)

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  3. Brief communication "Stratospheric winds, transport barriers and the 2011 Arctic ozone hole"

    Directory of Open Access Journals (Sweden)

    M. J. Olascoaga

    2012-12-01

    Full Text Available The Arctic stratosphere throughout the late winter and early spring of 2011 was characterized by an unusually severe ozone loss, resulting in what has been described as an ozone hole. The 2011 ozone loss was made possible by unusually cold temperatures throughout the Arctic stratosphere. Here we consider the issue of what constitutes suitable environmental conditions for the formation and maintenance of a polar ozone hole. Our discussion focuses on the importance of the stratospheric wind field and, in particular, the importance of a high latitude zonal jet, which serves as a meridional transport barrier both prior to ozone hole formation and during the ozone hole maintenance phase. It is argued that stratospheric conditions in the boreal winter/spring of 2011 were highly unusual inasmuch as in that year Antarctic-like Lagrangian dynamics led to the formation of a boreal ozone hole.

  4. An Elevated Reservoir of Air Pollutants over the Mid-Atlantic States During the 2011 DISCOVER-AQ Campaign: Airborne Measurements and Numerical Simulations

    Science.gov (United States)

    He, Hao; Loughner, Christopher P.; Stehr, Jeffrey W.; Arkinson, Heather L.; Brent, Lacey C.; Follette-Cook, Melanie B.; Tzortziou, Maria A.; Pickering, Kenneth E.; Thompson, Anne M.; Martins, Douglas K.; hide

    2013-01-01

    During a classic heat wave with record high temperatures and poor air quality from July 18 to 23, 2011, an elevated reservoir of air pollutants was observed over and downwind of Baltimore, MD, with relatively clean conditions near the surface. Aircraft and ozonesonde measurements detected approximately 120 parts per billion by volume ozone at 800 meters altitude, but approximately 80 parts per billion by volume ozone near the surface. High concentrations of other pollutants were also observed around the ozone peak: approximately 300 parts per billion by volume CO at 1200 meters, approximately 2 parts per billion by volume NO2 at 800 meters, approximately 5 parts per billion by volume SO2 at 600 meters, and strong aerosol optical scattering (2 x 10 (sup 4) per meter) at 600 meters. These results suggest that the elevated reservoir is a mixture of automobile exhaust (high concentrations of O3, CO, and NO2) and power plant emissions (high SO2 and aerosols). Back trajectory calculations show a local stagnation event before the formation of this elevated reservoir. Forward trajectories suggest an influence on downwind air quality, supported by surface ozone observations on the next day over the downwind PA, NJ and NY area. Meteorological observations from aircraft and ozonesondes show a dramatic veering of wind direction from south to north within the lowest 5000 meters, implying that the development of the elevated reservoir was caused in part by the Chesapeake Bay breeze. Based on in situ observations, Community Air Quality Multi-scale Model (CMAQ) forecast simulations with 12 kilometers resolution overestimated surface ozone concentrations and failed to predict this elevated reservoir; however, CMAQ research simulations with 4 kilometers and 1.33 kilometers resolution more successfully reproduced this event. These results show that high resolution is essential for resolving coastal effects and predicting air quality for cities near major bodies of water such as

  5. ATTENUATION OF THE DISRUPTIVE EFFECTS INDUCED BY GAMMA IRRADIATION IN RATS USING OZONATED WATER AND/OR TAURINE

    International Nuclear Information System (INIS)

    HEIBASHY, M.I.A.; SHAROUD, M.N.M.

    2008-01-01

    People can be exposed to irradiation either external or internal. The potential for health effects depends in part on the radiation dose delivered, the rate of delivery and where in the body particular radionuclides are concentrated. All radionuclides are partly absorbed from the lung and intestinal tract into the blood stream causing oxidation and free radical formation.In the first experiment, the data showed that the ionizing radiation induced a significant increment in the levels of serum glucose and lipid profile (cholesterol, triglycerides, HDL and LDL) and elevation in the activities of both serum AST and ALT. On the other hand, the ionizing radiation induced a significant decline in the concentrations of serum insulin, total protein, albumin and free T 3 while no remarkable change was occurred on the level of free T 4 . In case of exposing rat to gamma ray, both liver GSH and GPx activities were decreased while the level of liver TBARS was significantly elevated as compared to the corresponding normal control group.In the second experiment, a significant correction was occurred in all previous parameters after the irradiated rats were treated with taurine (500 mg/100g body weight/ day for one month) while the irradiated rats which received ozonated water showed no remarkable changes in the levels of estimated parameters. The best amelioration effect was occurred in the previous parameters in irradiated rats which were treated with both taurine and ozone (ozonated water) for one month.It could be concluded that taurine is considered as a radio-protector agent while ozone (ozonated water) acts as co-radioprotector agent when the irradiated animals are treated by a mixture of those agents

  6. SMM mesospheric ozone measurements

    Science.gov (United States)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  7. Coincident Observations of Surface Ozone and NMVOCs over Abu Dhabi

    Science.gov (United States)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Tarasick, David; Davies, Jonathan; Riemer, Daniel; Apel, Eric

    2016-07-01

    The vertical profiles of ozone are measured coincidently with non-methane volatile organic compounds (NMVOCs) at the meteorological site located at the Abu Dhabi international airport (latitude 24.45N; longitude 54.22E) during the years 2012 - 2014. Some of the profiles show elevated surface ozone >95 ppbv during the winter months (December, January and February). The ground-level NMVOCs obtained from the gas chromatography-flame ionization detection/mass spectrometry system also show elevated values of acetylene, ethane, propane, butane, pentane, benzene, and toluene. NMVOCs and ozone abundances in other seasons are much lower than the values in winter season. NMVOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption, and serve as precursor of ozone. Transport sources contribute a substantial portion of the NMVOC burden to the urban atmosphere in developed regions. Abu Dhabi is located at the edge of the Arabian Gulf and is highly affected by emissions from petrochemical industries in the neighboring Gulf region. The preliminary results indicate that wintertime enhancement in ozone is associated with large values of NMVOCs at Abu Dhabi. The domestic production of surface ozone is estimated from the combination of oxygen recombination and NMVOCs and compared with the data. It is estimated that about 40-50% of ozone in Abu Dhabi is transported from the neighbouring petrochemical industries. We will present ozone sounding and NMVOCs data and our model estimates of surface ozone, including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  8. Geomorphology Classification of Shandong Province Based on Digital Elevation Model in the 1 Arc-second Format of Shuttle Radar Topography Mission Data

    Science.gov (United States)

    Fu, Jundong; Zhang, Guangcheng; Wang, Lei; Xia, Nuan

    2018-01-01

    Based on gigital elevation model in the 1 arc-second format of shuttle radar topography mission data, using the window analysis and mean change point analysis of geographic information system (GIS) technology, programmed with python modules this, automatically extracted and calculated geomorphic elements of Shandong province. The best access to quantitatively study area relief amplitude of statistical area. According to Chinese landscape classification standard, the landscape type in Shandong province was divided into 8 types: low altitude plain, medium altitude plain, low altitude platform, medium altitude platform, low altitude hills, medium altitude hills, low relief mountain, medium relief mountain and the percentages of Shandong province’s total area are as follows: 12.72%, 0.01%, 36.38%, 0.24%, 17.26%, 15.64%, 11.1%, 6.65%. The results of landforms are basically the same as the overall terrain of Shandong Province, Shandong province’s total area, and the study can quantitatively and scientifically provide reference for the classification of landforms in Shandong province.

  9. Fast Flow Cavity Enhanced Ozone Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Naturally occurring in the stratosphere, ozone plays a significant role in many atmospheric reactions, cloud formation, and is the key player in shielding harmful UV...

  10. New Directions: Ozone-initiated reaction products indoors may be more harmful than ozone itself

    Science.gov (United States)

    Weschler, Charles J.

    2004-10-01

    Epidemiological studies have found associations between ozone concentrations measured at outdoor monitoring stations and certain adverse health outcomes. As a recent example, Gent et al. (2003, Journal of the American Medical Association 290, 1859-1867) have observed an association between ozone levels and respiratory symptoms as well as the use of maintenance medication by 271 asthmatic children living in Connecticut and the Springfield area of Massachusetts. In another example, Gilliland et al. (2001, Epidemiology 12, 43-54) detected an association between short-term increases in ozone levels and increased absences among 4th grade students from 12 southern California communities during the period from January to June 1996. Although children may spend a significant amount of time outdoors, especially during periods when ozone levels are elevated, they spend a much larger fraction of their time indoors. I hypothesize that exposure to the products of ozone-initiated indoor chemistry is more directly responsible for the health effects observed in the cited epidemiological studies than is exposure to outdoor ozone itself.

  11. Effects of elevated ozone concentrations on reactive oxygen metabolism and related gene expression in Ginkgo biloba leaves%大气臭氧浓度升高对银杏叶片活性氧代谢及相关基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    阮亚男; 徐胜; 郭龙; 朱明珠; 王聪; 李淑媛; 王红艳

    2017-01-01

    By using the open top chambers (OTCs) fumigation method,this paper investigated the changes of foliar injury,level of reactive oxygen species (ROS),activities and gene expression of antioxidant enzymes in Ginkgo biloba leaves under different ozone (ambient ozone≈40,80,160,200 nmol · mol-1) concentrations,in order to study the effects of elevated ozone (O3) concentrations on reactive metabolism.The results showed that the obvious foliar injuries were observed in 160 and 200 nmol mol-1 O3 treatments,while no visible injury was observed in 80 nmol · mol-1 O3 and ambient O3 treatments.After 20 d,a significant increase in O2 generation rate was observed in G.biloba leaves exposed to 160,200 nmol · mol-1 O3,compared with ambient ozone and 80 nmol · mol-1 O3,and there were no significant differences between ambient O3 and 80 nmol · mol-1 treatments.After 40 d,H2O2 content of G.biloba leaves in 160 and 200 nmol · mol-1 O3 was significantly higher than that in 80 nmol · mol-1 and ambient ozone,respectively.The activities of catalase (CAT) in 160 and 200 nmol · mol-1 treatments were also significantly higher than that in 80 nmol · mol-1 and ambient O3 treatments.The ascorbate peroxidase (APX) activity of leaves for each elevated O3 treatment was lower than that of ambient ozone.The level of CAT and APX expression increased progressively after 40 d O3 treatment.The expression intensity of GbD was conspicuously strengthened along with the increase of ozone concentration and fumigation time.Level of reactive oxygen increased,activities of antioxidant enzyme decreased,level of gene expression down-regulated,and foliar visible injury was observed in leaves of G.biloba in elevated ozone stress.%采用开顶式气室熏蒸法,设置自然条件下臭氧(O3)浓度(对照,约40 nmol·mol-1)、80、160及200 nmol·mol-14个臭氧浓度,观测了不同浓度臭氧条件下银杏叶片可见伤害、活性氧生成量、抗氧化酶活性及相关基因表达变化情况,分

  12. Molecular storage of ozone in a clathrate hydrate: an attempt at preserving ozone at high concentrations.

    Directory of Open Access Journals (Sweden)

    Takahiro Nakajima

    Full Text Available This paper reports an experimental study of the formation of a mixed O(3+ O(2+ CO(2 hydrate and its frozen storage under atmospheric pressure, which aimed to establish a hydrate-based technology for preserving ozone (O(3, a chemically unstable substance, for various industrial, medical and consumer uses. By improving the experimental technique that we recently devised for forming an O(3+ O(2+ CO(2 hydrate, we succeeded in significantly increasing the fraction of ozone contained in the hydrate. For a hydrate formed at a system pressure of 3.0 MPa, the mass fraction of ozone was initially about 0.9%; and even after a 20-day storage at -25°C and atmospheric pressure, it was still about 0.6%. These results support the prospect of establishing an economical, safe, and easy-to-handle ozone-preservation technology of practical use.

  13. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra

    International Nuclear Information System (INIS)

    Khaling, Eliezer; Papazian, Stefano; Poelman, Erik H.; Holopainen, Jarmo K.; Albrectsen, Benedicte R.; Blande, James D.

    2015-01-01

    When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under elevated ozone conditions. The direct and indirect effects of ozone on the plant-herbivore system were studied. In both cases ozone exposure had a negative effect on P. brassicae development. However, in dual-choice tests larvae preferentially consumed plant material previously fumigated with the highest concentration tested, showing a lack of correlation between larval preference and performance on ozone exposed plants. Metabolomic analysis of leaf material subjected to combinations of ozone and herbivore-feeding, and focussing on known defence metabolites, indicated that P. brassicae behaviour and performance were associated with ozone-induced alterations to glucosinolate and phenolic pools. - Highlights: • We examined the effects of ozone on Pieris brassicae performance and preference. • We studied ozone and herbivore induced changes in the metabolome of Brassica nigra. • The performance of P. brassicae did not correlate with preference of ozonated plants. • Ozone and herbivore-feeding stress changes the phytochemical pools of B. nigra. - Ozone indirectly reduces herbivore performance, which is associated with change in phytochemical pools, but does not correlate with host plant preference

  14. Pollution Control Using Ozone

    DEFF Research Database (Denmark)

    2017-01-01

    This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone.......This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone....

  15. TOWARDS RELIABLE AND COST-EFFECTIVE OZONE EXPOSURE ASSESSMENT: PARAMETER EVALUATION AND MODEL VALIDATION USING THE HARVARD SOUTHERN CALIFORNIA CHRONIC OZONE EXPOSURE STUDY DATA

    Science.gov (United States)

    Accurate assessment of chronic human exposure to atmospheric criteria pollutants, such as ozone, is critical for understanding human health risks associated with living in environments with elevated ambient pollutant concentrations. In this study, we analyzed a data set from a...

  16. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    Science.gov (United States)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  17. Measurements of ozone and its precursors in Beijing in summer

    Science.gov (United States)

    Lee, J. D.; Squires, F. A.; Dunmore, R.; Hamilton, J. F.; Hopkins, J. R.; Rickard, A. R.

    2017-12-01

    Over the past few years there have been substantial reductions in emission of primary pollutants (e.g. PM, NOx) in Beijing. However, levels of ozone (O3), which is produced from VOCs and NOxin the presence of sunlight, frequently break recommended exposure limits in Beijing and other large conurbations in China. In fact, it is suggested that ozone is likely to become the major air pollutant effecting human health in Beijing over the next 5-10 years. For 5 weeks in May and June 2017 O3 was measured, along with NOx, CO and a large range of VOCs (C2 - C13) at the Institute of Atmospheric Physics of the Chinese Academy of Sciences site, close to the 4th ring road in central Beijing. Elevated levels of O3 were regularly observed, with maximum concentrations of 180 ppbv. On 75% of days during this period, O3 breached the recommended WHO 8 hour exposure limit of 60 ppbv. Data will be presented showing the effect of different levels of precursor species and photolysis rates on O3. The peak concentration of O3 on each day seemed to have little correlation with NOx. Typically NO concentrations were elevated during the morning but often decreased to below 35oC meaning biogenic emissions also influenced the chemistry at the site, with several ppbv of isoprene measured during the afternoons. The importance of different VOCs for in-situ O3 formation is investigated using a simple steady state analysis of OH reactivity, along with a more detailed analysis using the Master Chemical Mechanism.

  18. Interaction between isoprene and ozone fluxes at ecosystem level in a poplar plantation and its impact at European level

    Science.gov (United States)

    Zenone, T.; Hendriks, C.; Brilli, F.; Gioli, B.; Portillo Estrada, M.; Schaap, M.; Ceulemans, R.

    2015-12-01

    The emissions of Biogenic volatile organic compounds (BVOCs) from vegetation, mainly in form of isoprenoids, play an important role in the tropospheric ozone (O3) formation. The potential large expansion of isoprene emitter species (e.g. poplar) as biofuels feedstock might impact the ground level O3 formation. Here we report the simultaneous observations, using the eddy covariance (EC) technique, of isoprene, O3 and CO2 fluxes in a short rotation coppice (SRC) of poplar. The impact of current poplar plantations and associated isoprene emissions on ground level ozone concentrations for Europe was evaluated using a chemistry transport model (CTM) LOTOS-EUROS. The isoprene fluxes showed a well-defined seasonal and daily cycle that mirrored with the stomata O3 uptake. The isoprene emission and the stomata O3 uptake showed significant statistical relationship especially at elevated temperature. Isoprene was characterized by a remarkable peak of emissions (e.g. 38 nmol m-2s-1) occurring for few days as a consequence of the rapid variation of the air and surface temperature. During these days the photosynthetic apparatus (i.e. the CO2 fluxes) and transpiration rates did not show significant variation while we did observe a variation of the energy exchange and a reduction of the bowen ratio. The response of isoprene emissions to ambient O3 concentration follows the common form of the hormetic dose-response curve with a considerable reduction of the isoprene emissions at [O3] > 80 ppbv indicating a potential damping effect of the O3 levels on isoprene. Under the current condition the impact of SRC plantations on ozone concentrations / formation is very limited in Europe. Our findings indicate that, even with future scenarios with more SRC, or conventional poplar plantations, the impact on Ozone formation is negligible.

  19. Estonian total ozone climatology

    Directory of Open Access Journals (Sweden)

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  20. Ozone as an air pollutant

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  1. The study of international and interstate transport of ozone in Yuma, Arizona

    Science.gov (United States)

    Li, Y.; Sonenberg, M.; Wood, J. L.; Pearson, C. R.; Colson, H.; Malloy, J. W.; Pace, M.; Mao, F.; Paul, J.; Busby, B. R.; Parkey, B.; Drago, L.; Franquist, T. S.

    2017-12-01

    In October 2015, EPA reduced the National Ambient Air Quality Standards (NAAQS) for ozone from 75 parts per billion (ppb) to 70 ppb. Meeting the new standard may be extremely challenging for some areas, including rural Yuma County in the State of Arizona. Yuma County faces unique air quality challenges, since it borders the Mexican states of Baja California and Sonora, and the State of California. The present study investigates the contribution of international and interstate transport of ozone and ozone precursors to episodes of elevated ozone concentrations in Yuma. The Arizona Department of Environmental Quality (ADEQ) merged HYSPLIT modeling outputs with two years of hourly ground ozone monitor data to investigate the potential area contributions to ozone concentrations in Yuma County. This analysis found that elevated ozone concentrations in Yuma in 2014 and 2015 frequently coincided with back-trajectories over both California and Mexico, typically favoring Mexico during the spring. In May 2017, ADEQ installed a new ozone monitor in San Luis Rio Colorado, Sonora, Mexico (Latitude: 32.4665, Longitude: -114.7688), which is 29 km south of ozone site in Yuma County. We will present the first simultaneous observations of ozone seasons in Sonora, Mexico, eastern California, and Yuma.

  2. Measurements of the potential ozone production rate in a forest

    Science.gov (United States)

    Crilley, L.; Sklaveniti, S.; Kramer, L.; Bloss, W.; Flynn, J. H., III; Alvarez, S. L.; Erickson, M.; Dusanter, S.; Locoge, N.; Stevens, P. S.; Millet, D. B.; Alwe, H. D.

    2017-12-01

    Biogenic volatile organic compounds (BVOC) are a significant source of organic compounds globally and alongside NOx play a key role in the formation of ozone in the troposphere. Understanding how changes in NOx concentrations feed through to altered ozone production in BVOC dominated environments will aid our understanding of future atmospheric composition, notably as developing nations transition from NOx dominated to NOx limited chemistry as a result of mitigation strategies. Here we empirically investigate this ambient ozone formation potential. We report deployment of a custom built instrument to measure in near real time the potential for in situ chemical ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for a sampled ambient air mixture, including full VOC complexity, i.e. independent of characterization of individual organic compounds. Ground level measurements were performed as part of the PROPHET-AMOS 2016 field campaign, at a site located within a Northern Michigan forest that has typically low NOx abundance, but high isoprene and terpenoid loadings. As the ambient NOx concentrations were low during the campaign, experiments were performed in which NO was artificially added to the sampled ambient air mixture, to quantify changes in the potential ozone production rate as a function of NOx, and hence the ozone forming characteristics of the ambient air. Preliminarily results from these experiments are presented, and indicate that while ozone production increases with added NO, significant variation was observed for a given NO addition, reflecting differences in the ambient VOC chemical reactivity and ozone formation tendency.

  3. Mechanisms for formation of organic acids in gas-phase reactions of ozone and hydroxyl radical with dialkenes and unsaturated carbonyls

    Science.gov (United States)

    Chien, Chao-Jung

    2001-07-01

    Carboxylic acids are ubiquitous throughout the troposphere and may contribute significant fractions of the free acidity in some remote areas. One of the important sources of these carboxylic acids is thought to be photochemical transformation of biogenic hydrocarbons such as isoprene. For the work reported here, atmospheric samples from University of North Carolina dual outdoor environmental chamber under simulated urban atmospheric conditions were analyzed for carboxylic acids. Both OH radicals and O3 initiated photooxidation reaction experiments were performed for isoprene, along with its structural analogs, 1,3-butadiene and 2,3-dimethyl-1,3-butadiene, and their primary photooxidation products, methacrolein, acrolein, and methyl vinyl ketone. Among the detected carboxylic acids were formic, acetic, and several multifunctional carboxylic acids, including methacrylic, acrylic, glyoxylic, and glycolic acids. Quantification of most carboxylic acid products was also established. Formation yields of carboxylic acids from the reactions of O3 with studied compounds were determined, and time-concentration series of the reactants and carboxylic acid products were measured to facilitate mechanism formulation. While the reaction mechanisms of Criegee biradicals arising from decomposition of primary ozonides are proposed to account for the observed carboxylic acid products in the ozonolysis of unsaturated hydrocarbons, reactions of peroxy acyl radicals with HO2 and/or other peroxy radicals are thought to be responsible for the formation of carboxylic acids during the OH-initiated reactions in the presence of NOx. In this study, smog chamber simulations have also been performed for selected compounds using Morpho, a photochemical kinetic simulation software package. Explicit photochemical mechanisms with O 3 and OH radicals that lead to formation of carboxylic acids were elaborated and implemented, and the simulation results were compared with those from other chemical

  4. Time series analysis of ozone data in Isfahan

    Science.gov (United States)

    Omidvari, M.; Hassanzadeh, S.; Hosseinibalam, F.

    2008-07-01

    Time series analysis used to investigate the stratospheric ozone formation and decomposition processes. Different time series methods are applied to detect the reason for extreme high ozone concentrations for each season. Data was convert into seasonal component and frequency domain, the latter has been evaluated by using the Fast Fourier Transform (FFT), spectral analysis. The power density spectrum estimated from the ozone data showed peaks at cycle duration of 22, 20, 36, 186, 365 and 40 days. According to seasonal component analysis most fluctuation was in 1999 and 2000, but the least fluctuation was in 2003. The best correlation between ozone and sun radiation was found in 2000. Other variables which are not available cause to this fluctuation in the 1999 and 2001. The trend of ozone is increasing in 1999 and is decreasing in other years.

  5. Impacts of increasing ozone on Indian plants

    International Nuclear Information System (INIS)

    Oksanen, E.; Pandey, V.; Pandey, A.K.; Keski-Saari, S.; Kontunen-Soppela, S.; Sharma, C.

    2013-01-01

    Increasing anthropogenic and biogenic emissions of precursor compounds have led to high tropospheric ozone concentrations in India particularly in Indo-Gangetic Plains, which is the most fertile and cultivated area of this rapidly developing country. Current ozone risk models, based on European and North American data, provide inaccurate estimations for crop losses in India. During the past decade, several ozone experiments have been conducted with the most important Indian crop species (e.g. wheat, rice, mustard, mung bean). Experimental work started in natural field conditions around Varanasi area in early 2000's, and the use of open top chambers and EDU (ethylene diurea) applications has now facilitated more advanced studies e.g. for intra-species sensitivity screening and mechanisms of tolerance. In this review, we identify and discuss the most important gaps of knowledge and future needs of action, e.g. more systematic nationwide monitoring for precursor and ozone formation over Indian region. -- Tropospheric ozone is an increasing threat to food production in India

  6. OZONE ABSORPTION IN RAW WATERS

    Directory of Open Access Journals (Sweden)

    LJILJANA TAKIĆ

    2008-03-01

    Full Text Available The ozone absorption in raw water entering the main ozonization step at the Belgrade drinking water supply plant was investigated in a continuous stirred tank reactor (CSTR. A slow chemical reaction rate of dissolved ozone and pollutants present in raw water have been experimentally determined. The modified Hatta number was defined and calculated as a criterion which determines whether and to which extent the reactions of ozone and pollutants influence the rate of the pure physical ozone absorption.

  7. Ozone, greenhouse effect. Ozone, effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Aviam, A.M.; Arthaut, R.

    1992-12-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs.

  8. Effect of ozonation on microbial fish pathogens, ammonia, nitrate, nitrite, and bod in simulated reuse hatchery water

    Energy Technology Data Exchange (ETDEWEB)

    Colberg, P.J.; Lingg, A.J.

    1978-10-01

    The effectiveness of ozone for eliminating fish pathogens and reducing nitrite, ammonia, and BOD associated with reuse hatchery systems was evaluated. Comparative survival rates of four bacterial fish pathogens and a bacterium-protozoan population during batch and continuous flow ozonation indicated a specific microbial ozone demand during batch treatment and 99% mortality of pathogens during continuous flow treatment. Oxidation of carbon and nitrite by ozone was rapid at low ozone concentrations; carbon and ammonia oxidation rates were pH dependent. The oxidation capacity of ozone in water was greatest at elevated pH even though lower ozone concentrations were used. Ozone treatment appears to be successful for disinfecting hatchery makeup water for recycling. However, the economics of such treatment are yet to be determined. (10 graphs, 28 references, 1 table)

  9. Automatic programmable air ozonizer

    International Nuclear Information System (INIS)

    Gubarev, S.P.; Klosovsky, A.V.; Opaleva, G.P.; Taran, V.S.; Zolototrubova, M.I.

    2015-01-01

    In this paper we describe a compact, economical, easy to manage auto air ozonator developed at the Institute of Plasma Physics of the NSC KIPT. It is designed for sanitation, disinfection of premises and cleaning the air from foreign odors. A distinctive feature of the developed device is the generation of a given concentration of ozone, approximately 0.7 maximum allowable concentration (MAC), and automatic maintenance of a specified level. This allows people to be inside the processed premises during operation. The microprocessor controller to control the operation of the ozonator was developed

  10. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China

    Science.gov (United States)

    Shao, Ping; An, Junlin; Xin, Jinyuan; Wu, Fangkun; Wang, Junxiu; Ji, Dongsheng; Wang, Yuesi

    2016-07-01

    Volatile organic compounds (VOCs) were continuously observated in a northern suburb of Nanjing, a typical industrial area in the Yangtze River Delta, in a summer observation period from 15th May to 31st August 2013. The average concentration of total VOCs was (34.40 ± 25.20) ppbv, including alkanes (14.98 ± 12.72) ppbv, alkenes (7.35 ± 5.93) ppbv, aromatics (9.06 ± 6.64) ppbv and alkynes (3.02 ± 2.01) ppbv, respectively. Source apportionment via Positive Matrix Factorization was conducted, and six major sources of VOCs were identified. The industry-related sources, including industrial emissions and industrial solvent usage, occupied the highest proportion, accounting for about 51.26% of the VOCs. Vehicular emissions occupied the second highest proportion, accounting for about 34.08%. The rest accounted for about 14.66%, including vegetation emission and liquefied petroleum gas/natural gas usage. Contributions of VOCs to photochemical O3 formation were evaluated by the application of a detailed chemical mechanism model (NCAR MM). Alkenes were the dominant contributors to the O3 photochemical production, followed by aromatics and alkanes. Alkynes had a very small impact on photochemical O3 formation. Based on the outcomes of the source apportionment, a sensitivity analysis of relative O3 reduction efficiency (RORE), under different source removal regimes such as using the reduction of VOCs from 10% to 100% as input, was conducted. The RORE was the highest (~ 20%-40%) when the VOCs from solvent-related sources decreased by 40%. The highest RORE values for vegetation emissions, industrial emissions, vehicle exhaust, and LPG/NG usage were presented in the scenarios of 50%, 80%, 40% and 40%, respectively.

  11. A cloud-ozone data product from Aura OMI and MLS satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2017-11-01

    Full Text Available Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI and Microwave Limb Sounder (MLS satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004–April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of  ∼ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden–Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.

  12. Comparative study of ozonized olive oil and ozonized sunflower oil

    Directory of Open Access Journals (Sweden)

    Díaz Maritza F.

    2006-01-01

    Full Text Available In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observed in both oils but they were higher in ozonized sunflower oil. Iodine value was zero in ozonized olive oil whereas in ozonized sunflower was 8.8 g Iodine per 100 g. The antimicrobial activity was similar for both ozonized oils except for Minimum Bactericidal Concentrations of Pseudomona aeruginosa. Composition of fatty acids in both ozonized oils showed gradual decrease in unsaturated fatty acids (C18:1, C18:2 with gradual increase in ozone doses.

  13. Transportable lidar for the measurement of ozone concentration and flux profiles in the lower troposphere

    International Nuclear Information System (INIS)

    Zhao, Yanzeng; Howell, J.N.; Hardesty, R.M.

    1992-01-01

    In many areas of the United States, as well as in other industrial areas (such as Europe), elevated and potentially harmful levels of ozone are being measured during summer. Most of this ozone is photochemically produced. The relatively long lifetime of ozone allows industrially produced ozone to be transported on a hemispheric scale. Since the trends of tropospheric ozone are very likely dependent on the source strengths and distributions of the pollutants and the chemical/ transport process involved, a predictive understanding of tropospheric ozone climatology requires a focus on the chemical and transport processes that link regional emissions to hemispheric ozone trends and distributions. Of critical importance to these studies is a satisfactory data base of tropospheric ozone distribution from which global and regional tropospheric ozone climatology can be derived, and the processes controlling tropospheric ozone can be better understood. A transportable lidar for measuring ozone concentration and flux profiles in the lower troposphere is needed. One such system is being developed at the National Oceanic and Atmospheric Administration/Earth Resources Laboratory (NOAA/ERL) Wave Propagation Laboratory (WPL)

  14. Ozone carcinogenesis in vitro and its co-carcinogenesis with radiation

    International Nuclear Information System (INIS)

    Borek, C.

    1988-01-01

    Ozone (O/sub 3/), a reactive species of oxygen, is an important natural constituent of the atmosphere. Background levels of ozone in the lower atmosphere may range up to 0.1 ppm and are modified by geographic elevation, solar radiation and climatic conditions. Since some ozone effects are radiomimetic, its actions may be enhanced in the presence of ionizing radiation from background and/or manmade sources. While stratospheric ozone spares the earth from excess solar ultraviolet (UV) radiation, high levels of ozone in the environment are toxic and present a health hazard to man. Excess environmental exposure to ozone can result from a variety of sources. Ozone is a key component in oxidant smog and in the vicinity of high electric voltage equipment when in operation. Ozone is widely used as a disinfectant for air and water, in bleaches, waxes, textiles, oils. and inorganic synthesis. Enhanced levels of ozone are found in planes flying at high altitudes. Because of the toxic nature of ozone and its potential hazard to man, its levels in the environment are subject to government regulation. The current standard is set at an hourly average of 235 μg/m/sup 3/ (0.12 ppm) not to be exceeded more than once per year. Urban areas with high levels of photochemical smog (e.g. Southern California) may experience high ambient ozone levels which can reach 0.5 ppm

  15. Production and Transport of Ozone From Boreal Forest Fires

    Science.gov (United States)

    Tarasick, David; Liu, Jane; Osman, Mohammed; Sioris, Christopher; Liu, Xiong; Najafabadi, Omid; Parrington, Mark; Palmer, Paul; Strawbridge, Kevin; Duck, Thomas

    2013-04-01

    In the summer of 2010, the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) mission was planned by several universities and government agencies in the United Kingdom, Canada, and USA. Nearly 100 ozone soundings were made at 13 stations through the BORTAS Intensive Sounding Network, although aircraft measurements were unfortunately cancelled due to the volcanic eruption in Iceland. 2010 was actually an exceptional year for Canadian boreal fires. MODIS (Moderate Resolution Imaging Spectroradiometer) fire count data shows large fire events in Saskatchewan on several days in July. High amounts of NO2 close to the large fires are observed from OMI satellite data, indicating that not all NO2 is converted to PAN. Also associated with the fires, large amounts of CO, another precursor of ozone, are observed in MOPITT (Measurements Of Pollution In The Troposphere), AIRS and TES (Tropospheric Emission Spectrometer) satellite data in the middle to upper troposphere. These chemical conditions combined with sunny weather all favour ozone production. Following days with large fire activity, layers of elevated ozone mixing ratio (over 100 ppbv) are observed downwind at several sites. Back-trajectories suggest the elevated ozone in the profile is traceable to the fires in Saskatchewan. Lidar profiles also detect layers of aerosol at the same heights. However, the layers of high ozone are also associated with low humidity, which is not expected from a combustion source, and suggests the possibility of entrainment of stratospheric air.

  16. Fractal and variability analysis of simulations in ozone level due to oxides of nitrogen and sulphur

    Science.gov (United States)

    Bhardwaj, Rashmi; Pruthi, Dimple

    2017-10-01

    Air pollution refers to the release of pollutants into the air. These pollutants are detrimental to human the planet as a whole. Apart from causing respiratory infections and pulmonary disorders, rising levels of Nitrogen Dioxide is worsening ozone pollution. Formation of Ground-level ozone involves nitrogen oxides and volatile gases in the sunlight. Volatile gases are emitted from vehicles primarily. Ozone is harmful gas and its exposure can trigger serious health effects as it damages lung tissues. In order to decrease the level of ozone, level of oxides leading to ozone formation has to be dealt with. This paper deals with the simulations in ozone due to oxides of nitrogen and sulphur. The data from Central Pollution Control Board shows positive correlation for ozone with oxides of sulphur and nitrogen for RK Puram, Delhi in India where high concentration of ozone has been found. The correlation between ozone and sulphur, nitrogen oxides is moderate during summer while weak during winters. Ozone with nitrogen and sulphur dioxide follow persistent behavior as Hurst exponent is between 0.5 and 1. The fractal dimension for Sulphur dioxide is 1.4957 indicating the Brownian motion. The behavior of ozone is unpredictable as index of predictability is close to zero.

  17. Phenols removal using ozonation-adsorption with granular activated carbon (GAC) in rotating packed bed reactor

    Science.gov (United States)

    Karamah, E. F.; Leonita, S.; Bismo, S.

    2018-01-01

    Synthetic wastewater containing phenols was treated using combination method of ozonation-adsorption with GAC (Granular Activated Carbon) in a packed bed rotating reactor. Ozone reacts quickly with phenol and activated carbon increases the oxidation process by producing hydroxyl radicals. Performance parameters evaluated are phenol removal percentage, the quantity of hydroxyl radical formed, changes in pH and ozone utilization, dissolved ozone concentration and ozone concentration in off gas. The performance of the combination method was compared with single ozonation and single adsorption. The influence of GAC dose and initial pH of phenols were evaluated in ozonation-adsorption method. The results show that ozonation-adsorption method generates more OH radicals than a single ozonation. Quantity of OH radical formation increases with increasing pH and quantity of the GAC. The combination method prove better performance in removing phenols. At the same operation condition, ozonation-adsorption method is capable of removing of 78.62% phenols as compared with single ozonation (53.15%) and single adsorption (36.67%). The increasing percentage of phenol removal in ozonation-adsorption method is proportional to the addition of GAC dose, solution pH, and packed bed rotator speed. Maximum percentage of phenol removal is obtained under alkaline conditions (pH 10) and 125 g of GAC

  18. Impact of East Asian Summer Monsoon on Surface Ozone Pattern in China

    Science.gov (United States)

    Li, Shu; Wang, Tijian; Huang, Xing; Pu, Xi; Li, Mengmeng; Chen, Pulong; Yang, Xiu-Qun; Wang, Minghuai

    2018-01-01

    Tropospheric ozone plays a key role in regional and global atmospheric and climate systems. In East Asia, ozone can be affected both in concentration level and spatial pattern by typical monsoon climate. This paper uses three different indices to identify the strength of East Asian summer monsoon (EASM) and explores the possible impact of EASM intensity on the ozone pattern through synthetic and process analysis. The difference in ozone between three strong and three weak monsoon years was analyzed using the simulations from regional climate model RegCM4-Chem. It was found that EASM intensity can significantly influence the spatial distribution of ozone in the lower troposphere. When EASM is strong, ozone in the eastern part of China (28°N - 42° N) is reduced, but the inverse is detected in the north and south. The surface ozone difference ranges from -7 to 7 ppbv during the 3 months (June to August) of the EASM, with the most obvious difference in August. Difference of the 3 months' average ozone ranges from -3.5 to 4 ppbv. Process analysis shows that the uppermost factor controlling ozone level during summer monsoon seasons is the chemistry process. Interannual variability of EASM can impact the spatial distribution of ozone through wind in the lower troposphere, cloud cover, and downward shortwave radiation, which affect the transport and chemical formation of ozone. The phenomenon should be addressed when considering the interaction between ozone and the climate in East Asia region.

  19. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  20. Ozone Therapy in Dentistry

    Science.gov (United States)

    Domb, William C

    2014-01-01

    Summary The 21st century dental practice is quite dynamic. New treatment protocols and new materials are being developed at a rapid pace. Ozone dental therapy falls into the category of new treatment protocols in dentistry, yet ozone is not new at all. Ozone therapy is already a major treatment modality in Europe, South America and a number of other countries. What is provided here will not be an exhaustive scientific treatise so much as a brief general introduction into what dentists are now doing with ozone therapies and the numerous oral/systemic links that make this subject so important for physicians so that, ultimately, they may serve their patients more effectively and productively. PMID:25363268

  1. Ozone health effects

    International Nuclear Information System (INIS)

    Easterly, C.

    1994-01-01

    Ozone is a principal component of photochemical air pollution endogenous to numerous metropolitan areas. It is primarily formed by the oxidation of NOx in the presence of sunlight and reactive organic compounds. Ozone is a highly active oxidizing agent capable of causing injury to the lung. Lung injury may take the form of irritant effects on the respiratory tract that impair pulmonary function and result in subjective symptoms of respiratory discomfort. These symptoms include, but are not limited to, cough and shortness of breath, and they can limit exercise performance. The effects of ozone observed in humans have been primarily limited to alterations in respiratory function, and a range of respiratory physiological parameters have been measured as a function of ozone exposure in adults and children. These affects have been observed under widely varying (clinical experimental and environmental settings) conditions

  2. 2001 Ozone Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ozone is generated by a complex atmoshperic chemical process. Industrial and automobile pollutants in the form of oxides of nitrogen and hydrocarbons react in the...

  3. Temperature thresholds for chlorine activation and ozone loss in the polar stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Drdla, K. [NASA Ames Research Center, Moffett Field, CA (United States); Mueller, R. [Forschungszentrum Juelich (DE). Inst. of Energy and Climate Research (IEK-7)

    2012-07-01

    Low stratospheric temperatures are known to be responsible for heterogeneous chlorine activation that leads to polar ozone depletion. Here, we discuss the temperature threshold below which substantial chlorine activation occurs. We suggest that the onset of chlorine activation is dominated by reactions on cold binary aerosol particles, without the formation of polar stratospheric clouds (PSCs), i.e. without any significant uptake of HNO{sub 3} from the gas phase. Using reaction rates on cold binary aerosol in a model of stratospheric chemistry, a chlorine activation threshold temperature, T{sub ACL}, is derived. At typical stratospheric conditions, T{sub ACL} is similar in value to T{sub NAT} (within 1-2 K), the highest temperature at which nitric acid trihydrate (NAT) can exist. T{sub NAT} is still in use to parameterise the threshold temperature for the onset of chlorine activation. However, perturbations can cause T{sub ACL} to differ from T{sub NAT}: T{sub ACL} is dependent upon H{sub 2} O and potential temperature, but unlike T{sub NAT} is not dependent upon HNO3. Furthermore, in contrast to T{sub NAT}, T{sub ACL} is dependent upon the stratospheric sulfate aerosol loading and thus provides a means to estimate the impact on polar ozone of strong volcanic eruptions and some geo-engineering options, which are discussed. A parameterisation of T{sub ACL} is provided here, allowing it to be calculated for low solar elevation (or high solar zenith angle) over a comprehensive range of stratospheric conditions. Considering T{sub ACL} as a proxy for chlorine activation cannot replace a detailed model calculation, and polar ozone loss is influenced by other factors apart from the initial chlorine activation. However, T{sub ACL} provides a more accurate description of the temperature conditions necessary for chlorine activation and ozone loss in the polar stratosphere than T{sub NAT}. (orig.)

  4. The ozone backlash

    International Nuclear Information System (INIS)

    Taubes, G.

    1993-01-01

    While evidence for the role of chlorofluorocarbons in ozone depletion grows stronger, researchers have recently been subjected to vocal public criticism of their theories-and their motives. Their understanding of the mechanisms of ozone destruction-especially the annual ozone hole that appears in the Antarctic-has grown stronger, yet everywhere they go these days, they seem to be confronted by critics attacking their theories as baseless. For instance, Rush Limbaugh, the conservative political talk-show host and now-best-selling author of The Way Things Ought to Be, regularly insists that the theory of ozone depletion by CFCs is a hoax: bladerdash and poppycock. Zoologist Dixy Lee Ray, former governor of the state of Washington and former head of the Atomic Energy Commission, makes the same argument in her book, Trashing the Planet. The Wall Street Journal and National Review have run commentaries by S. Fred Singer, a former chief scientists for the Department of Transportation, purporting to shoot holes in the theory of ozone depletion. Even the June issue of Omni, a magazine with a circulation of more than 1 million that publishes a mixture of science and science fiction, printed a feature article claiming to expose ozone research as a politically motivated scam

  5. Ozone depletion calculations

    International Nuclear Information System (INIS)

    Luther, F.M.; Chang, J.S.; Wuebbles, D.J.; Penner, J.E.

    1992-01-01

    Models of stratospheric chemistry have been primarily directed toward an understanding of the behavior of stratospheric ozone. Initially this interest reflected the diagnostic role of ozone in the understanding of atmospheric transport processes. More recently, interest in stratospheric ozone has arisen from concern that human activities might affect the amount of stratospheric ozone, thereby affecting the ultraviolet radiation reaching the earth's surface and perhaps also affecting the climate with various potentially severe consequences for human welfare. This concern has inspired a substantial effort to develop both diagnostic and prognostic models of stratospheric ozone. During the past decade, several chemical agents have been determined to have potentially significant impacts on stratospheric ozone if they are released to the atmosphere in large quantities. These include oxides of nitrogen, oxides of hydrogen, chlorofluorocarbons, bromine compounds, fluorine compounds and carbon dioxide. In order to assess the potential impact of the perturbations caused by these chemicals, mathematical models have been developed to handle the complex coupling between chemical, radiative, and dynamical processes. Basic concepts in stratospheric modeling are reviewed

  6. Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone

    DEFF Research Database (Denmark)

    Singer, B.C.; Coleman, B.K.; Destaillats, H.

    2006-01-01

    introduction. In the absence of reactive chemicals, the chamber ozone level was approximately 60 ppb. Ozone was substantially consumed following cleaning product use, mainly by homogeneous reaction. For the AFR, ozone consumption was weaker and heterogeneous reaction with sorbed AFR-constituent VOCs...... than 100 mu g m(-3)) in some experiments. Ozone consumption and elevated hydroxyl radical concentrations persisted for 10-12 h following brief cleaning events, indicating that secondary pollutant production can persist for extended periods. (c) 2006 Elsevier Ltd. All rights reserved....

  7. Occurrence of ozone anomalies over cloudy areas in TOMS version-7 level-2 data

    Directory of Open Access Journals (Sweden)

    X. Liu

    2003-01-01

    Full Text Available This study investigates anomalous ozone distributions over cloudy areas in Nimbus-7 (N7 and Earth-Probe (EP TOMS version-7 data and analyzes the causes for ozone anomaly formation. A 5°-longitude by 5°-latitude region is defined to contain a Positive Ozone Anomaly (POA or Negative Ozone Anomaly (NOA if the correlation coefficient between total ozone and reflectivity is > 0.5 or -0.5. The average fractions of ozone anomalies among all cloud fields are 31.8 ± 7.7% and 35.8 ± 7.7% in the N7 and EP TOMS data, respectively. Some ozone anomalies are caused by ozone retrieval errors, and others are caused by actual geophysical phenomena. Large cloud-height errors are found in the TOMS version-7 algorithm in comparison to the Temperature Humidity Infrared Radiometer (THIR cloud data. On average, cloud-top pressures are overestimated by ~200 hPa (THIR cloud-top pressure 200 hPa for high-altitude clouds and underestimated by ~150 hPa for low-altitude clouds (THIR cloud-top pressure > 750 hPa. Most tropical NOAs result from negative errors induced by large cloud-height errors, and most tropical POAs are caused by positive errors due to intra-cloud ozone absorption enhancement. However, positive and negative errors offset each other, reducing the ozone anomaly occurrence in TOMS data. Large ozone/reflectivity slopes for mid-latitude POAs show seasonal variation consistent with total ozone fluctuation, indicating that they result mainly from synoptic and planetary wave disturbances. POAs with an occurrence fraction of 30--60% occur in regions of marine stratocumulus off the west coast of South Africa and off the west coast of South America. Both fractions and ozone/reflectivity slopes of these POAs show seasonal variations consistent with that in the tropospheric ozone. About half the ozone/reflectivity slope can be explained by ozone retrieval errors over clear and cloudy areas. The remaining slope may result from there being more ozone production

  8. Pulmonary response to ozone: Reaction of bronchus-associated lymphoid tissue and lymph node lymphocytes in the rat

    International Nuclear Information System (INIS)

    Dziedzic, D.; Wright, E.S.; Sargent, N.E.

    1990-01-01

    The purpose of this work is to assess the effect of ozone, a reactive product of environmental photochemical oxidation, on lymphocytes of the lung. We exposed male Fischer rats to ozone at a concentration of 0.5 ppm for 20 hr/day for 1-14 days. Animals were treated with radioactive thymidine and were sacrificed at Day 1, 2, 3, 7, or 14 of exposure. Lungs and mediastinal lymph nodes were removed and prepared for histologic examination, evaluation of labeling indexes, and morphometric measurement. We examined two components of the lymphocyte response of the lung: the airway-related response, represented by the reaction of the bronchus-associated lymphoid tissue (BALT), and the deep lung-related response, represented by reaction of the mediastinal lymph node. Lymphocytes of both the BALT and the mediastinal lymph node showed elevated radioactive thymidine uptake; however, no evidence of cell death was observed at either site. The cells of the specialized epithelium covering the BALT (lymphoepithelium) showed increased vacuolization, indicating altered cellular function. The average size of BALTs was unchanged by ozone exposure. Under experimental conditions ozone can affect a variety of cells in the lung including bronchial epithelial cells, macrophages, and Type 1 cells. We have shown for the first time that in addition to these cells, the rat BALT also proliferates in response to ozone. In addition we confirm previous work in the mouse which shows that the mediastinal lymph node reacts as well. The airways can be affected by inflammation, can be targets of infection, and can respond to chemical irritants with bronchoconstrictive responses. They are an important target organ for hypersensitivity responses and are a primary site for pulmonary cancer formation. A role for lymphocytes has been implicated in each of these processes

  9. Effects of elevated concentrations of atmospheric CO{sub 2} and tropospheric O{sub 3} on leaf litter production and chemistry in trembling aspen and paper birch communities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.; King, J.S. [Michigan Technological Univ., Houghton, MI (United States). School of Forest Resources and Environmental Science; Giardina, C.P. [United States Dept. of Agriculture Forest Service, Houghton, MI (United States)

    2005-12-01

    This study examined the effects of elevated carbon dioxide (CO{sub 2}) and elevated ozone (O{sub 3}) on the quantity and timing of nutrient release to plants and on soil carbon formation rates, and how they are influenced by the combined change in litter quality and quantity. The changes in leaf litter in response to environmental changes was characterized in order to understand the influence of global change on forests. Free-air CO{sub 2} enrichment (FACE) technology was used to examine leaf litter production and biochemical input to soil in response to elevated CO{sub 2} and O{sub 3} treatments. The study involved collecting litter from aspen and birch-aspen communities that had been exposed to FACE and O{sub 3} treatments for 6 years. The hypothesis of growth differentiation balance was used as the basis to develop other hypotheses regarding litter chemistry responses to elevated levels of carbon dioxide and ozone. It was assumed that environmental factors that increase the net balance of plant carbon sources relative to growth sinks will increase the allocation of photosynthate to the production of carbon-based secondary compounds. Litter was analyzed for concentrations of carbon, nitrogen, soluble sugars, lipids, lignin, cellulose, hemicellulose and carbon-based defensive compounds such as soluble phenolics and condensed tannins. The study showed that high levels of ozone greatly increased litter concentrations of soluble sugars, soluble phenolics and condensed tannins, but there were no major effects of elevated carbon dioxide or elevated ozone on the concentrations of individual carbon structural carbon hydrates such as cellulose, hemicellulose and lignin. It was concluded that in the future, the inputs of nitrogen, soluble sugars, condensed tannins, soluble phenolics, cellulose and lignin to forest soils can change as a result of small changes in litter chemistry resulting from elevated CO{sub 2}, tropospheric O{sub 3}, and changes in litter biomass

  10. Distribution and urban-suburban differences in ground-level ozone and its precursors over Shenyang, China

    Science.gov (United States)

    Liu, Ningwei; Ren, Wanhui; Li, Xiaolan; Ma, Xiaogang; Zhang, Yunhai; Li, Bingkun

    2018-03-01

    Hourly mixing ratio data of ground-level ozone and its main precursors at ambient air quality monitoring sites in Shenyang during 2013-2015 were used to survey spatiotemporal variations in ozone. Then, the transport of ozone and its precursors among urban, suburban, and rural sites was examined. The correlations between ozone and some key meteorological factors were also investigated. Ozone and O x mixing ratios in Shenyang were higher during warm seasons and lower during cold ones, while ozone precursors followed the opposite cycle. Ozone mixing ratios reached maximum and minimum values in the afternoon and morning, respectively, reflecting the significant influence of photochemical production during daytime and depletion via titration during nighttime. Compared to those in downtown Shenyang, ozone mixing ratios were higher and the occurrence of peak values were later in suburban and rural areas downwind of the prevailing wind. The differences were most significant in summer, when the ozone mixing ratios at one suburban downwind site reached a maximum value of 35.6 ppb higher than those at the downtown site. This suggests that photochemical production processes were significant during the transport of ozone precursors, particularly in warm seasons with sufficient sunlight. Temperature, total radiation, and wind speed all displayed positive correlations with ozone concentration, reflecting their important role in accelerating ozone formation. Generally, the correlations between ozone and meteorological factors were slightly stronger at suburban sites than in urban areas, indicating that ozone levels in suburban areas were more sensitive to these meteorological factors.

  11. Data Elevator

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-29

    Data Elevator: Efficient Asynchronous Data Movement in Hierarchical Storage Systems Multi-layer storage subsystems, including SSD-based burst buffers and disk-based parallel file systems (PFS), are becoming part of HPC systems. However, software for this storage hierarchy is still in its infancy. Applications may have to explicitly move data among the storage layers. We propose Data Elevator for transparently and efficiently moving data between a burst buffer and a PFS. Users specify the final destination for their data, typically on PFS, Data Elevator intercepts the I/O calls, stages data on burst buffer, and then asynchronously transfers the data to their final destination in the background. This system allows extensive optimizations, such as overlapping read and write operations, choosing I/O modes, and aligning buffer boundaries. In tests with large-scale scientific applications, Data Elevator is as much as 4.2X faster than Cray DataWarp, the start-of-art software for burst buffer, and 4X faster than directly writing to PFS. The Data Elevator library uses HDF5's Virtual Object Layer (VOL) for intercepting parallel I/O calls that write data to PFS. The intercepted calls are redirected to the Data Elevator, which provides a handle to write the file in a faster and intermediate burst buffer system. Once the application finishes writing the data to the burst buffer, the Data Elevator job uses HDF5 to move the data to final destination in an asynchronous manner. Hence, using the Data Elevator library is currently useful for applications that call HDF5 for writing data files. Also, the Data Elevator depends on the HDF5 VOL functionality.

  12. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  13. Ozone uptake (flux) as it relates to ozone-induced foliar symptoms of Prunus serotina and Populus maximowizii x trichocarpa

    International Nuclear Information System (INIS)

    Orendovici-Best, T.; Skelly, J.M.; Davis, D.D.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.

    2008-01-01

    Field studies were conducted during 2003 and 2004 from early June to the end of August, at 20 sites of lower or higher elevation within north-central Pennsylvania, using seedlings of black cherry (Prunus serotina, Ehrh.) and ramets of hybrid poplar (Populus maximowizii x trichocarpa). A linear model was developed to estimate the influence of local environmental conditions on stomatal conductance. The most significant factors explaining stomatal variance were tree species, air temperature, leaf vapor pressure deficit, elevation, and time of day. Overall, environmental factors explained less than 35% of the variation in stomatal conductance. Ozone did not affect gas exchange rates in either poplar or cherry. Ozone-induced foliar injury was positively correlated with cumulative ozone exposures, expressed as SUM40. Overall, the amount of foliar injury was better correlated to a flux-based approach rather than to an exposure-based approach. More severe foliar injuries were observed on plants growing at higher elevations. - Within heterogeneous environments, ozone flux does not completely explain the variation observed in ozone-induced visible injury

  14. An elevator

    Energy Technology Data Exchange (ETDEWEB)

    Loginovskiy, V.I.; Medinger, N.V.; Rasskazov, V.A.; Solonitsyn, V.A.

    1983-01-01

    An elevator is proposed which includes a body, spring loaded cams and a shut-off ring. To increase the reliability of the elevator by eliminating the possibility of spontaneous shifting of the shut-off ring, the latter is equipped with handles hinged to it and is made with evolvent grooves. The cams are equipped with rollers installed in the evolvent grooves of the shut off ring, where the body is made with grooves for the handles.

  15. Ozone distribution in remote ecologically vulnerable terrain of the southern Sierra Nevada, CA

    International Nuclear Information System (INIS)

    Panek, Jeanne; Saah, David; Esperanza, Annie; Bytnerowicz, Andrzej; Fraczek, Witold; Cisneros, Ricardo

    2013-01-01

    Ozone concentration spatial patterns remain largely uncharacterized across the extensive wilderness areas of the Sierra Nevada, CA, despite being downwind of major pollution sources. These natural areas, including four national parks and four national forests, contain forest species that are susceptible to ozone injury. Forests stressed by ozone are also more vulnerable to other agents of mortality, including insects, pathogens, climate change, and ultimately fire. Here we analyze three years of passive ozone monitor data from the southern Sierra Nevada and interpolate landscape-scale spatial and temporal patterns during the summer-through-fall high ozone concentration period. Segmentation analysis revealed three types of ozone exposure sub-regions: high, low, and variable. Consistently high ozone exposure regions are expected to be most vulnerable to forest mortality. One high exposure sub-region has been documented elsewhere as being further vulnerable to increased drought and fire potential. Identifying such hot-spots of forest vulnerability has utility for prioritizing management. -- Highlights: •Three years of passive ozone sampler data over 49,000 km 2 were analyzed spatially. •Spatial and temporal ozone patterns were mapped across the Sierra Nevada, CA. •Sub-regions of consistently high, low and variable ozone exposure were identified. •The 1700–2400 m elevation band delineated a distinct break in ozone concentration. •This approach has utility for prioritizing management across vulnerable landscapes. -- A passive ozone sampler network in combination with spatial analysis techniques was used to characterize landscape-scale ozone patterns and dynamics, identifying regions of consistently high and low ozone exposure for forest management prioritization

  16. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  17. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations

    Directory of Open Access Journals (Sweden)

    Martin G. Schultz

    2017-10-01

    Full Text Available In support of the first Tropospheric Ozone Assessment Report (TOAR a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to build the world's largest collection of 'in-situ' hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of 'a posteriori' data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface

  18. Monocular Elevation Deficiency - Double Elevator Palsy

    Science.gov (United States)

    ... Español Condiciones Chinese Conditions Monocular Elevation Deficiency/ Double Elevator Palsy En Español Read in Chinese What is monocular elevation deficiency (Double Elevator Palsy)? Monocular Elevation Deficiency, also known by the ...

  19. CONTRIBUTION TO INDOOR OZONE LEVELS OF AN OZONE GENERATOR

    Science.gov (United States)

    This report gives results of a study of a commonly used commercially available ozone generator, undertaken to determine its impact on indoor ozone levels. xperiment were conducted in a typical mechanically ventilated office and in a test house. he generated ozone and the in-room ...

  20. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  1. Air Quality Guide for Ozone

    Science.gov (United States)

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Air Quality Guide for Ozone Ground-level ozone is one of our nation’s most common air pollutants. Use the chart below to help reduce ...

  2. Health Effects of Ozone Pollution

    Science.gov (United States)

    Inhaling ozone can cause coughing, shortness of breath, worse asthma or bronchitis symptoms, and irritation and damage to airways.You can reduce your exposure to ozone pollution by checking air quality where you live.

  3. Effect of fiber material on ozone removal and carbonyl production from carpets

    Science.gov (United States)

    Abbass, Omed A.; Sailor, David J.; Gall, Elliott T.

    2017-01-01

    Indoor air quality is affected by indoor materials such as carpets that may act as sources and/or sinks of gas-phase air pollutants. Heterogeneous reactions of ozone with carpets may result in potentially harmful products. In this study, indoor residential carpets of varying fiber types were tested to evaluate their ability to remove ozone, and to assess their role in the production of carbonyls when exposed to elevated levels of ozone. Tests were conducted with six types of new unused carpets. Two sets of experiments were conducted, the first measured ozone removal and ozone deposition velocities, and the second measured primary carbonyl production and secondary production as a result of exposure to ozone. The tests were conducted using glass chambers with volume of 52 L each. Air exchange rates for all tests were 3 h-1. The ozone removal tests show that, for the conditions tested, the polyester carpet sample had the lowest ozone removal (40%), while wool carpet had the greatest ozone removal (65%). Most carpet samples showed higher secondary than primary carbonyl emissions, with carpets containing polypropylene fibers being a notable exception. Carpets with polyester fibers had both the highest primary and secondary emissions of formaldehyde among all samples tested. While it is difficult to make blanket conclusions about the relative air quality merits of various carpet fiber options, it is clear that ozone removal percentages and emissions of volatile organic compounds can vary drastically as a function of fiber type.

  4. Rethinking the ozone problem in urban and regional air pollution

    National Research Council Canada - National Science Library

    Committee on Geosciences, Environment and Resourcs S; National Research Council Staff; Division on Earth and Life Studies; National Research Council; National Academy of Sciences

    ... on Tropospheric Ozone Formation and Measurement Board on Environmental Studies and Toxicology Board on Atmospheric Sciences and Climate Commission on Geosciences, Environment, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1991 Copyrightthe cannot be not from book, paper however, version for formatting, original authoritati...

  5. Ozone bioindicator sampling and estimation

    Science.gov (United States)

    Gretchen C, Smith; William D. Smith; John W. Coulston

    2007-01-01

    Ozone is an important forest stressor that has been measured at known phytotoxic levels at forest locations across the United States. The percent forest exhibiting negative impacts from ozone air pollution is one of the Montreal Process indicators of forest health and vitality. The ozone bioindicator data of the U.S. Forest Service Forest Inventory and Analysis Program...

  6. Ozonated Olive Oils and Troubles

    Directory of Open Access Journals (Sweden)

    Bulent Uysal

    2014-04-01

    Full Text Available One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. [J Intercult Ethnopharmacol 2014; 3(2.000: 49-50

  7. Optimization of Industrial Ozone Generation with Pulsed Power

    Science.gov (United States)

    Lopez, Jose; Guerrero, Daniel; Freilich, Alfred; Ramoino, Luca; Seton Hall University Team; Degremont Technologies-Ozonia Team

    2013-09-01

    Ozone (O3) is widely used for applications ranging from various industrial chemical synthesis processes to large-scale water treatment. The consequent surge in world-wide demand has brought about the requirement for ozone generation at the rate of several hundreds grams per kilowatt hour (g/kWh). For many years, ozone has been generated by means of dielectric barrier discharges (DBD), where a high-energy electric field between two electrodes separated by a dielectric and gap containing pure oxygen or air produce various microplasmas. The resultant microplasmas provide sufficient energy to dissociate the oxygen molecules while allowing the proper energetics channels for the formation of ozone. This presentation will review the current power schemes used for large-scale ozone generation and explore the use of high-voltage nanosecond pulses with reduced electric fields. The created microplasmas in a high reduced electric field are expected to be more efficient for ozone generation. This is confirmed with the current results of this work which observed that the efficiency of ozone generation increases by over eight time when the rise time and pulse duration are shortened. Department of Physics, South Orange, NJ, USA.

  8. Disappearing threat to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Gribbin, J

    1979-02-15

    Concern that human activities might disturb the dynamic natural equilibrium of the ozone layer has stemmed from the fact that this layer plays a key part in the ecology of the earth by absorbing harmful ultraviolet radiation which would otherwise penetrate to the ground. Apparently, however, a decline of as much at 15% in total global ozone would have very little effect on climate. A 50% reduction would produce a marked cooling of the stratosphere at 40 km altitude over the tropics, but barely detectable changes in temperature and rainfall in the lower atmosphere. Therefore, biological effects of more uv light at ground level is the only hazard associated with ozone depletion on the scale which might take place.

  9. Ozone in Lombardy: Years 1998-1999

    Science.gov (United States)

    Sesana, L.; Begnini, S.; Toscani, D.; Facchini, U.; Balasso, A.; Borelli, P.

    2003-11-01

    Photochemical pollutants, especially ozone, have reached very high levels in Lombardy in recent years, with peaks of up to 150 ppb in late spring and summer. Lombardy, lying on the Po Plain, supports a large number of cities and industries and these, along with heavy traffic, produce copious amounts of primary pollutants such as nitrogen oxides and numerous volatile organic compounds. Furthermore, the peculiar orography of this region fosters the stagnation of air masses on a basin-scale and the presence of diurnal breezes towards northern areas, along with the evolution of the Mixing Layer, spread the polluted air masses over a large territory. Numerous stations in Lombardy give the concentrations of ozone and of nitrogen oxides. In this paper, ozone measurements carried out at the plain area around Milan and at pre-alpine sites in the spring and summer 1998 and 1999 will be shown and discussed, focusing on the months of May and July. The study of temporal and spatial behaviour of ozone goes hand in hand with the analysis of the Boundary Layer's evolution. A number of radon stations were operating in Milan and in other sites in Lombardy. Measurements of atmospheric concentrations of radon yield an index of atmospheric stability, of the formation of thermal inversion, of convective turbulence, and of the movement of air masses, and hence they are very relevant to the understanding of the conditions of atmospheric pollutants.

  10. On the theory of polar ozone holes

    International Nuclear Information System (INIS)

    Njau, E.C.

    1990-12-01

    The viable theories already proposed to explain polar ozone holes generally fall into two main categories, namely, chemical theories and dynamical theories. In both of these categories, polar stratospheric clouds (PSCs) are taken as part of the essential basis. Besides, all the dynamical theories are based upon temperature changes. Since formation of the PSCs is highly temperature-dependent, it has been concluded from recent research (e.g. see Kawahira and Hirooka) that temperature changes are a cause, not a result of ozone depletion in polar regions. On this basis, formulations are developed that represent short-term and long-term temperature variations in the polar regions due to natural processes. These variations, which are confined to a limited area around each pole, include specific oscillations with periods ranging from ∼ 2 years up to ∼ 218,597 years. Polar ozone variations are normally expected to be influenced by these temperature oscillations. It is, therefore, apparent that the generally decreasing trend observed in mean October ozone column at Halley Bay (76 deg. S, 27 deg. W) from 1956 up to 1987 is mostly caused by the decreasing phase of a combination of two natural temperature oscillations, one with a period of ∼ 70-80 years and the other with a period of ∼ 160-180 years. Contributions of other natural temperature oscillations are also mentioned and briefly discussed. (author). 35 refs, 4 figs

  11. Contributions of foreign, domestic and natural emissions to US ozone estimated using the path-integral method in CAMx nested within GEOS-Chem

    Directory of Open Access Journals (Sweden)

    A. M. Dunker

    2017-10-01

    Full Text Available The Goddard Earth Observing System global chemical transport (GEOS-Chem model was used at 2°  ×  2.5° resolution to simulate ozone formation for a base case representing year 2010 and a natural background case without worldwide anthropogenic emissions. These simulations provided boundary concentrations for base and natural background simulations with the Comprehensive Air Quality Model with Extensions (CAMx on a North American domain (one-way nested at 12 km  ×  12 km resolution over March–September 2010. The predicted maximum daily average 8 h (MDA8 background ozone for the US is largest in the mountainous areas of Colorado, New Mexico, Arizona, and California. The background MDA8 ozone in some of these locations exceeds 60 ppb, when averaged over the 10 days with the largest base-case ozone (T10base average. The background ozone generally becomes both a larger fraction of the base-case ozone in the western US and a smaller fraction in the eastern US when proceeding from spring to summer to the T10base average. The ozone difference between the base and background cases represents the increment to ozone from all anthropogenic sources. The path-integral method was applied to allocate this anthropogenic ozone increment to US anthropogenic emissions, Canadian/Mexican anthropogenic emissions, and the anthropogenic components of the lateral and top boundary concentrations (BCs. Using the T10base average MDA8 ozone, the relative importance of the sources is generally US emissions  >  anthropogenic lateral BCs  >  Canadian/Mexican emissions  ≫  anthropogenic top BCs. Specifically, for 10 US urban areas, the source contributions were 12–53 ppb for US emissions, 3–9 ppb for lateral BCs, 0.2–3 ppb for Canadian/Mexican emissions, and  ≤  0.1 ppb for top BCs. The contributions of the lateral BCs are largest for the higher-elevation US sites in the Intermountain West and along the

  12. Ozonation for source treatment of pharmaceuticals in hospital wastewater - ozone lifetime and required ozone dose

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Chhetri, Ravi Kumar

    2016-01-01

    Ozonation aimed at removing pharmaceuticals was studied in an effluent from an experimental pilot system using staged moving bed biofilm reactor (MBBR) tanks for the optimal biological treatment of wastewater from a medical care unit of Aarhus University Hospital. Dissolved organic carbon (DOC......) and pH in samples varied considerably, and the effect of these two parameters on ozone lifetime and the efficiency of ozone in removing pharmaceuticals were determined. The pH in the effluent varied from 5.0 to 9.0 resulting in approximately a doubling of the required ozone dose at the highest p......H for each pharmaceutical. DOC varied from 6 to 20 mg-DOC/L. The ozone required for removing each pharmaceutical, varied linearly with DOC and thus, ozone doses normalized to DOC (specific ozone dose) agreed between water samples (typically within 15%). At neutral pH the specific ozone dose required...

  13. Exposure-Relevant Ozone Chemistry in Occupied Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Beverly Kaye [Univ. of California, Berkeley, CA (United States)

    2009-04-01

    Ozone, an ambient pollutant, is transformed into other airborne pollutants in the indoor environment. In this dissertation, the type and amount of byproducts that result from ozone reactions with common indoor surfaces, surface residues, and vapors were determined, pollutant concentrations were related to occupant exposure, and frameworks were developed to predict byproduct concentrations under various indoor conditions. In Chapter 2, an analysis is presented of secondary organic aerosol formation from the reaction of ozone with gas-phase, terpene-containing consumer products in small chamber experiments under conditions relevant for residential and commercial buildings. The full particle size distribution was continuously monitored, and ultrafine and fine particle concentrations were in the range of 10 to>300 mu g m-3. Particle nucleation and growth dynamics were characterized.Chapter 3 presents an investigation of ozone reactions with aircraft cabin surfaces including carpet, seat fabric, plastics, and laundered and worn clothing fabric. Small chamber experiments were used to determine ozone deposition velocities, ozone reaction probabilities, byproduct emission rates, and byproduct yields for each surface category. The most commonly detected byproducts included C1?C10 saturated aldehydes and skin oil oxidation products. For all materials, emission rates were higher with ozone than without. Experimental results were used to predict byproduct exposure in the cabin and compare to other environments. Byproduct levels are predicted to be similar to ozone levels in the cabin, which have been found to be tens to low hundreds of ppb in the absence of an ozone converter. In Chapter 4, a model is presented that predicts ozone uptake by and byproduct emission from residual chemicals on surfaces. The effects of input parameters (residue surface concentration, ozone concentration, reactivity of the residue and the surface, near-surface airflow conditions, and

  14. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Minghao, E-mail: suiminghao.sui@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xing, Sichu; Sheng, Li; Huang, Shuhang; Guo, Hongguang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. Black-Right-Pointing-Pointer MnOx were supported on MWCNTs to serve as catalyst for ozonation. Black-Right-Pointing-Pointer MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. Black-Right-Pointing-Pointer MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. Black-Right-Pointing-Pointer MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO{center_dot}) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide-OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on

  15. Physicochemical patterns of ozone absorption by wood

    Science.gov (United States)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  16. Ozone and meteorological boundary-layer conditions at Summit, Greenland, during 3-21 June 2000

    Energy Technology Data Exchange (ETDEWEB)

    Helmig, D.; Boulter, J.; David, D.; Birks, J.W.; Cullen, N.J.; Steffen, K. [University of Colorado, Boulder, CO (United States). Cooperative Institute for Research in Environmental Sciences; Johnson, B.J.; Oltmans, S.J. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Climate Monitoring and Diagnostics Laboratory

    2002-06-01

    The temporal and spatial distributions of boundary-layer ozone were studied during June 2000 at Summit, Greenland, using surface-level measurements and vertical profiling from a tethered balloon platform. Three weeks of continuous ozone surface data, 133 meteorological vertical profile data and 82 ozone vertical profile data sets were collected from the surface to a maximum altitude of 1400 m above ground. The lower atmosphere at Summit was characterized by the prevalence of strong stable conditions with strong surface temperature inversions. These inversions reversed to neutral to slightly unstable conditions between {approx} 9.00 and 18.00 h local time with the formation of shallow mixing heights of {approx} 70-250 m above the surface. The surface ozone mixing ratio ranged from 39 to 68 ppbv and occasionally had rapid changes of up to 20 ppb in 12 h. The diurnal mean ozone mixing ratio showed diurnal trends indicating meteorological and photochemical controls of surface ozone. Vertical profiles were within the range of 37-76 ppb and showed strong stratification in the lower troposphere. A high correlation of high ozone/low water vapor air masses indicated the transport of high tropospheric/low stratospheric air into the lower boundary layer. An {approx} 0.1-3 ppb decline of the ozone mixing ratio towards the surface was frequently observed within the neutrally stable mixed layer during midday hours. These data suggest that the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by photochemical processes and/or transport phenomena that follow diurnal dependencies. With 37 ppb of ozone being the lowest mixing ratio measured in all data no evidence was seen for the occurrence of ozone depletion episodes similar to those that have been reported within the boundary layer at coastal Arctic sites during springtime

  17. Analysis of Ozone And CO2 Profiles Measured At A Diary Facility

    Science.gov (United States)

    Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.

    2015-12-01

    Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the

  18. Variable performance of outbreak defoliators on aspen clones exposed to elevated CO2 and O3

    Science.gov (United States)

    Daniel A. Herms; William J. Mattson; David N. Karowe; Mark D. Coleman; Terry M. Trier; Bruce A. Birr; J. G. Isebrands

    1996-01-01

    Increasing atmospheric concentrations of ozone and CO2 affect many aspects of tree physiology. However, their effects on tree resistance to insects have received relatively little attention. The objectives of this study were to test the effects of elevated CO2 and ozone on the resistance of three quaking aspen (...

  19. Effect of excess ozone on UV-stimulated tritium oxidation

    International Nuclear Information System (INIS)

    Hasegawa, Kiyoshi; Horii, Kazuhiro; Matsuyama, Masao; Watanabe, Kuniaki.

    1995-01-01

    The authors have reported that the oxidation of tritium is considerably accelerated by irradiating a mixture gas of HT(H 2 )-O 2 with UV-photons, and this UV-stimulated HT oxidation is mainly due to the formation of intermediates such as ozone and activated oxygen species. This suggests that the oxidation will be much more enhanced in the presence of excess ozone in the reaction system. To examine this possibility, effects of the excess ozone on the UV-stimulated HT oxidation was experimentally studied on the one hand, and reaction mechanisms were investigated by developing a computer simulation program applicable to the three-component system of HT(H 2 )-O 2 -O 3 . The formation rate of HTO was measured for gas mixtures consisting of O 2 (75.5 Torr), O 3 (0.5-2% of O 2 ), H 2 (0.1-3% of O 2 ) and HT(H 2 /HT=12000). The experiments showed considerable enhancement of the HTO production rate in the presence of excess ozone by UV-photons from a low pressure mercury lamp(5W). The time course of the reaction was reproduced quite well by computer simulation, indicating that the assumed reaction mechanism is valid. This is also supported by observations that computer simulation reproduced the experimentally observed dependence of ozone decomposition rate on ozone and hydrogen pressures under the UV-irradiation. Those results showed that UV-stimulated HT oxidation was accelerated by about 14000 times in the presence of excess ozone. It strongly suggests that the UV-stimulated oxidation in the presence of excess ozone will be applicable to tritium handling systems as a non-catalytic tritium removal method. (author)

  20. Dobson ozone spectrophotometer modification.

    Science.gov (United States)

    Komhyr, W. D.; Grass, R. D.

    1972-01-01

    Description of a modified version of the Dobson ozone spectrophotometer in which several outdated electronic design features have been replaced by circuitry embodying more modern design concepts. The resulting improvement in performance characteristics has been obtained without changing the principle of operation of the original instrument.

  1. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  2. Ozone, greenhouse effect

    International Nuclear Information System (INIS)

    Aviam, A.M.; Arthaut, R.

    1992-01-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs

  3. Revisiting Antarctic Ozone Depletion

    Science.gov (United States)

    Grooß, Jens-Uwe; Tritscher, Ines; Müller, Rolf

    2015-04-01

    Antarctic ozone depletion is known for almost three decades and it has been well settled that it is caused by chlorine catalysed ozone depletion inside the polar vortex. However, there are still some details, which need to be clarified. In particular, there is a current debate on the relative importance of liquid aerosol and crystalline NAT and ice particles for chlorine activation. Particles have a threefold impact on polar chlorine chemistry, temporary removal of HNO3 from the gas-phase (uptake), permanent removal of HNO3 from the atmosphere (denitrification), and chlorine activation through heterogeneous reactions. We have performed simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) employing a recently developed algorithm for saturation-dependent NAT nucleation for the Antarctic winters 2011 and 2012. The simulation results are compared with different satellite observations. With the help of these simulations, we investigate the role of the different processes responsible for chlorine activation and ozone depletion. Especially the sensitivity with respect to the particle type has been investigated. If temperatures are artificially forced to only allow cold binary liquid aerosol, the simulation still shows significant chlorine activation and ozone depletion. The results of the 3-D Chemical Transport Model CLaMS simulations differ from purely Lagrangian longtime trajectory box model simulations which indicates the importance of mixing processes.

  4. Catalyzed ozonation process with GAC and metal doped-GAC for removing organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B.S.; Kang, J.W.; Song, S.J. [Dept. of Environmental Engineering, Yonsei Univ., Wonju Campus, Hyeung-up Myon (Korea); Oh, H.J. [Water Resources and Environmental Research Div., Korea Inst. of Construction Technology, Kyonggi-do (Korea)

    2003-07-01

    This study investigates the catalytic role of granular activated carbon (GAC) and metal (Mn or Fe) doped-GAC in transforming ozone into more reactive secondary radicals such as OH radicals for the treatment of wastewater. The GAC doped with Mn showed the highest catalytic performance of ozone decomposition into OH radical (OH{sup .}) production. Likewise, activated carbon alone could accelerate ozone decomposition, resulting in the formation of OH{sup .}s. In the presence of promoters, ozone depletion rate was enhanced further by the Mn-GAC catalyst system even in an acidic pH aqueous condition. (orig.)

  5. Elevator wheel

    Energy Technology Data Exchange (ETDEWEB)

    Zhornik, V.I.; Cherkov, Ye.M.; Simonov, A.A.

    1982-01-01

    An elevator wheel is suggested for unloading a sunken product from a bath of a heavy-average separator including discs of a bucket with inner walls, and covering sheets hinged to the buckets. In order to improve the degree of dehydration of the removed product, the inner wall of each bucket is made of sheets installed in steps with gaps of one in relation to the other.

  6. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Science.gov (United States)

    Gao, Jinhui; Zhu, Bin; Xiao, Hui; Kang, Hanqing; Pan, Chen; Wang, Dongdong; Wang, Honglei

    2018-05-01

    As an important solar radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection). For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the great impacts BC

  7. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Directory of Open Access Journals (Sweden)

    J. Gao

    2018-05-01

    Full Text Available As an important solar radiation absorbing aerosol, the effect of black carbon (BC on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC–boundary layer (BL interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC–BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection. For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the

  8. Use of bioindicators and passive sampling devices to evaluate ambient ozone concentrations in north central Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Yuska, D.E.; Skelly, J.M.; Ferdinand, J.A.; Stevenson, R.E.; Savage, J.E.; Mulik, J.D.; Hines, A

    2003-09-01

    Passive samplers and bioindicator plants detect ozone air pollution in north central Pennsylvania. - Ambient concentrations of tropospheric ozone and ozone-induced injury to black cherry (Prunus serotina) and common milkweed (Asclepias syriaca) were determined in north central Pennsylvania from 29 May to 5 September 2000 and from 28 May to 18 September 2001. Ogawa passive ozone samplers were utilized within openings at 15 forested sites of which six were co-located with TECO model 49 continuous ozone monitors. A significant positive correlation was observed between the Ogawa passive samplers and the TECO model 49 continuous ozone monitors for the 2000 (r=0.959) and 2001 (r=0.979) seasons. In addition, a significant positive correlation existed in 2000 and 2001 between ozone concentration and elevation (r=0.720) and (r=0.802), respectively. Classic ozone-induced symptoms were observed on black cherry and common milkweed. In 2000, initial injury was observed in early June, whereas for the 2001 season, initial injury was initially observed in late June. During both seasons, injury was noted at most sites by mid- to late-July. Soil moisture potential was measured for the 2001 season and a significant positive relationship (P<0.001) showed that injury to black cherry was a function of cumulative ozone concentrations and available soil moisture.

  9. Use of bioindicators and passive sampling devices to evaluate ambient ozone concentrations in north central Pennsylvania

    International Nuclear Information System (INIS)

    Yuska, D.E.; Skelly, J.M.; Ferdinand, J.A.; Stevenson, R.E.; Savage, J.E.; Mulik, J.D.; Hines, A.

    2003-01-01

    Passive samplers and bioindicator plants detect ozone air pollution in north central Pennsylvania. - Ambient concentrations of tropospheric ozone and ozone-induced injury to black cherry (Prunus serotina) and common milkweed (Asclepias syriaca) were determined in north central Pennsylvania from 29 May to 5 September 2000 and from 28 May to 18 September 2001. Ogawa passive ozone samplers were utilized within openings at 15 forested sites of which six were co-located with TECO model 49 continuous ozone monitors. A significant positive correlation was observed between the Ogawa passive samplers and the TECO model 49 continuous ozone monitors for the 2000 (r=0.959) and 2001 (r=0.979) seasons. In addition, a significant positive correlation existed in 2000 and 2001 between ozone concentration and elevation (r=0.720) and (r=0.802), respectively. Classic ozone-induced symptoms were observed on black cherry and common milkweed. In 2000, initial injury was observed in early June, whereas for the 2001 season, initial injury was initially observed in late June. During both seasons, injury was noted at most sites by mid- to late-July. Soil moisture potential was measured for the 2001 season and a significant positive relationship (P<0.001) showed that injury to black cherry was a function of cumulative ozone concentrations and available soil moisture

  10. Sunflower oil ozonation. Following of the reaction by proton Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Diaz Gomez, Maritza F.

    2005-01-01

    Previous studies have demonstrated that the technique of Proton Nuclear Magnetic Resonance can be used for the pursuit of the reaction between the ozone and the unsaturated fatty acids. It's carried out the sunflower oil ozonization to different applied dose of ozone and the index of peroxides and the concentration of aldehydes are determined. The main reaction products were identified by Proton Nuclear Magnetic Resonance Spectroscopy (NMR 1 H). The intensities of the signs were used to follow the advance of the reaction between the ozone and the sunflower oil. It is was carried out until obtaining an index of peroxides of 1 202 mmol-equiv/kg. The intensities of the signs of the olefinic protons diminish with a gradual increment in the dose of applied ozone, but without ending up disappearing completely. The ozonides of Criegee obtained to applied dose of ozone of 107,1 mg/g were approximately bigger 7,4 times that those obtained at the beginning from the reaction to applied dose of ozone of 15,3 mg/g. The aldehydes protons were observed as a sign of weak intensity in all the spectra. The signs belonging to the olenifics protons of the hydroperoxides in d = 5,55 ppm increases with the increment of the applied dose of ozone. You concludes that to higher applied dose of ozone, haggler is the advance of the ozonization reaction, what belongs together with a bigger formation of oxygenated compounds

  11. Chemical and Spectral Characterization of The Ozonation Products of κ-Carrageenan

    Directory of Open Access Journals (Sweden)

    Prasetyaningrum Aji

    2018-01-01

    Full Text Available Kappa (κ- carrageenan oligomers are known to have several biological activities. Recent progress in the development of modified κ-carrageenan has resulted low molecular of κ-carrageenan. Ozone is a powerful oxidant and considered for depolymerization of κ-carrageenan. However, few studies have investigated the changes in κ-carrageenan properties associated with ozone treatment. This study would investigate on the changes in chemical structure after ozonation process. The experiments were carried out in a glass reactor equipped with an ozone bubble diffuser. Ozone with concentration of 80 ± 2 was bubbled into the solution. The ozone treatment was conducted at different times, i.e., 0 (control, 5, 10, 15, and 20 minutes. The experiments were conducted at pH 7 and constant stirring speed (200 rpm. Ozone-treated κ-carrageenan was dried at 60 ºC for 24 h in a forced air oven. The chemical and spectral analyses of κ-carrageenan after ozonation process were carried out using UV-Vis and FT-IR spectroscopy. These changes are seen in the UV spectra as a high intensity of absorbance peak at 290 nm. It is shows that ozonation of κ-carrageenan leads to some chemical changes such as the formation of carbonyl, carboxyl or double bonds.The FT-IR spectra reveals that the chemical structure of degraded κ-carrageenan, in term of sulfate content, is only slightly affected by the ozone treatment.

  12. Ozone dosing alters the biological potential and therapeutic outcomes of plasma rich in growth factors.

    Science.gov (United States)

    Anitua, E; Zalduendo, M M; Troya, M; Orive, G

    2015-04-01

    Until now, ozone has been used in a rather empirical way. This in-vitro study investigates, for the first time, whether different ozone treatments of plasma rich in growth factors (PRGF) alter the biological properties and outcomes of this autologous platelet-rich plasma. Human plasma rich in growth factors was treated with ozone using one of the following protocols: a continuous-flow method; or a syringe method in which constant volumes of ozone and PRGF were mixed. In both cases, ozone was added before, during and after the addition of calcium chloride. Three ozone concentrations, of the therapeutic range 20, 40 and 80 μg/mL, were tested. Fibrin clot properties, growth factor content and the proliferative effect on primary osteoblasts and gingival fibroblasts were evaluated. Ozone treatment of PRGF using the continuous flow protocol impaired formation of the fibrin scaffold, drastically reduced the levels of growth factors and significantly decreased the proliferative potential of PRGF on primary osteoblasts and gingival fibroblasts. In contrast, treatment of PRGF with ozone using the syringe method, before, during and after the coagulation process, did not alter the biological outcomes of the autologous therapy. These findings suggest that ozone dose and the way that ozone combines with PRGF may alter the biological potential and therapeutic outcomes of PRGF. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Development of a sensitive passive sampler using indigotrisulfonate for the determination of tropospheric ozone.

    Science.gov (United States)

    Garcia, Gabriel; Allen, Andrew George; Cardoso, Arnaldo Alves

    2010-06-01

    A new sampling and analytical design for measurement of ambient ozone is presented. The procedure is based on ozone absorption and decoloration (at 600 nm) of indigotrisulfonate dye, where ozone adds itself across the carbon-carbon double bond of the indigo. A mean relative standard deviation of 8.6% was obtained using samplers exposed in triplicate, and a correlation coefficient (r) of 0.957 was achieved in parallel measurements using the samplers and a commercial UV ozone instrument. The devices were evaluated in a measurement campaign, mapping spatial and temporal trends of ozone concentrations in a region of southeast Brazil strongly influenced by seasonal agricultural biomass burning, with associated emissions of ozone precursors. Ozone concentrations were highest in rural areas and lowest at an urban site, due to formation during downwind transport and short-term depletion due to titration with nitric oxide. Ozone concentrations showed strong seasonal trends, due to the influences of precursor emissions, relative humidity and solar radiation intensity. Advantages of the technique include ease and speed of use, the ready availability of components, and excellent sensitivity. Achievable temporal resolution of ozone concentrations is 8 hours at an ambient ozone concentration of 3.8 ppb, or 2 hours at a concentration of 15.2 ppb.

  14. Mass spectrometric investigation of the isotopes of ozone in the laboratory and the stratosphere

    International Nuclear Information System (INIS)

    Mauersberger, K.; Morton, J.; Schueler, B.

    1991-01-01

    During the last few years information on the isotope anomalies of ozone has substantially increased. Whenever ozone is formed in a gas phase reaction, an enhancement in its heavy isotopes is found of magnitude 12-14% ( 50 O 3 ) above the statistically expected values. The mass-independent enhancement decreases toward higher pressures and also shows a pronounced temperature dependence. Toward lower temperatures the enhancement becomes less. Studies of all possible ozone isotopes have shown that molecular symmetry plays a major role. Even large enhancements, above the laboratory results, have been occasionally measured in the stratosphere using a number of different experimental techniques. A correlation between very high heavy ozone enhancement (> 30%) and high solar activity may exist. The behavior of ozone isotopes will provide information about the ozone formation process

  15. [Ozone concentration distribution of urban].

    Science.gov (United States)

    Yin, Yong-quan; Li, Chang-mei; Ma, Gui-xia; Cui, Zhao-jie

    2004-11-01

    The increase of ozone concentration in urban is one of the most important research topics on environmental science. With the increase of nitrogen oxides and hydrogen-carbon compounds which are exhausted from cars, the ozone concentration in urban is obviously increased on sunlight, and threat of photochemistry smog will be possible. Therefore, it is very important to monitor and study the ozone concentration distribution in urban. The frequency-distribution, diurnal variation and monthly variation of ozone concentration were studied on the campus of Shandong University during six months monitoring. The influence of solar radiation and weather conditions on ozone concentration were discussed. The frequency of ozone concentration less than 200 microg/m3 is 96.88%. The ozone concentration has an obvious diurnal variation. The ozone concentration in the afternoon is higher than in the morning and in the evening. The maximum appears in June, when it is the strong solar radiation and high air-temperature. The weather conditions also influence the ozone concentration. The ozone concentration in clear day is higher than in rainy and cloudy day.

  16. Mass-dependent and non-mass-dependent isotope effects in ozone photolysis: Resolving theory and experiments

    International Nuclear Information System (INIS)

    Cole, Amanda S.; Boering, Kristie A.

    2006-01-01

    In addition to the anomalous 17 O and 18 O isotope effects in the three-body ozone formation reaction O+O 2 +M, isotope effects in the destruction of ozone by photolysis may also play a role in determining the isotopic composition of ozone and other trace gases in the atmosphere. While previous experiments on ozone photolysis at 254 nm were interpreted as evidence for preferential loss of light ozone that is anomalous (or 'non-mass-dependent'), recent semiempirical theoretical calculations predicted a preferential loss of heavy ozone at that wavelength that is mass dependent. Through photochemical modeling results presented here, we resolve this apparent contradiction between experiment and theory. Specifically, we show that the formation of ozone during the UV photolysis experiments is not negligible, as had been assumed, and that the well-known non-mass-dependent isotope effects in ozone formation can account for the non-mass-dependent enrichment of the heavy isotopologs of ozone observed in the experiment. Thus, no unusual non-mass-dependent fractionation in ozone photolysis must be invoked to explain the experimental results. Furthermore, we show that theoretical predictions of a mass-dependent preferential loss of the heavy isotopologs of ozone during UV photolysis are not inconsistent with the experimental data, particularly if mass-dependent isotope effects in the chemical loss reactions of ozone during the photolysis experiments or experimental artifacts enrich the remaining ozone in 17 O and 18 O. Before the calculated fractionation factors can be quantitatively evaluated, however, further investigation of possible mass-dependent isotope effects in the reactions of ozone with O( 1 D), O( 3 P), O 2 ( 1 Δ), and O 2 ( 1 Σ) is needed through experiments we suggest here

  17. Comparative study of ozonized olive oil and ozonized sunflower oil

    OpenAIRE

    Díaz,Maritza F.; Hernández,Rebeca; Martínez,Goitybell; Vidal,Genny; Gómez,Magali; Fernández,Harold; Garcés,Rafael

    2006-01-01

    In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observ...

  18. Reactive nitrogen oxides and ozone above a taiga woodland

    Science.gov (United States)

    Bakwin, Peter S.; Jacob, Daniel J.; Wofsy, Steven C.; Munger, J. William; Daube, Bruce C.; Bradshaw, John D.; Sandholm, Scott T.; Talbot, Robert W.; Singh, Hanwant B.; Gregory, Gerald L.

    1994-01-01

    Measurements of reactive nitrogen oxides (NO(x) and NO(y)) and ozone (O3) were made in the planetary boundary layer (PBL) above a taiga woodland in northern Quebec, Canada, during June-August, 1990, as part of NASA Artic Boundary Layer Expedition (ABLE) 3B. Levels of nitrogen oxides and O3 were strongly modulated by the synoptic scale meteorology that brought air from various source regions to the site. Industrial pollution from the Great Lakes region of the U.S. and Canada appears to be a major source for periodic elevation of NO(x), and NO(y) and O3. We find that NO/NO2 ratios at this site at midday were approximately 50% those expected from a simple photochemical steady state between NO(x) and O3, in contrast to our earlier results from the ABLE 3A tundra site. The difference between the taiga and tundra sites is likely due to much larger emissions of biogenic hydrocarbons (particularly isoprene) from the taiga vegetation. Hydrocarbon photooxidation leads to relatively rapid production of peroxy radicals, which convert NO to NO2, at the taiga site. Ratios of NO(x) to NO(y) were typically 2-3 times higher in the PBL during ABLE 3B than during ABLE 3A. This is probably the result of high PAN levels and suppressed formation of HNO3 from NO2 due to high levels of biogenic hydrocarbons at the ABLE 3B site.

  19. Leaf injury characteristics of grassland species exposed to ozone in relation to soil moisture condition and vapour pressure deficit

    International Nuclear Information System (INIS)

    Bungener, P.; Balls, G.R.; Nussbaum, S.; Geissmann, M.; Grub, A.; Fuhrer, J.

    1999-01-01

    A range of plant species typical of semi-natural grasslands were tested for their sensitivity to short-term ozone injury under normal and reduced irrigation, and in relationship to air vapour pressure deficit. Potted specimens of 24 herbs, legumes and grasses were exposed during two seasons to four O 3 treatments in open-top chambers. The ozone treatments were: (a) charcoal-filtered air; (b) charcoal-filtered air plus ozone to match ambient levels; (c) charcoal-filtered air plus O 3 to ambient levels 1.5 and (d) charcoal-filtered air with ozone added to twice ambient levels during selected episodes of 7–13 d. During these ozone episodes, half of the plants in each ozone treatment received reduced irrigation (dry treatment) while the rest was kept under full irrigation (wet treatment). Type and date of first occurrence of leaf injury were noted during individual growth periods. Plants were harvested three times per year, and the percentage of injured leaves was recorded. Depending on species, injury symptoms were expressed as flecking (O 3 -specific injury), leaf yellowing or anthocyanin formation. Carum carvi and most species of the Fabaceae family (Onobrychis sativa, Trifolium repens, Trifolium pratense) were found to be most responsive to O 3 , injury occurring after only a few days of exposure in treatment (b). An episodic reduction in irrigation tended to reduce the expression of O 3 -specific symptoms, but only in species for which a reduction in soil moisture potential and an associated reduction in stomatal conductance during the dry episodes were observed. In other species, the protection from O 3 injury seemed to be of little importance. Using artificial neural networks the injury response of nine species was analysed in relation to Species, stomatal conductance, ozone as AOT40 (accumulated exposure above a threshold of 0.04 ppm for periods with global radiation ≥ 50 W m −2 (Fuhrer et al., 1997)), mean relative growth rate, air vapour pressure

  20. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruces and European beech

    International Nuclear Information System (INIS)

    Liu, X.; Rennenberg, H.; Kozovits, A. R.; Grams, T. E.; Blaschke, H.; Matyssek, R.

    2004-01-01

    Potential interactions of carbon dioxide and ozone on carbohydrate concentrations and contents were studied in Norway spruce and European beech saplings to test the hypotheses that (1) prolonged exposure to elevated carbon dioxide does not compensate for the limiting effects of ozone on the accumulation of sugars and starches, or biomass partitioning to the root; and (2) growth of mixed-species planting will repress plant responses to elevated ozone and carbon dioxide. Norway spruce and European beech saplings were acclimated for one year to ambient and elevated carbon dioxide, followed by exposure to factorial combinations of ambient and elevated ozone and carbon dioxide during the next two years. In spruce trees, sugar and starch content was greater in saplings exposed to elevated carbon dioxide; in beech, the response was the opposite. The overall conclusion was that the results did not support Hypothesis One, because the adverse effects were counteracted by elevated carbon dioxide. Regarding Hypothesis Two, it was found to be supportive for beech but not for spruce. In beech, the reduction of sugars and starch by elevated ozone and stimulation by elevated carbon dioxide were repressed by competitive interaction with spruce, whereas in spruce saplings elevated concentrations of carbon dioxide resulted in higher concentrations of sugar and starch, but only in leaves and coarse roots and only when grown in combination with beech. Elevated ozone in spruce saplings produced no significant effect on sugar or starch content either in intra- or interspecific competition. 57 refs., 1 tab., 5 figs

  1. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruces and European beech

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Rennenberg, H. [University of Freiburg, Inst. of Forest Botany and Tree Physiology, Freiburg (Germany); Kozovits, A. R.; Grams, T. E.; Blaschke, H.; Matyssek, R. [Technische Universitat Munchen, Dept. of Ecology and Ecophysiology of Plants, Freising (Germany)

    2004-09-01

    Potential interactions of carbon dioxide and ozone on carbohydrate concentrations and contents were studied in Norway spruce and European beech saplings to test the hypotheses that (1) prolonged exposure to elevated carbon dioxide does not compensate for the limiting effects of ozone on the accumulation of sugars and starches, or biomass partitioning to the root; and (2) growth of mixed-species planting will repress plant responses to elevated ozone and carbon dioxide. Norway spruce and European beech saplings were acclimated for one year to ambient and elevated carbon dioxide, followed by exposure to factorial combinations of ambient and elevated ozone and carbon dioxide during the next two years. In spruce trees, sugar and starch content was greater in saplings exposed to elevated carbon dioxide; in beech, the response was the opposite. The overall conclusion was that the results did not support Hypothesis One, because the adverse effects were counteracted by elevated carbon dioxide. Regarding Hypothesis Two, it was found to be supportive for beech but not for spruce. In beech, the reduction of sugars and starch by elevated ozone and stimulation by elevated carbon dioxide were repressed by competitive interaction with spruce, whereas in spruce saplings elevated concentrations of carbon dioxide resulted in higher concentrations of sugar and starch, but only in leaves and coarse roots and only when grown in combination with beech. Elevated ozone in spruce saplings produced no significant effect on sugar or starch content either in intra- or interspecific competition. 57 refs., 1 tab., 5 figs.

  2. eEF1A Controls ascospore differentiation through elevated accuracy, but controls longevity and fruiting body formation through another mechanism in Podospora anserina.

    Science.gov (United States)

    Silar, P; Lalucque, H; Haedens, V; Zickler, D; Picard, M

    2001-01-01

    Antisuppressor mutations in the eEF1A gene of Podospora anserina were previously shown to impair ascospore formation, to drastically increase life span, and to permit the development of the Crippled Growth degenerative process. Here, we show that eEF1A controls ascospore formation through accuracy level maintenance. Examination of antisuppressor mutant perithecia reveals two main cytological defects, mislocalization of spindle and nuclei and nuclear death. Antisuppression levels are shown to be highly dependent upon both the mutation site and the suppressor used, precluding any correlation between antisuppression efficiency and severity of the sporulation impairment. Nevertheless, severity of ascospore differentiation defect is correlated with resistance to paromomycin. We also show that eEF1A controls fruiting body formation and longevity through a mechanism(s) different from accuracy control. In vivo, GFP tagging of the protein in a way that partly retains its function confirmed earlier cytological observation; i.e., this factor is mainly diffuse within the cytosol, but may transiently accumulate within nuclei or in defined regions of the cytoplasm. These data emphasize the fact that the translation apparatus exerts a global regulatory control over cell physiology and that eEF1A is one of the key factors involved in this monitoring. PMID:11514440

  3. An elevator

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, A.S.; Peshkov, L.P.; Rozin, M.M.; Shestov, A.G.

    1983-01-01

    An elevator is proposed which includes a body, a flap, a lock with a catch and a spring-loaded shut-off clamp in the form of upper and lower horizontal levers which are connected by a handle and an axle and one end of which is made in the form of an eccentric cam. The size of the eccentricity of the cam of the levers is increased toward the handle of the clamp in order to increase the operational reliability and to extend the service life.

  4. An elevator

    Energy Technology Data Exchange (ETDEWEB)

    Rastorguyev, M.A.; Maloyarovslavtesv, D.A.; Prokopov, O.I.; Tukayev, Sh.V.; Zanilov, I.F.

    1983-01-01

    An elevator is proposed which includes a body with a turning collar locking device and a rod with longitudinal grooves, which are flexibly linked with jaws positioned in grooves in the body. To increase safety through ensuring automatic locking of the jaws in the closed position, the locking device is made in the form of head on wedges, spring loaded relative to the collar and made with cams and positioned with the capability of interacting with the grooves of the rod and through the cams with the collar.

  5. Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study

    Directory of Open Access Journals (Sweden)

    L. Ran

    2012-08-01

    Full Text Available Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP and Yangtze River Delta (YRD. Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP and Shanghai (YRD. Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx and various non-methane hydrocarbons (NMHCs. Ozone pollution in summer was found to be more severe in the Tianjin region than in the Shanghai region, based on either the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive NMHCs in Tianjin. Industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominated. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is probably a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.

  6. Bucket elevator

    OpenAIRE

    Chromek, Jiří

    2013-01-01

    Cílem této bakalářské práce je návrh svislého korečkového elevátoru, který má sloužit k dopravě obilovin s dopravní výškou 19 m a dopravovaným množstvím 100 t/hod. Práce se skládá z popisu korečkového elevátoru a jeho hlavních částí, zmiňující se v úvodní rešerši. Tato práce je zaměřena na funkční a kapacitní výpočet, určení pohonu a napínacího zařízení. Další výpočet je kontrolní, skládající se z pevnostní kontroly hnacího hřídele, výpočtu pera, životnosti ložisek a výpočtu napínacího zaříze...

  7. Photochemical processes and ozone production in Finnish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, T.; Hakola, H. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Photochemical ozone production is observed in March-September. Highest ozone concentrations and production efficiencies are observed in spring in the northern parts and in summer in the southern parts of the country. VOC concentrations are relatively low compared to continental areas in general. During the growing season a substantial part of the total reactive mass of VOCs is of biogenic origin. Large forest areas absorb ozone substantially, decreasing the ambient ozone concentrations in central and northern parts of Finland where long-range transport of ozone is relatively important compared to local production. The aim of the work conducted at Finnish Meteorological Institute has been to characterise concentrations of photochemically active species in the boundary layer and their photochemical formation and deposition including the effects on vegetation. Also interactions between the boundary layer and free troposphere of ozone have been studied. In the future, fluxes of both biogenic species and air pollutants will be measured and the models will be further developed so that the photochemical and micrometeorological processes could be better understood

  8. Photochemical processes and ozone production in Finnish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, T; Hakola, H [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1997-12-31

    Photochemical ozone production is observed in March-September. Highest ozone concentrations and production efficiencies are observed in spring in the northern parts and in summer in the southern parts of the country. VOC concentrations are relatively low compared to continental areas in general. During the growing season a substantial part of the total reactive mass of VOCs is of biogenic origin. Large forest areas absorb ozone substantially, decreasing the ambient ozone concentrations in central and northern parts of Finland where long-range transport of ozone is relatively important compared to local production. The aim of the work conducted at Finnish Meteorological Institute has been to characterise concentrations of photochemically active species in the boundary layer and their photochemical formation and deposition including the effects on vegetation. Also interactions between the boundary layer and free troposphere of ozone have been studied. In the future, fluxes of both biogenic species and air pollutants will be measured and the models will be further developed so that the photochemical and micrometeorological processes could be better understood

  9. High-tension corona controlled ozone generator for environment protection

    International Nuclear Information System (INIS)

    Vijayan, T; Patil, Jagadish G

    2010-01-01

    Engineering details of a high voltage driven corona-plasma ozone generator are described. The plasma diode of generator has coaxial cylindrical geometry with cathode located inside anode. Cathode is made of a large number of radial gas nozzles arranged on central tubular mast which admits oxygen gas. The sharp endings of the nozzles along with a set of corona rings create the high electric field at the cathode required for formation of dense corona plume responsible for O 3 evolution. A model of coronal plasma generation and ozone production is presented. The plasma formation is strongly dependent on the electric field and temperature in side diode where a high electron density in a low temperature negative corona is suited for high ozone yields. These are established by suitable regulation of A-K gap, voltage, oxygen pressure, and cathode-nozzle population.

  10. Health Effects of Ozone and Particle Pollution

    Science.gov (United States)

    ... this page: Health Effects of Ozone and Particle Pollution Two types of air pollution dominate in the ... So what are ozone and particle pollution? Ozone Pollution It may be hard to imagine that pollution ...

  11. Protecting the ozone layer.

    Science.gov (United States)

    Munasinghe, M; King, K

    1992-06-01

    Stratospheric ozone layer depletion has been recognized as a problem by the Vienna Convention for the Protection of the Ozone Layer and the 1987 Montreal Protocol (MP). The ozone layer shields the earth from harmful ultraviolet radiation (UV-B), which is more pronounced at the poles and around the equator. Industrialized countries have contributed significantly to the problem by releasing chlorofluorocarbons (CFCs) and halons into the atmosphere. The effect of these chemicals, which were known for their inertness, nonflammability, and nontoxicity, was discovered in 1874. Action to deal with the effects of CFCs and halons was initiated in 1985 in a 49-nation UN meeting. 21 nations signed a protocol limiting ozone depleting substances (ODS): CFCs and halons. Schedules were set based on each country's use in 1986; the target phaseout was set for the year 2000. The MP restricts trade in ODSs and weights the impact of substances to reflect the extent of damage; i.e., halons are 10 times more damaging than CFCs. ODS requirements for developing countries were eased to accommodate scarce resources and the small fraction of ODS emissions. An Interim Multilateral Fund under the Montreal Protocol (IMFMP) was established to provide loans to finance the costs to developing countries in meeting global environmental requirements. The IMFMP is administered by the World Bank, the UN Environmental Program, and the UN Development Program. Financing is available to eligible countries who use .3 kg of ODS/person/year. Rapid phaseout in developed countries has occurred due to strong support from industry and a lower than expected cost. Although there are clear advantages to rapid phaseout, there were no incentives included in the MP for rapid phaseout. Some of the difficulties occur because the schedules set minimum targets at the lowest possible cost. Also, costs cannot be minimized by a country-specific and ODS-specific process. The ways to improve implementation in scheduling and

  12. Role of ozone and granular activated carbon in the removal of mutagenic compounds.

    Science.gov (United States)

    Bourbigot, M M; Hascoet, M C; Levi, Y; Erb, F; Pommery, N

    1986-01-01

    The identification of certain organic compounds in drinking water has led water treatment specialists to be increasingly concerned about the eventual risks of such pollutants to the health of consumers. Our experiments focused on the role of ozone and granular activated carbon in removing mutagenic compounds and precursors that become toxic after chlorination. We found that if a sufficient dose of ozone is applied, its use does not lead to the creation of mutagenic compounds in drinking water and can even eliminate the initial mutagenicity of the water. The formation of new mutagenic compounds seems to be induced by ozonation that is too weak, although these mutagens can be removed by GAC filtration. Ozone used with activated carbon can be one of the best means for eliminating the compounds contributing to the mutagenicity of water. A combined treatment of ozone and activated carbon also decreases the chlorine consumption of the treated water and consequently reduces the formation of chlorinated organic compounds. PMID:3816720

  13. Investigating a high ozone episode in a rural mountain site

    International Nuclear Information System (INIS)

    Monteiro, A.; Strunk, A.; Carvalho, A.; Tchepel, O.; Miranda, A.I.; Borrego, C.; Saavedra, S.; Rodríguez, A.; Souto, J.; Casares, J.; Friese, E.; Elbern, H.

    2012-01-01

    A very high ozone episode with observed hourly values above 350 μg m −3 occurred in July 2005 at the Lamas d’Olo air quality monitoring station, located in a mountainous area in the north of Portugal. Aiming to identify the origin and formation of this ozone-rich episode, a statistical analysis and a modelling approach were applied. A cross-spectrum analysis in the frequency domain and a synoptic analysis of the meteorological and air quality time series were performed. In order to go further in this analysis, a numerical modelling approach was applied. The results indicate that the transport of ozone and its precursors is the main responsible for the high ozone concentrations. Together with the local mountain breeze and subsidence conditions, the sea-breeze circulation transporting pollutants from the coastal urban and industrialized areas that reach the site during late afternoon turn out to be the driving forces for the ozone peaks. - Highlights: ► A very high ozone episode occurred in a rural mountain site of Portugal in 2004. ► Data cross-spectrum analysis in the frequency domain was performed. ► A numerical modelling approach was also applied. ► The sea-breeze circulation transported pollutants from the urban and industrialized coast. ► The mountain breeze and subsidence conditions were also driving forces for ozone peaks. - The sea-breeze transporting pollutants from the coast, the mountain breeze and subsidence conditions, were the driving forces for the ozone episode occurred in a rural mountain site.

  14. Investigating Elevated Concentrations of Hydrogen in the LAX region

    Science.gov (United States)

    Rund, P.; Hughes, S.; Blake, D. R.

    2017-12-01

    The growing interest in hydrogen (H2) fuel cell vehicles has created a need to study the atmospheric H2 budget. While there is resounding agreement that hydrogen would escape into the atmosphere due to fuel transport/storage processes, there is disagreement over the amount that would be leaked in a hydrogen fuel economy. Leakage rate estimates range from 2% to 10% for total hydrogen production and transport. A hydrogen based energy infrastructure seems a viable clean alternative to oil because, theoretically, the only waste products are H2O and heat. However, hydrogen leads to the formation of water vapor, polar stratospheric clouds, and a decrease in stratospheric temperatures, which contribute to the depletion of stratospheric ozone. Whole air samples (WAS) collected aboard the NASA Sherpa C-23 during the Student Airborne Research Program (SARP) showed elevated concentrations of hydrogen near LAX (950 ± 110 ppbv) compared to global average concentrations of 560 ± 20 ppbv. Trace gas analysis along with wind trajectories obtained with the NOAA HySPLIT models indicate that the source of elevated mixing ratios was leakage from H2 fuel stations in the surrounding areas. Correlation and ratio analyses eliminate the potential for common photochemical sources of H2 in the LAX area. This project could elucidate new and potential factors that contribute to the global atmospheric hydrogen budget.

  15. Isoprene biosynthesis in hybrid poplar impacts ozone tolerance

    Science.gov (United States)

    Behnke, K.; Kleist, E.; Uerlings, R.; Wildt, J.; Rennenberg, H.; Schnitzler, J. P.

    2009-04-01

    Isoprene is the most abundant volatile compound emitted by vegetation. It influences air chemistry and is thought to take part in plant defense reactions against abiotic stress such as high temperature or ozone. However, whether or not isoprene emission interacts with ozone tolerance of plants is still in discussion. We exploited transgenic non-isoprene emitting Grey poplar (Populus x canescens) in a biochemical and physiological model study to investigate the effect of acute ozone stress on the elicitation of defense-related emissions of plant volatiles, photosynthesis and the antioxidative system. We recorded that non-isoprene emitting poplars are more resistant to ozone as indicated by less damaged leaf area and higher assimilation rates compared to ozone-exposed wild type plants. The integral of green leaf volatile (GLV) emissions was different between the two poplar phenotypes and a reliable early marker for subsequent leaf damage. For other stress-induced volatiles like mono-, homo-, and sesquiterpenes, and methyl salicylate similar time profiles, pattern and emission intensities were observed in both transgenic and wild type plants. However, un-stressed non-isoprene emitting poplars are characterized by elevated levels of ascorbate and α-tocopherol as well as a more effective de-epoxidation ratio of xanthophylls than in wild type plants. Since ozone quenching properties of ascorbate are much higher than those of isoprene and furthermore α-tocopherol also is an essential antioxidant, non-isoprene emitting poplars might benefit from changes within the antioxidative system by providing them with enhanced ozone tolerance.

  16. Ozone impacts of natural gas development in the Haynesville Shale.

    Science.gov (United States)

    Kemball-Cook, Susan; Bar-Ilan, Amnon; Grant, John; Parker, Lynsey; Jung, Jaegun; Santamaria, Wilson; Mathews, Jim; Yarwood, Greg

    2010-12-15

    The Haynesville Shale is a subsurface rock formation located beneath the Northeast Texas/Northwest Louisiana border near Shreveport. This formation is estimated to contain very large recoverable reserves of natural gas, and during the two years since the drilling of the first highly productive wells in 2008, has been the focus of intensive leasing and exploration activity. The development of natural gas resources within the Haynesville Shale is likely to be economically important but may also generate significant emissions of ozone precursors. Using well production data from state regulatory agencies and a review of the available literature, projections of future year Haynesville Shale natural gas production were derived for 2009-2020 for three scenarios corresponding to limited, moderate, and aggressive development. These production estimates were then used to develop an emission inventory for each of the three scenarios. Photochemical modeling of the year 2012 showed increases in 2012 8-h ozone design values of up to 5 ppb within Northeast Texas and Northwest Louisiana resulting from development in the Haynesville Shale. Ozone increases due to Haynesville Shale emissions can affect regions outside Northeast Texas and Northwest Louisiana due to ozone transport. This study evaluates only near-term ozone impacts, but the emission inventory projections indicate that Haynesville emissions may be expected to increase through 2020.

  17. ReaxFF molecular dynamics simulation of intermolecular structure formation in acetic acid-water mixtures at elevated temperatures and pressures

    Science.gov (United States)

    Sengul, Mert Y.; Randall, Clive A.; van Duin, Adri C. T.

    2018-04-01

    The intermolecular structure formation in liquid and supercritical acetic acid-water mixtures was investigated using ReaxFF-based molecular dynamics simulations. The microscopic structures of acetic acid-water mixtures with different acetic acid mole fractions (1.0 ≥ xHAc ≥ 0.2) at ambient and critical conditions were examined. The potential energy surface associated with the dissociation of acetic acid molecules was calculated using a metadynamics procedure to optimize the dissociation energy of ReaxFF potential. At ambient conditions, depending on the acetic acid concentration, either acetic acid clusters or water clusters are dominant in the liquid mixture. When acetic acid is dominant (0.4 ≤ xHAc), cyclic dimers and chain structures between acetic acid molecules are present in the mixture. Both structures disappear at increased water content of the mixture. It was found by simulations that the acetic acid molecules released from these dimer and chain structures tend to stay in a dipole-dipole interaction. These structural changes are in agreement with the experimental results. When switched to critical conditions, the long-range interactions (e.g., second or fourth neighbor) disappear and the water-water and acetic acid-acetic acid structural formations become disordered. The simulated radial distribution function for water-water interactions is in agreement with experimental and computational studies. The first neighbor interactions between acetic acid and water molecules are preserved at relatively lower temperatures of the critical region. As higher temperatures are reached in the critical region, these interactions were observed to weaken. These simulations indicate that ReaxFF molecular dynamics simulations are an appropriate tool for studying supercritical water/organic acid mixtures.

  18. Products of BVOC oxidation: ozone and organic aerosols

    Science.gov (United States)

    Wildt, Jürgen; Andres, Stefanie; Carriero, Giulia; Ehn, Mikael; Fares, Silvano; Hoffmann, Thorsten; Hacker, Lina; Kiendler-Scharr, Astrid; Kleist, Einhard; Paoletti, Elena; Pullinen, Iida; Rohrer, Franz; Rudich, Yinon; Springer, Monika; Tillmann, Ralf; Wahner, Andreas; Wu, Cheng; Mentel, Thomas

    2015-04-01

    Biogenic Volatile Organic Compounds (BVOC) are important precursors in photochemical O3 and secondary organic aerosol (SOA) formation. We conducted a series of laboratory experiments with OH-induced oxidation of monoterpenes to elucidate pathways and efficiencies of O3 and SOA formation. At high NOx conditions ([BVOC] / [NOx] monoterpene mixes emitted from different plant species we observed increasing ozone formation with increasing [NOX]. Between 2 and 3 O3-molecules were formed from 1 monoterpene when ozone formation was BVOC limited. Under such high NOX conditions, new particle formation was suppressed. Increasing [BVOC] / [NOX] ratios caused increasing efficiency of new particle formation indicating that peroxy radicals are the key intermediates in both, photochemical ozone- and new particle formation. The classical chemistry of peroxy radicals is well established (e.g. Master Chemical Mechanism). Peroxy radicals are produced by addition of molecular oxygen to the alkyl radical formed after OH attack at the BVOC. They either react with NO which leads to ozone formation or they react with other peroxy radicals and form chemically stable products (hydroperoxides, alkoholes and ketones). Much less knowledge exists on such reactions for Highly Oxidized Peroxy Radicals, (HOPR). Such HOPR were observed during ozonolysis of several volatiles and, in case of monoterpenes as precursors, they can contain more than 12 Oxygen atoms (Mentel et al., 2015). Although the OH-initiated formation of HOPR is yet not fully understood, their basic gas phase reactions seem to follow classical photochemical rules. In reactions with NO they can act as precursor for O3 and in reactions with other HOPR or with classical less oxidized peroxy radicals they can form highly oxidized stable products and alkoxy radicals. In addition, HOPR-HOPR reactions lead to the formation of dimers that, in case of monoterpenes as reactants, consist of a skeleton with 20 carbon atoms. These dimers seem to

  19. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats

    International Nuclear Information System (INIS)

    Miller, Desinia B.; Snow, Samantha J.; Henriquez, Andres; Schladweiler, Mette C.; Ledbetter, Allen D.; Richards, Judy E.; Andrews, Debora L.; Kodavanti, Urmila P.

    2016-01-01

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25 ppm or 1.00 ppm ozone, 5 h/day, 3 consecutive days/week (wk) for 13 wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13 wk or following a 1 wk recovery period (13 wk + 1 wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13 wk, however, these responses were largely reversible following a 1 wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. - Highlights: • Subchronic episodic ozone exposure caused pulmonary and metabolic effects. • These

  20. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Desinia B. [Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina (United States); Snow, Samantha J. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Henriquez, Andres [Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina (United States); Schladweiler, Mette C.; Ledbetter, Allen D.; Richards, Judy E.; Andrews, Debora L. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2016-09-01

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25 ppm or 1.00 ppm ozone, 5 h/day, 3 consecutive days/week (wk) for 13 wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13 wk or following a 1 wk recovery period (13 wk + 1 wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13 wk, however, these responses were largely reversible following a 1 wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. - Highlights: • Subchronic episodic ozone exposure caused pulmonary and metabolic effects. • These

  1. Comparing Model Ozone Loss during the SOLVE and SOLVE-2 Winters

    Science.gov (United States)

    Drdla, K.

    2003-01-01

    Model simulations have been used to analyze the factors influencing ozone loss during the 1999-2000 and 2002-2003 js. For both winters, the evolution of the Arctic vortex from November to April has been simulated using a trajectory-based microphysical and photochemical model. Extensive PSC formation and strong ozone depletion are evident in both winters. However, the ozone loss begins earlier in the 2002-2003 winter, with significant ozone depletion by early January. Analysis of the model results shows that during December 2002 not only cold temperatures but also the vortex structure was critical, allowing PSC-processed air parcels to experience significant solar exposure. The resultant ozone loss can be differentiated from ozone loss that occurs in the springtime, in particular because of the continued exposure to PSCs. For example, chlorine reactivation by the PSCs causes ozone loss to be insensitive to denitrification. Therefore, diagnosing the extent of ozone loss early in the winter is critical In understanding the overall winter-long ozone depletion.

  2. VOC reactivity and its effect on ozone production during the HaChi summer campaign

    Directory of Open Access Journals (Sweden)

    L. Ran

    2011-05-01

    Full Text Available Measurements of ozone and its precursors conducted within the HaChi (Haze in China project in summer 2009 were analyzed to characterize volatile organic compounds (VOCs and their effects on ozone photochemical production at a suburban site in the North China Plain (NCP. Ozone episodes, during which running 8-h average ozone concentrations exceeding 80 ppbv lasted for more than 4 h, occurred on about two thirds of the observational days during the 5-week field campaign. This suggests continuous ozone exposure risks in this region in the summer. Average concentrations of nitrogen oxides (NOx and VOCs are about 20 ppbv and 650 ppbC, respectively. On average, total VOC reactivity is dominated by anthropogenic VOCs. The contribution of biogenic VOCs to total ozone-forming potential, however, is also considerable in the daytime. Key species associated with ozone photochemical production are 2-butenes (18 %, isoprene (15 %, trimethylbenzenes (11 %, xylenes (8.5 %, 3-methylhexane (6 %, n-hexane (5 % and toluene (4.5 %. Formation of ozone is found to be NOx-limited as indicated by measured VOCs/NOx ratios and further confirmed by a sensitivity study using a photochemical box model NCAR_MM. The Model simulation suggests that ozone production is also sensitive to changes in VOC reactivity under the NOx-limited regime, although this sensitivity depends strongly on how much NOx is present.

  3. Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor.

    Science.gov (United States)

    Lucas, Marco S; Peres, José A; Lan, Bing Yan; Li Puma, Gianluca

    2009-04-01

    The degradation of organic substances present in winery wastewater was studied in a pilot-scale, bubble column ozonation reactor. A steady reduction of chemical oxygen demand (COD) was observed under the action of ozone at the natural pH of the wastewater (pH 4). At alkaline and neutral pH the degradation rate was accelerated by the formation of radical species from the decomposition of ozone. Furthermore, the reaction of hydrogen peroxide (formed from natural organic matter in the wastewater) and ozone enhances the oxidation capacity of the ozonation process. The monitoring of pH, redox potential (ORP), UV absorbance (254 nm), polyphenol content and ozone consumption was correlated with the oxidation of the organic species in the water. The ozonation of winery wastewater in the bubble column was analysed in terms of a mole balance coupled with ozonation kinetics modeled by the two-film theory of mass transfer and chemical reaction. It was determined that the ozonation reaction can develop both in and across different kinetic regimes: fast, moderate and slow, depending on the experimental conditions. The dynamic change of the rate coefficient estimated by the model was correlated with changes in the water composition and oxidant species.

  4. Sensitivity of antibiotic resistant and antibiotic susceptible Escherichia coli, Enterococcus and Staphylococcus strains against ozone.

    Science.gov (United States)

    Heß, Stefanie; Gallert, Claudia

    2015-12-01

    Tolerance of antibiotic susceptible and antibiotic resistant Escherichia coli, Enterococcus and Staphylococcus strains from clinical and wastewater samples against ozone was tested to investigate if ozone, a strong oxidant applied for advanced wastewater treatment, will affect the release of antibiotic resistant bacteria into the aquatic environment. For this purpose, the resistance pattern against antibiotics of the mentioned isolates and their survival after exposure to 4 mg/L ozone was determined. Antibiotic resistance (AR) of the isolates was not correlating with higher tolerance against ozone. Except for ampicillin resistant E. coli strains, which showed a trend towards increased resistance, E. coli strains that were also resistant against cotrimoxazol, ciprofloxacin or a combination of the three antibiotics were similarly or less resistant against ozone than antibiotic sensitive strains. Pigment-producing Enterococcus casseliflavus and Staphylococcus aureus seemed to be more resistant against ozone than non-pigmented species of these genera. Furthermore, aggregation or biofilm formation apparently protected bacteria in subsurface layers from inactivation by ozone. The relatively large variance of tolerance against ozone may indicate that resistance to ozone inactivation most probably depends on several factors, where AR, if at all, does not play a major role.

  5. Effect of ozone and histamine on airway permeability to horseradish peroxidase in guinea pigs

    International Nuclear Information System (INIS)

    Miller, P.D.; Gordon, T.; Warnick, M.; Amdur, M.O.

    1986-01-01

    Airway permeability was studied in groups of male guinea pigs at 2, 8, and 24 h after a 1-h exposure to 1 ppm ozone or at 2 h after a 1-h exposure to filtered air (control). Intratracheal administration of 2 mg horseradish peroxidase (HRP) was followed by blood sampling at 5-min intervals up to 30 min. The rate of appearance of HRP in plasma was significantly higher at 2 and 8 h after ozone exposure than that found in animals examined 2 h after air exposure or 24 h after ozone exposure. A dose of 0.12 mg/kg of subcutaneous histamine given after the 15 min blood sample significantly increased the already elevated permeability seen at 2 h post ozone, but had no effect on animals exposed to filtered air 2 h earlier or to ozone 24 h earlier. No difference was seen in the amount of subcutaneous radiolabeled histamine in the lungs of animals exposed 2 h earlier either to air or to ozone. These data indicate that a short-term exposure to ozone produced a reversible increase in respiratory epithelial permeability to HRP in guinea pigs. The potentiation of this increased permeability by histamine may be another manifestation of ozone-induced hyperreactivity

  6. Stratospheric ozone: an introduction to its study

    International Nuclear Information System (INIS)

    Nicolet, M.

    1975-01-01

    An analysis is made of the various reactions in which ozone and atomic oxygen are involved in the stratosphere. At the present time, hydrogen, nitrogen, and chlorine compounds in the ranges parts per million, parts per billion, and parts per trillion may have significant chemical effects. In the upper stratosphere, above the ozone peak, where there is no strong departure from photochemical equilibrium conditions, the action of hydroxyl and hydroperoxyl radicals of nitrogen dioxide and chlorine monoxide on atomic oxygen and of atomic chlorine on ozone can be introduced. A precise determination of their exact effects requires knowledge of the vertical distribution of the H 2 O, CH 4 , and H 2 dissociation by reaction of these molecules with electronically excited oxygen atom O( 1 D); the ratio of the OH and HO 2 concentrations and their absolute values, which depend on insufficiently known rate coefficients; the various origins of nitric oxide production, with their vertical distributions related to latitude and season; and the various sources giving different chlorine compounds that may be dissociated in the stratosphere. In the lower stratosphere, below the ozone peak, there is no important photochemical production of O 3 , but there exist various possibilities of transport. The predictability of the action of chemical reactions depends strongly on important interactions between OH and HO 2 radicals with CO and NO, respectively, which affect the ratio n(OH)/n(HO 2 ) at the tropopause level; between OH and NO 2 , which lead to the formation of nitric acid with its downward transport toward the troposphere; between NO and HO 2 , which lead to NO 2 and its subsequent photodissociation; between ClO and NO, which also lead to NO 2 and become more important than the reaction of ClO with O; and between Cl and various molecules, such as CH 4 and H 2 , which lead to HCl with its downward transportation toward the troposphere

  7. The potential near-source ozone impacts of upstream oil and gas industry emissions.

    Science.gov (United States)

    Olaguer, Eduardo P

    2012-08-01

    Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also offormaldehyde, a hazardous air pollutant and powerful ozone precursor We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity ofa hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors. Flare volumes of 100,000 cubic meters per hour ofnatural gas over a period of 2 hr can also add over 3 ppb to peak 1-hr ozone somewhatfurther (>8 km) downwind, once dilution overcomes ozone titration and inhibition by large flare emissions of NOx. The additional peak ozone from the hypothetical flare can briefly exceed 10 ppb about 16 km downwind. The enhancements of ambient ozone predicted by the model are significant, given that ozone control strategy widths are of the order of a few parts per billion. Degrading the horizontal resolution of the model to 1 km spuriously enhances the simulated ozone increases by reducing the effectiveness of ozone inhibition and titration due to artificial plume dilution.

  8. Ethanolic Extract of Butea monosperma Leaves Elevate Blood Insulin Level in Type 2 Diabetic Rats, Stimulate Insulin Secretion in Isolated Rat Islets, and Enhance Hepatic Glycogen Formation

    Directory of Open Access Journals (Sweden)

    Mehdi Bin Samad

    2014-01-01

    Full Text Available We measured a vast range of parameters, in an attempt to further elucidate previously claimed antihyperglycemic activity of Butea monosperma. Our study clearly negates the possibility of antidiabetic activity by inhibited gastrointestinal enzyme action or by reduced glucose absorption. Reduction of fasting and postprandial glucose level was reconfirmed (P<0.05. Improved serum lipid profile via reduced low density lipoprotein (LDL, cholesterol, triglycerides (TG, and increased high density lipoprotein (HDL was also reestablished (P<0.05. Significant insulin secretagogue activity of B. monosperma was found in serum insulin assay of B. monosperma treated type 2 diabetic rats (P<0.01. This was further ascertained by our study on insulin secretion on isolated rat islets (P<0.05. Improved sensitivity of glucose was shown by the significant increase in hepatic glycogen deposition (P<0.05. Hence, we concluded that antihyperglycemic activity of B. monosperma was mediated by enhanced insulin secretion and enhanced glycogen formation in the liver.

  9. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    Science.gov (United States)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  10. Experimental study of ozone synthesis

    International Nuclear Information System (INIS)

    Garamoon, A A; Elakshar, F F; Nossair, A M; Kotp, E F

    2002-01-01

    A silent discharge ozonizer has been constructed with a design that enables the study of ozone concentration behaviour as a function of different parameters when oxygen used as a working gas. The behaviour of ozone concentration as a function of discharge current density has four characteristic regions. The concentration is enhanced by more than threefold whenever gas pressure is reduced by a factor of two. The flow rate of the working gas is a more effective parameter on ozone concentration than the gas pressure. When the flow rate is kept constant, and the pressure is decreased by 100%, the ozone concentration increases by only 10%. On the other hand, when the flow rate is decreased by 13%, the ozone concentration increases by 200%, whenever the gas pressure is kept constant. The concentration is nearly doubled when the gap space is increased by four times under the same conditions. The length of the discharge region, the thickness and the dielectric constant of the insulating materials are found to have a considerable effect on the generated ozone concentration. Also, the ozone concentration is ten times less when air is used instead of oxygen as a working gas. A maximum efficiency of 185 g/kWh, is obtained for the present system

  11. Source attribution of tropospheric ozone

    Science.gov (United States)

    Butler, T. M.

    2015-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both

  12. Transport aloft drives peak ozone in the Mojave Desert

    Science.gov (United States)

    VanCuren, Richard

    2015-05-01

    Transport of anthropogenic pollution eastward out of the Los Angeles megacity region in California has been periodically observed to reach the Colorado River and the Colorado Plateau region beyond. In the 1980s, anthropogenic halocarbon tracers measured in and near the Las Angeles urban area and at a mountain-top site near the Colorado River, 400 km downwind, were shown to have a correlated seven-day cycle explainable by transport from the urban area with a time lag of 1-2 days. Recent short term springtime intensive studies using aircraft observations and regional modeling of long range transport of ozone from the Southern California megacity region showed frequent and persistent ozone impacts at surface sites across the Colorado Plateau and Southern Rocky Mountain region, at distances up to 1500 km, also with time lags of 1-2 days. However, the timing of ozone peaks at low altitude monitoring sites within the Mojave Desert, at distances from 100 to 400 km from the South Coast and San Joaquin Valley ozone source regions, does not show the expected time-lag behavior seen in the larger transport studies. This discrepancy is explained by recognizing ozone transport across the Mojave Desert to occur in a persistent layer of polluted air in the lower free troposphere with a base level at approximately 1 km MSL. This layer impacts elevated downwind sites directly, but only influences low altitude surface ozone maxima through deep afternoon mixing. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), from long-range transport from Asia, and stratospheric down-mixing. Recognition of the role of afternoon mixing during spring and summer over the Mojave explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, and resolves an apparent paradox in the timing of ozone peaks due to

  13. Ozone's impact on public health: Contributions from indoor exposures to ozone and products of ozone-initiated chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.

    2006-01-01

    OBJECTIVES: The associations between ozone concentrations measured outdoors and both morbidity and mortality may be partially due to indoor exposures to ozone and ozone-initiated oxidation products. In this article I examine the contributions of such indoor exposures to overall ozone-related heal...

  14. Charge-mediated Fab-Fc interactions in an IgG1 antibody induce reversible self-association, cluster formation, and elevated viscosity.

    Science.gov (United States)

    Arora, Jayant; Hu, Yue; Esfandiary, Reza; Sathish, Hasige A; Bishop, Steven M; Joshi, Sangeeta B; Middaugh, C Russell; Volkin, David B; Weis, David D

    Concentration-dependent reversible self-association (RSA) of monoclonal antibodies (mAbs) poses a challenge to their pharmaceutical development as viable candidates for subcutaneous delivery. While the role of the antigen-binding fragment (Fab) in initiating RSA is well-established, little evidence supports the involvement of the crystallizable fragment (Fc). In this report, a variety of biophysical tools, including hydrogen exchange mass spectrometry, are used to elucidate the protein interface of such non-covalent protein-protein interactions. Using dynamic and static light scattering combined with viscosity measurements, we find that an IgG1 mAb (mAb-J) undergoes RSA primarily through electrostatic interactions and forms a monomer-dimer-tetramer equilibrium. We provide the first direct experimental mapping of the interface formed between the Fab and Fc domains of an antibody at high protein concentrations. Charge distribution heterogeneity between the positively charged interface spanning complementarity-determining regions CDR3H and CDR2L in the Fab and a negatively charged region in C H 3/Fc domain mediates the RSA of mAb-J. When arginine and NaCl are added, they disrupt RSA of mAb-J and decrease the solution viscosity. Fab-Fc domain interactions between mAb monomers may promote the formation of large transient antibody complexes that ultimately cause increases in solution viscosity. Our findings illustrate how limited specific arrangements of amino-acid residues can cause mAbs to undergo RSA at high protein concentrations and how conserved regions in the Fc portion of the antibody can also play an important role in initiating weak and transient protein-protein interactions.

  15. Vacancy effects on the formation of He and Kr cavities in 3C-SiC irradiated and annealed at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Hang, E-mail: zanghang@xjtu.edu.cn [Department of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Jiang, Weilin, E-mail: weilin.jiang@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Liu, Wenbo [Department of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Devaraj, Arun; Edwards, Danny J.; Henager, Charles H.; Kurtz, Richard J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Li, Tao; He, Chaohui; Yun, Di [Department of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Zhiguang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-12-15

    Highlights: • He and Kr cavities are formed in ion-implanted and 1600 °C annealed 3C-SiC. • A higher vacancy concentration leads to formation of cavities with a smaller size and higher density. • Presence of He in irradiated 3C-SiC can significantly promote cavity growth. • Small voids are formed in Kr ion penetrated 3C-SiC during thermal annealing at 1600 °C. • Local Kr migration and trapping at cavities in SiC are observed, but long-range Kr diffusion does not occur at 1600 °C. - Abstract: Polycrystalline 3C-SiC was sequentially irradiated at 400 and 750 °C with 120 keV He{sup 2+} and 4 MeV Kr{sup 15+} ions to 10{sup 17} and 4 × 10{sup 16} cm{sup −2}, respectively. The Kr{sup 15+} ions penetrated the entire depth region of the He{sup 2+} ion implantation. Three areas of He{sup 2+}, Kr{sup 15+} and He{sup 2+} + Kr{sup 15+} ion implanted SiC were created through masked overlapping irradiation. The sample was subsequently annealed at 1600 °C in vacuum and characterized using cross-sectional transmission electron microscopy and energy-dispersive X-ray spectroscopy. Compared to the He{sup 2+} ion only implanted SiC, He cavities show a smaller size and higher density in the co-implanted SiC. At 25 dpa, presence of He in the co-implanted 3C-SiC significantly promotes cavity growth; much smaller voids are formed in the Kr{sup 15+} ion only irradiated SiC at the same dose. In addition, local Kr migration and trapping at cavities occurs, but long-range Kr diffusion in SiC is not observed up to 1600 °C.

  16. Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA

    OpenAIRE

    Gorai, A. K.; Tuluri, F.; Tchounwou, P. B.; Ambinakudige, S.

    2015-01-01

    The influence of local climatic factors on ground-level ozone concentrations is an area of increasing interest to air quality management in regards to future climate change. This study presents an analysis on the role of temperature, wind speed, wind direction, and NO2 level on ground-level ozone concentrations over the region of Eastern Texas, USA. Ozone concentrations at the ground level depend on the formation and dispersion processes. Formation process mainly depends on the precursor sour...

  17. Ozone reduction strategy for the northeastern part of Austria: cooperation and compilation of the fundamentals

    International Nuclear Information System (INIS)

    Orthofer, R.; Winiwarter, W.

    1996-05-01

    This report is contribution to the implementation of an ozone reduction strategy for the northeastern part of Austria. The report contains a regional emission inventory, an emission projection for the years 1996, 2001 and 2006, an evaluation of further stationary sources reduction options. The ozone formation potentials of non-methane volatile organic compounds (NMVOC) emissions were calculated separately for both mobile and stationary source group, in order to assess the respective contribution to the local ozone formation. It can be shown that status-quo reduction measures are more efficient in terms of ozone formation potential during the summer season than in terms of NMVOC emission mass reduction. It is recommended that further NMVOC emission control should focus primarily on industrial solvent emissions, domestic heating of water during summertime with solid fuels, and on stubble burning in the fields. (author)

  18. Effects of genotype, elevated CO2 and elevated O3 on aspen phytochemistry and aspen leaf beetle Chrysomela crotchi performance

    Science.gov (United States)

    Leanne M. Vigue; Richard L. Lindroth

    2010-01-01

    Trembling aspen Populus tremuloides Michaux is an important forest species in the Great Lakes region and displays tremendous genetic variation in foliar chemistry. Elevated carbon dioxide (CO2) and ozone (O3) may also influence phytochemistry and thereby alter the performance of insect herbivores such as...

  19. Impact of elevated CO2 and elevated O3 on Beta vulgaris L.: Pigments, metabolites, antioxidants, growth and yield

    International Nuclear Information System (INIS)

    Kumari, Sumita; Agrawal, Madhoolika; Tiwari, Supriya

    2013-01-01

    The present study was conducted to assess morphological, biochemical and yield responses of palak (Beta vulgaris L. cv Allgreen) to ambient and elevated levels of CO 2 and O 3 , alone and in combination. As compared to the plants grown in charcoal filtered air (ACO 2 ), growth and yield of the plants increased under elevated CO 2 (ECO 2 ) and decreased under combination of ECO 2 with elevated O 3 (ECO 2 + EO 3 ), ambient O 3 (ACO 2 + AO 3 ) and elevated O 3 (EO 3 ). Lipid peroxidation, ascorbic acid, catalase and glutathione reductase activities enhanced under all treatments and were highest in EO 3. Foliar starch and organic carbon contents increased under ECO 2 and ECO 2 + EO 3 and reduced under EO 3 and ACO 2 + AO 3. Foliar N content declined in all treatments compared to ACO 2 resulting in alteration of C/N ratio. This study concludes that ambient level of CO 2 is not enough to counteract O 3 impact, but elevated CO 2 has potential to counteract the negative effects of future O 3 level. -- Highlights: ► Elevated CO 2 enhanced the growth and yield of palak. ► Ambient and elevated ozone reduced the growth and yield of the test plant. ► Elevated CO 2 reduced negative effects of elevated O 3 by reducing oxidative stress. ► Higher amelioration was recorded at elevated CO 2 + O 3 compared to ambient CO 2 + O 3 . -- Predicted levels of CO 2 have greater ameliorative potential against negative effects of elevated ozone compared to present day CO 2 against ambient ozone

  20. Are Antarctic ozone variations a manifestation of dynamics or chemistry?

    Science.gov (United States)

    Tung, K.-K.; Ko, M. K. W.; Rodriguez, J. M.; Sze, N. D.

    1986-01-01

    The existence of a reverse circulation cell with rising motion in the polar lower stratosphere is suggested as an explanation for the temporal behavior of the ozone column density in the Antarctic region. The upwelling brings ozone-poor air from below 100 mbar to the stratosphere, possibly contributing to the observed ozone decline in early spring. At the same time, the Antarctic stratosphere might contain a very low concentration of NO(x), a condition that could favor a greatly enhanced catalytic removal of O3 by halogen species. It is argued that heterogeneous processes and formation of OClO by the reaction BrO+ClO - OClO+Br before and after the polar night might help to suppress the NO(x) levels during the early spring period.

  1. Ozone generation by negative corona discharge: the effect of Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Yanallah, K; Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla (Spain); Pontiga, F; Fernandez-Rueda, A [Departamento de Fisica Aplicada II, Universidad de Sevilla (Spain); Belasri, A [Laboratoire de Physique des Plasmas, des Materiaux Conducteur et Leurs Applications, Universite d' Oran (Algeria)

    2008-10-07

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage.

  2. Ozone generation by negative corona discharge: the effect of Joule heating

    International Nuclear Information System (INIS)

    Yanallah, K; Castellanos, A; Pontiga, F; Fernandez-Rueda, A; Belasri, A

    2008-01-01

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage

  3. Ozone generation by negative corona discharge: the effect of Joule heating

    Science.gov (United States)

    Yanallah, K.; Pontiga, F.; Fernández-Rueda, A.; Castellanos, A.; Belasri, A.

    2008-10-01

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage.

  4. Interaction effects of temperature and ozone on lung function and markers of systemic inflammation, coagulation, and fibrinolysis: A crossover study of healthy young volunteers

    Science.gov (United States)

    BACKGROUND: Trends in climate suggest that extreme weather events such as heat waves will become more common. High levels of the gaseous pollutant ozone are associated with elevated temperatures. Ozone has been associated with respiratory diseases as well as cardiovascular morbid...

  5. Long-term effects of ozone on CO2 exchange in peatland microcosms

    DEFF Research Database (Denmark)

    Haapala, JK; Mörsky, SK; Rinnan, Riikka

    2011-01-01

    Effects of elevated tropospheric ozone concentration on the CO2 exchange of peatland microcosms and the photosynthetic capacity of the dominating sedge, Eriophorum vaginatum, were studied in a four-year open-field experiment. The net ecosystem CO2 exchange and the dark respiration rate of the mic......Effects of elevated tropospheric ozone concentration on the CO2 exchange of peatland microcosms and the photosynthetic capacity of the dominating sedge, Eriophorum vaginatum, were studied in a four-year open-field experiment. The net ecosystem CO2 exchange and the dark respiration rate...... exchange of the peatland microcosms....

  6. Construction of the Cylindrical Ozone Generator by Silent Discharge Method

    International Nuclear Information System (INIS)

    Agus Purwadi; Widdi Usada; Suryadi; Isyuniarto; Sri Sukmajaya

    2002-01-01

    It has been constructed the ozone generator by silent discharge method. Anode and cathode of discharge tube were made of stainless steel (SS) in the cylinder form with diameters of 22 mm and 25 mm, the length of 100 mm and 110 mm, the equal thickness of 1 mm respectively. The dielectric was made of cylinder glass with diameter of 23 cm, the length of 105 cm and the thickness of 1 mm. The testing of apparatus was carried out by using discharge voltage of 12.5 kV and frequency of 1.5 kHz. Identification of the ozone gas formation was marked by the existing of special ozone smell and the separated of iodine molecule (yellow colour) from the potassium iodide solution which contaminated gas out put from the ozonizer. By using absorbing method can be shown that the ozone production rate was 0.196 mg/s by using oxygen gas input and 0.065 mg/s by using ordinary air input. (author)

  7. What-ifs for a Northern ozone hole

    Energy Technology Data Exchange (ETDEWEB)

    Newman, A.

    1993-08-01

    Based on papers presented at a recent American Geophysical Union meeting in Baltimore, this article discusses various processes that could lead to further significant stratospheric ozone losses over northern latitudes. In southern high latitudes, ClO, formed when Cl atoms react with O[sub 3], persists into the spring and enters a photocatalytic cycle that regenerates ozone-destroying Cl atoms. Type II polar stratospheric clouds (PSCs) are believed to act as catalysts in this cycle. Although type II PSCs rarely form in the warmer Arctic stratosphere, it is possible that type I PSCs and sulfuric acid droplets may act as catalytic surfaces in this region. The arctic however, currently lacks a pronounced ozone hole, unlike Antartica. This is because in the Northern Hemisphere, large-scale tropospheric weather disturbances leak a portion of their energy to the less dense stratosphere. This indirectly leads to the descent of air over the Arctic region which produces compression heating of the polar cap and keeps the Arctic winter stratosphere warm enough to evade the cold temperatures that would produce widespread PSCs, and the associated significant ozone destruction. However, the greenhouse effect could lead to a cooler stratosphere containing more water and weaker tropospheric large-scale disturbances meaning colder Arctic winters. All these factors would contribute to greater PSC formation and the associated ozone destruction.

  8. What-ifs for a Northern ozone hole

    International Nuclear Information System (INIS)

    Newman, A.

    1993-01-01

    Based on papers presented at a recent American Geophysical Union meeting in Baltimore, this article discusses various processes that could lead to further significant stratospheric ozone losses over northern latitudes. In southern high latitudes, ClO, formed when Cl atoms react with O 3 , persists into the spring and enters a photocatalytic cycle that regenerates ozone-destroying Cl atoms. Type II polar stratospheric clouds (PSCs) are believed to act as catalysts in this cycle. Although type II PSCs rarely form in the warmer Arctic stratosphere, it is possible that type I PSCs and sulfuric acid droplets may act as catalytic surfaces in this region. The arctic however, currently lacks a pronounced ozone hole, unlike Antartica. This is because in the Northern Hemisphere, large-scale tropospheric weather disturbances leak a portion of their energy to the less dense stratosphere. This indirectly leads to the descent of air over the Arctic region which produces compression heating of the polar cap and keeps the Arctic winter stratosphere warm enough to evade the cold temperatures that would produce widespread PSCs, and the associated significant ozone destruction. However, the greenhouse effect could lead to a cooler stratosphere containing more water and weaker tropospheric large-scale disturbances meaning colder Arctic winters. All these factors would contribute to greater PSC formation and the associated ozone destruction

  9. How is ozone pollution reducing our food supply?

    Science.gov (United States)

    Wilkinson, Sally; Mills, Gina; Illidge, Rosemary; Davies, William J

    2012-01-01

    Ground-level ozone pollution is already decreasing global crop yields (from ∼2.2-5.5% for maize to 3.9-15% and 8.5-14% for wheat and soybean, respectively), to differing extents depending on genotype and environmental conditions, and this problem is predicted to escalate given climate change and increasing ozone precursor emissions in many areas. Here a summary is provided of how ozone pollution affects yield in a variety of crops, thus impacting global food security. Ozone causes visible injury symptoms to foliage; it induces early senescence and abscission of leaves; it can reduce stomatal aperture and thereby carbon uptake, and/or directly reduce photosynthetic carbon fixation; it can moderate biomass growth via carbon availability or more directly; it can decrease translocation of fixed carbon to edible plant parts (grains, fruits, pods, roots) due either to reduced availability at source, redirection to synthesis of chemical protectants, or reduced transport capabilities via phloem; decreased carbon transport to roots reduces nutrient and water uptake and affects anchorage; ozone can moderate or bring forward flowering and induce pollen sterility; it induces ovule and/or grain abortion; and finally it reduces the ability of some genotypes to withstand other stresses such as drought, high vapour pressure deficit, and high photon flux density via effects on stomatal control. This latter point is emphasized here, given predictions that atmospheric conditions conducive to drought formation that also give rise to intense precursor emission events will become more severe over the coming decades.

  10. Correlative studies of satellite ozone sensor measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.

    1983-01-01

    Comparisons are made between total ozone measurements made by four satellite ozone sensors (TOMS, SBUV, TOVS and MFR). The comparisons were made during July 1979 when all sensors were operating simultaneously. The TOMS and SBUV sensors were observed to measure less total ozone than the MFR sensor, 10 and 15 Dobson units (DU) respectively. The MFR and TOMS sensors measured less ozone than the TOVS sensor, 19 an 28 DU, respectively. Latitudinal variability of the total ozone comparisons is discussed

  11. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure.

  12. Ozone Sensitivity and Catalase Activity in Pigmented and Non-Pigmented Strains of Serratia Marcescens.

    Science.gov (United States)

    de Ondarza, José

    2017-01-01

    Ozone exposure rapidly leads to bacterial death, making ozone an effective disinfectant in food industry and health care arena. However, microbial defenses may moderate this effect and play a role in the effective use of oxidizing agents for disinfection. Serratia marcescens is an opportunistic pathogen, expressing genes differentially during infection of a human host. A better understanding of regulatory systems that control expression of Serratia 's virulence genes and defenses is therefore valuable. Here, we investigated the role of pigmentation and catalase in Serratia marcescens on survival to ozone exposure. Pigmented and non-pigmented strains of Serratia marcescens were cultured to exponential or stationary phase and exposed to 5 ppm of gaseous ozone for 2.5 - 10 minutes. Survival was calculated via plate counts. Catalase activity was measured photometrically and tolerance to hydrogen peroxide was assayed by disk-diffusion. Exposure of S. marcescens to 5 ppm gaseous ozone kills > 90% of cells within 10 minutes in a time and concentration-dependent manner. Although pigmented Serratia (grown at 28°C) survived ozonation better than unpigmented Serratia (grown at 35°C), non-pigmented mutant strains of Serratia had similar ozone survival rates, catalase activity and H 2 O 2 tolerance as wild type strains. Rather, ozone survival and catalase activity were elevated in 6 hour cultures compared to 48 hour cultures. Our studies did not bear out a role for prodigiosin in ozone survival. Rather, induction of oxidative stress responses during exponential growth increased both catalase activity and ozone survival in both pigmented and unpigmented S. marcescens .

  13. Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison

    Science.gov (United States)

    Parsons, C. L.

    1980-01-01

    Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.

  14. Determination of the Optimum Ozone Product on the Plasma Ozonizer

    International Nuclear Information System (INIS)

    Agus Purwadi; Widdi Usada; Suryadi; Isyuniarto; Sri Sukmajaya

    2002-01-01

    An experiment of the optimum ozone product determination on the cylindrical plasma ozonizer has been done. The experiment is carried out by using alternating high voltage power supply, oscilloscope CS-1577 A, flow meter and spectronik-20 instrument for the absorbance solution samples which produced by varying the physics parameter values of the discharge alternating high voltage and velocity of oxygen gas input. The plasma ozonizer is made of cylinder stainless steel as the electrode and cylinder glass as the dielectric with 1.00 mm of the discharge gap and 7.225 mm 3 of the discharge tube volume. The experiment results shows that the optimum ozone product is 0.360 mg/s obtained at the the discharge of alternating high voltage of 25.50 kV, the frequency of 1.00 kHz and the rate of oxygen gas input of 1.00 lpm. (author)

  15. Levofloxacin oxidation by ozone and hydroxyl radicals: kinetic study, transformation products and toxicity.

    Science.gov (United States)

    Hamdi El Najjar, Nasma; Touffet, Arnaud; Deborde, Marie; Journel, Romain; Leitner, Nathalie Karpel Vel

    2013-10-01

    This work was carried out to investigate the fate of the antibiotic levofloxacin upon oxidation with ozone and hydroxyl radicals. A kinetic study was conducted at 20 °C for each oxidant. Ozonation experiments were performed using a competitive kinetic method with carbamazepin as competitor. Significant levofloxacin removal was observed during ozonation and a rate constant value of 6.0×10(4) M(-1) s(-1) was obtained at pH 7.2. An H2O2/UV system was used for the formation of hydroxyl radicals HO. The rate constant of HO was determined in the presence of a high H2O2 concentration. The kinetic expressions yielded a [Formula: see text] value of 4.5×10(9) M(-1) s(-1) at pH 6.0 and 5.2×10(9) M(-1) s(-1) at pH 7.2. These results were used to develop a model to predict the efficacy of the ozonation process and pharmaceutical removal was estimated under different ozonation conditions (i.e. oxidant concentrations and contact times). The results showed that levofloxacin was completely degraded by molecular ozone during ozonation of water and that hydroxyl radicals had no effect in real waters conditions. Moreover, LC/MS/MS and toxicity assays using Lumistox test were performed to identify ozonation transformation products. Under these conditions, four transformation products were observed and their chemical structures were proposed. The results showed an increase in toxicity during ozonation, even after degradation of all of the observed transformation products. The formation of other transformation products not identified under our experimental conditions could be responsible for the observed toxicity. These products might be ozone-resistant and more toxic to Vibrio fisheri than levofloxacin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Extreme value modeling for the analysis and prediction of time series of extreme tropospheric ozone levels: a case study.

    Science.gov (United States)

    Escarela, Gabriel

    2012-06-01

    The occurrence of high concentrations of tropospheric ozone is considered as one of the most important issues of air management programs. The prediction of dangerous ozone levels for the public health and the environment, along with the assessment of air quality control programs aimed at reducing their severity, is of considerable interest to the scientific community and to policy makers. The chemical mechanisms of tropospheric ozone formation are complex, and highly variable meteorological conditions contribute additionally to difficulties in accurate study and prediction of high levels of ozone. Statistical methods offer an effective approach to understand the problem and eventually improve the ability to predict maximum levels of ozone. In this paper an extreme value model is developed to study data sets that consist of periodically collected maxima of tropospheric ozone concentrations and meteorological variables. The methods are applied to daily tropospheric ozone maxima in Guadalajara City, Mexico, for the period January 1997 to December 2006. The model adjusts the daily rate of change in ozone for concurrent impacts of seasonality and present and past meteorological conditions, which include surface temperature, wind speed, wind direction, relative humidity, and ozone. The results indicate that trend, annual effects, and key meteorological variables along with some interactions explain the variation in daily ozone maxima. Prediction performance assessments yield reasonably good results.

  17. Profiling secondary metabolites of needles of ozone-fumigated white pine (Pinus strobus) clones by thermally assisted hydrolysis/methylation GC/MS.

    Science.gov (United States)

    Shadkami, F; Helleur, R J; Cox, R M

    2007-07-01

    Plant secondary metabolites have an important role in defense responses against herbivores and pathogens, and as a chemical barrier to elevated levels of harmful air pollutants. This study involves the rapid chemical profiling of phenolic and diterpene resin acids in needles of two (ozone-tolerant and ozone-sensitive) white pine (Pinus strobus) clones, fumigated with different ozone levels (control, and daily events peaking at 80 and 200 ppb) for 40 days. The phenolic and resin acids were measured using thermally assisted hydrolysis and methylation (THM) gas chromatography/mass spectrometry. Short-term fumigation affected the levels of two phenolic acids, i.e., 3-hydroxybenzoic and 3,4-dihydroxybenzoic acids, in that both showed a substantial decrease in concentration with increased ozone dose. The decrease in concentration of these THM products may be caused by inhibition of the plant's shikimate biochemical pathway caused by ozone exposure. The combined occurrence of these two ozone-sensitive indicators has a role in biomonitoring of ozone levels and its impact on forest productivity. In addition, chromatographic profile differences in the major diterpene resin acid components were observed between ozone-tolerant and ozone-sensitive clones. The resin acids anticopalic, 3-oxoanticopalic, 3beta-hydroxyanticopalic, and 3,4-cycloanticopalic acids were present in the ozone-sensitive pine; however, only anticopalic acid was present in the ozone-tolerant clone. This phenotypic variation in resin acid composition may be useful in distinguishing populations that are differentially adapted to air pollutants.

  18. Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area

    Directory of Open Access Journals (Sweden)

    Y.-H. Ryu

    2013-02-01

    Full Text Available Modified local meteorology owing to heterogeneities in the urban–rural surface can affect urban air quality. In this study, the impacts of urban land-surface forcing on ozone air quality during a high ozone (O3 episode in the Seoul metropolitan area, South Korea, are investigated using a high-resolution chemical transport model (CMAQ. Under fair weather conditions, the temperature excess (urban heat island significantly modifies boundary layer characteristics/structures and local circulations. The modified boundary layer and local circulations result in an increase in O3 levels in the urban area of 16 ppb in the nighttime and 13 ppb in the daytime. Enhanced turbulence in the deep urban boundary layer dilutes pollutants such as NOx, and this contributes to the elevated O3 levels through the reduced O3 destruction by NO in the NOx-rich environment. The advection of O3 precursors over the mountains near Seoul by the prevailing valley-breeze circulation in the mid- to late morning results in the build-up of O3 over the mountains in conjunction with biogenic volatile organic compound (BVOC emissions there. As the prevailing local circulation in the afternoon changes to urban-breeze circulation, the O3-rich air masses over the mountains are advected over the urban area. The urban-breeze circulation exerts significant influences on not only the advection of O3 but also the chemical production of O3 under the circumstances in which both anthropogenic and biogenic (natural emissions play important roles in O3 formation. As the air masses that are characterized by low NOx and high BVOC levels and long OH chain length are advected over the urban area from the surroundings, the ozone production efficiency increases in the urban area. The relatively strong vertical mixing in the urban boundary layer embedded in the

  19. Development of a portable instrument to measure ozone production rates in the troposphere

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip; Kumar, Vinod; Sinha, Vinayak; Dusanter, Sébastien

    2015-04-01

    Ground-level ozone is a key species related to air pollution, causing respiratory problems, damaging crops and forests, and affecting the climate. Our current understanding of the tropospheric ozone-forming chemistry indicates that net ozone production occurs via reactions of peroxy radicals (HO2 + RO2) with NO producing NO2, whose photolysis leads to O3 formation. Production rates of tropospheric ozone, P(O3), depend on concentrations of oxides of nitrogen (NOx = NO + NO2) and Volatile Organic Compounds (V OCs), but also on production rates of ROx radicals (OH + HO2 + RO2). The formation of ozone follows a complex nonlinear chemistry that makes strategies for reducing ozone difficult to implement. In this context, atmospheric chemistry models are used to develop emission regulations, but there are still uncertainties associated with the chemical mechanisms used in these models. Testing the ozone formation chemistry in atmospheric models is needed, in order to ensure the development of effective strategies for ozone reduction. We will present the development of an instrument for direct measurements of ozone production rates (OPR) in ambient air. The OPR instrument is made of three components: (i) two quartz flow tubes to sample ambient air, one exposed to solar radiation and one covered by a UV filter, (ii) a NO2-to-O3 conversion unit, and (iii) an ozone analyzer. The total amount of ozone exiting each flow tube is conserved in the form of Ox = NO2 + O3. Ozone production rates P(O3) are derived from the difference in Ox concentration between the two flow tubes, divided by the exposure time of air inside the flow tubes. We will present studies that were carried out in the laboratory to characterize each part of the instrument and we will discuss the performances of the OPR instrument based on experiments carried out using synthetic air mixtures of known composition (NOx and V OCs). Chemical modeling will also be presented to assess the reliability of ozone

  20. Modeled population exposures to ozone

    Data.gov (United States)

    U.S. Environmental Protection Agency — Population exposures to ozone from APEX modeling for combinations of potential future air quality and demographic change scenarios. This dataset is not publicly...

  1. Ecosystem Effects of Ozone Pollution

    Science.gov (United States)

    Ground level ozone is absorbed by the leaves of plants, where it can reduce photosynthesis, damage leaves and slow growth. It can also make sensitive plants more susceptible to certain diseases, insects, harsh weather and other pollutants.

  2. Ozone - Current Air Quality Index

    Science.gov (United States)

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Current AQI Forecast AQI Loop More Maps AQI: Good (0 - 50) ... resources for Hawaii residents and visitors more announcements Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke ...

  3. Ozone modelling in Eastern Austria

    Energy Technology Data Exchange (ETDEWEB)

    Stohl, A.; Wotawa, G.; Kromp-Kolb, H. [Univ. of Agriculture, Vienna (Austria). Inst. of Meteorology and Physics; Winiwater, W. [Austrian Research Centre, Seibersdorf (Austria); Baumann, R.; Spangl, W. [Federal Environmental Agency, Vienna (Austria)

    1995-12-31

    High ozone concentrations are frequently observed in Eastern Austria, often exceeding local as well as international health standards, both for short-term as well as for long-term exposures. The maximum concentrations are produced in urban plumes, e.g. of the city of Vienna, whereas regional-scale transport and production of ozone is more important for the long-term concentrations. The Pannonian Ozone Project (POP) is an Austrian research initiative to model photochemical processes on a regional as well as on a local scale with a Lagrangian model to better understand the mechanisms leading to the high ozone concentrations and to develop abatement strategies. Up to now, focus has been on the regional scale. Aircraft, tethered balloon, tetroon and intensified ground measurements are carried out to validate the model. Although the major measurement campaign will be held in summer 1995, first results from a measurement campaign in summer 1994 are already available

  4. Ozone Nonattainment Areas - 1 Hour

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for Ozone - 1hour (Legacy...

  5. Organic aerosol formation in citronella candle plumes

    OpenAIRE

    Bothe, Melanie; Donahue, Neil McPherson

    2010-01-01

    Citronella candles are widely used as insect repellants, especially outdoors in the evening. Because these essential oils are unsaturated, they have a unique potential to form secondary organic aerosol (SOA) via reaction with ozone, which is also commonly elevated on summer evenings when the candles are often in use. We investigated this process, along with primary aerosol emissions, by briefly placing a citronella tealight candle in a smog chamber and then adding ozone to the chamber. In rep...

  6. Spatial clustering and meteorological drivers of summer ozone in Europe

    Science.gov (United States)

    Carro-Calvo, Leopoldo; Ordóñez, Carlos; García-Herrera, Ricardo; Schnell, Jordan L.

    2017-10-01

    We have applied the k-means clustering technique on a maximum daily 8-h running average near-surface ozone (MDA8 O3) gridded dataset over Europe at 1° × 1° resolution for summer 1998-2012. This has resulted in a spatial division of nine regions where ozone presents coherent spatiotemporal patterns. The role of meteorology in the variability of ozone at different time scales has been investigated by using daily meteorological fields from the NCEP-NCAR meteorological reanalysis. In the five regions of central-southern Europe ozone extremes (exceedances of the summer 95th percentile) occur mostly under anticyclonic circulation or weak sea level pressure gradients which trigger elevated temperatures and the recirculation of air masses. In the four northern regions extremes are associated with high-latitude anticyclones that divert the typical westerly flow at those latitudes and cause the advection of aged air masses from the south. The impact of meteorology on the day-to-day variability of ozone has been assessed by means of two different types of multiple linear models. These include as predictors meteorological fields averaged within the regions (;region-based; approach) or synoptic indices indicating the degree of resemblance between the daily meteorological fields over a large domain (25°-70° N, 35° W - 35° E) and their corresponding composites for extreme ozone days (;index-based; approach). With the first approach, a reduced set of variables, always including daily maximum temperature within the region, explains 47-66% of the variability (adjusted R2) in central-southern Europe, while more complex models are needed to explain 27-49% of the variability in the northern regions. The index-based approach yields better results for the regions of northern Europe, with adjusted R2 = 40-57%. Finally, both methodologies have also been applied to reproduce the interannual variability of ozone, with the best models explaining 66-88% of the variance in central

  7. The 2002 Antarctic Ozone Hole

    Science.gov (United States)

    Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.

    2003-01-01

    Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.

  8. Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water

    International Nuclear Information System (INIS)

    Witte, Bavo de; Dewulf, Jo; Demeestere, Kristof; Langenhove, Herman van

    2009-01-01

    A bubble reactor was used for ozonation of the antibiotic ciprofloxacin. Effects of process parameters ozone inlet concentration, ciprofloxacin concentration, temperature, pH and H 2 O 2 concentration were tested. Desethylene ciprofloxacin was identified, based on HPLC-MS analysis, as one of the degradation products. Formation of desethylene ciprofloxacin was highly dependent on pH, with the highest concentration measured at pH 10. Radical scavengers t-butanol and parachlorobenzoic acid were added in order to gain mechanistic understanding. Radical species other than hydroxyl radicals were suggested to occur at acidic pH which can explain fast ciprofloxacin ozonation at pH 3

  9. Use of ozone-biofiltration for bulk organic removal and disinfection byproduct mitigation in potable reuse applications.

    Science.gov (United States)

    Arnold, Mayara; Batista, Jacimaria; Dickenson, Eric; Gerrity, Daniel

    2018-07-01

    The purpose of this research was to investigate the impacts of ozone dose and empty bed contact time (EBCT) in ozone-biofiltration systems on disinfection byproduct (DBP) formation potential. The data were used to evaluate the possibility of using DBP formation potential as an alternative guideline for total organic carbon (TOC) removal in potable reuse applications. A pilot-scale ozone-biofiltration system was operated with O 3 /TOC ratios ranging from 0.1 to 2.25 and EBCTs ranging from 2 to 20 min. The biofiltration columns contained anthracite or biological activated carbon (BAC). Bench-scale chlorination was performed using the uniform formation conditions (UFC) approach, and quenched samples were analyzed for total trihalomethanes (TTHMs) and regulated haloacetic acids (HAA5s). The data demonstrated that ozone-biofiltration achieved TOC removals ranging from ∼10 to 30%, depending on operational conditions, but biofiltration without ozone generally achieved <10% TOC removal. UFC testing demonstrated that ozone alone was efficient in transforming bulk organic matter and reducing DBP formation potential by 10-30%. The synergistic combination of ozone and biofiltration achieved average overall reductions in TTHM and HAA5 formation potential of 26% and 51%, respectively. Finally, a maximum TOC concentration of 2.0 mg/L was identified as a recommended treatment target for reliable compliance with TTHM and HAA5 regulations for potable reuse systems in the United States. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. New dynamic NNORSY ozone profile climatology

    Science.gov (United States)

    Kaifel, A. K.; Felder, M.; Declercq, C.; Lambert, J.-C.

    2012-01-01

    Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995-2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of

  11. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3

  12. The exhibition to ozone diminishes the adherence and increases the membrane permeability of macrophages alveolar of rate

    International Nuclear Information System (INIS)

    Garcia, J.

    2000-01-01

    Ozone gas is generated photochemically in areas with high levels of automotive or industrial emissions, and causes irritation and inflammation of the airways if inhaled. Rat alveolar macrophages were obtained by lung lavage from male Sprague Dawley rats and used as a model to assess ozone induced cell damage (0,594 ppm for up to 60 minutes). Ozone exposure caused loss of cell adherence to a polystyrene substrate and increased membrane permeability, as noted by increases in specific 51 Cr release and citoplasmic calcium levels. The results indicate that the cell membrane is a target for ozone damage. Elevations of cytoplasmic calcium could mediate other macrophage responses to ozone , including eicosanoid and nitric oxide production, with concomitant decreases in phagocytic ability and superoxide production. (Author) [es

  13. Destruction of disinfection byproducts and their precursors in swimming pool water by combined UV treatment and ozonation

    DEFF Research Database (Denmark)

    Cheema, Waqas Akram; Kaarsholm, Kamilla Marie Speht; Andersen, Henrik Rasmus

    Both UV treatment and ozonation are used to reduce different types of disinfection byproducts (DBP) in swimming pools. UV treatment is most common as it is particularly efficient in removing the repulsive chlorine like smelling chloramines (combined chlorine). UV treatment of a pool water increased...... chlorine reactivity and formation of chlor-organic DBP such as trihalomethanes. Based on the similar selective reactivity of ozone and chlorine we hypothesized that the created reactivity towards chlorine by UV treatment of dissolved organic matter in pool water might also be expressed as an increased...... reactivity towards ozone and that ozonation might saturate the chlorine reactivity created by UV treatment and mitigate the increased DBP formation. By experimentally treating pool water samples, we found that UV treatment makes pool water highly reactive to ozone. The created reactivity towards chlorine...

  14. National Elevation Dataset (NED)

    Data.gov (United States)

    Kansas Data Access and Support Center — The U.S. Geological Survey has developed a National Elevation Database (NED). The NED is a seamless mosaic of best-available elevation data. The 7.5-minute elevation...

  15. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  16. Issues in Stratospheric Ozone Depletion.

    Science.gov (United States)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  17. Comparison of measured and modeled surface ozone concentrations at two different sites in Europe during the solar eclipse on August 11, 1999

    International Nuclear Information System (INIS)

    Zanis, P.; Zerefos, C.S.; Melas, D.

    2001-01-01

    The effects of the solar eclipse on 11 August 1999 on surface ozone at two sites, Thessaloniki, Greece (urban site) and Hohenpeissenberg, Germany (elevated rural site) are investigated in this study and compared with model results. The eclipse offered a unique opportunity to test our understanding of tropospheric ozone chemistry and to investigate with a simple photochemical box model the response of surface ozone to changes of solar radiation during a photolytical perturbation such as the solar eclipse. The surface ozone measurements following the eclipse display a decrease of around 10-15 ppbv at the urban station of Eptapyrgio at Thessaloniki while at Hoheneissenberg, the actual ozone data do not show any clear effect of eclipse on surface ozone. For Thessaloniki, the model results suggest that solely photochemistry can account for a significant amount of the observed surface ozone decrease during the eclipse but transport effects mask part of the photochemical effect of eclipse on surface ozone. For Hohenpeissenberg, the box model predicted an ozone decrease, but to the eclipse, of about 2ppbv in relative agreement with the magnitude of the observed ozone decrease from the 2h moving average while at the same time it inhibits the foreseen diurnal ozone increase. However, this modeled ozone decrease during the eclipse is small compared to the diurnal ozone variability due to transport effects, and hence, transport really masks such relative small changes. The different magnitude of the surface ozone decrease between the two sites indicates mainly the role of the NO x levels. Measured and modeled NO and NO 2 concentrations at Hohenpeissenbergy during the eclipse are also compared and indicate that the partitioning of NO and NO 2 in NO x is influenced clearly from the eclipse. This is not observed at Thessaloniki due to local NO x sources. (Author)

  18. Autoxidation of polyunsaturated fatty acids. Part I. Effect of ozone on the autoxidation of neat methyl linoleate and methyl linolenate

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A.; Stanley, J.P.; Blair, E.; Cullen, G.B.

    Neat samples of polyunsaturated fatty acids were exposed to ozone in air in a flow system, and the formation of peroxides, conjugated dienes and thiobarbituric acid (TBA)-reactive material was followed as a function of time. The effect of ozone is to shorten the induction period normally observed in autoxidation studies, but the ozone, at the concentrations used here (0-1.5 ppm), appears to have no effect on the rates of product formation after the induction period. During the induction period, increasing ozone concentrations gives rise to substantially increased rates of peroxide (or materials which titrate like peroxide) formation, a slightly increased rate of conjugated diene formation, and no significant increase in the rate of production of TBA-reactive material. Vitamin E lengthens the induction period but appears to have no other effect. Some of these data are in conflict with earlier reports of Menzel et al.

  19. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    Science.gov (United States)

    Wang, Guihua; Ogden, Joan M.; Chang, Daniel P. Y.

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air quality

  20. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    International Nuclear Information System (INIS)

    Guihua Wang; Ogden, Joan M.; Chang, Daniel P.Y.

    2007-01-01

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x ) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air

  1. Chloroplastic responses of ponderosa pine (Pinus ponderosa) seedlings to ozone exposure.

    Science.gov (United States)

    Anderson, Paul D; Palmer, Brent; Houpis, James L J; Smith, Mary K; Pushnik, James C

    2003-06-01

    Integrity of chloroplast membranes is essential to photosynthesis. Loss of thylakoid membrane integrity has been proposed as a consequence of ozone (O(3)) exposure and therefore may be a mechanistic basis for decreased photosynthetic rates commonly associated with ozone exposure. To investigate this hypothesis, Pinus ponderosa seedlings were exposed to ambient air or ozone concentrations maintained at 0.15 or 0.30 microliter l(-1) for 10 h day(-1) for 51 days during their second growing season. Over the course of the study, foliage samples were periodically collected for thylakoid membrane, chlorophyll and protein analyses. Additionally, gas-exchange measurements were made in conjunction with foliage sampling to verify that observed chloroplastic responses were associated with ozone-induced changes in photosynthesis. Needles exposed to elevated ozone exhibited decreases in chlorophyll a and b content. The decreases were dependent on the duration and intensity of ozone exposure. When based on equal amounts of chlorophyll, ozone-exposed sample tissue exhibited an increase in total protein. When based on equal amounts of protein, ozone-exposed samples exhibited an increase in 37 kDa proteins, possibly consisting of breakdown products, and a possible decrease in 68 kDa proteins, Rubisco small subunit. There was also a change in the ratio of Photosystem I protein complexes CPI and CPII that may have contributed to decreased photosynthesis. Net photosynthetic rates were decreased in the high ozone treatment suggesting that observed structural and biochemical changes in the chloroplast were associated with alterations of the photosynthetic process.

  2. Field responses of Prunus serotina and Asclepias syriaca to ozone around southern Lake Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, J.P. [U.S. Geological Survey and Institute for Environmental Studies, University of Wisconsin, Madison, WI 53706 (United States)]. E-mail: jpbennet@wisc.edu; Jepsen, E.A. [Bureau of Air Management, Wisconsin Department of Natural Resources, Madison, WI 53707 (United States); Roth, J.A. [Bureau of Air Management, Wisconsin Department of Natural Resources, Madison, WI 53707 (United States)

    2006-07-15

    Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed. - Decreased cherry branch elongation, milkweed stem height and pod production, and foliar injury on both species occurred at sites around southern Lake Michigan at ozone exposures of 13 SUM06 ppm-h and 93-98 ppb peak hourly.

  3. Field responses of Prunus serotina and Asclepias syriaca to ozone around southern Lake Michigan

    International Nuclear Information System (INIS)

    Bennett, J.P.; Jepsen, E.A.; Roth, J.A.

    2006-01-01

    Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed. - Decreased cherry branch elongation, milkweed stem height and pod production, and foliar injury on both species occurred at sites around southern Lake Michigan at ozone exposures of 13 SUM06 ppm-h and 93-98 ppb peak hourly

  4. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T. [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V. [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H.S. [Finnish Forest Research Inst., Helsinki (Finland)] [and others

    1996-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  5. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H S [Finnish Forest Research Inst., Helsinki (Finland); and others

    1997-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  6. 2 minute Southcentral Alaska Elevation Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2-minute Southcentral Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2-minute resolution in geographic coordinates. This grid is...

  7. Bromine measurements in ozone depleted air over the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. A. Neuman

    2010-07-01

    Full Text Available In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL. Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS study. Fast (1 s and sensitive (detection limits at the low pptv level measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere.

  8. OZONE GENERATORS IN INDOOR AIR SETTINGS

    Science.gov (United States)

    The report gives information on home/office ozone generators. It discusses their current uses as amelioratives for environmental tobacco smoke, biocontaminants, volatile organic compounds, and odors and details the advantages and disadvantages of each. Ozone appears to work well ...

  9. Cryptosporidiosis associated with ozonated apple cider.

    Science.gov (United States)

    Blackburn, Brian G; Mazurek, Jacek M; Hlavsa, Michele; Park, Jean; Tillapaw, Matt; Parrish, MaryKay; Salehi, Ellen; Franks, William; Koch, Elizabeth; Smith, Forrest; Xiao, Lihua; Arrowood, Michael; Hill, Vince; da Silva, Alex; Johnston, Stephanie; Jones, Jeffrey L

    2006-04-01

    We linked an outbreak of cryptosporidiosis to ozonated apple cider by using molecular and epidemiologic methods. Because ozonation was insufficient in preventing this outbreak, its use in rendering apple cider safe for drinking is questioned.

  10. Cryptosporidiosis Associated with Ozonated Apple Cider