WorldWideScience

Sample records for oxytocin receptor gene

  1. Oxytocin receptor gene variation predicts subjective responses to MDMA.

    Science.gov (United States)

    Bershad, Anya K; Weafer, Jessica J; Kirkpatrick, Matthew G; Wardle, Margaret C; Miller, Melissa A; de Wit, Harriet

    2016-12-01

    3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") enhances desire to socialize and feelings of empathy, which are thought to be related to increased oxytocin levels. Thus, variation in the oxytocin receptor gene (OXTR) may influence responses to the drug. Here, we examined the influence of a single OXTR nucleotide polymorphism (SNP) on responses to MDMA in humans. Based on findings that carriers of the A allele at rs53576 exhibit reduced sensitivity to oxytocin-induced social behavior, we hypothesized that these individuals would show reduced subjective responses to MDMA, including sociability. In this three-session, double blind, within-subjects study, healthy volunteers with past MDMA experience (N = 68) received a MDMA (0, 0.75 mg/kg, and 1.5 mg/kg) and provided self-report ratings of sociability, anxiety, and drug effects. These responses were examined in relation to rs53576. MDMA (1.5 mg/kg) did not increase sociability in individuals with the A/A genotype as it did in G allele carriers. The genotypic groups did not differ in responses at the lower MDMA dose, or in cardiovascular or other subjective responses. These findings are consistent with the idea that MDMA-induced sociability is mediated by oxytocin, and that variation in the oxytocin receptor gene may influence responses to the drug.

  2. Test of Association Between 10 SNPs in the Oxytocin Receptor Gene and Conduct Disorder

    OpenAIRE

    Sakai, Joseph T.; Crowley, Thomas J.; Stallings, Michael C.; McQueen, Matthew; Hewitt, John K.; Hopfer, Christian; Hoft, Nicole R.; Ehringer, Marissa A.

    2012-01-01

    Animal and human studies have implicated oxytocin (OXT) in affiliative and prosocial behaviors. We tested whether genetic variation in the OXT receptor (OXTR) gene is associated with conduct disorder (CD).

  3. The altered promoter methylation of oxytocin receptor gene in autism.

    Science.gov (United States)

    Elagoz Yuksel, Mine; Yuceturk, Betul; Karatas, Omer Faruk; Ozen, Mustafa; Dogangun, Burak

    Autism spectrum disorder (ASD) is one of the lifelong existing disorders. Abnormal methylation status of gene promoters of oxytonergic system has been implicated as among the etiologic factors of ASDs. We, therefore, investigated the methylation frequency of oxytocin receptor gene (OXTR) promoter from peripheral blood samples of children with autistic features. Our sample includes 66 children in total (22-94 months); 27 children with ASDs according to the DSM-IV-TR and the Childhood Autism Rating Scale (CARS) and 39 children who do not have any autistic like symptoms as the healthy control group. We investigated the DNA methylation status of OXTR promoter by methylation specific enzymatic digestion of genomic DNA and polymerase chain reaction. A significant relationship has been found between ASDs and healthy controls for the reduction of methylation frequency of the regions MT1 and MT3 of OXTR. We could not find any association in the methylation frequency of MT2 and MT4 regions of OXTR. Although our findings indicate high frequency of OXTR promoter hypomethylation in ASDs, there is need for independent replication of the results for a bigger sample set. We expect that future studies with the inclusion of larger, more homogeneous samples will attempt to disentangle the causes of ASDs.

  4. The Oxytocin Receptor Gene ( OXTR) and Face Recognition.

    Science.gov (United States)

    Verhallen, Roeland J; Bosten, Jenny M; Goodbourn, Patrick T; Lawrance-Owen, Adam J; Bargary, Gary; Mollon, J D

    2017-01-01

    A recent study has linked individual differences in face recognition to rs237887, a single-nucleotide polymorphism (SNP) of the oxytocin receptor gene ( OXTR; Skuse et al., 2014). In that study, participants were assessed using the Warrington Recognition Memory Test for Faces, but performance on Warrington's test has been shown not to rely purely on face recognition processes. We administered the widely used Cambridge Face Memory Test-a purer test of face recognition-to 370 participants. Performance was not significantly associated with rs237887, with 16 other SNPs of OXTR that we genotyped, or with a further 75 imputed SNPs. We also administered three other tests of face processing (the Mooney Face Test, the Glasgow Face Matching Test, and the Composite Face Test), but performance was never significantly associated with rs237887 or with any of the other genotyped or imputed SNPs, after corrections for multiple testing. In addition, we found no associations between OXTR and Autism-Spectrum Quotient scores.

  5. Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris).

    Science.gov (United States)

    Kis, Anna; Bence, Melinda; Lakatos, Gabriella; Pergel, Enikő; Turcsán, Borbála; Pluijmakers, Jolanda; Vas, Judit; Elek, Zsuzsanna; Brúder, Ildikó; Földi, Levente; Sasvári-Székely, Mária; Miklósi, Adám; Rónai, Zsolt; Kubinyi, Enikő

    2014-01-01

    The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (-212AG, 19131AG) and one known (rs8679684) single nucleotide polymorphisms (SNPs) in the regulatory regions (5' and 3' UTR) of the oxytocin receptor gene in German Shepherd (N = 104) and Border Collie (N = 103) dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3' and 5' UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene-behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i) proximity seeking towards an unfamiliar person, as well as their owner, and on (ii) how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system.

  6. Impact of estrogen receptor α gene and oxytocin receptor gene polymorphisms on female sexuality

    Directory of Open Access Journals (Sweden)

    Anastasia K Armeni

    2017-02-01

    Full Text Available Over the past decades, research attention has increasingly been paid to the neurobiological component of sexual behavior. The aim of the present study was to investigate the correlation of estrogen receptor α (ERA gene polymorphism (rs2234693-PvuII (T→C substitution and oxytocin receptor gene polymorphism (rs53576 (G→A substitution with sexuality parameters of young, healthy women. One hundred thirty-three Greek heterosexual women, students in higher education institutions, 20–25 years of age, sexually active, with normal menstrual cycles (28–35 days, were recruited in the study. Exclusion criteria were chronic and/or major psychiatric diseases, use of oral contraceptive pills (OCs, polycystic ovary syndrome (PCOS, thyroid diseases as well as drugs that are implicated in hypothalamus–pituitary–gonadal axis. T allele (wildtype of rs2234693 (PvuII polymorphism of ERA gene was correlated with increased levels of arousal and lubrication, whereas A allele (polymorphic of rs53576 (OXTR polymorphism was correlated with increased arousal levels. The simultaneous presence of both T allele of rs2234693 (PvuII and A allele of rs53576 (OXTR polymorphisms (T + A group was correlated with increased arousal, orgasm levels as well as female sexual function index full score. To our knowledge, this is the first study to investigate the interaction between ERA and OXTR with regard to sexual function in women. Female sexuality is a complex behavioral trait that encompasses both biological and psychological components. It seems that variability in female sexual response stems from genetic variability that characterizes endocrine, neurotransmitter and central nervous system influences.

  7. Genetic Imaging of the Association of Oxytocin Receptor Gene (OXTR Polymorphisms with Positive Maternal Parenting

    Directory of Open Access Journals (Sweden)

    Kalina J. Michalska

    2014-02-01

    Full Text Available Background: Well-validated models of maternal behavior in small-brain mammals posit a central role of oxytocin in parenting, by reducing stress and enhancing the reward value of social interactions with offspring. In contrast, human studies are only beginning to gain insights into how oxytocin modulates maternal behavior and affiliation. Methods: To explore associations between oxytocin receptor genes and maternal parenting behavior in humans, we conducted a genetic imaging study of women selected to exhibit a wide range of observed parenting when their children were 4-6 years old. Results: In response to child stimuli during functional magnetic resonance imaging, hemodynamic responses in brain regions that mediate affect, reward, and social behavior were significantly correlated with observed positive parenting. Furthermore, single nucleotide polymorphisms (rs53576 and rs1042778 in the gene encoding the oxytocin receptor were significantly associated with both positive parenting and hemodynamic responses to child stimuli in orbitofrontal cortex, anterior cingulate cortex and hippocampus. Conclusions: These findings contribute to the emerging literature on the role of oxytocin in human social behavior and support the feasibility of tracing biological pathways from genes to neural regions to positive maternal parenting behaviors in humans using genetic imaging methods.

  8. Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris.

    Directory of Open Access Journals (Sweden)

    Anna Kis

    Full Text Available The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (-212AG, 19131AG and one known (rs8679684 single nucleotide polymorphisms (SNPs in the regulatory regions (5' and 3' UTR of the oxytocin receptor gene in German Shepherd (N = 104 and Border Collie (N = 103 dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3' and 5' UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene-behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i proximity seeking towards an unfamiliar person, as well as their owner, and on (ii how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system.

  9. Epigenetic Regulation of the Oxytocin Receptor Gene: Implications for Behavioral Neuroscience

    Directory of Open Access Journals (Sweden)

    Robert eKumsta

    2013-05-01

    Full Text Available Genetic approaches have improved our understanding of the neurobiological basis of social behavior and cognition. For instance, common polymorphisms of genes involved in oxytocin signaling have been associated with sociobehavioral phenotypes in healthy samples as well as in subjects with mental disorders. More recently, attention has been drawn to epigenetic mechanisms, which regulate genetic function and expression without changes to the underlying DNA sequence. We provide an overview of the functional importance of oxytocin receptor gene (OXTR promoter methylation and summarize studies that have investigated the role of OXTR methylation in behavioral phenotypes. There is first evidence that OXTR methylation is associated with autism, high callous-unemotional traits, and differential activation of brain regions involved in social perception. Furthermore, psychosocial stress exposure might dynamically regulate OXTR. Given evidence that epigenetic states of genes can be modified by experiences, especially those occurring in sensitive periods early in development, we conclude with a discussion on the effects of traumatic experience on the developing oxytocin system. Epigenetic modification of genes involved in oxytocin signaling might be involved in the mechanisms mediating the long-term influence of early adverse experiences on socio-behavioral outcomes.

  10. Environmental stress, oxytocin receptor gene (OXTR) polymorphism, and mental health following collective stress

    OpenAIRE

    Lucas-Thompson, RG; Holman, EA

    2013-01-01

    We examined whether the oxytocin receptor gene (OXTR) single nucleotide polymorphism (SNP) rs53576 genotype buffers the combined impact of negative social environments (e.g., interpersonal conflict/constraint) and economic stress on post-traumatic stress (PTS) symptoms and impaired daily functioning following collective stress (September 11th terrorist attacks). Saliva was collected by mail and used to genotype 704 respondents. Participants completed Web-based assessments of pre-9/11 mental h...

  11. Common polymorphism in the oxytocin receptor gene (OXTR) is associated with human social recognition skills.

    Science.gov (United States)

    Skuse, David H; Lori, Adriana; Cubells, Joseph F; Lee, Irene; Conneely, Karen N; Puura, Kaija; Lehtimäki, Terho; Binder, Elisabeth B; Young, Larry J

    2014-02-04

    The neuropeptides oxytocin and vasopressin are evolutionarily conserved regulators of social perception and behavior. Evidence is building that they are critically involved in the development of social recognition skills within rodent species, primates, and humans. We investigated whether common polymorphisms in the genes encoding the oxytocin and vasopressin 1a receptors influence social memory for faces. Our sample comprised 198 families, from the United Kingdom and Finland, in whom a single child had been diagnosed with high-functioning autism. Previous research has shown that impaired social perception, characteristic of autism, extends to the first-degree relatives of autistic individuals, implying heritable risk. Assessments of face recognition memory, discrimination of facial emotions, and direction of gaze detection were standardized for age (7-60 y) and sex. A common SNP in the oxytocin receptor (rs237887) was strongly associated with recognition memory in combined probands, parents, and siblings after correction for multiple comparisons. Homozygotes for the ancestral A allele had impairments in the range -0.6 to -1.15 SD scores, irrespective of their diagnostic status. Our findings imply that a critical role for the oxytocin system in social recognition has been conserved across perceptual boundaries through evolution, from olfaction in rodents to visual memory in humans.

  12. A common oxytocin receptor gene (OXTR) polymorphism modulates intranasal oxytocin effects on the neural response to social cooperation in humans.

    Science.gov (United States)

    Feng, C; Lori, A; Waldman, I D; Binder, E B; Haroon, E; Rilling, J K

    2015-09-01

    Intranasal oxytocin (OT) can modulate social-emotional functioning and related brain activity in humans. Consequently, OT has been discussed as a potential treatment for psychiatric disorders involving social behavioral deficits. However, OT effects are often heterogeneous across individuals. Here we explore individual differences in OT effects on the neural response to social cooperation as a function of the rs53576 polymorphism of the oxytocin receptor gene (OXTR). Previously, we conducted a double-blind, placebo-controlled study in which healthy men and women were randomized to treatment with intranasal OT or placebo. Afterwards, they were imaged with functional magnetic resonance imaging while playing an iterated Prisoner's Dilemma Game with same-sex partners. Within the left ventral caudate nucleus, intranasal OT treatment increased activation to reciprocated cooperation in men, but tended to decrease activation in women. Here, we show that these sex differences in OT effects are specific to individuals with the rs53576 GG genotype, and are not found for other genotypes (rs53576 AA/AG). Thus, OT may increase the reward or salience of positive social interactions for male GG homozygotes, while decreasing those processes for female GG homozygotes. These results suggest that rs53576 genotype is an important variable to consider in future investigations of the clinical efficacy of intranasal OT treatment. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  13. No association between oxytocin receptor (OXTR gene polymorphisms and experimentally elicited social preferences.

    Directory of Open Access Journals (Sweden)

    Coren L Apicella

    Full Text Available BACKGROUND: Oxytocin (OXT has been implicated in a suite of complex social behaviors including observed choices in economic laboratory experiments. However, actual studies of associations between oxytocin receptor (OXTR gene variants and experimentally elicited social preferences are rare. METHODOLOGY/PRINCIPAL FINDINGS: We test hypotheses of associations between social preferences, as measured by behavior in two economic games, and 9 single nucleotide polymorphisms (SNPs of the OXTR gene in a sample of Swedish twins (n = 684. Two standard economic games, the dictator game and the trust game, both involving real monetary consequences, were used to elicit such preferences. After correction for multiple hypothesis testing, we found no significant associations between any of the 9 single nucleotide polymorphisms (SNPs and behavior in either of the games. CONCLUSION: We were unable to replicate the most significant association reported in previous research between the amount donated in a dictator game and an OXTR genetic variant.

  14. Oxytocin receptor gene methylation: converging multilevel evidence for a role in social anxiety.

    Science.gov (United States)

    Ziegler, Christiane; Dannlowski, Udo; Bräuer, David; Stevens, Stephan; Laeger, Inga; Wittmann, Hannah; Kugel, Harald; Dobel, Christian; Hurlemann, René; Reif, Andreas; Lesch, Klaus-Peter; Heindel, Walter; Kirschbaum, Clemens; Arolt, Volker; Gerlach, Alexander L; Hoyer, Jürgen; Deckert, Jürgen; Zwanzger, Peter; Domschke, Katharina

    2015-05-01

    Social anxiety disorder (SAD) is a commonly occurring and highly disabling disorder. The neuropeptide oxytocin and its receptor (OXTR) have been implicated in social cognition and behavior. This study-for the first time applying a multilevel epigenetic approach-investigates the role of OXTR gene methylation in categorical, dimensional, and intermediate neuroendocrinological/neural network phenotypes of social anxiety. A total of 110 unmedicated patients with SAD and matched 110 controls were analyzed for OXTR methylation by direct sequencing of sodium bisulfite-converted DNA extracted from whole blood. Furthermore, OXTR methylation was investigated regarding SAD-related traits (Social Phobia Scale (SPS) and Social Interaction Anxiety Scale (SIAS)), salivary cortisol response during the Trier social stress test (TSST), and amygdala responsiveness to social phobia related verbal stimuli using fMRI. Significantly decreased OXTR methylation particularly at CpG Chr3: 8 809 437 was associated with (1) the categorical phenotype of SAD (psocial phobia-related word processing (right: p(corr)<0.001; left: p(corr)=0.005). Assuming that decreased OXTR methylation confers increased OXTR expression, the present finding may reflect a compensatory upregulation for pathologically reduced oxytocin levels or a causally relevant increased OXTR activation in SAD and related traits. OXTR methylation patterns might thus serve as peripheral surrogates of oxytocin tone and aid in establishing accessible biomarkers of SAD risk allowing for indicated preventive interventions and personalized treatment approaches targeting the oxytocin system.

  15. Variation in the oxytocin receptor gene (OXTR) is associated with differences in moral judgment.

    Science.gov (United States)

    Bernhard, Regan M; Chaponis, Jonathan; Siburian, Richie; Gallagher, Patience; Ransohoff, Katherine; Wikler, Daniel; Perlis, Roy H; Greene, Joshua D

    2016-12-01

    Moral judgments are produced through the coordinated interaction of multiple neural systems, each of which relies on a characteristic set of neurotransmitters. Genes that produce or regulate these neurotransmitters may have distinctive influences on moral judgment. Two studies examined potential genetic influences on moral judgment using dilemmas that reliably elicit competing automatic and controlled responses, generated by dissociable neural systems. Study 1 (N = 228) examined 49 common variants (SNPs) within 10 candidate genes and identified a nominal association between a polymorphism (rs237889) of the oxytocin receptor gene (OXTR) and variation in deontological vs utilitarian moral judgment (that is, judgments favoring individual rights vs the greater good). An association was likewise observed for rs1042615 of the arginine vasopressin receptor gene (AVPR1A). Study 2 (N = 322) aimed to replicate these findings using the aforementioned dilemmas as well as a new set of structurally similar medical dilemmas. Study 2 failed to replicate the association with AVPR1A, but replicated the OXTR finding using both the original and new dilemmas. Together, these findings suggest that moral judgment is influenced by variation in the oxytocin receptor gene and, more generally, that single genetic polymorphisms can have a detectable effect on complex decision processes. © The Author (2016). Published by Oxford University Press.

  16. Gene expression of estrogen and oxytocin receptors in the uterus of pregnant and parturient bitches

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, G.A.L. [Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Milazzotto, M.P. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP (Brazil); Nichi, M.; Lúcio, C.F.; Silva, L.C.G.; Angrimani, D.S.R.; Vannucchi, C.I. [Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-02-13

    In the canine species, the precise mechanisms of pregnancy maintenance and the initiation of parturition are not completely understood. The expression of genes encoding the receptors for estrogen (ERα mRNA) and oxytocin (OTR mRNA) was studied in the endometrium and myometrium during pregnancy and parturition in dogs. Real-time PCR was performed to quantify the levels of ERα mRNA and OTR mRNA in the uterus of bitches during early (up to 20 days of gestation), mid (20 to 40 days) and late pregnancy (41 to 60 days), and parturition (first stage of labor). All tissues expressed ERα and OTR mRNA, and are thus possibly able to respond to eventual estrogen and oxytocin hormonal stimuli. No statistically significant differences in the expression of ERα mRNA were verified in the endometrium and myometrium throughout pregnancy and parturition, but expression of OTR mRNA increased at both parturition and late pregnancy. We concluded that the increase of endometrial and myometrial OTR mRNA expression in dogs is not an event dependent on estrogenic stimulation. Moreover, the contractility response of the canine uterus to oxytocin begins during pregnancy and maintains myometrial activity. The expression of OTR mRNA in canine uterine tissues varied over time, which supports an interpretation that the sensitivity and response to hormone therapy varies during the course of pregnancy and labor. Further studies are needed to elucidate the factors underlying the synthesis of uterine oxytocin receptors and the possible role of ERβ rather than ERα in the uterine tissues during pregnancy and parturition in dogs.

  17. Gene expression of estrogen and oxytocin receptors in the uterus of pregnant and parturient bitches

    International Nuclear Information System (INIS)

    Veiga, G.A.L.; Milazzotto, M.P.; Nichi, M.; Lúcio, C.F.; Silva, L.C.G.; Angrimani, D.S.R.; Vannucchi, C.I.

    2015-01-01

    In the canine species, the precise mechanisms of pregnancy maintenance and the initiation of parturition are not completely understood. The expression of genes encoding the receptors for estrogen (ERα mRNA) and oxytocin (OTR mRNA) was studied in the endometrium and myometrium during pregnancy and parturition in dogs. Real-time PCR was performed to quantify the levels of ERα mRNA and OTR mRNA in the uterus of bitches during early (up to 20 days of gestation), mid (20 to 40 days) and late pregnancy (41 to 60 days), and parturition (first stage of labor). All tissues expressed ERα and OTR mRNA, and are thus possibly able to respond to eventual estrogen and oxytocin hormonal stimuli. No statistically significant differences in the expression of ERα mRNA were verified in the endometrium and myometrium throughout pregnancy and parturition, but expression of OTR mRNA increased at both parturition and late pregnancy. We concluded that the increase of endometrial and myometrial OTR mRNA expression in dogs is not an event dependent on estrogenic stimulation. Moreover, the contractility response of the canine uterus to oxytocin begins during pregnancy and maintains myometrial activity. The expression of OTR mRNA in canine uterine tissues varied over time, which supports an interpretation that the sensitivity and response to hormone therapy varies during the course of pregnancy and labor. Further studies are needed to elucidate the factors underlying the synthesis of uterine oxytocin receptors and the possible role of ERβ rather than ERα in the uterine tissues during pregnancy and parturition in dogs

  18. Gene expression of estrogen and oxytocin receptors in the uterus of pregnant and parturient bitches.

    Science.gov (United States)

    Veiga, G A L; Milazzotto, M P; Nichi, M; Lúcio, C F; Silva, L C G; Angrimani, D S R; Vannucchi, C I

    2015-04-01

    In the canine species, the precise mechanisms of pregnancy maintenance and the initiation of parturition are not completely understood. The expression of genes encoding the receptors for estrogen (ERα mRNA) and oxytocin (OTR mRNA) was studied in the endometrium and myometrium during pregnancy and parturition in dogs. Real-time PCR was performed to quantify the levels of ERα mRNA and OTR mRNA in the uterus of bitches during early (up to 20 days of gestation), mid (20 to 40 days) and late pregnancy (41 to 60 days), and parturition (first stage of labor). All tissues expressed ERα and OTR mRNA, and are thus possibly able to respond to eventual estrogen and oxytocin hormonal stimuli. No statistically significant differences in the expression of ERα mRNA were verified in the endometrium and myometrium throughout pregnancy and parturition, but expression of OTR mRNA increased at both parturition and late pregnancy. We concluded that the increase of endometrial and myometrial OTR mRNA expression in dogs is not an event dependent on estrogenic stimulation. Moreover, the contractility response of the canine uterus to oxytocin begins during pregnancy and maintains myometrial activity. The expression of OTR mRNA in canine uterine tissues varied over time, which supports an interpretation that the sensitivity and response to hormone therapy varies during the course of pregnancy and labor. Further studies are needed to elucidate the factors underlying the synthesis of uterine oxytocin receptors and the possible role of ERβ rather than ERα in the uterine tissues during pregnancy and parturition in dogs.

  19. The oxytocin receptor gene, an integral piece of the evolution of Canis familaris from Canis lupus

    Directory of Open Access Journals (Sweden)

    Jessica Lee Oliva

    2016-07-01

    Full Text Available Previous research in canids has revealed both group (dog versus wolf and individual differences in object choice task (OCT performance. These differences might be explained by variation in the oxytocin receptor (OXTR gene, as intranasally administered oxytocin has recently been shown to improve performance on this task by domestic dogs. This study looked at microsatellites at various distances from the OXTR gene to determine whether there was an association between this gene and: i species (dog/wolf and ii good versus bad OCT performers. Ten primer sets were designed to amplify 10 microsatellites that were identified at various distances from the canine OXTR gene. We used 94 (52 males, 42 females blood samples from shelter dogs, 75 (33 males, 42 females saliva samples from pet dogs and 12 (6 males, 6 females captive wolf saliva samples to carry out our analyses. Significant species differences were found in the two markers closest to the OXTR gene, suggesting that this gene may have played an important part in the domestic dogs’ evolution from the wolf. However, no significant, meaningful differences were found in microsatellites between good versus bad OCT performers, which suggests that other factors, such as different training and socialisation experiences, probably impacted task performance

  20. The differential impact of oxytocin receptor gene in violence-exposed boys and girls.

    Science.gov (United States)

    Merrill, Livia C; Jones, Christopher W; Drury, Stacy S; Theall, Katherine P

    2017-06-01

    Childhood violence exposure is a prevalent public health problem. Understanding the lasting impact of violence requires an enhanced appreciation for the complex effects of violence across behavioral, physiologic, and molecular outcomes. This subject matched, cross-sectional study of 80 children explored the impact of violence exposure across behavioral, physiologic, and cellular outcomes. Externalizing behavior, diurnal cortisol rhythm, and telomere length (TL) were examined in a community recruited cohort of Black youth. Given evidence that genetic variation contributes to individual differences in response to the environment, we further tested whether a polymorphism in the oxytocin receptor gene (OXTR rs53576) moderated associations between violence and youth outcomes. Exposure to violence was directly associated with increased externalizing behavior, but no direct association of violence was found with cortisol or TL. Oxytocin genotype, however, moderated the association between violence and both cortisol and TL, suggesting that pathways linked to oxytocin may contribute to individual differences in the physiologic and molecular consequences of violence exposure. Sex differences with OXTR in cortisol and TL outcomes were also detected. Taken together, these findings suggest that there are complex pathways through which violence exposure impacts children, and that these pathways differ by both genetic variation and the sex of the child. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  1. Relationships among estrogen receptor, oxytocin and vasopressin gene expression and social interaction in male mice.

    Science.gov (United States)

    Murakami, G; Hunter, R G; Fontaine, C; Ribeiro, A; Pfaff, D

    2011-08-01

    The incidence of social disorders such as autism and schizophrenia is significantly higher in males, and the presentation more severe, than in females. This suggests the possible contribution of sex hormones to the development of these psychiatric disorders. There is also evidence that these disorders are highly heritable. To contribute toward our understanding of the mechanisms underlying social behaviors, particularly social interaction, we assessed the relationship of social interaction with gene expression for two neuropeptides, oxytocin (OT) and arginine vasopressin (AVP), using adult male mice. Social interaction was positively correlated with: oxytocin receptor (OTR) and vasopressin receptor (V1aR) mRNA expression in the medial amygdala; and OT and AVP mRNA expression in the paraventricular nucleus of the hypothalamus (PVN). When mice representing extremes of social interaction were compared, all of these mRNAs were more highly expressed in high social interaction mice than in low social interaction mice. OTR and V1aR mRNAs were highly correlated with estrogen receptor α (ERα) mRNA in the medial amygdala, and OT and AVP mRNAs with estrogen receptor β (ERβ) mRNA in the PVN, indicating that OT and AVP systems are tightly regulated by estrogen receptors. A significant difference in the level of ERα mRNA in the medial amygdala between high and low social interaction mice was also observed. These results support the hypothesis that variations of estrogen receptor levels are associated with differences in social interaction through the OT and AVP systems, by upregulating gene expression for those peptides and their receptors. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Oxytocin, vasopressin and estrogen receptor gene expression in relation to social recognition in female mice.

    Science.gov (United States)

    Clipperton-Allen, Amy E; Lee, Anna W; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W; Choleris, Elena

    2012-02-28

    Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85-100%) and low (40-60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The association between oxytocin receptor gene polymorphism (OXTR) and trait empathy.

    Science.gov (United States)

    Wu, Nan; Li, Zhi; Su, Yanjie

    2012-05-01

    Oxytocin exerts well accepted effects on one of the key social processes: empathy. Previous researches have demonstrated that oxytocin promotes emotional and cognitive aspects of empathy, by exogenous administration as well as on gene level. However, the effect of diverse gene locus haplotypes of oxytocin receptor gene (OXTR) on trait empathy lacks reliable evidence. Participants consisted of 101 genetically unrelated, non-clinical Chinese subjects (46 males and 55 females). Interpersonal Reactivity Index (IRI) was applied to measure the trait empathy from four dimensions: empathy concern, personal distress, perspective taking and fantasy. Fantasy and perspective taking measured cognitive aspect of empathy, while empathy concern and personal distress measured emotional aspect of empathy. Ten single tagging SNPs on OXTR rs2268491, rs1042778, rs53576, rs7632287, rs2254298, rs13316193, rs237897, rs237887, rs4686302, and rs2268493 were tested. Genotype difference in emotional empathy was found on rs237887 and rs4686302 whereas cognitive empathy varied on SNPs rs2268491 and rs2254298 between homozygous and variant carriers. For IRI score, there is a genotype and gender interaction on rs4686302 and rs13316193. The sample sizes from the current study were not so optimal that these results should have to be interpreted with caution when amplified into a larger population. The findings demonstrate that natural variants of OXTR associated with trait empathy; specifically, individuals with certain OXTR genotype did perform better on trait empathy, while others did not. Our findings also provide genetic evidence for gender-related difference on empathy, indicating the popular fact that females who displayed more empathy than males could be likely to trace back to the genetic variants. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Attachment style and oxytocin receptor gene variation interact in influencing social anxiety.

    Science.gov (United States)

    Notzon, S; Domschke, K; Holitschke, K; Ziegler, C; Arolt, V; Pauli, P; Reif, A; Deckert, J; Zwanzger, P

    2016-01-01

    Social anxiety has been suggested to be promoted by an insecure attachment style. Oxytocin is discussed as a mediator of trust and social bonding as well as a modulator of social anxiety. Applying a gene-environment (G × E) interaction approach, in the present pilot study the main and interactive effects of attachment styles and oxytocin receptor (OXTR) gene variation were probed in a combined risk factor model of social anxiety in healthy probands. Participants (N = 388; 219 females, 169 males; age 24.7 ± 4.7 years) were assessed for anxiety in social situations (Social Phobia and Anxiety Inventory) depending on attachment style (Adult Attachment Scale, AAS) and OXTR rs53576 A/G genotype. A less secure attachment style was significantly associated with higher social anxiety. This association was partly modulated by OXTR genotype, with a stronger negative influence of a less secure attachment style on social anxiety in A allele carriers as compared to GG homozygotes. The present pilot data point to a strong association of less secure attachment and social anxiety as well as to a gene-environment interaction effect of OXTR rs53576 genotype and attachment style on social anxiety possibly constituting a targetable combined risk marker of social anxiety disorder.

  5. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits

    Science.gov (United States)

    Aspé-Sánchez, Mauricio; Moreno, Macarena; Rivera, Maria Ignacia; Rossi, Alejandra; Ewer, John

    2016-01-01

    Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date. PMID:26858594

  6. Depression in early adolescence: Contributions from relational aggression and variation in the oxytocin receptor gene.

    Science.gov (United States)

    Kushner, Shauna C; Herzhoff, Kathrin; Vrshek-Schallhorn, Suzanne; Tackett, Jennifer L

    2018-01-01

    Interpersonal stress arising from relational aggression (RA)-the intentional effort to harm others via rejection and exclusion-may increase risk for depression in youth. Biological vulnerabilities related to the hormone oxytocin, which affects social behavior and stress responses, may exacerbate this risk. In a community sample of 307 youth (52% female; age range = 10-14 years), we tested whether (1) the association between RA and subsequent depressive symptoms was mediated through social problems and (2) a single nucleotide polymorphism (rs53576) in the oxytocin receptor gene (OXTR) moderated this indirect association between RA and depression, where GG homozygotes are predicted to be more sensitive to the effects of social problems than A-allele carriers. Youth-reported RA and depressive symptoms were measured using a structured interview and a questionnaire, respectively. DNA was extracted from saliva collected with Oragene kits. Consistent with the interpersonal theory of depression, the association between relational aggression and subsequent depressive symptoms was mediated by social problems. This indirect effect was further moderated by rs53576 genotype, such that GG homozygotes showed a stronger mediation effect than A-carriers. These results suggest that rs53576 variants confer vulnerability for depression within the context of interpersonal risk factors, such that youth with the GG genotype may be particularly sensitive to the social consequences resulting from RA. © 2017 Wiley Periodicals, Inc.

  7. Transactivation of the proximal promoter of human oxytocin gene by TR4 orphan receptor

    International Nuclear Information System (INIS)

    Wang, C.-P.; Lee, Y.-F.; Chang, C.; Lee, H.-J.

    2006-01-01

    The human testicular receptor 4 (TR4) shares structural homology with members of the nuclear receptor superfamily. Some other members of this superfamily were able to regulate the transcriptional activity of the human oxytocin (OXT) promoter by binding to the first DR0 regulatory site. However, little investigation was conducted systematically in the study of the second dDR4 site of OXT proximal promoter, and the relationship between the first and the second sites of OXT promoter. Here, we demonstrated for the first time that TR4 could increase the proximal promoter activity of the human OXT gene via DR0, dDR4, and OXT (both DR0 and dDR4) elements, respectively. TR4 might induce OXT gene expression through the OXT element in a dose-dependent manner. However, there is no synergistic effect between DR0 and dDR4 elements during TR4 transactivation. Taken together, these results suggested that TR4 should be one of important regulators of OXT gene expression

  8. Association between genetic variation in the oxytocin receptor gene and emotional withdrawal, but not between oxytocin pathway genes and diagnosis in psychotic disorders.

    Directory of Open Access Journals (Sweden)

    Marit eHaram

    2015-01-01

    Full Text Available Social dysfunction is common in patients with psychotic disorders. Oxytocin is a neuropeptide with a central role in social behaviour. This study aims to explore the relationship between oxytocin pathway genes and symptoms related to social dysfunction in patients with psychotic disorders. We performed association analyses between four oxytocin pathway genes (OXT, OXTR, AVP, CD38 and four areas of social behaviour-related psychopathology as measured by Positive and Negative Syndrome Scale (PANSS. For this purpose, we used both a polygenic risk score (PGRS and single OXTR candidate SNPs previously reported in the literature (rs53576, rs237902, rs2254298. A total of 734 subjects with DSM-IV psychotic spectrum disorders and 420 healthy controls were included. Oxytocin pathway PGRSs were calculated based on the independent Psychiatric Genomics Consortium study sample. There was a significant association between symptom of Emotional Withdrawal and the previously reported OXTR risk allele A in rs53576. No significant associations between oxytocin pathway gene variants and a diagnosis of psychotic disorder were found. Our findings indicate that while oxytocin pathway genes do not appear to contribute to the susceptibility to psychotic disorders, variations in the OXTR gene might play a role in the development of impaired social behaviour.

  9. Microsatellite Polymorphisms Adjacent to the Oxytocin Receptor Gene in Domestic Cats: Association with Personality?

    Directory of Open Access Journals (Sweden)

    Minori Arahori

    2017-12-01

    Full Text Available A growing number of studies have explored the oxytocin system in humans and non-human animals, and some have found important genetic polymorphisms in the oxytocin receptor gene (OXTR associated with the bonding system, social behaviors, and personality in several species. Although single nucleotide polymorphisms in OXTR have been well-examined in various species, microsatellites (or short tandem repeats adjacent to OXTR have rarely been studied, despite some suggestions that microsatellite polymorphisms near genes might play a role in genetic transcription and translation. In this study, we surveyed microsatellites in the upstream, intron, and downstream regions of OXTR in domestic cats (Felis catus. We succeeded in amplifying 5 out of 10 regions, and recognized these five regions as polymorphic. We compared allele frequencies in these five regions between mongrel cats in Japan (n = 100 and cats of 10 pure breeds (n = 40. There were significant differences in allele frequencies between the two populations in all microsatellite regions. Additionally, the owners of mongrel cats answered a comprehensive personality questionnaire, and factor analysis extracted four factors (Openness, Friendliness, Roughness, and Neuroticism. We examined the association between the microsatellite genotypes, age, sex, neutering status, and personality scores. Compared to their counterparts, younger cats tended to score higher on Openness, male cats scored higher on Friendliness, and female and neutered cats scored higher on Roughness. When we divided the sample into three groups depending on the length of alleles, we found a marginally significant association between Friendliness and MS3. Additionally, we found a sex-mediated effect of genotypes in MS4 on Friendliness, resulting in different effects on females and males. Our findings that mongrel cats had longer alleles in MS3 and MS4 than purebred cats, and that those cats tended to score higher on Friendliness

  10. Polymorphisms of the oxytocin receptor gene and overeating: the intermediary role of endophenotypic risk factors.

    Science.gov (United States)

    Davis, C; Patte, K; Zai, C; Kennedy, J L

    2017-05-22

    Oxytocin (OXT) is an evolutionarily ancient neuropeptide with strong links to affiliative and prosocial behaviors, and the management of stress. Increases in OXT also tend to decrease food intake, especially of sweet carbohydrates. The social correlates of low OXT levels mesh with the social deficits and stress proneness identified in interpersonal models of overeating, as well as the increased appetite for highly palatable foods typically seen in chronic overeaters. The objectives of this study were to investigate links between polymorphisms of the oxytocin receptor (OXTR) gene and overeating, and to examine OXTR links with relevant endophenotypes of overeating related to reward and stress sensitivity, and to food preferences. The sample comprised 460 adults between the ages of 25 and 50 years recruited from the community, and representing a broad range of body weights. Overeating, reward and punishment sensitivity, and food preferences, were quantified as composite variables using well-validated questionnaires. In addition, seven single-nucleotide polymorphisms (rs237878, rs237885, rs2268493, rs2268494, rs2254298, rs53576, rs2268498) of the OXTR gene were genotyped. Analyses identified a four-marker haplotype that was significantly related to food preferences. Individual genotype analyses also found that at least one of the markers was related to each of the phenotypic variables. In addition, an empirically derived structural equation model linking genetic and phenotype variables produced a good fit to the data. The results of this preliminary study have demonstrated that OXTR variation is associated with overeating, and with endophenotypic traits such as sweet and fatty food preferences, and reward and punishment sensitivity. In general, the genetic findings also favor the view that overeating may be associated with relatively low basal OXT levels.

  11. Oxytocin and Opioid Receptor Gene Polymorphisms Associated with Greeting Behavior in Dogs

    Directory of Open Access Journals (Sweden)

    Enikő Kubinyi

    2017-09-01

    Full Text Available Meeting humans is an everyday experience for most companion dogs, and their behavior in these situations and its genetic background is of major interest. Previous research in our laboratory reported that in German shepherd dogs the lack of G allele, and in Border collies the lack of A allele, of the oxytocin receptor gene (OXTR 19208A/G single nucleotide polymorphism (SNP was linked to increased friendliness, which suggests that although broad traits are affected by genetic variability, the specific links between alleles and behavioral variables might be breed-specific. In the current study, we found that Siberian huskies with the A allele approached a friendly unfamiliar woman less frequently in a greeting test, which indicates that certain polymorphisms are related to human directed behavior, but that the relationship patterns between polymorphisms and behavioral phenotypes differ between populations. This finding was further supported by our next investigation. According to primate studies, endogenous opioid peptide (e.g., endorphins receptor genes have also been implicated in social relationships. Therefore, we examined the rs21912990 of the OPRM1 gene. Firstly, we found that the allele frequencies of Siberian huskies and gray wolves were similar, but differed from that of Border collies and German shepherd dogs, which might reflect their genetic relationship. Secondly, we detected significant associations between the OPRM1 SNP and greeting behavior among German shepherd dogs and a trend in Border collies, but we could not detect an association in Siberian huskies. Although our results with OXTR and OPRM1 gene variants should be regarded as preliminary due to the relatively low sample size, they suggest that (1 OXTR and OPRM1 gene variants in dogs affect human-directed social behavior and (2 their effects differ between breeds.

  12. Oxytocin and Opioid Receptor Gene Polymorphisms Associated with Greeting Behavior in Dogs.

    Science.gov (United States)

    Kubinyi, Enikő; Bence, Melinda; Koller, Dora; Wan, Michele; Pergel, Eniko; Ronai, Zsolt; Sasvari-Szekely, Maria; Miklósi, Ádám

    2017-01-01

    Meeting humans is an everyday experience for most companion dogs, and their behavior in these situations and its genetic background is of major interest. Previous research in our laboratory reported that in German shepherd dogs the lack of G allele, and in Border collies the lack of A allele, of the oxytocin receptor gene (OXTR) 19208A/G single nucleotide polymorphism (SNP) was linked to increased friendliness, which suggests that although broad traits are affected by genetic variability, the specific links between alleles and behavioral variables might be breed-specific. In the current study, we found that Siberian huskies with the A allele approached a friendly unfamiliar woman less frequently in a greeting test, which indicates that certain polymorphisms are related to human directed behavior, but that the relationship patterns between polymorphisms and behavioral phenotypes differ between populations. This finding was further supported by our next investigation. According to primate studies, endogenous opioid peptide (e.g., endorphins) receptor genes have also been implicated in social relationships. Therefore, we examined the rs21912990 of the OPRM1 gene. Firstly, we found that the allele frequencies of Siberian huskies and gray wolves were similar, but differed from that of Border collies and German shepherd dogs, which might reflect their genetic relationship. Secondly, we detected significant associations between the OPRM1 SNP and greeting behavior among German shepherd dogs and a trend in Border collies, but we could not detect an association in Siberian huskies. Although our results with OXTR and OPRM1 gene variants should be regarded as preliminary due to the relatively low sample size, they suggest that (1) OXTR and OPRM1 gene variants in dogs affect human-directed social behavior and (2) their effects differ between breeds.

  13. Sexually dimorphic effects of oxytocin receptor gene (OXTR variants on Harm Avoidance

    Directory of Open Access Journals (Sweden)

    Stankova Trayana

    2012-07-01

    Full Text Available Abstract Background Recent research has suggested that oxytocin receptor gene (OXTR variants may account for individual differences in social behavior, the effects of stress and parenting styles. Little is known, however, on a putative role of the gene in heritable temperamental traits. Methods We addressed effects of two common OXTR variants, rs237900 and rs237902, on personality dimensions in 99 healthy subjects using the Temperament and Character Inventory. Results When sex was controlled for and an OXTR genotype*sex interaction term was included in the regression model, 11% of the variance in Harm Avoidance could be explained (uncorrected p ≤ 0.01. Female carriers of the minor alleles scored highest, and a novel A217T mutation emerged in the most harm avoidant male participant. Conclusions Findings lend support to a modulatory effect of common OXTR variants on Harm Avoidance in healthy caucasian women and invite resequencing of the gene in anxiety phenotypes to identify more explanatory functional variation.

  14. Oxytocin receptor gene polymorphisms (rs53576) and early paternal care sensitize males to distressing female vocalizations.

    Science.gov (United States)

    Truzzi, Anna; Poquérusse, Jessie; Setoh, Peipei; Shinohara, Kazuyuki; Bornstein, Marc H; Esposito, Gianluca

    2018-04-01

    The oxytocinergic system is highly involved in social bonding and early caregiver-infant interactions. Here, we hypothesize that oxytocin receptor (OXTR) gene genotype and parental bonding history interact in influencing social development. To address this question, we assessed adult males' arousal (heart rate changes) in response to different distress vocalizations (human female, human infant and bonobo). Region rs53576 of the OXTR gene was genotyped from buccal mucosa cell samples, and a self-report Parental Bonding Instrument was used (which provide information about parental care or parental overprotection). A significant gene-environment interaction between OXTR genotype and parenting style was found to influence participants' social responsivity to female cry vocalizations. Specifically, a history of appropriate paternal care in participants accentuated the heightened social sensitivity determined by G/G homozygosity, while higher versus lower paternal overprotection lead to distinct levels of physiological arousal particularly in A carriers individuals. These results add to our understanding of the dynamic interplay between genetic susceptibility and early environmental experience in shaping the development of appropriate social sensitivity in males. © 2018 Wiley Periodicals, Inc.

  15. Oxytocin receptor gene variation rs53576 and alcohol abuse in a longitudinal population representative study.

    Science.gov (United States)

    Vaht, Mariliis; Kurrikoff, Triin; Laas, Kariina; Veidebaum, Toomas; Harro, Jaanus

    2016-12-01

    Oxytocin is an important regulator of social relationships and has been implicated in development of substance use and addiction. We examined the association of a variance in the oxytocin receptor gene (OXTR rs53576 polymorphism) with alcohol use in a population-representative sample, and potential moderation by social functioning. The analysis was carried out on the older birth cohort of the longitudinal Estonian Children Personality Behaviour and Health Study (ECPBHS), a cohort of initially 15 years old children (original n=593) recalled at ages 18 and 25. In all data collection waves the participants reported the frequency of consuming alcoholic beverages. Psychiatric interview was carried out at age 25 to assess the lifetime prevalence of substance use disorders. Adverse social interactions with teachers, classmates and family members were self-reported at ages 15 and 18. The minor (A) allele frequency was 0.37. Males homozygous for the A allele (suggested to be associated with less efficient oxytocinergic functioning) were more frequent alcohol consumers at ages 15 and 18 and also more likely to have had alcohol abuse or addiction by age 25 compared to male G allele carriers. Alcohol use was not associated with the OXTR genotype in females. Both male and female AA homozygotes who had reported less favourable relations with their teachers at age 15 more likely had alcohol use disorder. OXTR rs53576 polymorphism is associated with alcohol use and prevalence of alcohol use disorders in males, and this may be moderated by inferior interpersonal relationships. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The role of oxytocin receptor gene (OXTR) DNA methylation (DNAm) in human social and emotional functioning: a systematic narrative review.

    Science.gov (United States)

    Maud, Catherine; Ryan, Joanne; McIntosh, Jennifer E; Olsson, Craig A

    2018-05-29

    The neuropeptide Oxytocin (OXT) plays a central role in birthing, mother-infant bonding and a broad range of related social behaviours in mammals. More recently, interest has extended to epigenetic programming of genes involved in oxytocinergic neurotransmission. This review brings together early findings in a rapidly developing field of research, examining relationships between DNA methylation (DNAm) of the Oxytocin Receptor Gene (OXTR) and social and emotional behaviour in human populations. A systematic search across Web of Knowledge/Science, Scopus, Medline and EMBASE captured all published studies prior to June 2017 examining the association between OXTR DNAm and human social and emotional outcomes. Search terms included 'oxytocin gene' or 'oxytocin receptor gene' and 'epigenetics' or 'DNA methylation'. Any article with a focus on social and emotional functioning was then identified from this set by manual review. Nineteen studies met eligibility criteria. There was considerable heterogeneity of study populations, tissue samples, instrumentation, measurement, and OXTR site foci. Only three studies examined functional consequences of OXTR DNAm on gene expression and protein synthesis. Increases in OXTR DNAm were associated with callous-unemotional traits in youth, social cognitive deficits in Autistic Spectrum Disorder (ASD), rigid thinking in anorexia nervosa, affect regulation problems, and problems with facial and emotional recognition. In contrast, reductions in DNAm were associated with perinatal stress, postnatal depression, social anxiety and autism in children. Consistent with an emerging field of inquiry, there is not yet sufficient evidence to draw conclusions about the role of OXTR DNAm in human social and emotional behaviour. However, taken together, findings point to increased OXTR DNAm in general impairments in social, cognitive and emotional functioning, and decreased OXTR DNAm in specific patterns of impairment related to mood and anxiety

  17. Neural correlate of autistic-like traits and a common allele in the oxytocin receptor gene.

    Science.gov (United States)

    Saito, Yuki; Suga, Motomu; Tochigi, Mamoru; Abe, Osamu; Yahata, Noriaki; Kawakubo, Yuki; Liu, Xiaoxi; Kawamura, Yoshiya; Sasaki, Tsukasa; Kasai, Kiyoto; Yamasue, Hidenori

    2014-10-01

    Sub-clinical autistic-like traits (ALTs) are continuously distributed in the general population and genetically linked to autism. Although identifying the neurogenetic backgrounds of ALTs might enhance our ability to identify those of autism, they are largely unstudied. Here, we have examined the neuroanatomical basis of ALTs and their association with the oxytocin receptor gene (OXTR) rs2254298A, a known risk allele for autism in Asian populations which has also been implicated in limbic-paralimbic brain structures. First, we extracted a four-factor structure of ALTs, as measured using the Autism-Spectrum Quotient, including 'prosociality', 'communication', 'details/patterns' and 'imagination' in 135 neurotypical adults (79 men, 56 women) to reduce the genetic heterogeneity of ALTs. Then, in the same population, voxel-based morphometry revealed that lower 'prosociality', which indicates strong ALTs, was significantly correlated to smaller regional grey matter volume in the right insula in males. Males with lower 'prosociality' also had less interregional structural coupling between the right insula and the ventral anterior cingulate cortex. Furthermore, males with OXTR rs2254298A had significantly smaller grey matter volume in the right insula. These results show that decreased volume of the insula is a neuroanatomical correlate of ALTs and a potential intermediate phenotype linking ALTs with OXTR in male subjects. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli

    Directory of Open Access Journals (Sweden)

    Allison eJack

    2012-10-01

    Full Text Available Oxytocin and its receptor (OXTR play an important role in a variety of social perceptual and affiliative processes. Individual variability in social information processing likely has a strong heritable component, and as such, many investigations have established an association between common genetic variants of OXTR and variability in the social phenotype. However, to date, these investigations have primarily focused only on changes in the sequence of DNA without considering the role of epigenetic factors. DNA methylation is an epigenetic mechanism by which cells control transcription through modification of chromatin structure. DNA methylation of OXTR decreases expression of the gene and high levels of methylation have been associated with autism spectrum disorders. This link between epigenetic variability and social phenotype allows for the possibility that social processes are under epigenetic control. We hypothesized that the level of DNA methylation of OXTR would predict individual variability in social perception. Using the brain’s sensitivity to displays of animacy as a neural endophenotype of social perception, we found significant associations between the degree of OXTR methylation and brain activity evoked by the perception of animacy. Our results suggest that consideration of DNA methylation may substantially improve our ability to explain individual differences in imaging genetic association studies.

  19. Polymorphisms in the oxytocin receptor gene are associated with the development of psychopathy.

    Science.gov (United States)

    Dadds, Mark R; Moul, Caroline; Cauchi, Avril; Dobson-Stone, Carol; Hawes, David J; Brennan, John; Urwin, Ruth; Ebstein, Richard E

    2014-02-01

    The co-occurrence of child conduct problems (CPs) and callous-unemotional (CU) traits confers risk for psychopathy. The oxytocin (OXT) system is a likely candidate for involvement in the development of psychopathy. We tested variations in the OXT receptor gene (OXTR) in CP children and adolescents with varying levels of CU traits. Two samples of Caucasian children, aged 4-16 years, who met DSM criteria for disruptive behavior problems and had no features of autism spectrum disorder, were stratified into low versus high CU traits. Measures were the frequencies of nine candidate OXTR polymorphisms (single nucleotide polymorphisms). In Sample 1, high CU traits were associated with single nucleotide polymorphism rs1042778 in the 3' untranslated region of OXTR and the CGCT haplotype of rs2268490, rs2254298, rs237889, and rs13316193. The association of rs1042778 was replicated in the second rural sample and held across gender and child versus adolescent age groups. We conclude that polymorphic variation of the OXTR characterizes children with high levels of CU traits and CPs. The results are consistent with a hypothesized role of OXT in the developmental antecedents of psychopathy, particularly the differential amygdala activation model of psychopathic traits, and add genetic evidence that high CU traits specify a distinct subgroup within CP children.

  20. Distress of ostracism: oxytocin receptor gene polymorphism confers sensitivity to social exclusion.

    Science.gov (United States)

    McQuaid, Robyn J; McInnis, Opal A; Matheson, Kimberly; Anisman, Hymie

    2015-08-01

    A single-nucleotide polymorphism on the oxytocin receptor gene (OXTR), rs53576, involving a guanine (G) to adenine (A) substitution has been associated with altered prosocial features. Specifically, individuals with the GG genotype (i.e. the absence of the polymorphism) display beneficial traits including enhanced trust, empathy and self-esteem. However, because G carriers might also be more socially sensitive, this may render them more vulnerable to the adverse effects of a negative social stressor. The current investigation, conducted among 128 white female undergraduate students, demonstrated that relative to individuals with AA genotype, G carriers were more emotionally sensitive (lower self-esteem) in response to social ostracism promoted through an on-line ball tossing game (Cyberball). Furthermore, GG individuals also exhibited altered blood pressure and cortisol levels following rejection, effects not apparent among A carriers. The data support the view that the presence of the G allele not only promotes prosocial behaviors but also favors sensitivity to a negative social stressor. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Variation in oxytocin receptor gene (OXTR) polymorphisms is associated with emotional and behavioral reactions to betrayal.

    Science.gov (United States)

    Tabak, Benjamin A; McCullough, Michael E; Carver, Charles S; Pedersen, Eric J; Cuccaro, Michael L

    2014-06-01

    Variations in the gene that encodes the oxytocin receptor (OXTR) have been associated with many aspects of social cognition as well as several prosocial behaviors. However, potential associations of OXTR variants with reactions to betrayals of trust while cooperating for mutual benefit have not yet been explored. We examined how variations in 10 single-nucleotide polymorphisms on OXTR were associated with behavior and emotional reactions after a betrayal of trust in an iterated Prisoner's Dilemma Game. After correction for multiple testing, one haplotype (C-rs9840864, T-rs2268494) was significantly associated with faster retaliation post-betrayal-an association that appeared to be due to this haplotype's intermediate effect of exacerbating people's anger after they had been betrayed. Furthermore, a second haplotype (A-rs237887, C-rs2268490) was associated with higher levels of post-betrayal satisfaction, and a third haplotype (G-rs237887, C-rs2268490) was associated with lower levels of post-betrayal satisfaction. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Maltreatment, the Oxytocin Receptor Gene, and Conduct Problems Among Male and Female Teenagers

    Directory of Open Access Journals (Sweden)

    Dimitrios Andreou

    2018-03-01

    Full Text Available The oxytocin receptor gene (OXTR influences human behavior. The G allele of OXTR rs53576 has been associated with both prosocial and maladaptive behaviors but few studies have taken account of environmental factors. The present study determined whether the association of childhood maltreatment with conduct problems was modified by OXTR rs53576 genotypes. In a general population sample of 1591 teenagers, conduct problems as well as maltreatment were measured by self-report. DNA was extracted from saliva samples. In males, there was a significant positive association between maltreatment and conduct problems independent of the genotype. In females, among G allele carriers, the level of conduct problems was significantly higher among those who had been maltreated as compared to those not maltreated. By contrast, among female AA carriers, conduct problems did not vary between those who were, and who were not, maltreated. The results indicate that OXTR rs53576 plays a role in antisocial behavior in females such that the G allele confers vulnerability for antisocial behavior if they experience maltreatment, whereas the A allele has a protective effect.

  3. Context and Individual Characteristics Modulate the Association between Oxytocin Receptor Gene Polymorphism and Social Behavior in Border Collies

    Directory of Open Access Journals (Sweden)

    Borbála Turcsán

    2017-12-01

    Full Text Available Recent studies suggest that the relationship between endogenous oxytocin and social affiliative behavior can be critically moderated by contextual and individual factors in humans. While oxytocin has been shown to influence human-directed affiliative behaviors in dogs, no study investigated yet how such factors moderate these effects. Our study aimed to investigate whether the context and the dogs’ individual characteristics moderate the associations between the social affiliative (greeting behavior and four single-nucleotide polymorphisms (SNPs of the oxytocin receptor (OXTR gene. We recorded the greeting behavior in three contexts: (1 when the dog first met an unfamiliar experimenter, (2 during a separation from the owner, and (3 after the experimenter approached the dog in a threatening manner. In the latter two contexts (during separation and after threatening, we categorized the dogs into stressed and non-stressed groups based on their behavior in the preceding situations. In line with previous studies, we found that polymorphisms in the OXTR gene are related to the greeting behavior of dogs. However, we also showed that the analyzed SNPs were associated with greeting in different contexts and in different individuals, suggesting that the four SNPs might be related to different functions of the oxytocin system. The -213A/G was associated with greeting only when the dog had no prior negative experience with the experimenter. The rs8679682 was found in association with greeting in all three contexts but these associations were significant only in non-stressed dogs. The -94T/C was associated with greeting only when the dog was stressed and had an interaction with the sex of the dog. The -74C/G SNP was associated with greeting only when the dog was stressed during separation and also had a sex interaction. Taken together, our results suggest that, similarly to humans, the effects of oxytocin on the dogs’ social behavior are not universal

  4. Environmental stress, oxytocin receptor gene (OXTR) polymorphism, and mental health following collective stress.

    Science.gov (United States)

    Lucas-Thompson, Rachel G; Holman, E Alison

    2013-04-01

    We examined whether the oxytocin receptor gene (OXTR) single nucleotide polymorphism (SNP) rs53576 genotype buffers the combined impact of negative social environments (e.g., interpersonal conflict/constraint) and economic stress on post-traumatic stress (PTS) symptoms and impaired daily functioning following collective stress (September 11th terrorist attacks). Saliva was collected by mail and used to genotype 704 respondents. Participants completed Web-based assessments of pre-9/11 mental health, acute stress 9-23 days after 9/11, the quality of social environments 1 year post-9/11, economic stress 18 months post-9/11, and PTS symptoms and impaired functioning 2 and 3 years post-9/11. Interactions between negative social environments and economic stress were examined separately based on OXTR rs53576 genotype (GG vs. any A allele). For individuals with an A allele, a negative social environment significantly increased PTS symptoms without regard to the level of economic stress experienced. However, for respondents with a GG genotype, negative social environments predicted elevated PTS symptoms only for those also experiencing high economic stress. Gender moderated associations between negative social environments, economic stress, and impaired functioning. The functioning of females was most affected by negative social environments regardless of genotype and economic stress, whereas the functioning of males was differentially susceptible to economic stress depending on OXTR genotype and negative social environments. These findings suggest that it is important to consider the combined impact of gender and ongoing stress in different domains as moderators of genetic vulnerability following collective stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Oxytocin receptor gene (OXTR) in relation to loneliness in adolescence : interactions with sex, parental support, and DRD2 and 5-HTTLPR genotypes

    NARCIS (Netherlands)

    van Roekel, Eeske; Verhagen, Maaike; Engels, Rutger C. M. E.; Goossens, Luc; Scholte, Ron H. J.

    2013-01-01

    Background Recent research has shown that loneliness, a common problem in adolescence, may have a genetic basis. The evidence, though, was limited mostly to serotonin-related and dopamine-related genes. In the present study, we focused on the oxytocin receptor gene (OXTR).Methods Associations were

  6. Cumulative risk on the oxytocin receptor gene (OXTR) underpins empathic communication difficulties at the first stages of romantic love.

    Science.gov (United States)

    Schneiderman, Inna; Kanat-Maymon, Yaniv; Ebstein, Richard P; Feldman, Ruth

    2014-10-01

    Empathic communication between couples plays an important role in relationship quality and individual well-being and research has pointed to the role of oxytocin in providing the neurobiological substrate for pair-bonding and empathy. Here, we examined links between genetic variability on the oxytocin receptor gene (OXTR) and empathic behaviour at the initiation of romantic love. Allelic variations on five OXTR single nucleotide polymorphisms (SNPs) previously associated with susceptibility to disorders of social functioning were genotyped in 120 new lovers: OXTRrs13316193, rs2254298, rs1042778, rs2268494 and rs2268490. Cumulative genetic risk was computed by summing risk alleles on each SNP. Couples were observed in support-giving interaction and behaviour was coded for empathic communication, including affective congruence, maintaining focus on partner, acknowledging partner's distress, reciprocal exchange and non-verbal empathy. Hierarchical linear modelling indicated that individuals with high OXTR risk exhibited difficulties in empathic communication. OXTR risk predicted empathic difficulties above and beyond the couple level, relationship duration, and anxiety and depressive symptoms. Findings underscore the involvement of oxytocin in empathic behaviour during the early stages of social affiliation, and suggest the utility of cumulative risk and plasticity indices on the OXTR as potential biomarkers for research on disorders of social dysfunction and the neurobiology of empathy. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Gene-environment interaction between the oxytocin receptor (OXTR) gene and parenting behaviour on children's theory of mind.

    Science.gov (United States)

    Wade, Mark; Hoffmann, Thomas J; Jenkins, Jennifer M

    2015-12-01

    Theory of mind (ToM) is the ability to interpret and understand human behaviour by representing the mental states of others. Like many human capacities, ToM is thought to develop through both complex biological and socialization mechanisms. However, no study has examined the joint effect of genetic and environmental influences on ToM. This study examined how variability in the oxytocin receptor gene (OXTR) and parenting behavior--two widely studied factors in ToM development-interacted to predict ToM in pre-school-aged children. Participants were 301 children who were part of an ongoing longitudinal birth cohort study. ToM was assessed at age 4.5 using a previously validated scale. Parenting was assessed through observations of mothers' cognitively sensitive behaviours. Using a family-based association design, it was suggestive that a particular variant (rs11131149) interacted with maternal cognitive sensitivity on children's ToM (P = 0.019). More copies of the major allele were associated with higher ToM as a function of increasing cognitive sensitivity. A sizeable 26% of the variability in ToM was accounted for by this interaction. This study provides the first empirical evidence of gene-environment interactions on ToM, supporting the notion that genetic factors may be modulated by potent environmental influences early in development. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. A paradoxical association of an oxytocin receptor gene polymorphism: Early-life adversity and vulnerability to depression

    Directory of Open Access Journals (Sweden)

    Robyn Jane McQuaid

    2013-07-01

    Full Text Available Several prosocial behaviors may be influenced by the hormone oxytocin. In line with this perspective, the oxytocin receptor (OXTR gene single nucleotide polymorphism (SNP, rs53576, has been associated with a broad range of social behaviors. In this regard, the G allele of the OXTR SNP has been accompanied by beneficial attributes such as increased empathy, optimism and trust. In the current study among university students (N = 288, it was shown that early-life maltreatment was associated with depressive symptoms, and that the OXTR genotype moderated this relationship, such that under high levels of childhood maltreatment, only individuals with GG/GA genotype demonstrated increased depressive symptomatology compared to those with the AA genotype. In addition, the role of distrust in mediating the relation between childhood maltreatment and depression seemed to be more important among G allele carriers compared to individuals with the AA genotype. Thus, a breach in trust (i.e. in the case of early-life abuse or neglect may have a more deleterious effect among G carriers, who have been characterized as more prosocial and attuned to social cues. The data suggested that G carriers of the OXTR might favor social sensitivity and thus might have been more vulnerable to the effects of early-life adversity.

  9. Youth temperament, harsh parenting, and variation in the oxytocin receptor gene forecast allostatic load during emerging adulthood.

    Science.gov (United States)

    Brody, Gene H; Yu, Tianyi; Barton, Allen W; Miller, Gregory E; Chen, Edith

    2017-08-01

    An association has been found between receipt of harsh parenting in childhood and adult health problems. However, this research has been principally retrospective, has treated children as passive recipients of parental behavior, and has overlooked individual differences in youth responsivity to harsh parenting. In a 10-year multiple-wave prospective study of African American families, we addressed these issues by focusing on the influence of polymorphisms in the oxytocin receptor gene (OXTR), variants of which appear to buffer or amplify responses to environmental stress. The participants were 303 youths, with a mean age of 11.2 at the first assessment, and their parents, all of whom were genotyped for variations in the rs53576 (A/G) polymorphism. Teachers rated preadolescent (ages 11 to 13) emotionally intense and distractible temperaments, and adolescents (ages 15 and 16) reported receipt of harsh parenting. Allostatic load was assessed during young adulthood (ages 20 and 21). Difficult preadolescent temperament forecast elevated receipt of harsh parenting in adolescence, and adolescents who experienced harsh parenting evinced high allostatic load during young adulthood. However, these associations emerged only among children and parents who carried A alleles of the OXTR genotype. The results suggest the oxytocin system operates along with temperament and parenting to forecast young adults' allostatic load.

  10. Epigenetic modification of the oxytocin and glucocorticoid receptor genes is linked to attachment avoidance in young adults.

    Science.gov (United States)

    Ein-Dor, Tsachi; Verbeke, Willem J M I; Mokry, Michal; Vrtička, Pascal

    2018-08-01

    Attachment in the context of intimate pair bonds is most frequently studied in terms of the universal strategy to draw near, or away, from significant others at moments of personal distress. However, important interindividual differences in the quality of attachment exist, usually captured through secure versus insecure - anxious and/or avoidant - attachment orientations. Since Bowlby's pioneering writings on the theory of attachment, it has been assumed that attachment orientations are influenced by both genetic and social factors - what we would today describe and measure as gene by environment interaction mediated by epigenetic DNA modification - but research in humans on this topic remains extremely limited. We for the first time examined relations between intra-individual differences in attachment and epigenetic modification of the oxytocin receptor (OXTR) and glucocorticoid receptor (NR3C1) gene promoter in 109 young adult human participants. Our results revealed that attachment avoidance was significantly and specifically associated with increased OXTR and NR3C1 promoter methylation. These findings offer first tentative clues on the possible etiology of attachment avoidance in humans by showing epigenetic modification in genes related to both social stress regulation and HPA axis functioning.

  11. Variation in the oxytocin receptor gene is associated with behavioral and neural correlates of empathic accuracy

    DEFF Research Database (Denmark)

    Laursen, Helle Ruff; Siebner, Hartwig Roman; Haren, Tina

    2014-01-01

    The neuromodulators oxytocin and serotonin have been implicated in regulating affective processes underlying empathy. Understanding this dependency, however, has been limited by a lack of objective metrics for measuring empathic performance. Here we employ a novel psychophysical method for measur...

  12. Function and structure in social brain regions can link oxytocin-receptor genes with autistic social behavior.

    Science.gov (United States)

    Yamasue, Hidenori

    2013-02-01

    Difficulties in appropriate social and communicative behaviors are the most prevalent and core symptoms of autism spectrum disorders (ASDs). Although recent intensive research has focused on the neurobiological background of these difficulties, many aspects of them were not yet elucidated. Recent studies have employed multimodal magnetic resonance imaging (MRI) indices as intermediate phenotypes of this behavioral phenotype to link candidate genes with the autistic social difficulty. As MRI indices, functional MRI (fMRI), structural MRI, and MR-spectroscopy have been examined in subjects with autism spectrum disorders. As candidate genes, this mini-review has much interest in oxytocin-receptor genes (OXTR), since recent studies have repeatedly reported their associations with normal variations in social cognition and behavior as well as with their extremes, autistic social dysfunction. Through previous increasing studies, medial prefrontal cortex, hypothalamus and amygdala have repeatedly been revealed as neural correlates of autistic social behavior by MRI multimodalities and their relationship to OXTR. For further development of this research area, this mini-review integrates recent accumulating evidence about human behavioral and neural correlates of OXTR. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  13. Associations among oxytocin receptor gene (OXTR) DNA methylation in adulthood, exposure to early life adversity, and childhood trajectories of anxiousness.

    Science.gov (United States)

    Gouin, J P; Zhou, Q Q; Booij, L; Boivin, M; Côté, S M; Hébert, M; Ouellet-Morin, I; Szyf, M; Tremblay, R E; Turecki, G; Vitaro, F

    2017-08-07

    Recent models propose deoxyribonucleic acid methylation of key neuro-regulatory genes as a molecular mechanism underlying the increased risk of mental disorder associated with early life adversity (ELA). The goal of this study was to examine the association of ELA with oxytocin receptor gene (OXTR) methylation among young adults. Drawing from a 21-year longitudinal cohort, we compared adulthood OXTR methylation frequency of 46 adults (23 males and 23 females) selected for high or low ELA exposure based on childhood socioeconomic status and exposure to physical and sexual abuse during childhood and adolescence. Associations between OXTR methylation and teacher-rated childhood trajectories of anxiousness were also assessed. ELA exposure was associated with one significant CpG site in the first intron among females, but not among males. Similarly, childhood trajectories of anxiousness were related to one significant CpG site within the promoter region among females, but not among males. This study suggests that females might be more sensitive to the impact of ELA on OXTR methylation than males.

  14. Genetic and epigenetic regulatory mechanisms of the oxytocin receptor gene (OXTR) and the (clinical) implications for social behavior.

    Science.gov (United States)

    Tops, Sanne; Habel, Ute; Radke, Sina

    2018-03-12

    Oxytocin and the oxytocin receptor (OXTR) play an important role in a large variety of social behaviors. The oxytocinergic system interacts with environmental cues and is highly dependent on interindividual factors. Deficits in this system have been linked to mental disorders associated with social impairments, such as autism spectrum disorder (ASD). This review focuses on the modulation of social behavior by alterations in two domains of the oxytocinergic system. We discuss genetic and epigenetic regulatory mechanisms and alterations in these mechanisms that were found to have clinical implications for ASD. We propose possible explanations how these alterations affect the biological pathways underlying the aberrant social behavior and point out avenues for future research. We advocate the need for integration studies that combine multiple measures covering a broad range of social behaviors and link these to genetic and epigenetic profiles. Copyright © 2018. Published by Elsevier Inc.

  15. Generation of Oxtr cDNA(HA)-Ires-Cre Mice for Gene Expression in an Oxytocin Receptor Specific Manner.

    Science.gov (United States)

    Hidema, Shizu; Fukuda, Tomokazu; Hiraoka, Yuichi; Mizukami, Hiroaki; Hayashi, Ryotaro; Otsuka, Ayano; Suzuki, Shingo; Miyazaki, Shinji; Nishimori, Katsuhiko

    2016-05-01

    The neurohypophysial hormone oxytocin (OXT) and its receptor (OXTR) have critical roles in the regulation of pro-social behaviors, including social recognition, pair bonding, parental behavior, and stress-related responses. Supporting this hypothesis, a portion of patients suffering from autism spectrum disorder have mutations, such as single nucleotide polymorphisms, or epigenetic modifications in their OXTR gene. We previously reported that OXTR-deficient mice exhibit pervasive social deficits, indicating the critical role of OXTR in social behaviors. In the present study, we generated Oxtr cDNA(HA)-Ires-Cre knock-in mice, expressing both OXTR and Cre recombinase under the control of the endogenous Oxtr promoter. Knock-in cassette of Oxtr cDNA(HA)-Ires-Cre consisted of Oxtr cDNA tagged with the hemagglutinin epitope at the 3' end (Oxtr cDNA(HA)), internal ribosomal entry site (Ires), and Cre. Cre was expressed in the uterus, mammary gland, kidney, and brain of Oxtr cDNA(HA)-Ires-Cre knock-in mice. Furthermore, the distribution of Cre in the brain was similar to that observed in Oxtr-Venus fluorescent protein expressing mice (Oxtr-Venus), another animal model previously generated by our group. Social behavior of Oxtr cDNA(HA)-Ires-Cre knock-in mice was similar to that of wild-type animals. We demonstrated that this construct is expressed in OXTR-expressing neurons specifically after an infection with the recombinant adeno-associated virus carrying the flip-excision switch vector. Using this system, we showed the transport of the wheat-germ agglutinin tracing molecule from the OXTR-expressing neurons to the innervated neurons in knock-in mice. This study might contribute to the monosynaptic analysis of neuronal circuits and to the optogenetic analysis of neurons expressing OXTR. © 2015 Wiley Periodicals, Inc.

  16. Oxytocin and Estrogen Receptor β in the Brain: An Overview

    OpenAIRE

    Acevedo-Rodriguez, Alexandra; Mani, Shaila K.; Handa, Robert J.

    2015-01-01

    Oxytocin is a neuropeptide synthesized primarily by neurons of the paraventricular and supraoptic nuclei of the hypothalamus. These neurons have axons that project into the posterior pituitary and release oxytocin into the bloodstream to promote labor and lactation; however, oxytocin neurons also project to other brain areas where it plays a role in numerous brain functions. Oxytocin binds to the widely expressed oxytocin receptor, and, in doing so, it regulates homeostatic processes, social ...

  17. Variation in the oxytocin receptor gene is associated with increased risk for anxiety, stress and depression in individuals with a history of exposure to early life stress.

    Science.gov (United States)

    Myers, Amanda J; Williams, Leanne; Gatt, Justine M; McAuley-Clark, Erica Z; Dobson-Stone, Carol; Schofield, Peter R; Nemeroff, Charles B

    2014-12-01

    Oxytocin is a neuropeptide that is involved in the regulation of mood, anxiety and social biology. Genetic variation in the oxytocin receptor gene (OXTR) has been implicated in anxiety, depression and related stress phenotypes. It is not yet known whether OXTR interacts with other risk factors such as early life trauma to heighten the severity of experienced anxiety and depression. In this study, we examined genotypes in 653 individuals and tested whether SNP variation in OXTR correlates with severity of features of self-reported experience on the Depression Anxiety and Stress Scale (DASS), and whether this correlation is enhanced when early life trauma is taken into account. We also assessed the effects of OXTR SNPs on RNA expression levels in two separate brain tissue cohorts totaling 365 samples. A significant effect of OXTR genotype on DASS anxiety, stress and depression scores was found and ELS events, in combination with several different OXTR SNPs, were significantly associated with differences in DASS scores with one SNP (rs139832701) showing significant association or a trend towards association for all three measures. Several OXTR SNPs were correlated with alterations in OXTR RNA expression and rs3831817 replicated across both sets of tissues. These results support the hypothesis that the oxytocin system plays a role in the pathophysiology of mood and anxiety disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. DNA methylation of specific CpG sites in the promoter region regulates the transcription of the mouse oxytocin receptor.

    Directory of Open Access Journals (Sweden)

    Shimrat Mamrut

    Full Text Available Oxytocin is a peptide hormone, well known for its role in labor and suckling, and most recently for its involvement in mammalian social behavior. All central and peripheral actions of oxytocin are mediated through the oxytocin receptor, which is the product of a single gene. Transcription of the oxytocin receptor is subject to regulation by gonadal steroid hormones, and is profoundly elevated in the uterus and mammary glands during parturition. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression of the oxytocin receptor in individuals with autism. Here, we hypothesized that transcription of the mouse oxytocin receptor is regulated by DNA methylation of specific sites in its promoter, in a tissue-specific manner. Hypothalamus-derived GT1-7, and mammary-derived 4T1 murine cell lines displayed negative correlations between oxytocin receptor transcription and methylation of the gene promoter, and demethylation caused a significant enhancement of oxytocin receptor transcription in 4T1 cells. Using a reporter gene assay, we showed that methylation of specific sites in the gene promoter, including an estrogen response element, significantly inhibits transcription. Furthermore, methylation of the oxytocin receptor promoter was found to be differentially correlated with oxytocin receptor expression in mammary glands and the uterus of virgin and post-partum mice, suggesting that it plays a distinct role in oxytocin receptor transcription among tissues and under different physiological conditions. Together, these results support the hypothesis that the expression of the mouse oxytocin receptor gene is epigenetically regulated by DNA methylation of its promoter.

  19. Association between maternal childhood maltreatment and mother-infant attachment disorganization: Moderation by maternal oxytocin receptor gene and cortisol secretion.

    Science.gov (United States)

    Ludmer, Jaclyn A; Gonzalez, Andrea; Kennedy, James; Masellis, Mario; Meinz, Paul; Atkinson, Leslie

    2018-04-24

    This study examined maternal oxytocin receptor (OXTR, rs53576) genotype and cortisol secretion as moderators of the relation between maternal childhood maltreatment history and disorganized mother-infant attachment in the Strange Situation Procedure (SSP). A community sample of 314 mother-infant dyads completed the SSP at infant age 17 months. Self-reported maltreatment history more strongly predicted mother-infant attachment disorganization score and disorganized classification for mothers with more plasticity alleles of OXTR (G), relative to mothers with fewer plasticity alleles. Maltreatment history also more strongly predicted mother-infant attachment disorganization score and classification for mothers with higher SSP cortisol secretion, relative to mothers with lower SSP cortisol secretion. Findings indicate that maltreatment history is related to disorganization in the next generation, but that this relation depends on maternal genetic characteristics and cortisol. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Family environment and adult resilience: contributions of positive parenting and the oxytocin receptor gene

    Directory of Open Access Journals (Sweden)

    Bekh Bradley

    2013-09-01

    Full Text Available Background: Abundant research shows that childhood adversity increases the risk for adult psychopathology while research on influences of positive family environment on risk for psychopathology is limited. Similarly, a growing body of research examines genetic and gene by environment predictors of psychopathology, yet such research on predictors of resilience is sparse. Objectives: We examined the role of positive factors in childhood family environment (CFE and the OXTR rs53576 genotype in predicting levels of adult resilient coping and positive affect. We also examined whether the relationship between positive factors in the CFEs and adult resilient coping and positive affect varied across OXTR rs53576 genotype. Methods: We gathered self-report data on childhood environment, trauma history, and adult resilience and positive affect in a sample of 971 African American adults. Results: We found that positive CFE was positively associated with higher levels of resilient coping and positive affect in adulthood after controlling for childhood maltreatment, other trauma, and symptoms of posttraumatic stress disorder. We did not find a direct effect of OXTR 53576 on a combined resilient coping/positive-affect-dependent variable, but we did find an interaction of OXTR rs53576 with family environment. Conclusions: Our data suggest that even in the face of adversity, positive aspects of the family environment may contribute to resilience. These results highlight the importance of considering protective developmental experiences and the interaction of such experiences with genetic variants in risk and resilience research.For the abstract or full text in other languages, please see Supplementary files under Article Tools online

  1. Oxytocin efficacy is modulated by dosage and oxytocin receptor genotype in young adults with high-functioning autism: a 24-week randomized clinical trial.

    Science.gov (United States)

    Kosaka, H; Okamoto, Y; Munesue, T; Yamasue, H; Inohara, K; Fujioka, T; Anme, T; Orisaka, M; Ishitobi, M; Jung, M; Fujisawa, T X; Tanaka, S; Arai, S; Asano, M; Saito, D N; Sadato, N; Tomoda, A; Omori, M; Sato, M; Okazawa, H; Higashida, H; Wada, Y

    2016-08-23

    Recent studies have suggested that long-term oxytocin administration can alleviate the symptoms of autism spectrum disorder (ASD); however, factors influencing its efficacy are still unclear. We conducted a single-center phase 2, pilot, randomized, double-blind, placebo-controlled, parallel-group, clinical trial in young adults with high-functioning ASD, to determine whether oxytocin dosage and genetic background of the oxytocin receptor affects oxytocin efficacy. This trial consisted of double-blind (12 weeks), open-label (12 weeks) and follow-up phases (8 weeks). To examine dose dependency, 60 participants were randomly assigned to high-dose (32 IU per day) or low-dose intranasal oxytocin (16 IU per day), or placebo groups during the double-blind phase. Next, we measured single-nucleotide polymorphisms (SNPs) in the oxytocin receptor gene (OXTR). In the intention-to-treat population, no outcomes were improved after oxytocin administration. However, in male participants, Clinical Global Impression-Improvement (CGI-I) scores in the high-dose group, but not the low-dose group, were significantly higher than in the placebo group. Furthermore, we examined whether oxytocin efficacy, reflected in the CGI-I scores, is influenced by estimated daily dosage and OXTR polymorphisms in male participants. We found that >21 IU per day oxytocin was more effective than ⩽21 IU per day, and that a SNP in OXTR (rs6791619) predicted CGI-I scores for ⩽21 IU per day oxytocin treatment. No severe adverse events occurred. These results suggest that efficacy of long-term oxytocin administration in young men with high-functioning ASD depends on the oxytocin dosage and genetic background of the oxytocin receptor, which contributes to the effectiveness of oxytocin treatment of ASD.

  2. Oxytocin decreases colonic motility of cold water stressed rats via oxytocin receptors.

    Science.gov (United States)

    Yang, Xiao; Xi, Tao-Fang; Li, Yu-Xian; Wang, Hai-Hong; Qin, Ying; Zhang, Jie-Ping; Cai, Wen-Ting; Huang, Meng-Ting; Shen, Ji-Qiao; Fan, Xi-Min; Shi, Xuan-Zheng; Xie, Dong-Ping

    2014-08-21

    To investigate whether cold water intake into the stomach affects colonic motility and the involvement of the oxytocin-oxytocin receptor pathway in rats. Female Sprague Dawley rats were used and some of them were ovariectomized. The rats were subjected to gastric instillation with cold (0-4 °C, cold group) or room temperature (20-25 °C, control group) saline for 14 consecutive days. Colon transit was determined with a bead inserted into the colon. Colonic longitudinal muscle strips were prepared to investigate the response to oxytocin in vitro. Plasma concentration of oxytocin was detected by ELISA. Oxytocin receptor expression was investigated by Western blot analysis. Immunohistochemistry was used to locate oxytocin receptors. Colon transit was slower in the cold group than in the control group (P cold water intake (0.69 ± 0.08 vs 0.88 ± 0.16, P receptors were located in the myenteric plexus, and their expression was up-regulated in the cold group (P Cold water intake increased blood concentration of oxytocin, but this effect was attenuated in ovariectomized rats (286.99 ± 83.72 pg/mL vs 100.56 ± 92.71 pg/mL, P Cold water intake inhibits colonic motility partially through oxytocin-oxytocin receptor signaling in the myenteric nervous system pathway, which is estrogen dependent.

  3. The moderating role of an oxytocin receptor gene polymorphism in the relation between unsupportive social interactions and coping profiles: Implications for depression

    Directory of Open Access Journals (Sweden)

    Opal Arilla Mcinnis

    2015-08-01

    Full Text Available Oxytocin is a hormone that is thought to influence prosocial behaviors and may be important in modulating responses to both positive and negative social interactions. Indeed, a single nucleotide polymorphism (SNP of the oxytocin receptor gene (OXTR has been associated with decreased trust, empathy, optimism and social support seeking, which are important components of coping with stressors. In the current study, conducted among undergraduate students (N=225, it was shown that parental and peer social support was related to fewer depressive symptoms through elevated problem-focused coping and lower emotion-focused coping, and these effects were independent of the OXTR polymorphism. Unsupportive social interactions from parents were associated with more severe depressive symptoms through the greater use of emotion-focused coping, and this relation was moderated by the OXTR genotype. Specifically, individuals who carried the polymorphism on one or both of their alleles demonstrated increased emotion-focused coping following unsupportive responses compared to those without the polymorphism. Likewise, lower problem-focused coping mediated the relation between parental and peer unsupportive responses to depressive symptoms, but this mediated relation was only evident among carriers of the polymorphism. These findings suggest that carrying this OXTR polymorphism might favor disadvantageous coping styles in the face of negative social interactions, which in turn are linked to poor mood. Regardless of genotype, parental and peer social support are fundamental in determining stress-related coping and well-being.

  4. Oxytocin and Estrogen Receptor β in the Brain: An Overview

    Directory of Open Access Journals (Sweden)

    Alexandra eAcevedo-Rodriguez

    2015-10-01

    Full Text Available Oxytocin is a neuropeptide synthesized primarily by neurons of the paraventricular and supraoptic nuclei of the hypothalamus. These neurons have axons that project into the posterior pituitary and release oxytocin into the bloodstream to promote labor and lactation; however, oxytocin neurons also project to other brain areas where it plays a role in numerous brain functions. Oxytocin binds to the widely expressed oxytocin receptor, and, in doing so, it regulates homeostatic processes, social recognition and fear conditioning. In addition to these functions, oxytocin decreases neuroendocrine stress signaling and anxiety-related and depression-like behaviors. Steroid hormones differentially modulate stress responses and alter oxytocin receptor expression. In particular, estrogen receptor β activation has been found to both reduce anxiety-related behaviors and increase oxytocin peptide transcription, suggesting a role for oxytocin in this estrogen receptor β mediated anxiolytic effect. Further research is needed to identify modulators of oxytocin signaling and the pathways utilized and to elucidate molecular mechanisms controlling oxytocin expression to allow better therapeutic manipulations of this system in patient populations.

  5. Oxytocin receptor gene (OXTR) variant rs1042778 moderates the influence of family environment on changes in perceived social support over time.

    Science.gov (United States)

    Dobewall, Henrik; Hakulinen, Christian; Keltikangas-Järvinen, Liisa; Pulkki-Råback, Laura; Seppälä, Ilkka; Lehtimäki, Terho; Raitakari, Olli T; Hintsanen, Mirka

    2018-08-01

    Lack of social support is an established risk factor across health outcomes, making it important to examine its family environmental and genetic determinants. In a 27-year follow-up of the Young Finns Study (N = 2341), we examined with a latent growth curve model whether genes involved in the oxytocin signaling pathway-namely, oxytocin receptor gene (OXTR) variants rs1042778, rs2254298, and rs53576-moderate the effect of early-life social experiences on perceived social support across the life span. Mothers reported the emotional warmth and acceptance towards their children at baseline when the participants were from 3 to 18 years old (1980). Perceived family support and support from friends and peripheral sources were assessed in five follow-ups 18 years apart (1989-2007). Maternal emotional warmth and acceptance predicted the initial level of perceived social support across subscales, while the rate of change in family support was affected by the family environment only if participants carried the T-allele of OXTR rs1042778. This gene-environment interaction was not found for the rate of change in support from friends and peripheral sources and we also did not find associations between latent growth in perceived social support and OXTR variants rs53576 and rs2254298. Selective attrition in perceived social support, maternal emotional warmth and acceptance, gender, and SES. Family environment was assessed by a non-standardized measure. OXTR rs1042778 polymorphism seems to contribute to changes in perceived family support in that way that some individuals (T-allele carriers) 'recover', to some extent, from the effects of early-life social experiences, whereas others (G/G genotype carriers) do not. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Oxytocin Receptor (OXTR Polymorphisms and Attachment in Human Infants

    Directory of Open Access Journals (Sweden)

    Frances S Chen

    2011-08-01

    Full Text Available Ordinary variations in human infants’ attachment behaviors—their proclivity to seek and accept comfort from caregivers—are associated with a wide range of individual differences in psychological functioning in adults. The current investigation examined variation in the oxytocin receptor (OXTR gene as one possible source of these variations in infant attachment. One hundred and seventy-six infants (77 Caucasian, 99 non-Caucasian were classified as securely or insecurely attached based on their behavior in the Strange Situation (Ainsworth et al., 1976. The A allele at OXTR rs2254298 was associated with attachment security in the non-Caucasian infants (p < .005. These findings underscore the importance of oxytocin in the development of human social behavior and support its role in social stress-regulation and the development of trust.

  7. Ignorance Is No Excuse: Moral Judgments Are Influenced by a Genetic Variation on the Oxytocin Receptor Gene

    Science.gov (United States)

    Walter, Nora T.; Montag, Christian; Markett, Sebastian; Felten, Andrea; Voigt, Gesine; Reuter, Martin

    2012-01-01

    Perspective-taking has become a main focus of studies on moral judgments. Recent fMRI studies have demonstrated that individual differences in brain activation predict moral decision making. In particular, pharmacological studies highlighted the crucial role for the neuropeptide oxytocin in social behavior and emotional perception. In the present…

  8. Dog-Owner Attachment Is Associated With Oxytocin Receptor Gene Polymorphisms in Both Parties. A Comparative Study on Austrian and Hungarian Border Collies

    Directory of Open Access Journals (Sweden)

    Krisztina Kovács

    2018-04-01

    Full Text Available Variations in human infants' attachment behavior are associated with single nucleotide polymorphisms (SNPs in the oxytocin receptor (OXTR gene, suggesting a genetic component to infant-mother attachment. However, due to the genetic relatedness of infants and their mothers, it is difficult to separate the genetic effects of infants' OXTR genotype from the environmental effects of mothers' genotype possibly affecting their parental behavior. The apparent functional analogy between child-parent and dog-owner relationship, however, offers a way to disentangle the effects of these factors because pet dogs are not genetically related to their caregivers. In the present study we investigated whether single nucleotide polymorphisms of pet dogs' OXTR gene (−213AG,−94TC,−74CG and their owners' OXTR gene (rs53576, rs1042778, rs2254298 are associated with components of dog-owner attachment. In order to investigate whether social-environmental effects modulate the potential genetic influence on attachment, dogs and their owners from two different countries (Austria and Hungary, N = 135 in total were tested in a modified version of the Ainsworth Strange Situation Test (SST and questionnaires were also used to collect information about owner personality and attachment style. We coded variables related to three components of attachment behavior in dogs: their sensitivity to the separation from and interaction with the owner (Attachment, stress caused by the unfamiliar environment (Anxiety, and their responsiveness to the stranger (Acceptance. We found that (1 dogs' behavior was significantly associated with polymorphisms in both dogs' and owners' OXTR gene, (2 SNPs in dogs' and owners' OXTR gene interactively influenced dog-human relationship, (3 dogs' attachment behavior was affected by the country of origin, and (4 it was related to their owners' personality as well as attachment style. Thus, the present study provides evidence, for the first time, that

  9. Association of a Common Oxytocin Receptor Gene Polymorphism with Self-Reported 'Empathic Concern' in a Large Population of Healthy Volunteers.

    Directory of Open Access Journals (Sweden)

    Franz Korbinian Huetter

    Full Text Available Previous research has linked genomic variations of the oxytocin receptor (OXTR gene with individual differences in empathy. The impact of these variations on specific cognitive and emotional aspects of empathy, however, remains to be clarified.We analysed associations of a common OXTR polymorphism (rs53576 with trait empathy in a sample of 421 blood donors (231 M, 190 F; age 18-74 using the Interpersonal Reactivity Index (IRI as an established multidimensional self-report measure of empathy.Female sex was significantly associated with higher empathy scores in all IRI scales (p<0.001 with the exception of the cognitive perspective taking scale (p = 0.09. The overall trait empathy score was significantly associated with rs53576 (p = 0.01, with mean scores increasing from AA to GG genotypes. An analysis of the IRI subscores revealed that the polymorphism was especially associated with the emotional empathic concern scale (p = 0.02. Separate analysis of the male and female subgroup revealed a significant association of the polymorphism with female (p = 0.04, but not with male (p = 0.20 empathic concern. A comparison of effect sizes between the groups showed greater effects for women compared to men although effect size differences did not become significant in our sample.Our findings suggest a significant association of the rs53576 OXTR gene polymorphism with trait empathy and especially with emotional aspects of empathy. This association is possibly weaker or absent in men compared to women.

  10. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex.

    Science.gov (United States)

    Mor, Michal; Nardone, Stefano; Sams, Dev Sharan; Elliott, Evan

    2015-01-01

    MicroRNAs are small RNA molecules that regulate the translation of protein from gene transcripts and are a powerful mechanism to regulate gene networks. Next-generation sequencing technologies have produced important insights into gene transcription changes that occur in the brain of individuals diagnosed with autism spectrum disorder (asd). However, these technologies have not yet been employed to uncover changes in microRNAs in the brain of individuals diagnosed with asd. Small RNA next-generation sequencing was performed on RNA extracted from 12 human autism brain samples and 12 controls. Real-time PCR was used to validate a sample of the differentially expressed microRNAs, and bioinformatic analysis determined common pathways of gene targets. MicroRNA expression data was correlated to genome-wide DNA methylation data to determine if there is epigenetic regulation of dysregulated microRNAs in the autism brain. Luciferase assays, real-time PCR, and Western blot analysis were used to determine how dysregulated microRNAs may regulate the expression and translation of an autism-related gene transcript. We determined that miR-142-5p, miR-142-3p, miR-451a, miR-144-3p, and miR-21-5p are overexpressed in the asd brain. Furthermore, the promoter region of the miR-142 gene is hypomethylated in the same brain samples, suggesting that epigenetics plays a role in dysregulation of microRNAs in the brain. Bioinformatic analysis revealed that these microRNAs target genes that are involved in synaptic function. Further bioinformatic analysis, coupled with in vitro luciferase assays, determined that miR-451a and miR-21-5p can target the oxytocin receptor (OXTR) gene. OXTR gene expression is increased in these same brain samples, and there is a positive correlation between miR-21-5p and OXTR expression. However, miR-21-5p expression negatively correlates to production of OXTR protein from the OXTR transcript. Therefore, we suggest that miR-21-5p may attenuate OXTR expression in

  11. Genomic and epigenetic evidence for oxytocin receptor deficiency in autism

    Directory of Open Access Journals (Sweden)

    Worley Gordon

    2009-10-01

    Full Text Available Abstract Background Autism comprises a spectrum of behavioral and cognitive disturbances of childhood development and is known to be highly heritable. Although numerous approaches have been used to identify genes implicated in the development of autism, less than 10% of autism cases have been attributed to single gene disorders. Methods We describe the use of high-resolution genome-wide tilepath microarrays and comparative genomic hybridization to identify copy number variants within 119 probands from multiplex autism families. We next carried out DNA methylation analysis by bisulfite sequencing in a proband and his family, expanding this analysis to methylation analysis of peripheral blood and temporal cortex DNA of autism cases and matched controls from independent datasets. We also assessed oxytocin receptor (OXTR gene expression within the temporal cortex tissue by quantitative real-time polymerase chain reaction (PCR. Results Our analysis revealed a genomic deletion containing the oxytocin receptor gene, OXTR (MIM accession no.: 167055, previously implicated in autism, was present in an autism proband and his mother who exhibits symptoms of obsessive-compulsive disorder. The proband's affected sibling did not harbor this deletion but instead may exhibit epigenetic misregulation of this gene through aberrant gene silencing by DNA methylation. Further DNA methylation analysis of the CpG island known to regulate OXTR expression identified several CpG dinucleotides that show independent statistically significant increases in the DNA methylation status in the peripheral blood cells and temporal cortex in independent datasets of individuals with autism as compared to control samples. Associated with the increase in methylation of these CpG dinucleotides is our finding that OXTR mRNA showed decreased expression in the temporal cortex tissue of autism cases matched for age and sex compared to controls. Conclusion Together, these data provide

  12. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Pawel K., E-mail: olsze005@umn.edu [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Minnesota Obesity Center, Saint Paul, MN 55108 (United States); Fredriksson, Robert; Eriksson, Jenny D. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Mitra, Anaya [Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Radomska, Katarzyna J. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Gosnell, Blake A. [Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Solvang, Maria N. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Levine, Allen S. [Minnesota Obesity Center, Saint Paul, MN 55108 (United States); Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Schioeth, Helgi B. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden)

    2011-05-13

    Highlights: {yields} The majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto. {yields} The level of colocalization is similar in the male and female brain. {yields} Fto overexpression in hypothalamic neurons increases oxytocin mRNA levels by 50%. {yields} Oxytocin does not affect Fto expression through negative feedback mechanisms. -- Abstract: Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance through a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.

  13. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression

    International Nuclear Information System (INIS)

    Olszewski, Pawel K.; Fredriksson, Robert; Eriksson, Jenny D.; Mitra, Anaya; Radomska, Katarzyna J.; Gosnell, Blake A.; Solvang, Maria N.; Levine, Allen S.; Schioeth, Helgi B.

    2011-01-01

    Highlights: → The majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto. → The level of colocalization is similar in the male and female brain. → Fto overexpression in hypothalamic neurons increases oxytocin mRNA levels by 50%. → Oxytocin does not affect Fto expression through negative feedback mechanisms. -- Abstract: Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance through a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.

  14. Severity of eating disorder symptoms related to oxytocin receptor polymorphisms in anorexia nervosa.

    Science.gov (United States)

    Acevedo, Summer F; Valencia, Celeste; Lutter, Michael; McAdams, Carrie J

    2015-08-30

    Oxytocin is a peptide hormone important for social behavior and differences in psychological traits have been associated with variants of the oxytocin receptor gene in healthy people. We examined whether single nucleotide polymorphisms (SNPs) of the oxytocin receptor gene (OXTR) correlated with clinical symptoms in women with anorexia nervosa, bulimia nervosa, and healthy comparison (HC) women. Subjects completed clinical assessments and provided DNA for analysis. Subjects were divided into four groups: HC, subjects currently with anorexia nervosa (AN-C), subjects with a history of anorexia nervosa but in long-term weight recovery (AN-WR), and subjects with bulimia nervosa (BN). Five SNPs of the oxytocin receptor were examined. Minor allele carriers showed greater severity in most of the psychiatric symptoms. Importantly, the combination of having had anorexia and carrying either of the A alleles for two SNPS in the OXTR gene (rs53576, rs2254298) was associated with increased severity specifically for ED symptoms including cognitions and behaviors associated both with eating and appearance. A review of psychosocial data related to the OXTR polymorphisms examined is included in the discussion. OXTR polymorphisms may be a useful intermediate endophenotype to consider in the treatment of patients with anorexia nervosa. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Change in Parenting, Change in Student-Teacher Relationships, and Oxytocin Receptor Gene (OXTR): Testing a Gene-×-Environment (G×E) Hypothesis in Two Samples

    Science.gov (United States)

    Hygen, Beate Wold; Belsky, Jay; Li, Zhi; Stenseng, Frode; Güzey, Ismail Cuneyt; Wichstrøm, Lars

    2017-01-01

    Prior research suggests that parenting affects children's relationships, including those with teachers, although there is variation across individuals in such effects. Given evidence suggesting that oxytocin may be particularly important for the quality of social relationships, we tested the hypotheses (a) that change in parenting from 4 to 6…

  16. The Oxytocin Receptor Gene (OXTR) and gazing behavior during social interaction: An observational study in young adults

    NARCIS (Netherlands)

    Verhagen, M.; Engels, R.C.M.E.; Roekel, G.H. van

    2014-01-01

    Background: In the present study, the relation between a polymorphic marker within the OXTR gene (rs53576) and gazing behavior during two separate social interaction tasks was examined. Gazing behavior was considered to be an integral part of belonging regulation processes. Methods: We conducted an

  17. The human oxytocin gene promoter is regulated by estrogens.

    Science.gov (United States)

    Richard, S; Zingg, H H

    1990-04-15

    Gonadal steroids affect brain function primarily by altering the expression of specific genes, yet the specific mechanisms by which neuronal target genes undergo such regulation are unknown. Recent evidence suggests that the expression of the neuropeptide gene for oxytocin (OT) is modulated by estrogens. We therefore examined the possibility that this regulation occurred via a direct interaction of the estrogen-receptor complex with cis-acting elements flanking the OT gene. DNA-mediated gene transfer experiments were performed using Neuro-2a neuroblastoma cells and chimeric plasmids containing portions of the human OT gene 5'-glanking region linked to the chloramphenicol acetyltransferase gene. We identified a 19-base pair region located at -164 to -146 upstream of the transcription start site which is capable of conferring estrogen responsiveness to the homologous as well as to a heterologous promoter. The hormonal response is strictly dependent on the presence of intracellular estrogen receptors, since estrogen induced stimulation occurred only in Neuro-2a cells co-transfected with an expression vector for the human estrogen receptor. The identified region contains a novel imperfect palindrome (GGTGACCTTGACC) with sequence similarity to other estrogen response elements (EREs). To define cis-acting elements that function in synergism with the ERE, sequences 3' to the ERE were deleted, including the CCAAT box, two additional motifs corresponding to the right half of the ERE palindrome (TGACC), as well as a CTGCTAA heptamer similar to the "elegans box" found in Caenorhabditis elegans. Interestingly, optimal function of the identified ERE was fully independent of these elements and only required a short promoter region (-49 to +36). Our studies define a molecular mechanism by which estrogens can directly modulate OT gene expression. However, only a subset of OT neurons are capable of binding estrogens, therefore, direct action of estrogens on the OT gene may be

  18. Culture, distress, and oxytocin receptor polymorphism (OXTR) interact to influence emotional support seeking

    OpenAIRE

    Kim, Heejung S.; Sherman, David K.; Sasaki, Joni Y.; Xu, Jun; Chu, Thai Q.; Ryu, Chorong; Suh, Eunkook M.; Graham, Kelsey; Taylor, Shelley E.

    2010-01-01

    Research has demonstrated that certain genotypes are expressed in different forms, depending on input from the social environment. To examine sensitivity to cultural norms regarding emotional support seeking as a type of social environment, we explored the behavioral expression of oxytocin receptor polymorphism (OXTR) rs53576, a gene previously related to socio-emotional sensitivity. Seeking emotional support in times of distress is normative in American culture but not in Korean culture. Con...

  19. Oxytocin and Social Sensitivity: Gene Polymorphisms in Relation to Depressive Symptoms and Suicidal Ideation

    Directory of Open Access Journals (Sweden)

    Robyn Jane McQuaid

    2016-07-01

    Full Text Available Although the neuropeptide oxytocin has been associated with enhanced prosocial behaviors, it has also been linked to aggression and mental health disorders. Thus, it was suggested that oxytocin might act by increasing the salience of social stimuli, irrespective of whether these are positive or negative, thus increasing vulnerability to negative mental health outcomes. The current study (N = 243, conducted among White university students, examined the relation of trauma, depressive symptoms including suicidal ideation in relation to a single nucleotide polymorphism (SNP within the oxytocin receptor gene (OXTR, rs53576, and a SNP on the CD38 gene that controls oxytocin release, rs3796863. Individuals with the polymorphism on both alleles (AA genotype of the CD38 SNP had previously been linked to elevated plasma oxytocin levels. Consistent with the social sensitivity perspective, however, in the current study, individuals carrying the AA genotype displayed elevated feelings of alienation from parents and peers as well as increased levels of suicidal ideation. Moreover, they tended to report elevated depressive symptoms compared to CC homozygotes. It was also observed that the CD38 genotype moderated the relation between trauma and suicidal ideation scores, such that high levels of trauma were associated with elevated suicidal ideation among all CD38 genotypes, but this relationship was stronger among individuals with the AA genotype. In contrast, there was no relationship between the OXTR SNP, rs53576, depression or suicidal ideation. These findings support a social sensitivity hypothesis of oxytocin, wherein the AA genotype of the CD38 SNP, which has been considered the ‘protective allele’ was associated with increased sensitivity and susceptibility to disturbed social relations and suicidal ideation.

  20. Correlation between oxytocin neuronal sensitivity and oxytocin receptor binding: An electrophysiological and autoradiographical study comparing rat and guinea pig hippocampus

    International Nuclear Information System (INIS)

    Raggenbass, M.; Tribollet, E.; Dubois-Dauphin, M.; Dreifuss, J.J.

    1989-01-01

    In transverse hippocampal slices from rat and guinea pig brains, the authors obtained unitary extracellular recordings from nonpyramidal neurones located in or near the stratum pyramidale in the CA1 field and in the transition region between the CA1 and the subiculum. In rats, these neurones responded to oxytocin at 50-1,000 nM by a reversible increase in firing rate. The oxytocin-induced excitation was suppressed by a synthetic structural analogue that acts as a potent, selective antioxytocic on peripheral receptors. Nonpyramidal neurones were also excited by carbachol at 0.5-10 μM. The effect of this compound was postsynaptic and was blocked by the muscarinic antagonist atropine. In guinea pigs, by contrast, nonpyramidal neurones were unaffected by oxytocin, although they were excited by carbachol. Light microscopic autoradiography, carried out using a radioiodinated selective antioxytocic as a ligand, revealed labeling in the subiculum and in the CA1 area of the hippocampus of rats, whereas no oxytocin-binding sites were detected in the hippocampus of guinea pigs. The results indicate (i) that a hippocampal action of oxytocin is species-dependent and (ii) that a positive correlation exists between neuronal responsiveness to oxytocin and the presence in the hippocampus of high-affinity binding sites for this peptide

  1. Childhood maternal care is associated with DNA methylation of the genes for brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) in peripheral blood cells in adult men and women.

    Science.gov (United States)

    Unternaehrer, Eva; Meyer, Andrea Hans; Burkhardt, Susan C A; Dempster, Emma; Staehli, Simon; Theill, Nathan; Lieb, Roselind; Meinlschmidt, Gunther

    2015-01-01

    In adults, reporting low and high maternal care in childhood, we compared DNA methylation in two stress-associated genes (two target sequences in the oxytocin receptor gene, OXTR; one in the brain-derived neurotrophic factor gene, BDNF) in peripheral whole blood, in a cross-sectional study (University of Basel, Switzerland) during 2007-2008. We recruited 89 participants scoring  33 (n = 42, 35 women) on the maternal care subscale of the Parental Bonding Instrument (PBI) at a previous assessment of a larger group (N = 709, range PBI maternal care = 0-36, age range = 19-66 years; median 24 years). 85 participants gave blood for DNA methylation analyses (Sequenom(R) EpiTYPER, San Diego, CA) and cell count (Sysmex PocH-100i™, Kobe, Japan). Mixed model statistical analysis showed greater DNA methylation in the low versus high maternal care group, in the BDNF target sequence [Likelihood-Ratio (1) = 4.47; p = 0.035] and in one OXTR target sequence Likelihood-Ratio (1) = 4.33; p = 0.037], but not the second OXTR target sequence [Likelihood-Ratio (1) BDNF (estimate = -0.005, 95% CI = -0.025 to 0.015; p = 0.626) or OXTR DNA methylation (estimate = -0.015, 95% CI = -0.038 to 0.008; p = 0.192). Hence, low maternal care in childhood was associated with greater DNA methylation in an OXTR and a BDNF target sequence in blood cells in adulthood. Although the study has limitations (cross-sectional, a wide age range, only three target sequences in two genes studied, small effects, uncertain relevance of changes in blood cells to gene methylation in brain), the findings may indicate components of the epiphenotype from early life stress.

  2. Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats.

    Science.gov (United States)

    Mairesse, Jérôme; Gatta, Eleonora; Reynaert, Marie-Line; Marrocco, Jordan; Morley-Fletcher, Sara; Soichot, Marion; Deruyter, Lucie; Camp, Gilles Van; Bouwalerh, Hammou; Fagioli, Francesca; Pittaluga, Anna; Allorge, Delphine; Nicoletti, Ferdinando; Maccari, Stefania

    2015-12-01

    Oxytocin receptors are known to modulate synaptic transmission and network activity in the hippocampus, but their precise function has been only partially elucidated. Here, we have found that activation of presynaptic oxytocin receptor with the potent agonist, carbetocin, enhanced depolarization-evoked glutamate release in the ventral hippocampus with no effect on GABA release. This evidence paved the way for examining the effect of carbetocin treatment in "prenatally restraint stressed" (PRS) rats, i.e., the offspring of dams exposed to repeated episodes of restraint stress during pregnancy. Adult PRS rats exhibit an anxious/depressive-like phenotype associated with an abnormal glucocorticoid feedback regulation of the hypothalamus-pituitary-adrenal (HPA) axis, and, remarkably, with a reduced depolarization-evoked glutamate release in the ventral hippocampus. Chronic systemic treatment with carbetocin (1mg/kg, i.p., once a day for 2-3 weeks) in PRS rats corrected the defect in glutamate release, anxiety- and depressive-like behavior, and abnormalities in social behavior, in the HPA response to stress, and in the expression of stress-related genes in the hippocampus and amygdala. Of note, carbetocin treatment had no effect on these behavioral and neuroendocrine parameters in prenatally unstressed (control) rats, with the exception of a reduced expression of the oxytocin receptor gene in the amygdala. These findings disclose a novel function of oxytocin receptors in the hippocampus, and encourage the use of oxytocin receptor agonists in the treatment of stress-related psychiatric disorders in adult life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Neonatal oxytocin manipulations have long-lasting, sexually dimorphic effects on vasopressin receptors

    OpenAIRE

    Bales, KL; Plotsky, PM; Young, LJ; Lim, MM; Grotte, N; Ferrer, E; Carter, CS

    2007-01-01

    Developmental exposure to oxytocin (OT) or oxytocin antagonists (OTAs) has been shown to cause long-lasting and often sexually dimorphic effects on social behaviors in prairie voles (Microtus ochrogaster). Because regulation of social behavior in monogamous mammals involves central receptors for OT, arginine vasopressin (AVP), and dopamine, we examined the hypothesis that the lon...

  4. Oxytocin and the oxytocin receptor underlie intrastrain, but not interstrain, social recognition.

    Science.gov (United States)

    Macbeth, A H; Lee, H-J; Edds, J; Young, W S

    2009-07-01

    We studied three lines of oxytocin (Oxt) and oxytocin receptor (Oxtr) knockout (KO) male mice [Oxt(-/-), total Oxtr(-/-) and partial forebrain Oxtr (Oxtr(FB/FB))] with established deficits in social recognition to further refine our understanding of their deficits with regard to stimulus female's strain. We used a modified social discrimination paradigm in which subjects are singly housed only for the duration of the test. Additionally, stimulus females are singly housed throughout testing and are presented within corrals for rapid comparison of investigation by subject males. Wild-type (WT) males from all three lines discriminated between familiar and novel females of three different strains (C57BL/6, BALB/c and Swiss-Webster). No KO males discriminated between familiar and novel BALB/c or C57BL/6 females. Male Oxt(-/-) and Oxtr(-/-) mice, but not Oxtr(FB/FB) mice, discriminated between familiar and novel Swiss-Webster females. As this might indicate a global deficit in individual recognition for Oxtr(FB/FB) males, we examined their ability to discriminate between females from different strains and compared performance with Oxtr(-/-) males. WT and KO males from both lines were able to distinguish between familiar and novel females from different strains, indicating the social recognition deficit is not universal. Instead, we hypothesize that the Oxtr is involved in 'fine' intrastrain recognition, but is less important in 'broad' interstrain recognition. We also present the novel finding of decreased investigation across tests, which is likely an artifact of repeated testing and not because of stimulus female's strain or age of subject males.

  5. Polymorphisms in Genes of Relevance for Oestrogen and Oxytocin Pathways and Risk of Barrett's Oesophagus and Oesophageal Adenocarcinoma: A Pooled Analysis from the BEACON Consortium.

    Directory of Open Access Journals (Sweden)

    Katarina Lagergren

    Full Text Available The strong male predominance in oesophageal adenocarcinoma (OAC and Barrett's oesophagus (BO continues to puzzle. Hormonal influence, e.g. oestrogen or oxytocin, might contribute.This genetic-epidemiological study pooled 14 studies from three continents, Australia, Europe, and North America. Polymorphisms in 3 key genes coding for the oestrogen pathway (receptor alpha (ESR1, receptor beta (ESR2, and aromatase (CYP19A1, and 3 key genes of the oxytocin pathway (the oxytocin receptor (OXTR, oxytocin protein (OXT, and cyclic ADP ribose hydrolase glycoprotein (CD38, were analysed using a gene-based approach, versatile gene-based test association study (VEGAS.Among 1508 OAC patients, 2383 BO patients, and 2170 controls, genetic variants within ESR1 were associated with BO in males (p = 0.0058 and an increased risk of OAC and BO combined in males (p = 0.0023. Genetic variants within OXTR were associated with an increased risk of BO in both sexes combined (p = 0.0035 and in males (p = 0.0012. We followed up these suggestive findings in a further smaller data set, but found no replication. There were no significant associations between the other 4 genes studied and risk of OAC, BO, separately on in combination, in males and females combined or in males only.Genetic variants in the oestrogen receptor alpha and the oxytocin receptor may be associated with an increased risk of BO or OAC, but replication in other large samples are needed.

  6. Polymorphisms in Genes of Relevance for Oestrogen and Oxytocin Pathways and Risk of Barrett's Oesophagus and Oesophageal Adenocarcinoma: A Pooled Analysis from the BEACON Consortium.

    Science.gov (United States)

    Lagergren, Katarina; Ek, Weronica E; Levine, David; Chow, Wong-Ho; Bernstein, Leslie; Casson, Alan G; Risch, Harvey A; Shaheen, Nicholas J; Bird, Nigel C; Reid, Brian J; Corley, Douglas A; Hardie, Laura J; Wu, Anna H; Fitzgerald, Rebecca C; Pharoah, Paul; Caldas, Carlos; Romero, Yvonne; Vaughan, Thomas L; MacGregor, Stuart; Whiteman, David; Westberg, Lars; Nyren, Olof; Lagergren, Jesper

    2015-01-01

    The strong male predominance in oesophageal adenocarcinoma (OAC) and Barrett's oesophagus (BO) continues to puzzle. Hormonal influence, e.g. oestrogen or oxytocin, might contribute. This genetic-epidemiological study pooled 14 studies from three continents, Australia, Europe, and North America. Polymorphisms in 3 key genes coding for the oestrogen pathway (receptor alpha (ESR1), receptor beta (ESR2), and aromatase (CYP19A1)), and 3 key genes of the oxytocin pathway (the oxytocin receptor (OXTR), oxytocin protein (OXT), and cyclic ADP ribose hydrolase glycoprotein (CD38)), were analysed using a gene-based approach, versatile gene-based test association study (VEGAS). Among 1508 OAC patients, 2383 BO patients, and 2170 controls, genetic variants within ESR1 were associated with BO in males (p = 0.0058) and an increased risk of OAC and BO combined in males (p = 0.0023). Genetic variants within OXTR were associated with an increased risk of BO in both sexes combined (p = 0.0035) and in males (p = 0.0012). We followed up these suggestive findings in a further smaller data set, but found no replication. There were no significant associations between the other 4 genes studied and risk of OAC, BO, separately on in combination, in males and females combined or in males only. Genetic variants in the oestrogen receptor alpha and the oxytocin receptor may be associated with an increased risk of BO or OAC, but replication in other large samples are needed.

  7. The Oxytocin Receptor (OXTR) Contributes to Prosocial Fund Allocations in the Dictator Game and the Social Value Orientations Task

    Science.gov (United States)

    Israel, Salomon; Lerer, Elad; Shalev, Idan; Uzefovsky, Florina; Riebold, Mathias; Laiba, Efrat; Bachner-Melman, Rachel; Maril, Anat; Bornstein, Gary; Knafo, Ariel; Ebstein, Richard P.

    2009-01-01

    Background Economic games observe social decision making in the laboratory that involves real money payoffs. Previously we have shown that allocation of funds in the Dictator Game (DG), a paradigm that illustrates costly altruistic behavior, is partially determined by promoter-region repeat region variants in the arginine vasopressin 1a receptor gene (AVPR1a). In the current investigation, the gene encoding the related oxytocin receptor (OXTR) was tested for association with the DG and a related paradigm, the Social Values Orientation (SVO) task. Methodology/Principal Findings Association (101 male and 102 female students) using a robust-family based test between 15 single tagging SNPs (htSNPs) across the OXTR was demonstrated with both the DG and SVO. Three htSNPs across the gene region showed significant association with both of the two games. The most significant association was observed with rs1042778 (p = 0.001). Haplotype analysis also showed significant associations for both DG and SVO. Following permutation test adjustment, significance was observed for 2–5 locus haplotypes (pprosocial decision making converges with a large body of animal research showing that oxytocin is an important social hormone across vertebrates including Homo sapiens. Individual differences in prosocial behavior have been shown by twin studies to have a substantial genetic basis and the current investigation demonstrates that common variants in the oxytocin receptor gene, an important element of mammalian social circuitry, underlie such individual differences. PMID:19461999

  8. Oxytocin and Estrogen Receptor β in the Brain: An Overview.

    Science.gov (United States)

    Acevedo-Rodriguez, Alexandra; Mani, Shaila K; Handa, Robert J

    2015-01-01

    Oxytocin (OT) is a neuropeptide synthesized primarily by neurons of the paraventricular and supraoptic nuclei of the hypothalamus. These neurons have axons that project into the posterior pituitary and release OT into the bloodstream to promote labor and lactation; however, OT neurons also project to other brain areas where it plays a role in numerous brain functions. OT binds to the widely expressed OT receptor (OTR), and, in doing so, it regulates homeostatic processes, social recognition, and fear conditioning. In addition to these functions, OT decreases neuroendocrine stress signaling and anxiety-related and depression-like behaviors. Steroid hormones differentially modulate stress responses and alter OTR expression. In particular, estrogen receptor β activation has been found to both reduce anxiety-related behaviors and increase OT peptide transcription, suggesting a role for OT in this estrogen receptor β-mediated anxiolytic effect. Further research is needed to identify modulators of OT signaling and the pathways utilized and to elucidate molecular mechanisms controlling OT expression to allow better therapeutic manipulations of this system in patient populations.

  9. Oxytocin gene polymorphisms influence human dopaminergic function in a sex-dependent manner.

    Science.gov (United States)

    Love, Tiffany M; Enoch, Mary-Anne; Hodgkinson, Colin A; Peciña, Marta; Mickey, Brian; Koeppe, Robert A; Stohler, Christian S; Goldman, David; Zubieta, Jon-Kar

    2012-08-01

    Oxytocin, classically involved in social and reproductive activities, is increasingly recognized as an antinociceptive and anxiolytic agent, effects which may be mediated via oxytocin's interactions with the dopamine system. Thus, genetic variation within the oxytocin gene (OXT) is likely to explain variability in dopamine-related stress responses. As such, we examined how OXT variation is associated with stress-induced dopaminergic neurotransmission in a healthy human sample. Fifty-five young healthy volunteers were scanned using [¹¹C]raclopride positron emission tomography while they underwent a standardized physical and emotional stressor that consisted of moderate levels of experimental sustained deep muscle pain, and a baseline, control state. Four haplotype tagging single nucleotide polymorphisms located in regions near OXT were genotyped. Measures of pain, affect, anxiety, well-being and interpersonal attachment were also assessed. Female rs4813625 C allele carriers demonstrated greater stress-induced dopamine release, measured as reductions in receptor availability from baseline to the pain-stress condition relative to female GG homozygotes. No significant differences were detected among males. We also observed that female rs4813625 C allele carriers exhibited higher attachment anxiety, higher trait anxiety and lower emotional well-being scores. In addition, greater stress-induced dopamine release was associated with lower emotional well-being scores in female rs4813625 C allele carriers. Our results suggest that variability within the oxytocin gene appear to explain interindividual differences in dopaminergic responses to stress, which are shown to be associated with anxiety traits, including those linked to attachment style, as well as emotional well-being in women. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Oxytocin receptor antagonist atosiban impairs consolidation, but not reconsolidation of contextual fear memory in rats.

    Science.gov (United States)

    Abdullahi, Payman Rasise; Eskandarian, Sharaf; Ghanbari, Ali; Rashidy-Pour, Ali

    2018-05-23

    There is increasing evidence that oxytocin is involved in learning and memory process. This study investigated the effects of blockade of oxytocin receptors using the selective oxytocin receptor antagonist atosiban (ATO) on contextual fear memory consolidation and reconsolidation in male rats. Post-training injections of different doses of ATO (1, 10, 100 or 1000 µg/kg) impaired the 48 h retention performance in a dose-dependent manner. The same doses of ATO following memory reactivation did not impair subsequent expression of contextual fear memories which formed under low or high shock intensities and tested 24 h or one week following memory reactivation. Also, no effect was found when ATO was administrated in the absence of memory reactivation. Our finding is the first report that indicates endogenous oxytocin released during training play an important role in the consolidation, but not reconsolidation of contextual fear memory in rats. Copyright © 2018. Published by Elsevier B.V.

  11. Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans.

    Science.gov (United States)

    Rodrigues, Sarina M; Saslow, Laura R; Garcia, Natalia; John, Oliver P; Keltner, Dacher

    2009-12-15

    Oxytocin, a peptide that functions as both a hormone and neurotransmitter, has broad influences on social and emotional processing throughout the body and the brain. In this study, we tested how a polymorphism (rs53576) of the oxytocin receptor relates to two key social processes related to oxytocin: empathy and stress reactivity. Compared with individuals homozygous for the G allele of rs53576 (GG), individuals with one or two copies of the A allele (AG/AA) exhibited lower behavioral and dispositional empathy, as measured by the "Reading the Mind in the Eyes" Test and an other-oriented empathy scale. Furthermore, AA/AG individuals displayed higher physiological and dispositional stress reactivity than GG individuals, as determined by heart rate response during a startle anticipation task and an affective reactivity scale. Our results provide evidence of how a naturally occurring genetic variation of the oxytocin receptor relates to both empathy and stress profiles.

  12. Pitocin and autism: An analysis of oxytocin receptor desensitization in the fetus.

    Science.gov (United States)

    Gottlieb, Mark M

    2016-02-01

    The risk of Pitocin as a cause of autism attributable to oxytocin receptor desensitization in the brain of the fetus is evaluated in terms of a mathematical model. A composite unit, D, for oxytocin receptor desensitization levels is established with the form ((IU-h)/ml)E-3, where IU is the international unit for oxytocin. The desensitization values for oxytocin receptor desensitization at a concentration of 10 nmol of oxytocin per liter for 3, 4.2 and 6h corresponding to 0%, 50% and 100% desensitization are calculated to be 15 D, 21 D, and 30 D, respectively. The permeability of the blood-brain barrier in the fetus to oxytocin is discussed, and the upper limit of the concentration of Pitocin in the placenta, and its possible diffusion into the blood and brain of the fetus, is calculated for a routine dose of 6 milli U per minute of Pitocin over a 12h labor. This dose of Pitocin is shown to result in a desensitization value in units of D that is more than a factor of 10 below the 0% desensitization value of 15 D. This indicates that routine doses of Pitocin are not a significant cause of autism attributable to oxytocin receptor desensitization. This is consistent with the findings of a major epidemiological study of the association of Pitocin with autism in Denmark entitled, "Oxytocin-augmented labor and risk for males", Behavioral Brain Research, May 1, 2015; 284:207-212, which found no association between the use of Pitocin during labor and the incidence of autism for females, and a modest association for males. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Expression and activation of the oxytocin receptor in airway smooth muscle cells: Regulation by TNFα and IL-13

    Directory of Open Access Journals (Sweden)

    Siddiqui Salman

    2010-07-01

    Full Text Available Abstract Background During pregnancy asthma may remain stable, improve or worsen. The factors underlying the deleterious effect of pregnancy on asthma remain unknown. Oxytocin is a neurohypophyseal protein that regulates a number of central and peripheral responses such as uterine contractions and milk ejection. Additional evidence suggests that oxytocin regulates inflammatory processes in other tissues given the ubiquitous expression of the oxytocin receptor. The purpose of this study was to define the role of oxytocin in modulating human airway smooth muscle (HASMCs function in the presence and absence of IL-13 and TNFα, cytokines known to be important in asthma. Method Expression of oxytocin receptor in cultured HASMCs was performed by real time PCR and flow cytomery assays. Responses to oxytocin was assessed by fluorimetry to detect calcium signals while isolated tracheal rings and precision cut lung slices (PCLS were used to measure contractile responses. Finally, ELISA was used to compare oxytocin levels in the bronchoalveloar lavage (BAL samples from healthy subjects and those with asthma. Results PCR analysis demonstrates that OXTR is expressed in HASMCs under basal conditions and that both interleukin (IL-13 and tumor necrosis factor (TNFα stimulate a time-dependent increase in OXTR expression at 6 and 18 hr. Additionally, oxytocin increases cytosolic calcium levels in fura-2-loaded HASMCs that were enhanced in cells treated for 24 hr with IL-13. Interestingly, TNFα had little effect on oxytocin-induced calcium response despite increasing receptor expression. Using isolated murine tracheal rings and PCLS, oxytocin also promoted force generation and airway narrowing. Further, oxytocin levels are detectable in bronchoalveolar lavage (BAL fluid derived from healthy subjects as well as from those with asthma. Conclusion Taken together, we show that cytokines modulate the expression of functional oxytocin receptors in HASMCs suggesting a

  14. Conception, synthesis and evaluation of fluorescent probes and PET radioligands for the oxytocin and vasopressin receptors

    International Nuclear Information System (INIS)

    Karpenko, Iuliia

    2014-01-01

    In order to better understand the role of OTR and AVPR in ASD, to reveal new features in its pharmacology and signaling and to establish high-throughput screening method on wild-type G protein-coupled receptors, we developed imaging probes for the oxytocin-vasopressin receptors family, namely radiotracers for positron emission tomography and optical probes for fluorescence detection and imaging. The fluorescent ligands have been used to establish TR-FRET binding assay for OTR and to initiate the development the screening assay for the wild-type oxytocin receptor. The PET radiotracers will be shortly tested in mice and monkeys to evaluate their potency in detecting the central oxytocin receptors. (author)

  15. The oxytocin/vasopressin receptor antagonist atosiban delays the gastric emptying of a semisolid meal compared to saline in human

    Directory of Open Access Journals (Sweden)

    Ekberg Olle

    2006-03-01

    Full Text Available Abstract Background Oxytocin is released in response to a meal. Further, mRNA for oxytocin and its receptor have been found throughout the gastrointestinal (GI tract. The aim of this study was therefore to examine whether oxytocin, or the receptor antagonist atosiban, influence the gastric emptying. Methods Ten healthy volunteers (five men were examined regarding gastric emptying at three different occasions: once during oxytocin stimulation using a pharmacological dose; once during blockage of the oxytocin receptors (which also blocks the vasopressin receptors and thereby inhibiting physiological doses of oxytocin; and once during saline infusion. Gastric emptying rate (GER was assessed and expressed as the percentage reduction in antral cross-sectional area from 15 to 90 min after ingestion of rice pudding. The assessment was performed by real-time ultrasonography. At the same time, the feeling of satiety was registered using visual satiety scores. Results Inhibition of the binding of endogenous oxytocin by the receptor antagonist delayed the GER by 37 % compared to saline (p = 0.037. In contrast, infusion of oxytocin in a dosage of 40 mU/min did not affect the GER (p = 0.610. Satiation scores areas in healthy subjects after receiving atosiban or oxytocin did not show any significant differences. Conclusion Oxytocin and/or vasopressin seem to be regulators of gastric emptying during physiological conditions, since the receptor antagonist atosiban delayed the GER. However, the actual pharmacological dose of oxytocin in this study had no effect. The effect of oxytocin and vasopressin on GI motility has to be further evaluated.

  16. Hippocampal gene expression patterns in oxytocin male knockout mice are related to impaired social interaction.

    Science.gov (United States)

    Lazzari, Virginia Meneghini; Zimmermann-Peruzatto, Josi Maria; Agnes, Grasiela; Becker, Roberta Oriques; de Moura, Ana Carolina; Almeida, Silvana; Guedes, Renata Padilha; Giovenardi, Marcia

    2017-11-02

    Social interaction between animals is crucial for the survival and life in groups. It is well demonstrated that oxytocin (OT) and vasopressin (AVP) play critical roles in the regulation of social behaviors in mammals, however, other neurotransmitters and hormones are involved in the brain circuitry related to these behaviors. The present study aimed to investigate the gene expression of neurotransmitter receptors in the brain of OT knockout (OTKO) male mice. In this study, we evaluated the expression levels of the OT receptor (Oxtr), AVP receptors 1a and 1b (Avpr1a; Avpr1b), dopamine receptor 2 (Drd2), and the estrogen receptors alpha and beta (Esr1; Esr2) genes in the hippocampus (HPC), olfactory bulb (OB), hypothalamus (HPT) and prefrontal cortex (PFC). AVP gene (Avp) expression was analyzed in the HPT. Gene expression results were discussed regarding to social interaction and sexual behavior findings. Additionally, we analyzed the influence of OT absence on the Avp mRNA expression levels in the HPT. RNA extraction and cDNAs synthesis followed by quantitative polymerase chain reaction were performed for gene expression determination. Results were calculated with the 2 -ΔΔCt method. Our main finding was that HPC is more susceptible to gene expression changes due to the lack of OT. OTKOs exhibited decreased expression of Drd2 and Avpr1b, but increased expression of Oxtr in the HPC. In the PFC, Esr2 was increased. In the HPT, there was a reduced Avp expression in the OTKO group. No differences were detected in the OB and HPT. Despite these changes in gene expression, sexual behavior was not affected. However, OTKO showed higher social investigation and lower aggressive performance than wild-type mice. Our data highlight the importance of OT for proper gene expression of neurotransmitter receptors related to the regulation of social interaction in male mice. Copyright © 2017. Published by Elsevier B.V.

  17. Moderation of maltreatment effects on childhood borderline personality symptoms by gender and oxytocin receptor and FK506 binding protein 5 genes

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A.; Hecht, Kathryn F.; Crick, Nicki R; Hetzel, Susan

    2014-01-01

    In this investigation, gene-environment-gender interaction effects in predicting child borderline personality disorder symptomatology among maltreated and nonmaltreated low-income children (N = 1,051) were examined. In the context of a summer research camp, adult-peer-, and self-report assessments of borderline precursor indicators were obtained, as well as child self-report on the Borderline Personality Features Scale-Children. Genetic variants of the OXTR genotype and the FKPB5 CATT haplotype were investigated. Children who self-reported high levels of borderline personality symptomatology were differentiated by adults, peers, and additional self-report on indicators of emotional instability, conflictual relationships with peers and adults, preoccupied attachment, and indicators of self-harm and suicidal ideation. Maltreated children also were more likely to evince many of these difficulties relative to nonmaltreated children. In a series of ANCOVAs, controlling for age and ancestrally informative markers, indicated significant maltreatment X gene X gender three-way interactions. Consideration of the maltreatment parameters of subtype, onset, and recency expanded understanding of variation among maltreated children. The three-way interaction effects demonstrated differential patterns among girls and boys. Among girls, the gene-environment interaction was more consistent with a diathesis-stress model, whereas among boys a differential-sensitivity interaction effect was indicated. Moreover, the genetic variants associated with greater risk for higher borderline symptomatology, dependent on maltreatment experiences, were opposite in girls compared to boys. The findings have important implications for understanding variability in early predictors of borderline personality pathology. PMID:25047302

  18. The oxytocin receptor (OXTR contributes to prosocial fund allocations in the dictator game and the social value orientations task.

    Directory of Open Access Journals (Sweden)

    Salomon Israel

    Full Text Available BACKGROUND: Economic games observe social decision making in the laboratory that involves real money payoffs. Previously we have shown that allocation of funds in the Dictator Game (DG, a paradigm that illustrates costly altruistic behavior, is partially determined by promoter-region repeat region variants in the arginine vasopressin 1a receptor gene (AVPR1a. In the current investigation, the gene encoding the related oxytocin receptor (OXTR was tested for association with the DG and a related paradigm, the Social Values Orientation (SVO task. METHODOLOGY/PRINCIPAL FINDINGS: Association (101 male and 102 female students using a robust-family based test between 15 single tagging SNPs (htSNPs across the OXTR was demonstrated with both the DG and SVO. Three htSNPs across the gene region showed significant association with both of the two games. The most significant association was observed with rs1042778 (p = 0.001. Haplotype analysis also showed significant associations for both DG and SVO. Following permutation test adjustment, significance was observed for 2-5 locus haplotypes (p<0.05. A second sample of 98 female subjects was subsequently and independently recruited to play the dictator game and was genotyped for the three significant SNPs found in the first sample. The rs1042778 SNP was shown to be significant for the second sample as well (p = 0.004, Fisher's exact test. CONCLUSIONS: The demonstration that genetic polymorphisms for the OXTR are associated with human prosocial decision making converges with a large body of animal research showing that oxytocin is an important social hormone across vertebrates including Homo sapiens. Individual differences in prosocial behavior have been shown by twin studies to have a substantial genetic basis and the current investigation demonstrates that common variants in the oxytocin receptor gene, an important element of mammalian social circuitry, underlie such individual differences.

  19. Administration of an oxytocin receptor antagonist attenuates sexual motivation in male rats.

    Science.gov (United States)

    Blitzer, D S; Wells, T E; Hawley, W R

    2017-08-01

    In male rats, oxytocin impacts both sexual arousal and certain types of consummatory sexual behaviors. However, the role of oxytocin in the motivational aspects of sexual behavior has received limited attention. Given the role that oxytocin signaling plays in consummatory sexual behaviors, it was hypothesized that pharmacological attenuation of oxytocin signaling would reduce sexual motivation in male rats. Sexually experienced Long-Evans male rats were administered either an oxytocin receptor antagonist (L368,899 hydrochloride; 1mg/kg) or vehicle control into the intraperitoneal cavity 40min prior to placement into the center chamber of a three-chambered arena designed to assess sexual motivation. During the 20-minute test, a sexually experienced stimulus male rat and a sexually receptive stimulus female rat were separately confined to smaller chambers that were attached to the larger end chambers of the arena. However, physical contact between test and stimulus rats was prevented by perforated dividers. Immediately following the sexual motivation test, test male rats were placed with a sexually receptive female to examine consummatory sexual behaviors. Although both drug and vehicle treated rats exhibited a preference for the female, treatment with an oxytocin receptor antagonist decreased the amount of time spent with the female. There were no differences between drug and vehicle treated rats in either general activity, exploratory behaviors, the amount of time spent near the stimulus male rat, or consummatory sexual behaviors. Extending previous findings, these results indicate that oxytocin receptors are involved in sexual motivation in male rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Oxytocin receptors expressed and coupled to Ca2+ signalling in a human vascular smooth muscle cell line.

    Science.gov (United States)

    Yazawa, H; Hirasawa, A; Horie, K; Saita, Y; Iida, E; Honda, K; Tsujimoto, G

    1996-03-01

    1. In a human vascular smooth muscle cell line (HVSMC), binding experiments with [3H]-arginine8-vasopressin (AVP) have shown the existence of a homogeneous population of binding sites with affinity (Kd value) of 0.65 nM and a maximum number of binding sites (Bmax) of 122 fmol mg-1 protein. 2. Nonlabelled compounds compete for [3H]-AVP binding in the HVSMC membrane with an order of potency of oxytocin > lyspressin > or = AVP > Thr4, Gly7-oxytocin > (beta-mercapto-beta-beta-cyclopentamethylenepropionyl-O-Me Tyr2, Arg8) vasopressin > desmopressin > OPC21268 > OPC31260. This order was markedly different from that observed in rat vascular smooth muscle cells (A10), a well-established V1A receptor system. 3. In HVSMC both oxytocin and AVP increased inositol 1,4,5-trisphosphate (IP3) production and [Ca2+]i response, but the efficacy of the responses was greater for oxytocin than AVP. 4. Reverse transcription-polymerase chain reaction (RT-PCR) assay detected only oxytocin receptor but not V1A or V2 receptors in HVSMC, whereas only V1A receptors were found in A10 cells. 5. In conclusion, in HVSMC only oxytocin receptors are expressed among the vasopressin receptor family, and they coupled to phosphatidyl inositol (PI) turnover/Ca2+ signalling. This unexpected observation should provide new insight into the functional role of the oxytocin receptor in a human vascular smooth muscle cell line.

  1. Oxytocin differently regulates pressor responses to stress in WKY and SHR rats: the role of central oxytocin and V1a receptors.

    Science.gov (United States)

    Wsol, A; Szczepanska-Sadowska, E; Kowalewski, S; Puchalska, L; Cudnoch-Jedrzejewska, A

    2014-01-01

    The role of central oxytocin in the regulation of cardiovascular parameters under resting conditions and during acute stress was investigated in male normotensive Wistar-Kyoto (WKY; n = 40) and spontaneously hypertensive rats (SHR; n = 28). In Experiment 1, mean arterial blood pressure (MABP) and heart rate (HR) were recorded in WKY and SHR rats at rest and after an air-jet stressor during intracerebroventricular (ICV) infusions of vehicle, oxytocin or oxytocin receptor (OTR) antagonist. In Experiment 2, the effects of vehicle, oxytocin and OTR antagonist were determined in WKY rats after prior administration of a V1a vasopressin receptor (V1aR) antagonist. Resting MABP and HR were not affected by any of the ICV infusions either in WKY or in SHR rats. In control experiments (vehicle), the pressor response to stress was significantly higher in SHR. Oxytocin enhanced the pressor response to stress in the WKY rats but reduced it in SHR. During V1aR blockade, oxytocin infusion entirely abolished the pressor response to stress in WKY rats. Combined blockade of V1aR and OTR elicited a significantly greater MABP response to stress than infusion of V1a antagonist and vehicle. This study reveals significant differences in the regulation of blood pressure in WKY and SHR rats during alarming stress. Specifically, the augmentation of the pressor response to stress by exogenous oxytocin in WKY rats is caused by its interaction with V1aR, and endogenous oxytocin regulates the magnitude of the pressor response to stress in WKY rats by simultaneous interaction with OTR and V1aR.

  2. Interferon-tau and oxytocin receptor in bovien placentomes through out pregnancy

    DEFF Research Database (Denmark)

    Dantzer, Vibeke; Ivell, R.; Balvers, M.

    Objective: Interferon-tau (IFNT) secreted by the conceptus is an important factor in the maintenance of luteal function in cows during early pregnancy until day 36. In this multiplex, synepitheliochorial placenta the expression of oxytocin receptor (OXTR) is resumed in the intercaruncular but not....../or OXTR expression until parturition. Supported by a grant from the Deutsche Forschungsgemeinschaft to R.I....

  3. Does the oxytocin receptor polymorphism (rs2254298 confer 'vulnerability' for psychopathology or 'differential susceptibility'? insights from evolution

    Directory of Open Access Journals (Sweden)

    Brüne Martin

    2012-04-01

    Full Text Available Abstract The diathesis-stress model of psychiatric conditions has recently been challenged by the view that it might be more accurate to speak of 'differential susceptibility' or 'plasticity' genes, rather than one-sidedly focusing on individual vulnerability. That is, the same allelic variation that predisposes to a psychiatric disorder if associated with (developmentally early environmental adversity may lead to a better-than-average functional outcome in the same domain under thriving (or favourable environmental conditions. Studies of polymorphic variations of the serotonin transporter gene, the monoamino-oxidase-inhibitor A coding gene or the dopamine D4 receptor gene indicate that the early environment plays a crucial role in the development of favourable versus unfavourable outcomes. Current evidence is limited, however, to establishing a link between genetic variation and behavioural phenotypes. In contrast, little is known about how plasticity may be expressed at the neuroanatomical level as a 'hard-wired' correlate of observable behaviour. The present review article seeks to further strengthen the argument in favour of the differential susceptibility theory by incorporating findings from behavioural and neuroanatomical studies in relation to genetic variation of the oxytocin receptor gene. It is suggested that polymorphic variation at the oxytocin receptor gene (rs2254298 is associated with sociability, amygdala volume and differential risk for psychiatric conditions including autism, depression and anxiety disorder, depending on the quality of early environmental experiences. Seeing genetic variation at the core of developmental plasticity can explain, in contrast to the diathesis-stress perspective, why evolution by natural selection has maintained such 'risk' alleles in the gene pool of a population. Please see related manuscript: http://www.biomedcentral.com/1741-7015/10/37

  4. Raphe serotonin neuron-specific oxytocin receptor knockout reduces aggression without affecting anxiety-like behavior in male mice only.

    Science.gov (United States)

    Pagani, J H; Williams Avram, S K; Cui, Z; Song, J; Mezey, É; Senerth, J M; Baumann, M H; Young, W S

    2015-02-01

    Serotonin and oxytocin influence aggressive and anxiety-like behaviors, though it is unclear how the two may interact. That the oxytocin receptor is expressed in the serotonergic raphe nuclei suggests a mechanism by which the two neurotransmitters may cooperatively influence behavior. We hypothesized that oxytocin acts on raphe neurons to influence serotonergically mediated anxiety-like, aggressive and parental care behaviors. We eliminated expression of the oxytocin receptor in raphe neurons by crossing mice expressing Cre recombinase under control of the serotonin transporter promoter (Slc6a4) with our conditional oxytocin receptor knockout line. The knockout mice generated by this cross are normal across a range of behavioral measures: there are no effects for either sex on locomotion in an open-field, olfactory habituation/dishabituation or, surprisingly, anxiety-like behaviors in the elevated O and plus mazes. There was a profound deficit in male aggression: only one of 11 raphe oxytocin receptor knockouts showed any aggressive behavior, compared to 8 of 11 wildtypes. In contrast, female knockouts displayed no deficits in maternal behavior or aggression. Our results show that oxytocin, via its effects on raphe neurons, is a key regulator of resident-intruder aggression in males but not maternal aggression. Furthermore, this reduction in male aggression is quite different from the effects reported previously after forebrain or total elimination of oxytocin receptors. Finally, we conclude that when constitutively eliminated, oxytocin receptors expressed by serotonin cells do not contribute to baseline anxiety-like behaviors or maternal care. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. Interaction between oxytocin receptor polymorphism and interdependent culture values on human empathy.

    Science.gov (United States)

    Luo, Siyang; Ma, Yina; Liu, Yi; Li, Bingfeng; Wang, Chenbo; Shi, Zhenhao; Li, Xiaoyang; Zhang, Wenxia; Rao, Yi; Han, Shihui

    2015-09-01

    Recent evidence suggests that the association between oxytocin receptor polymorphism (OXTR rs53576) and emotion-related behavioral/psychological tendencies differs between individuals from East Asian and Western cultures. What remains unresolved is which specific dimension of cultural orientations interacts with OXTR rs53576 to shape these tendencies and whether such gene × culture interactions occurs at both behavioral and neural level. This study investigated whether and how OXTR rs53576 interacts with interdependence-a key dimension of cultural orientations that distinguish between East Asian and Western cultures-to affect human empathy that underlies altruistic motivation and prosocial behavior. Experiment 1 measured interdependence, empathy trait and OXTR rs53576 genotypes of 1536 Chinese participants. Hierarchical regression analyses revealed a stronger association between interdependence and empathy trait in G allele carriers compared with A/A homozygotes of OXTR rs53576. Experiment 2 measured neural responses to others' suffering by scanning A/A and G/G homozygous of OXTR rs53576 using functional magnetic resonance imaging. Hierarchical regression analyses revealed stronger associations between interdependence and empathic neural responses in the insula, amygdala and superior temporal gyrus in G/G compared with A/A carriers. Our results provide the first evidence for gene × culture interactions on empathy at both behavioral tendency and underlying brain activity. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Neonatal oxytocin manipulations have long-lasting, sexually dimorphic effects on vasopressin receptors.

    Science.gov (United States)

    Bales, K L; Plotsky, P M; Young, L J; Lim, M M; Grotte, N; Ferrer, E; Carter, C S

    2007-01-05

    Developmental exposure to oxytocin (OT) or oxytocin antagonists (OTAs) has been shown to cause long-lasting and often sexually dimorphic effects on social behaviors in prairie voles (Microtus ochrogaster). Because regulation of social behavior in monogamous mammals involves central receptors for OT, arginine vasopressin (AVP), and dopamine, we examined the hypothesis that the long-lasting, developmental effects of exposure to neonatal OT or OTA might reflect changes in the expression of receptors for these peptides. On postnatal day 1, prairie voles were injected intraperitoneally with either OT (1 mg/kg), an OTA (0.1 mg/kg), saline vehicle, or were handled only. At approximately 60 days of age, vasopressin V1a receptors, OT receptors (OTR) and dopamine D2 receptor binding were quantified using receptor autoradiography in brain tissue taken from males and females. Significant treatment effects on V1a binding were found in the bed nucleus of the stria terminalis (BNST), cingulate cortex (CgCtx), mediodorsal thalamus (MdThal), medial preoptic area of the hypothalamus (MPOA), and lateral septum (LS). The CgCtx, MPOA, ventral pallidum, and LS also showed significant sex by treatment interactions on V1a binding. No significant treatment or sex differences were observed for D2 receptor binding. No significant treatment difference was observed for OTR receptor binding, and only a marginal sex difference. Changes in the neuropeptide receptor expression, especially the V1a receptor, may help to explain sexually dimorphic changes in behavior that follow comparable neonatal manipulations.

  7. The Dopamine D2 Receptor Gene, Perceived Parental Support, and Adolescent Loneliness: Longitudinal Evidence for Gene-Environment Interactions

    Science.gov (United States)

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods: Associations among the DRD2, sex, parental support,…

  8. The dopamine D2 receptor gene, perceived parental support, and adolescent loneliness : longitudinal evidence for gene-environment interactions

    NARCIS (Netherlands)

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods:

  9. Oxytocin receptor (OXTR) does not play a major role in the aetiology of autism: genetic and molecular studies.

    Science.gov (United States)

    Tansey, Katherine E; Brookes, Keeley J; Hill, Matthew J; Cochrane, Lynne E; Gill, Michael; Skuse, David; Correia, Catarina; Vicente, Astrid; Kent, Lindsey; Gallagher, Louise; Anney, Richard J L

    2010-05-03

    Oxytocin (OXT) has been hypothesized to play a role in aetiology of autism based on a demonstrated involvement in the regulation of social behaviours. It is postulated that OXT reduces activation of the amygdala, inhibiting social anxiety, indicating a neural mechanism for the effects of OXT in social cognition. Genetic variation at the oxytocin receptor gene (OXTR) has been reported to be associated with autism. We examined 18 SNPs at the OXTR gene for association in three independent autism samples from Ireland, Portugal and the United Kingdom. We investigated cis-acting genetic effects on OXTR expression in lymphocytes and amygdala region of the brain using an allelic expression imbalance (AEI) assay and by investigating the correlation between RNA levels and genotype in the amygdala region. No marker survived multiple correction for association with autism in any sample or in a combined sample (n=436). Results from the AEI assay performed in the lymphoblast cell lines highlighted two SNPs associated with relative allelic abundance in OXTR (rs237897 and rs237895). Two SNPs were found to be effecting cis-acting variation through AEI in the amygdala. One was weakly correlated with total gene expression (rs13316193) and the other was highlighted in the lymphoblast cell lines (rs237895). Data presented here does not support the role of common genetic variation in OXTR in the aetiology of autism spectrum disorders in Caucasian samples. 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Double Dissociation of the Roles of Metabotropic Glutamate Receptor 5 and Oxytocin Receptor in Discrete Social Behaviors.

    Science.gov (United States)

    Mesic, Ivana; Guzman, Yomayra F; Guedea, Anita L; Jovasevic, Vladimir; Corcoran, Kevin A; Leaderbrand, Katherine; Nishimori, Katsuhiko; Contractor, Anis; Radulovic, Jelena

    2015-09-01

    Social interactions in vertebrates are complex phenomena based on affective and cognitive processes. Multiple brain regions and neurotransmitter systems are involved in the expression of social behaviors, but their individual roles in specific aspects of social interactions are not well understood. Here we investigated how Gq-protein-coupled metabotropic glutamate receptor 5 (mGluR5) and oxytocin receptor (Oxtr) affect social affiliation and social memory. We used conditional genetic approaches in which the genes coding for these receptors were knocked out in the lateral septum by infusion of recombinant adeno-associated viral vectors containing Cre recombinase (AAV-Cre). Social behavior was assessed 2 weeks later using a three-chamber paradigm for sociability and preference for social novelty. Septal deletion of mGluR5 abolished sociability while leaving preference for social novelty intact. In contrast, deletion of Oxtr did not affect sociability but significantly impaired preference for social novelty. Nonsocial behaviors or memories, including novel object recognition or fear conditioning, were not affected by these genetic manipulations. Immunohistochemical analyses of the distribution of mGluR5 and Oxtr revealed non-overlapping localization of these receptors within the lateral septum, suggesting that not only different neurotransmitters but also different neuronal types contribute to sociability versus preference for social novelty. Our findings identify highly specialized roles of lateral septal mGluR5 and Oxtr in the the regulation of discrete social behaviors, and suggest that deficits in social interactions, which accompany many mental illnesses, would benefit from comprehensive treatments targeting different components of social functioning.

  11. ASD and genetic associations with receptors for oxytocin and vasopressin – AVPR1A, AVPR1B, and OXTR

    Directory of Open Access Journals (Sweden)

    Sunday M Francis

    2016-11-01

    Full Text Available Background: There are limited treatments available for autism spectrum disorder (ASD. Studies have reported significant associations between the receptor genes of oxytocin (OT and vasopressin (AVP and ASD diagnosis, as well as, ASD-related phenotypes. Researchers have also found the manipulation of these systems affect social and repetitive behaviors, core characteristics of ASD. Consequently, research involving the oxytocin/vasopressin pathways as intervention targets has increased. Therefore, further examination into the relationship between these neuropeptides and ASD was undertaken. In this study, we examined associations between variants in the receptor genes of vasopressin (AVPR1A, AVPR1B, oxytocin (OXTR and ASD diagnosis along with related subphenotypes.Methods: Probands were assessed using Autism Diagnostic Interview-Revised, Autism Diagnostic Observation Schedule, and clinical DSM-IV-TR criteria. Single nucleotide polymorphisms (SNPs in AVPR1B and OXTR, and microsatellites in AVPR1A were genotyped in ~200 families with a proband with ASD. Family-based association testing (FBAT was utilized to determine associations between variants and ASD. Haplotypes composed of OXTR SNPs (i.e. rs53576-rs2254298-rs2268493 were also analyzed due to previously published associations.Results: Using the additive inheritance model in FBAT we found associations between AVPR1B SNPs (rs28632197, p=0.005, rs35369693, p=0.025 and diagnosis. As in other studies, OXTR rs2268493 (p=0.050 was associated with diagnosis. rs2268493 was also associated with ASD subphenotypes of social withdrawal (p=0.013 and insistence on sameness (p=0.039. Further analyses demonstrated that the haplotype, rs2254298-rs2268493 was found to be significantly associated with diagnosis (A-T; p=0.026. FBAT was also used to analyze AVPR1A microsatellites (RS1 and RS3. Both length variants were found to be associated with restrictive, repetitive behaviors, but not overall diagnosis. Correction

  12. ASD and Genetic Associations with Receptors for Oxytocin and Vasopressin-AVPR1A, AVPR1B, and OXTR.

    Science.gov (United States)

    Francis, Sunday M; Kim, Soo-Jeong; Kistner-Griffin, Emily; Guter, Stephen; Cook, Edwin H; Jacob, Suma

    2016-01-01

    Background: There are limited treatments available for autism spectrum disorder (ASD). Studies have reported significant associations between the receptor genes of oxytocin (OT) and vasopressin (AVP) and ASD diagnosis, as well as ASD-related phenotypes. Researchers have also found the manipulation of these systems affects social and repetitive behaviors, core characteristics of ASD. Consequently, research involving the oxytocin/vasopressin pathways as intervention targets has increased. Therefore, further examination into the relationship between these neuropeptides and ASD was undertaken. In this study, we examined associations between variants in the receptor genes of vasopressin ( AVPR1A, AVPR1B ), oxytocin ( OXTR ), and ASD diagnosis along with related subphenotypes. Methods: Probands were assessed using Autism Diagnostic Interview-Revised, Autism Diagnostic Observation Schedule, and clinical DSM-IV-TR criteria. Single nucleotide polymorphisms (SNPs) in AVPR1B and OXTR , and microsatellites in AVPR1A were genotyped in ~200 families with a proband with ASD. Family-based association testing (FBAT) was utilized to determine associations between variants and ASD. Haplotypes composed of OXTR SNPs (i.e., rs53576-rs2254298-rs2268493) were also analyzed due to previously published associations. Results: Using the additive inheritance model in FBAT we found associations between AVPR1B SNPs (rs28632197, p = 0.005, rs35369693, p = 0.025) and diagnosis. As in other studies, OXTR rs2268493 ( p = 0.050) was associated with diagnosis. rs2268493 was also associated with ASD subphenotypes of social withdrawal ( p = 0.013) and Insistence on Sameness ( p = 0.039). Further analyses demonstrated that the haplotype, rs2254298-rs2268493 was found to be significantly associated with diagnosis (A-T; p = 0.026). FBAT was also used to analyze AVPR1A microsatellites (RS1 and RS3). Both length variants were found to be associated with restrictive, repetitive behaviors, but not overall

  13. The organizational effects of oxytocin on the central expression of estrogen receptor α and oxytocin in adulthood

    Directory of Open Access Journals (Sweden)

    Papademetriou Eros

    2007-09-01

    Full Text Available Abstract Background Previous studies have demonstrated that neonatal manipulation of oxytocin (OT has effects on the expression of estrogen receptor α (ERα and the central production of oxytocin observed in juveniles (at weaning, 21 days of age. The goal of this study was to determine whether the effects of neonatal manipulation of OT last into adulthood, and if the effects differ from those observed during the early postnatal period. On the first day of life, prairie voles (Microtus ochrogaster received one of three doses of OT (High, 3 μg; Med, 0.3 μg; Low, 0.03 μg, an OT antagonist, or isotonic saline. Another group was handled, but not injected. Then as adults, brains were collected, sectioned, and stained for ERα or OT using immunocytochemistry. Results In females, treatment with OT increased the expression of ERα immunoreactivity in the ventral lateral septum (0.03 μg and the ventromedial nucleus of the hypothalamus and central amygdala (0.3 μg. In males, OT antagonist increased ERα expression in the bed nucleus of the stria terminalis. There was no apparent effect of OT on the number of cells producing OT in the paraventricular nucleus of the hypothalamus. Conclusion The current results suggest that neonatal manipulation of OT has long-term organizational effects on the expression of ERα in both males and females. The lack of effect on OT neurons in the paraventricular nucleus suggests that some developmental effects of OT previously observed in weanlings do not persist into adulthood. Developmental effects of OT on ERα patterns were sexually dimorphic, dose-dependent, and site-specific.

  14. Estrogen and oxytocin receptors in the canine corpus luteum during pregnancy and parturition

    Directory of Open Access Journals (Sweden)

    Gisele Almeida Lima Veiga

    2015-02-01

    Full Text Available The expression of genes encoding the receptors for estrogen (ERαmRNA and oxytocin (OTRmRNA was studied in the corpus luteum during pregnancy and parturition in dogs. Real-time PCR was performed to quantify the levels of ERαmRNA and OTRmRNA in the corpus luteum of bitches during Early (up to 20 days of gestation, Mid (20 to 40 days and Late Pregnancy (40 to 60 days, and Parturition (first stage of labor. The corpus luteum expressed mRNA for OTR, however ERα mRNA was not detected. There was a reduction of OTR mRNA expression in the corpus luteum from gestational Day 20 onward, which suggests an important role of OTR mRNA in the mechanism of pregnancy recognition in dogs. We concluded that the expression of OTR mRNA in canine corpus luteum vary over time, which support the idea that the sensitivity and response to hormone therapy can vary along the course of pregnancy and labor. Moreover, the canine CL lacks ERα mRNA expression during pregnancy.

  15. Culture, distress, and oxytocin receptor polymorphism (OXTR) interact to influence emotional support seeking.

    Science.gov (United States)

    Kim, Heejung S; Sherman, David K; Sasaki, Joni Y; Xu, Jun; Chu, Thai Q; Ryu, Chorong; Suh, Eunkook M; Graham, Kelsey; Taylor, Shelley E

    2010-09-07

    Research has demonstrated that certain genotypes are expressed in different forms, depending on input from the social environment. To examine sensitivity to cultural norms regarding emotional support seeking as a type of social environment, we explored the behavioral expression of oxytocin receptor polymorphism (OXTR) rs53576, a gene previously related to socio-emotional sensitivity. Seeking emotional support in times of distress is normative in American culture but not in Korean culture. Consequently, we predicted a three-way interaction of culture, distress, and OXTR genotype on emotional support seeking. Korean and American participants (n = 274) completed assessments of psychological distress and emotional support seeking and were genotyped for OXTR. We found the predicted three-way interaction: among distressed American participants, those with the GG/AG genotypes reported seeking more emotional social support, compared with those with the AA genotype, whereas Korean participants did not differ significantly by genotype; under conditions of low distress, OXTR groups did not differ significantly in either cultural group. These findings suggest that OXTR rs53576 is sensitive to input from the social environment, specifically cultural norms regarding emotional social support seeking. These findings also indicate that psychological distress and culture are important moderators that shape behavioral outcomes associated with OXTR genotypes.

  16. Uterine and placental expression of canine oxytocin receptor during pregnancy and normal and induced parturition.

    OpenAIRE

    Gram A Boos A Kowalewski MP.

    2014-01-01

    Abstract Oxytocin (OT) plays an important role as an inducer of uterine contractility acting together with its receptor (OTR) to increase synthesis of prostaglandins. Although OT is commonly used in the treatment for dystocia and uterine inertia in the bitch little attention has been paid to the role of OT in mechanisms regulating parturition in the dog so that knowledge about the expression of OTR in the canine uterus and placenta is sparse. Consequently the expression and cellular localizat...

  17. MDMA ('Ecstasy'), oxytocin and vasopressin modulate social preference in rats: A role for handling and oxytocin receptors.

    Science.gov (United States)

    Ramos, Linnet; Hicks, Callum; Caminer, Alex; Couto, Kalliu; Narlawar, Rajeshwar; Kassiou, Michael; McGregor, Iain S

    In laboratory rats, peripheral administration of the neuropeptides oxytocin (OT) and vasopressin (AVP) induces similar prosocial effects (i.e. increased adjacent lying) to the party drug 3,4-methylenedioxymethamphetamine (MDMA), which are sensitive to vasopressin V 1A receptor (V 1A R) antagonism. Here, we employed a social preference paradigm to further compare the prosocial effects of OT, AVP and MDMA. We also investigated the possible involvement of the V 1A R and oxytocin receptor (OTR) in rodent social preference. The social preference paradigm measures investigation times towards an empty wire cage (presented for 4min) followed by an identical cage containing a novel rat (also presented for 4min). Social preference is defined as greater investigation time towards the inhabited cage than the empty cage. Results indicated that well-handled rats exhibited no social preference at baseline, while intraperitoneally injected MDMA (5mg/kg), OT (0.5mg/kg) and AVP (0.005mg/kg) increased social preference. However, this effect was primarily due to reduced investigation of the empty cage. In contrast, rats that received minimal prior handling displayed a social preference at baseline, while MDMA (5mg/kg), OT (0.5mg/kg) and AVP (0.005mg/kg) reduced investigation times towards both the empty and inhabited cages. Lower doses of MDMA, OT and AVP were ineffective. The OTR antagonist Compound 25 (C25, 5mg/kg), but not the V 1A R antagonist SR49059 (1mg/kg), reduced the baseline social preference seen in minimally-handled rats and prevented the social preference induced by OT and AVP (but not MDMA) in well-handled rats. Overall, these results further confirm prosocial actions of MDMA, OT and AVP, which are dependent on handling history. These findings also indicate that social preference is sensitive to OTR rather than V 1A R modulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The Williams syndrome prosociality gene GTF2I mediates oxytocin reactivity and social anxiety in a healthy population.

    Science.gov (United States)

    Procyshyn, Tanya L; Spence, Jason; Read, Silven; Watson, Neil V; Crespi, Bernard J

    2017-04-01

    The neurohormone oxytocin plays a central role in human social behaviour and cognition, and oxytocin dysregulation may contribute to psychiatric disorders. However, genetic factors influencing individual variation in the oxytocinergic system remain poorly understood. We genotyped 169 healthy adults for a functional polymorphism in GTF2I ( general transcription factor II-I ), a gene associated with high prosociality and reduced social anxiety in Williams syndrome, a condition reported to involve high oxytocin levels and reactivity. Participants' salivary oxytocin levels were measured before and after watching a validated empathy-inducing video. Oxytocin reactivity, defined as pre- to post-video percentage change in salivary oxytocin, varied substantially and significantly between individuals with different GTF2I genotypes, with, additionally, a trend towards an interaction between genotype and sex. Individuals with more oxytocin-reactive genotypes also reported significantly lower social anxiety. These findings suggest a model whereby GTF2I has a continuum of effects on human sociality, from the extreme social phenotypes and oxytocin dysregulation associated with gene deletion in Williams syndrome, to individual differences in oxytocin reactivity and sociality associated with common polymorphisms in healthy populations. © 2017 The Author(s).

  19. Child Maltreatment Is Associated with a Reduction of the Oxytocin Receptor in Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Sabrina Krause

    2018-02-01

    Full Text Available Background: Child maltreatment (CM and attachment experiences are closely linked to alterations in the human oxytocin (OXT system. However, human data about oxytocin receptor (OXTR protein levels are lacking. Therefore, we investigated oxytocin receptor (OXTR protein levels in circulating immune cells and related them to circulating levels of OXT in peripheral blood. We hypothesized reduced OXTR protein levels, associated with both, experiences of CM and an insecure attachment representation.Methods: OXTR protein expressions were analyzed by western blot analyses in peripheral blood mononuclear cells (PBMC and plasma OXT levels were determined by radioimmunoassay (RIA in 49 mothers. We used the Childhood Trauma Questionnaire (CTQ to assess adverse childhood experiences. Attachment representations (secure vs. insecure were classified using the Adult Attachment Projective Picture System (AAP and levels of anxiety and depression were assessed with the German version of the Hospital Depression and Anxiety scale (HADS-D.Results: CM-affected women showed significantly lower OXTR protein expression with significantly negative correlations between the OXTR protein expression and the CTQ sum score, whereas plasma OXT levels showed no significant differences in association with CM. Lower OXTR protein expression in PBMC were particularly pronounced in the group of insecurely attached mothers compared to the securely attached group. Anxiety levels were significantly higher in CM-affected women.Conclusion: This study demonstrated a significant association between CM and an alteration of OXTR protein expression in human blood cells as a sign for chronic, long-lasting alterations in this attachment-related neurobiological system.

  20. Blocking oxytocin receptors inhibits vaginal marking to male odors in female Syrian hamsters.

    Science.gov (United States)

    Martinez, Luis A; Albers, H Elliott; Petrulis, Aras

    2010-12-02

    In Syrian hamsters (Mesocricetus auratus), precopulatory behaviors such as vaginal scent marking are essential for attracting a suitable mate. Vaginal marking is dependent on forebrain areas implicated in the neural regulation of reproductive behaviors in rodents, including the medial preoptic/anterior hypothalamus (MPOA-AH). Within MPOA-AH, the neuropeptide oxytocin (OT) acts to facilitate copulation (lordosis), as well as ultrasonic vocalizations towards males. It is not known, however, if OT in this area also facilitates vaginal marking. In the present study, a specific oxytocin receptor antagonist (OTA) was injected into MPOA-AH of intact female Syrian hamsters to determine if oxytocin receptor-dependent signaling is critical for the normal expression of vaginal marking elicited by male, female, and clean odors. OTA injections significantly inhibited vaginal marking in response to male odors compared with vehicle injections. There was no effect of OTA on marking in response to either female or clean odors. When injected into the bed nucleus of the stria terminalis (BNST), a nearby region to MPOA-AH, OTA was equally effective in decreasing marking. Finally, the effects of OTA appear to be specific to vaginal marking, as OTA injections in MPOA-AH or BNST did not alter general locomotor activity, flank marking, or social odor investigation. Considered together, these results suggest that OT in MPOA-AH and/or BNST normally facilitates male odor-induced vaginal marking, providing further evidence that OT generally supports prosocial interactions among conspecifics. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Child Maltreatment Is Associated with a Reduction of the Oxytocin Receptor in Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Krause, Sabrina; Boeck, Christina; Gumpp, Anja M; Rottler, Edit; Schury, Katharina; Karabatsiakis, Alexander; Buchheim, Anna; Gündel, Harald; Kolassa, Iris-Tatjana; Waller, Christiane

    2018-01-01

    Background: Child maltreatment (CM) and attachment experiences are closely linked to alterations in the human oxytocin (OXT) system. However, human data about oxytocin receptor (OXTR) protein levels are lacking. Therefore, we investigated oxytocin receptor (OXTR) protein levels in circulating immune cells and related them to circulating levels of OXT in peripheral blood. We hypothesized reduced OXTR protein levels, associated with both, experiences of CM and an insecure attachment representation. Methods: OXTR protein expressions were analyzed by western blot analyses in peripheral blood mononuclear cells (PBMC) and plasma OXT levels were determined by radioimmunoassay (RIA) in 49 mothers. We used the Childhood Trauma Questionnaire (CTQ) to assess adverse childhood experiences. Attachment representations (secure vs. insecure) were classified using the Adult Attachment Projective Picture System (AAP) and levels of anxiety and depression were assessed with the German version of the Hospital Depression and Anxiety scale (HADS-D). Results: CM-affected women showed significantly lower OXTR protein expression with significantly negative correlations between the OXTR protein expression and the CTQ sum score, whereas plasma OXT levels showed no significant differences in association with CM. Lower OXTR protein expression in PBMC were particularly pronounced in the group of insecurely attached mothers compared to the securely attached group. Anxiety levels were significantly higher in CM-affected women. Conclusion: This study demonstrated a significant association between CM and an alteration of OXTR protein expression in human blood cells as a sign for chronic, long-lasting alterations in this attachment-related neurobiological system.

  2. Effect of oxytocin receptor blockade on appetite for sugar is modified by social context.

    Science.gov (United States)

    Olszewski, Pawel K; Allen, Kerry; Levine, Allen S

    2015-03-01

    Research on oxytocin (OT) has yielded two seemingly unrelated sets of discoveries: OT has prosocial effects, and it elicits termination of feeding, especially of food rich in carbohydrates. Here we investigated whether OT's involvement in food intake is affected by the social context in mice, with particular focus on the role of dominance. We used two approaches: injections and gene expression analysis. We housed two males per cage and determined a dominant one. Then we injected a blood-brain barrier penetrant OT receptor antagonist L-368,899 in either dominant or subordinate animals and gave them 10-min access to a sucrose solution in the apparatus in which social exposure was modified and it ranged from none to unrestricted contact. L-368,899 increased the amount of consumed sugar in dominant mice regardless of whether these animals had access to sucrose in the non-social or social contexts (olfactory-derived or partial social exposure). The antagonist also increased the proportion of time that dominant mice spent drinking the sweet solution in the paradigm in which both mice had to share a single source of sucrose. L-368,899-treated subordinate mice consumed more sucrose solution than saline controls only when the environment in which sugar was presented was devoid of social cues related to the dominant animal. Finally, we investigated whether hypothalamic OT gene expression differs between dominant and subordinate mice consuming sugar and found OT mRNA levels to be higher in dominant mice. We conclude that social context and dominance affect OT's effect on appetite for sucrose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Oxytocin Pathway Genes: Evolutionary Ancient System Impacting on Human Affiliation, Sociality, and Psychopathology.

    Science.gov (United States)

    Feldman, Ruth; Monakhov, Mikhail; Pratt, Maayan; Ebstein, Richard P

    2016-02-01

    Oxytocin (OT), a nonapeptide signaling molecule originating from an ancestral peptide, appears in different variants across all vertebrate and several invertebrate species. Throughout animal evolution, neuropeptidergic signaling has been adapted by organisms for regulating response to rapidly changing environments. The family of OT-like molecules affects both peripheral tissues implicated in reproduction, homeostasis, and energy balance, as well as neuromodulation of social behavior, stress regulation, and associative learning in species ranging from nematodes to humans. After describing the OT-signaling pathway, we review research on the three genes most extensively studied in humans: the OT receptor (OXTR), the structural gene for OT (OXT/neurophysin-I), and CD38. Consistent with the notion that sociality should be studied from the perspective of social life at the species level, we address human social functions in relation to OT-pathway genes, including parenting, empathy, and using social relationships to manage stress. We then describe associations between OT-pathway genes with psychopathologies involving social dysfunctions such as autism, depression, or schizophrenia. Human research particularly underscored the involvement of two OXTR single nucleotide polymorphisms (rs53576, rs2254298) with fewer studies focusing on other OXTR (rs7632287, rs1042778, rs2268494, rs2268490), OXT (rs2740210, rs4813627, rs4813625), and CD38 (rs3796863, rs6449197) single nucleotide polymorphisms. Overall, studies provide evidence for the involvement of OT-pathway genes in human social functions but also suggest that factors such as gender, culture, and early environment often confound attempts to replicate first findings. We conclude by discussing epigenetics, conceptual implications within an evolutionary perspective, and future directions, especially the need to refine phenotypes, carefully characterize early environments, and integrate observations of social behavior across

  4. Novel evolutionary lineages of the invertebrate oxytocin/vasopressin superfamily peptides and their receptors in the common octopus (Octopus vulgaris)

    Science.gov (United States)

    Kanda, Atsuhiro; Satake, Honoo; Kawada, Tsuyoshi; Minakata, Hiroyuki

    2004-01-01

    The common octopus, Octopus vulgaris, is the first invertebrate species that was shown to possess two oxytocin/vasopressin (OT/VP) superfamily peptides, octopressin (OP) and cephalotocin (CT). Previously, we cloned a GPCR (G-protein-coupled receptor) specific to CT [CTR1 (CT receptor 1)]. In the present study, we have identified an additional CTR, CTR2, and a novel OP receptor, OPR. Both CTR2 and OPR include domains and motifs typical of GPCRs, and the intron– exon structures are in accord with those of OT/VP receptor genes. CTR2 and OPR expressed in Xenopus oocytes induced calcium-mediated inward chloride current in a CT- and OP-specific manner respectively. Several regions and residues, which are requisite for binding of the vertebrate OT/VP receptor family with their ligands, are highly conserved in CTRs, but not in OPR. These different sequences between CTRs and OPR, as well as the amino acid residues of OP and CT at positions 2–5, were presumed to play crucial roles in the binding selectivity to their receptors, whereas the difference in the polarity of OT/VP family peptide residues at position 8 confers OT and VP with the binding specificity in vertebrates. CTR2 mRNA was present in various peripheral tissues, and OPR mRNA was detected in both the nervous system and peripheral tissues. Our findings suggest that the CT and OP genes, similar to the OT/VP family, evolved through duplication, but the ligand–receptor selectivity were established through different evolutionary lineages from those of their vertebrate counterparts. PMID:15504101

  5. Corticosterone release in oxytocin gene deletion mice following exposure to psychogenic versus non-psychogenic stress.

    Science.gov (United States)

    Amico, Janet A; Cai, Hou-ming; Vollmer, Regis R

    2008-09-19

    Both anxiety-related behavior [J.A. Amico, R.C. Mantella, R.R. Vollmer, X. Li, Anxiety and stress responses in female oxytocin deficient mice, J. Neuroendocrinol. 16 (2004) 1-6; R.C. Mantella, R.R. Vollmer, X. Li, J.A. Amico, Female oxytocin-deficient mice display enhanced anxiety-related behavior, Endocrinology 144 (2003) 2291-2296] and the release of corticosterone following a psychogenic stress such as exposure to platform shaker was greater in female [J.A. Amico, R.C. Mantella, R.R. Vollmer, X. Li, Anxiety and stress responses in female oxytocin deficient mice, J. Neuroendocrinol. 16 (2004) 1-6; R.C. Mantella, R.R. Vollmer, L. Rinaman, X. Li, J.A. Amico, Enhanced corticosterone concentrations and attenuated Fos expression in the medial amygdala of female oxytocin knockout mice exposed to psychogenic stress, Am. J. Physiol. Regul. Integr. Comp. Physiol. 287 (2004) R1494-R1504], but not male [R.C. Mantella, R.R. Vollmer, J.A. Amico, Corticosterone release is heightened in food or water deprived oxytocin deficient male mice, Brain Res. 1058 (2005) 56-61], oxytocin gene deletion (OTKO) mice compared to wild type (WT) cohorts. In the present study we exposed OTKO and WT female mice to another psychogenic stress, inserting a rectal probe to record body temperature followed by brief confinement in a metabolic cage, and measured plasma corticosterone following the stress. OTKO mice released more corticosterone than WT mice (Pstress. In contrast, if OTKO and WT female and male mice were administered insulin-induced hypoglycemia, an acute physical stress, corticosterone release was not different between genotypes. The absence of central OT signaling pathways in female mice heightens the neuroendocrine (e.g., corticosterone) response to psychogenic stress, but not to the physical stress of insulin-induced hypoglycemia.

  6. Oxytocin induces prostaglandin F2 alpha release in pregnant cows: influence of gestational age and oxytocin receptor concentrations.

    Science.gov (United States)

    Fuchs, A R; Rollyson, M K; Meyer, M; Fields, M J; Minix, J M; Randel, R D

    1996-03-01

    Brahman cows with known breeding dates received i.v. injections of either 10 or 100 IU oxytocin (OT) on Days 50, 150, 250, or 280 of gestation (n = 6 for each stage). Concentrations of the prostaglandin (PG) F2 alpha metabolite, 13,14-dihydro-15-keto-prostaglandin (PGFM), and OT were measured in samples of peripheral plasma collected at 15-min intervals for 1 h before and 1 h after treatment and then at 30-min intervals for 3 h. Plasma progesterone was measured daily for 14 days after OT injections on Days 50 and 250 of gestation. The increase in plasma OT after injection was dose-dependent (p = 0.001) but not affected by stage of gestation. Plasma PGFM increased after OT in a dose- and stage-dependent manner (p = 0.0001). At Day 280, the increase in plasma PGFM after 100 IU OT was sevenfold greater than at Day 50. Plasma progesterone declined significantly during the 7th to 12th days postinjection and returned to normal pregnancy values by the 14th day (4.4 +/- 0.3 ng/ml) except in two cows treated on Day 50 of gestation that later aborted. In these, plasma progesterone was significantly lower, 2.6 +/- 0.1 ng/ml. In a second experiment, the concentration of OT receptors was determined in endometrium collected from purebred Angus or Hereford cows slaughtered on Days 50, 150, 250, and 280 of gestation (n = 3 or 4 at each stage). Endometrial concentrations of OT receptor changed as a function of gestational age, increasing sixfold from Day 50 to Day 280, which was parallel to the increase by OT of plasma PGFM. Thus, endometrial OT receptors are functionally coupled to PGF2 alpha release during pregnancy, and their concentration determines the magnitude of OT-induced PGF2 alpha release during gestation. Consequently, endogenous OT is a factor in the regulation of PGF2 alpha release from the bovine uterus during pregnancy and parturition.

  7. Oxytocin and Vasopressin: Linking Pituitary Neuropeptides and their Receptors to Social Neurocircuits

    Directory of Open Access Journals (Sweden)

    Danielle Andrea Baribeau

    2015-09-01

    Full Text Available Oxytocin and vasopressin are pituitary neuropeptides that have been shown to affect social processes in mammals. There is growing interest in these molecules and their receptors as potential precipitants of, and/or treatments for, social deficits in neurodevelopmental disorders, including autism spectrum disorder. Numerous behavioral-genetic studies suggest that there is an association between these peptides and individual social abilities; however, an explanatory model that links hormonal activity at the receptor level to complex human behavior remains elusive. The following review summarizes the known associations between the oxytocin and vasopressin neuropeptide systems and social neurocircuits in the brain. Following a micro- to macro- level trajectory, current literature on the synthesis and secretion of these peptides, and the structure, function and distribution of their respective receptors is first surveyed. Next, current models regarding the mechanism of action of these peptides on microcircuitry and other neurotransmitter systems are discussed. Functional neuroimaging evidence on the acute effects of exogenous administration of these peptides on brain activity is then reviewed. Overall, a model in which the local neuromodulatory effects of pituitary neuropeptides on brainstem and basal forebrain regions strengthen signaling within social neurocircuits proves appealing. However, these findings are derived from animal models; more research is needed to clarify the relevance of these mechanisms to human behavior and treatment of social deficits in neuropsychiatric disorders.

  8. Exposure to chronic isolation modulates receptors mRNAs for oxytocin and vasopressin in the hypothalamus and heart.

    Science.gov (United States)

    Pournajafi-Nazarloo, Hossein; Kenkel, William; Mohsenpour, Seyed Ramezan; Sanzenbacher, Lisa; Saadat, Habibollah; Partoo, Leila; Yee, Jason; Azizi, Fereidoun; Carter, C Sue

    2013-05-01

    The goal of our study was to explore the effect of social isolation stress of varying durations on the plasma oxytocin (OT), messenger ribonucleic acid (mRNA) for oxytocin receptor (OTR), plasma arginine vasopressin (AVP) and mRNA for V1a receptor of AVP (V1aR) expression in the hypothalamus and heart of socially monogamous female and male prairie voles (Microtus ochrogaster). Continuous isolation for 4 weeks (chronic isolation) increased plasma OT level in females, but not in males. One hour of isolation every day for 4 weeks (repeated isolation) was followed by a significant increase in plasma AVP level. Chronic isolation, but not repeated isolation, significantly decreased OTR mRNA in the hypothalamus and heart in both sexes. Chronic isolation significantly decreased cardiac V1aR mRNA, but no effect on hypothalamic V1aR mRNA expression. We did not find a gender difference within repeated social isolation groups. The results of the present study reveal that although chronic social isolation can down-regulate gene expression for the OTR in both sexes, the release of the OT peptide was increased after chronic isolation only in females, possibly somewhat protecting females from the negative consequences of isolation. In both sexes repeated, but not chronic, isolation increased plasma AVP, which could be permissive for mobilization and thus adaptive in response to a repeated stressor. The differential effects of isolation on OT and AVP systems may help in understanding mechanisms through social interactions can be protective against emotional and cardiovascular disorders. Published by Elsevier Inc.

  9. The Impact of Oxytocin Gene Knockout on Sexual Behavior and Gene Expression Related to Neuroendocrine Systems in the Brain of Female Mice.

    Science.gov (United States)

    Zimmermann-Peruzatto, Josi Maria; Lazzari, Virgínia Meneghini; Agnes, Grasiela; Becker, Roberta Oriques; de Moura, Ana Carolina; Guedes, Renata Padilha; Lucion, Aldo Bolten; Almeida, Silvana; Giovenardi, Márcia

    2017-07-01

    Social relations are built and maintained from the interaction among individuals. The oxytocin (OT), vasopressin (VP), estrogen, dopamine, and their receptors are involved in the modulation of sexual behavior in females. This study aimed to analyze the impact of OT gene knockout (OTKO) on sexual behavior and the gene expression of oxytocin (OTR), estrogen alpha (ERα), estrogen beta (ERβ), vasopressin (V 1a R), and dopamine (D 2 R) receptors in the olfactory bulb (OB), prefrontal cortex (PFC), hippocampus (HPC), and hypothalamus (HPT), as well as in the synthesis of VP in the HPT of female mice. Wild-type (WT) littermates were used for comparisons. The C DNAs were synthesized by polymerase chain reaction and the gene expression was calculated with the 2 -ΔΔCt formula. Our results showed that the absence of OT caused an increase in the frequency and duration of non-receptive postures and a decrease in receptive postures in the OTKO. OTKO females showed a significant decrease in the gene expression of OTR in the HPC, V 1a R in the HPT, and ERα and ERβ in the PFC. There was no significant difference in the gene expression of D 2 R of OTKO. However, OTKO showed an increased gene expression of V 1a R in the HPC. There is no significant difference in VP mRNA synthesis in the HPT between OTKO and WT. Our findings demonstrate that the absence of OT leads to significant changes in the expression of the studied genes (OTR, ERα, ERβ, V 1a R), and these changes may contribute to the decreased sexual behavior observed in OTKO females.

  10. Thinking and doing: the effects of dopamine and oxytocin genes and executive function on mothering behaviours.

    Science.gov (United States)

    Tombeau Cost, K; Unternaehrer, E; Plamondon, A; Steiner, M; Meaney, M; Atkinson, L; Kennedy, J L; Fleming, A S

    2017-02-01

    Animal and human studies suggest that initial expression of maternal behaviour depends on oxytocin and dopamine systems. However, the mechanism by which these systems affect parenting behaviours and the timing of these effects are not well understood. This article explores the role of mothers' executive function in mediating the relation between oxytocin and dopamine gene variants and maternal responsiveness at 48 months post-partum. Participants (n = 157) were mothers recruited in the Maternal Adversity, Vulnerability and Neurodevelopment Study, which assesses longitudinally two cohorts of mothers and children in Canada. We examined single nucleotide polymorphisms (SNPs) related to the dopamine and oxytocin systems (DRD1 rs686, DRD1 rs265976, OXTR rs237885 and OXTR rs2254298), assessed mothers' decision-making at 48 months using the Cambridge Neurological Automated Testing Battery (CANTAB) and evaluated maternal responsiveness from videotaped interactions during the Etch-A-Sketch co-operation task. Mediation analyses showed that OXTR rs2254298 A-carriers had an indirect effect on positive parenting which was mediated by mothers' performance on decision-making task (estimate = 0.115, P Dopamine SNPs were not associated with any measure of executive function or parenting (all P > 0.05). While oxytocin has previously been associated with only the early onset of maternal behaviour, we show that an OXTR polymorphism is involved in maternal behaviour at 48 months post-partum through mothers' executive function. This research highlights the importance of the oxytocin system to maternal parenting beyond infancy. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  11. Oxytocin receptor polymorphism and childhood social experiences shape adult personality, brain structure and neural correlates of mentalizing.

    Science.gov (United States)

    Schneider-Hassloff, H; Straube, B; Jansen, A; Nuscheler, B; Wemken, G; Witt, S H; Rietschel, M; Kircher, T

    2016-07-01

    The oxytocin system is involved in human social behavior and social cognition such as attachment, emotion recognition and mentalizing (i.e. the ability to represent mental states of oneself and others). It is shaped by social experiences in early life, especially by parent-infant interactions. The single nucleotid polymorphism rs53576 in the oxytocin receptor (OXTR) gene has been linked to social behavioral phenotypes. In 195 adult healthy subjects we investigated the interaction of OXTR rs53576 and childhood attachment security (CAS) on the personality traits "adult attachment style" and "alexithymia" (i.e. emotional self-awareness), on brain structure (voxel-based morphometry) and neural activation (fMRI) during an interactive mentalizing paradigm (prisoner's dilemma game; subgroup: n=163). We found that in GG-homozygotes, but not in A-allele carriers, insecure childhood attachment is - in adulthood - associated with a) higher attachment-related anxiety and alexithymia, b) higher brain gray matter volume of left amygdala and lower volumes in right superior parietal lobule (SPL), left temporal pole (TP), and bilateral frontal regions, and c) higher mentalizing-related neural activity in bilateral TP and precunei, and right middle and superior frontal gyri. Interaction effects of genotype and CAS on brain volume and/or function were associated with individual differences in alexithymia and attachment-related anxiety. Interactive effects were in part sexually dimorphic. The interaction of OXTR genotype and CAS modulates adult personality as well as brain structure and function of areas implicated in salience processing and mentalizing. Rs53576 GG-homozygotes are partially more susceptible to childhood attachment experiences than A-allele carriers. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles.

    Science.gov (United States)

    Johnson, Zachary V; Walum, Hasse; Jamal, Yaseen A; Xiao, Yao; Keebaugh, Alaine C; Inoue, Kiyoshi; Young, Larry J

    2016-03-01

    Oxytocin (OT) is a deeply conserved nonapeptide that acts both peripherally and centrally to modulate reproductive physiology and sociosexual behavior across divergent taxa, including humans. In vertebrates, the distribution of the oxytocin receptor (OTR) in the brain is variable within and across species, and OTR signaling is critical for a variety of species-typical social and reproductive behaviors, including affiliative and pair bonding behaviors in multiple socially monogamous lineages of fishes, birds, and mammals. Early work in prairie voles suggested that the endogenous OT system modulates mating-induced partner preference formation in females but not males; however, there is significant evidence that central OTRs may modulate pair bonding behavior in both sexes. In addition, it remains unclear how transient windows of central OTR signaling during sociosexual interaction modulate neural activity to produce enduring shifts in sociobehavioral phenotypes, including the formation of selective social bonds. Here we re-examine the role of the central OT system in partner preference formation in male prairie voles using a selective OTR antagonist delivered intracranially. We then use the same antagonist to examine how central OTRs modulate behavior and immediate early gene (Fos) expression, a metric of neuronal activation, in males during brief sociosexual interaction with a female. Our results suggest that, as in females, OTR signaling is critical for partner preference formation in males and enhances correlated activation across sensory and reward processing brain areas during sociosexual interaction. These results are consistent with the hypothesis that central OTR signaling facilitates social bond formation by coordinating activity across a pair bonding neural network. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles

    Science.gov (United States)

    Johnson, Zachary V.; Walum, Hasse; Jamal, Yaseen A.; Xiao, Yao; Keebaugh, Alaine C.; Inoue, Kiyoshi; Young, Larry J.

    2016-01-01

    Oxytocin (OT) is a deeply conserved nonapeptide that acts both peripherally and centrally to modulate reproductive physiology and sociosexual behavior across divergent taxa, including humans. In vertebrates, the distribution of the oxytocin receptor (OTR) in the brain is variable within and across species, and OTR signaling is critical for a variety of species-typical social and reproductive behaviors, including affiliative and pair bonding behaviors in multiple socially monogamous lineages of fishes, birds, and mammals. Early work in prairie voles suggested that the endogenous OT system modulates mating-induced partner preference formation in females but not males; however, there is significant evidence that central OTRs may modulate pair bonding behavior in both sexes. In addition, it remains unclear how transient windows of central OTR signaling during sociosexual interaction modulate neural activity to produce enduring shifts in sociobehavioral phenotypes, including the formation of selective social bonds. Here we re-examine the role of the central OT system in partner preference formation in male prairie voles using a selective OTR antagonist delivered intracranially. We then use the same antagonist to examine how central OTRs modulate behavior and immediate early gene (Fos) expression, a metric of neuronal activation, in males during brief sociosexual interaction with a female. Our results suggest that, as in females, OTR signaling is critical for partner preference formation in males and enhances correlated activation across sensory and reward processing brain areas during sociosexual interaction. These results are consistent with the hypothesis that central OTR signaling facilitates social bond formation by coordinating activity across a pair bonding neural network. PMID:26643557

  14. Neonatal manipulation of oxytocin prevents lipopolysaccharide-induced decrease in gene expression of growth factors in two developmental stages of the female rat.

    Science.gov (United States)

    Bakos, Jan; Lestanova, Zuzana; Strbak, Vladimir; Havranek, Tomas; Bacova, Zuzana

    2014-10-01

    Oxytocin production and secretion is important for early development of the brain. Long-term consequences of manipulation of oxytocin system might include changes in markers of brain plasticity - cytoskeletal proteins and neurotrophins. The aim of the present study was (1) to determine whether neonatal oxytocin administration affects gene expression of nestin, microtubule-associated protein-2 (MAP-2), brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brain of two developmental stages of rat and (2) to evaluate whether neonatal oxytocin administration protects against lipopolysaccharide (LPS) induced inflammation. Neonatal oxytocin did not prevent a decrease of body weight in the LPS treated animals. Oxytocin significantly increased gene expression of BDNF in the right hippocampus in 21-day and 2-month old rats of both sexes. Gene expression of NGF and MAP-2 significantly increased in males treated with oxytocin. Both, growth factors and intermediate filament-nestin mRNA levels, were reduced in females exposed to LPS. Oxytocin treatment prevented a decrease in the gene expression of only growth factors. In conclusion, neonatal manipulation of oxytocin has developmental and sex-dependent effect on markers of brain plasticity. These results also indicate, that oxytocin may be protective against inflammation particularly in females. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Cryptic sexual dimorphism in spatial memory and hippocampal oxytocin receptors in prairie voles (Microtus ochrogaster).

    Science.gov (United States)

    Rice, Marissa A; Hobbs, Lauren E; Wallace, Kelly J; Ophir, Alexander G

    2017-09-01

    Sex differences are well documented and are conventionally associated with intense sex-specific selection. For example, spatial memory is frequently better in males, presumably due to males' tendency to navigate large spaces to find mates. Alternatively, monogamy (in which sex-specific selection is relatively relaxed) should diminish or eliminate differences in spatial ability and the mechanisms associated with this behavior. Nevertheless, phenotypic differences between monogamous males and females persist, sometimes cryptically. We hypothesize that sex-specific cognitive demands are present in monogamous species that will influence neural and behavioral phenotypes. The effects of these demands should be observable in spatial learning performance and neural structures associated with spatial learning and memory. We analyzed spatial memory performance, hippocampal volume and cell density, and hippocampal oxytocin receptor (OTR) expression in the socially monogamous prairie vole. Compared to females, males performed better in a spatial memory and spatial learning test. Although we found no sex difference in hippocampal volume or cell density, male OTR density was significantly lower than females, suggesting that performance may be regulated by sub-cellular mechanisms within the hippocampus that are less obvious than classic neuroanatomical features. Our results suggest an expanded role for oxytocin beyond facilitating social interactions, which may function in part to integrate social and spatial information. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Oxytocin-receptor-expressing neurons in the parabrachial nucleus regulate fluid intake.

    Science.gov (United States)

    Ryan, Philip J; Ross, Silvano I; Campos, Carlos A; Derkach, Victor A; Palmiter, Richard D

    2017-12-01

    Brain regions that regulate fluid satiation are not well characterized, yet are essential for understanding fluid homeostasis. We found that oxytocin-receptor-expressing neurons in the parabrachial nucleus of mice (Oxtr PBN neurons) are key regulators of fluid satiation. Chemogenetic activation of Oxtr PBN neurons robustly suppressed noncaloric fluid intake, but did not decrease food intake after fasting or salt intake following salt depletion; inactivation increased saline intake after dehydration and hypertonic saline injection. Under physiological conditions, Oxtr PBN neurons were activated by fluid satiation and hypertonic saline injection. Oxtr PBN neurons were directly innervated by oxytocin neurons in the paraventricular hypothalamus (Oxt PVH  neurons), which mildly attenuated fluid intake. Activation of neurons in the nucleus of the solitary tract substantially suppressed fluid intake and activated Oxtr PBN neurons. Our results suggest that Oxtr PBN neurons act as a key node in the fluid satiation neurocircuitry, which acts to decrease water and/or saline intake to prevent or attenuate hypervolemia and hypernatremia.

  17. Differential susceptibility effects of oxytocin gene (OXT) polymorphisms and perceived parenting on social anxiety among adolescents.

    Science.gov (United States)

    Olofsdotter, Susanne; Åslund, Cecilia; Furmark, Tomas; Comasco, Erika; Nilsson, Kent W

    2018-05-01

    Social anxiety is one of the most commonly reported mental health problems among adolescents, and it has been suggested that parenting style influences an adolescent's level of anxiety. A context-dependent effect of oxytocin on human social behavior has been proposed; however, research on the oxytocin gene (OXT) has mostly been reported without considering contextual factors. This study investigated the interactions between parenting style and polymorphic variations in the OXT gene in association with social anxiety symptoms in a community sample of adolescents (n = 1,359). Two single nucleotide polymorphisms linked to OXT, rs4813625 and rs2770378, were genotyped. Social anxiety and perceived parenting style were assessed by behavioral questionnaires. In interaction models adjusted for sex, significant interaction effects with parenting style were observed for both variants in relation to social anxiety. The nature of the interactions was in line with the differential susceptibility framework for rs4813625, whereas for rs2770378 the results indicated a diathesis-stress type of interaction. The findings may be interpreted from the perspective of the social salience hypothesis of oxytocin, with rs4813625 affecting social anxiety levels along a perceived unsafe-safe social context dimension.

  18. Perinatal depression and DNA methylation of oxytocin-related genes: a study of mothers and their children.

    Science.gov (United States)

    King, Leonora; Robins, Stephanie; Chen, Gang; Yerko, Volodymyr; Zhou, Yi; Nagy, Corina; Feeley, Nancy; Gold, Ian; Hayton, Barbara; Turecki, Gustavo; Zelkowitz, Phyllis

    2017-11-01

    The present study investigated the association of perinatal depression (PD) with differential methylation of 3 genomic regions among mother and child dyads: exon 3 within the oxytocin receptor (OXTR) gene and 2 intergenic regions (IGR) between the oxytocin (OXT) and vasopressin (AVP) genes. Maternal PD was assessed at 5 time-points during pregnancy and postpartum. Four groups were established based on Edinburgh Postnatal Depression Scale (EPDS) cut-off scores: no PD, prenatal or postpartum depressive symptoms only and persistent PD (depressive symptoms both prenatally and postpartum). Salivary DNA was collected from mothers and children at the final time-point, 2.9years postpartum. Mothers with persistent PD had significantly higher overall OXTR methylation than the other groups and this pattern extended to 16/22 individual CpG sites. For the IGR, only the region closer to the AVP gene (AVP IGR) showed significant differential methylation, with the persistent PD group displaying the lowest levels of methylation overall, but not for individual CpG sites. These results suggest that transient episodes of depression may not be associated with OXTR hypermethylation. Validation studies need to confirm the downstream biological effects of AVP IGR hypomethylation as it relates to persistent PD. Differential methylation of the OXTR and IGR regions was not observed among children exposed to maternal PD. The consequences of OXTR hypermethylation and AVP IGR hypomethylation found in mothers with persistent PDS may not only impact the OXT system, but may also compromise maternal behavior, potentially resulting in negative outcomes for the developing child. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Sex, Receptors and Attachment: A Review of Individual Factors Influencing Response to Oxytocin

    Directory of Open Access Journals (Sweden)

    Kai S Macdonald

    2013-01-01

    Full Text Available As discussed in the larger review in this special issue (MacDonald and Feifel, intranasal oxytocin (IN OT is demonstrating a growing potential as a therapeutic agent in psychiatry. Importantly, research suggests that a variety of individual factors may influence a person’s response to OT. In this mini-review, I provides a review of three: (1 sex and hormonal status; (2 genetic variation in aspects of the OT system (i.e. OT receptors; and (3 attachment history. Each of these factors will be important to monitor as we strive to develop a richer understanding of OT's role in human development, brain-based disease, and the potential for individualized, OT-targeted treatments.

  20. Melanocortin Receptor Agonists Facilitate Oxytocin-Dependent Partner Preference Formation in the Prairie Vole.

    Science.gov (United States)

    Modi, Meera E; Inoue, Kiyoshi; Barrett, Catherine E; Kittelberger, Kara A; Smith, Daniel G; Landgraf, Rainer; Young, Larry J

    2015-07-01

    The central melanocortin (MC) system has been widely studied for its effects on food intake and sexual behavior. However, the MC system, and more specifically the MC4 receptor (MC4R), also interacts with neurochemical systems that regulate socioemotional behaviors, including oxytocin (OT) and dopamine. In monogamous prairie voles, OT and dopamine interact to promote partner preference formation, a laboratory measure of an enduring social bond between mates. Here we investigated the effects of MC receptor activation on partner preference formation in prairie voles, as well as the interaction between the MC and OT systems during this process. Peripheral administration of the brain penetrant MC3/4R receptor peptide agonist, Melanotan II (MTII), and the highly selective, small-molecule MC4R agonist, Pf-446687, enhanced partner preference formation in the prairie vole, but not in the non-monogamous meadow vole. MTII-induced partner preferences were enduring, as they were present 1 week after drug manipulation. The prosocial effects of MCR agonists may be mediated, in part, through modulation of OT, as coadministration of an OT receptor antagonist prevented MTII-induced partner preferences. MTII also selectively activated hypothalamic OT neurons and potentiated central OT release. As OT has been shown to enhance some aspects of social cognition in humans, our data suggest that the MC4R may be a viable therapeutic target for enhancing social function in psychiatric disorders, including autism spectrum disorders and schizophrenia, potentially through activation of the OT system.

  1. Expression of oxytocin receptors is greatly reduced in the placenta of heavy mares with retained fetal membranes due to secondary uterine atony.

    Science.gov (United States)

    Rapacz-Leonard, A; Raś, A; Całka, J; Janowski, T E

    2015-09-01

    Fetal membrane retention can be a life-threatening condition and its incidence exceeds 50% in heavy draught mares. Although fetal membrane retention is commonly treated with repeated injections of oxytocin, based on the suggestion that it is caused mainly by secondary atony of the uterus, this treatment sometimes fails. This led us to ask if expression of oxytocin receptors differs in mares that retain fetal membranes due to secondary uterine atony. To determine whether expression of oxytocin receptors in equine placental tissues differs when heavy draught mares expel fetal membranes or retain them because of secondary uterine atony. Controlled study using archived tissues. Placental biopsies (containing the endometrium and allantochorion) were taken from 8 heavy draught mares during parturition. Four mares expelled fetal membranes shortly after foaling (control mares) and 4 mares retained them (expulsion time was >3 h from delivery). The 4 mares that retained fetal membranes had secondary atony of the uterus. The amount of oxytocin receptors was estimated by measuring the intensity of western blot bands. The presence and location of oxytocin receptors were determined by immunocytochemistry. Oxytocin receptor expression was nearly 50 times less intense in mares with placenta retention due to secondary atony of the uterus and immunocytochemical staining was barely visible. In the control mares, oxytocin receptors were found in both epithelial and endothelial cells of the placenta and staining was most intense where the endometrium contacts the allantochorion. Inadequate expression of oxytocin receptors may be a cause of uterine atony leading to fetal membrane retention. © 2015 EVJ Ltd.

  2. Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse

    Directory of Open Access Journals (Sweden)

    Elizabeth eHammock

    2013-12-01

    Full Text Available Oxytocin (OXT has drawn increasing attention as a developmentally relevant neuropeptide given its role in the brain regulation of social behavior. It has been suggested that OXT plays an important role in the infant brain during caregiver attachment in nurturing familial contexts, but there is incomplete experimental evidence. Mouse models of OXT system genes have been particularly informative for the role of the OXT system in social behavior, however, the developing brain areas that could respond to ligand activation of the OXT receptor (OXTR have yet to be identified in this species. Here we report new data revealing dynamic ligand-binding distribution of OXTR in the developing mouse brain. Using male and female C57BL/6J mice at postnatal days (P 0, 7, 14, 21, 35, and 60 we quantified OXTR ligand binding in several brain areas which changed across development. Further, we describe OXTR ligand binding in select tissues of the near-term whole embryo at E18.5. Together, these data aid in the interpretation of findings in mouse models of the OXT system and generate new testable hypotheses for developmental roles for OXT in mammalian systems. We discuss our findings in the context of developmental disorders (including autism, attachment biology, and infant physiological regulation.

  3. Intergenerational transmission of alloparental behavior and oxytocin and vasopressin receptor distribution in the prairie vole

    Directory of Open Access Journals (Sweden)

    Allison M Perkeybile

    2015-07-01

    Full Text Available Variation in the early environment has the potential to permanently alter offspring behavior and development. We have previously shown that naturally occurring variation in biparental care of offspring in the prairie vole is related to differences in social behavior of the offspring. It was not, however, clear whether the behavioral differences seen between offspring receiving high compared to low amounts of parental care were the result of different care experiences or were due to shared genetics with their high-contact or low-contact parents. Here we use cross-fostering methods to determine the mode of transmission of alloparental behavior and oxytocin receptor (OTR and vasopressin V1a receptor (V1aR binding from parent to offspring. Offspring were cross-fostered or in-fostered on postnatal day 1 and parental care received was quantified in the first week postpartum. At weaning, offspring underwent an alloparental care test and brains were then collected from all parents and offspring to examine OTR and V1aR binding. Results indicate that alloparental behavior of offspring was predicted by the parental behavior of their rearing parents. Receptor binding for both OTR and V1aR tended to be predicted by the genetic mothers for female offspring and by the genetic fathers for male offspring. These findings suggest a different role of early experience and genetics in shaping behavior compared to receptor distribution and support the notion of sex-dependent outcomes, particularly in the transmission of receptor binding patterns.

  4. Body temperature and cardiac changes induced by peripherally administered oxytocin, vasopressin and the non-peptide oxytocin receptor agonist WAY 267,464: a biotelemetry study in rats

    Science.gov (United States)

    Hicks, C; Ramos, L; Reekie, T; Misagh, G H; Narlawar, R; Kassiou, M; McGregor, I S

    2014-01-01

    Background and Purpose There is current interest in oxytocin (OT) as a possible therapeutic in psychiatric disorders. However, the usefulness of OT may be constrained by peripheral autonomic effects, which may involve an action at both OT and vasopressin V1A receptors. Here, we characterized the cardiovascular and thermoregulatory effects of OT, vasopressin (AVP) and the non-peptide OT receptor agonist WAY 267,464 in rats, and assessed the relative involvement of the OT and V1A receptors in these effects. Experimental Approach Biotelemetry in freely moving male Wistar rats was used to examine body temperature and heart rate after OT (0.01 – 1 mg kg−1; i.p.), AVP (0.001 – 0.1 mg kg−1; i.p.) or WAY 267,464 (10 and 100 mg kg−1; i.p.). The actions of the OT receptor antagonist Compound 25 (C25, 5 and 10 mg kg−1) and V1A receptor antagonist SR49059 (1 and 10 mg kg−1) were studied, as well as possible V1A receptor antagonist effects of WAY 267,464. Key Results OT and AVP dose-dependently reduced body temperature and heart rate. WAY 267,464 had similar, but more modest, effects. SR49059, but not C25, prevented the hypothermia and bradycardia induced by OT and AVP. WAY 267,464 (100 mg·kg−1) prevented the effects of OT, and to some extent AVP. Conclusions and Implications Peripherally administered OT and AVP have profound cardiovascular and thermoregulatory effects that appear to principally involve the V1A receptor rather than the OT receptor. Additionally, WAY 267,464 is not a simple OT receptor agonist, as it has functionally relevant V1A antagonist actions. PMID:24641248

  5. Body temperature and cardiac changes induced by peripherally administered oxytocin, vasopressin and the non-peptide oxytocin receptor agonist WAY 267,464: a biotelemetry study in rats.

    Science.gov (United States)

    Hicks, C; Ramos, L; Reekie, T; Misagh, G H; Narlawar, R; Kassiou, M; McGregor, I S

    2014-06-01

    There is current interest in oxytocin (OT) as a possible therapeutic in psychiatric disorders. However, the usefulness of OT may be constrained by peripheral autonomic effects, which may involve an action at both OT and vasopressin V1A receptors. Here, we characterized the cardiovascular and thermoregulatory effects of OT, vasopressin (AVP) and the non-peptide OT receptor agonist WAY 267,464 in rats, and assessed the relative involvement of the OT and V1A receptors in these effects. Biotelemetry in freely moving male Wistar rats was used to examine body temperature and heart rate after OT (0.01 - 1 mg kg(-1); i.p.), AVP (0.001 - 0.1 mg kg(-1); i.p.) or WAY 267,464 (10 and 100 mg kg(-1); i.p.). The actions of the OT receptor antagonist Compound 25 (C25, 5 and 10 mg kg(-1)) and V1A receptor antagonist SR49059 (1 and 10 mg kg(-1)) were studied, as well as possible V1A receptor antagonist effects of WAY 267,464. OT and AVP dose-dependently reduced body temperature and heart rate. WAY 267,464 had similar, but more modest, effects. SR49059, but not C25, prevented the hypothermia and bradycardia induced by OT and AVP. WAY 267,464 (100 mg·kg(-1)) prevented the effects of OT, and to some extent AVP. Peripherally administered OT and AVP have profound cardiovascular and thermoregulatory effects that appear to principally involve the V1A receptor rather than the OT receptor. Additionally, WAY 267,464 is not a simple OT receptor agonist, as it has functionally relevant V1A antagonist actions. © 2014 The British Pharmacological Society.

  6. Region-specific associations between sex, social status, and oxytocin receptor density in the brains of eusocial rodents.

    Science.gov (United States)

    Mooney, S J; Coen, C W; Holmes, M M; Beery, A K

    2015-09-10

    Naturally occurring variations in neuropeptide receptor distributions in the brain contribute to numerous mammalian social behaviors. In naked mole-rats, which live in large social groups and exhibit remarkable reproductive skew, colony-related social behaviors vary with reproductive status. Here we examined whether variation in social status is associated with variations in the location and/or density of oxytocin binding in this species. Autoradiography was performed to assess forebrain oxytocin receptor (OTR) densities in breeding and non-breeding naked mole-rats of both sexes. Overall, males exhibited higher OTR binding in the medial amygdala in comparison to females. While there were no main effects of reproductive status in any region, a sex difference in OTR binding in the nucleus accumbens was mediated by status. Specifically, breeding males tended to have more OTR binding than breeding females in the nucleus accumbens, while no sex difference was observed in subordinates. These effects suggest that oxytocin may act in a sex- and region-specific way that corresponds to reproductive status and associated social behaviors. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Melatonin Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Hua Dong Yin

    2013-05-01

    Full Text Available Melatonin receptors are members of the G protein-coupled receptor (GPCR family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A and MT2 (or Mel1b or MTNR1B receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C, has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.

  8. Effects of the Oral Oxytocin Receptor Antagonist Tocolytic OBE001 on Reproduction in Rats.

    Science.gov (United States)

    Pohl, Oliver; Perks, Deborah; Rhodes, Jon; Comotto, Laura; Baldrick, Paul; Chollet, André

    2016-04-01

    OBE001 is a novel, orally active nonpeptide oxytocin receptor antagonist under development for the treatment of preterm labor and improvement in embryo implantation and pregnancy rate in assisted reproductive technology (ART). The reproductive safety of OBE001 was evaluated in customized fertility embryonic development (FER)/early embryonic development (EED) and fetal development (FD) and pre/postnatal development (PPN) studies mimicking clinical exposure scenarios. Oral OBE001 was evaluated at doses of 37.5, 75, and 125 mg/kg/d in female rats during a FER/EED study (from premating to implantation) and throughout FD during a FD/PPN study. No OBE001 effects were observed during the FER/EED study. The FD/PPN study did not result in adverse OBE001 effects in females allowed to litter, their offspring, and second-generation fetuses. Females at 125 mg/kg/d who underwent cesarean section before term had slight reductions in body weights and food consumption, and associated fetuses had slightly delayed ossification of skull bones, which was not adverse in the absence of effects on live offspring. OBE001 at up to 125 mg/kg/d had no effects on EED and no adverse effects on FD and postnatal development of rats. These results constitute an important step toward the development of OBE001 in preterm labor and ART indications. © The Author(s) 2015.

  9. Uterine and placental expression of canine oxytocin receptor during pregnancy and normal and induced parturition.

    Science.gov (United States)

    Gram, A; Boos, A; Kowalewski, M P

    2014-06-01

    Oxytocin (OT) plays an important role as an inducer of uterine contractility, acting together with its receptor (OTR) to increase synthesis of prostaglandins. Although OT is commonly used in the treatment for dystocia and uterine inertia in the bitch, little attention has been paid to the role of OT in mechanisms regulating parturition in the dog, so that knowledge about the expression of OTR in the canine uterus and placenta is sparse. Consequently, the expression and cellular localization of OTR were investigated in canine utero/placental compartments and interplacental sites throughout pregnancy and at normal and antigestagen-induced parturition, by real-time PCR, immunohistochemistry, western blot and in situ hybridization. The utero/placental and interplacental expression of OTR was constant from pre-implantation until mid-gestation, with a significant increase observed at prepartum luteolysis. In antigestagen-treated mid-pregnant dogs, OTR was upregulated in both interplacental and utero/placental samples. Besides clear myometrial signals, cellular localization of OTR was evident in the endometrial surface epithelial, stromal and vascular endothelial cells. Weaker signals were observed in superficial and deep uterine glandular epithelial cells. Placental OTR was localized in maternal decidual cells and capillary pericytes. Finally, OTR was colocalized with the progesterone receptor (PGR) in maternal decidual cells, coinciding with previously reported increased availability of prostaglandins in the foetal part of the placenta during normal and induced parturition. These findings suggest involvement of OTR in the signalling cascade leading to the prepartum release of prostaglandins from the pregnant canine uterus. © 2014 Blackwell Verlag GmbH.

  10. Social instability stress in adolescent male rats reduces social interaction and social recognition performance and increases oxytocin receptor binding.

    Science.gov (United States)

    Hodges, Travis E; Baumbach, Jennet L; Marcolin, Marina L; Bredewold, Remco; Veenema, Alexa H; McCormick, Cheryl M

    2017-09-17

    Social experiences in adolescence are essential for displaying context-appropriate social behaviors in adulthood. We previously found that adult male rats that underwent social instability stress (SS) in adolescence had reduced social interactions with unfamiliar peers compared with non-stressed controls (CTL). Here we determined whether SS altered social recognition and social reward and brain oxytocin and vasopressin receptor density in adolescence. We confirmed that SS rats spent less time interacting with unfamiliar peers than did CTL rats (p=0.006). Furthermore, CTL rats showed a preference for novel over familiar conspecifics in a social recognition test whereas SS rats did not, which may reflect reduced recognition, impaired memory, or reduced preference for novelty in SS rats. The reward value of social interactions was not affected by SS based on conditioned place preference tests and based on the greater time SS rats spent investigating stimulus rats than did CTL rats when the stimulus rat was behind wire mesh (p=0.03). Finally, oxytocin receptor binding density was higher in the dorsal lateral septum and nucleus accumbens shell in SS rats compared with CTL rats (p=0.02, p=0.01, respectively). No effect of SS was found for vasopressin 1a receptor binding density in any of the brain regions analyzed. We discuss the extent to which the differences in social behavior exhibited after social instability in adolescence involve changes in social salience and social competency, and the possibility that changes in oxytocin signaling in the brain underlie the differences in social behavior. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Carbetocin is a Functional Selective Gq Agonist That Does Not Promote Oxytocin Receptor Recycling After Inducing β-Arrestin-Independent Internalisation.

    Science.gov (United States)

    Passoni, I; Leonzino, M; Gigliucci, V; Chini, B; Busnelli, M

    2016-04-01

    Carbetocin, a long-acting oxytocin analogue, has been reported to elicit interesting and peculiar behavioural effects. The present study investigated the molecular pharmacology of carbetocin, aiming to better understand the molecular basis of its action in the brain. Using bioluminescence resonance energy transfer biosensors, we characterised the effects of carbetocin on the three human oxytocin/vasopressin receptors expressed in the nervous system: the oxytocin receptor (OXTR) and the vasopressin V1a (V1aR) and V1b (V1bR) receptors. Our results indicate that (i) carbetocin activates the OXTR but not the V1aR and V1bR at which it may act as an antagonist; (ii) carbetocin selectively activates only the OXTR/Gq pathway displaying a strong functional selectivity; (iii) carbetocin is a partial agonist at the OXTR/Gq coupling; (iv) carbetocin promotes OXTR internalisation via a previously unreported β-arrestin-independent pathway; and (v) carbetocin does not induce OXTR recycling to the plasma membrane. Altogether, these molecular pharmacology features identify carbetocin as a substantially different analogue compared to the endogenous oxytocin and, consequently, carbetocin is not expected to mimic oxytocin in the brain. Whether these unique features of carbetocin could be exploited therapeutically remains to be established. © 2016 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.

  12. Levels of central oxytocin and glucocorticoid receptor and serum adrenocorticotropic hormone and corticosterone in mandarin voles with different levels of sociability.

    Science.gov (United States)

    Qiao, Xufeng; Yan, Yating; Tai, Fadao; Wu, Ruiyong; Hao, Ping; Fang, Qianqian; Zhang, Shuwei

    2014-11-01

    Sociability is the prerequisite to social living. Oxytocin and the hypothalamo-pituitary-adrenocortical axis mediate various social behaviors across different social contexts in different rodents. We hypothesized that they also mediate levels of non-reproductive social behavior. Here we explored naturally occurring variation in sociability through a social preference test and compared central oxytocin, glucocorticoid receptors, serum adrenocorticotropic hormone and corticosterone in mandarin voles with different levels of sociability. We found that low-social voles showed higher levels of anxiety-like behavior in open field tests, and had more serum adrenocorticotropic hormone and corticosterone than high-social voles. High-social individuals had more glucocorticoid receptor positive neurons in the hippocampus and more oxytocin positive neurons in the paraventricular nuclei and supraoptic nuclei of the hypothalamus than low-social individuals. Within the same level of sociability, females had more oxytocin positive neurons in the paraventricular nuclei and supraoptic nuclei of the hypothalamus than males. These results indicate that naturally occurring social preferences are associated with higher levels of central oxytocin and hippocampus glucocorticoid receptor and lower levels of anxiety and serum adrenocorticotropic hormone and corticosterone. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Oxytocin, stress and social behavior: neurogenetics of the human oxytocin system.

    Science.gov (United States)

    Kumsta, Robert; Heinrichs, Markus

    2013-02-01

    The neuropeptide oxytocin has had key roles throughout mammalian evolution in the regulation of complex social cognition and behaviors, such as attachment, parental care, pair-bonding, as well as social exploration and recognition. Recently, studies have begun to provide evidence that the function of this neuropeptide is impaired in mental disorders associated with social deficits. In this review, we focus on the genetic mechanisms of inter-individual variation in the social neuropeptide signaling. We discuss molecular genetic studies which identified variations in specific genes contributing to individual differences in social behavior and cognition, with a focus on the gene coding for the oxytocin receptor (OXTR) emerging as a particularly promising candidate. We conclude that molecular studies are warranted to elucidate functional consequences of variants that have shown stable associations with sociobehavioral phenotypes. With regard to the variability in individual responses to oxytocin administration, we advocate the need for pharmacogenetic approaches in order to test how the efficacy of oxytocin administration is modulated by genetic variation of OXTR or other genes involved in oxytocin signaling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Interaction between oxytocin receptor DNA methylation and genotype is associated with risk of postpartum depression in women without depression in pregnancy

    Directory of Open Access Journals (Sweden)

    Aleeca F. Bell

    2015-07-01

    Full Text Available Postpartum depression (PPD affects up to 19% of women, negatively impacting maternal and infant health. Reductions in plasma oxytocin levels have been associated with PPD and heritability studies have established a genetic contribution. Epigenetic regulation of the oxytocin receptor gene (OXTR has been demonstrated and we hypothesized that individual epigenetic variability at OXTR may impact the development of PPD and that such variability may be central to predicting risk. This case-control study is nested within the Avon Longitudinal Study of Parents and Children and included 269 cases with PPD and 276 controls matched on age group, parity, and presence or absence of depressive symptoms in pregnancy as assessed by the Edinburgh Postnatal Depression Scale. OXTR DNA methylation (CpG site -934 and genotype (rs53576 and rs2254298 were assayed from DNA extracted from blood collected during pregnancy. Conditional logistic regression was used to estimate odds ratios (OR and 95% confidence intervals (CI for the association of elevated symptoms of PPD with genotype, methylation, and their interaction adjusted for psychosocial factors (n=500. There was evidence of an interaction between rs53576 and methylation in the OXTR gene amongst women who did not have depression prenatally but developed PPD (p interaction=0.026, adjusted for covariates, n=257. Those women with GG genotype showed 2.63 greater odds of PPD for every 10% increase in methylation level (95% CI: 1.37, 5.03, whereas methylation was unrelated to PPD amongst A carriers (OR=1.00, 95%CI: 0.58, 1.73. There was no such interaction among women with PPD and prenatal depression. These data indicate that epigenetic variation that decreases expression of OXTR in a susceptible genotype may play a contributory role in the etiology of postpartum depression.

  15. No evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT1a receptor activation.

    Science.gov (United States)

    Kuypers, Kim P C; de la Torre, Rafael; Farre, Magi; Yubero-Lahoz, Samanta; Dziobek, Isabel; Van den Bos, Wouter; Ramaekers, Johannes G

    2014-01-01

    The present study aimed at investigating the effect of MDMA on measures of empathy and social interaction, and the roles of oxytocin and the 5-HT1A receptor in these effects. The design was placebo-controlled within-subject with 4 treatment conditions: MDMA (75 mg), with or without pindolol (20 mg), oxytocin nasal spray (40 IU+16 IU) or placebo. Participants were 20 healthy poly-drug MDMA users, aged between 18-26 years. Cognitive and emotional empathy were assessed by means of the Reading the Mind in the Eyes Test and the Multifaceted Empathy Test. Social interaction, defined as trust and reciprocity, was assessed by means of a Trust Game and a Social Ball Tossing Game. Results showed that MDMA selectively affected emotional empathy and left cognitive empathy, trust and reciprocity unaffected. When combined with pindolol, these effects remained unchanged. Oxytocin did not affect measures of empathy and social interaction. Changes in emotional empathy were not related to oxytocin plasma levels. It was concluded that MDMA (75 mg) selectively enhances emotional empathy in humans. While the underlying neurobiological mechanism is still unknown, it is suggested that peripheral oxytocin does not seem to be the main actor in this; potential candidates are the serotonin 2A and the vasopressin 1A receptors. Trial registration: MDMA & PSB NTR 2636.

  16. No evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT1a receptor activation.

    Directory of Open Access Journals (Sweden)

    Kim P C Kuypers

    Full Text Available The present study aimed at investigating the effect of MDMA on measures of empathy and social interaction, and the roles of oxytocin and the 5-HT1A receptor in these effects. The design was placebo-controlled within-subject with 4 treatment conditions: MDMA (75 mg, with or without pindolol (20 mg, oxytocin nasal spray (40 IU+16 IU or placebo. Participants were 20 healthy poly-drug MDMA users, aged between 18-26 years. Cognitive and emotional empathy were assessed by means of the Reading the Mind in the Eyes Test and the Multifaceted Empathy Test. Social interaction, defined as trust and reciprocity, was assessed by means of a Trust Game and a Social Ball Tossing Game. Results showed that MDMA selectively affected emotional empathy and left cognitive empathy, trust and reciprocity unaffected. When combined with pindolol, these effects remained unchanged. Oxytocin did not affect measures of empathy and social interaction. Changes in emotional empathy were not related to oxytocin plasma levels. It was concluded that MDMA (75 mg selectively enhances emotional empathy in humans. While the underlying neurobiological mechanism is still unknown, it is suggested that peripheral oxytocin does not seem to be the main actor in this; potential candidates are the serotonin 2A and the vasopressin 1A receptors. Trial registration: MDMA & PSB NTR 2636.

  17. No Evidence that MDMA-Induced Enhancement of Emotional Empathy Is Related to Peripheral Oxytocin Levels or 5-HT1a Receptor Activation

    Science.gov (United States)

    Kuypers, Kim P. C.; de la Torre, Rafael; Farre, Magi; Yubero-Lahoz, Samanta; Dziobek, Isabel; Van den Bos, Wouter; Ramaekers, Johannes G.

    2014-01-01

    The present study aimed at investigating the effect of MDMA on measures of empathy and social interaction, and the roles of oxytocin and the 5-HT1A receptor in these effects. The design was placebo-controlled within-subject with 4 treatment conditions: MDMA (75 mg), with or without pindolol (20 mg), oxytocin nasal spray (40 IU+16 IU) or placebo. Participants were 20 healthy poly-drug MDMA users, aged between 18–26 years. Cognitive and emotional empathy were assessed by means of the Reading the Mind in the Eyes Test and the Multifaceted Empathy Test. Social interaction, defined as trust and reciprocity, was assessed by means of a Trust Game and a Social Ball Tossing Game. Results showed that MDMA selectively affected emotional empathy and left cognitive empathy, trust and reciprocity unaffected. When combined with pindolol, these effects remained unchanged. Oxytocin did not affect measures of empathy and social interaction. Changes in emotional empathy were not related to oxytocin plasma levels. It was concluded that MDMA (75 mg) selectively enhances emotional empathy in humans. While the underlying neurobiological mechanism is still unknown, it is suggested that peripheral oxytocin does not seem to be the main actor in this; potential candidates are the serotonin 2A and the vasopressin 1A receptors. Trial Registration MDMA & PSB NTR 2636 PMID:24972084

  18. Developmental changes in hypothalamic oxytocin and oxytocin receptor mRNA expression and their sensitivity to fasting in male and female rats.

    Science.gov (United States)

    Matsuzaki, Toshiya; Iwasa, Takeshi; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Kawami, Takako; Murakami, Masahiro; Yamasaki, Mikio; Yamamoto, Yuri; Kato, Takeshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-04-01

    Oxytocin (OT) affects the central nervous system and is involved in a variety of social and non-social behaviors. Recently, the role played by OT in energy metabolism and its organizational effects on estrogen receptor alpha (ER-α) during the neonatal period have gained attention. In this study, the developmental changes in the hypothalamic mRNA levels of OT, the OT receptor (OTR), and ER-α were evaluated in male and female rats. In addition, the fasting-induced changes in the hypothalamic mRNA levels of OT and the OTR were evaluated. Hypothalamic explants were taken from postnatal day (PND) 10, 20, and 30 rats, and the mRNA level of each molecule was measured. Hypothalamic OT mRNA expression increased throughout the developmental period in both sexes. The rats' hypothalamic OTR mRNA levels were highest on PND 10 and decreased throughout the developmental period. In the male rats, the hypothalamic mRNA levels of ER-α were higher on PND 30 than on PND 10. On the other hand, no significant differences in hypothalamic ER-α mRNA expression were detected among the examined time points in the female rats, although hypothalamic ER-α mRNA expression tended to be higher on PND 30 than on PND 10. Significant positive correlations were detected between hypothalamic OT and ER-α mRNA expression in both the male and female rats. Hypothalamic OT mRNA expression was not affected by fasting at any of the examined time points in either sex. These results indicate that hypothalamic OT expression is not sensitive to fasting during the developmental period. In addition, as a positive correlation was detected between hypothalamic OT and ER-α mRNA expression, these two molecules might interact with each other to induce appropriate neuronal development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Variants in adjacent oxytocin/vasopressin gene region and associations with ASD diagnosis and other autism related endophenotypes

    Directory of Open Access Journals (Sweden)

    Sunday M. Francis

    2016-05-01

    Full Text Available Background: There has been increasing interest in oxytocin (peptide: OT, gene: OXT as a treatment pathway for neurodevelopmental disorders such as Autism Spectrum Disorder (ASD. Neurodevelopmental disorders affect functional, social, and intellectual abilities. With advances in molecular biology, research has connected multiple gene regions to the clinical presentation of ASD. Studies have also shown that the neuropeptide hormones OT and arginine vasopressin (AVP influence mammalian social and territorial behaviors and may have treatment potential for neurodevelopmental disorders. Published data examining molecular and phenotypic variation in ASD, such as cognitive abilities, are limited. Since most studies have focused on the receptors in the OT-AVP system, we investigated genetic variation within peptide genes for association with phenotypic ASD features that help identify subgroups within the spectrum.Methods: In this study, TDT analysis was carried out utilizing FBAT in 207 probands (156 trios and a European Ancestry (EA subsample (108 trios. The evolutionarily related and adjacent genes of OXT and AVP were studied for associations between the tagged single nucleotide polymorphisms and ASD diagnosis, social abilities, restrictive and repetitive behaviors, and IQ for cognitive abilities. Additionally, relationships with whole blood serotonin (WB5HT were explored because of the developmental relationships connecting plasma levels of OT and WB5HT within ASD.Results: Results indicate significant association between OXT rs6084258 (p=0.001 and ASD. Associations with several intermediate phenotypes were also noted: OXT rs6133010 was associated with IQ (full scale IQ, p=0.008; nonverbal IQ, p=0.010, verbal IQ, p=0.006; and OXT rs4813625 and OXT rs877172 were associated with WB5HT levels (EA, p=0.027 and p=0.033, respectively. Additionally, we measured plasma OT (pOT levels in a subsample (N=54. Results show the three polymorphisms, OXT rs6084258

  20. Variants in Adjacent Oxytocin/Vasopressin Gene Region and Associations with ASD Diagnosis and Other Autism Related Endophenotypes.

    Science.gov (United States)

    Francis, Sunday M; Kistner-Griffin, Emily; Yan, Zhongyu; Guter, Stephen; Cook, Edwin H; Jacob, Suma

    2016-01-01

    There has been increasing interest in oxytocin (peptide: OT, gene: OXT) as a treatment pathway for neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). Neurodevelopmental disorders affect functional, social, and intellectual abilities. With advances in molecular biology, research has connected multiple gene regions to the clinical presentation of ASD. Studies have also shown that the neuropeptide hormones OT and arginine vasopressin (AVP) influence mammalian social and territorial behaviors and may have treatment potential for neurodevelopmental disorders. Published data examining molecular and phenotypic variation in ASD, such as cognitive abilities, are limited. Since most studies have focused on the receptors in the OT-AVP system, we investigated genetic variation within peptide genes for association with phenotypic ASD features that help identify subgroups within the spectrum. In this study, TDT analysis was carried out utilizing FBAT in 207 probands (156 trios) and a European Ancestry (EA) subsample (108 trios).The evolutionarily related and adjacent genes of OXT and AVP were studied for associations between the tagged single nucleotide polymorphisms and ASD diagnosis, social abilities, restrictive and repetitive behaviors, and IQ for cognitive abilities. Additionally, relationships with whole blood serotonin (WB5HT) were explored because of the developmental relationships connecting plasma levels of OT and WB5HT within ASD. RESULTS indicate significant association between OXT rs6084258 (p = 0.001) and ASD. Associations with several endophenotypes were also noted: OXT rs6133010 was associated with IQ (full scale IQ, p = 0.008; nonverbal IQ, p = 0.010, verbal IQ, p = 0.006); and OXT rs4813625 and OXT rs877172 were associated with WB5HT levels (EA, p = 0.027 and p = 0.033, respectively). Additionally, we measured plasma OT (pOT) levels in a subsample (N = 54). RESULTS show the three polymorphisms, OXT rs6084258, OXT rs11697250, and OXT rs877172

  1. Neonatal paternal deprivation impairs social recognition and alters levels of oxytocin and estrogen receptor α mRNA expression in the MeA and NAcc, and serum oxytocin in mandarin voles.

    Science.gov (United States)

    Cao, Yan; Wu, Ruiyong; Tai, Fadao; Zhang, Xia; Yu, Peng; An, Xiaolei; Qiao, Xufeng; Hao, Ping

    2014-01-01

    Paternal care is necessary for the healthy development of social behavior in monogamous rodents and social recognition underpins social behavior in these animals. The effects of paternal care on the development of social recognition and underlying neuroendocrine mechanisms, especially the involvement of oxytocin and estrogen pathways, remain poorly understood. We investigated the effects of paternal deprivation (PD: father was removed from neonatal pups and mother alone raised the offspring) on social recognition in mandarin voles (Microtus mandarinus), a socially monogamous rodent. Paternal deprivation was found to inhibit the development of social recognition in female and male offspring according to a habituation-dishabituation paradigm. Paternal deprivation resulted in increased inactivity and reduced investigation during new encounters with other animals. Paternal deprivation reduced oxytocin receptor (OTR) and estrogen receptor α (ERα) mRNA expression in the medial amygdala and nucleus accumbens. Paternal deprivation reduced serum oxytocin (OT) concentration in females, but had no effect on males. Our results provide substantial evidence that paternal deprivation inhibits the development of social recognition in female and male mandarin voles and alters social behavior later in life. This is possibly the result of altered expression of central OTR and ERα and serum OT levels caused by paternal deprivation. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Oxytocin and Social Sensitivity: Gene Polymorphisms in Relation to Depressive Symptoms and Suicidal Ideation

    OpenAIRE

    McQuaid, Robyn J.; McInnis, Opal A.; Matheson, Kimberly; Anisman, Hymie

    2016-01-01

    Although the neuropeptide oxytocin has been associated with enhanced prosocial behaviors, it has also been linked to aggression and mental health disorders. Thus, it was suggested that oxytocin might act by increasing the salience of social stimuli, irrespective of whether these are positive or negative, thus increasing vulnerability to negative mental health outcomes. The current study (N = 243), conducted among White university students, examined the relation of trauma, depressive symptoms ...

  3. Imaging oxytocin x dopamine interactions: An epistasis effect of CD38 and COMT gene variants influences the impact of oxytocin on amygdala activation to social stimuli

    Directory of Open Access Journals (Sweden)

    Carina eSauer

    2013-04-01

    Full Text Available Although oxytocin (OT has become a major target for the investigation of positive social processes, it can be assumed that it exerts its effects in concert with other neurotransmitters. One candidate for such an interaction is dopamine (DA. For both systems, genetic variants have been identified that influence the availability of the particular substance. A variant of the gene coding for the transmembrane protein CD38 (rs3796863, which is engaged in OT secretion, has been associated with OT plasma level. The common catechol-O-methyltransferase (COMT val158met polymorphism is known to influence COMT activity and therefore the degradation of DA. The present study aimed to investigate OTxDA interactions in the context of an OT challenge study. Hence, we tested the influence of the above mentioned genetic variants and their interaction on the activation of different brain regions (amygdala, VTA, ventral striatum and fusiform gyrus during the presentation of social stimuli. In a pharmacological cross-over design 55 participants were investigated under OT and placebo (PLA by means of fMRI.Brain imaging results revealed no significant effects for VTA or ventral striatum. Regarding the fusiform gyrus, we could not find any effects apart from those already described in (Sauer et al., 2012. Analyses of amygdala activation resulted in no gene main effect, no gene x substance interaction but a significant gene x gene x substance interaction. While under PLA the effect of CD38 on bilateral amygdala activation to social stimuli was modulated by the COMT genotype, no such epistasis effect was found under OT. Our results provide evidence for an OTxDA interaction during responses to social stimuli. We postulate that the effect of central OT secretion on amygdala response is modulated by the availability of DA. Therefore, for an understanding of the effect of social hormones on social behavior, interactions of OT with other transmitter systems have to be taken

  4. Retinoid X receptor and peroxisome proliferator-activated receptor activate an estrogen responsive gene independent of the estrogen receptor.

    Science.gov (United States)

    Nuñez, S B; Medin, J A; Braissant, O; Kemp, L; Wahli, W; Ozato, K; Segars, J H

    1997-03-14

    Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.

  5. Identification of cis-acting regulatory elements in the human oxytocin gene promoter.

    Science.gov (United States)

    Richard, S; Zingg, H H

    1991-12-01

    The expression of hormone-inducible genes is determined by the interaction of trans-acting factors with hormone-inducible elements and elements mediating basal and cell-specific expression. We have shown earlier that the gene encoding the hypothalamic nonapeptide oxytocin (OT) is under the control of an estrogen response element (ERE). The present study was aimed at identifying cis-acting elements mediating basal expression of the OT gene. A construct containing sequences -381 to +36 of the human OT gene was linked to a reporter gene and transiently transfected into a series of neuronal and nonneuronal cell lines. Expression of this construct was cell specific: it was highest in the neuroblastoma-derived cell line, Neuro-2a, and lowest in NIH 3T3 and JEG-3 cells. By 5' deletion analysis, we determined that a segment from -49 to +36 was capable of mediating cells-pecific promoter activity. Within this segment, we identified three proximal promoter elements (PPE-1, PPE-2, and PPE-3) that are each required for promoter activity. Most notably, mutation of a conserved purine-rich element (GAGAGA) contained within PPE-2 leads to a 10-fold decrease in promoter strength. Gel mobility shift analysis with three different double-stranded oligonucleotides demonstrated that each proximal promoter element binds distinct nuclear factors. In each case, only the homologous oligonucleotide, but neither of the oligonucleotides corresponding to adjacent elements, was able to act as a competitor. Thus, a different set of factors appears to bind independently to each element. By reinserting the homologous ERE or a heterologous glucocorticoid response element upstream of intact or altered proximal promoter segments we determined that removal or mutation of proximal promoter elements decreases basal expression, but does not abrogate the hormone responsiveness of the promoter. In conclusion, these results indicate that an important component of the transcriptional activity of the OT

  6. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior.

    Science.gov (United States)

    Dumais, Kelly M; Veenema, Alexa H

    2016-01-01

    The neuropeptides vasopressin (VP) and oxytocin (OT) and their receptors in the brain are involved in the regulation of various social behaviors and have emerged as drug targets for the treatment of social dysfunction in several sex-biased neuropsychiatric disorders. Sex differences in the VP and OT systems may therefore be implicated in sex-specific regulation of healthy as well as impaired social behaviors. We begin this review by highlighting the sex differences, or lack of sex differences, in VP and OT synthesis in the brain. We then discuss the evidence showing the presence or absence of sex differences in VP and OT receptors in rodents and humans, as well as showing new data of sexually dimorphic V1a receptor binding in the rat brain. Importantly, we find that there is lack of comprehensive analysis of sex differences in these systems in common laboratory species, and we find that, when sex differences are present, they are highly brain region- and species-specific. Interestingly, VP system parameters (VP and V1aR) are typically higher in males, while sex differences in the OT system are not always in the same direction, often showing higher OT expression in females, but higher OT receptor expression in males. Furthermore, VP and OT receptor systems show distinct and largely non-overlapping expression in the rodent brain, which may cause these receptors to have either complementary or opposing functional roles in the sex-specific regulation of social behavior. Though still in need of further research, we close by discussing how manipulations of the VP and OT systems have given important insights into the involvement of these neuropeptide systems in the sex-specific regulation of social behavior in rodents and humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Vasopressin and oxytocin receptor systems in the brain: sex differences and sex-specific regulation of social behavior

    Science.gov (United States)

    Dumais, Kelly M.; Veenema, Alexa H.

    2015-01-01

    The neuropeptides vasopressin (VP) and oxytocin (OT) and their receptors in the brain are involved in the regulation of various social behaviors and have emerged as drug targets for the treatment of social dysfunction in several sex-biased neuropsychiatric disorders. Sex differences in the VP and OT systems may therefore be implicated in sex-specific regulation of healthy as well as impaired social behaviors. We begin this review by highlighting the sex differences, or lack of sex differences, in VP and OT synthesis in the brain. We then discuss the evidence showing the presence or absence of sex differences in VP and OT receptors in rodents and humans, as well as showing new data of sexually dimorphic V1a receptor binding in the rat brain. Importantly, we find that there is lack of comprehensive analysis of sex differences in these systems in common laboratory species, and we find that, when sex differences are present, they are highly brain region- and species- specific. Interestingly, VP system parameters (VP and V1aR) are typically higher in males, while sex differences in the OT system are not always in the same direction, often showing higher OT expression in females, but higher OT receptor expression in males. Furthermore, VP and OT receptor systems show distinct and largely non-overlapping expression in the rodent brain, which may cause these receptors to have either complementary or opposing functional roles in the sex-specific regulation of social behavior. Though still in need of further research, we close by discussing how manipulations of the VP and OT systems have given important insights into the involvement of these neuropeptide systems in the sex-specific regulation of social behavior in rodents and humans. PMID:25951955

  8. Preclinical Testing of Novel Oxytocin Receptor Activators in Models of Autism Phenotypes

    Science.gov (United States)

    2015-11-30

    higher incidence of autism observed in male versus female children . BALB/cByJ Cohort 1 (n ¼ 6 per treatment group; 6e7 weeks of age) was tested for acute...Veenstra-Vanderweele, J., 2011. A systematic review of medical treatments for children with autism spectrum disorders. Pediatrics 127, e1312ee1321. Melis...R.L., Leserman, J., Jarskog, L.F., Penn, D.L., 2011. Intranasal oxytocin reduces psychotic symptoms and improves theory of mind and social perception

  9. On the role of oxytocin in borderline personality disorder.

    Science.gov (United States)

    Brüne, Martin

    2016-09-01

    Interpersonal dysfunction is central to borderline personality disorder (BPD). Recent research has focused on the role of oxytocin (OT) in BPD, particularly regarding associations of OT activity with symptoms, genetic polymorphisms of the oxytocin receptor coding gene (OXTR) in BPD, and experimental modification of interpersonal core problems of patients with BPD such as hypervigilance towards threat detection, mistrust, and non-verbal behaviour during social interaction by intranasal application of OT. A literature ('medline') review was performed using the keywords 'oxytocin' and 'borderline personality disorder'. Secondary literature on trauma and attachment in relation to OT was also considered relevant. Together, findings suggest that in BPD OT is associated with enhanced defensive mechanisms and avoidance behaviour. Moreover, gene-environment interaction concerning polymorphic variations of the OXTR gene and childhood adversity in BPD suggests that these genes convey developmental flexibility or 'differential susceptibility' to environmental contingencies, whereby BPD resides at the poor outcome end of the spectrum. In view of the conflicting literature, it needs to be studied carefully whether OT can serve as a therapeutic agent given adjunct to psychotherapy in BPD. More research about the role of OT is also required with regard to the prevention of the non-genetic intergenerational transmission of BPD. Clarifying the role of OT in BPD may also benefit from research in non-human animals targeting the interaction between early adversity and OT availability more directly. The study of oxytocin can contribute to the understanding of the neurobiology of borderline personality disorder. Oxytocin is critically involved in attachment security, and methylation of the oxytocin receptor may play a role in the epigenetic modulation of early adversity. The intranasal application of oxytocin may be a useful therapeutic adjunct to psychotherapy. Insecure attachment and

  10. Activation of Supraoptic Oxytocin Neurons by Secretin Facilitates Social Recognition.

    Science.gov (United States)

    Takayanagi, Yuki; Yoshida, Masahide; Takashima, Akihide; Takanami, Keiko; Yoshida, Shoma; Nishimori, Katsuhiko; Nishijima, Ichiko; Sakamoto, Hirotaka; Yamagata, Takanori; Onaka, Tatsushi

    2017-02-01

    Social recognition underlies social behavior in animals, and patients with psychiatric disorders associated with social deficits show abnormalities in social recognition. Oxytocin is implicated in social behavior and has received attention as an effective treatment for sociobehavioral deficits. Secretin receptor-deficient mice show deficits in social behavior. The relationship between oxytocin and secretin concerning social behavior remains to be determined. Expression of c-Fos in oxytocin neurons and release of oxytocin from their dendrites after secretin application were investigated. Social recognition was examined after intracerebroventricular or local injection of secretin, oxytocin, or an oxytocin receptor antagonist in rats, oxytocin receptor-deficient mice, and secretin receptor-deficient mice. Electron and light microscopic immunohistochemical analysis was also performed to determine whether oxytocin neurons extend their dendrites into the medial amygdala. Supraoptic oxytocin neurons expressed the secretin receptor. Secretin activated supraoptic oxytocin neurons and facilitated oxytocin release from dendrites. Secretin increased acquisition of social recognition in an oxytocin receptor-dependent manner. Local application of secretin into the supraoptic nucleus facilitated social recognition, and this facilitation was blocked by an oxytocin receptor antagonist injected into, but not outside of, the medial amygdala. In the medial amygdala, dendrite-like thick oxytocin processes were found to extend from the supraoptic nucleus. Furthermore, oxytocin treatment restored deficits of social recognition in secretin receptor-deficient mice. The results of our study demonstrate that secretin-induced dendritic oxytocin release from supraoptic neurons enhances social recognition. The newly defined secretin-oxytocin system may lead to a possible treatment for social deficits. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights

  11. Stimulation of Oxytocin Receptor during Early Reperfusion Period Protects the Heart against Ischemia/Reperfusion Injury: the Role of Mitochondrial ATPSensitive Potassium Channel, Nitric Oxide, and Prostaglandins

    Directory of Open Access Journals (Sweden)

    Alireza Imani

    2015-10-01

    Full Text Available Postconditioning is a simple and safe strategy for cardioprotection and infarct size limitation. Ourprevious study showed that oxytocin (OT exerts postconditioning effect on ischemic/reperfused isolated ratheart. The aim of this study was to investigate the involvement of OT receptor, mitochondrial ATP-sensitivepotassium channel (mKATP, nitric oxide (NO and cyclooxygenase (COX pathways in OTpostconditioning. Isolated rat hearts were divided into10 groups and underwent 30 min of regional ischemiafollowed by 120 min of reperfusion (n =6. In I/R (ischemia/reperfusion group, ischemia and reperfusionwere induced without any treatment. In OT group, oxytocin was perfused 5 min prior to beginning ofreperfusion for 25 min. In groups 3-6, atosiban (oxytocin receptor blocker, L-NAME (N-Nitro-L-ArginineMethyl Ester, non-specific nitric oxide synthase inhibitor, 5-HD (5-hydroxydecanoate, mKATP inhibitorand indomethacin (cyclooxygenase inhibitor were infused prior to oxytocin administration. In others, thementioned inhibitors were perfused prior to ischemia without oxytocin infusion. Infarct size, ventricularhemodynamic, coronary effluent, malondialdehyde (MDA and lactate dehydrogenase (LDH were measuredat the end of reperfusion. OT perfusion significantly reduced infarct size, MDA and LDH in comparison withIR group. Atosiban, 5HD, L-NAME and indomethacin abolished the postconditioning effect of OT. Perfusionof the inhibitors alone prior to ischemia had no effect on infarct size, hemodynamic parameters, coronaryeffluent and biochemical markers as compared with I/R group. In conclusion, this study indicates thatpostconditioning effects of OT are mediated by activation of mKATP and production of NO andProstaglandins (PGs.

  12. Newborn Analgesia Mediated by Oxytocin during Delivery

    Science.gov (United States)

    Mazzuca, Michel; Minlebaev, Marat; Shakirzyanova, Anastasia; Tyzio, Roman; Taccola, Giuliano; Janackova, Sona; Gataullina, Svetlana; Ben-Ari, Yehezkel; Giniatullin, Rashid; Khazipov, Rustem

    2011-01-01

    The mechanisms controlling pain in newborns during delivery are poorly understood. We explored the hypothesis that oxytocin, an essential hormone for labor and a powerful neuromodulator, exerts analgesic actions on newborns during delivery. Using a thermal tail-flick assay, we report that pain sensitivity is two-fold lower in rat pups immediately after birth than 2 days later. Oxytocin receptor antagonists strongly enhanced pain sensitivity in newborn, but not in 2-day-old rats, whereas oxytocin reduced pain at both ages suggesting an endogenous analgesia by oxytocin during delivery. Similar analgesic effects of oxytocin, measured as attenuation of pain-vocalization induced by electrical whisker pad stimulation, were also observed in decerebrated newborns. Oxytocin reduced GABA-evoked calcium responses and depolarizing GABA driving force in isolated neonatal trigeminal neurons suggesting that oxytocin effects are mediated by alterations of intracellular chloride. Unlike GABA signaling, oxytocin did not affect responses mediated by P2X3 and TRPV1 receptors. In keeping with a GABAergic mechanism, reduction of intracellular chloride by the diuretic NKCC1 chloride co-transporter antagonist bumetanide mimicked the analgesic actions of oxytocin and its effects on GABA responses in nociceptive neurons. Therefore, endogenous oxytocin exerts an analgesic action in newborn pups that involves a reduction of the depolarizing action of GABA on nociceptive neurons. Therefore, the same hormone that triggers delivery also acts as a natural pain killer revealing a novel facet of the protective actions of oxytocin in the fetus at birth. PMID:21519396

  13. The role of genetic variants in genes regulating the oxytocin-vasopressin neurohumoral system in childhood-onset aggression.

    Science.gov (United States)

    Malik, Ayesha I; Zai, Clement C; Berall, Laura; Abu, Zihad; Din, Farah; Nowrouzi, Behdin; Chen, Sheng; Beitchman, Joseph H

    2014-10-01

    The genetic etiology of aggressive behaviors remains elusive, but growing evidence suggests that they are heritable, and certain genetic variants have been implicated as contributing factors. The oxytocin-vasopressin (OXT-AVP) neurohumoral system has recently been implicated in social behaviors. Oxytocin, especially, has been linked to prosocial behaviors such as trust and social bonds. Hence, the aim of this study was to determine whether genes regulating this system were also associated with childhood-onset aggressive behaviors. Our sample included 182 White children showing extreme, persistent, and pervasive aggressive behavior. These cases were matched with 182 White controls on the basis of sex and age. We used PCR to determine the genotype for 28 single nucleotide polymorphisms within eight genes regulating the OXT-AVP system, including CD38 polymorphisms. Genotypic analyses were carried out using STATA, whereas differences in haplotypic and allelic frequencies were analyzed using Unphased. None of the results reached significance after correction for multiple testing. However, nominally significant allelic effects were observed for OXTR rs6770632T (P=0.028) and AVPR1A rs11174811G (P=0.040) in females, and OXTR rs237898A (P=0.006), rs237902C (P=0.007), and AVP rs3761249A (P=0.008) in males. Genetic variants regulating the OXT-AVP system may be associated with childhood-onset aggression.

  14. WAY 267,464, a non-peptide oxytocin receptor agonist, impairs social recognition memory in rats through a vasopressin 1A receptor antagonist action.

    Science.gov (United States)

    Hicks, Callum; Ramos, Linnet; Reekie, Tristan A; Narlawar, Rajeshwar; Kassiou, Michael; McGregor, Iain S

    2015-08-01

    Recent in vitro studies suggest that the oxytocin receptor (OTR) agonist WAY 267,464 has vasopressin 1A receptor (V1AR) antagonist effects. This might limit its therapeutic potential due to the positive involvement of the V1AR in social behavior. The objective of this study was to assess functional V1AR antagonist-like effects of WAY 267,464 in vivo using a test of social recognition memory. Adult experimental rats were tested for their recognition of a juvenile conspecific rat that they had briefly met 30 or 120 min previously. The modulatory effects of vasopressin (AVP), the selective V1AR antagonist SR49059, and WAY 267,464 were examined together with those of the selective OTR antagonist Compound 25 (C25). Drugs were administered immediately after the first meeting. Control rats showed recognition of juveniles at a 30 min, but not a 120 min retention interval. AVP (0.005, but not 0.001 mg/kg intraperitoneal (i.p.)) improved memory such that recognition was evident after 120 min. This was prevented by pretreatment with SR49059 (1 mg/kg) and WAY 267,464 (10, 30, and 100 mg/kg). Given alone, SR49059 (1 mg/kg) and WAY 267,464 (30 and 100 mg/kg) impaired memory at a 30 min retention interval. The impairment with WAY 267,464 was not prevented by C25 (5 mg/kg), suggesting V1AR rather than OTR mediation of the effect. Given alone, C25 also impaired memory. These results highlight a tonic role for endogenous AVP (and oxytocin) in social recognition memory and indicate that WAY 267,464 functions in vivo as a V1AR antagonist to prevent the memory-enhancing effects of AVP.

  15. Oxytocin Modulates Nociception as an Agonist of Pain-Sensing TRPV1

    Directory of Open Access Journals (Sweden)

    Yelena Nersesyan

    2017-11-01

    Full Text Available Oxytocin is a hormone with various actions. Oxytocin-containing parvocellular neurons project to the brainstem and spinal cord. Oxytocin release from these neurons suppresses nociception of inflammatory pain, the molecular mechanism of which remains unclear. Here, we report that the noxious stimulus receptor TRPV1 is an ionotropic oxytocin receptor. Oxytocin elicits TRPV1 activity in native and heterologous expression systems, regardless of the presence of the classical oxytocin receptor. In TRPV1 knockout mice, DRG neurons exhibit reduced oxytocin sensitivity relative to controls, and oxytocin injections significantly attenuate capsaicin-induced nociception in in vivo experiments. Furthermore, oxytocin potentiates TRPV1 in planar lipid bilayers, supporting a direct agonistic action. Molecular modeling and simulation experiments provide insight into oxytocin-TRPV1 interactions, which resemble DkTx. Together, our findings suggest the existence of endogenous regulatory pathways that modulate nociception via direct action of oxytocin on TRPV1, implying its analgesic effect via channel desensitization.

  16. Oxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience.

    Science.gov (United States)

    Johnson, Zachary V; Young, Larry J

    2017-05-01

    Oxytocin- and vasopressin-related systems are present in invertebrate and vertebrate bilaterian animals, including humans, and exhibit conserved neuroanatomical and functional properties. In vertebrates, these systems innervate conserved neural networks that regulate social learning and behavior, including conspecific recognition, social attachment, and parental behavior. Individual and species-level variation in central organization of oxytocin and vasopressin systems has been linked to individual and species variation in social learning and behavior. In humans, genetic polymorphisms in the genes encoding oxytocin and vasopressin peptides and/or their respective target receptors have been associated with individual variation in social recognition, social attachment phenotypes, parental behavior, and psychiatric phenotypes such as autism. Here we describe both conserved and variable features of central oxytocin and vasopressin systems in the context of social behavioral diversity, with a particular focus on neural networks that modulate social learning, behavior, and salience of sociosensory stimuli during species-typical social contexts. Published by Elsevier Ltd.

  17. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets.

    Science.gov (United States)

    Peris, Joanna; MacFadyen, Kaley; Smith, Justin A; de Kloet, Annette D; Wang, Lei; Krause, Eric G

    2017-04-01

    The mesolimbic dopamine (DA) circuitry determines which behaviors are positively reinforcing and therefore should be encoded in the memory to become a part of the behavioral repertoire. Natural reinforcers, like food and sex, activate this pathway, thereby increasing the likelihood of further consummatory, social, and sexual behaviors. Oxytocin (OT) has been implicated in mediating natural reward and OT-synthesizing neurons project to the ventral tegmental area (VTA) and nucleus accumbens (NAc); however, direct neuroanatomical evidence of OT regulation of DA neurons within the VTA is sparse. To phenotype OT-receptor (OTR) expressing neurons originating within the VTA, we delivered Cre-inducible adeno-associated virus that drives the expression of fluorescent marker into the VTA of male mice that had Cre-recombinase driven by OTR gene expression. OTR-expressing VTA neurons project to NAc, prefrontal cortex, the extended amygdala, and other forebrain regions but less than 10% of these OTR-expressing neurons were identified as DA neurons (defined by tyrosine hydroxylase colocalization). Instead, almost 50% of OTR-expressing cells in the VTA were glutamate (GLU) neurons, as indicated by expression of mRNA for the vesicular GLU transporter (vGluT). About one-third of OTR-expressing VTA neurons did not colocalize with either DA or GLU phenotypic markers. Thus, OTR expression by VTA neurons implicates that OT regulation of reward circuitry is more complex than a direct action on DA neurotransmission. J. Comp. Neurol. 525:1094-1108, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Cell-type specific oxytocin gene expression from AAV delivered promoter deletion constructs into the rat supraoptic nucleus in vivo.

    Directory of Open Access Journals (Sweden)

    Raymond L Fields

    Full Text Available The magnocellular neurons (MCNs in the hypothalamus selectively express either oxytocin (OXT or vasopressin (AVP neuropeptide genes, a property that defines their phenotypes. Here we examine the molecular basis of this selectivity in the OXT MCNs by stereotaxic microinjections of adeno-associated virus (AAV vectors that contain various OXT gene promoter deletion constructs using EGFP as the reporter into the rat supraoptic nucleus (SON. Two weeks following injection of the AAVs, immunohistochemical assays of EGFP expression from these constructs were done to determine whether the EGFP reporter co-localizes with either the OXT- or AVP-immunoreactivity in the MCNs. The results show that the key elements in the OT gene promoter that regulate the cell-type specific expression the SON are located -216 to -100 bp upstream of the transcription start site. We hypothesize that within this 116 bp domain a repressor exists that inhibits expression specifically in AVP MCNs, thereby leading to the cell-type specific expression of the OXT gene only in the OXT MCNs.

  19. Oxytocin Receptor Genetic and Epigenetic Variations: Association with Child Abuse and Adult Psychiatric Symptoms

    Science.gov (United States)

    Smearman, Erica L.; Almli, Lynn M.; Conneely, Karen N.; Brody, Gene H.; Sales, Jessica M.; Bradley, Bekh; Ressler, Kerry J.; Smith, Alicia K.

    2016-01-01

    Childhood abuse can alter biological systems and increase risk for adult psychopathology. Epigenetic mechanisms, alterations in DNA structure that regulate the gene expression, are a potential mechanism underlying this risk. While abuse associates with methylation of certain genes, particularly those in the stress response system, no study to date…

  20. Oxytocin receptors expressed and coupled to Ca2+ signalling in a human vascular smooth muscle cell line.

    OpenAIRE

    Yazawa, H.; Hirasawa, A.; Horie, K.; Saita, Y.; Iida, E.; Honda, K.; Tsujimoto, G.

    1996-01-01

    1. In a human vascular smooth muscle cell line (HVSMC), binding experiments with [3H]-arginine8-vasopressin (AVP) have shown the existence of a homogeneous population of binding sites with affinity (Kd value) of 0.65 nM and a maximum number of binding sites (Bmax) of 122 fmol mg-1 protein. 2. Nonlabelled compounds compete for [3H]-AVP binding in the HVSMC membrane with an order of potency of oxytocin > lyspressin > or = AVP > Thr4, Gly7-oxytocin > (beta-mercapto-beta-beta-cyclopentamethylenep...

  1. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications.

    Science.gov (United States)

    Lagman, David; Ocampo Daza, Daniel; Widmark, Jenny; Abalo, Xesús M; Sundström, Görel; Larhammar, Dan

    2013-11-02

    Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the

  2. Elevated plasma oxytocin levels in children with Prader-Willi syndrome compared with healthy unrelated siblings.

    Science.gov (United States)

    Johnson, Lisa; Manzardo, Ann M; Miller, Jennifer L; Driscoll, Daniel J; Butler, Merlin G

    2016-03-01

    Prader-Willi syndrome (PWS) is a rare genetic disorder associated with distinct abnormal behaviors including hyperphagia, profound social deficits, and obsessive-compulsive tendencies. PWS males showed reduced oxytocin receptor (OTR) gene expression and density in the hypothalamic paraventricular nucleus that may play a role in PWS psychopathology. Oxytocin is an anorexigenic neuropeptide similar to vasopressin that is associated with social cognition and obsessive-compulsive behavior. To evaluate oxytocin biology in PWS, we examined overnight fasting plasma oxytocin levels in 23 children with PWS (mean ± SD age: 8.2 ± 2.0 year) having genetic confirmation and 18 age matched healthy unrelated siblings without PWS (mean ± SD age: 8.2 ± 2.3 year) and a similar gender ratio under the same clinical assessments, specimen processing and laboratory conditions. Multiplex immune assays were carried out using the Milliplex Human Neuropeptide Magnetic panel and the Luminex system. Natural log-transformed oxytocin levels were analyzed using general linear model adjusting for diagnosis, gender, age and body mass index (BMI). Oxytocin plasma levels were significantly elevated in children with PWS (168 ± 121 pg/ml) compared with unrelated and unaffected siblings without the diagnosis of PWS (64.8 ± 83.8 pg/ml, F = 8.8, P model fit R(2) = 0.33 (P < 0.01). The symptoms of hyperphagia, anxiety and repetitive behaviors classically seen in PWS may be related to the disruption of oxytocin responsivity or feedback in the hypothalamic paraventricular nucleus possibly influencing vasopressin signaling. Further study is needed to characterize oxytocin function in PWS. © 2015 Wiley Periodicals, Inc.

  3. Effect of maternal renin-angiotensin-aldosterone system activation on social coping strategies and gene expression of oxytocin and vasopressin in the brain of rat offspring in adulthood.

    Science.gov (United States)

    Senko, Tomáš; Svitok, Pavel; Kršková, Lucia

    2017-10-01

    The intrauterine condition in which the mammalian foetus develops has an important role in prenatal programming. The aim of this study was to determine the extent to which activation of the maternal renin-angiotensin-aldosterone system (RAAS) could influence social behaviour strategies in offspring via changes in social neurotransmitters in the brain. Pregnant female Wistar rats were implanted with osmotic minipumps which continually released angiotensin II for 14 days at concentration of 2 μg/kg/h. The adult offspring (angiotensin and control groups) underwent a social interaction test. The mRNA expression of vasopressin, oxytocin and the oxytocin receptor in selected brain areas was measured by in situ hybridisation. Prenatal exposure to higher levels of angiotensin II resulted in a strong trend toward decreased total social interaction time and significantly decreased time spent in close proximity and frequency of mutual sniffing. The angiotensin group showed no changes in oxytocin mRNA expression in the hypothalamic paraventricular or supraoptic nuclei, but this group had reduced vasopressin mRNA expression in the same areas. We concluded that maternal activation of RAAS (via higher levels of angiotensin II) caused inhibition of some socio-cohesive indicators and decreased vasopressinergic activity of offspring. Taken together, these results suggest a reactive rather than proactive social coping strategy.

  4. Oxytocin and Parent-Child Interaction in the Development of Empathy among Children at Risk for Autism

    Science.gov (United States)

    McDonald, Nicole M.; Baker, Jason K.; Messinger, Daniel S.

    2016-01-01

    This longitudinal study investigated whether variation in the oxytocin receptor gene (OXTR) and early parent-child interactions predicted later empathic behavior in 84 toddlers at high or low familial risk for autism spectrum disorder. Two well-studied OXTR single-nucleotide polymorphisms, rs53576 and rs2254298, were examined. Parent-child…

  5. Chromosomal organization of adrenergic receptor genes

    International Nuclear Information System (INIS)

    Yang-Feng, T.L.; Xue, Feiyu; Zhong, Wuwei; Cotecchia, S.; Frielle, T.; Caron, M.G.; Lefkowitz, R.J.; Francke, U.

    1990-01-01

    The adrenergic receptors (ARs) (subtypes α 1 , α 2 , β 1 , and β 2 ) are a prototypic family of guanine nucleotide binding regulatory protein-coupled receptors that mediate the physiological effects of the hormone epinephrine and the neurotransmitter norepinephrine. The authors have previously assigned the genes for β 2 -and α 2 -AR to human chromosomes 5 and 10, respectively. By Southern analysis of somatic cell hybrids and in situ chromosomal hybridization, they have now mapped the α 1 -AR gene to chromosome 5q32→q34, the same position as β 2 -AR, and the β 1 -AR gene to chromosome 10q24→q26, the region where α 2 -AR, is located. In mouse, both α 2 -and β 1 -AR genes were assigned to chromosome 19, and the α 1 -AR locus was localized to chromosome 11. Pulsed field gel electrophoresis has shown that the α 1 -and β 2 -AR genes in humans are within 300 kilobases (kb) and the distance between the α 2 - and β 1 -AR genes is <225 kb. The proximity of these two pairs of AR genes and the sequence similarity that exists among all the ARs strongly suggest that they are evolutionarily related. Moreover, they likely arose from a common ancestral receptor gene and subsequently diverged through gene duplication and chromosomal duplication to perform their distinctive roles in mediation the physiological effects of catecholamines. The AR genes thus provide a paradigm for understanding the evolution of such structurally conserved yet functionally divergent families off receptor molecules

  6. Oxytocin receptor antagonist treatments alter levels of attachment to mothers and central dopamine activity in pre-weaning mandarin vole pups.

    Science.gov (United States)

    He, Zhixiong; Hou, Wenjuan; Hao, Xin; Dong, Na; Du, Peirong; Yuan, Wei; Yang, Jinfeng; Jia, Rui; Tai, Fadao

    2017-10-01

    Oxytocin (OT) is known to be important in mother-infant bonding. Although the relationship between OT and filial attachment behavior has been studied in a few mammalian species, the effects on infant social behavior have received little attention in monogamous species. The present study examined the effects of OT receptor antagonist (OTA) treatment on attachment behavior and central dopamine (DA) activity in male and female pre-weaning mandarin voles (Microtus mandarinus). Our data showed that OTA treatments decreased the attachment behavior of pups to mothers, measured using preference tests at postnatal day 14, 16, 18 and 20. OTA treatments reduced serum OT concentration in pre-weaning pups and decreased tyrosine hydroxylase (TH) levels in the ventral tegmental area (VTA), indicating a decrease in central DA activity. In male and female pups, OTA reduced DA levels, DA 1-type receptor (D1R) and DA 2-type receptor (D2R) protein expression in the nucleus accumbens (NAcc). Our results indicate that OTA treatment inhibits the attachment of pre-weaning pups to mothers. This inhibition is possibly associated with central DA activity and levels of two types of dopamine receptor in the NAcc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Unsupportive social interactions and affective states: examining associations of two oxytocin-related polymorphisms.

    Science.gov (United States)

    McInnis, Opal A; McQuaid, Robyn J; Matheson, Kimberly; Anisman, Hymie

    2017-01-01

    Two single-nucleotide polymorphisms (SNPs) on oxytocin-related genes, specifically the oxytocin receptor (OXTR) rs53576 and the CD38 rs3796863 variants, have been associated with alterations in prosocial behaviors. A cross-sectional study was conducted among undergraduate students (N = 476) to examine associations between the OXTR and CD38 polymorphisms and unsupportive social interactions and mood states. Results revealed no association between perceived levels of unsupportive social interactions and the OXTR polymorphism. However, A carriers of the CD38 polymorphism, a variant previously associated with elevated oxytocin, reported greater perceived peer unsupportive interactions compared to CC carriers. As expected, perceived unsupportive interactions from peers was associated with greater negative affect, which was moderated by the CD38 polymorphism. Specifically, this relation was stronger among CC carriers of the CD38 polymorphism (a variant thought to be linked to lower oxytocin). When examining whether the OXTR polymorphism moderated the relation between unsupportive social interactions from peers and negative affect there was a trend toward significance, however, this did not withstand multiple testing corrections. These findings are consistent with the perspective that a variant on an oxytocin polymorphism that may be tied to lower oxytocin is related to poor mood outcomes in association with negative social interactions. At the same time, having a genetic constitution presumed to be associated with higher oxytocin was related to increased perceptions of unsupportive social interactions. These seemingly paradoxical findings could be related to previous reports in which variants associated with prosocial behaviors were also tied to relatively more effective coping styles to deal with challenges.

  8. Genetic characterization of the oxytocin-neurophysin I gene (OXT) and its regulatory regions analysis in domestic Old and New World camelids.

    Science.gov (United States)

    Pauciullo, Alfredo; Ogah, Danlami Moses; Iannaccone, Marco; Erhardt, Georg; Di Stasio, Liliana; Cosenza, Gianfranco

    2018-01-01

    Oxytocin is a neurohypophysial peptide linked to a wide range of biological functions, including milk ejection, temperament and reproduction. Aims of the present study were a) the characterization of the OXT (Oxytocin-neurophysin I) gene and its regulatory regions in Old and New world camelids; b) the investigation of the genetic diversity and the discovery of markers potentially affecting the gene regulation. On average, the gene extends over 814 bp, ranging between 825 bp in dromedary, 811 bp in Bactrian and 810 bp in llama and alpaca. Such difference in size is due to a duplication event of 21 bp in dromedary. The main regulatory elements, including the composite hormone response elements (CHREs), were identified in the promoter, whereas the presence of mature microRNAs binding sequences in the 3'UTR improves the knowledge on the factors putatively involved in the OXT gene regulation, although their specific biological effect needs to be still elucidated. The sequencing of genomic DNA allowed the identification of 17 intraspecific polymorphisms and 69 nucleotide differences among the four species. One of these (MF464535:g.622C>G) is responsible, in alpaca, for the loss of a consensus sequence for the transcription factor SP1. Furthermore, the same SNP falls within a CpG island and it creates a new methylation site, thus opening future possibilities of investigation to verify the influence of the novel allelic variant in the OXT gene regulation. A PCR-RFLP method was setup for the genotyping and the frequency of the allele C was 0.93 in a population of 71 alpacas. The obtained data clarify the structure of OXT gene in domestic camelids and add knowledge to the genetic variability of a genomic region, which has received little investigation so far. These findings open the opportunity for new investigations, including association studies with productive and reproductive traits.

  9. Oxytocin: the neuropeptide of love reveals some of its secrets.

    Science.gov (United States)

    Neumann, Inga D

    2007-04-01

    The neuropeptide oxytocin is synthesized in the brain and released from neurohypophyseal terminals into the blood and within defined brain regions that regulate emotional, cognitive, and social behaviors. A recent study of CD38-/- mice (Jin et al., 2007) has demonstrated an essential role for the transmembrane receptor CD38 in secretion of oxytocin into the blood.

  10. Gene by Environment Interaction and Resilience: Effects of Child Maltreatment and Serotonin, Corticotropin Releasing Hormone, Dopamine, and Oxytocin Genes

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A.

    2013-01-01

    In this investigation, gene-environment interaction effects in predicting resilience in adaptive functioning among maltreated and nonmaltreated low-income children (N = 595) were examined. A multi-component index of resilient functioning was derived and levels of resilient functioning were identified. Variants in four genes, 5-HTTLPR, CRHR1, DRD4 -521C/T, and OXTR, were investigated. In a series of ANCOVAs, child maltreatment demonstrated a strong negative main effect on children’s resilient functioning, whereas no main effects for any of the genotypes of the respective genes were found. However, gene-environment interactions involving genotypes of each of the respective genes and maltreatment status were obtained. For each respective gene, among children with a specific genotype, the relative advantage in resilient functioning of nonmaltreated compared to maltreated children was stronger than was the case for nonmaltreated and maltreated children with other genotypes of the respective gene. Across the four genes, a composite of the genotypes that more strongly differentiated resilient functioning between nonmaltreated and maltreated children provided further evidence of genetic variations influencing resilient functioning in nonmaltreated children, whereas genetic variation had a negligible effect on promoting resilience among maltreated children. Additional effects were observed for children based on the number of subtypes of maltreatment children experienced, as well as for abuse and neglect subgroups. Finally, maltreated and nonmaltreated children with high levels of resilience differed in their average number of differentiating genotypes. These results suggest that differential resilient outcomes are based on the interaction between genes and developmental experiences. PMID:22559122

  11. Corticotropin-Releasing Factor Receptors Modulate Oxytocin Release in the Dorsolateral Bed Nucleus of the Stria Terminalis (BNST in Male Rats

    Directory of Open Access Journals (Sweden)

    Daisy Martinon

    2018-03-01

    Full Text Available The neuropeptide oxytocin (OT plays an important role in the regulation of social and anxiety-like behavior. Our previous studies have shown that OT neurons send projections from the hypothalamus to the dorsolateral bed nucleus of the stria terminalis (BNSTdl, a forebrain region critically involved in the modulation of anxiety-like behavior. Importantly, these OT terminals in the BNSTdl express presynaptic corticotropin releasing factor (CRF receptor type 2 (CRFR2. This suggests that CRFR2 might be involved in the modulation of OT release. To test this hypothesis, we measured OT content in microdialysates collected from the BNSTdl of freely-moving male Sprague-Dawley rats following the administration of a selective CRFR2 agonist (Urocortin 3 or antagonist (Astressin 2B, As2B. To determine if type 1 CRF receptors (CRFR1 are also involved, we used selective CRFR1 antagonist (NBI35965 as well as CRF, a putative ligand of both CRFR1 and CRFR2. All compounds were delivered directly into the BNSTdl via reverse dialysis. OT content in the microdialysates was measured with highly sensitive and selective radioimmunoassay. Blocking CRFR2 with As2B caused an increase in OT content in BNSTdl microdialysates, whereas CRFR2 activation by Urocortin 3 did not have an effect. The As2B-induced increase in OT release was blocked by application of the CRFR1 antagonist demonstrating that the effect was dependent on CRFR1 transmission. Interestingly, CRF alone caused a delayed increase in OT content in BNSTdl microdialysates, which was dependent on CRF2 but not CRF1 receptors. Our results suggest that members of the CRF peptide family modulate OT release in the BNSTdl via a fine-tuned mechanism that involves both CRFR1 and CRFR2. Further exploration of mechanisms by which endogenous OT system is modulated by CRF peptide family is needed to better understand the role of these neuropeptides in the regulation of anxiety and the stress response.

  12. Variation in maternal and anxiety-like behavior associated with discrete patterns of oxytocin and vasopressin 1a receptor density in the lateral septum

    Science.gov (United States)

    Curley, JP; Jensen, CL; Franks, B; Champagne, FA

    2012-01-01

    The relationship between anxiety and maternal behavior has been explored across species using a variety of approaches, yet there is no clear consensus on the nature or direction of this relationship. In the current study, we have assessed stable individual differences in anxiety-like behavior in a large cohort (n=57) of female F2 hybrid mice. Using open-field behavior as a continuous and categorical (high vs. low) measure we examined the relationship between the anxiety-like behavior of virgin F2 females and the subsequent maternal behavior of these females. In addition, we quantified oxytocin (OTR) and vasopressin (V1a) receptor density within the lateral septum to determine the possible correlation with anxiety-like and maternal behavior. We find that, though activity levels within the open-field do predict latency to engage in pup retrieval, anxiety-like measures on this test are otherwise not associated with subsequent maternal behavior. OTR density in the dorsal lateral septum was found to be negatively correlated with activity levels in the open-field and positively correlated with frequency of nursing behavior. V1a receptor density was significantly correlated with postpartum licking/grooming of pups. Though we do not find support for the hypothesis that individual differences in trait anxiety predict variation in maternal behavior, we do find evidence for the role of OTR and V1a receptors in predicting maternal behavior in mice and suggest possible methodological issues (such as distinguishing between trait and state anxiety) that will be a critical consideration for subsequent studies of the anxiety-maternal behavior relationship. PMID:22300676

  13. Polymorphisms in the vitamin D receptor gene and the androgen receptor gene and the risk of benign prostatic hyperplasia

    NARCIS (Netherlands)

    Bousema, J. T.; Bussemakers, M. J.; van Houwelingen, K. P.; Debruyne, F. M.; Verbeek, A. L.; de la Rosette, J. J.; Kiemeney, L. A.

    2000-01-01

    Little is known about risk factors for the development of benign prostatic hyperplasia (BPH). Recently, associations were observed between prostate cancer (CaP) risk and polymorphisms in the vitamin D receptor (VDR) gene and the androgen receptor (AR) gene. Since both receptors are relevant for

  14. The Androgen Receptor Gene Mutations Database.

    Science.gov (United States)

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  15. Oxytocin and Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Gokce Nur Say

    2016-06-01

    Full Text Available Oxytocin is a neuropeptide that plays critical role in mother-infant bonding, pair bonding and prosocial behaviors. Several neuropsychiatric disorders such as autism, schizophrenia, affective disorders, anxiety disorders, attention deficit/hyperactivity disorder, alcohol/substance addiction, aggression, suicide, eating disorders and personality disorders show abnormalities of oxytocin system. These findings have given rise to the studies searching therapeutic use of oxytocin for psychi-atric disorders. The studies of oxytocin interventions in psychiatric disorders yielded potentially promising findings. This paper reviews the role of oxytocin in emotions, behavior and its effects in psychiatric disorders. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(2: 102-113

  16. Ovarian hormone deprivation reduces oxytocin expression in Paraventricular Nucleus preautonomic neurons and correlates with baroreflex impairment in rats

    Directory of Open Access Journals (Sweden)

    Vitor Ulisses De Melo

    2016-10-01

    Full Text Available The prevalence of cardiovascular diseases including hypertension increases dramatically in women after menopause, however the mechanisms involved remain incompletely understood. Oxytocinergic (OTergic neurons are largely present within the paraventricular nucleus of the hypothalamus (PVN. Several studies have shown that OTergic drive from PVN to brainstem increases baroreflex sensitivity and improves autonomic control of the circulation. Since preautonomic PVN neurons express different types of estrogen receptors, we hypothesize that ovarian hormone deprivation causes baroreflex impairment, autonomic imbalance and hypertension by negatively impacting OTergic drive and oxytocin levels in pre-autonomic neurons. Here, we assessed oxytocin gene and protein expression (qPCR and immunohistochemistry within PVN subnuclei in sham-operated and ovariectomized Wistar rats. Conscious hemodynamic recordings were used to assess resting blood pressure and heart rate and the autonomic modulation of heart and vessels was estimated by power spectral analysis. We observed that the ovarian hormone deprivation in ovariectomized rats decreased baroreflex sensitivity, increased sympathetic and reduced vagal outflows to the heart and augmented the resting blood pressure. Of note, ovariectomized rats had reduced PVN oxytocin mRNA and protein expression in all pre-autonomic PVN subnuclei. Furthermore, reduced PVN oxytocin protein levels were positively correlated with decreased baroreflex sensitivity and negatively correlated with increased LF/HF ratio. These findings suggest that reduced oxytocin expression in OTergic neurons of the PVN contributes to the baroreflex dysfunction and autonomic dysregulation observed with ovarian hormone deprivation.

  17. Age and sex differences in oxytocin and vasopressin V1a receptor binding densities in the rat brain: focus on the social decision-making network.

    Science.gov (United States)

    Smith, Caroline J W; Poehlmann, Max L; Li, Sara; Ratnaseelan, Aarane M; Bredewold, Remco; Veenema, Alexa H

    2017-03-01

    Oxytocin (OT) and vasopressin (AVP) regulate various social behaviors via activation of the OT receptor (OTR) and the AVP V1a receptor (V1aR) in the brain. Social behavior often differs across development and between the sexes, yet our understanding of age and sex differences in brain OTR and V1aR binding remains incomplete. Here, we provide an extensive analysis of OTR and V1aR binding density throughout the brain in juvenile and adult male and female rats, with a focus on regions within the social decision-making network. OTR and V1aR binding density were higher in juveniles than in adults in regions associated with reward and socio-spatial memory and higher in adults than in juveniles in key regions of the social decision-making network and in cortical regions. We discuss possible implications of these shifts in OTR and V1aR binding density for the age-specific regulation of social behavior. Furthermore, sex differences in OTR and V1aR binding density were less numerous than age differences. The direction of these sex differences was region-specific for OTR but consistently higher in females than in males for V1aR. Finally, almost all sex differences in OTR and V1aR binding density were already present in juveniles and occurred in regions with denser binding in adults compared to juveniles. Possible implications of these sex differences for the sex-specific regulation of behavior, as well potential underlying mechanisms, are discussed. Overall, these findings provide an important framework for testing age- and sex-specific roles of OTR and V1aR in the regulation of social behavior.

  18. Widespread ectopic expression of olfactory receptor genes

    Directory of Open Access Journals (Sweden)

    Yanai Itai

    2006-05-01

    Full Text Available Abstract Background Olfactory receptors (ORs are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information.

  19. FGF receptor genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Agarwal, D; Pineda, S; Michailidou, K

    2014-01-01

    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying...... genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium.Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry......, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression.Results:Little evidence of association with breast cancer risk...

  20. Research progress of the bitter taste receptor genes in primates.

    Science.gov (United States)

    Feng, Ping; Luo, Rui-Jian

    2018-02-20

    Among the five basic tastes (umami, sweet, bitter, salty and sour), the perception of bitterness is believed to protect animals from digesting toxic and harmful substances, thus it is vital for animal survival. The taste of bitterness is triggered by the interaction between bitter substances and bitter taste receptors, which are encoded by Tas2rs. The gene numbers vary largely across species to meet different demands. So far, several ligands of bitter receptors have been identified in primates. They also discovered that the selective pressure of certain bitter taste receptor genes vary across taxa, genes or even different functional regions of the gene. In this review, we summarize the research progress of bitter taste receptor genes in primates by introducing the functional diversity of bitter receptors, the specific interaction between bitter taste receptors and ligands, the relationship between the evolutionary pattern of bitter taste receptors and diets, and the adaptive evolution of bitter taste receptor genes. We aim to provide a reference for further research on bitter receptor genes in primates.

  1. Polymorphism in leptin receptor gene was associated with obesity in ...

    African Journals Online (AJOL)

    The mutation in leptin receptor (LEPR) gene causes splicing abnormality that resulted in truncated receptor, aberrant signal transduction, leptin resistance, and obesity. This study aims to determine the association of LEPR gene polymorphisms, rs1137100 and rs1137101, on phenotype and leptin level between obese and ...

  2. Characterization of the oxytocin system regulating affiliative behavior in female prairie voles.

    Science.gov (United States)

    Ross, H E; Cole, C D; Smith, Y; Neumann, I D; Landgraf, R; Murphy, A Z; Young, L J

    2009-09-15

    Oxytocin regulates partner preference formation and alloparental behavior in the socially monogamous prairie vole (Microtus ochrogaster) by activating oxytocin receptors in the nucleus accumbens of females. Mating facilitates partner preference formation, and oxytocin-immunoreactive fibers in the nucleus accumbens have been described in prairie voles. However, there has been no direct evidence of oxytocin release in the nucleus accumbens during sociosexual interactions, and the origin of the oxytocin fibers is unknown. Here we show for the first time that extracellular concentrations of oxytocin are increased in the nucleus accumbens of female prairie vole during unrestricted interactions with a male. We further show that the distribution of oxytocin-immunoreactive fibers in the nucleus accumbens is conserved in voles, mice and rats, despite remarkable species differences in oxytocin receptor binding in the region. Using a combination of site-specific and peripheral infusions of the retrograde tracer Fluorogold, we demonstrate that the nucleus accumbens oxytocin-immunoreactive fibers likely originate from paraventricular and supraoptic hypothalamic neurons. This distribution of retrogradely labeled neurons is consistent with the hypothesis that striatal oxytocin fibers arise from collaterals of magnocellular neurons of the neurohypophysial system. If correct, this may serve to coordinate peripheral and central release of oxytocin with appropriate behavioral responses associated with reproduction, including pair bonding after mating, and maternal responsiveness following parturition and during lactation.

  3. Oxytocin receptor neurotransmission in the dorsolateral bed nucleus of the stria terminalis facilitates the acquisition of cued fear in the fear-potentiated startle paradigm in rats.

    Science.gov (United States)

    Moaddab, Mahsa; Dabrowska, Joanna

    2017-07-15

    Oxytocin (OT) is a hypothalamic neuropeptide that modulates fear and anxiety-like behaviors. Dorsolateral bed nucleus of the stria terminalis (BNST dl ) plays a critical role in the regulation of fear and anxiety, and expresses high levels of OT receptor (OTR). However, the role of OTR neurotransmission within the BNST dl in mediating these behaviors is unknown. Here, we used adult male Sprague-Dawley rats to investigate the role of OTR neurotransmission in the BNST dl in the modulation of the acoustic startle response, as well as in the acquisition and consolidation of conditioned fear using fear potentiated startle (FPS) paradigm. Bilateral intra-BNST dl administration of OT (100 ng) did not affect the acquisition of conditioned fear response. However, intra-BNST dl administration of specific OTR antagonist (OTA), (d(CH 2 ) 5 1 , Tyr(Me) 2 , Thr 4 , Orn 8 , des-Gly-NH 2 9 )-vasotocin, (200 ng), prior to the fear conditioning session, impaired the acquisition of cued fear, without affecting a non-cued fear component of FPS. Neither OTA, nor OT affected baseline startle or shock reactivity during fear conditioning. Therefore, the observed impairment of cued fear after OTA infusion resulted from the specific effect on the formation of cued fear. In contrast to the acquisition, neither OTA nor OT affected the consolidation of FPS, when administered after the completion of fear conditioning session. Taken together, these results reveal the important role of OTR neurotransmission in the BNST dl in the formation of conditioned fear to a discrete cue. This study also highlights the role of the BNST dl in learning to discriminate between threatening and safe stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Estrogen receptor β and oxytocin interact to modulate anxiety-like behavior and neuroendocrine stress reactivity in adult male and female rats.

    Science.gov (United States)

    Kudwa, Andrea E; McGivern, Robert F; Handa, Robert J

    2014-04-22

    The hypothalamic-pituitary-adrenal (HPA) axis is activated in response to stressors and is controlled by neurons residing in the paraventricular nucleus of the hypothalamus (PVN). Although gonadal steroid hormones can influence HPA reactivity to stressors, the exact mechanism of action is not fully understood. It is known, however, that estrogen receptor β (ERβ) inhibits HPA reactivity and decreases anxiety-like behavior in rodents. Since ERβ is co-expressed with oxytocin (OT) in neurons of the PVN, an ERβ-selective agonist was utilized to test the whether ERβ decreases stress-induced HPA reactivity and anxiety-like behaviors via an OTergic pathway. Adult gonadectomized male and female rats were administered diarylpropionitrile, or vehicle, peripherally for 5days. When tested for anxiety-like behavior on the elevated plus maze (EPM), diarylpropionitrile-treated males and females significantly increased time on the open arm of the EPM compared to vehicle controls indicating that ERβ reduces anxiety-like behaviors. One week after behavioral evaluation, rats were subjected to a 20minute restraint stress. Treatment with diarylpropionitrile reduced CORT and ACTH responses in both males and females. Subsequently, another group of animals was implanted with cannulae directed at the lateral ventricle. One week later, rats underwent the same protocol as above but with the additional treatment of intracerebroventricular infusion with an OT antagonist (des Gly-NH2 d(CH2)5 [Tyr(Me)(2), Thr(4)] OVT) or VEH, 20min prior to behavioral evaluation. OT antagonist treatment blocked the effects of diarylpropionitrile on the display of anxiety-like behaviors and plasma CORT levels. These data indicate that ERβ and OT interact to modulate the HPA reactivity and the display of anxiety-like behaviors. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Are age and sex differences in brain oxytocin receptors related to maternal and infanticidal behavior in naïve mice?

    Science.gov (United States)

    Olazábal, Daniel E; Alsina-Llanes, Marcela

    2016-01-01

    This article is part of a Special Issue "Parental Care". There is significant variability in the behavioral responses displayed by naïve young and adult mice when first exposed to pups. This variability has been associated with differences in the expression of oxytocin receptors (OXTRs) in the brain in several species. Experiment I investigated the behavioral responses of juvenile, adolescent, and adult CB57BL/6 males and females when first exposed to pups. We found an age increase in maternal females (11% of juveniles, 20% of adolescents, and 50% of young adults), and infanticidal males (0% of juveniles, 30% of adolescents, 44.5% of young adults, and 100% of older adults). Experiment II investigated OXTR density in the brain of juvenile and adult mice. Our results revealed an age decline in the density of OXTR in several brain regions, including the lateral septum, cingulated and posterior paraventricular thalamic nucleus in both males and females. Adult females had higher OXTR density in the ventromedial nucleus/postero-ventral hypothalamus (VMH) and the accessory olfactory bulb (AOB), but lower density in the ventral region of the lateral septum (LSv) than juveniles. Males had lower OXTR density in the anterior olfactory area (AOA) compared to juveniles. No age or sex differences were found in the medial preoptic area, and amygdaloid nuclei, among other brain regions. This study suggests that 1) maturation of parental and infanticidal behavioral responses is not reached until adulthood; 2) the pattern of development of OXTR in the mouse brain is unique, region specific, and differs from that observed in other rodents; 3) either up or down regulation of OXTR in a few brain regions (VMH/AOB/LSv/AOA) might contribute to age or sex differences in parental or infanticidal behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Life in groups: the roles of oxytocin in mammalian sociality

    Directory of Open Access Journals (Sweden)

    Allison eAnacker

    2013-12-01

    Full Text Available In recent decades, scientific understanding of the many roles of oxytocin in social behavior has advanced tremendously. The focus of this research has been on maternal attachments and reproductive pair-bonds, and much less is known about the substrates of sociality outside of reproductive contexts. It is now apparent that oxytocin influences many aspects of social behavior including recognition, trust, empathy, and other components of the behavioral repertoire of social species. This review provides a comparative perspective on the contributions of oxytocin to life in mammalian social groups. We provide background on the functions of oxytocin in maternal attachments and the early social environment, and give an overview of the role of oxytocin circuitry in support of different mating systems. We then introduce peer relationships in group-living rodents as a means for studying the importance of oxytocin in non-reproductive affiliative behaviors. We review species differences in oxytocin receptor distributions in solitary and group-living species of South American tuco-tucos and in African mole-rats, as well as singing mice. We discuss variation in oxytocin receptor levels with seasonal changes in social behavior in female meadow voles, and the effects of oxytocin manipulations on peer huddling behavior. Finally, we discuss avenues of promise for future investigation, and relate current findings to research in humans and non-human primates. There is growing evidence that oxytocin is involved in social selectivity, including increases in aggression toward social outgroups and decreased huddling with unfamiliar individuals, which may support existing social structures or relationships at the expense of others. Oxytocin’s effects reach beyond maternal attachment and pair bonds to play a role in affiliative behavior underlying friendships, organization of broad social structures, and maintenance of established social relationships with individuals

  7. Oxytocin is not involved in luteolysis and early maternal recognition of pregnancy (MRP) in alpacas.

    Science.gov (United States)

    Ciccarelli, Michela; Waqas, Muhammad Salman; Pru, James K; Tibary, Ahmed

    2017-12-01

    Pregnancy maintenance depends on the maternal recognition of pregnancy (MRP), a physiological process by which the lifespan of the corpus luteum is prolonged. This mechanism is not well characterized in camelids. The objectives of the present research were to determine if exogenous oxytocin prolongs the corpus luteum activity in alpacas and to evaluate expression and localization of oxytocin receptors within the endometrium at 9 and 14days post-mating. In the oxytocin studies, plasma progesterone profiles were determined after ovulation in the same alpacas on 2 cycles: one cycle without oxytocin treatment and one cycle with oxytocin treatment. Oxytocin was administered daily by intramuscular injections (IM) at a dose of 20IU (experiment 1, n=6) or 60IU (experiment 2, n=7 from day 3 through day 10 after induction of ovulation with GnRH IM. There was no significant difference in the length of the luteal phase (i.e. corpus luteum lifespan) between the treated and control cycles using either 20 or 60IU of oxytocin. In the final experiment, uteri from open and pregnant alpacas (n=4 per group) at 9 and 14days post-mating were evaluated for expressions of oxytocin receptors by immunohistochemistry. No significant difference (P≤0.05) in the expression of oxytocin receptors was observed between open and pregnant animals in either staining intensity or tissue localization. We conclude that oxytocin is not involved in luteolysis and early MRP in alpacas. Published by Elsevier B.V.

  8. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    Science.gov (United States)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  9. Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons

    Science.gov (United States)

    Nakajima, Miho; Görlich, Andreas; Heintz, Nathaniel

    2014-01-01

    SUMMARY Human imaging studies have revealed that intranasal administration of the “prosocial” hormone oxytocin (OT) activates the frontal cortex, and that this action of OT correlates with enhanced brain function in autism. Here we report the discovery of a population of somatostatin (Sst) positive, regular spiking interneurons that express the oxytocin receptor (OxtrINs). Silencing of OxtrINs in the medial prefrontal cortex (mPFC) of female mice resulted in loss of social interest in male mice specifically during the sexually receptive phase of the estrous cycle. This sociosexual deficit was also present in mice in which the Oxtr gene was conditionally deleted from the mPFC, and in control mice infused with an Oxtr antagonist. Our data demonstrate a gender, cell type and state specific role for OT/Oxtr signaling in the mPFC, and identify a latent cortical circuit element that may modulate other complex social behaviors in response to OT. PMID:25303526

  10. Oxytocin modulates GABAAR subunits to confer neuroprotection in stroke in vitro.

    Science.gov (United States)

    Kaneko, Yuji; Pappas, Colleen; Tajiri, Naoki; Borlongan, Cesar V

    2016-10-21

    Oxytocin protects against ischemia-induced inflammation and oxidative stress, and is associated with GABA (γ-aminobutyric acid, an inhibitory neurotransmitter) signaling transduction in neurons. However, the molecular mechanism by which oxytocin affords neuroprotection, especially the interaction between oxytocin receptor and GABA A receptor (GABA A R), remains to be elucidated. Primary rat neural cells were exposed to oxytocin before induction of experimental acute stroke model via oxygen-glucose deprivation-reperfusion (OGD/R) injury. Pretreatment with oxytocin increased cell viability, decreased the cell damage against oxidative stress, and prevented the release of high mobility group box1 during OGD/R. However, introduction of oxytocin during OGD/R did not induce neuroprotection. Although oxytocin did not affect the glutathione-related cellular metabolism before OGD, oxytocin modulated the expression levels of GABA A R subunits, which function to remove excessive neuronal excitability via chloride ion influx. Oxytocin-pretreated cells significantly increased the chloride ion influx in response to GABA and THIP (δ-GABA A R specific agonist). This study provides evidence that oxytocin regulated GABA A R subunits in affording neuroprotection against OGD/R injury.

  11. Neural androgen receptors modulate gene expression and social recognition but not social investigation

    Directory of Open Access Journals (Sweden)

    Sara A Karlsson

    2016-03-01

    Full Text Available The role of sex and androgen receptors (ARs for social preference and social memory is rather unknown. In this study of mice we compared males, females and males lacking ARs specifically in the nervous system, ARNesDel, with respect to social preference, assessed with the three-chambered apparatus test, and social recognition, assessed with the social discrimination procedure. In the social discrimination test we also evaluated the tentative importance of the sex of the stimulus animal. Novel object recognition and olfaction were investigated to complement the results from the social tests. Gene expression analysis was performed to reveal molecules involved in the effects of sex and androgens on social behaviors. All three test groups showed social preference in the three-chambered apparatus test. In both social tests an AR-independent sexual dimorphism was seen in the persistence of social investigation of female conspecifics, whereas the social interest towards male stimuli mice was similar in all groups. Male and female controls recognized conspecifics independent of their sex, whereas ARNesDel males recognized female but not male stimuli mice. Moreover, the non-social behaviors were not affected by AR deficiency. The gene expression analyses of hypothalamus and amygdala indicated that Oxtr, Cd38, Esr1, Cyp19a1, Ucn3, Crh and Gtf2i were differentially expressed between the three groups. In conclusion, our results suggest that ARs are required for recognition of male but not female conspecifics, while being dispensable for social investigation towards both sexes. In addition, the AR seems to regulate genes related to oxytocin, estrogen and William’s syndrome.

  12. Oxytocin and Socioemotional Aging─Current Knowledge and Future Trends

    Directory of Open Access Journals (Sweden)

    Natalie C. Ebner

    2013-08-01

    Full Text Available The oxytocin (OT system is involved in various aspects of social cognition and prosocial behavior. Specifically, OT has been examined in the context of social memory, emotion recognition, cooperation, trust, empathy, and bonding, and─though evidence is somewhat mixed─intranasal OT appears to benefit aspects of socioemotional functioning. However, most of the extant data on aging and OT is from animal research and human OT research has focused largely on young adults. As such, though we know that various socioemotional capacities change with age, we know little about whether age-related changes in the OT system may underlie age-related differences in socioemotional functioning. In this review, we take a genetic-neuro-behavioral approach and evaluate current evidence on age-related changes in the OT system as well as the putative effects of these alterations on age-related socioemotional functioning. Looking forward, we identify informational gaps and propose an Age-Related Genetic, Neurobiological, Sociobehavioral Model of Oxytocin (AGeNeS-OT model which may structure and inform investigations into aging-related genetic, neural, and sociocognitive processes related to OT. As an exemplar of the use of the model, we report exploratory data suggesting differences in socioemotional processing associated with genetic variation in the oxytocin receptor gene (OXTR in samples of young and older adults. Information gained from this arena has translational potential in depression, social stress, and anxiety─all of which have high relevance in aging─and may contribute to reducing social isolation and improving well-being of individuals across the lifespan.

  13. Characteristics of the mouse genomic histamine H1 receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Isao; Taniuchi, Ichiro; Kitamura, Daisuke [Kyushu Univ., Fukuoka (Japan)] [and others

    1996-08-15

    We report here the molecular cloning of a mouse histamine H1 receptor gene. The protein deduced from the nucleotide sequence is composed of 488 amino acid residues with characteristic properties of GTP binding protein-coupled receptors. Our results suggest that the mouse histamine H1 receptor gene is a single locus, and no related sequences were detected. Interspecific backcross analysis indicated that the mouse histamine H1 receptor gene (Hrh1) is located in the central region of mouse Chromosome 6 linked to microphthalmia (Mitfmi), ras-related fibrosarcoma oncogene 1 (Raf1), and ret proto-oncogene (Ret) in a region of homology with human chromosome 3p. 12 refs., 3 figs.

  14. Interleukin 18 receptor 1 gene polymorphisms are associated with asthma

    DEFF Research Database (Denmark)

    Zhu, Guohua; Whyte, Moira K B; Vestbo, Jørgen

    2008-01-01

    The interleukin 18 receptor (IL18R1) gene is a strong candidate gene for asthma. It has been implicated in the pathophysiology of asthma and maps to an asthma susceptibility locus on chromosome 2q12. The possibility of association between polymorphisms in IL18R1 and asthma was examined by genotyp...

  15. Vitamin D receptor gene variants in Parkinson's disease patients ...

    African Journals Online (AJOL)

    Background: Vitamin D plays an important role in neurodegenerative disorders as a crucial neuro-immunomodulator. Accumulating data provide evidences that vitamin D receptor (VDR) gene is a candidate gene for susceptibility to Parkinson's disease (PD). Aim: To find out whether the risk of the development of sporadic ...

  16. Hormonal control of spermatogenesis: expression of FSJH receptor and androgen receptor genes

    NARCIS (Netherlands)

    L.J. Blok (Leen)

    1992-01-01

    textabstractFSH and testosterone are the main hormonal regulators of spermatogenesis. The actions of androgens and FSH are mediated by their respective receptors. Receptor gene expression (mRNA and protein). is an important determinant of hormone action. Biochemical aspects of the regulation of

  17. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    International Nuclear Information System (INIS)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B.

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons

  18. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Energy Technology Data Exchange (ETDEWEB)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  19. Oxytocin and first impressions

    OpenAIRE

    Friberg, Mads

    2012-01-01

    Subtle facial expressions may cause "core impressions" of other people, i.e. a feeling of like or dislike witch is affected by facial cues that is not explicitly and consciously recognized. In the present investigation, we were interested in how the neuropeptide oxytocin affects recognition of these subtle facial expressions. Participants received oxytocin or placebo, and viewed static and dynamic "hybrid" faces that showed a facial expression (happiness, anger, fear, sadness) only in the lo...

  20. Radioimmunoassay of oxytocin

    International Nuclear Information System (INIS)

    Dawood, M.Y.; Raghavan, K.S.; Pociask, C.

    1978-01-01

    The evaluation of a radioimmunoassay of oxytocin is described. The method involved careful collection and transportation of blood at 4 0 C, acidification of the plasma, extraction with Fuller's earth and radioimmunoassay using antisera raised in rabbits immunized against oxytocin conjugated to bovine serum albumin and 125 I-labelled oxytocin. The antisera showed insignificant cross-reaction with a variety of small peptides including vasopressin and vasotocin. The limit of detection of the assay was 2.5 pg with intra-assay and interassay coefficients of variation of 7 to 15% and 12 to 18% respectively. Seventy-seven per cent (88 out of 116) of the pregnant women tested had detect-able maternal plasma oxytocin. Serial samples of maternal plasma showed a significant increase in oxytocin from the first to the second stage of labour and a significant decrease in the third stage. Oxytocin concentrations in the umbilical arterial plasma were significantly higher in patients in labour. The significance of these findings is discussed. (author)

  1. Hypooxytocinaemia in obese Zucker rats relates to oxytocin degradation in liver and adipose tissue

    Czech Academy of Sciences Publication Activity Database

    Gajdošechová, L.; Kršková, K.; Segarra, A. B.; Špolcová, Andrea; Suski, M.; Olszanecki, R.; Zórad, S.

    2014-01-01

    Roč. 220, č. 3 (2014), s. 333-343 ISSN 0022-0795 Institutional support: RVO:61388963 Keywords : oxytocin * obesity * insulin resistance * oxytocinase * oxytocin receptor Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.718, year: 2014

  2. The ventromedial hypothalamus oxytocin induces locomotor behavior regulated by estrogen.

    Science.gov (United States)

    Narita, Kazumi; Murata, Takuya; Matsuoka, Satoshi

    2016-10-01

    Our previous studies demonstrated that excitation of neurons in the rat ventromedial hypothalamus (VMH) induced locomotor activity. An oxytocin receptor (Oxtr) exists in the VMH and plays a role in regulating sexual behavior. However, the role of Oxtr in the VMH in locomotor activity is not clear. In this study we examined the roles of oxytocin in the VMH in running behavior, and also investigated the involvement of estrogen in this behavioral change. Microinjection of oxytocin into the VMH induced a dose-dependent increase in the running behavior in male rats. The oxytocin-induced running activity was inhibited by simultaneous injection of Oxtr-antagonist, (d(CH2)5(1), Try(Me)(2), Orn(8))-oxytocin. Oxytocin injection also induced running behavior in ovariectomized (OVX) female rats. Pretreatment of the OVX rats with estrogen augmented the oxytocin-induced running activity twofold, and increased the Oxtr mRNA in the VMH threefold. During the estrus cycle locomotor activity spontaneously increased in the dark period of proestrus. The Oxtr mRNA was up-regulated in the proestrus afternoon. Blockade of oxytocin neurotransmission by its antagonist before the onset of the dark period of proestrus decreased the following nocturnal locomotor activity. These findings demonstrate that Oxtr in the VMH is involved in the induction of running behavior and that estrogen facilitates this effect by means of Oxtr up-regulation, suggesting the involvement of oxytocin in the locomotor activity of proestrus female rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Mouse Solitary Odorant Receptor Gene Promoters as Models for the Study of Odorant Receptor Gene Choice.

    Directory of Open Access Journals (Sweden)

    Andrea Degl'Innocenti

    Full Text Available In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice.Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice.Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J, and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections.In the mouse genome there are eight intact solitary genes: Olfr19 (M12, Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a whole, our findings

  4. Influence of prenatal application of angiotensin II and postnatal salt diet on GABAergic and oxytocin system in rat brain steam and cerebellum

    International Nuclear Information System (INIS)

    Jackova, L.; Olexova, L.; Svitok, P.; Senko, T.; Stefanik, P.

    2015-01-01

    Our goal was to determinate how gene expression of GABA transporter 1 (GAT1), glutamate decarboxylase 67 (GAD67) and oxytocin receptor (OTR) is influenced with prenatal exposition to angiotensin II (Ang II) and postnatal salt diet in nucleus tractus solitarii (NTS) and cerebellum in rats. In NTS we observed strong tendency in different reaction of OTR gene expression between Ang II prenatal treatment and control rats after high salt diet. We observed significant influence of sex on GAD67 gene expression in cerebellum. Also, sex in combination with salt diet is significant factor in expression of GAT1 gene in cerebellum. (authors)

  5. Integrated olfactory receptor and microarray gene expression databases

    Directory of Open Access Journals (Sweden)

    Crasto Chiquito J

    2007-06-01

    Full Text Available Abstract Background Gene expression patterns of olfactory receptors (ORs are an important component of the signal encoding mechanism in the olfactory system since they determine the interactions between odorant ligands and sensory neurons. We have developed the Olfactory Receptor Microarray Database (ORMD to house OR gene expression data. ORMD is integrated with the Olfactory Receptor Database (ORDB, which is a key repository of OR gene information. Both databases aim to aid experimental research related to olfaction. Description ORMD is a Web-accessible database that provides a secure data repository for OR microarray experiments. It contains both publicly available and private data; accessing the latter requires authenticated login. The ORMD is designed to allow users to not only deposit gene expression data but also manage their projects/experiments. For example, contributors can choose whether to make their datasets public. For each experiment, users can download the raw data files and view and export the gene expression data. For each OR gene being probed in a microarray experiment, a hyperlink to that gene in ORDB provides access to genomic and proteomic information related to the corresponding olfactory receptor. Individual ORs archived in ORDB are also linked to ORMD, allowing users access to the related microarray gene expression data. Conclusion ORMD serves as a data repository and project management system. It facilitates the study of microarray experiments of gene expression in the olfactory system. In conjunction with ORDB, ORMD integrates gene expression data with the genomic and functional data of ORs, and is thus a useful resource for both olfactory researchers and the public.

  6. Hypothalamic oxytocin mediates social buffering of the stress response.

    Science.gov (United States)

    Smith, Adam S; Wang, Zuoxin

    2014-08-15

    While stressful life events can enhance the risk of mental disorders, positive social interactions can propagate good mental health and normal behavioral routines. Still, the neural systems that promote these benefits are undetermined. Oxytocin is a hormone involved in social behavior and stress; thus, we focus on the impact that social buffering has on the stress response and the governing effects of oxytocin. Female prairie voles (Microtus ochrogaster) were exposed to 1 hour immobilization stress and then recovered alone or with their male partner to characterize the effect of social contact on the behavioral, physiological, and neuroendocrine stress response. In addition, we treated immobilized female voles recovering alone with oxytocin or vehicle and female voles recovering with their male partner with a selective oxytocin receptor antagonist or vehicle. Group sizes varied from 6 to 8 voles (N = 98 total). We found that 1 hour immobilization increased anxiety-like behaviors and circulating levels of corticosterone, a stress hormone, in female prairie voles recovering alone but not the female prairie voles recovering with their male partner. This social buffering by the male partner on biobehavioral responses to stress was accompanied by increased oxytocin release in the paraventricular nucleus of the hypothalamus. Intra-paraventricular nucleus oxytocin injections reduced behavioral and corticosterone responses to immobilization, whereas injections of an oxytocin receptor antagonist blocked the effects of the social buffering. Together, our data demonstrate that paraventricular nucleus oxytocin mediates the social buffering effects on the stress response and thus may be a target for treatment of stress-related disorders. Published by Society of Biological Psychiatry on behalf of Society of Biological Psychiatry.

  7. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    Directory of Open Access Journals (Sweden)

    Maryam Rakhshandehroo

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor alpha (PPARα is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  8. The repertoire of bitter taste receptor genes in canids.

    Science.gov (United States)

    Shang, Shuai; Wu, Xiaoyang; Chen, Jun; Zhang, Huanxin; Zhong, Huaming; Wei, Qinguo; Yan, Jiakuo; Li, Haotian; Liu, Guangshuai; Sha, Weilai; Zhang, Honghai

    2017-07-01

    Bitter taste receptors (Tas2rs) play important roles in mammalian defense mechanisms by helping animals detect and avoid toxins in food. Although Tas2r genes have been widely studied in several mammals, minimal research has been performed in canids. To analyze the genetic basis of Tas2r genes in canids, we first identified Tas2r genes in the wolf, maned wolf, red fox, corsac fox, Tibetan fox, fennec fox, dhole and African hunting dog. A total of 183 Tas2r genes, consisting of 118 intact genes, 6 partial genes and 59 pseudogenes, were detected. Differences in the pseudogenes were observed among nine canid species. For example, Tas2r4 was a pseudogene in the dog but might play a functional role in other canid species. The Tas2r42 and Tas2r10 genes were pseudogenes in the maned wolf and dhole, respectively, and the Tas2r5 and Tas2r34 genes were pseudogenes in the African hunting dog; however, these genes were intact genes in other canid species. The differences in Tas2r pseudogenes among canids might suggest that the loss of intact Tas2r genes in canid species is species-dependent. We further compared the 183 Tas2r genes identified in this study with Tas2r genes from ten additional carnivorous species to evaluate the potential influence of diet on the evolution of the Tas2r gene repertoire. Phylogenetic analysis revealed that most of the Tas2r genes from the 18 species intermingled across the tree, suggesting that Tas2r genes are conserved among carnivores. Within canids, we found that some Tas2r genes corresponded to the traditional taxonomic groupings, while some did not. PIC analysis showed that the number of Tas2r genes in carnivores exhibited no positive correlation with diet composition, which might be due to the limited number of carnivores included in our study.

  9. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    Science.gov (United States)

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  10. Vitamin D receptor and estrogen receptor gene polymorphisms in postmenopausal Danish women

    DEFF Research Database (Denmark)

    Bagger, Y Z; Hassager, C; Heegaard, Anne-Marie

    2000-01-01

    To investigate the polymorphisms of the vitamin D receptor (VDR) and estrogen receptor (ER) genes in relation to biochemical markers of bone turnover (serum osteocalcin and urinary collagen type I degradation products (CrossLaps), and to study ER genotypes in relation to serum lipoproteins, blood...... pressure, or changes in these parameters after 2 years of hormone replacement therapy (HRT) in 499 Danish postmenopausal women....

  11. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    International Nuclear Information System (INIS)

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J.

    1991-01-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd [binding affinity] and Bmax [number of binding sites]) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism

  12. Association between vitamin D receptor gene polymorphism (TaqI ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 94; Issue 3. Association between vitamin D receptor gene polymorphism (TaqI) and obesity in Chinese population. Hui-Ru Fan Li-Qun Lin Hao Ma Ying Li Chang-Hao Sun. Research Note Volume 94 Issue 3 September 2015 pp 473-478 ...

  13. Genetic diversity of bitter taste receptor gene family in Sichuan

    Indian Academy of Sciences (India)

    Genetic diversity of bitter taste receptor gene family in Sichuan domestic and Tibetan chicken populations. YUAN SU DIYAN LI UMA GAUR YAN WANG NAN WU BINLONG CHEN HONGXIAN XU HUADONG YIN YAODONG HU QING ZHU. RESEARCH ARTICLE Volume 95 Issue 3 September 2016 pp 675-681 ...

  14. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    gene mutations associated with androgen insensitivity syndrome in sex-reversed XY female patients. J. Genet. ... signal and a C-terminal. Keywords. androgen insensitivity syndrome; androgen receptor; truncation mutation; N-terminal domain; XY sex reversal. .... and an increased risk of gonadal tumour. Mutations in SRY.

  15. Association between vitamin D receptor gene polymorphism (TaqI)

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 94; Issue 3. Association between vitamin D receptor gene polymorphism (TaqI) and obesity in Chinese population. Hui-Ru Fan Li-Qun Lin Hao Ma Ying Li Chang-Hao Sun. Research Note Volume 94 Issue 3 September 2015 pp 473-478 ...

  16. Genetic diversity of bitter taste receptor gene family in Sichuan ...

    Indian Academy of Sciences (India)

    Previous research had revealed that chicken has only three bitter taste receptor genes (Tas2r1, ... Journal of Genetics, DOI 10.1007/s12041-016-0684-4, Vol. ..... between red-winged blackbirds and European starlings. ... Academic Press,.

  17. REGULATION OF THE RAT OXYTOCIN GENE BY ESTRADIOL - EXAMINATION OF PROMOTER ACTIVITY IN TRANSFECTED CELLS AND OF MESSENGER-RIBONUCLEIC-ACID AND PEPTIDE LEVELS IN THE HYPOTHALAMONEUROHYPOPHYSEAL SYSTEM

    NARCIS (Netherlands)

    BURBACH, JPH; ADAN, RAH; VANTOL, HHM; VERBEECK, MAE; AXELSON, JF; VANLEEUWEN, FW; BEEKMAN, JM; AB, G

    1990-01-01

    Oxytocin (OT) plays a role in reproduction at the level of the pituitary and mammary glands and uterus. This OT is synthesized in the hypothalamo-neurohypophyseal system (HNS). A number of observations have suggested that estrogens regulate the production of OT in the HNS. In this study the effect

  18. Visualization of oxytocin release that mediates paired pulse facilitation in hypothalamic pathways to brainstem autonomic neurons.

    Directory of Open Access Journals (Sweden)

    Ramón A Piñol

    Full Text Available Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2 expressing PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV. We also demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem cardiac vagal neurons (CVNs, neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this critical autonomic connection.

  19. Visualization of Oxytocin Release that Mediates Paired Pulse Facilitation in Hypothalamic Pathways to Brainstem Autonomic Neurons

    Science.gov (United States)

    Piñol, Ramón A.; Jameson, Heather; Popratiloff, Anastas; Lee, Norman H.; Mendelowitz, David

    2014-01-01

    Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN) contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2) expressing PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV). We also demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem cardiac vagal neurons (CVNs), neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this critical autonomic connection. PMID:25379676

  20. Gene specific actions of thyroid hormone receptor subtypes.

    Directory of Open Access Journals (Sweden)

    Jean Z Lin

    Full Text Available There are two homologous thyroid hormone (TH receptors (TRs α and β, which are members of the nuclear hormone receptor (NR family. While TRs regulate different processes in vivo and other highly related NRs regulate distinct gene sets, initial studies of TR action revealed near complete overlaps in their actions at the level of individual genes. Here, we assessed the extent that TRα and TRβ differ in target gene regulation by comparing effects of equal levels of stably expressed exogenous TRs +/- T(3 in two cell backgrounds (HepG2 and HeLa. We find that hundreds of genes respond to T(3 or to unliganded TRs in both cell types, but were not able to detect verifiable examples of completely TR subtype-specific gene regulation. TR actions are, however, far from identical and we detect TR subtype-specific effects on global T(3 response kinetics in HepG2 cells and many examples of TR subtype specificity at the level of individual genes, including effects on magnitude of response to TR +/- T(3, TR regulation patterns and T(3 dose response. Cycloheximide (CHX treatment confirms that at least some differential effects involve verifiable direct TR target genes. TR subtype/gene-specific effects emerge in the context of widespread variation in target gene response and we suggest that gene-selective effects on mechanism of TR action highlight differences in TR subtype function that emerge in the environment of specific genes. We propose that differential TR actions could influence physiologic and pharmacologic responses to THs and selective TR modulators (STRMs.

  1. CRDB: database of chemosensory receptor gene families in vertebrate.

    Directory of Open Access Journals (Sweden)

    Dong Dong

    Full Text Available Chemosensory receptors (CR are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously uncharacterized species, such as the guinea pig, giant panda and elephant, etc. Consistent with previous findings, we found that the numbers of CR genes vary extensively among different species, suggesting an extreme form of 'birth-and-death' evolution. For the purpose of facilitating CR gene analysis, we constructed a database with the goals to provide a resource for CR genes annotation and a web tool for exploring their evolutionary patterns. Besides a search engine for the gene extraction from a specific chromosome region, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of CR genes. Our work can provide a rigorous platform for further study on the evolution of CR genes in vertebrates.

  2. Mu Opioid Receptor Gene: New Point Mutations in Opioid Addicts

    Directory of Open Access Journals (Sweden)

    Amin Dinarvand

    2014-02-01

    Full Text Available Introduction: Association between single-nucleotide polymorphisms (SNPs in mu opioid receptor gene and drug addiction has been shown in various studies. Here, we have evaluated the existence of polymorphisms in exon 3 of this gene in Iranian population and investigated the possible association between these mutations and opioid addiction.  Methods: 79 opioid-dependent subjects (55 males, 24 females and 134 non-addict or control individuals (74 males, 60 females participated in the study. Genomic DNA was extracted from volunteers’ peripheral blood and exon 3 of the mu opioid receptor gene was amplified by polymerase chain reaction (PCR whose products were then sequenced.  Results: Three different heterozygote polymorphisms were observed in 3 male individuals: 759T>C and 877G>A mutations were found in 2 control volunteers and 1043G>C substitution was observed in an opioid-addicted subject. Association between genotype and opioid addiction for each mutation was not statistically significant.  Discussion: It seems that the sample size used in our study is not enough to confirm or reject any association between 759T>C, 877G>A and 1043G>C substitutions in exon 3 of the mu opioid receptor gene and opioid addiction susceptibility in Iranian population.

  3. A randomised controlled trial comparing oxytocin and oxytocin + ...

    African Journals Online (AJOL)

    'rule of threes' as a means of administering oxytocin: 3 IU IVI as a slow bolus every 3 minutes depending on the contraction of the uterus.[5] The following guidelines were published in the SAMJ in. April 2015 for primary prophylaxis of PPH at CS:[6] (i) oxytocin. 2.5 IU IVI as a slow bolus (over 30 seconds); (ii) oxytocin 7.5 IU.

  4. Identification of novel androgen receptor target genes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gerald William L

    2007-06-01

    Full Text Available Abstract Background The androgen receptor (AR plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa. However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant and LNCaP (androgen-dependent PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT, Protein kinase C delta (PRKCD, Glutathione S- transferase theta 2 (GSTT2, Transient receptor potential cation channel subfamily V member 3 (TRPV3, and Pyrroline-5-carboxylate reductase 1 (PYCR1 – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT, was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are

  5. Dynamic evolution of bitter taste receptor genes in vertebrates

    Directory of Open Access Journals (Sweden)

    Jones Gareth

    2009-01-01

    Full Text Available Abstract Background Sensing bitter tastes is crucial for many animals because it can prevent them from ingesting harmful foods. This process is mainly mediated by the bitter taste receptors (T2R, which are largely expressed in the taste buds. Previous studies have identified some T2R gene repertoires, and marked variation in repertoire size has been noted among species. However, the mechanisms underlying the evolution of vertebrate T2R genes remain poorly understood. Results To better understand the evolutionary pattern of these genes, we identified 16 T2R gene repertoires based on the high coverage genome sequences of vertebrates and studied the evolutionary changes in the number of T2R genes during birth-and-death evolution using the reconciled-tree method. We found that the number of T2R genes and the fraction of pseudogenes vary extensively among species. Based on the results of phylogenetic analysis, we showed that T2R gene families in teleost fishes are more diverse than those in tetrapods. In addition to the independent gene expansions in teleost fishes, frogs and mammals, lineage-specific gene duplications were also detected in lizards. Furthermore, extensive gains and losses of T2R genes were detected in each lineage during their evolution, resulting in widely differing T2R gene repertoires. Conclusion These results further support the hypotheses that T2R gene repertoires are closely related to the dietary habits of different species and that birth-and-death evolution is associated with adaptations to dietary changes.

  6. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    Directory of Open Access Journals (Sweden)

    Lingjun Zuo

    2016-11-01

    Full Text Available It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs play important roles in nicotine dependence (ND and influence the number of cigarettes smoked per day (CPD in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4. These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  7. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats.

    Directory of Open Access Journals (Sweden)

    Nicolas Deblon

    Full Text Available Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes.

  8. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    International Nuclear Information System (INIS)

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  9. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  10. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Directory of Open Access Journals (Sweden)

    E. Teodorov

    2012-10-01

    Full Text Available The periaqueductal gray (PAG has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc or 0.9% saline (up to 1 mL/kg and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05 because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR. A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05 and lactating female rats (P < 0.01, with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in

  11. Glucocorticoid receptor gene polymorphism and juvenile idiopathic arthritis

    Directory of Open Access Journals (Sweden)

    Scheplyagina Larisa A

    2011-01-01

    Full Text Available Abstract Background The glucocorticoid receptor gene (NR3C1 has been suggested as a candidate gene affecting juvenile idiopathic arthritis (JIA course and prognosis. The purpose of this study is to investigate the glucocorticoid receptor gene BclI polymorphism (rs41423247 in JIA patients, the gene's role in susceptibility to juvenile idiopathic arthritis, and its associations with JIA activity, course and bone mineralization. Methods One hundred twenty-two Caucasian children with JIA and 143 healthy ethnically matched controls were studied. We checked markers of clinical and laboratory activity: morning stiffness, Ritchie Articular Index (RAI, swollen joint count (SJC, tender joint count (TJC, physician's visual analog scale (VAS, hemoglobin level (Hb, leukocyte count (L, platelet count (Pl, Westergren erythrocyte sedimentation rate (ESR, C-reactive protein (CRP, albumin, DAS and DAS28. Bone mineralization was measured by dual-energy X-ray absorptiometry (DXA of lumbar spine L1-L4. Assessments of bone metabolism included osteocalcin, C-terminal telopeptide (CTT, parathyroid hormone (PTH, total and ionized calcium, inorganic phosphate and total alkaline phosphatase (TAP. BclI polymorphism was genotyped by polymerase chain reaction restriction fragment length polymorphism. Results No association was observed between glucocorticoid receptor gene polymorphism and the presence or absence of JIA. In girls with JIA, the presence of the G allele was associated with an unfavorable arthritis course, a younger age of onset of arthritis (p = 0.0017, and higher inflammatory activity. The higher inflammatory activity was demonstrated by the following: increased time of morning stiffness (p = 0.02, VAS (p = 0.014, RAI (p = 0.048, DAS (p = 0.035, DAS28 (p = 0.05, Pl (p = 0.003, L (p = 0.046, CRP (p = 0.01. In addition, these patients had bone metabolism disturbances as follows: decreased BA (p = 0.0001, BMC (p = 0.00007, BMD (0.005 and Z score (p = 0.002; and

  12. Dopamine Receptor Genes Modulate Associative Memory in Old Age.

    Science.gov (United States)

    Papenberg, Goran; Becker, Nina; Ferencz, Beata; Naveh-Benjamin, Moshe; Laukka, Erika J; Bäckman, Lars; Brehmer, Yvonne

    2017-02-01

    Previous research shows that associative memory declines more than item memory in aging. Although the underlying mechanisms of this selective impairment remain poorly understood, animal and human data suggest that dopaminergic modulation may be particularly relevant for associative binding. We investigated the influence of dopamine (DA) receptor genes on item and associative memory in a population-based sample of older adults (n = 525, aged 60 years), assessed with a face-scene item associative memory task. The effects of single-nucleotide polymorphisms of DA D1 (DRD1; rs4532), D2 (DRD2/ANKK1/Taq1A; rs1800497), and D3 (DRD3/Ser9Gly; rs6280) receptor genes were examined and combined into a single genetic score. Individuals carrying more beneficial alleles, presumably associated with higher DA receptor efficacy (DRD1 C allele; DRD2 A2 allele; DRD3 T allele), performed better on associative memory than persons with less beneficial genotypes. There were no effects of these genes on item memory or other cognitive measures, such as working memory, executive functioning, fluency, and perceptual speed, indicating a selective association between DA genes and associative memory. By contrast, genetic risk for Alzheimer disease (AD) was associated with worse item and associative memory, indicating adverse effects of APOE ε4 and a genetic risk score for AD (PICALM, BIN1, CLU) on episodic memory in general. Taken together, our results suggest that DA may be particularly important for associative memory, whereas AD-related genetic variations may influence overall episodic memory in older adults without dementia.

  13. Oxytocin and social functioning

    OpenAIRE

    Jones, Candace; Barrera, Ingrid; Brothers, Shaun; Ring, Robert; Wahlestedt, Claes

    2017-01-01

    Social anxiety is a form of anxiety characterized by continuous fear of one or more social or performance situations. Although multiple treatment modalities (cognitive behavioral therapy, selective serotonin reuptake inhibitors/selective norepinephrine reuptake inhibitors, benzodiazepines) exist for social anxiety, they are effective for only 60% to 70% of patients. Thus, researchers have looked for other candidates for social anxiety treatment. Our review focuses on the peptide oxytocin as a...

  14. Saliva oxytocin measures do not reflect peripheral plasma concentrations after intranasal oxytocin administration in men.

    Science.gov (United States)

    Quintana, Daniel S; Westlye, Lars T; Smerud, Knut T; Mahmoud, Ramy A; Andreassen, Ole A; Djupesland, Per G

    2018-05-16

    Oxytocin plays an important role in social behavior. Thus, there has been significant research interest for the role of the oxytocin system in several psychiatric disorders, and the potential of intranasal oxytocin administration to treat social dysfunction. Measurement of oxytocin concentrations in saliva are sometimes used to approximate peripheral levels of oxytocin; however, the validity of this approach is unclear. In this study, saliva and plasma oxytocin was assessed after two doses of Exhalation Delivery System delivered intranasal oxytocin (8 IU and 24 IU), intravenous oxytocin (1 IU) and placebo in a double-dummy, within-subjects design with men. We found that intranasal oxytocin (8 IU and 24 IU) administration increased saliva oxytocin concentrations in comparison to saliva oxytocin concentration levels after intravenous and placebo administration. Additionally, we found that saliva oxytocin concentrations were not significantly associated with plasma oxytocin concentrations after either intranasal or intravenous oxytocin administration. Altogether, we suggest that saliva oxytocin concentrations do not accurately index peripheral oxytocin after intranasal or intravenous oxytocin administration, at least in men. The data indicates that elevated oxytocin saliva levels after nasal delivery primarily reflect exogenous administered oxytocin that is cleared from the nasal cavity to the oropharynx, and is therefore a weak surrogate for peripheral blood measurements. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Human estrogen receptor (ESR) gene locus: PssI dimorphism

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, R T; Taylor, J E; Frossard, P M [California Biotechnology Inc., Mountain View, CA (USA); Shine, J J [Garvan Institute, Darlinghurst (Australia)

    1988-07-25

    pESR-2, a 2.1 kb partial cDNA containing the entire translated sequence of the human estrogen receptor mRNA isolated from MCF-7 human breast cancer cells, was subcloned in the Eco RI site of pBR322. PssI (PuGGNCCPy) identifies a single two-allele polymorphism with bands at either 1.7 or 1.4 kb, as well as invariant bands at 12.6, 9.3, 4.1, 3.7, 2.4, 2.2, and 1.2 kb. Its frequency was studied in 77 unrelated North American Caucasians. The human estrogen receptor gene has been localized to 6q24 -- q27 by in situ hybridization. Co-dominant segregation is demonstrated in one family (8 individuals).

  16. Diverse growth hormone receptor gene mutations in Laron syndrome.

    Science.gov (United States)

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  17. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1988-01-01

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 0 C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 0 C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  18. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  19. Polymorphism in the oxytocin promoter region in patients with lactase non-persistence is not related to symptoms

    Directory of Open Access Journals (Sweden)

    Simrén Magnus

    2009-11-01

    Full Text Available Abstract Background Oxytocin and the oxytocin receptor have been demonstrated in the gastrointestinal (GI tract and have been shown to exert physiological effects on gut motility. The role for oxytocin in the pathophysiology of GI complaints is unknown. The aim of this study was to examine genetic variations or polymorphism of oxytocin (OXT and its receptor (OXTR genes in patients with GI complaints without visible organic abnormalities. Methods Genetic variants in the OXT promoter region, and in the OXTR gene in DNA samples from 131 rigorously evaluated patients with Irritable Bowel Syndrome (IBS, 408 homozygous subjects referred for lactase (LCT-13910 C>T, rs4988235 genotyping, and 299 asymptomatic blood donors were compared. One polymorphism related to the OXT gene (rs6133010 A>G and 4 related to the OXTR gene (rs1465386 G>T, rs3806675 G>A, rs968389 A>G, rs1042778 G>T were selected for genotyping using Applied Biosystems 7900 HT allele discrimination assays. Results There were no statistically significant differences in the genotype or allele frequencies in any of the SNPs when IBS patients were compared to healthy controls. Among subjects referred for lactase genotyping, the rs6133010 A>G OXT promoter A/G genotype tended to be more common in the 154 non-persistent (27.3% subjects than in the 254 lactase persistant (18.1% subjects and in the healthy controls (19.4% (p = 0.08. When direct comparing, the A/G genotype was less common in the OXT promoter region in controls (p = 0.09 and in subjects with lactase persistence (p = 0.03 compared to subjects with lactase non-persistence. When healthy controls were viewed according to their own LCT-13910 genotypes, the C/C lactase non-persistent controls had a higher frequency for the OXT promoter A/G genotype than LCT-13910 T/T lactase persistent controls (41.2% vs 13.1%. No significant differences in frequencies of the investigated OXTR SNPs were noted in this study. Conclusion The results suggest

  20. Prenatal stress exposure, oxytocin receptor gene (OXTR) methylation, and child autistic traits: The moderating role of OXTR rs53576 genotype.

    Science.gov (United States)

    Rijlaarsdam, Jolien; van IJzendoorn, Marinus H; Verhulst, Frank C; Jaddoe, Vincent W V; Felix, Janine F; Tiemeier, Henning; Bakermans-Kranenburg, Marian J

    2017-03-01

    Findings of studies investigating OXTR SNP rs53576 (G-A) variation in social behavior have been inconsistent, possibly because DNA methylation after stress exposure was eliminated from consideration. Our goal was to examine OXTR rs53576 allele-specific sensitivity for neonatal OXTR DNA methylation in relation to (1) a prenatal maternal stress composite, and (2) child autistic traits. Prospective data from fetal life to age 6 years were collected in a total of 743 children participating in the Generation R Study. Prenatal maternal stress exposure was uniquely associated with child autistic traits but was unrelated to OXTR methylation across both OXTR rs53576 G-allele homozygous children and A-allele carriers. For child autistic traits in general and social communication problems in particular, we observed a significant OXTR rs53576 genotype by OXTR methylation interaction in the absence of main effects, suggesting that opposing effects cancelled each other out. Indeed, OXTR methylation levels were positively associated with social problems for OXTR rs53576 G-allele homozygous children but not for A-allele carriers. These results highlight the importance of incorporating epi-allelic information and support the role of OXTR methylation in child autistic traits. Autism Res 2017, 10: 430-438. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  1. Peripheral administration of oxytocin increases social affiliation in the naked mole-rat (Heterocephalus glaber).

    Science.gov (United States)

    Mooney, Skyler J; Douglas, Natasha R; Holmes, Melissa M

    2014-04-01

    The neuropeptide oxytocin regulates a wide variety of social behaviors across diverse species. However, the types of behaviors that are influenced by this hormone are constrained by the species in question and the social organization that a particular species exhibits. Therefore, the present experiments investigated behaviors regulated by oxytocin in a eusocial mammalian species by using the naked mole-rat (Heterocephalus glaber). In Experiment 1, adult non-breeding mole-rats were given intraperitoneal injections of either oxytocin (1mg/kg or 10mg/kg) or saline on alternate days. Animals were then returned to their colony and behavior was recorded for minutes 15-30 post-injection. Both doses of oxytocin increased huddling behavior during this time period. In Experiment 2, animals received intraperitoneal injections of either oxytocin (1mg/kg), an oxytocin-receptor antagonist (0.1mg/kg), a cocktail of oxytocin and the antagonist, or saline across 4 testing days in a counterbalanced design. Animals were placed in either a 2-chamber arena with a familiar conspecific or in a small chamber with 1week old pups from their home colony and behaviors were recorded for minutes 15-30 post-injection. Oxytocin increased investigation of, and time spent in close proximity to, a familiar conspecific; these effects were blocked by the oxytocin antagonist. No effects were seen on pup-directed behavior. These data suggest that oxytocin is capable of modulating affiliative-like behavior in this eusocial species. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues

    OpenAIRE

    Yao, Shenqin; Bergan, Joseph; Lanjuin, Anne; Dulac, Catherine

    2017-01-01

    The neural control of social behaviors in rodents requires the encoding of pheromonal cues by the vomeronasal system. Here we show that the typical preference of male mice for females is eliminated in mutants lacking oxytocin, a neuropeptide modulating social behaviors in many species. Ablation of the oxytocin receptor in aromatase-expressing neurons of the medial amygdala (MeA) fully recapitulates the elimination of female preference in males. Further, single-unit recording in the MeA uncove...

  3. Oxytocin Signaling in the Medial Amygdala is required for Sex Discrimination of Social Cues

    OpenAIRE

    Bergan, Joseph; Yao, Shenqin; Lanjuin, Anne; Dulac, Catherine

    2017-01-01

    The neural control of social behaviors in rodents requires the encoding of pheromonal cues by the vomeronasal system. Here we show that the typical preference of male mice for females is eliminated in mutants lacking oxytocin, a neuropeptide modulating social behaviors in many species. Ablation of the oxytocin receptor in aromatase expressing neurons of the medial amygdala (MeA) fully recapitulates the elimination of female preference in males. Further, single unit recording in the MeA uncove...

  4. Clone and expression of human transferrin receptor gene: a marker gene for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Li Li; Liu Lizhi; Lv Yanchun; Liu Xuewen; Cui Chunyan; Wu Peihong; Liu Qicai; Ou Shanxing

    2007-01-01

    Objective: To clone human transferrin receptor (hTfR) gene and construct expression vector producing recombination protein. Methods: Human transferrin receptor gene cDNA was amplified by RT-PCR from human embryonic liver and lung tissue. Recombinant pcDNA3-hTfR and pEGFP-Cl-hTfR plasmids were constructed and confirmed by DNA sequencing. These plasmids were stably transfected into the HEK293 cells. The protein expression in vitro was confirmed by Western Blot. The efficiency of expression and the location of hTfR were also investigated by fluorescence microscopy and confocal fluorescence microscopy. Results: The full length cDNA of hTfR gene (2332 bp) was cloned and sequenced. The hTfR (190 000) was overexpressed in transfected HEK293 cells by Western blot analysis. Fluorescence micrographs displayed that the hTfR was expressed at high level and located predominantly in the cell surface. Conclusions: Human transferrin receptor (hTfR) gene has been successfully cloned and obtained high-level expression in HEK293 cells, and the recombination protein of hTfR distributed predominantly in the cell membrane. (authors)

  5. Oxytocin signaling in mouse taste buds.

    Directory of Open Access Journals (Sweden)

    Michael S Sinclair

    2010-08-01

    Full Text Available The neuropeptide, oxytocin (OXT, acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout overconsume salty and sweet (i.e. sucrose, saccharin solutions. We asked if OXT might also act on taste buds via its receptor, OXTR.Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM. OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II nor Presynaptic (Type III cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene.We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of

  6. Oxytocin signaling in mouse taste buds.

    Science.gov (United States)

    Sinclair, Michael S; Perea-Martinez, Isabel; Dvoryanchikov, Gennady; Yoshida, Masahide; Nishimori, Katsuhiko; Roper, Stephen D; Chaudhari, Nirupa

    2010-08-05

    The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e. sucrose, saccharin) solutions. We asked if OXT might also act on taste buds via its receptor, OXTR. Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I) taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM). OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II) nor Presynaptic (Type III) cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene. We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I) taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I) taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of appetite

  7. Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone.

    NARCIS (Netherlands)

    Wu, Y.-H.; Zhou, J.-N.; Balesar, R.; Unmehopa, U.; Bao, A.; Jockers, R.; Heerikhuize, J.; Swaab, D.F.

    2006-01-01

    Melatonin is implicated in numerous physiological processes, including circadian rhythms, stress, and reproduction, many of which are mediated by the hypothalamus and pituitary. The physiological actions of melatonin are mainly mediated by melatonin receptors. We here describe the distribution of

  8. Control of Transcriptional Repression of the Vitellogenin Receptor Gene in Largemouth Bass (Micropterus Salmoides) by Select Estrogen Receptors Isotypes

    OpenAIRE

    Dominguez, Gustavo A.; Bisesi, Joseph H.; Kroll, Kevin J.; Denslow, Nancy D.; Sabo-Attwood, Tara

    2014-01-01

    The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5′ regulatory region of the vtgr gene whi...

  9. Oxytocin and Serotonin Brain Mechanisms in the Nonhuman Primate.

    Science.gov (United States)

    Lefevre, Arthur; Richard, Nathalie; Jazayeri, Mina; Beuriat, Pierre-Aurélien; Fieux, Sylvain; Zimmer, Luc; Duhamel, Jean-René; Sirigu, Angela

    2017-07-12

    Oxytocin (OT) is increasingly studied for its therapeutic potential in psychiatric disorders, which are associated with the deregulation of several neurotransmission systems. Studies in rodents demonstrated that the interaction between OT and serotonin (5-HT) is critical for several aspects of social behavior. Using PET scan in humans, we have recently found that 5-HT 1A receptor (5-HT 1A R) function is modified after intranasal oxytocin intake. However, the underlying mechanism between OT and 5-HT remains unclear. To understand this interaction, we tested 3 male macaque monkeys using both [ 11 C]DASB and [ 18 F]MPPF, two PET radiotracers, marking the serotonin transporter and the 5-HT 1A R, respectively. Oxytocin (1 IU in 20 μl of ACSF) or placebo was injected into the brain lateral ventricle 45 min before scans. Additionally, we performed postmortem autoradiography. Compared with placebo, OT significantly reduced [ 11 C]DASB binding potential in right amygdala, insula, and hippocampus, whereas [ 18 F]MPPF binding potential increased in right amygdala and insula. Autoradiography revealed that [ 11 C]DASB was sensitive to physiological levels of 5-HT modification, and that OT does not act directly on the 5-HT 1A R. Our results show that oxytocin administration in nonhuman primates influences serotoninergic neurotransmission via at least two ways: (1) by provoking a release of serotonin in key limbic regions; and (2) by increasing the availability of 5-HT 1A R receptors in the same limbic areas. Because these two molecules are important for social behavior, our study sheds light on the specific nature of their interaction, therefore helping to develop new mechanisms-based therapies for psychiatric disorders. SIGNIFICANCE STATEMENT Social behavior is largely controlled by brain neuromodulators, such as oxytocin and serotonin. While these are currently targeted in the context of psychiatric disorders such as autism and schizophrenia, a new promising pharmaceutical

  10. Effects of Intranasal Oxytocin on Aggressive Responding in Antisocial Personality Disorder.

    Science.gov (United States)

    Alcorn, Joseph L; Rathnayaka, Nuvan; Swann, Alan C; Moeller, F Gerard; Lane, Scott D

    2015-12-01

    The oxytocin receptor is important in several domains of social behavior, and administration of oxytocin modulates social responding in several mammalian species, including humans. Oxytocin has both therapeutic and scientific potential for elucidating the neural and behavioral mechanisms governing social behavior. In the present study, operationally-defined aggressive behavior of six males with Antisocial Personality Disorder (ASPD) was measured following acute intranasal oxytocin dosing (12, 24, and 48 international units) and placebo, using a well-validated laboratory task of human aggression (Point-Subtraction Aggression Paradigm, or PSAP). The PSAP provides participants with concurrently available monetary-earning and operationally-defined aggressive response options, maintained by fixed ratio schedules of consequences. Shifts in response rates and inter-response time (IRT) distributions were observed on the aggressive response option following oxytocin doses, relative to placebo. Few changes were observed in monetary-reinforced responding. However, across participants the direction and magnitude of changes in aggressive responding were not systematically related to dose. No trends were observed between psychometric or physiological data and oxytocin dosing or aggressive behavior. While this report is to our knowledge the first to examine the acute effects of oxytocin in this population at high risk for violence and other forms of antisocial behavior, several limitations in the experimental design and the results cast the study as a preliminary report. Strategies for more extensive future projects are discussed.

  11. Early social environment affects the endogenous oxytocin system: a review and future directions

    Directory of Open Access Journals (Sweden)

    Emily eAlves

    2015-03-01

    Full Text Available Endogenous oxytocin plays an important role in a wide range of human functions including birth, milk ejection during lactation and facilitation of social interaction. There is increasing evidence that both variations in the oxytocin receptor (OXTR and concentrations of oxytocin are associated with differences in these functions. The causes for the differences that have been observed in tonic and stimulated oxytocin release remain unclear. Previous reviews have suggested that across the life course, these differences may be due to individual factors, e.g. genetic variation (of the OXTR, age or sex, or be the result of early environmental influences such as social experiences, stress or trauma partly by inducing epigenetic changes. This review has three aims. First, we briefly discuss the endogenous oxytocin system, including physiology, development, individual differences and function. Secondly, current models describing the relationship between the early life environment and the development of the oxytocin system in humans and animals are discussed. Finally, we describe research designs that can be used to investigate the effects of the early environment on the oxytocin system, identifying specific areas of research that need further attention.

  12. AT1 Receptor Gene Polymorphisms in relation to Postprandial Lipemia

    Directory of Open Access Journals (Sweden)

    B. Klop

    2012-01-01

    Full Text Available Background. Recent data suggest that the renin-angiotensin system may be involved in triglyceride (TG metabolism. We explored the effect of the common A1166C and C573T polymorphisms of the angiotensin II type 1 receptor (AT1R gene on postprandial lipemia. Methods. Eighty-two subjects measured daytime capillary TG, and postprandial lipemia was estimated as incremental area under the TG curve. The C573T and A1166C polymorphisms of the AT1R gene were determined. Results. Postprandial lipemia was significantly higher in homozygous carriers of the 1166-C allele (9.39±8.36 mM*h/L compared to homozygous carriers of the 1166-A allele (2.02±6.20 mM*h/L (P<0.05. Postprandial lipemia was similar for the different C573T polymorphisms. Conclusion. The 1166-C allele of the AT1R gene seems to be associated with increased postprandial lipemia. These data confirm the earlier described relationships between the renin-angiotensin axis and triglyceride metabolism.

  13. Species differences in the immunoreactive expression of oxytocin, vasopressin, tyrosine hydroxylase and estrogen receptor alpha in the brain of Mongolian gerbils (Meriones unguiculatus and Chinese striped hamsters (Cricetulus barabensis.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available Species differences in neurochemical expression and activity in the brain may play an important role in species-specific patterns of social behavior. In the present study, we used immunoreactive (ir labeling to compare the regional density of cells containing oxytocin (OT, vasopressin (AVP, tyrosine hydroxylase (TH, or estrogen receptor alpha (ERα staining in the brains of social Mongolian gerbils (Meriones unguiculatus and solitary Chinese striped hamsters (Cricetulus barabensis. Multiple region- and neurochemical-specific species differences were found. In the anterior hypothalamus (AH, Mongolian gerbils had higher densities of AVP-ir and ERα-ir cells than Chinese striped hamsters. In the lateral hypothalamus (LH, Mongolian gerbils also had higher densities of AVP-ir and TH-ir cells, but a lower density of OT-ir cells, than Chinese striped hamsters. Furthermore, in the anterior nucleus of the medial preoptic area (MPOAa, Mongolian gerbils had higher densities of OT-ir and AVP-ir cells than Chinese striped hamsters, and an opposite pattern was found in the posterior nucleus of the MPOA (MPOAp. Some sex differences were also observed. Females of both species had higher densities of TH-ir cells in the MPOAa and of OT-ir cells in the intermediate nucleus of the MPOA (MPOAi than males. Given the role of these neurochemicals in social behaviors, our data provide additional evidence to support the notion that species-specific patterns of neurochemical expression in the brain may be involved in species differences in social behaviors associated with different life strategies.

  14. A Gene Implicated in Activation of Retinoic Acid Receptor Targets Is a Novel Renal Agenesis Gene in Humans

    DEFF Research Database (Denmark)

    Brophy, Patrick D.; Rasmussen, Maria; Parida, Mrutyunjaya

    2017-01-01

    investigations have identified several gene variants that cause RA, including EYA1, LHX1, and WT1 However, whereas compound null mutations of genes encoding α and γ retinoic acid receptors (RARs) cause RA in mice, to date there have been no reports of variants in RAR genes causing RA in humans. In this study, we...... in humans....

  15. Liver X Receptor Genes Variants Modulate ALS Phenotype.

    Science.gov (United States)

    Mouzat, Kevin; Molinari, Nicolas; Kantar, Jovana; Polge, Anne; Corcia, Philippe; Couratier, Philippe; Clavelou, Pierre; Juntas-Morales, Raul; Pageot, Nicolas; Lobaccaro, Jean -Marc A; Raoul, Cedric; Lumbroso, Serge; Camu, William

    2018-03-01

    Amyotrophic lateral sclerosis (ALS) is one of the most severe motor neuron (MN) disorders in adults. Phenotype of ALS patients is highly variable and may be influenced by modulators of energy metabolism. Recent works have implicated the liver X receptors α and β (LXRs), either in the propagation process of ALS or in the maintenance of MN survival. LXRs are nuclear receptors activated by oxysterols, modulating cholesterol levels, a suspected modulator of ALS severity. In a cohort of 438 ALS patients and 330 healthy controls, the influence of LXR genes on ALS risk and phenotype was studied using single nucleotide polymorphisms (SNPs). The two LXRα SNPs rs2279238 and rs7120118 were shown to be associated with age at onset in ALS patients. Consistently, homozygotes were twice more correlated than were heterozygotes to delayed onset. The onset was thus delayed by 3.9 years for rs2279238 C/T carriers and 7.8 years for T/T carriers. Similar results were obtained for rs7120118 (+2.1 years and +6.7 years for T/C and C/C genotypes, respectively). The LXRβ SNP rs2695121 was also shown to be associated with a 30% increase of ALS duration (p = 0.0055, FDR = 0.044). The tested genotypes were not associated with ALS risk. These findings add further evidence to the suspected implication of LXR genes in the disease process of ALS and might open new perspectives in ALS therapeutics.

  16. Context dependent regulatory patterns of the androgen receptor and androgen receptor target genes

    International Nuclear Information System (INIS)

    Olsen, Jan Roger; Azeem, Waqas; Hellem, Margrete Reime; Marvyin, Kristo; Hua, Yaping; Qu, Yi; Li, Lisha; Lin, Biaoyang; Ke, XI- Song; Øyan, Anne Margrete; Kalland, Karl- Henning

    2016-01-01

    Expression of the androgen receptor (AR) is associated with androgen-dependent proliferation arrest and terminal differentiation of normal prostate epithelial cells. Additionally, activation of the AR is required for survival of benign luminal epithelial cells and primary cancer cells, thus androgen deprivation therapy (ADT) leads to apoptosis in both benign and cancerous tissue. Escape from ADT is known as castration-resistant prostate cancer (CRPC). In the course of CRPC development the AR typically switches from being a cell-intrinsic inhibitor of normal prostate epithelial cell proliferation to becoming an oncogene that is critical for prostate cancer cell proliferation. A clearer understanding of the context dependent activation of the AR and its target genes is therefore desirable. Immortalized human prostate basal epithelial EP156T cells and progeny cells that underwent epithelial to mesenchymal transition (EMT), primary prostate epithelial cells (PrECs) and prostate cancer cell lines LNCaP, VCaP and 22Rv1 were used to examine context dependent restriction and activation of the AR and classical target genes, such as KLK3. Genome-wide gene expression analyses and single cell protein analyses were applied to study the effect of different contexts. A variety of growth conditions were tested and found unable to activate AR expression and transcription of classical androgen-dependent AR target genes, such as KLK3, in prostate epithelial cells with basal cell features or in mesenchymal type prostate cells. The restriction of androgen- and AR-dependent transcription of classical target genes in prostate basal epithelial cells was at the level of AR expression. Exogenous AR expression was sufficient for androgen-dependent transcription of AR target genes in prostate basal epithelial cells, but did not exert a positive feedback on endogenous AR expression. Treatment of basal prostate epithelial cells with inhibitors of epigenetic gene silencing was not efficient in

  17. Identifying polymorphisms in the Rattus norvegicus D3 dopamine receptor gene and regulatory region

    NARCIS (Netherlands)

    Smits, B.M.; D'Souza, U.M.; Berezikov, E.; Cuppen, E.; Sluyter, F.

    2004-01-01

    The D(3) dopamine receptor has been implicated in several neuropsychiatric disorders, including schizophrenia, Parkinson's disease and addiction. Sequence variation in the D(3) gene can lead to subtle alteration in receptor structure or gene expression and thus to a different phenotype. In this

  18. Update of the androgen receptor gene mutations database.

    Science.gov (United States)

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). Copyright 1999 Wiley-Liss, Inc.

  19. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  20. Pharmacogenetics of the β2-Adrenergic Receptor Gene

    Science.gov (United States)

    Ortega, Victor E.; Hawkins, Gregory A.; Peters, Stephen P.; Bleecker, Eugene R.

    2009-01-01

    Asthma is a complex genetic disease with multiple genetic and environmental determinants contributing to the observed variability in response to common anti-asthma therapies. Asthma pharmacogenetic research has focused on multiple candidate genes including the β2-adrenergic receptor gene (ADRβ2) and its effect on individual responses to beta agonist therapy. At present, knowledge about the effects of ADRβ2 variation on therapeutic responses is evolving and should not alter current Asthma Guideline approaches consisting of the use of short acting beta agonists for as-needed symptom based therapy and the use of a regular long-acting beta agonist in combination with inhaled corticosteroid therapy for optimal control of asthma symptoms in those asthmatics who are not controlled on inhaled corticosteroid alone. This approach is based upon studies showing a consistent pharmacogenetic response to regular use of short acting beta agonists (SABA) and less consistent findings in studies evaluating long acting beta agonist (LABA). While emerging pharmacogenetic studies are provocative and should lead to functional approaches, conflicting data with responses to LABA therapy may be caused by factors that include small sample sizes of study populations and differences in experimental design that may limit the conclusions that may be drawn from these clinical trials at the present time. PMID:17996583

  1. Vitamin D Receptor Gene Polymorphisms Associated with Childhood Autism.

    Science.gov (United States)

    Cieślińska, Anna; Kostyra, Elżbieta; Chwała, Barbara; Moszyńska-Dumara, Małgorzata; Fiedorowicz, Ewa; Teodorowicz, Małgorzata; Savelkoul, Huub F J

    2017-09-09

    Autism spectrum disorder (ASD) is a group of heterogeneous, behaviorally defined disorders whereby currently no biological markers are common to all affected individuals. A deregulated immune response may be contributing to the etiology of ASD. The active metabolite of vitamin D₃ has an immunoregulatory role mediated by binding to the vitamin D receptor (VDR) in monocyte, macrophages, and lymphocytes. The effects of vitamin D and interaction with the VDR may be influenced by polymorphism in the VDR gene. Genetic association of four different VDR polymorphisms (Apa-I, Bsm-I, Taq-I, Fok-I) associated with susceptibility to the development of autism in children was investigated. We uniquely found an association between the presence of the T allele at position Taq-I and presence of the a allele at position Apa-I of the VDR gene with decreased ASD incidence. There was also an association between female gender and the presence of the T allele. We found no statistical significant correlation between VDR single nucleotide polymorphisms (SNPs) and vitamin D₃ concentration in serum of ASD children. Genetic polymorphism in two SNP in VDR may be correlated with development of ASD symptoms by influencing functionality of vitamin D₃ metabolism, while vitamin D₃ levels were not significantly different between ASD and non-ASD children.

  2. Developing a System for Directed Gene Introduction into Mammary Gland Via Targeted Infection of Retrovirus Receptor Transgenics

    National Research Council Canada - National Science Library

    Bates, Paul

    1998-01-01

    ... (the Rous sarcoma virus receptor). Directed infection, and thus directed gene expression of cells expressing the viral receptor should provide a rapid and efficient method to test the mammary tumorigenic potential of genes in an animal model...

  3. Systematic study of association of four GABAergic genes: glutamic acid decarboxylase 1 gene, glutamic acid decarboxylase 2 gene, GABA(B) receptor 1 gene and GABA(A) receptor subunit beta2 gene, with schizophrenia using a universal DNA microarray.

    Science.gov (United States)

    Zhao, Xu; Qin, Shengying; Shi, Yongyong; Zhang, Aiping; Zhang, Jing; Bian, Li; Wan, Chunling; Feng, Guoyin; Gu, Niufan; Zhang, Guangqi; He, Guang; He, Lin

    2007-07-01

    Several studies have suggested the dysfunction of the GABAergic system as a risk factor in the pathogenesis of schizophrenia. In the present study, case-control association analysis was conducted in four GABAergic genes: two glutamic acid decarboxylase genes (GAD1 and GAD2), a GABA(A) receptor subunit beta2 gene (GABRB2) and a GABA(B) receptor 1 gene (GABBR1). Using a universal DNA microarray procedure we genotyped a total of 20 SNPs on the above four genes in a study involving 292 patients and 286 controls of Chinese descent. Statistically significant differences were observed in the allelic frequencies of the rs187269C/T polymorphism in the GABRB2 gene (P=0.0450, chi(2)=12.40, OR=1.65) and the -292A/C polymorphism in the GAD1 gene (P=0.0450, chi(2)=14.64 OR=1.77). In addition, using an electrophoretic mobility shift assay (EMSA), we discovered differences in the U251 nuclear protein binding to oligonucleotides representing the -292 SNP on the GAD1 gene, which suggests that the -292C allele has reduced transcription factor binding efficiency compared with the 292A allele. Using the multifactor-dimensionality reduction method (MDR), we found that the interactions among the rs187269C/T polymorphism in the GABRB2 gene, the -243A/G polymorphism in the GAD2 gene and the 27379C/T and 661C/T polymorphisms in the GAD1 gene revealed a significant association with schizophrenia (Pschizophrenia in the Chinese population.

  4. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    International Nuclear Information System (INIS)

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue

  5. Takotsubo syndrome and estrogen receptor genes: partners in crime?

    Science.gov (United States)

    Pizzino, Gabriele; Bitto, Alessandra; Crea, Pasquale; Khandheria, Bijoy; Vriz, Olga; Carerj, Scipione; Squadrito, Francesco; Minisini, Rosalba; Citro, Rodolfo; Cusmà-Piccione, Maurizio; Madaffari, Antonio; Andò, Giuseppe; Altavilla, Domenica; Zito, Concetta

    2017-04-01

    We aimed to analyze genetic polymorphism of estrogen receptor (ESR) 1 and ESR2 in a series of postmenopausal women with Takotsubo syndrome (TS). In total, 81 consecutive white women were prospectively enrolled: 22 with TS (TS group; mean age 71.2 ± 9.8 years), 22 with acute myocardial infarction (MI group; mean age 73.2 ± 8 years), and 37 asymptomatic healthy controls (CTRL group; mean age 69 ± 4.2 years). Genotyping of ESR1 -397C>T (rs2234693) and -351A>G (rs9340799) and ESR2 -1839G>T (rs 1271572) and 1082G>A (rs1256049) genetic variants was performed. We estimated the odds ratio (OR) between the genotype of each examined locus with the occurrence of TS or MI. The risk of experiencing TS was higher for those study participants carrying the T allele at the rs2234693 locus of the ESR1 gene [OR: 2.0, 95% confidence interval (CI): 0.973-4.11, P = 0.04, TS vs. MI + CTRL; OR: 2.79, 95% CI: 1.17-6.64, P = 0.016, TS vs. MI alone]. Women carrying a T allele at the rs1271572 locus of the ESR2 gene demonstrated an even higher risk (OR: 3.23, 95% CI: 1.55-6.73, P = 0.0019, TS vs. MI + CTRL; OR: 9.13, 95% CI: 2.78-29.9, P = 0.0001, TS vs. MI alone). The study reports preliminary findings suggesting a possible link between ESR polymorphisms and the occurrence of TS. Larger studies are needed to confirm our results.

  6. Association study of ghrelin receptor gene polymorphisms in rheumatoid arthritis.

    Science.gov (United States)

    Robledo, G; Rueda, B; Gonzalez-Gay, M A; Fernández, B; Lamas, J R; Balsa, A; Pascual-Salcedo, D; García, A; Raya, E; Martín, J

    2010-01-01

    Ghrelin is a newly characterised growth hormone (GH) releasing peptide widely distributed that may play an important role in the regulation of metabolic balance in inflammatory diseases such as rheumatoid arthritis (RA) by decreasing the pro-inflammatory Th1 responses. In this study we investigated the possible contribution of several polymorphisms in the functional Ghrelin receptor to RA susceptibility. A screening of 3 single nucleotide polymorphisms (SNPs) was performed in a total of 950 RA patients and 990 healthy controls of Spanish Caucasian origin. Genotyping of all 3 SNPs was performed by real-time polymerase chain reaction technology, using the TaqMan 5'-allele discrimination assay. We observed no statistically significant deviation between RA patients and controls for the GHSR SNPs analysed. In addition, we performed a haplotype analysis that did not reveal an association with RA susceptibility. The stratification analysis for the presence of shared epitope (SE), rheumatoid factor (RF) or antibodies anti cyclic citrullinated peptide (anti-CCP) did not detect significant association of the GHSR polymorphisms with RA. These findings suggest that the GHSR gene polymorphisms do not appear to play a major role in RA genetic predisposition in our population.

  7. Glucocorticoid Receptor Related Genes: Genotype And Brain Gene Expression Relationships To Suicide And Major Depressive Disorder

    Science.gov (United States)

    Pantazatos, Spiro P.; Huang, Yung-yu; Rosoklija, Gorazd B.; Dwork, Andrew J.; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A.; Mann, J. John

    2016-01-01

    Introduction We tested the relationship between genotype, gene expression and suicidal behavior and MDD in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior and major depressive disorder (MDD); FK506 binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2) and Glucocorticoid Receptor (NR3C1). Materials and Methods Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N=277) and a postmortem sample (N=209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9) (N=59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). Results We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, that was associated with increased risk of suicide attempt (OR=1.58, t=6.03, p=0.014). Six SNPs on this gene, three SNPs on SKA2 and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex. One NR3C1 transcript had lower expression in suicide relative to non-suicide sudden death cases (b=-0.48, SE=0.12, t=-4.02, adjusted p=0.004). Conclusion We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the prefrontal cortex. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior. PMID:27030168

  8. Functional characterization of bursicon receptor and genome-wide analysis for identification of genes affected by bursicon receptor RNAi

    Science.gov (United States)

    Bai, Hua; Palli, Subba R.

    2010-01-01

    Bursicon is an insect neuropeptide hormone that is secreted from the central nervous system into the hemolymph and initiates cuticle tanning. The receptor for bursicon is encoded by the rickets (rk) gene and belongs to the G protein-coupled receptor (GPCR) superfamily. The bursicon and its receptor regulate cuticle tanning as well as wing expansion after adult eclosion. However, the molecular action of bursicon signaling remains unclear. We utilized RNA interference (RNAi) and microarray to study the function of the bursicon receptor (Tcrk) in the model insect, Tribolium castaneum. The data included here showed that in addition to cuticle tanning and wing expansion reported previously, Tcrk is also required for development and expansion of integumentary structures and adult eclosion. Using custom microarrays, we identified 24 genes that are differentially expressed between Tcrk RNAi and control insects. Knockdown in the expression of one of these genes, TC004091, resulted in the arrest of adult eclosion. Identification of genes that are involved in bursicon receptor mediated biological processes will provide tools for future studies on mechanisms of bursicon action. PMID:20457145

  9. Oxytocin is a cardiovascular hormone

    Directory of Open Access Journals (Sweden)

    Gutkowska J.

    2000-01-01

    Full Text Available Oxytocin (OT, a nonapeptide, was the first hormone to have its biological activities established and chemical structure determined. It was believed that OT is released from hypothalamic nerve terminals of the posterior hypophysis into the circulation where it stimulates uterine contractions during parturition, and milk ejection during lactation. However, equivalent concentrations of OT were found in the male hypophysis, and similar stimuli of OT release were determined for both sexes, suggesting other physiological functions. Indeed, recent studies indicate that OT is involved in cognition, tolerance, adaptation and complex sexual and maternal behaviour, as well as in the regulation of cardiovascular functions. It has long been known that OT induces natriuresis and causes a fall in mean arterial pressure, both after acute and chronic treatment, but the mechanism was not clear. The discovery of the natriuretic family shed new light on this matter. Atrial natriuretic peptide (ANP, a potent natriuretic and vasorelaxant hormone, originally isolated from rat atria, has been found at other sites, including the brain. Blood volume expansion causes ANP release that is believed to be important in the induction of natriuresis and diuresis, which in turn act to reduce the increase in blood volume. Neurohypophysectomy totally abolishes the ANP response to volume expansion. This indicates that one of the major hypophyseal peptides is responsible for ANP release. The role of ANP in OT-induced natriuresis was evaluated, and we hypothesized that the cardio-renal effects of OT are mediated by the release of ANP from the heart. To support this hypothesis, we have demonstrated the presence and synthesis of OT receptors in all heart compartments and the vasculature. The functionality of these receptors has been established by the ability of OT to induce ANP release from perfused heart or atrial slices. Furthermore, we have shown that the heart and large vessels

  10. An Early Postnatal Oxytocin Treatment Prevents Social and Learning Deficits in Adult Mice Deficient for Magel2, a Gene Involved in Prader-Willi Syndrome and Autism.

    Science.gov (United States)

    Meziane, Hamid; Schaller, Fabienne; Bauer, Sylvian; Villard, Claude; Matarazzo, Valery; Riet, Fabrice; Guillon, Gilles; Lafitte, Daniel; Desarmenien, Michel G; Tauber, Maithé; Muscatelli, Françoise

    2015-07-15

    Mutations of MAGEL2 have been reported in patients presenting with autism, and loss of MAGEL2 is also associated with Prader-Willi syndrome, a neurodevelopmental genetic disorder. This study aimed to determine the behavioral phenotype of Magel2-deficient adult mice, to characterize the central oxytocin (OT) system of these mutant mice, and to test the curative effect of a peripheral OT treatment just after birth. We assessed the social and cognitive behavior of Magel2-deficient mice, analyzed the OT system of mutant mice treated or not by a postnatal administration of OT, and determined the effect of this treatment on the brain. Magel2 inactivation induces a deficit in social recognition and social interaction and a reduced learning ability in adult male mice. In these mice, we reveal anatomical and functional modifications of the OT system and show that these defects change from birth to adulthood. Daily administration of OT in the first postnatal week was sufficient to prevent deficits in social behavior and learning abilities in adult mutant male mice. We show that this OT treatment partly restores a normal OT system. Thus, we report that an alteration of the OT system around birth has long-term consequences on behavior and on cognition. Importantly, an acute OT treatment of Magel2-deficient pups has a curative effect. Our study reveals that OT plays a crucial role in setting social behaviors during a period just after birth. An early OT treatment in this critical period could be a novel therapeutic approach for the treatment of neurodevelopmental disorders such as Prader-Willi syndrome and autism. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes

    NARCIS (Netherlands)

    Arrighi, J.F.; Barre, A.; Amor, Ben B.; Bersoult, A.; Campos Soriano, L.; Mirabella, R.; Carvalho-Niebel, de F.; Journet, E.P.; Ghérardi, M.; Huguet, T.; Geurts, R.; Dénarié, J.; Rougé, P.; Gough, C.

    2006-01-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide

  12. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. Georg Thieme Verlag KG Stuttgart · New York.

  13. Oxytocin induces penile erection and yawning when injected into the bed nucleus of the stria terminalis: Involvement of glutamic acid, dopamine, and nitric oxide.

    Science.gov (United States)

    Sanna, Fabrizio; Bratzu, Jessica; Argiolas, Antonio; Melis, Maria Rosaria

    2017-11-01

    Oxytocin (5-100ng), but not Arg 8 -vasopressin (100ng), injected unilaterally into the bed nucleus of the stria terminalis (BNST) induces penile erection and yawning in a dose-dependent manner in male rats. The minimal effective dose was 20ng for penile erection and 5ng for yawning. Oxytocin responses were abolished not only by the oxytocin receptor antagonist d(CH 2 ) 5 Tyr(Me) 2 -Orn 8 -vasotocin (1μg), but also by (+) MK-801 (1μg), an excitatory amino acid receptor antagonist of the N-methyl-d-aspartic acid (NMDA) subtype, SCH 23390 (1μg), a D1 receptor antagonist, but not haloperidol (1μg), a D2 receptor antagonist, and SMTC (40μg), an inhibitor of neuronal nitric oxide synthase, injected into the BNST 15min before oxytocin. Oxytocin-induced penile erection, but not yawning, was also abolished by CNQX (1μg), an excitatory amino acid receptor antagonist of the AMPA subtype. In contrast, oxytocin responses were not reduced by bicuculline (20ng), a GABA A receptor antagonist, phaclofen (5μg), a GABA B receptor antagonist, CP 376395, a CRF receptor-1 antagonist (5μg), or astressin 2B, a CRF receptor-2 antagonist (150ng). Considering the ability of NMDA (100ng) to induce penile erection and yawning when injected into the BNST and the available evidence showing possible interaction among oxytocin, glutamic acid, and dopamine in the BNST, oxytocin possibly activates glutamatergic neurotransmission in the BNST. This in turn leads to the activation of neural pathways projecting back to the paraventricular nucleus, medial preoptic area, ventral tegmental area, and/or ventral subiculum/amygdala, thereby inducing penile erection and yawning. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Oxytocin prolongs the gastric emptying time in patients with diabetes mellitus and gastroparesis, but does not affect satiety or volume intake in patients with functional dyspepsia

    Directory of Open Access Journals (Sweden)

    Borg Julia

    2012-03-01

    Full Text Available Abstract Background Oxytocin is released in response to a fatty meal. Blockage of the oxytocin receptor led to slower gastric emptying whereas stimulation resulted in less satiety in healthy volunteers. Patients with diabetes mellitus and gastroparesis lack oxytocin elevation, and dyspepsia is partly caused by reduced fundus accommodation causing early satiety and related symptoms. The aim of this study was thus to examine the effect of oxytocin on gastric emptying, satiety and volume intake in patients with gastrointestinal pathology. Results Gastric emptying scintigraphy was performed twice in 12 patients with diabetic gastroparesis, once with oxytocin and once with saline as intravenous infusions. The patients scored their sensation of satiety using a visual analogue scale (VAS. The gastric emptying in patients with gastroparesis was prolonged during oxytocin infusion (p = 0.034 without affecting satiety. A slow satiety drinking test was performed in 14 patients with functional dyspepsia. The patients scored their satiety every five minutes until maximal satiety was reached, and the total volume was determined. The VAS was also completed 30 minutes afterwards. The test was performed twice, once with oxytocin and once with saline as intravenous infusions. There was no difference in satiety scores or volume of nutrient intake between saline and oxytocin infusions, either before, during or after the meal. Conclusions Oxytocin prolongs gastric emptying in patients with diabetes mellitus and gastroparesis, but has no effect on volume of nutrient intake or satiety and other related symptoms in patients with functional dyspepsia.

  15. Oxytocin and Aggression.

    Science.gov (United States)

    de Jong, Trynke R; Neumann, Inga D

    2017-09-02

    The neuropeptide oxytocin (OT) has a solid reputation as a facilitator of social interactions such as parental and pair bonding, trust, and empathy. The many results supporting a pro-social role of OT have generated the hypothesis that impairments in the endogenous OT system may lead to antisocial behavior, most notably social withdrawal or pathological aggression. If this is indeed the case, administration of exogenous OT could be the "serenic" treatment that psychiatrists have for decades been searching for.In the present review, we list and discuss the evidence for an endogenous "hypo-oxytocinergic state" underlying aggressive and antisocial behavior, derived from both animal and human studies. We furthermore examine the reported effects of synthetic OT administration on aggression in rodents and humans.Although the scientific findings listed in this review support, in broad lines, the link between a down-regulated or impaired OT system activity and increased aggression, the anti-aggressive effects of synthetic OT are less straightforward and require further research. The rather complex picture that emerges adds to the ongoing debate questioning the unidirectional pro-social role of OT, as well as the strength of the effects of intranasal OT administration in humans.

  16. Clinical trial of modulatory effects of oxytocin treatment on higher-order social cognition in autism spectrum disorder: a randomized, placebo-controlled, double-blind and crossover trial.

    Science.gov (United States)

    Preckel, Katrin; Kanske, Philipp; Singer, Tania; Paulus, Frieder M; Krach, Sören

    2016-09-21

    Autism spectrum disorders are neurodevelopmental conditions with severe impairments in social communication and interaction. Pioneering research suggests that oxytocin can improve motivation, cognition and attention to social cues in patients with autism spectrum disorder. The aim of this clinical trial is to characterize basic mechanisms of action of acute oxytocin treatment on neural levels and to relate these to changes in different levels of socio-affective and -cognitive functioning. This clinical study is a randomized, double-blind, cross-over, placebo-controlled, multicenter functional magnetic resonance imaging study with two arms. A sample of 102 male autism spectrum disorder patients, diagnosed with Infantile Autistic Disorder (F84.0 according to ICD-10), Asperger Syndrome (F84.5 according to ICD-10), or Atypical Autism (F84.1 according to ICD-10) will be recruited and will receive oxytocin and placebo nasal spray on two different days. Autism spectrum disorder patients will be randomized to determine who receives oxytocin on the first and who on the second visit. Healthy control participants will be recruited and case-control matched to the autism spectrum disorder patients. The primary outcome will be neural network activity, measured with functional magnetic resonance imaging while participants perform socio-affective and -cognitive tasks. Behavioral markers such as theory of mind accuracy ratings and response times will be assessed as secondary outcomes in addition to physiological measures such as skin conductance. Trait measures for alexithymia, interpersonal reactivity, and social anxiety will also be evaluated. Additionally, we will analyze the effect of oxytocin receptor gene variants and how these potentially influence the primary and secondary outcome measures. Functional magnetic resonance imaging assessments will take place at two time points which will be scheduled at least two weeks apart to ensure a sufficient wash-out time after oxytocin

  17. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3

    Energy Technology Data Exchange (ETDEWEB)

    Heiber, M.; Marchese, A.; O`Dowd, B.F. [Univ. of Toronto, Ontario (Canada)] [and others

    1996-03-05

    We used sequence similarities among G-protein-coupled receptor genes to discover a novel receptor gene. Using primers based on conserved regions of the opioid-related receptors, we isolated a PCR product that was used to locate the full-length coding region of a novel human receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor encoded by GPR15 with other receptors revealed that it shared sequence identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b receptor, and the orphan receptors GPR1 and AGTL1. GPR15 was mapped to human chromosome 3q11.2-q13.1. 12 refs., 2 figs.

  18. Functional polymorphisms in the P2X7 receptor gene are associated with osteoporosis

    DEFF Research Database (Denmark)

    Husted, L B; Harsløf, T; Stenkjær, L

    2013-01-01

    variant allele, which has been associated with increased receptor function in monocytes, was associated with increased total hip BMD in women. With the exception of His155Tyr for which we found conflicting results in men and women, our results are consistent with the phenotype of the knockout mouse......UNLABELLED: The P2X(7) receptor is an ATP-gated cation channel. We investigated the effect of both loss-of-function and gain-of-function polymorphisms in the P2X(7) receptor gene on BMD and risk of vertebral fractures and found that five polymorphisms and haplotypes containing three...... of these polymorphisms were associated with BMD and fracture risk. INTRODUCTION: The P2X(7) receptor is an ATP-gated cation channel. P2X(7) receptor knockout mice have reduced total bone mineral content, and because several functional polymorphisms have been identified in the human P2X(7) receptor gene, we wanted...

  19. Neonatal oxytocin and vasopressin manipulation alter social behavior during the juvenile period in Mongolian gerbils.

    Science.gov (United States)

    Taylor, Jack H; Cavanaugh, Jon; French, Jeffrey A

    2017-07-01

    Oxytocin and vasopressin are important modulators of a wide variety of social behaviors, and increasing evidence is showing that these neuropeptides are important organizational effectors of later-life behavior as well. We treated day-old gerbil pups with oxytocin, vasopressin, an oxytocin receptor antagonist, a vasopressin V1a receptor antagonist, or saline control, and then measured received parental responsiveness during the early postnatal period and juvenile social behavior during weaning. Neonatal vasopressin treatment enhanced sociality in males, but not females, at both developmental time points. When pups were individually placed outside the nest, parents were more responsive to male pups treated with vasopressin compared with littermates, and vasopressin treated male pups exhibited increased play with littermates as juveniles. These results show that vasopressin during very early life can enhance social interactions throughout early development. © 2017 Wiley Periodicals, Inc.

  20. The Involvement of Oxytocin in the Subthalamic Nucleus on Relapse to Methamphetamine-Seeking Behaviour.

    Directory of Open Access Journals (Sweden)

    Sarah Jane Baracz

    Full Text Available The psychostimulant methamphetamine (METH is an addictive drug of abuse. The neuropeptide oxytocin has been shown to modulate METH-related reward and METH-seeking behaviour. Recent findings implicated the subthalamic nucleus (STh as a key brain region in oxytocin modulation of METH-induced reward. However, it is unclear if oxytocin acts in this region to attenuate relapse to METH-seeking behaviour, and if this action is through the oxytocin receptor. We aimed to determine whether oxytocin pretreatment administered into the STh would reduce reinstatement to METH use in rats experienced at METH self-administration, and if this could be reversed by the co-administration of the oxytocin receptor antagonist desGly-NH2,d(CH25[D-Tyr2,Thr4]OVT. Male Sprague Dawley rats underwent surgery to implant an intravenous jugular vein catheter and bilateral microinjection cannulae into the STh under isoflourane anaesthesia. Rats were then trained to self-administer intravenous METH (0.1 mg/kg/infusion by lever press during 2-hour sessions under a fixed ratio 1 schedule for 20 days. Following extinction of lever press activity, the effect of microinjecting saline, oxytocin (0.2 pmol, 0.6 pmol, 1.8 pmol, 3.6 pmol or co-administration of oxytocin (3.6 pmol and desGly-NH2,d(CH25[D-Tyr2,Thr4]OVT (3 nmol into the STh (200 nl/side was examined on METH-primed reinstatement (1 mg/kg; i.p.. We found that local administration of the highest oxytocin dose (3.6 pmol into the STh decreased METH-induced reinstatement and desGly-NH2,d(CH25[D-Tyr2,Thr4]OVT had a non-specific effect on lever press activity. These findings highlight that oxytocin modulation of the STh is an important modulator of relapse to METH abuse.

  1. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    Science.gov (United States)

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P cancer group (P prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  2. Emergent synchronous bursting of oxytocin neuronal network.

    Directory of Open Access Journals (Sweden)

    Enrico Rossoni

    2008-07-01

    Full Text Available When young suckle, they are rewarded intermittently with a let-down of milk that results from reflex secretion of the hormone oxytocin; without oxytocin, newly born young will die unless they are fostered. Oxytocin is made by magnocellular hypothalamic neurons, and is secreted from their nerve endings in the pituitary in response to action potentials (spikes that are generated in the cell bodies and which are propagated down their axons to the nerve endings. Normally, oxytocin cells discharge asynchronously at 1-3 spikes/s, but during suckling, every 5 min or so, each discharges a brief, intense burst of spikes that release a pulse of oxytocin into the circulation. This reflex was the first, and is perhaps the best, example of a physiological role for peptide-mediated communication within the brain: it is coordinated by the release of oxytocin from the dendrites of oxytocin cells; it can be facilitated by injection of tiny amounts of oxytocin into the hypothalamus, and it can be blocked by injection of tiny amounts of oxytocin antagonist. Here we show how synchronized bursting can arise in a neuronal network model that incorporates basic observations of the physiology of oxytocin cells. In our model, bursting is an emergent behaviour of a complex system, involving both positive and negative feedbacks, between many sparsely connected cells. The oxytocin cells are regulated by independent afferent inputs, but they interact by local release of oxytocin and endocannabinoids. Oxytocin released from the dendrites of these cells has a positive-feedback effect, while endocannabinoids have an inhibitory effect by suppressing the afferent input to the cells.

  3. Cloning of human genes encoding novel G protein-coupled receptors

    Energy Technology Data Exchange (ETDEWEB)

    Marchese, A.; Docherty, J.M.; Heiber, M. [Univ. of Toronto, (Canada)] [and others

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  4. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review

    OpenAIRE

    Ghalandari; Hosseini-Esfahani; Mirmiran

    2015-01-01

    Context Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. E...

  5. Social support, oxytocin, and PTSD

    NARCIS (Netherlands)

    Olff, Miranda; Koch, Saskia B. J.; Nawijn, Laura; Frijling, Jessie L.; van Zuiden, Mirjam; Veltman, Dick J.

    2014-01-01

    A lack of social support and recognition by the environment is one of the most consistent risk factors for posttraumatic stress disorder (PTSD), and PTSD patients will recover faster with proper social support. The oxytocin system has been proposed to underlie beneficial effects of social support as

  6. Centrally-administered oxytocin promotes preference for familiar objects at a short delay in ovariectomized female rats.

    Science.gov (United States)

    Madularu, Dan; Athanassiou, Maria; Yee, Jason R; Mumby, Dave G

    2014-11-01

    Oxytocin has been previously associated with social attachment behaviors in various species, however, most studies focused on partner preference in the socially-monogamous prairie vole. In these, oxytocin treatment was shown to promote partner preference, such that females receiving either central or pulsatile peripheral administration would spend more time with a familiar male. This behavioral outcome was blocked by oxytocin receptor antagonist treatment. The aim of the current study was to further explore the preference-inducing properties of oxytocin by examining its effects on object preference on ovariectomized female rats. In other words, we assessed whether these effects would apply to objects and if they would be persistent across species. Eight rats were infused with oxytocin into the left ventricle and object preference was assessed at two delays: 30min and 4h. At the 30min delay, oxytocin-treated animals showed preference for the familiar object, whereas saline-treated controls exhibited preference for the novel object. At the 4h delay, both groups showed novel-object preference. Our findings show that oxytocin modulates object preference in the female rat at a shorter delay, similar to the findings from partner-preference studies in the prairie vole, suggesting that the mechanisms driving object preference might be in part similar to those responsible for partner preference. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Association of ghrelin receptor gene polymorphism with bulimia nervosa in a Japanese population.

    Science.gov (United States)

    Miyasaka, K; Hosoya, H; Sekime, A; Ohta, M; Amono, H; Matsushita, S; Suzuki, K; Higuchi, S; Funakoshi, A

    2006-09-01

    Eating disorders (EDs) have a highly heterogeneous etiology and multiple genetic factors might contribute to their pathogenesis. Ghrelin, a novel growth hormone-releasing peptide, enhances appetite and increases food intake, and human ghrelin plasma levels are inversely correlated with body mass index. In the present study, we examined the 171T/C polymorphism of the ghrelin receptor (growth hormone secretagogue receptor, GHSR) gene in patients diagnosed with EDs, because the subjects having ghrelin gene polymorphism (Leu72Met) was not detected in a Japanese population, previously. In addition, beta3 adrenergic receptor gene polymorphism (Try64Arg) and cholecystokinin (CCK)-A receptor (R) gene polymorphism (-81A/G, -128G/T), which are both associated with obesity, were investigated. The subjects consisted of 228 Japanese patients with EDs [96 anorexia nervosa (AN), 116 bulimia nervosa (BN) and 16 not otherwise specified (NOS)]. The age- and gender-matched control group consisted of 284 unrelated Japanese subjects. The frequency of the CC type of the GHSR gene was significantly higher in BN subjects than in control subjects (chi(2) = 4.47, p = 0.035, odds ratio = 2.05, Bonferroni correction: p = 0.070), while the frequency in AN subjects was not different from that in controls. The distribution of neither beta3 adrenergic receptor gene nor CCK-AR polymorphism differed between EDs and control subjects. Therefore, the CC type of GHSR gene polymorphism (171T/C) is a risk factor for BN, but not for AN.

  8. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia.

    Directory of Open Access Journals (Sweden)

    Katariina Hannula-Jouppi

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  9. The Axon Guidance Receptor Gene ROBO1 Is a Candidate Gene for Developmental Dyslexia.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  10. Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes

    Directory of Open Access Journals (Sweden)

    Lane Robert P

    2007-09-01

    Full Text Available Abstract The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system.

  11. Cloning of the cDNA and gene for a human D2 dopamine receptor

    International Nuclear Information System (INIS)

    Grady, D.K.; Makam, H.; Stofko, R.E.; Bunzow, J.R.; Civelli, O.; Marchionni, M.A.; Alfano, M.; Frothingham, L.; Fischer, J.B.; Burke-Howie, K.J.; Server, A.C.

    1989-01-01

    A clone encoding a human D 2 dopamine receptor was isolated from a pituitary cDNA library and sequenced. The deduced protein sequence is 96% identical with that of the cloned rat receptor with one major difference: the human receptor contains an additional 29 amino acids in its putative third cytoplasmic loop. Southern blotting demonstrated the presence of only one human D 2 receptor gene. Two overlapping phage containing the gene were isolated and characterized. DNA sequence analysis of these clones showed that the coding sequence is interrupted by six introns and that the additional amino acids present in the human pituitary receptor are encoded by a single exon of 87 base pairs. The involvement of this sequence in alternative splicing and its biological significance are discussed

  12. Oxytocin decreases sweet taste sensitivity in mice.

    Science.gov (United States)

    Sinclair, Michael S; Perea-Martinez, Isabel; Abouyared, Marianne; St John, Steven J; Chaudhari, Nirupa

    2015-03-15

    Oxytocin (OXT) suppresses food intake and lack of OXT leads to overconsumption of sucrose. Taste bud cells were recently discovered to express OXT-receptor. In the present study we tested whether administering OXT to wild-type mice affects their licking behavior for tastants in a paradigm designed to be sensitive to taste perception. We injected C57BL/6J mice intraperitoneally (i.p.) with 10mg/kg OXT and assayed their brief-access lick responses, motivated by water deprivation, to NaCl (300mM), citric acid (20mM), quinine (0.3mM), saccharin (10mM), and a mix of MSG and IMP (100mM and 0.5mM respectively). OXT had no effect on licking for NaCl, citric acid, or quinine. A possible effect of OXT on saccharin and MSG+IMP was difficult to interpret due to unexpectedly low lick rates to water (the vehicle for all taste solutions), likely caused by the use of a high OXT dose that suppressed licking and other behaviors. A subsequent experiment focused on another preferred tastant, sucrose, and employed a much lower OXT dose (0.1mg/kg). This modification, based on our measurements of plasma OXT following i.p. injection, permitted us to elevate plasma [OXT] sufficiently to preferentially activate taste bud cells. OXT at this low dose significantly reduced licking responses to 0.3M sucrose, and overall shifted the sucrose concentration - behavioral response curves rightward (mean EC50saline=0.362M vs. EC50OXT=0.466M). Males did not differ from females under any condition in this study. We propose that circulating oxytocin is another factor that modulates taste-based behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Changes in gene expression following androgen receptor blockade ...

    Indian Academy of Sciences (India)

    Madhu urs

    of gene expression in the ventral prostate, it is not clear whether all the gene expression ... These include clusterin, methionine adenosyl transferase IIα, and prostate-specific ..... MAGEE1 melanoma antigen and no similarity was found with the ...

  14. The association between oxytocin and social capital.

    Directory of Open Access Journals (Sweden)

    Takeo Fujiwara

    Full Text Available BACKGROUND: Oxytocin is known to be related to social behaviors, including trust. However, few studies have investigated the association between oxytocin levels and social capital. Thus, we tested the hypothesis that endogenous oxytocin levels are positively associated with social capital. We also considered whether the association differed across gender because previous studies have shown differential effects of OT on social behaviors depending on gender. METHODS: We recruited a convenience sample of 50 women and 31 men in Japan via community sampling from whom we obtained urine sample with which to measure oxytocin levels. Individual-level cognitive social capital (social trust and mutual aid and structural social capital (community participation were assessed using a questionnaire. We used multivariate regression, adjusted for covariates (age, number of children, self-rated health, and education, and stratified by gender to consider associations between oxytocin and social capital. RESULTS: Among women, oxytocin was inversely associated with social trust and mutual aid (p<0.05. However, women participating in only 1 organization in the community showed higher oxytocin than women who participated in either no organizations (p<0.05 or 2 or more organization (i.e. inverse-U shape association. Among men, no association was observed between oxytocin and either form of cognitive and structural social capital. CONCLUSION: Women who perceived low cognitive social capital showed higher oxytocin levels, while structural social capital showed inverse-U shape association with oxytocin. No association between oxytocin and social capital was found among men. Further study is needed to elucidate why oxytocin was inversely associated with cognitive social capital only among women.

  15. No linkage and association of atopy to chromosome 16 including the interleukin-4 receptor gene

    DEFF Research Database (Denmark)

    Haagerup, A; Bjerke, T; Schiøtz, P O

    2001-01-01

    BACKGROUND: Several susceptibility genes for atopy have been suggested in recent years. Few have been investigated as intensively as the interleukin-4-receptor alpha (IL4Ralpha) gene on chromosome 16. The results remain in dispute. Therefore, in a robust design, we tested for association of type ...

  16. Mutation screening of the Ectodysplasin-A receptor gene EDAR in hypohidrotic ectodermal dysplasia

    NARCIS (Netherlands)

    van der Hout, Annemarie H.; Oudesluijs, Gretel G.; Venema, Andrea; Verheij, Joke B. G. M.; Mol, Bart G. J.; Rump, Patrick; Brunner, Han G.; Vos, Yvonne J.; van Essen, Anthonie J.

    Hypohidrotic ectodermal dysplasia (HED) can be caused by mutations in the X-linked ectodysplasin A (ED1) gene or the autosomal ectodysplasin A-receptor (EDAR) and EDAR-associated death domain (EDARADD) genes. X-linked and autosomal forms are sometimes clinically indistinguishable. For genetic

  17. Gene number determination and genetic polymorphism of the gamma delta T cell co-receptor WC1 genes

    Directory of Open Access Journals (Sweden)

    Chen Chuang

    2012-10-01

    Full Text Available Abstract Background WC1 co-receptors belong to the scavenger receptor cysteine-rich (SRCR superfamily and are encoded by a multi-gene family. Expression of particular WC1 genes defines functional subpopulations of WC1+ γδ T cells. We have previously identified partial or complete genomic sequences for thirteen different WC1 genes through annotation of the bovine genome Btau_3.1 build. We also identified two WC1 cDNA sequences from other cattle that did not correspond to sequences in the Btau_3.1 build. Their absence in the Btau_3.1 build may have reflected gaps in the genome assembly or polymorphisms among animals. Since the response of γδ T cells to bacterial challenge is determined by WC1 gene expression, it was critical to understand whether individual cattle or breeds differ in the number of WC1 genes or display polymorphisms. Results Real-time quantitative PCR using DNA from the animal whose genome was sequenced (“Dominette” and sixteen other animals representing ten breeds of cattle, showed that the number of genes coding for WC1 co-receptors is thirteen. The complete coding sequences of those thirteen WC1 genes is presented, including the correction of an error in the WC1-2 gene due to mis-assembly in the Btau_3.1 build. All other cDNA sequences were found to agree with the previous annotation of complete or partial WC1 genes. PCR amplification and sequencing of the most variable N-terminal SRCR domain (domain 1 which has the SRCR “a” pattern of each of the thirteen WC1 genes showed that the sequences are highly conserved among individuals and breeds. Of 160 sequences of domain 1 from three breeds of cattle, no additional sequences beyond the thirteen described WC1 genes were found. Analysis of the complete WC1 cDNA sequences indicated that the thirteen WC1 genes code for three distinct WC1 molecular forms. Conclusion The bovine WC1 multi-gene family is composed of thirteen genes coding for three structural forms whose

  18. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review.

    Science.gov (United States)

    Ghalandari, Hamid; Hosseini-Esfahani, Firoozeh; Mirmiran, Parvin

    2015-07-01

    Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. The keywords leptin, ghrelin, polymorphism, single-nucleotide polymorphism (SNP), obesity, overweight, Body Mass Index, metabolic syndrome, and type 2 diabetes mellitus (T2DM) (MeSH headings) were used to search in the following databases: Pubmed, Sciencedirect (Elsevier), and Google scholar. Overall, 24 case-control studies, relevant to our topic, met the criteria and were included in the review. The most prevalent leptin/leptin receptor genes (LEP/LEPR) and ghrelin/ghrelin receptor genes (GHRL/GHSR) single nucleotide polymorphisms studied were LEP G-2548A, LEPR Q223R, and Leu72Met, respectively. Nine studies of the 17 studies on LEP/LEPR, and three studies of the seven studies on GHRL/GHSR showed significant relationships. In general, our study suggests that the association between LEP/LEPR and GHRL/GHSR with overweight/obesity and the related metabolic disturbances is inconclusive. These results may be due to unidentified gene-environment interactions. More investigations are needed to further clarify this association.

  19. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    International Nuclear Information System (INIS)

    Hofmann, M.; Gazdhar, A.; Weitzel, T.; Schmid, R.; Krause, T.

    2006-01-01

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and humans

  20. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, M. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland)]. E-mail: Michael.Hofmann@insel.ch; Gazdhar, A. [Division of Pulmonary Medicine, University Hospital Bern (Switzerland); Weitzel, T. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland); Schmid, R. [Division of Thoracic Surgery, University Hospital Bern (Switzerland); Krause, T. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland)

    2006-12-20

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and human000.

  1. Oxytocin and potential benefits for obesity treatment.

    Science.gov (United States)

    Olszewski, Pawel K; Klockars, Anica; Levine, Allen S

    2017-10-01

    Laboratory animal experiments have consistently shown that oxytocin causes early termination of food intake, thereby promoting a decrease in body weight in a long term. Recent studies have also assessed some of oxytocin's effects on appetite and energy balance in humans. The present study examines the findings of the key basic research and of the few clinical studies published thus far in the context of potential benefits and challenges stemming from the use of oxytocin in obese patients. Basic research indicates the involvement of oxytocin in satiety, processing, in reducing a drive to eat for pleasure and because of psychosocial factors. Although the results of clinical studies are very scarce, they suggest that oxytocin administered intranasally in humans decreases energy-induced and reward-induced eating, supports cognitive control of food choices, and improves glucose homeostasis, and its effectiveness may be BMI dependent. Despite the wealth of basic research showing broad anorexigenic effects of oxytocin, clinical studies on oxytocin's therapeutic potential in obesity, are still in their infancy. Future implementation of oxytocin-based pharmacological strategies in controlling energy balance will likely depend on our ability to integrate diverse behavioral and metabolic effects of oxytocin in obesity treatment regimens.

  2. Fluorescent visualization of oxytocin in the hypothalamo-neurohypophysial system

    Directory of Open Access Journals (Sweden)

    Hirofumi eHashimoto

    2014-07-01

    Full Text Available Oxytocin (OXT is well known for its ability to the milk ejection reflex and uterine contraction. It is also involved in several other behaviors, such as anti-nociception, anxiety, feeding, social recognition and stress responses. OXT is synthesized in the magnocellular neurosecretory cells (MNCs in the hypothalamic paraventricular (PVN and the supraoptic nuclei (SON that terminate their axons in the posterior pituitary (PP. We generated transgenic rats that express the OXT and fluorescent protein fusion gene in order to visualize oxytocin in the hypothalamo-neurohypophysial system. In these transgenic rats, fluorescent proteins were observed in the MNCs and axon terminals in the PP. This transgenic rat is a new tool to study the physiological role of OXT in the hypothalamo-neurohypophysial system.

  3. The orgasmic history of oxytocin: Love, lust, and labor

    Directory of Open Access Journals (Sweden)

    Navneet Magon

    2011-01-01

    Full Text Available Oxytocin has been best known for its roles in female reproduction. It is released in large amounts during labor, and after stimulation of the nipples. It is a facilitator for childbirth and breastfeeding. However, recent studies have begun to investigate oxytocin′s role in various behaviors, including orgasm, social recognition, bonding, and maternal behaviors. This small nine amino acid peptide is now believed to be involved in a wide variety of physiological and pathological functions such as sexual activity, penile erection, ejaculation, pregnancy, uterine contraction, milk ejection, maternal behavior, social bonding, stress and probably many more, which makes oxytocin and its receptor potential candidates as targets for drug therapy. From an innocuous agent as an aid in labor and delivery, oxytocin has come a long way in being touted as the latest party drug. The hormone of labor during the course of the last 100 years has had multiple orgasms to be the hormone of love. Many more shall be seen in the times to come!

  4. Investigation of Gamma-aminobutyric acid (GABA A receptors genes and migraine susceptibility

    Directory of Open Access Journals (Sweden)

    Ciccodicola Alfredo

    2008-12-01

    Full Text Available Abstract Background Migraine is a neurological disorder characterized by recurrent attacks of severe headache, affecting around 12% of Caucasian populations. It is well known that migraine has a strong genetic component, although the number and type of genes involved is still unclear. Prior linkage studies have reported mapping of a migraine gene to chromosome Xq 24–28, a region containing a cluster of genes for GABA A receptors (GABRE, GABRA3, GABRQ, which are potential candidate genes for migraine. The GABA neurotransmitter has been implicated in migraine pathophysiology previously; however its exact role has not yet been established, although GABA receptors agonists have been the target of therapeutic developments. The aim of the present research is to investigate the role of the potential candidate genes reported on chromosome Xq 24–28 region in migraine susceptibility. In this study, we have focused on the subunit GABA A receptors type ε (GABRE and type θ (GABRQ genes and their involvement in migraine. Methods We have performed an association analysis in a large population of case-controls (275 unrelated Caucasian migraineurs versus 275 controls examining a set of 3 single nucleotide polymorphisms (SNPs in the coding region (exons 3, 5 and 9 of the GABRE gene and also the I478F coding variant of the GABRQ gene. Results Our study did not show any association between the examined SNPs in our test population (P > 0.05. Conclusion Although these particular GABA receptor genes did not show positive association, further studies are necessary to consider the role of other GABA receptor genes in migraine susceptibility.

  5. High-throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhang

    2010-11-01

    Full Text Available We performed comprehensive data mining to explore the vomeronasal receptor (V1R & V2R repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on computational prediction from gene sequence data, thereby establishing that these genes are indeed part of the vomeronasal system, especially the V2Rs. 168 V1Rs and 98 V2Rs were detected to be highly enriched in mouse vomeronasal organ (VNO, and 108 V1Rs and 87 V2Rs in rat VNO. We monitored the expression profile of mouse VR genes in other non-VNO tissues with the result that some VR genes were re-designated as VR-like genes based on their non-olfactory expression pattern. Temporal expression profiles for mouse VR genes were characterized and their patterns were classified, revealing the developmental dynamics of these so-called pheromone receptors. We found numerous patterns of temporal expression which indicate possible behavior-related functions. The uneven composition of VR genes in certain patterns suggests a functional differentiation between the two types of VR genes. We found the coherence between VR genes and transcription factors in terms of their temporal expression patterns. In situ hybridization experiments were performed to evaluate the cell number change over time for selected receptor genes.

  6. Development of gene diagnosis for diabetes and cholecystitis based on gene analysis of CCK-A receptor

    International Nuclear Information System (INIS)

    Kono, Akira

    1999-01-01

    Base sequence analysis of CCKAR gene (a gene of A-type receptor for cholecystokinin) from OLETF rat, a model rat for insulin-independent diabetes was made based on the base sequence of wild CCKAR gene, which had been clarified in the previous year. From the pancreas of OLETF rat, DNA was extracted and transduced into λphage after fragmentation to construct the gene library of OLETF. Then, λphage DNA clone bound with labelled cDNA of CCKAR gene was analyzed and the gene structure was compared with that of the wild gene. It was demonstrated that CCKAR gene of OLETF had a deletion (6800 b.p.) ranging from the promoter region to the Exon 2, suggesting that CCKAR gene is not functional in OLETF rat. The whole sequence of this mutant gene was registered into Japan DNA Bank (D 50610). Then, F 2 offspring rats were obtained through crossing OLETF (female) and F344 (male) and the time course-changes in the blood glucose level after glucose loading were compared among them. The blood glucose level after glucose loading was significantly higher in the homo-mutant F 2 (CCKAR,-/-) as well as the parent OLETF rat than hetero-mutant F 2 (CCKARm-/+) or the wild rat (CCKAR,+/+). This suggests that CCKAR gene might be involved in the control of blood glucose level and an alteration of the expression level or the functions of CCKAR gene might affect the blood glucose level. (M.N.)

  7. Oxytocin model of formation of psychotic symptoms and its implications for research on oxytocinergic pathway in schizophrenia

    OpenAIRE

    Holka-Pokorska, Justyna; Jarema, Marek

    2014-01-01

    There are more and more data to support the dysregulation of the oxytocinergic pathway in schizophrenia. The development of the above branch of knowledge began to evolve alongside the mainstream of studies concerning gene polymorphisms for dopaminergic, glutamatergic and serotoninergic systems. Both experimental studies and clinical trials have demonstrated an antipsychotic effect of oxytocin. Starting with the pioneering neuroendocrinobehavioral experiment which demonstrated that oxytocin na...

  8. ANALYSIS OF POSSIBLE POSITIVE EFFECTS OF OXYTOCIN ADMINISTERED DURING BIRTH ON THE NEUROMOTOR DEVELOPMENT OF THE 0 - 5 YEAR-OLD-CHILDREN

    Directory of Open Access Journals (Sweden)

    Iulia Elena DIACONU

    2017-05-01

    Full Text Available Neuropeptide oxytocin (OT receives increasing attention since, it plays a role in various behaviors including anxiety, drug addiction, learning, social recognition, empathy, pair bonding and decreased aggression. The central nucleus of the amygdala (CeA, part of the limbic system, plays an important role in learning, memory, anxiety and reinforcing mechanisms. Oxytocin receptors are found in the tissues of the cardiovascular system, reproductive system, brain, and are activated by exposure to specific stimuli. The bestknown stimuli related to reproduction are sucking, birth, cervical stimulation during sexual intercourse. Changes in the oxytocinergic system play a fundamental role in the development of autism, mental disorders, including eating disorders, obsessive-compulsive disorder, schizophrenia, with direct impact on the patient’s cognition and social behavior. Some researchers have observed that intranasal Oxytocin (OT is a potential treatment for multiple neuropsychiatric disorders. As oxytocin is a peptide, delivery by the intranasal (IN route is the preferred method in clinical studies. Although studies have shown increased cerebrospinal fluid oxytocin levels following intranasal administration, this does not unequivocably demonstrate that the peripherally administered oxytocin is entering the cerebrospinal fluid. For example, it has been suggested that peripheral delivery of oxytocin could lead to central release of endogenous oxytocin. It is also unknown whether the intranasal route provides for more efficient entry of the peptide into the CSF compared to the intravenous (IV route, which requires blood–brain barrier penetration.

  9. Oxytocin determination by radioimmunoassay in cattle. 1

    International Nuclear Information System (INIS)

    Schams, D.; Schmidt-Polex, B.; Kruse, V.

    1979-01-01

    A radioimmunoassay for oxytocin in cow plasma is described. Antisera were raised in rabbits against synthetic oxytocin coupled to bovine thyroglobulin. Iodinated oxytocin free of unlabelled oxytocin and most likely also free of diiodo-oxytocin was used as radioactive tracer. The tracer showed a high degree of purity, and was stable on storage. It could be used in the assay for 2-3 months. The assay showed very little cross-reactivity with vasopressin. Acetone was used for the extraction of oxytocin from plasma as well as from standards made of synthetic exytocin in pooled cow plasma. Inhibition curves obtained with plasma collected from cows at parturition were parallel to those obtained with the oxytocin standard preparation. The mean recovery of oxytocin added to cow plasma was 106% (SD=14). The within-assay coefficient of variation (CV) varied from 5.2 to 10.9%, and the between-assay CV was in the order of 13%. The assay sensitivity was 1 pg (0.5 μU) per tube, corresponding to 3 pg/ml plasma. Around the time of milking the plasma oxytocin profile showed a strong response to the preparation for milking, and a further effect related to the attachment of the teat cups of the milking machine. Peak concentrations were in the range of 15-50 pg/ml. During parturition there was a peak of oxytocin (65 pg/ml) coinciding with the expulsion phase. After this peak levels decreased by remained measurably elevated until the expulsion of the placenta. The plasma disappearance curve for immunoreactive oxutocin after the infusion of 100 IU oxytocin over a period of 1 h showed two components with apparent half-lives of 7-9 and 25 min, respectively. (author)

  10. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    Directory of Open Access Journals (Sweden)

    Jan Futas

    Full Text Available Natural killer (NK cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for

  11. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    Science.gov (United States)

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  12. Prospects and limitations of T cell receptor gene therapy

    NARCIS (Netherlands)

    Jorritsma, Annelies; Schotte, Remko; Coccoris, Miriam; de Witte, Moniek A.; Schumacher, Ton N. M.

    2011-01-01

    Adoptive transfer of antigen-specific T cells is an attractive means to provide cancer patients with immune cells of a desired specificity and the efficacy of such adoptive transfers has been demonstrated in several clinical trials. Because the T cell receptor is the single specificity-determining

  13. Interactions between dopamine and oxytocin in the control of sexual behaviour.

    Science.gov (United States)

    Baskerville, Tracey A; Douglas, Alison J

    2008-01-01

    Dopamine and oxytocin are two key neuromodulators involved in reproductive behaviours, such as mating and maternal care. Much evidence underlies their separate roles in such behaviours, but particularly in sexual behaviour. It is generally believed that central dopaminergic and oxytocinergic systems work together to regulate the expression of penile erection, but relatively little is known regarding how they interact. Thus, this review aims to discuss neuroanatomical proof, neuromodulator secretory profiles in the hypothalamus and behavioural pharmacological evidence which support a dopamine-oxytocin link in three hypothalamic nuclei that have been implicated in sexual behaviour, namely the medial preoptic nucleus, supraoptic nucleus and paraventricular nucleus (PVN). We also aim to provide an overview of potential dopamine-mediated transduction pathways that occur within these nuclei and are correlated with the exhibition of penile erection. The PVN provides the most convincing evidence for a dopamine-oxytocin link and it is becoming increasingly apparent that parvocellular oxytocinergic neurons in the PVN, in part, mediate the effects of dopamine to elicit penile erection. However, while we show that oxytocin neurons express dopamine receptors, other evidence on whether dopaminergic activation of PVN oxytocin cells involves a direct and/or indirect mechanism is inconclusive and further evidence is required to establish whether the two systems interact synergistically or sequentially in the regulation of penile erection.

  14. Supraoptic oxytocin and vasopressin neurons function as glucose and metabolic sensors.

    Science.gov (United States)

    Song, Zhilin; Levin, Barry E; Stevens, Wanida; Sladek, Celia D

    2014-04-01

    Neurons in the supraoptic nuclei (SON) produce oxytocin and vasopressin and express insulin receptors (InsR) and glucokinase. Since oxytocin is an anorexigenic agent and glucokinase and InsR are hallmarks of cells that function as glucose and/or metabolic sensors, we evaluated the effect of glucose, insulin, and their downstream effector ATP-sensitive potassium (KATP) channels on calcium signaling in SON neurons and on oxytocin and vasopressin release from explants of the rat hypothalamo-neurohypophyseal system. We also evaluated the effect of blocking glucokinase and phosphatidylinositol 3 kinase (PI3K; mediates insulin-induced mobilization of glucose transporter, GLUT4) on responses to glucose and insulin. Glucose and insulin increased intracellular calcium ([Ca(2+)]i). The responses were glucokinase and PI3K dependent, respectively. Insulin and glucose alone increased vasopressin release (P glucose in the presence of insulin. The oxytocin (OT) and vasopressin (VP) responses to insulin+glucose were blocked by the glucokinase inhibitor alloxan (4 mM; P ≤ 0.002) and the PI3K inhibitor wortmannin (50 nM; OT: P = 0.03; VP: P ≤ 0.002). Inactivating K ATP channels with 200 nM glibenclamide increased oxytocin and vasopressin release (OT: P neurons functioning as glucose and "metabolic" sensors to participate in appetite regulation.

  15. Supraoptic oxytocin and vasopressin neurons function as glucose and metabolic sensors

    Science.gov (United States)

    Song, Zhilin; Levin, Barry E.; Stevens, Wanida

    2014-01-01

    Neurons in the supraoptic nuclei (SON) produce oxytocin and vasopressin and express insulin receptors (InsR) and glucokinase. Since oxytocin is an anorexigenic agent and glucokinase and InsR are hallmarks of cells that function as glucose and/or metabolic sensors, we evaluated the effect of glucose, insulin, and their downstream effector ATP-sensitive potassium (KATP) channels on calcium signaling in SON neurons and on oxytocin and vasopressin release from explants of the rat hypothalamo-neurohypophyseal system. We also evaluated the effect of blocking glucokinase and phosphatidylinositol 3 kinase (PI3K; mediates insulin-induced mobilization of glucose transporter, GLUT4) on responses to glucose and insulin. Glucose and insulin increased intracellular calcium ([Ca2+]i). The responses were glucokinase and PI3K dependent, respectively. Insulin and glucose alone increased vasopressin release (P glucose in the presence of insulin. The oxytocin (OT) and vasopressin (VP) responses to insulin+glucose were blocked by the glucokinase inhibitor alloxan (4 mM; P ≤ 0.002) and the PI3K inhibitor wortmannin (50 nM; OT: P = 0.03; VP: P ≤ 0.002). Inactivating KATP channels with 200 nM glibenclamide increased oxytocin and vasopressin release (OT: P neurons functioning as glucose and “metabolic” sensors to participate in appetite regulation. PMID:24477542

  16. The Drosophila gene CG9918 codes for a pyrokinin-1 receptor

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Torp, Malene; Hauser, Frank

    2005-01-01

    The database from the Drosophila Genome Project contains a gene, CG9918, annotated to code for a G protein-coupled receptor. We cloned the cDNA of this gene and functionally expressed it in Chinese hamster ovary cells. We tested a library of about 25 Drosophila and other insect neuropeptides......, and seven insect biogenic amines on the expressed receptor and found that it was activated by low concentrations of the Drosophila neuropeptide, pyrokinin-1 (TGPSASSGLWFGPRLamide; EC50, 5 x 10(-8) M). The receptor was also activated by other Drosophila neuropeptides, terminating with the sequence PRLamide...... (Hug-gamma, ecdysis-triggering-hormone-1, pyrokinin-2), but in these cases about six to eight times higher concentrations were needed. The receptor was not activated by Drosophila neuropeptides, containing a C-terminal PRIamide sequence (such as ecdysis-triggering-hormone-2), or PRVamide (such as capa...

  17. The structure of the human interferon alpha/beta receptor gene.

    Science.gov (United States)

    Lutfalla, G; Gardiner, K; Proudhon, D; Vielh, E; Uzé, G

    1992-02-05

    Using the cDNA coding for the human interferon alpha/beta receptor (IFNAR), the IFNAR gene has been physically mapped relative to the other loci of the chromosome 21q22.1 region. 32,906 base pairs covering the IFNAR gene have been cloned and sequenced. Primer extension and solution hybridization-ribonuclease protection have been used to determine that the transcription of the gene is initiated in a broad region of 20 base pairs. Some aspects of the polymorphism of the gene, including noncoding sequences, have been analyzed; some are allelic differences in the coding sequence that induce amino acid variations in the resulting protein. The exon structure of the IFNAR gene and of that of the available genes for the receptors of the cytokine/growth hormone/prolactin/interferon receptor family have been compared with the predictions for the secondary structure of those receptors. From this analysis, we postulate a common origin and propose an hypothesis for the divergence from the immunoglobulin superfamily.

  18. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates.

    Directory of Open Access Journals (Sweden)

    Görel Sundström

    Full Text Available BACKGROUND: The opioid system is involved in reward and pain mechanisms and consists in mammals of four receptors and several peptides. The peptides are derived from four prepropeptide genes, PENK, PDYN, PNOC and POMC, encoding enkephalins, dynorphins, orphanin/nociceptin and beta-endorphin, respectively. Previously we have described how two rounds of genome doubling (2R before the origin of jawed vertebrates formed the receptor family. METHODOLOGY/PRINCIPAL FINDINGS: Opioid peptide gene family members were investigated using a combination of sequence-based phylogeny and chromosomal locations of the peptide genes in various vertebrates. Several adjacent gene families were investigated similarly. The results show that the ancestral peptide gene gave rise to two additional copies in the genome doublings. The fourth member was generated by a local gene duplication, as the genes encoding POMC and PNOC are located on the same chromosome in the chicken genome and all three teleost genomes that we have studied. A translocation has disrupted this synteny in mammals. The PDYN gene seems to have been lost in chicken, but not in zebra finch. Duplicates of some peptide genes have arisen in the teleost fishes. Within the prepropeptide precursors, peptides have been lost or gained in different lineages. CONCLUSIONS/SIGNIFICANCE: The ancestral peptide and receptor genes were located on the same chromosome and were thus duplicated concomitantly. However, subsequently genetic linkage has been lost. In conclusion, the system of opioid peptides and receptors was largely formed by the genome doublings that took place early in vertebrate evolution.

  19. Oxytocin biotransformation in the rat limbic brain

    NARCIS (Netherlands)

    Burbach, J.P.H.; Schotman, P.; Kloet, E.R. de

    2006-01-01

    Two peptide fragments of oxytocin were isolated by high-pressure liquid chromatography from digests of oxytocin obtained after exposure to a SPM preparation of the rat limbic brain. The structures of these peptides, being Gln-Asn-Cys(O)x-Pro-Leu-GlyNH2 and Gln-Asn-Cys(-S-S-Cys)-Pro-Leu-GlyNH2, were

  20. Angiotensin-II type 1 receptor gene polymorphism and diabetic microangiopathy

    DEFF Research Database (Denmark)

    Tarnow, L; Cambien, Francois; Rossing, P

    1996-01-01

    with proliferative retinopathy and without diabetic retinopathy was found either: 77 (50%) / 66 (42%) / 13 (8%) vs. 42 (63%) / 22 (33%) / 3 (4%) had AA/AC/CC genotypes, respectively. CONCLUSIONS: The A1166-->C polymorphism in the angiotensin-II type 1 receptor gene does not contribute to the genetic susceptibility...... is present particularly in vascular smooth muscle cells, myocardium and the kidney. A transversion of adenine to cytosine at nucleotide position 1166 in the gene coding for the angiotensin-II type 1 receptor has been associated with hypertension in the non-diabetic population. METHODS: We studied...... the relationship between the A1166-->C polymorphism in the angiotensin-II type 1 receptor gene in patients with insulin dependent diabetes mellitus (IDDM) and diabetic nephropathy (121 men, 77 women, age 41 +/- 10 years, diabetes duration 27 +/- 8 years) and in IDDM patients with normoalbuminuria (116 men, 74...

  1. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    Directory of Open Access Journals (Sweden)

    Brenner Sydney

    2008-06-01

    Full Text Available Abstract Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events. RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate

  2. Development of gene diagnosis for diabetes and cholecystis based on gene analysis of CCK-A receptor

    International Nuclear Information System (INIS)

    Kono, Akira

    1998-01-01

    The gene structures of CCK, A type receptor in human, the rat and the mouse were investigated aiming to clarify that the aberration of the gene is involved in the incidences of diabetes and cholecystis. In this fiscal year, 1997, the normal structure of the gene and the accurate base sequence were analyzed using DNA fragments bound to 32 P-labelled cDNA of human CCKAR originated from the gene library of leucocyte. This gene contained about 2.2 x 10 5 base pairs and the base sequence was completely determined and registered to Japan DNA data bank (D85606). In addition, the genome structures and base sequences of mouse and rat CCKAR were analyzed and registered (D 85605 and D 50608, respectively). The differences in the base sequence of CCKAR among the species were found in the promotor region and the intron regions, suggesting that there might be differences in splicing among species. (M.N.)

  3. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    Science.gov (United States)

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  4. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    with androgen insensitivity syndrome in sex-reversed XY female patients. BALACHANDRAN .... Three novel AR gene mutations associated with AIS in XY sex-reversed females. Ta b le. 1 . ( contd. ) ..... disease, 1st edition. Springer Science + ...

  5. The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group.

    Science.gov (United States)

    Vogeler, Susanne; Galloway, Tamara S; Lyons, Brett P; Bean, Tim P

    2014-05-15

    Nuclear receptors are a superfamily of transcription factors important in key biological, developmental and reproductive processes. Several of these receptors are ligand- activated and through their ability to bind endogenous and exogenous ligands, are potentially vulnerable to xenobiotics. Molluscs are key ecological species in defining aquatic and terrestrial habitats and are sensitive to xenobiotic compounds in the environment. However, the understanding of nuclear receptor presence, function and xenobiotic disruption in the phylum Mollusca is limited. Here, forty-three nuclear receptor sequences were mined from the genome of the Pacific oyster, Crassostrea gigas. They include members of NR0-NR5 subfamilies, notably lacking any NR6 members. Phylogenetic analyses of the oyster nuclear receptors have been conducted showing the presence of a large novel subfamily group not previously reported, which is named NR1P. Homologues to all previous identified nuclear receptors in other mollusc species have also been determined including the putative heterodimer partner retinoid X receptor, estrogen receptor and estrogen related receptor. C. gigas contains a highly diverse set of nuclear receptors including a novel NR1 group, which provides important information on presence and evolution of this transcription factor superfamily in invertebrates. The Pacific oyster possesses two members of NR3, the sex steroid hormone receptor analogues, of which there are 9 in humans. This provides increasing evidence that steroid ligand specific expansion of this family is deuterostome specific. This new knowledge on divergence and emergence of nuclear receptors in C. gigas provides essential information for studying regulation of molluscan gene expression and the potential effects of xenobiotics.

  6. Receptor-mediated gene delivery using chemically modified chitosan

    International Nuclear Information System (INIS)

    Kim, T H; Jiang, H L; Nah, J W; Cho, M H; Akaike, T; Cho, C S

    2007-01-01

    Chitosan has been investigated as a non-viral vector because it has several advantages such as biocompatibility, biodegradability and low toxicity with high cationic potential. However, the low specificity and low transfection efficiency of chitosan need to be solved prior to clinical application. In this paper, we focused on the galactose or mannose ligand modification of chitosan for enhancement of cell specificity and transfection efficiency via receptor-mediated endocytosis in vitro and in vivo

  7. Subclinical hyperthyroidism due to a thyrotropin receptor (TSHR) gene mutation (S505R).

    Science.gov (United States)

    Pohlenz, Joachim; Pfarr, Nicole; Krüger, Silvia; Hesse, Volker

    2006-12-01

    To identify the molecular defect by which non-autoimmune subclinical hyperthyroidism was caused in a 6-mo-old infant who presented with weight loss. Congenital non-autoimmune hyperthyroidism is caused by activating germline mutations in the thyrotropin receptor (TSHR) gene. Therefore, the TSHR gene was sequenced directly from the patient's genomic DNA. Molecular analysis revealed a heterozygous point mutation (S505R) in the TSHR gene as the underlying defect. A constitutively activating mutation in the TSHR gene has to be considered not only in patients with severe congenital non-autoimmune hyperthyroidism, but also in children with subclinical non-autoimmune hyperthyroidism.

  8. Allelic variants of melanocortin 3 receptor gene (MC3R) and weight loss in obesity

    DEFF Research Database (Denmark)

    L. Santos, José; De la Cruz, Rolando; Holst, Claus

    2011-01-01

    receptor gene (MC3R) have been associated with childhood obesity, higher BMI Z-score and elevated body fat percentage compared to non-carriers. The aim of this study is to assess the association in adults between allelic variants of MC3R with weight loss induced by energy-restricted diets.......The melanocortin system plays an important role in energy homeostasis. Mice genetically deficient in the melanocortin-3 receptor gene have a normal body weight with increased body fat, mild hypophagia compared to wild-type mice. In humans, Thr6Lys and Val81Ile variants of the melanocortin-3...

  9. Polymorphisms in adenosine receptor genes are associated with infarct size in patients with ischemic cardiomyopathy.

    Science.gov (United States)

    Tang, Z; Diamond, M A; Chen, J-M; Holly, T A; Bonow, R O; Dasgupta, A; Hyslop, T; Purzycki, A; Wagner, J; McNamara, D M; Kukulski, T; Wos, S; Velazquez, E J; Ardlie, K; Feldman, A M

    2007-10-01

    The goal of this experiment was to identify the presence of genetic variants in the adenosine receptor genes and assess their relationship to infarct size in a population of patients with ischemic cardiomyopathy. Adenosine receptors play an important role in protecting the heart during ischemia and in mediating the effects of ischemic preconditioning. We sequenced DNA samples from 273 individuals with ischemic cardiomyopathy and from 203 normal controls to identify the presence of genetic variants in the adenosine receptor genes. Subsequently, we analyzed the relationship between the identified genetic variants and infarct size, left ventricular size, and left ventricular function. Three variants in the 3'-untranslated region of the A(1)-adenosine gene (nt 1689 C/A, nt 2206 Tdel, nt 2683del36) and an informative polymorphism in the coding region of the A3-adenosine gene (nt 1509 A/C I248L) were associated with changes in infarct size. These results suggest that genetic variants in the adenosine receptor genes may predict the heart's response to ischemia or injury and might also influence an individual's response to adenosine therapy.

  10. Selection on the Major Color Gene Melanocortin-1-Receptor Shaped the Evolution of the Melanocortin System Genes

    Directory of Open Access Journals (Sweden)

    Linda Dib

    2017-12-01

    Full Text Available Modular genetic systems and networks have complex evolutionary histories shaped by selection acting on single genes as well as on their integrated function within the network. However, uncovering molecular coevolution requires the detection of coevolving sites in sequences. Detailed knowledge of the functions of each gene in the system is also necessary to identify the selective agents driving coevolution. Using recently developed computational tools, we investigated the effect of positive selection on the coevolution of ten major genes in the melanocortin system, responsible for multiple physiological functions and human diseases. Substitutions driven by positive selection at the melanocortin-1-receptor (MC1R induced more coevolutionary changes on the system than positive selection on other genes in the system. Contrarily, selection on the highly pleiotropic POMC gene, which orchestrates the activation of the different melanocortin receptors, had the lowest coevolutionary influence. MC1R and possibly its main function, melanin pigmentation, seems to have influenced the evolution of the melanocortin system more than functions regulated by MC2-5Rs such as energy homeostasis, glucocorticoid-dependent stress and anti-inflammatory responses. Although replication in other regulatory systems is needed, this suggests that single functional aspects of a genetic network or system can be of higher importance than others in shaping coevolution among the genes that integrate it.

  11. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    Science.gov (United States)

    Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M.; Matsuda, Tadashi

    2018-01-01

    The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10−6 M to 1 × 10−5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also provides the first evidence that dietary chemicals can enhance IL-17 gene expression in immune cells. PMID:25583575

  12. Crosstalk between thyroid hormone receptor and liver X receptor in the regulation of selective Alzheimer's disease indicator-1 gene expression.

    Directory of Open Access Journals (Sweden)

    Emi Ishida

    Full Text Available Selective Alzheimer's disease (AD indicator 1 (Seladin-1 has been identified as a gene down-regulated in the degenerated lesions of AD brain. Up-regulation of Seladin-1 reduces the accumulation of β-amyloid and neuronal death. Thyroid hormone (TH exerts an important effect on the development and maintenance of central nervous systems. In the current study, we demonstrated that Seladin-1 gene and protein expression in the forebrain was increased in thyrotoxic mice compared with that of euthyroid mice. However, unexpectedly, no significant decrease in the gene and protein expression was observed in hypothyroid mice. Interestingly, an agonist of liver X receptor (LXR, TO901317 (TO administration in vivo increased Seladin-1 gene and protein expression in the mouse forebrain only in a hypothyroid state and in the presence of mutant TR-β, suggesting that LXR-α would compensate for TR-β function to maintain Seladin-1 gene expression in hypothyroidism and resistance to TH. TH activated the mouse Seladin-1 gene promoter (-1936/+21 bp and site 2 including canonical TH response element (TRE half-site in the region between -159 and -154 bp is responsible for the positive regulation. RXR-α/TR-β heterodimerization was identified on site 2 by gel-shift assay, and chromatin immunoprecipitation assay revealed the recruitment of TR-β to site 2 and the recruitment was increased upon TH administration. On the other hand, LXR-α utilizes a distinct region from site 2 (-120 to -102 bp to activate the mouse Seladin-1 gene promoter. Taking these findings together, we concluded that TH up-regulates Seladin-1 gene expression at the transcriptional level and LXR-α maintains the gene expression.

  13. Genome-wide identification of nuclear receptor (NR) superfamily genes in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Hwang, Dae-Sik; Lee, Bo-Young; Kim, Hui-Su; Lee, Min Chul; Kyung, Do-Hyun; Om, Ae-Son; Rhee, Jae-Sung; Lee, Jae-Seong

    2014-11-18

    Nuclear receptors (NRs) are a large superfamily of proteins defined by a DNA-binding domain (DBD) and a ligand-binding domain (LBD). They function as transcriptional regulators to control expression of genes involved in development, homeostasis, and metabolism. The number of NRs differs from species to species, because of gene duplications and/or lineage-specific gene losses during metazoan evolution. Many NRs in arthropods interact with the ecdysteroid hormone and are involved in ecdysone-mediated signaling in arthropods. The nuclear receptor superfamily complement has been reported in several arthropods, including crustaceans, but not in copepods. We identified the entire NR repertoire of the copepod Tigriopus japonicus, which is an important marine model species for ecotoxicology and environmental genomics. Using whole genome and transcriptome sequences, we identified a total of 31 nuclear receptors in the genome of T. japonicus. Nomenclature of the nuclear receptors was determined based on the sequence similarities of the DNA-binding domain (DBD) and ligand-binding domain (LBD). The 7 subfamilies of NRs separate into five major clades (subfamilies NR1, NR2, NR3, NR4, and NR5/6). Although the repertoire of NR members in, T. japonicus was similar to that reported for other arthropods, there was an expansion of the NR1 subfamily in Tigriopus japonicus. The twelve unique nuclear receptors identified in T. japonicus are members of NR1L. This expansion may be a unique lineage-specific feature of crustaceans. Interestingly, E78 and HR83, which are present in other arthropods, were absent from the genomes of T. japonicus and two congeneric copepod species (T. japonicus and Tigriopus californicus), suggesting copepod lineage-specific gene loss. We identified all NR receptors present in the copepod, T. japonicus. Knowledge of the copepod nuclear receptor repertoire will contribute to a better understanding of copepod- and crustacean-specific NR evolution.

  14. Polymorphisms of the dopamine D4 receptor gene (DRD4 VNTR) and cannabinoid CB1 receptor gene (CNR1) are not strongly related to cue-reactivity after alcohol exposure

    NARCIS (Netherlands)

    Wildenberg, E. van den; Janssen, R.G.J.H.; Hutchison, K.E.; Breukelen, G.J.P. van; Wiers, R.W.H.J.

    2007-01-01

    Polymorphisms in the D4 dopamine receptor gene (DRD4) and the CB1 cannabinoid receptor gene (CNR1) have been associated with a differential response to alcohol after consumption. The goal of the present study was to investigate whether heavy drinkers with these polymorphisms would respond with

  15. Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken.

    Science.gov (United States)

    Cooley, James R; Yatskievych, Tatiana A; Antin, Parker B

    2014-03-01

    Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis. Copyright © 2013 Wiley Periodicals, Inc.

  16. Disruption of the 37-kDa/67-kDa laminin receptor gene in bovine ...

    African Journals Online (AJOL)

    ... gene encoding for the prion binding site in bovine fetal fibroblasts. The heterozygous BFF are ready to be used in producing homozygous cattle, which will be applied to study the interaction between prion and the 37-kDa/67-kDa LRP/LR. Key words: Prion, PrPC, PrPSc, 37-kDa/67-kDa laminin receptor, gene targeting.

  17. Polymorphism in leptin receptor gene was associated with obesity in ...

    African Journals Online (AJOL)

    Pramudji Hastuti

    2016-01-11

    Jan 11, 2016 ... This study aims to determine the association of LEPR gene polymorphisms, rs1137100 and rs1137101, on .... and that leptin levels were correlated with type 2 diabetes mel- .... Research using statistical meta-analysis [36,37] found ... and changes in glucose homeostasis in response to regular exercise.

  18. Retinitis pigmentosa: mutations in a receptor tyrosine kinase gene ...

    Indian Academy of Sciences (India)

    patients show early and severe impairment of pure rod responses (Pagon 1993). ... is characterized by total blindness or greatly impaired vision at birth or within ... gene, Mertk, in the Royal College of Surgeons (RCS) rat (D'Cruz et al 2000) ...

  19. Identification of chemosensory receptor genes in Manduca sexta and knockdown by RNA interference

    Directory of Open Access Journals (Sweden)

    Howlett Natalie

    2012-05-01

    Full Text Available Abstract Background Insects detect environmental chemicals via a large and rapidly evolving family of chemosensory receptor proteins. Although our understanding of the molecular genetic basis for Drosophila chemoreception has increased enormously in the last decade, similar understanding in other insects remains limited. The tobacco hornworm, Manduca sexta, has long been an important model for insect chemosensation, particularly from ecological, behavioral, and physiological standpoints. It is also a major agricultural pest on solanaceous crops. However, little sequence information and lack of genetic tools has prevented molecular genetic analysis in this species. The ability to connect molecular genetic mechanisms, including potential lineage-specific changes in chemosensory genes, to ecologically relevant behaviors and specializations in M. sexta would be greatly beneficial. Results Here, we sequenced transcriptomes from adult and larval chemosensory tissues and identified chemosensory genes based on sequence homology. We also used dsRNA feeding as a method to induce RNA interference in larval chemosensory tissues. Conclusions We report identification of new chemosensory receptor genes including 17 novel odorant receptors and one novel gustatory receptor. Further, we demonstrate that systemic RNA interference can be used in larval olfactory neurons to reduce expression of chemosensory receptor transcripts. Together, our results further the development of M. sexta as a model for functional analysis of insect chemosensation.

  20. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families.

    Science.gov (United States)

    Voloshanenko, Oksana; Gmach, Philipp; Winter, Jan; Kranz, Dominique; Boutros, Michael

    2017-11-01

    Signaling pathway modules are often encoded by several closely related paralogous genes that can have redundant roles and are therefore difficult to analyze by loss-of-function analysis. A typical example is the Wnt signaling pathway, which in mammals is mediated by 19 Wnt ligands that can bind to 10 Frizzled (FZD) receptors. Although significant progress in understanding Wnt-FZD receptor interactions has been made in recent years, tools to generate systematic interaction maps have been largely lacking. Here we generated cell lines with multiplex mutant alleles of FZD1 , FZD2 , and FZD7 and demonstrate that these cells are unresponsive to canonical Wnt ligands. Subsequently, we performed genetic rescue experiments with combinations of FZDs and canonical Wnts to create a functional ligand-receptor interaction map. These experiments showed that whereas several Wnt ligands, such as Wnt3a, induce signaling through a broad spectrum of FZD receptors, others, such as Wnt8a, act through a restricted set of FZD genes. Together, our results map functional interactions of FZDs and 10 Wnt ligands and demonstrate how multiplex targeting by clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 can be used to systematically elucidate the functions of multigene families.-Voloshanenko, O., Gmach, P., Winter, J., Kranz, D., Boutros, M. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families. © The Author(s).

  1. Gene structure and expression characteristic of a novel odorant receptor gene cluster in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae).

    Science.gov (United States)

    Wang, S-N; Shan, S; Zheng, Y; Peng, Y; Lu, Z-Y; Yang, Y-Q; Li, R-J; Zhang, Y-J; Guo, Y-Y

    2017-08-01

    Odorant receptors (ORs) expressed in the antennae of parasitoid wasps are responsible for detection of various lipophilic airborne molecules. In the present study, 107 novel OR genes were identified from Microplitis mediator antennal transcriptome data. Phylogenetic analysis of the set of OR genes from M. mediator and Microplitis demolitor revealed that M. mediator OR (MmedOR) genes can be classified into different subfamilies, and the majority of MmedORs in each subfamily shared high sequence identities and clear orthologous relationships to M. demolitor ORs. Within a subfamily, six MmedOR genes, MmedOR98, 124, 125, 126, 131 and 155, shared a similar gene structure and were tightly linked in the genome. To evaluate whether the clustered MmedOR genes share common regulatory features, the transcription profile and expression characteristics of the six closely related OR genes were investigated in M. mediator. Rapid amplification of cDNA ends-PCR experiments revealed that the OR genes within the cluster were transcribed as single mRNAs, and a bicistronic mRNA for two adjacent genes (MmedOR124 and MmedOR98) was also detected in female antennae by reverse transcription PCR. In situ hybridization experiments indicated that each OR gene within the cluster was expressed in a different number of cells. Moreover, there was no co-expression of the two highly related OR genes, MmedOR124 and MmedOR98, which appeared to be individually expressed in a distinct population of neurons. Overall, there were distinct expression profiles of closely related MmedOR genes from the same cluster in M. mediator. These data provide a basic understanding of the olfactory coding in parasitoid wasps. © 2017 The Royal Entomological Society.

  2. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer.

    Directory of Open Access Journals (Sweden)

    Anne-Christine Field

    Full Text Available Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm's tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies.

  3. Pseudogenization of a sweet-receptor gene accounts for cats' indifference toward sugar.

    Directory of Open Access Journals (Sweden)

    Xia Li

    2005-07-01

    Full Text Available Although domestic cats (Felis silvestris catus possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3, we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer

  4. Pseudogenization of a Sweet-Receptor Gene Accounts for Cats' Indifference toward Sugar.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Although domestic cats (Felis silvestris catus possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3, we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer

  5. The role of oxytocin in cardiovascular regulation

    Directory of Open Access Journals (Sweden)

    J. Gutkowska

    2014-03-01

    Full Text Available Studies of body volume expansion have indicated that lesions of the anteroventral third ventricle and median eminence block the release of atrial natriuretic peptide (ANP into the circulation. Detailed analysis of the lesions showed that activation of oxytocin (OT-ergic neurons is responsible for ANP release, and it has become clear that activation of neuronal circuitry elicits OT secretion into the circulation, activating atrial OT receptors and ANP release from the heart. Subsequently, we have uncovered the entire functional OT system in the rat and the human heart. An abundance of OT has been observed in the early development of the fetal heart, and the capacity of OT to generate cardiomyocytes (CMs has been demonstrated in various types of stem cells. OT treatment of mesenchymal stem cells stimulates paracrine factors beneficial for cardioprotection. Cardiovascular actions of OT include: i lowering blood pressure, ii negative inotropic and chronotropic effects, iii parasympathetic neuromodulation, iv vasodilatation, v anti-inflammatory activity, vi antioxidant activity, and vii metabolic effects. OT actions are mediated by nitric oxide and ANP. The beneficial actions of OT may include the increase in glucose uptake by CMs and stem cells, reduction in CM hypertrophy, oxidative stress, and mitochondrial protection of several cell types. In experimentally induced myocardial infarction in rats, continuous in vivo OT delivery improves cardiac healing and cardiac work, reduces inflammation, and stimulates angiogenesis. Because OT plays anti-inflammatory and cardioprotective roles and improves vascular and metabolic functions, it demonstrates potential for therapeutic use in various pathologic conditions.

  6. The role of oxytocin in cardiovascular regulation

    International Nuclear Information System (INIS)

    Gutkowska, J.; Jankowski, M.; Antunes-Rodrigues, J.

    2014-01-01

    Studies of body volume expansion have indicated that lesions of the anteroventral third ventricle and median eminence block the release of atrial natriuretic peptide (ANP) into the circulation. Detailed analysis of the lesions showed that activation of oxytocin (OT)-ergic neurons is responsible for ANP release, and it has become clear that activation of neuronal circuitry elicits OT secretion into the circulation, activating atrial OT receptors and ANP release from the heart. Subsequently, we have uncovered the entire functional OT system in the rat and the human heart. An abundance of OT has been observed in the early development of the fetal heart, and the capacity of OT to generate cardiomyocytes (CMs) has been demonstrated in various types of stem cells. OT treatment of mesenchymal stem cells stimulates paracrine factors beneficial for cardioprotection. Cardiovascular actions of OT include: i) lowering blood pressure, ii) negative inotropic and chronotropic effects, iii) parasympathetic neuromodulation, iv) vasodilatation, v) anti-inflammatory activity, vi) antioxidant activity, and vii) metabolic effects. OT actions are mediated by nitric oxide and ANP. The beneficial actions of OT may include the increase in glucose uptake by CMs and stem cells, reduction in CM hypertrophy, oxidative stress, and mitochondrial protection of several cell types. In experimentally induced myocardial infarction in rats, continuous in vivo OT delivery improves cardiac healing and cardiac work, reduces inflammation, and stimulates angiogenesis. Because OT plays anti-inflammatory and cardioprotective roles and improves vascular and metabolic functions, it demonstrates potential for therapeutic use in various pathologic conditions

  7. The role of oxytocin in cardiovascular regulation

    Energy Technology Data Exchange (ETDEWEB)

    Gutkowska, J.; Jankowski, M. [University of Montreal, CHUM Research Centre, Faculty of Medicine, Department of Medicine, Laboratory of Cardiovascular Biochemistry, Montreal, Quebec, Canada, Laboratory of Cardiovascular Biochemistry, Department of Medicine, Faculty of Medicine, University of Montreal, CHUM Research Centre, Montreal, Quebec (Canada); Antunes-Rodrigues, J. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Fisiologia, Ribeirão Preto, SP, Brasil, Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-03-03

    Studies of body volume expansion have indicated that lesions of the anteroventral third ventricle and median eminence block the release of atrial natriuretic peptide (ANP) into the circulation. Detailed analysis of the lesions showed that activation of oxytocin (OT)-ergic neurons is responsible for ANP release, and it has become clear that activation of neuronal circuitry elicits OT secretion into the circulation, activating atrial OT receptors and ANP release from the heart. Subsequently, we have uncovered the entire functional OT system in the rat and the human heart. An abundance of OT has been observed in the early development of the fetal heart, and the capacity of OT to generate cardiomyocytes (CMs) has been demonstrated in various types of stem cells. OT treatment of mesenchymal stem cells stimulates paracrine factors beneficial for cardioprotection. Cardiovascular actions of OT include: i) lowering blood pressure, ii) negative inotropic and chronotropic effects, iii) parasympathetic neuromodulation, iv) vasodilatation, v) anti-inflammatory activity, vi) antioxidant activity, and vii) metabolic effects. OT actions are mediated by nitric oxide and ANP. The beneficial actions of OT may include the increase in glucose uptake by CMs and stem cells, reduction in CM hypertrophy, oxidative stress, and mitochondrial protection of several cell types. In experimentally induced myocardial infarction in rats, continuous in vivo OT delivery improves cardiac healing and cardiac work, reduces inflammation, and stimulates angiogenesis. Because OT plays anti-inflammatory and cardioprotective roles and improves vascular and metabolic functions, it demonstrates potential for therapeutic use in various pathologic conditions.

  8. Identification of a bitter-taste receptor gene repertoire in different Lagomorphs species

    Directory of Open Access Journals (Sweden)

    Ana M. Ferreira

    2016-04-01

    Full Text Available The repertoires of bitter taste receptor (T2R gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, Lepus europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi and Sylvilagus floridanus, using Oryctolagus cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of Oryctolagus cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in Romerolagus diazi and Sylvilagus floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification.

  9. Oxytocin determination by radioimmunoassay in cattle. 2

    International Nuclear Information System (INIS)

    Schams, D.; Baumann, G.; Leidl, W.

    1982-01-01

    Oxytocin concentration in jugular vein blood was measured radioimmunologically with a detection limit of 3 pg/ml plasma in male and female cattle. Five bulls were tested; during mating a cow in oestrus with intromission and ejaculation, during mounting a dummy or another bull with ejaculation into an artificial vagina or during false mounts. No increase in oxytocin concentrations could be observed, but stimulation with an electro-ejaculator caused an increase ranging from 5-84 pg/ml after a latent period of 3-5 min. A similar response was observed in two cows following the same procedure. The contact with a bull, false mount or mating with intromission and ejaculation was not followed by a measurable oxytocin release in 5 test cows. The following stimulation techniques, massage of vulva and clitoris, massage of cervix and uterus per rectum, artificial insemination, introduction of a speculum into the vagina or insufflation of air into the vagina were performed with 5 cows and 5 heifers. Insufflation of air into the vagina was the most effective stimulus, eleciting an oxytocin release up to 588 pg/ml. All 5 heiers responded positively, as well as 4 cows in oestrus. The other manipulations cuased an oxytocin response mainly in heifers (whether in oestrus or dioestrus), whereas only one cow in oestrus responded with an oxytocin release. In general, oxytocin concentrations increase about 30-90 s after the start of the stimulus. (author)

  10. Oxytocin improves emotion recognition for older males.

    Science.gov (United States)

    Campbell, Anna; Ruffman, Ted; Murray, Janice E; Glue, Paul

    2014-10-01

    Older adults (≥60 years) perform worse than young adults (18-30 years) when recognizing facial expressions of emotion. The hypothesized cause of these changes might be declines in neurotransmitters that could affect information processing within the brain. In the present study, we examined the neuropeptide oxytocin that functions to increase neurotransmission. Research suggests that oxytocin benefits the emotion recognition of less socially able individuals. Men tend to have lower levels of oxytocin and older men tend to have worse emotion recognition than older women; therefore, there is reason to think that older men will be particularly likely to benefit from oxytocin. We examined this idea using a double-blind design, testing 68 older and 68 young adults randomly allocated to receive oxytocin nasal spray (20 international units) or placebo. Forty-five minutes afterward they completed an emotion recognition task assessing labeling accuracy for angry, disgusted, fearful, happy, neutral, and sad faces. Older males receiving oxytocin showed improved emotion recognition relative to those taking placebo. No differences were found for older females or young adults. We hypothesize that oxytocin facilitates emotion recognition by improving neurotransmission in the group with the worst emotion recognition. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Genetic Variation in the Leptin Receptor Gene, Leptin, and Weight Gain in Young Dutch Adults

    NARCIS (Netherlands)

    Rossum, van C.T.M.; Hoebee, B.; Baak, van M.A.; Mars, M.; Saris, W.H.M.; Seidell, J.C.

    2003-01-01

    Objective: To investigate the association between leptin levels, polymorphisms in the leptin receptor (LEPR) gene, and weight gain. Research Methods and Procedures: From two large prospective cohorts in The Netherlands (n = 17, 500), we compared the baseline leptin of 259 subjects who had gained an

  12. Effect of the calcitonin gene-related peptide (CGRP) receptor antagonist telcagepant in human cranial arteries

    NARCIS (Netherlands)

    L. Edvinsson (Lars); K.Y. Chan (Kayi); S. Eftekhari; E. Nilsson (Elisabeth); R. de Vries (René); H. Säveland (Hans); C.M.F. Dirven (Clemens); A.H.J. Danser (Jan)

    2010-01-01

    textabstractIntroduction: Calcitonin gene-related peptide (CGRP) is a neuronal messenger in intracranial sensory nerves and is considered to play a significant role in migraine pathophysiology. Materials and methods: We investigated the effect of the CGRP receptor antagonist, telcagepant, on

  13. Adeno-associated virus LPL(S447X) gene therapy in LDL receptor knockout mice

    NARCIS (Netherlands)

    Rip, Jaap; Sierts, Jeroen A.; Vaessen, Stefan F. C.; Kastelein, John J. P.; Twisk, Jaap; Kuivenhoven, Jan Albert

    2007-01-01

    BACKGROUND: Overexpression of lipoprotein lipase (LPL) protects against atherosclerosis in genetically engineered mice. We tested whether a gene therapy vector that delivers human (h) LPL(S447X) cDNA to skeletal muscle could induce similar effects. METHODS: LDL receptor knockout (LDLr-/-) mice were

  14. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition

    NARCIS (Netherlands)

    S.W.J. Lamberts (Steven); E.F.C. van Rossum (Liesbeth)

    2004-01-01

    textabstractMost actions of glucocorticoids (GCs) are mediated by the glucocorticoid receptor (GR). The interindividual response to GCs varies considerably, as demonstrated by a variable suppressive response to 0.25-mg dexamethasone (DEX). Several polymorphisms in the gene coding

  15. A functional polymorphism in the promoter of the progesterone receptor gene associated with endometrial cancer risk

    NARCIS (Netherlands)

    De Vivo, Immaculata; Huggins, Gordon S; Hankinson, Susan E; Lescault, Pamela J; Boezen, Hendrika; Colditz, Graham A; Hunter, David J

    2002-01-01

    Excessive estrogen stimulation unopposed by progesterone strongly predisposes to endometrial cancer. Because the antiproliferative effect of progesterone requires the progesterone receptor (PR), which exists in two isoforms, PR-A and -B, we reasoned that variants in the PR gene may predispose to

  16. Genomic organization of the mouse peroxisome proliferator-activated receptor beta/delta gene

    DEFF Research Database (Denmark)

    Larsen, Leif K; Amri, Ez-Zoubir; Mandrup, Susanne

    2002-01-01

    Peroxisome proliferator-activated receptor (PPAR) beta/delta is ubiquitously expressed, but the level of expression differs markedly between different cell types. In order to determine the molecular mechanisms governing PPARbeta/delta gene expression, we have isolated and characterized the mouse...

  17. Variations in estrogen receptor ? gene and risk of dementia, and brain volumes on MRI.

    NARCIS (Netherlands)

    S.C.E. Schuit (Stephanie); A. Hofman (Albert); P.J. Koudstaal (Peter Jan); C.M. van Duijn (Cornelia); A.G. Uitterlinden (André); H.A.P. Pols (Huib); M.M.B. Breteler (Monique); J.B.J. van Meurs (Joyce); T. den Heijer (Tom)

    2004-01-01

    textabstractThe role of estrogens in Alzheimer's disease (AD) is controversial. We investigated the association between well-recognized, and potentially functional, polymorphisms in the estrogen receptor (ER) gene and the risk of AD in a prospective study of 6056 Caucasian older men and women aged

  18. Effects of triiodothyronine and amiodarone on the promoter of the human LDL receptor gene

    NARCIS (Netherlands)

    Bakker, O.; Hudig, F.; Meijssen, S.; Wiersinga, W. M.

    1998-01-01

    Treatment of patients with amiodarone, a potent anti arrhythmic drug, increases plasma LDL cholesterol levels, similar to that seen during hypothyroidism. This increase is the result of a decreased expression of the hepatic LDL receptor gene. We investigated the effects of thyroid hormone,

  19. Amplification of epidermal growth factor receptor gene in renal cell carcinoma

    DEFF Research Database (Denmark)

    El-Hariry, Iman; Powles, Thomas; Lau, Mike R

    2010-01-01

    Expression of epidermal growth factor receptor (EGFR) may be of prognostic value in renal cell cancer (RCC). Gene amplification of EGFR was investigated in a cohort of 315 patients with advanced RCC from a previously reported randomised study. Using fluorescent in situ hybridisation, only 2...

  20. Polymorphism of glucagon-like peptide-1 receptor gene (rs1042044 ...

    African Journals Online (AJOL)

    patience

    2015-02-16

    Feb 16, 2015 ... turnover via GLP-1 receptors (GLP1Rs) in postmenopausal state. Furthermore, polymorphisms in. GLP1R gene were suggested to affect the function of GLP1Rs and be associated with many diseases. However, the relationships between GLP1R polymorphisms and osteoporosis susceptibility and bone.

  1. Polymorphism of glucagon-like peptide-1 receptor gene (rs1042044 ...

    African Journals Online (AJOL)

    Previous investigations indicated that glucagon-like peptide-1 (GLP-1) played important roles in bone turnover via GLP-1 receptors (GLP1Rs) in postmenopausal state. Furthermore, polymorphisms in GLP1R gene were suggested to affect the function of GLP1Rs and be associated with many diseases. However, the ...

  2. Disruption of the GH Receptor Gene in Adult Mice Increases Maximal Lifespan in Females

    DEFF Research Database (Denmark)

    Junnila, Riia K.; Duran-Ortiz, Silvana; Suer, Ozan

    2016-01-01

    GH and IGF-1 are important for a variety of physiological processes including growth, development, and aging. Mice with reduced levels of GH and IGF-1 have been shown to live longer than wild-type controls. Our laboratory has previously found that mice with a GH receptor gene knockout (GHRKO) fro...

  3. Dopamine receptors genes polymorphisms in Parkinson patients with levodopa-induced dyskinesia

    NARCIS (Netherlands)

    Pozhidaev, Ivan V; Alifirova, V. M.; Freidin, Maxim B.; Zhukova, I.A.; Fedorenko, Olga Yu; Osmanova, Diana Z; Mironova, Y.S.; Wilffert, Berend; Ivanova, Svetlana A.; Loonen, Antonius

    2017-01-01

    Dopamine receptors genes polymorphisms in Parkinson patients with levodopa-induced dyskinesia I. Pozhidaev(1), V.M. Alifirova(2), M.B. Freidin(3), I.A. Zhukova(2), O.Y. Fedorenko(1), D.Z. Osmanova(1), Y.S. Mironova(2), B. Wilffert(4), S.A. Ivanova(1), A.J.M. Loonen(5) (1)Mental Health Research

  4. T-cell receptor gene rearrangement in Epstein-Barr virus infectious mononucleosis.

    Science.gov (United States)

    Marbello, L; Riva, M; Veronese, S; Nosari, A M; Ravano, E; Colosimo, A; Paris, L; Morra, E

    2012-09-01

    This report describes the case of a previously healthy young man who presented with fever, pharyngitis, cervical lymphadenopathy, lymphocytosis, and severe thrombocytopenia. Serological tests for Epstein-Barr virus were diagnostic of a primary Epstein-Barr virus infectious mononucleosis but severe thrombocytopenia aroused the suspicion of a lymphoproliferative disease. T-cell receptor gene analysis performed on peripheral and bone marrow blood revealed a T-cell receptor γ-chain rearrangement without the evidence of malignancy using standard histologic and immunophenotype studies. Signs and symptoms of the infectious disease, blood count, and T-cell receptor gene rearrangement resolved with observation without the evidence of emergence of a lymphoproliferative disease. In the contest of a suspected lymphoproliferative disease, molecular results should be integrated with all available data for an appropriate diagnosis.

  5. Suicide Gene Therapy to Increase the Safety of Chimeric Antigen Receptor-Redirected T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Monica Casucci, Attilio Bondanza

    2011-01-01

    Full Text Available Chimeric antigen receptors (CARs are generated by fusing the antigen-binding motif of a monoclonal antibody (mAb with the signal transduction machinery of the T-cell receptor (TCR. The genetic modification of T lymphocytes with chimeric receptors specific for tumor-associated antigens (TAAs allows for the redirection towards tumor cells. Clinical experience with CAR-redirected T cells suggests that antitumor efficacy associates with some degree of toxicity, especially when TAA expression is shared with healthy tissues. This situation closely resembles the case of allogeneic hematopoietic stem cell transplantation (HSCT, wherein allorecognition causes both the graft-versus-leukemia (GVL effect and graft-versus-host disease (GVHD. Suicide gene therapy, i.e. the genetic induction of a conditional suicide phenotype into donor T cells, enables dissociating the GVL effect from GVHD. Applying suicide gene modification to CAR-redirected T cells may therefore greatly increase their safety profile and facilitate their clinical development.

  6. Interleukin 17 Receptor Gene Polymorphism in Periimplantitis and Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    Mahdi Kadkhodazadeh

    2013-05-01

    Full Text Available Gene polymorphism of cytokines influencing their function has been known as a contributing factor in the pathogenesis of inflammatory diseases of the tooth and implant supporting tissues. The aim of this study was to investigate the association of IL-17R gene polymorphism (rs879576 with chronic periodontitis and periimplantitis in an Iranian population. 73 patients with chronic periodontitis, 37 patients with periimplantitis and 83 periodontally healthy patients were enrolled in this study. 5cc blood was obtained from each subject’s arm vein and transferred to tubes containing EDTA. Genomic DNA was extracted using Miller's Salting Out technique. The DNA was transferred into 96 division plates, transported to Kbioscience Institute in United Kingdom and analyzed using the Kbioscience Competitive Allele Specific PCR (KASP technique. Chi-square and Kruskal Wallis tests were used to analyze differences in the expression of genotypes and frequency of alleles in disease and control groups (P-Value less than 0.05 was considered statistically significant. There were no significant differences between periodontitis, periimplantitis with AA, GG, GA genotype of IL-17R gene (P=0.8239. Also comparison of frequency of alleles in SNP rs879576 of IL-17R gene between the chronic periodontitis group and periimplantitis group did not revealed statistically significant differences (P=0.8239. The enigma of IL-17 and its polymorphism-role in periodontitis and periimplantitis is yet to be investigated more carefully throughout further research but this article demonstrates that polymorphism of IL-17R plays no significant role in incidence of chronic periodontitis and Periimplantitis.

  7. Interleukin 17 receptor gene polymorphism in periimplantitis and chronic periodontitis.

    Directory of Open Access Journals (Sweden)

    Mahdi Kadkhodazadeh

    2013-06-01

    Full Text Available Gene polymorphism of cytokines influencing their function has been known as a contributing factor in the pathogenesis of inflammatory diseases of the tooth and implant supporting tissues. The aim of this study was to investigate the association of IL-17R gene polymorphism (rs879576 with chronic periodontitis and periimplantitis in an Iranian population. 73 patients with chronic periodontitis, 37 patients with periimplantitis and 83 periodontally healthy patients were enrolled in this study. 5cc blood was obtained from each subject's arm vein and transferred to tubes containing EDTA. Genomic DNA was extracted using Miller's Salting Out technique. The DNA was transferred into 96 division plates, transported to Kbioscience Institute in United Kingdom and analyzed using the Kbioscience Competitive Allele Specific PCR (KASP technique. Chi-square and Kruskal Wallis tests were used to analyze differences in the expression of genotypes and frequency of alleles in disease and control groups (P-Value less than 0.05 was considered statistically significant. There were no significant differences between periodontitis, periimplantitis with AA, GG, GA genotype of IL-17R gene (P=0.8239. Also comparison of frequency of alleles in SNP rs879576 of IL-17R gene between the chronic periodontitis group and periimplantitis group did not revealed statistically significant differences (P=0.8239. The enigma of IL-17 and its polymorphism-role in periodontitis and periimplantitis is yet to be investigated more carefully throughout further research but this article demonstrates that polymorphism of IL-17R plays no significant role in incidence of chronic periodontitis and Periimplantitis.

  8. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    International Nuclear Information System (INIS)

    Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M.; Matsuda, Tadashi

    2015-01-01

    Highlights: • Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. • Isoflavones have RORα/γ agonistic activities. • Isoflavones enhance the interaction of RORα/γ with co-activator. • These compounds enhance the expression of Il17a mRNA in mouse EL4 cells. • Dietary isoflavones can act as modulators of Il17a expression via RORα/γ. - Abstract: The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10 −6 M to 1 × 10 −5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also

  9. Molecular analysis of the androgen-receptor gene in a family with receptor-positive partial androgen insensitivity: an unusual type of intronic mutation

    NARCIS (Netherlands)

    H.T. Brüggenwirth (Hennie); A.L.M. Boehmer (Annemie); S. Ramnarain; M.C. Verleun-Mooijman; D.P.E. Satijn (David); J. Trapman (Jan); J.A. Grootegoed (Anton); A.O. Brinkmann (Albert)

    1997-01-01

    textabstractIn the coding part and the intron-exon boundaries of the androgen-receptor gene of a patient with partial androgen insensitivity, no mutation was found. The androgen receptor of this patient displayed normal ligand-binding parameters and migrated as a

  10. [Polymorphism of vitamin D receptor gene Fok I in Mongolian population of China].

    Science.gov (United States)

    Xing, Shao-ji; Zhou, Li-she; Xu, Xiu-ju

    2006-04-01

    To investigate the polymorphism distribution of vitamin D receptor (VDR) gene Fok I in Mongolian population of China. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used to analyze three genotypes FF, Ff and ff in the start codon of VDR gene (Fok I) in unrelated normal healthy Mongolian individuals of China. In the population, we obtained the allelic frequencies of 57% and 43% for (F) and (f) allele and the percentage of genotypes FF, Ff and ff to be 31%, 52%, and 17% respectively. The polymorphism frequency and distribution of this VDR gene Fok I in Mongolian population of China exhibit its own characteristics.

  11. RFLP for the human retinoic acid receptor gene RAR-. beta

    Energy Technology Data Exchange (ETDEWEB)

    Datson, N A; Oostra, B A [Erasmus Univ., Rotterdam (Netherlands); van der Saag, P T [Netherlands Institute for Developmental Biology, Utrecht (Netherlands)

    1989-11-11

    1.4 kb Mae I fragment containing the entire RAR-{beta} ORF was cloned into the Sma I site of pTZ18U, yielding the plasmid pCOD20. Msp I digestion of genomic DNA and hybridization with the pCOD20 probe detects a two allele polymorphism with allelic fragments of 8.1 and 7.7 kb. The human RAR-{beta} gene has been localized to the p24 band of chromosome 3. Co-dominant segregation of the alleles was observed in 4 Caucasian families.

  12. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    Science.gov (United States)

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  13. Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii.

    Science.gov (United States)

    Kim, Kyung-Hee; Kang, Young Min; Im, Chak Han; Ali, Asjad; Kim, Sun Young; Je, Hee-Jeong; Kim, Min-Keun; Rho, Hyun Su; Lee, Hyun Sook; Kong, Won-Sik; Ryu, Jae-San

    2014-01-01

    Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency.

  14. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants

    OpenAIRE

    Liu, Ping-Li; Du, Liang; Huang, Yuan; Gao, Shu-Min; Yu, Meng

    2017-01-01

    Background Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases in plants and play crucial roles in development and stress responses. The evolutionary relationships among LRR-RLK genes have been investigated in flowering plants; however, no comprehensive studies have been performed for these genes in more ancestral groups. The subfamily classification of LRR-RLK genes in plants, the evolutionary history and driving force for the evolution...

  15. Partial least squares based gene expression analysis in estrogen receptor positive and negative breast tumors.

    Science.gov (United States)

    Ma, W; Zhang, T-F; Lu, P; Lu, S H

    2014-01-01

    Breast cancer is categorized into two broad groups: estrogen receptor positive (ER+) and ER negative (ER-) groups. Previous study proposed that under trastuzumab-based neoadjuvant chemotherapy, tumor initiating cell (TIC) featured ER- tumors response better than ER+ tumors. Exploration of the molecular difference of these two groups may help developing new therapeutic strategies, especially for ER- patients. With gene expression profile from the Gene Expression Omnibus (GEO) database, we performed partial least squares (PLS) based analysis, which is more sensitive than common variance/regression analysis. We acquired 512 differentially expressed genes. Four pathways were found to be enriched with differentially expressed genes, involving immune system, metabolism and genetic information processing process. Network analysis identified five hub genes with degrees higher than 10, including APP, ESR1, SMAD3, HDAC2, and PRKAA1. Our findings provide new understanding for the molecular difference between TIC featured ER- and ER+ breast tumors with the hope offer supports for therapeutic studies.

  16. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    Science.gov (United States)

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  17. Cloning and functional characterization of the DA2 receptor gene in Chinese mitten crab (Eriocheir sinensis)

    Science.gov (United States)

    Xu, Min-jie; Zhang, Cong; Yang, Zhigang

    2018-01-01

    Dopamine (DA) plays a modulatory role in numerous physiological processes such as light adaptation and food intake, and exerts these functions through DA receptors (DARs). This study presents, for the first time, isolation and characterization of the dopamine receptor 2(DA2 receptor) cDNA from the intestinal tissue of Eriocheir sinensis, an economically important freshwater aquaculture species in China. The DA2 receptor cDNA sequence, which was obtained by rapid amplification of cDNA ends, is 2369bp long, encode peptide of 589 amino acid, and is highly homologous to related sequences in crustaceans. Analysis of the deduced amino acid sequence and the structure of the DA2 indicated that this receptor is a member of the family of G protein-coupled receptors (GPCRs), as it contains seven transmembrane domains and other common signatures of GPCRs. RT-PCR showed that the expression of the DA2 receptor gene was distributed in various tissues, and high expression levels were observed in the cranial ganglia and the thoracic ganglia. Further study of the effect of photoperiod on DA2 expression showed that constant darkness induced a significant increase in DA2 expression in the cranial ganglia. Finally, analysis of DA2 receptor expression under different feeding statuses showed that there was significantly greater expression in the hepatopancreas and intestines after feeding than before feeding, but there were no differences in expression between the before feeding and during feeding periods in either tissue. Our results indicate that the DA2 receptor structurally belongs to the family of G protein-coupled receptors, and that the cranial ganglia are the main tissues in which the DA2 receptor participates in light adaptation during dark hours. In addition, the DA2 receptor in E. sinensis may be involved in the physiological regulation of the hepatopancreas and digestive tract after the ingestion of food. This study provides a foundation for further exploration of the light

  18. Control of transcriptional repression of the vitellogenin receptor gene in largemouth bass (Micropterus salmoides) by select estrogen receptors isotypes.

    Science.gov (United States)

    Dominguez, Gustavo A; Bisesi, Joseph H; Kroll, Kevin J; Denslow, Nancy D; Sabo-Attwood, Tara

    2014-10-01

    The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5' regulatory region of the vtgr gene which was cloned from largemouth bass (Micropterus salmoides). Using this putative promoter sequence, we investigated a role for hormones, including insulin and 17β-estradiol (E2), in transcriptional regulation through cell-based reporter assays. No effect of insulin was observed, however, E2 was able to repress transcriptional activity of the vtgr promoter through select estrogen receptor subtypes, Esr1 and Esr2a but not Esr2b. Electrophoretic mobility shift assay demonstrated that Esr1 likely interacts with the vtgr promoter region through half ERE and/or SP1 sites, in part. Finally we also show that ethinylestradiol (EE2), but not bisphenol-A (BPA), represses promoter activity similarly to E2. These results reveal for the first time that the Esr1 isoform may play an inhibitory role in the expression of LMB vtgr mRNA under the influence of E2, and potent estrogens such as EE2. In addition, this new evidence suggests that vtgr may be a target of select endocrine disrupting compounds through environmental exposures. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors.

    Science.gov (United States)

    Jiang, Quan; Lian, Anji; He, Qi

    2016-07-01

    Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Oxytocin reduces alcohol consumption in prairie voles.

    Science.gov (United States)

    Stevenson, J R; Wenner, S M; Freestone, D M; Romaine, C C; Parian, M C; Christian, S M; Bohidar, A E; Ndem, J R; Vogel, I R; O'Kane, C M

    2017-10-01

    Alcohol use disorder (AUD) negatively affects millions of people every year in the United States, and effective treatments for AUD are still needed. The neuropeptide oxytocin has shown promise for reducing alcohol drinking in mice and rats. Because oxytocin also plays a key role in complex prosocial behaviors like bonding and attachment, we tested the effect of oxytocin on alcohol drinking in prairie voles, a species that both consumes high amounts of alcohol and forms oxytocin dependent social bonds in a manner similar to humans. Oxytocin treatment (1.0, 3.0, and 10.0mg/kg, i.p.) reduced alcohol consumption in male and female prairie voles in animals that had access to 15% ethanol vs water every other day for 12 alcohol drinking sessions. In animals with continuous access to 15% alcohol and water, oxytocin (3.0mg/kg) reduced alcohol consumption only in the first hour of access after treatment, with no significant effects on consumption over the 24-hr period. In an open field locomotor test, oxytocin (1.0, 3.0, and 10.0mg/kg, i.p.) did not affect overall locomotor activity; however, ethanol (2g/kg, i.p.) increased locomotor activity in males and females, and produced anxiolytic effects (increased time in the center of an open field) in females only. Because prairie voles have been shown to match the alcohol consumption of their cage mate, we evaluated the relationship between cage mates' alcohol drinking. There was an overall pattern of social facilitation (consumption by one cage mate predicted consumption by the other cage mate); however, we found significant individual differences across cages in which many cages did not show significant matching, and, in some cases one cage mate's consumption negatively predicted the other cage mate's consumption. Overall, our data provide support for the potential of oxytocin as a treatment to reduce alcohol consumption. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Repurposed transcriptomic data facilitate discovery of innate immunity toll-like receptor (TLR) Genes across Lophotrochozoa.

    Science.gov (United States)

    Halanych, Kenneth M; Kocot, Kevin M

    2014-10-01

    The growing volume of genomic data from across life represents opportunities for deriving valuable biological information from data that were initially collected for another purpose. Here, we use transcriptomes collected for phylogenomic studies to search for toll-like receptor (TLR) genes in poorly sampled lophotrochozoan clades (Annelida, Mollusca, Brachiopoda, Phoronida, and Entoprocta) and one ecdysozoan clade (Priapulida). TLR genes are involved in innate immunity across animals by recognizing potential microbial infection. They have an extracellular leucine-rich repeat (LRR) domain connected to a transmembrane domain and an intracellular toll/interleukin-1 receptor (TIR) domain. Consequently, these genes are important in initiating a signaling pathway to trigger defense. We found at least one TLR ortholog in all but two taxa examined, suggesting that a broad array of lophotrochozoans may have innate immune systems similar to those observed in vertebrates and arthropods. Comparison to the SMART database confirmed the presence of both the LRR and the TIR protein motifs characteristic of TLR genes. Because we looked at only one transcriptome per species, discovery of TLR genes was limited for most taxa. However, several TRL-like genes that vary in the number and placement of LRR domains were found in phoronids. Additionally, several contigs contained LRR domains but lacked TIR domains, suggesting they were not TLRs. Many of these LRR-containing contigs had other domains (e.g., immunoglobin) and are likely involved in innate immunity. © 2014 Marine Biological Laboratory.

  2. Polymorphisms at the Ligand Binding Site of the Vitamin D Receptor Gene and Osteomalacia

    Science.gov (United States)

    Ak, Duygu Gezen; Kahraman, Hakkí; Dursun, Erdinç; Duman, Belgin Süsleyici; Erensoy, Nevin; Alagöl, Faruk; Tanakol, Refik; Yılmazer, Selma

    2005-01-01

    Vitamin D receptor (VDR) gene polymorphisms have been suggested as possible determinants of bone mineral density (BMD) and calcium metabolism. In this study, our aim was to determine whether there is an association between VDR gene polymorphism and osteomalacia or not. We determined ApaI and TaqI polymorphisms in the vitamin D receptor gene in 24 patients with osteomalacia and 25 age-matched healthy controls. Serum calcium, phosphorus, ALP, PTH, 25OHD levels were also examined. We used PCR and RFLP methods to test for an association between osteomalacia and polymorphisms within, intron 8 and exon 9 of the VDR gene. When the control and patients were compared for their ApaI and TaqI genotypes there was no relationship between VDR gene allelic polymorphisms and osteomalacia. Whereas a nearly significant difference for A allele was found in the allellic distribution of the patients (p = 0.08). Also no association between biochemical data and VDR gene polymorphisms was observed. PMID:16403954

  3. Polymorphisms at the Ligand Binding Site of the Vitamin D Receptor Gene and Osteomalacia

    Directory of Open Access Journals (Sweden)

    Duygu Gezen Ak

    2005-01-01

    Full Text Available Vitamin D receptor (VDR gene polymorphisms have been suggested as possible determinants of bone mineral density (BMD and calcium metabolism. In this study, our aim was to determine whether there is an association between VDR gene polymorphism and osteomalacia or not. We determined ApaI and TaqI polymorphisms in the vitamin D receptor gene in 24 patients with osteomalacia and 25 age-matched healthy controls. Serum calcium, phosphorus, ALP, PTH, 25OHD levels were also examined. We used PCR and RFLP methods to test for an association between osteomalacia and polymorphisms within, intron 8 and exon 9 of the VDR gene. When the control and patients were compared for their ApaI and TaqI genotypes there was no relationship between VDR gene allelic polymorphisms and osteomalacia. Whereas a nearly significant difference for A allele was found in the allellic distribution of the patients (p = 0.08. Also no association between biochemical data and VDR gene polymorphisms was observed.

  4. Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor.

    Science.gov (United States)

    Blenau, W; Balfanz, S; Baumann, A

    2000-03-01

    Biogenic amine receptors are involved in the regulation and modulation of various physiological and behavioral processes in both vertebrates and invertebrates. We have cloned a member of this gene family from the CNS of the honeybee, Apis mellifera. The deduced amino acid sequence is homologous to tyramine receptors cloned from Locusta migratoria and Drosophila melanogaster as well as to an octopamine receptor cloned from Heliothis virescens. Functional properties of the honeybee receptor were studied in stably transfected human embryonic kidney 293 cells. Tyramine reduced forskolin-induced cyclic AMP production in a dose-dependent manner with an EC50 of approximately 130 nM. A similar effect of tyramine was observed in membrane homogenates of honeybee brains. Octopamine also reduced cyclic AMP production in the transfected cell line but was both less potent (EC50 of approximately 3 microM) and less efficacious than tyramine. Receptor-encoding mRNA has a wide-spread distribution in the brain and subesophageal ganglion of the honeybee, suggesting that this tyramine receptor is involved in sensory signal processing as well as in higher-order brain functions.

  5. A novel polymorphism in the coding region of the vasopressin type 2 receptor gene

    Directory of Open Access Journals (Sweden)

    J.L. Rocha

    1997-04-01

    Full Text Available Nephrogenic diabetes insipidus (NDI is a rare disease characterized by renal inability to respond properly to arginine vasopressin due to mutations in the vasopressin type 2 receptor (V2(R gene in affected kindreds. In most kindreds thus far reported, the mode of inheritance follows an X chromosome-linked recessive pattern although autosomal-dominant and autosomal-recessive modes of inheritance have also been described. Studies demonstrating mutations in the V2(R gene in affected kindreds that modify the receptor structure, resulting in a dys- or nonfunctional receptor have been described, but phenotypically indistinguishable NDI patients with a structurally normal V2(R gene have also been reported. In the present study, we analyzed exon 3 of the V2(R gene in 20 unrelated individuals by direct sequencing. A C®T alteration in the third position of codon 331 (AGC®AGT, which did not alter the encoded amino acid, was found in nine individuals, including two unrelated patients with NDI. Taken together, these observations emphasize the molecular heterogeneity of a phenotypically homogeneous syndrome

  6. Association study between schizophrenia and dopamine D3 receptor gene polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Toshihisa; Takahashi, Makoto; Maeda, Masaya [Niigata Univ. (Japan)] [and others

    1996-07-26

    Crocq et al. reported the existence of an association between schizophrenia and homozygosity of a BalI polymorphism in the first exon of the dopamine D3 receptor (DRD3) gene. In response to this report, further studies were conducted; however, these studies yielded conflicting results. In the present study, we examined 100 unrelated Japanese schizophrenics and 100 normal controls to determine any association between this polymorphism and schizophrenia. Results suggest that neither allele nor genotype frequencies of the DRD3 gene in the schizophrenics as a whole are significantly different from those of the controls. Further, we found no association between any allele or genotype and any clinical subtype based on family history of schizophrenia and age-at-onset. A significantly high frequency of homozygosity of a dopamine D3 receptor gene allele was not observed in the schizophrenics as a whole, or in clinical subtypes. Our results suggest that an association between the dopamine D3 receptor gene and schizophrenia is unlikely to exist. 26 refs., 1 tab.

  7. Sweet taste receptor gene variation and aspartame taste in primates and other species.

    Science.gov (United States)

    Li, Xia; Bachmanov, Alexander A; Maehashi, Kenji; Li, Weihua; Lim, Raymond; Brand, Joseph G; Beauchamp, Gary K; Reed, Danielle R; Thai, Chloe; Floriano, Wely B

    2011-06-01

    Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche.

  8. The Ghrelin Receptor (Ghsr) Gene Polymorphism in Indonesian Local Chicken and Crossbreed is Associated with Carcass Traits

    OpenAIRE

    Khaerunnisa, Isyana; Jakaria, Jakaria; Arief, Irma Isnafia; Budiman, Cahyo; Sumantri, Cece

    2017-01-01

    Ghrelin receptor (GHSR) gene is candidate gene for growth performance in chicken by modulating growth hormone release from the pituitary by binding to its ligand of ghrelin. Ghrelin gene, or growth hormone secretagogue (GHS) gene, is well known as feed intake and energy homeostasis regulator in mammals and birds. The objectives of this study were to identify the polymorphism of the T1857C GHSR locus in Indonesian local chicken and to evaluate its effects on carcass traits. The gene polymorphi...

  9. Serotonergic involvement in stress-induced vasopressin and oxytocin secretion

    DEFF Research Database (Denmark)

    Jørgensen, Henrik; Knigge, Ulrich; Kjaer, Andreas

    2002-01-01

    OBJECTIVE: To investigate the involvement of serotonin (5-hydroxytryptamine - 5-HT) receptors in mediation of stress-induced arginine vasopressin (AVP) and oxytocin (OT) secretion in male rats. DESIGN: Experiments on laboratory rats with control groups. METHODS: Different stress paradigms were...... the swim stress-induced OT response. CONCLUSION: 5-HT(2A), 5-HT(2C) and possibly 5-HT(3) and 5-HT(4) receptors, but not 5-HT(1A) receptors, are involved in the restraint stress-induced AVP secretion. 5-HT does not seem to be involved in the dehydration- or hemorrhage-induced AVP response. The restraint...... stress-induced OT response seems to be mediated via 5-HT(1A), 5-HT(2A) and 5-HT(2C) receptors. The dehydration and hemorrhage-induced OT responses are at least mediated by the 5-HT(2A) and 5-HT(2C) receptors. The 5-HT(3) and 5-HT(4) receptors are not involved in stress-induced OT secretion....

  10. Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors.

    Science.gov (United States)

    Jones, Matthew L; Norman, Jane E; Morgan, Neil V; Mundell, Stuart J; Lordkipanidzé, Marie; Lowe, Gillian C; Daly, Martina E; Simpson, Michael A; Drake, Sian; Watson, Steve P; Mumford, Andrew D

    2015-04-01

    Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70 % had global minor allele frequency (MAF) < 0.05 %. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21 %) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF< 1 % and 22 with MAF≥ 1 %). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes.

  11. Maintenance therapy with oxytocin antagonists for inhibiting preterm birth after threatened preterm labour.

    Science.gov (United States)

    Papatsonis, Dimitri N M; Flenady, Vicki; Liley, Helen G

    2013-10-13

    In some women, an episode of preterm labour settles and does not result in immediate preterm birth. Subsequent treatment with tocolytic agents such as oxytocin receptor antagonists may then have the potential to prevent the recurrence of preterm labour, prolonging gestation, and preventing the adverse consequences of prematurity for the infant. To assess the effects of maintenance therapy with oxytocin antagonists administered by any route after an episode of preterm labour in order to delay or prevent preterm birth. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 July 2013), sought ongoing and unpublished trials by contacting experts in the field and searched the reference lists of relevant articles. Randomised controlled trials comparing oxytocin antagonists with any alternative tocolytic agent, placebo or no treatment, used for maintenance therapy after an episode of preterm labour. We used the standard methods of The Cochrane Collaboration and the Cochrane Pregnancy and Childbirth Group. Two review authors independently undertook evaluation of methodological quality and extracted trial data. This review includes one trial of 513 women. When compared with placebo, atosiban did not reduce preterm birth before 37 weeks (risk ratio (RR) 0.89; 95% confidence intervals (CI) 0.71 to 1.12), 32 weeks (RR 0.85; 95% CI 0.47 to 1.55), or 28 weeks (RR 0.75; 95% CI 0.28 to 2.01). No difference was shown in neonatal morbidity, or perinatal mortality. There is insufficient evidence to support the use of oxytocin receptor antagonists to inhibit preterm birth after a period of threatened or actual preterm labour. Any future trials using oxytocin antagonists or other drugs as maintenance therapy for preventing preterm birth should examine a variety of important infant outcome measures, including reduction of neonatal morbidity and mortality, and long-term infant follow-up. Future research should also focus on the pathophysiological pathways that

  12. Oxytocin promotes group-serving dishonesty.

    Science.gov (United States)

    Shalvi, Shaul; De Dreu, Carsten K W

    2014-04-15

    To protect and promote the well-being of others, humans may bend the truth and behave unethically. Here we link such tendencies to oxytocin, a neuropeptide known to promote affiliation and cooperation with others. Using a simple coin-toss prediction task in which participants could dishonestly report their performance levels to benefit their group's outcome, we tested the prediction that oxytocin increases group-serving dishonesty. A double-blind, placebo-controlled experiment allowing individuals to lie privately and anonymously to benefit themselves and fellow group members showed that healthy males (n = 60) receiving intranasal oxytocin, rather than placebo, lied more to benefit their group, and did so faster, yet did not necessarily do so because they expected reciprocal dishonesty from fellow group members. Treatment effects emerged when lying had financial consequences and money could be gained; when losses were at stake, individuals in placebo and oxytocin conditions lied to similar degrees. In a control condition (n = 60) in which dishonesty only benefited participants themselves, but not fellow group members, oxytocin did not influence lying. Together, these findings fit a functional perspective on morality revealing dishonesty to be plastic and rooted in evolved neurobiological circuitries, and align with work showing that oxytocin shifts the decision-maker's focus from self to group interests. These findings highlight the role of bonding and cooperation in shaping dishonesty, providing insight into when and why collaboration turns into corruption.

  13. The effects of oxytocine in autism : De werking van oxytocine bij autisme

    NARCIS (Netherlands)

    Groen, Yvonne; Althaus, Monika; Oosterhoff, Menno; van Balkom, Ingrid; Hoekstra, Pieter J.

    2017-01-01

    Oxytocin is viewed as the hormone of calm, healing and love, and plays an important role in establishing and maintaining social relationships. As autism is characterized by difficulties in social relationships, a dysregulated oxytocin system could possibly be an underlying factor. Our recently

  14. Comprehensive gene expression analysis of rice aleurone cells: probing the existence of an alternative gibberellin receptor.

    Science.gov (United States)

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-02-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation.

    Science.gov (United States)

    Engsontia, Patamarerk; Sangket, Unitsa; Chotigeat, Wilaiwan; Satasook, Chutamas

    2014-08-01

    Lepidoptera (comprised of butterflies and moths) is one of the largest groups of insects, including more than 160,000 described species. Chemoreception plays important roles in the adaptation of these species to a wide range of niches, e.g., plant hosts, egg-laying sites, and mates. This study investigated the molecular evolution of the lepidopteran odorant (Or) and gustatory receptor (Gr) genes using recently identified genes from Bombyx mori, Danaus plexippus, Heliconius melpomene, Plutella xylostella, Heliothis virescens, Manduca sexta, Cydia pomonella, and Spodoptera littoralis. A limited number of cases of large lineage-specific gene expansion are observed (except in the P. xylostella lineage), possibly due to selection against tandem gene duplication. There has been strong purifying selection during the evolution of both lepidopteran odorant and gustatory genes, as shown by the low ω values estimated through CodeML analysis, ranging from 0.0093 to 0.3926. However, purifying selection has been relaxed on some amino acid sites in these receptors, leading to sequence divergence, which is a precursor of positive selection on these sequences. Signatures of positive selection were detected only in a few loci from the lineage-specific analysis. Estimation of gene gains and losses suggests that the common ancestor of the Lepidoptera had fewer Or genes compared to extant species and an even more reduced number of Gr genes, particularly within the bitter receptor clade. Multiple gene gains and a few gene losses occurred during the evolution of Lepidoptera. Gene family expansion may be associated with the adaptation of lepidopteran species to plant hosts, especially after angiosperm radiation. Phylogenetic analysis of the moth sex pheromone receptor genes suggested that chromosomal translocations have occurred several times. New sex pheromone receptors have arisen through tandem gene duplication. Positive selection was detected at some amino acid sites predicted to be

  16. Association of variation in Fc gamma receptor 3B gene copy number with rheumatoid arthritis in Caucasian samples

    NARCIS (Netherlands)

    McKinney, Cushla; Fanciulli, Manuela; Merriman, Marilyn E.; Phipps-Green, Amanda; Alizadeh, Behrooz Z.; Koeleman, Bobby P. C.; Dalbeth, Nicola; Gow, Peter J.; Harrison, Andrew A.; Highton, John; Jones, Peter B.; Stamp, Lisa K.; Steer, Sophia; Barrera, Pilar; Coenen, Marieke J. H.; Franke, Barbara; van Riel, Piet L. C. M.; Vyse, Tim J.; Aitman, Tim J.; Radstake, Timothy R. D. J.; Merriman, Tony R.

    2010-01-01

    Objective There is increasing evidence that variation in gene copy number (CN) influences clinical phenotype. The low-affinity Fc gamma receptor 3B (FCGR3B) located in the FCGR gene cluster is a CN polymorphic gene involved in the recruitment to sites of inflammation and activation of

  17. Association of variation in Fcgamma receptor 3B gene copy number with rheumatoid arthritis in Caucasian samples.

    NARCIS (Netherlands)

    McKinney, C.; Fanciulli, M.; Merriman, M.E.; Phipps-Green, A.; Alizadeh, B.Z.; Koeleman, B.P.; Dalbeth, N.; Gow, P.J.; Harrison, A.A.; Highton, J.; Jones, P.B.; Stamp, L.K.; Steer, S.; Barrera, P.; Coenen, M.J.H.; Franke, B.; Riel, P.L.C.M. van; Vyse, T.J.; Aitman, T.J.; Radstake, T.R.D.J.; Merriman, T.R.

    2010-01-01

    OBJECTIVE: There is increasing evidence that variation in gene copy number (CN) influences clinical phenotype. The low-affinity Fcgamma receptor 3B (FCGR3B) located in the FCGR gene cluster is a CN polymorphic gene involved in the recruitment to sites of inflammation and activation of

  18. Expression map of a complete set of gustatory receptor genes in chemosensory organs of Bombyx mori.

    Science.gov (United States)

    Guo, Huizhen; Cheng, Tingcai; Chen, Zhiwei; Jiang, Liang; Guo, Youbing; Liu, Jianqiu; Li, Shenglong; Taniai, Kiyoko; Asaoka, Kiyoshi; Kadono-Okuda, Keiko; Arunkumar, Kallare P; Wu, Jiaqi; Kishino, Hirohisa; Zhang, Huijie; Seth, Rakesh K; Gopinathan, Karumathil P; Montagné, Nicolas; Jacquin-Joly, Emmanuelle; Goldsmith, Marian R; Xia, Qingyou; Mita, Kazuei

    2017-03-01

    Most lepidopteran species are herbivores, and interaction with host plants affects their gene expression and behavior as well as their genome evolution. Gustatory receptors (Grs) are expected to mediate host plant selection, feeding, oviposition and courtship behavior. However, due to their high diversity, sequence divergence and extremely low level of expression it has been difficult to identify precisely a complete set of Grs in Lepidoptera. By manual annotation and BAC sequencing, we improved annotation of 43 gene sequences compared with previously reported Grs in the most studied lepidopteran model, the silkworm, Bombyx mori, and identified 7 new tandem copies of BmGr30 on chromosome 7, bringing the total number of BmGrs to 76. Among these, we mapped 68 genes to chromosomes in a newly constructed chromosome distribution map and 8 genes to scaffolds; we also found new evidence for large clusters of BmGrs, especially from the bitter receptor family. RNA-seq analysis of diverse BmGr expression patterns in chemosensory organs of larvae and adults enabled us to draw a precise organ specific map of BmGr expression. Interestingly, most of the clustered genes were expressed in the same tissues and more than half of the genes were expressed in larval maxillae, larval thoracic legs and adult legs. For example, BmGr63 showed high expression levels in all organs in both larval and adult stages. By contrast, some genes showed expression limited to specific developmental stages or organs and tissues. BmGr19 was highly expressed in larval chemosensory organs (especially antennae and thoracic legs), the single exon genes BmGr53 and BmGr67 were expressed exclusively in larval tissues, the BmGr27-BmGr31 gene cluster on chr7 displayed a high expression level limited to adult legs and the candidate CO 2 receptor BmGr2 was highly expressed in adult antennae, where few other Grs were expressed. Transcriptional analysis of the Grs in B. mori provides a valuable new reference for

  19. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M

    1998-01-01

    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin...... is specific by two criteria. A number of potential RPTPalpha targets were ruled out by finding (a) that they are not affected or (b) that they are not on the pathway to insulin-increased prolactin-CAT activity. The negative effect of RPTPalpha on insulin activation of the prolactin promoter is not due...... to reduced phosphorylation or kinase activity of the insulin receptor or to reduced phosphorylation of insulin receptor substrate-1 or Shc. Inhibitor studies suggest that insulin-increased prolactin gene expression is mediated by a Ras-like GTPase but is not mitogen-activated protein kinase dependent...

  20. Gene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility.

    Science.gov (United States)

    Laugwitz, K L; Weig, H J; Moretti, A; Hoffmann, E; Ueblacker, P; Pragst, I; Rosport, K; Schömig, A; Ungerer, M

    2001-04-13

    In heart failure, reduced cardiac contractility is accompanied by blunted cAMP responses to beta-adrenergic stimulation. Parathyroid hormone (PTH)-related peptide and arginine vasopressin are released from the myocardium in response to increased wall stress but do not stimulate contractility or adenylyl cyclase at physiological concentrations. To bypass the defective beta-adrenergic signaling cascade, recombinant P1 PTH/PTH-related peptide receptors (rPTH1-Rs) and V(2) vasopressin receptors (rV(2)-Rs), which are normally not expressed in the myocardium and which are both strongly coupled to adenylyl cyclase, and recombinant beta(2)-adrenergic receptors (rbeta(2)-ARs) were overexpressed in cardiomyocytes by viral gene transfer. The capacity of endogenous hormones to increase contractility via the heterologous, recombinant receptors was compared. Whereas V(2)-Rs are uniquely coupled to Gs, PTH1-Rs and beta(2)-ARs are also coupled to other G proteins. Gene transfer of rPTH1-Rs or rbeta(2)-ARs to adult cardiomyocytes resulted in maximally increased basal contractility, which could not be further stimulated by adding receptor agonists. Agonists at rPTH1-Rs induced increased cAMP formation and phospholipase C activity. In contrast, healthy or failing rV(2)-R-expressing cardiomyocytes showed unaltered basal contractility. Their contractility and cAMP formation increased only at agonist exposure, which did not activate phospholipase C. In summary, we found that gene transfer of PTH1-Rs to cardiomyocytes results in constitutive activity of the transgene, as does that of beta(2)-ARS: In the absence of receptor agonists, rPTH1-Rs and rbeta(2)-ARs increase basal contractility, coupling to 2 G proteins simultaneously. In contrast, rV(2)-Rs are uniquely coupled to Gs and are not constitutively active, retaining their property to be activated exclusively on agonist stimulation. Therefore, gene transfer of V(2)-Rs might be more suited to test the effects of c

  1. Genetic Variations in the Human Cannabinoid Receptor Gene Are Associated with Happiness

    Science.gov (United States)

    Matsunaga, Masahiro; Isowa, Tokiko; Yamakawa, Kaori; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2014-01-01

    Happiness has been viewed as a temporary emotional state (e.g., pleasure) and a relatively stable state of being happy (subjective happiness level). As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater magnitude

  2. Association of arginine vasopressin receptor 1a gene polymorphisms with hepatorenal syndrome

    International Nuclear Information System (INIS)

    Wang, C.; Luo, X.; Ye, J.; Liu, S.; Miu, L.; Bao, J.; Wang, F.; Yu, Z.

    2017-01-01

    To assess the association of arginine vasopressin receptor 1a gene single nucleotide polymorphisms with type I hepatorenal syndrome. Methods: The case-control study was conducted at the Hangzhou City Xixi Hospital, Hangzhou, China, from January 2012 to June 2014, and comprised patients with type I hepatorenal syndrome and individuals with cirrhosis who acted as the control group. Arginine vasopressin receptor 1a gene rs113481894 locus single nucleotide polymorphisms were analysed by high-resolution melting methods. Statistical analysis was performed using SPSS 17. Results: Of the 60 participants, 28(46.7%) were in the hepatorenal syndrome group and 32(53.3%) were controls. The mean age was 42.21+-11.30years in the hepatorenal syndrome group and 43.69+-12.60 in the control group (p=0.64). Mean total bilirubin, albumin and prothrombin activity levels were 154.76+-51.58, 49.30+-24.67 and 33.42+-3.69 in the hepatorenal syndrome group compared to 181.26+-64.46, 41.78+-17.52 and 32.98+-4.81 among controls (p=0.09, p=0.18 and p=0.70). Statistically significant differences were found in the distributions of arginine vasopressin receptor 1a gene rs113481894 locus T allele between type I hepatorenal syndrome patients and the control group (odds ratio= 2.230; p= 0.040). Conclusion: T allele located at arginine vasopressin receptor 1a receptor promoter rs113481894 locus may be associated with the pathogenesis of type I hepatorenal syndrome. (author)

  3. Genetic variations in the human cannabinoid receptor gene are associated with happiness.

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    Full Text Available Happiness has been viewed as a temporary emotional state (e.g., pleasure and a relatively stable state of being happy (subjective happiness level. As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater

  4. Genetic variations in the human cannabinoid receptor gene are associated with happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Isowa, Tokiko; Yamakawa, Kaori; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2014-01-01

    Happiness has been viewed as a temporary emotional state (e.g., pleasure) and a relatively stable state of being happy (subjective happiness level). As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater magnitude

  5. Positive association of vitamin D receptor gene variations with multiple sclerosis in South East Iranian population.

    Science.gov (United States)

    Narooie-Nejad, Mehrnaz; Moossavi, Maryam; Torkamanzehi, Adam; Moghtaderi, Ali

    2015-01-01

    Among the factors postulated to play a role in MS susceptibility, the role of vitamin D is outstanding. Since the function of vitamin D receptor (VDR) represents the effect of vitamin D on the body and genetic variations in VDR gene may affect its function, we aim to highlight the association of two VDR gene polymorphisms with MS susceptibility. In current study, we recruited 113 MS patients and 122 healthy controls. TaqI (rs731236) and ApaI (rs7975232) genetic variations in these two groups were evaluated using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. All genotype and allele frequencies in both variations showed association with the disease status. However, to find the definite connection between genetic variations in VDR gene and MS disease in a population of South East of Iran, more researches on gene structure and its function with regard to patients' conditions are required.

  6. Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor.

    Science.gov (United States)

    Ryan, J J; McReynolds, L J; Keegan, A; Wang, L H; Garfein, E; Rothman, P; Nelms, K; Paul, W E

    1996-02-01

    IL-4 causes hematopoietic cells to proliferate and express a series of genes, including CD23. We examined whether IL-4-mediated growth, as measured by 4PS phosphorylation, and gene induction were similarly controlled. Studies of M12.4.1 cells expressing human IL-4R truncation mutants indicated that the region between amino acids 557-657 is necessary for full gene expression, which correlated with Stat6 DNA binding activity. This region was not required for 4PS phosphorylation. Tyrosine-to-phenylalanine mutations in the interval between amino acids 557-657 revealed that as long as one tyrosine remained unmutated, CD23 was fully induced. When all three tyrosines were mutated, the receptor was unable to induce CD23. The results indicate that growth regulation and gene expression are principally controlled by distinct regions of IL-4R.

  7. Association of angiotensin receptor 2 gene polymorphisms with pregnancy induced hypertension risk.

    Science.gov (United States)

    Li, Chenyang; Peng, Weijun; Zhang, Heng; Yan, Weirong

    2018-05-01

    To investigate the association of polymorphisms and haplotypes of angiotensin receptor 2 (AT2R) gene with pregnancy induced hypertension (PIH) in Chinese Han women. A case-control study was designed with 446 cases (gestational hypertension, GH: 124; pre-eclampsia, PE + eclampsia, E: 322) and 650 controls. rs5193, rs1403543 and rs12710567 of AT2R gene were genotyped. A logistic regression approach was applied to estimate the relationship between the polymorphisms and haplotypes of AT2Rgene with PIH risk. No relationship between AT2R gene polymorphisms and PIH was detected. The haplotype analysis also showed a negative result. rs5193, rs1403543 and rs12710567 of AT2R gene might have no effect on PIH risk among Chinese Han women.

  8. Androgen Receptor Gene Polymorphism, Aggression, and Reproduction in Tanzanian Foragers and Pastoralists

    Science.gov (United States)

    Butovskaya, Marina L.; Lazebny, Oleg E.; Vasilyev, Vasiliy A.; Dronova, Daria A.; Karelin, Dmitri V.; Mabulla, Audax Z. P.; Shibalev, Dmitri V.; Shackelford, Todd K.; Fink, Bernhard; Ryskov, Alexey P.

    2015-01-01

    The androgen receptor (AR) gene polymorphism in humans is linked to aggression and may also be linked to reproduction. Here we report associations between AR gene polymorphism and aggression and reproduction in two small-scale societies in northern Tanzania (Africa)—the Hadza (monogamous foragers) and the Datoga (polygynous pastoralists). We secured self-reports of aggression and assessed genetic polymorphism of the number of CAG repeats for the AR gene for 210 Hadza men and 229 Datoga men (aged 17–70 years). We conducted structural equation modeling to identify links between AR gene polymorphism, aggression, and number of children born, and included age and ethnicity as covariates. Fewer AR CAG repeats predicted greater aggression, and Datoga men reported more aggression than did Hadza men. In addition, aggression mediated the identified negative relationship between CAG repeats and number of children born. PMID:26291982

  9. Gene Expression of Leptin and Long Leptin Receptor Isoform in Endometriosis: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    Andrea Prestes Nácul

    2013-01-01

    Full Text Available In this study, leptin/BMI ratio in serum and peritoneal fluid and gene expression of leptin and long form leptin receptor (OB-RL were assessed in eutopic and ectopic endometria of women with endometriosis and controls. Increased serum leptin/BMI ratio was found in endometriosis patients. Leptin and OB-RL gene expression was significantly higher in ectopic versus eutopic endometrium of patients and controls. A positive, significant correlation was observed between leptin and OB-RL transcripts in ectopic endometria and also in eutopic endometria in endometriosis and control groups. A negative and significant correlation was found between OB-RL mRNA expression and peritoneal fluid leptin/BMI ratio only in endometriosis. These data suggest that, through a modulatory interaction with its active receptor, leptin might play a role in the development of endometrial implants.

  10. HindIII identifies a two allele DNA polymorphism of the human cannabinoid receptor gene (CNR)

    Energy Technology Data Exchange (ETDEWEB)

    Caenazzo, L.; Hoehe, M.R.; Hsieh, W.T.; Berrettini, W.H.; Bonner, T.I.; Gershon, E.S. (National Inst. of Health, Bethesda, MD (United States))

    1991-09-11

    HCNR p5, a 0.9 kb BamHI/EcoRI fragment from the human cannabinoid receptor gene inserted into pUC19, was used as probe. The fragment is located in an intron approximately 14 kb 5{prime} of the initiation codon. This fragment is a clean single copy sequence by genomic blotting. Hybridization of human genomic DNA digested with HindIII identified a two allele RFLP with bands at 5.5 (A1) and 3.3 kb (A2). The human cannabinoid receptor gene has been genetically mapped in CEPH reference pedigrees to the centromeric/q region of chromosome 6. In situ hybridization localizes it to 6q14-q15. Codominant segregation has been observed in 26 informative two- and three-generation CEPH pedigrees and in 14 medium-sized disease families.

  11. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    Science.gov (United States)

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  12. Ovarian steroids regulate tachykinin and tachykinin receptor gene expression in the mouse uterus

    Directory of Open Access Journals (Sweden)

    Patak Eva

    2009-07-01

    Full Text Available Abstract Background In the mouse uterus, pregnancy is accompanied by changes in tachykinin and tachykinin receptor gene expression and in the uterotonic effects of endogenous tachykinins. In this study we have investigated whether changes in tachykinin expression and responses are a result of changes in ovarian steroid levels. Methods We quantified the mRNAs of tachykinins and tachykinin receptors in uteri from ovariectomized mice and studied their regulation in response to estrogen and progesterone using real-time quantitative RT-PCR. Early (3 h and late (24 h responses to estrogen were evaluated and the participation of the estrogen receptors (ER, ERalpha and ERbeta, was analyzed by treating mice with propylpyrazole triol, a selective ERalpha agonist, or diarylpropionitrile, a selective agonist of ERbeta. Results All genes encoding tachykinins (Tac1, Tac2 and Tac4 and tachykinin receptors (Tacr1, Tacr2 and Tacr3 were expressed in uteri from ovariectomized mice. Estrogen increased Tac1 and Tacr1 mRNA after 3 h and decreased Tac1 and Tac4 expression after 24 h. Tac2 and Tacr3 mRNA levels were decreased by estrogen at both 3 and 24 h. Most effects of estrogen were also observed in animals treated with propylpyrazole triol. Progesterone treatment increased the levels of Tac2. Conclusion These results show that the expression of tachykinins and their receptors in the mouse uterus is tightly and differentially regulated by ovarian steroids. Estrogen effects are mainly mediated by ERalpha supporting an essential role for this estrogen receptor in the regulation of the tachykinergic system in the mouse uterus.

  13. Long-term social recognition memory is mediated by oxytocin-dependent synaptic plasticity in the medial amygdala.

    Science.gov (United States)

    Gur, Rotem; Tendler, Alex; Wagner, Shlomo

    2014-09-01

    Recognition of specific individuals is fundamental to mammalian social behavior and is mediated in most mammals by the main and accessory olfactory systems. Both these systems innervate the medial amygdala (MeA), where activity of the neuropeptide oxytocin is thought to mediate social recognition memory (SRM). The specific contribution of the MeA to SRM formation and the specific actions of oxytocin in the MeA are unknown. We used the social discrimination test to evaluate short-term and long-term SRM in adult Sprague-Dawley male rats (n = 38). The role of protein synthesis in the MeA was investigated by local application of the protein synthesis blocker anisomycin (n = 11). Synaptic plasticity was assessed in vivo by recording the MeA evoked field potential responses to stimulation of the main (n = 21) and accessory (n = 56) olfactory bulbs before and after theta burst stimulation. Intracerebroventricular administration of saline, oxytocin, or oxytocin receptor antagonist was used to measure the effect of oxytocin on synaptic plasticity. Anisomycin application to the MeA prevented the formation of long-term SRM. In addition, the responses of MeA neurons underwent long-term depression (LTD) after theta burst stimulation of the accessory olfactory bulb, but not the main accessory bulb, in an oxytocin-dependent manner. No LTD was found in socially isolated rats, which are known to lack long-term SRM. Finally, accessory olfactory bulb stimulation before SRM acquisition blocked long-term SRM, supporting the involvement of LTD in the MeA in formation of long-term SRM. Our results indicate that long-term SRM in rats involves protein synthesis and oxytocin-dependent LTD in the MeA. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    International Nuclear Information System (INIS)

    Teutschbein, Janka; Haydn, Johannes M; Samans, Birgit; Krause, Michael; Eilers, Martin; Schartl, Manfred; Meierjohann, Svenja

    2010-01-01

    Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1), early growth response 1 (Egr1), osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), dual-specificity phosphatase 4 (Dusp4), and tumor-associated antigen L6 (Taal6). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development

  15. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    Directory of Open Access Journals (Sweden)

    Krause Michael

    2010-07-01

    Full Text Available Abstract Background Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Methods Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Results Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1, early growth response 1 (Egr1, osteopontin (Opn, insulin-like growth factor binding protein 3 (Igfbp3, dual-specificity phosphatase 4 (Dusp4, and tumor-associated antigen L6 (Taal6. Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Conclusion Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute

  16. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.

    Science.gov (United States)

    Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L

    2009-09-01

    Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.

  17. Cloning, mapping and molecular characterization of porcine progesterone receptor membrane component 2 (PGRMC2 gene

    Directory of Open Access Journals (Sweden)

    Congying Chen

    2010-01-01

    Full Text Available Progesterone plays an important role in sow reproduction by stimulating classic genomic pathways via nuclear receptors and non-genomic pathways via membrane receptors such a progesterone receptor membrane component 2 (PGRMC2. In this work, we used radiation hybrid mapping to assign PGRMC2 to pig chromosome 8 and observed that this receptor has two transcripts in pigs. The full-length cDNA of the large transcript is 1858 bp long and contains a 669-bp open reading frame (ORF encoding a protein of 223 amino acids. The shorter transcript encodes a protein of 170 amino acids. The porcine PGRMC2 gene consists of three exons 446 bp, 156 bp and 1259 bp in length. The promoter sequence is GC-rich and lacks a typical TATA box. Several putative cis-regulatory DNA motifs were identified in the 208-bp upstream genomic region. Five single nucleotide polymorphisms (SNPs were detected in introns* and the 3' UTR. RT-PCR indicated that the PGRMC2 gene is expressed ubiquitously in all pig tissues examined.

  18. Association between the dopamine D3 receptor gene locus (DRD3) and unipolar affective disorder.

    Science.gov (United States)

    Dikeos, D G; Papadimitriou, G N; Avramopoulos, D; Karadima, G; Daskalopoulou, E G; Souery, D; Mendlewicz, J; Vassilopoulos, D; Stefanis, C N

    1999-12-01

    Dopamine neurotransmission has been implicated in the pathophysiology of schizophrenia and, more recently, affective disorders. Among the dopamine receptors, D3 can be considered as particularly related to affective disorders due to its neuroanatomical localization in the limbic region of the brain and its relation to the serotoninergic activity of the CNS. The possible involvement of dopamine receptor D3 in unipolar (UP) major depression was investigated by a genetic association study of the D3 receptor gene locus (DRD3) on 36 UP patients and 38 ethnically matched controls. An allelic association of DRD3 (Bal I polymorphism) and UP illness was observed, with the Gly-9 allele (allele '2', 206/98 base-pairs long) being more frequent in patients than in controls (49% vs 29%, P < 0.02). The genotypes containing this allele (1-2 and 2-2) were found in 75% of patients vs 50% of controls (P < 0.03, odds ratio = 3.00, 95% CI = 1.12-8.05). The effect of the genotype remained significant (P < 0.02) after sex and family history were controlled by a multiple linear regression analysis. These results further support the hypothesis that dopaminergic mechanisms may be implicated in the pathogenesis of affective disorder. More specifically, the '2' allele of the dopamine receptor D3 gene seems to be associated with unipolar depression and can be considered as a 'phenotypic modifier' for major psychiatric disorders.

  19. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    Science.gov (United States)

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  20. A general approach-avoidance hypothesis of oxytocin: accounting for social and non-social effects of oxytocin.

    Science.gov (United States)

    Harari-Dahan, Osnat; Bernstein, Amit

    2014-11-01

    We critically reexamine extant theory and empirical study of Oxytocin. We question whether OT is, in fact, a "social neuropeptide" as argued in dominant theories of OT. We critically review human and animal research on the social and non-social effects of Oxytocin, including behavioral, psychophysiological, neurobiological, and neuroimaging studies. We find that extant (social) theories of Oxytocin do not account for well-documented non-social effects of Oxytocin. Furthermore, we find a range of evidence that social and non-social effects of Oxytocin may be mediated by core approach-avoidance motivational processes. We propose a General Approach-avoidance Hypothesis of Oxytocin (GAAO). We argue that the GAAO may provide a parsimonious account of established social and non-social effects of Oxytocin. We thus re-conceptualize the basic function(s) and mechanism(s) of action of Oxytocin. Finally, we highlight implications of the GAAO for basic and clinical research in humans

  1. Intranasal oxytocin modulates neural functional connectivity during human social interaction.

    Science.gov (United States)

    Rilling, James K; Chen, Xiangchuan; Chen, Xu; Haroon, Ebrahim

    2018-02-10

    Oxytocin (OT) modulates social behavior in primates and many other vertebrate species. Studies in non-primate animals have demonstrated that, in addition to influencing activity within individual brain areas, OT influences functional connectivity across networks of areas involved in social behavior. Previously, we used fMRI to image brain function in human subjects during a dyadic social interaction task following administration of either intranasal oxytocin (INOT) or placebo, and analyzed the data with a standard general linear model. Here, we conduct an extensive re-analysis of these data to explore how OT modulates functional connectivity across a neural network that animal studies implicate in social behavior. OT induced widespread increases in functional connectivity in response to positive social interactions among men and widespread decreases in functional connectivity in response to negative social interactions among women. Nucleus basalis of Meynert, an important regulator of selective attention and motivation with a particularly high density of OT receptors, had the largest number of OT-modulated connections. Regions known to receive mesolimbic dopamine projections such as the nucleus accumbens and lateral septum were also hubs for OT effects on functional connectivity. Our results suggest that the neural mechanism by which OT influences primate social cognition may include changes in patterns of activity across neural networks that regulate social behavior in other animals. © 2018 Wiley Periodicals, Inc.

  2. Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue

    DEFF Research Database (Denmark)

    Smith, Julie; Fahrenkrug, Jan; Jørgensen, Henrik L

    2015-01-01

    Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart, but the tem......Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart......, but the temporal expression profile of their cognate receptors has not been examined in white adipose tissue. We therefore collected peri-renal white adipose tissue and serum from WT mice. Tissue mRNA contents of NPRs - NPR-A and NPR-C, the clock genes Per1 and Bmal1, and transcripts involved in lipid metabolism...... in serum peaked in the active dark period (P=0.003). In conclusion, NPR-A and NPR-C gene expression is associated with the expression of clock genes in white adipose tissue. The reciprocal expression may thus contribute to regulate lipolysis and energy homeostasis in a diurnal manner....

  3. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    International Nuclear Information System (INIS)

    Martinovic-Weigelt, Dalma; Wang Ronglin; Villeneuve, Daniel L.; Bencic, David C.; Lazorchak, Jim; Ankley, Gerald T.

    2011-01-01

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  4. Growth hormone receptor gene mutations in two Italian patients with Laron Syndrome.

    Science.gov (United States)

    Fassone, L; Corneli, G; Bellone, S; Camacho-Hübner, C; Aimaretti, G; Cappa, M; Ubertini, G; Bona, G

    2007-05-01

    Laron Syndrome (LS) represents a condition characterized by GH insensitivity caused by molecular defects in the GH receptor (GHR) gene or in the post-receptor signalling pathway. We report the molecular characterization of two unrelated Italian girls from Sicily diagnosed with LS. The DNA sequencing of the GHR gene revealed the presence of different nonsense mutations, occurring in the same background haplotype. The molecular defects occurred in the extracellular domain of the GHR leading to a premature termination signal and to a truncated non-functional receptor. In one patient, a homozygous G to T transversion, in exon 6, led to the mutation GAA to TAA at codon 180 (E180X), while in the second patient a homozygous C to T transition in exon 7 was detected, causing the CGA to TAA substitution at codon 217 (R217X). Both probands presented the polymorphisms Gly168Gly and Ile544Leu in a homozygous state in exons 6 and 10, respectively. The E180X represents a novel defect of the GHR gene, while the R217X mutation has been previously reported in several patients from different ethnic backgrounds but all from countries located in the Mediterranean and Middle Eastern region.

  5. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads.

    Science.gov (United States)

    Martinović-Weigelt, Dalma; Wang, Rong-Lin; Villeneuve, Daniel L; Bencic, David C; Lazorchak, Jim; Ankley, Gerald T

    2011-01-25

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4×44K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals. 2010 Elsevier B.V. All rights reserved.

  6. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    Science.gov (United States)

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    Energy Technology Data Exchange (ETDEWEB)

    Martinovic-Weigelt, Dalma, E-mail: dalma@stthomas.edu [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105 (United States); Wang Ronglin [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Villeneuve, Daniel L. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); Bencic, David C.; Lazorchak, Jim [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Ankley, Gerald T. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States)

    2011-01-25

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  8. Evidence for an indirect transcriptional regulation of glucose-6-phosphatase gene expression by liver X receptors

    International Nuclear Information System (INIS)

    Grempler, Rolf; Guenther, Susanne; Steffensen, Knut R.; Nilsson, Maria; Barthel, Andreas; Schmoll, Dieter; Walther, Reinhard

    2005-01-01

    Liver X receptor (LXR) paralogues α and β (LXRα and LXRβ) are members of the nuclear hormone receptor family and have oxysterols as endogenous ligands. LXR activation reduces hepatic glucose production in vivo through the inhibition of transcription of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase). In the present study, we investigated the molecular mechanisms involved in the regulation of G6Pase