WorldWideScience

Sample records for oxygenated organic chemicals

  1. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    KAUST Repository

    Wang, Zhandong

    2017-11-28

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.

  2. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    KAUST Repository

    Wang, Zhandong; Popolan-Vaida, Denisia M.; Chen, Bingjie; Moshammer, Kai; Mohamed, Samah; Wang, Heng; Sioud, Salim; Raji, Misjudeen; Kohse-Hö inghaus, Katharina; Hansen, Nils; Dagaut, Philippe; Leone, Stephen R.; Sarathy, Mani

    2017-01-01

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.

  3. Chemical oxygen demand (cod) attenuation of methyl red in water ...

    African Journals Online (AJOL)

    Chemical oxygen demand (cod) attenuation of methyl red in water using biocarbons obtained from Nipa palm leaves. ... eco-friendly and locally accessible biocarbon for mitigation of organic contaminants in water. Keywords: Chemical oxygen demand, biocarbon, methyl red, biodegradation, bioremediation, Nipa palm ...

  4. Limited Influence of Oxygen on the Evolution of Chemical Diversity in Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Kazuhiro Takemoto

    2013-10-01

    Full Text Available Oxygen is thought to promote species and biomolecule diversity. Previous studies have suggested that oxygen expands metabolic networks by acquiring metabolites with different chemical properties (higher hydrophobicity, for example. However, such conclusions are typically based on biased evaluation, and are therefore non-conclusive. Thus, we re-investigated the effect of oxygen on metabolic evolution using a phylogenetic comparative method and metadata analysis to reduce the bias as much as possible. Notably, we found no difference in metabolic network expansion between aerobes and anaerobes when evaluating phylogenetic relationships. Furthermore, we showed that previous studies have overestimated or underestimated the degrees of differences in the chemical properties (e.g., hydrophobicity between oxic and anoxic metabolites in metabolic networks of unicellular organisms; however, such overestimation was not observed when considering the metabolic networks of multicellular organisms. These findings indicate that the contribution of oxygen to increased chemical diversity in metabolic networks is lower than previously thought; rather, phylogenetic signals and cell-cell communication result in increased chemical diversity. However, this conclusion does not contradict the effect of oxygen on metabolic evolution; instead, it provides a deeper understanding of how oxygen contributes to metabolic evolution despite several limitations in data analysis methods.

  5. Oxygenated Organic Chemicals in the Pacific Troposphere: Distribution, Sources and Chemistry

    Science.gov (United States)

    Singh, Hanwant B.; Salas, L.; Chatfield, R.; Czech, E.; Fried, A.; Evans, M.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.

    2003-01-01

    Airborne measurements of a large number of oxygenated organic chemicals (Oxorgs) were carried out in the Pacific troposphere (0.1-12 km) in the Spring of 2001 (Feb. 24-April 10). Specifically these measuremen ts included acetone, methylethyl ketone (MEK), methanol, ethanol, ace taldehyde, propionaldehyde, PANS, and organic nitrates. Complementary measurements of formaldehyde, organic peroxides, and tracers were al so available. Ox-orgs were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Their mixing ratios were typically highest in the lower troposphere and declined toward s the upper troposphere and the lowermost stratosphere. Their total a bundance (Ox-orgs) significantly exceeded that of NMHC (C2-C8 NMHC). A comparison of these data with observations collected some seven yea rs earlier (Feb.-March, 1994), did not reveal any significant changes . Throughout the troposphere mixing ratios of Ox-orgs were strongly c orrelated with each other as well as with tracers of fossil and bioma sshiof'uel combustion. Analysis of the relative enhancement of selected Oxorgs with respect to CH3Cl and CO in twelve sampled plumes, origi nating from fires, is used to assess their primary and secondary sour ces from biomass combustion. The composition of these plumes also ind icates a large shift of reactive nitrogen into the PAN reservoir ther eby limiting ozone formation. The Harvard 3-D photochemical model, th at uses state of the art chemistry and source information, is used to compare simulated and observed mixing ratios of selected species. A 1 -D model is used to explore the chemistry of aldehydes. These results will be presented.

  6. Singlet oxygen generator for a solar powered chemically pumped iodine laser

    Science.gov (United States)

    Busch, G. E.

    1984-01-01

    The potential of solid phase endoperoxides as a means to produce single-delta oxygen in the gas phase in concentrations useful to chemical oxygen-iodine lasers was investigated. The 1,4 - endoperoxide of ethyl 3- (4-methyl - 1-naphthyl) propanoate was deposited over an indium-oxide layer on a glass plate. Single-delta oxygen was released from the endoperoxide upon heating the organic film by means of an electrical discharge through the conductive indium oxide coating. The evolution of singlet-delta oxygen was determined by measuring the dimol emission signal at 634 nm. Comparison of the measured signal with an analytic model leads to two main conclusions: virtually all the oxygen being evolved is in the singlet-delta state and in the gas phase, and there is no significant quenching other than energy pooling on the time scale of the experiment (approximately 10 msec). The use of solid phase endoperoxide as a singlet-delta oxygen generator for an oxygen-iodine laser appears promising.

  7. Spray generator of singlet oxygen for a chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Hrubý, Jan; Špalek, Otomar; Čenský, Miroslav; Kodymová, Jarmila

    2010-01-01

    Roč. 100, č. 4 (2010), s. 779-791 ISSN 0946-2171 Grant - others:European Office of Aerospace R&D(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20760514 Keywords : spray generator of singlet oxygen * singlet oxygen * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  8. Advanced chemical oxygen iodine lasers for novel beam generation

    Science.gov (United States)

    Wu, Kenan; Zhao, Tianliang; Huai, Ying; Jin, Yuqi

    2018-03-01

    Chemical oxygen iodine laser, or COIL, is an impressive type of chemical laser that emits high power beam with good atmospheric transmissivity. Chemical oxygen iodine lasers with continuous-wave plane wave output are well-developed and are widely adopted in directed energy systems in the past several decades. Approaches of generating novel output beam based on chemical oxygen iodine lasers are explored in the current study. Since sophisticated physical processes including supersonic flowing of gaseous active media, chemical reacting of various species, optical power amplification, as well as thermal deformation and vibration of mirrors take place in the operation of COIL, a multi-disciplinary model is developed for tracing the interacting mechanisms and evaluating the performance of the proposed laser architectures. Pulsed output mode with repetition rate as high as hundreds of kHz, pulsed output mode with low repetition rate and high pulse energy, as well as novel beam with vector or vortex feature can be obtained. The results suggest potential approaches for expanding the applicability of chemical oxygen iodine lasers.

  9. Tri-metallic ferrite oxygen carriers for chemical looping combustion

    Science.gov (United States)

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-10-25

    The disclosure provides a tri-metallic ferrite oxygen carrier for the chemical looping combustion of carbonaceous fuels. The tri-metallic ferrite oxygen carrier comprises Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta., where Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta. is a chemical composition. Generally, 0.5.ltoreq.x.ltoreq.2.0, 0.2.ltoreq.y.ltoreq.2.5, and 0.2.ltoreq.z.ltoreq.2.5, and in some embodiments, 0.8.ltoreq.x.ltoreq.1.2, y.ltoreq.1.2, and z.gtoreq.0.8. The tri-metallic ferrite oxygen carrier may be used in various applications for the combustion of carbonaceous fuels, including as an oxygen carrier for chemical looping combustion.

  10. Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, James E.; Lam, Chun Ho; Saffron, Christopher M.; Miller, Dennis J.

    2018-04-24

    A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of organic substrates such as biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic reactants. Biomass fast pyrolysis-derived bio-oil is a liquid mixture containing hundreds of organic compounds with chemical functionalities that are corrosive to container materials and are prone to polymerization. A high surface area skeletal metal catalyst material such as Raney Nickel can be used as the cathode. Electrocatalytic hydrogenation and/or hydrodeoxygenation convert the organic substrates under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.

  11. Oxygen Chemical Diffusion Coefficients of (Pu,Am)O2 Fuels

    International Nuclear Information System (INIS)

    Watanabe, M.; Kato, M.; Matsumoto, T.

    2015-01-01

    Minor actinide (MA)-bearing MOX fuels have been developed as candidate fuels which are used in fast neutron spectrum cores such as sodium-cooled fast reactor (SFR) cores and experimental accelerator driven system (ADS) cores. Americium (Am) which is one of the MA elements significantly affects basic properties. It is known that Am content causes oxygen potential to increase and that influences irradiation behaviour such as fuel-cladding chemical interaction (FCCI) and chemical state of fission products. However, the effects of Am content on changes of basic properties are not clear. In this work, the oxygen chemical diffusion coefficients were calculated from measured data and the relationship between oxygen diffusion and oxygen potential of (Pu,Am)O 2-x was discussed. (authors)

  12. Centrifugal spray generator of singlet oxygen for a chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Špalek, Otomar; Hrubý, Jan; Čenský, Miroslav; Jirásek, Vít; Kodymová, Jarmila

    2010-01-01

    Roč. 100, č. 4 (2010), s. 793-802 ISSN 0946-2171 Grant - others:European Office of Aerospace R&D(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20760514 Keywords : centrifugal generator of singlet oxygen * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  13. Adsorption of ionizable organic contaminants on multi-walled carbon nanotubes with different oxygen contents

    International Nuclear Information System (INIS)

    Li Xiaona; Zhao Huimin; Quan Xie; Chen Shuo; Zhang Yaobin; Yu Hongtao

    2011-01-01

    Multi-walled carbon nanotubes (MWNTs), which are considered to be promising candidates for the adsorption of toxic organics, are released into aqueous environment with their increasing production and application. In this study, the adsorption behaviors of five structurally related ionizable organic contaminants namely perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonamide (PFOSA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-n-nonylphenol (4-NP) onto MWNTs with different oxygen contents (3.84-22.85%) were investigated. The adsorption kinetics was investigated and simulated with pseudo-second-order model. The adsorption isotherms were found to be fitted with Freundlich model and influenced by both the properties of organic chemicals and the oxygen contents of MWNTs. As adsorption capacity decreases dramatically with the increasing of oxygen contents, the MWNTs with the lowest oxygen contents possess the highest adsorption capacity among four MWNTs. For the MWNTs with the oxygen contents of 3.84%, the adsorption affinity related with hydrophobic interaction and π-electron polarizability decreased in the order of 4-NP > PFOSA > PFOS > 2,4-D > PFOA. Furthermore, the adsorption characters of five contaminants were affected by solution pH and solute pK a considering electrostatic repulse force and hydrogen bonding, which showed the adsorption of MWNTs with lower oxygen content is much sensitive to solution chemistry.

  14. Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen

    Science.gov (United States)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-10-01

    Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and

  15. Measurement of oxygen transfer from air into organic solvents

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Mayr, Torsten; Hobisch, Mathias

    2016-01-01

    biological reactions require the supply of oxygen, most normally from air. However, reliable on-line measurements of oxygen concentration in organic solvents (and hence oxygen transfer rates from air to the solvent) has to date proven impossible due limitations in the current analytical methods. Results...... applications). Subsequently, we measured the oxygen transfer rates from air into these organic solvents. Conclusion The measurement of oxygen transfer rates from air into organic solvents using the dynamic method was established using the solvent resistant optical sensor. The feasibility of online oxygen...... For the first time, we demonstrate on-line oxygen measurements in non-aqueous media using a novel optical sensor. The sensor was used to measure oxygen concentration in various organic solvents including toluene, THF, isooctane, DMF, heptane and hexane (which have all been shown suitable for several biological...

  16. Quality and Chemical Composition of Organic and Non-Organic Vetiver Oil

    Directory of Open Access Journals (Sweden)

    Asep Kadarohman

    2014-03-01

    Full Text Available Vetiver oil (Vetiveria zizanoides has been used as perfume materials, cosmetics, fragrance soaps, anti-inflammation, repellent, and insecticidal agents. Organic vetiver oil has higher economical value than non-organic vetiver oil and it has been regarded to be able to compete in the global market. Therefore, studies have been carried out using 1 hectare of land and the first generation of organic vetiver oil has produced 0.57% of yield, greater than non-organic (0.50%. The quality of organic and non-organic vetiver oil was analyzed by Indonesian Standard (SNI parameter, pesticide residue test, chemical composition by GC/MS, and the appearance of vetiver root. In general, the result of organic and non-organic vetiver oil has fulfilled the national standard; the quality of organic vetiver oil was better than non-organic one. Physically, the appearance of organic vetiver root was better than non-organic vetiver root; organic vetiver root was denser, more appealing, and did not have any black spots. The pesticide residue of organic vetiver oil was lower than non-organic vetiver oil. Based on SNI test, vetiverol (oxygen compounds in organic vetiver oil was higher than non-organic vetiver oil.

  17. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  18. Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2015-09-01

    Full Text Available Chemical-looping technology is one of the promising CO2 capture technologies. It generates a CO2 enriched flue gas, which will greatly benefit CO2 capture, utilization or sequestration. Both chemical-looping combustion (CLC and chemical-looping gasification (CLG have the potential to be used to generate power, chemicals, and liquid fuels. Chemical-looping is an oxygen transporting process using oxygen carriers. Recently, attention has focused on solid fuels such as coal. Coal chemical-looping reactions are more complicated than gaseous fuels due to coal properties (like mineral matter and the complex reaction pathways involving solid fuels. The mineral matter/ash and sulfur in coal may affect the activity of oxygen carriers. Oxygen carriers are the key issue in chemical-looping processes. Thermogravimetric analysis (TGA has been widely used for the development of oxygen carriers (e.g., oxide reactivity. Two proposed processes for the CLC of solid fuels are in-situ Gasification Chemical-Looping Combustion (iG-CLC and Chemical-Looping with Oxygen Uncoupling (CLOU. The objectives of this review are to discuss various chemical-looping processes with coal, summarize TGA applications in oxygen carrier development, and outline the major challenges associated with coal chemical-looping in iG-CLC and CLOU.

  19. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste.

    Science.gov (United States)

    Dubber, Donata; Gray, Nicholas F

    2010-10-01

    Chemical oxygen demand (COD) is widely used for wastewater monitoring, design, modeling and plant operational analysis. However this method results in the production of hazardous wastes including mercury and hexavalent chromium. The study examined the replacement of COD with total organic carbon (TOC) for general performance monitoring by comparing their relationship with influent and effluent samples from 11 wastewater treatment plants. Biochemical oxygen demand (BOD5) was also included in the comparison as a control. The results show significant linear relationships between TOC, COD and BOD5 in settled (influent) domestic and municipal wastewaters, but only between COD and TOC in treated effluents. The study concludes that TOC can be reliably used for the generic replacement of both COD (COD=49.2+3.00*TOC) and BOD5 (BOD5=23.7+1.68*TOC) in influent wastewaters but only for COD (COD=7.25+2.99*TOC) in final effluents.

  20. Temperature and oxygenation during organ preservation: friends or foes?

    Science.gov (United States)

    Gilbo, Nicholas; Monbaliu, Diethard

    2017-06-01

    The liberalization of donor selection criteria in organ transplantation, with the increased use of suboptimal grafts, has stimulated interest in ischemia-reperfusion injury prevention and graft reconditioning. Organ preservation technologies are changing considerably, mostly through the reintroduction of dynamic machine preservation. Here, we review the current evidence on the role of temperature and oxygenation during dynamic machine preservation. A large but complex body of evidence exists and comparative studies are few. Oxygenation seems to support an advantageous effect in hypothermic machine preservation and is mandatory in normothermic machine preservation, although in the latter, supraphysiological oxygen tensions should be avoided. High-risk grafts, such as suboptimal organs, may optimally benefit from oxygenated perfusion conditions that support metabolism and activate mechanisms of repair such as subnormothermic machine preservation, controlled oxygenated rewarming, and normothermic machine preservation. For lower risk grafts, oxygenation during hypothermic machine preservation may sufficiently reduce injuries and recharge the cellular energy to secure functional recovery after transplantation. The relationship between temperature and oxygenation in organ preservation is more complex than physiological laws would suggest. Rather than one default perfusion temperature/oxygenation standard, perfusion protocols should be tailored for specific needs of grafts of different quality.

  1. Contribution of chemical radiation research to the general theory of oxidation of organic substances

    International Nuclear Information System (INIS)

    Ladygin, B.Ya.; Saraev, V.V.; Revin, A.A.; Zimina, G.M.

    1996-01-01

    Paper studies mechanisms and main elementary stages of liquid-phase oxidation of organic compounds at thermal and radiation initiation of this reaction. The results of investigations into radiation and chemical conversion of organic compounds at presence of oxygen and without it are discussed on the ground of data obtained by means of pulse radiolysis and EPR-spectroscopy. The bach-Engler theory of slow oxidation of organic compounds with participation of peroxides used as intermediate compounds is shown to be proved essentially and to enjoy further development due to the conducted radiation and chemical investigations. 68 refs., 2 figs., 4 tabs

  2. Use of Hopcalite derived Cu-Mn mixed oxide as Oxygen Carrier for Chemical Looping with Oxygen Uncoupling Process

    OpenAIRE

    Adánez-Rubio, Iñaki; Abad Secades, Alberto; Gayán Sanz, Pilar; Adánez-Rubio, Imanol; Diego Poza, Luis F. de; Garcia-Labiano, Francisco; Adánez Elorza, Juan

    2016-01-01

    Chemical-Looping with Oxygen Uncoupling (CLOU) is an alternative Chemical Looping process for the combustion of solid fuels with inherent CO2 capture. The CLOU process needs a material as oxygen carrier with the ability to give gaseous O2 at suitable temperatures for solid fuel combustion, e.g. copper oxide and manganese oxide. In this work, treated commercial Carulite 300® was evaluated as oxygen carrier for CLOU. Carulite 300® is a hopcalite material composed of 29.2 wt.% CuO and 67.4 wt.% ...

  3. Chemical identities of radioiodine released from U3O8 in oxygen and inert gas atmospheres

    International Nuclear Information System (INIS)

    Tachikawa, E.; Nakashima, M.

    1977-01-01

    Irradiated U 3 O 8 was heated from room temperature to 1100 0 C in a temperature-programmed oven (5 0 C/min) in a flow of carrier gas. The iodine released to an inert gas was deposited in the temperature range from 200 to 300 0 C with a peak at 250 0 C (speciesA). This species is neither in a form combined with other fission products nor in elemental form. It is possibly a chemical combination with uranium. It reacts with oxygen, yielding species B characterized by its deposition at a temperature close to room temperature. The activation energy of this oxidation reaction was determined to be 6.0 +-0.5 Kcal/mol. Comparing the deposition-profile with those obtained with carrier-free I 2 and HI indicated that species B was I 2 . As for the formation of organic iodides accompanying the release in an inert gas, it was concluded that these were produced in radical reactions. Thus, in a presence of oxygen, organic iodides were formed in competition with the reactions of organic radicals with oxygen. (author)

  4. Love Story: Oxygen in Organic Chemistry

    Science.gov (United States)

    Roberts, John D.

    1974-01-01

    Significant discoveries and developments regarding oxygen and organic compounds are recounted to show that research in this specific area is worthwhile and relevant and to point out that research in other areas of organic chemistry deserves continued encouragement as well. (DT)

  5. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen

  6. Anisotropic chemical strain in cubic ceria due to oxygen-vacancy-induced elastic dipoles.

    Science.gov (United States)

    Das, Tridip; Nicholas, Jason D; Sheldon, Brian W; Qi, Yue

    2018-06-06

    Accurate characterization of chemical strain is required to study a broad range of chemical-mechanical coupling phenomena. One of the most studied mechano-chemically active oxides, nonstoichiometric ceria (CeO2-δ), has only been described by a scalar chemical strain assuming isotropic deformation. However, combined density functional theory (DFT) calculations and elastic dipole tensor theory reveal that both the short-range bond distortions surrounding an oxygen-vacancy and the long-range chemical strain are anisotropic in cubic CeO2-δ. The origin of this anisotropy is the charge disproportionation between the four cerium atoms around each oxygen-vacancy (two become Ce3+ and two become Ce4+) when a neutral oxygen-vacancy is formed. Around the oxygen-vacancy, six of the Ce3+-O bonds elongate, one of the Ce3+-O bond shorten, and all seven of the Ce4+-O bonds shorten. Further, the average and maximum chemical strain values obtained through tensor analysis successfully bound the various experimental data. Lastly, the anisotropic, oxygen-vacancy-elastic-dipole induced chemical strain is polarizable, which provides a physical model for the giant electrostriction recently discovered in doped and non-doped CeO2-δ. Together, this work highlights the need to consider anisotropic tensors when calculating the chemical strain induced by dilute point defects in all materials, regardless of their symmetry.

  7. Atom interaction propensities of oxygenated chemical functions in crystal packings

    Directory of Open Access Journals (Sweden)

    Christian Jelsch

    2017-03-01

    Full Text Available The crystal contacts of several families of hydrocarbon compounds substituted with one or several types of oxygenated chemical groups were analyzed statistically using the Hirshfeld surface methodology. The propensity of contacts to occur between two chemical types is described with the contact enrichment descriptor. The systematic large enrichment ratios of some interactions like the O—H...O hydrogen bonds suggests that these contacts are a driving force in the crystal packing formation. The same statement holds for the weaker C—H...O hydrogen bonds in ethers, esters and ketones, in the absence of polar H atoms. The over-represented contacts in crystals of oxygenated hydrocarbons are generally of two types: electrostatic attractions (hydrogen bonds and hydrophobic interactions. While Cl...O interactions are generally avoided, in a minority of chloro-oxygenated hydrocarbons, significant halogen bonding does occur. General tendencies can often be derived for many contact types, but outlier compounds are instructive as they display peculiar or rare features. The methodology also allows the detection of outliers which can be structures with errors. For instance, a significant number of hydroxylated molecules displaying over-represented non-favorable oxygen–oxygen contacts turned out to have wrongly oriented hydroxyl groups. Beyond crystal packings with a single molecule in the asymmetric unit, the behavior of water in monohydrate compounds and of crystals with Z′ = 2 (dimers are also investigated. It was found in several cases that, in the presence of several oxygenated chemical groups, cross-interactions between different chemical groups (e.g. water/alcohols; alcohols/phenols are often favored in the crystal packings. While some trends in accordance with common chemical principles are retrieved, some unexpected results can however appear. For example, in crystals of alcohol–phenol compounds, the strong O—H...O hydrogen bonds between

  8. Development of high power chemical oxygen lodine laser

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Choi, Y. D.; Chung, C. M.; Kim, M. S.; Baik, S. H.; Kwon, S. O.; Park, S. K.; Kim, T. S

    2001-10-01

    This project is directed to construct 10kW Chemical Oxygen Iodine Laser (COIL) for decommissioning of old nuclear facilities, and to get the key technology that can be used for the development of high energy laser weapon. COIL is possible up to MW class in proportion to the amount of chemical reaction. For this reason, high energy laser weapon including Airborne Laser (ABL) and Airborne Tactical Laser (ATL) has been developed as a military use in USA. Recently, many research group have been doing a development study of COIL for nuclear and industrial use in material processing such as cutting and decommissioning by combining laser beam delivery through optical fiber. The Chemical Oxygen Iodine Laser of 6 kW output power has been developed in this project. The main technologies of chemical reaction and supersonic fluid control were developed. This technology can be applied for construction of 10 kW laser system. This laser can be used for old nuclear facilities and heavy industry by combining laser beam delivery through optical fiber. The development of High Energy Laser (HEL) weapon is necessary as a military use, and we conclude that Airborne Tactical Laser should be developed in our country.

  9. Influence of oxygen on the chemical stage of radiobiological mechanism

    International Nuclear Information System (INIS)

    Barilla, Jiří; Lokajíček, Miloš V.; Pisaková, Hana; Simr, Pavel

    2016-01-01

    The simulation of the chemical stage of radiobiological mechanism may be very helpful in studying the radiobiological effect of ionizing radiation when the water radical clusters formed by the densely ionizing ends of primary or secondary charged particle may form DSBs damaging DNA molecules in living cells. It is possible to study not only the efficiency of individual radicals but also the influence of other species or radiomodifiers (mainly oxygen) being present in water medium during irradiation. The mathematical model based on Continuous Petri nets (proposed by us recently) will be described. It makes it possible to analyze two main processes running at the same time: chemical radical reactions and the diffusion of radical clusters formed during energy transfer. One may study the time change of radical concentrations due to the chemical reactions running during diffusion process. Some orientation results concerning the efficiency of individual radicals in DSB formation (in the case of Co60 radiation) will be presented; the influence of oxygen present in water medium during irradiation will be shown, too. - Highlights: • Creation of the mathematical model. • Realization of the model with the help of Continuous Petri nets. • Obtain the time dependence of changes in the concentration of radicals. • Influence of oxygen on the chemical stage of radiobiological mechanism.

  10. Why Do Lithium-Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect.

    Science.gov (United States)

    Yao, Xiahui; Dong, Qi; Cheng, Qingmei; Wang, Dunwei

    2016-09-12

    As an electrochemical energy-storage technology with the highest theoretical capacity, lithium-oxygen batteries face critical challenges in terms of poor stabilities and low charge/discharge round-trip efficiencies. It is generally recognized that these issues are connected to the parasitic chemical reactions at the anode, electrolyte, and cathode. While the detailed mechanisms of these reactions have been studied separately, the possible synergistic effects between these reactions remain poorly understood. To fill in the knowledge gap, this Minireview examines literature reports on the parasitic chemical reactions and finds the reactive oxygen species a key chemical mediator that participates in or facilitates nearly all parasitic chemical reactions. Given the ubiquitous presence of oxygen in all test cells, this finding is important. It offers new insights into how to stabilize various components of lithium-oxygen batteries for high-performance operations and how to eventually materialize the full potentials of this promising technology. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Determination of chemical oxygen demand (COD) using an alternative wet chemical method free of mercury and dichromate.

    Science.gov (United States)

    Kolb, Marit; Bahadir, Müfit; Teichgräber, Burkhard

    2017-10-01

    Worldwide, the standard methods for the determination of the important wastewater parameter chemical oxygen demand (COD) are still based on the use of the hazardous chemicals, mercury sulfate and chromium(VI). However, due to their properties they are meanwhile classified as "priority pollutants" and shall be phased out or banned in the frame of REACH (current European Chemical Law: Registration, Evaluation, Authorization and restriction of Chemicals) by the European Union. Hence, a new wet-chemical method free of mercury and chromium(VI) was developed. Manganese(III) was used as oxidant and silver nitrate for the removal of chloride ions. The quantification was performed by back titration of manganese(III) with iron(II) as done in the standard method. In order to minimize losses of organic substances during the precipitation of silver chloride, suspended and colloid organic matter had to be separated by precipitation of aluminum hydroxide in a first step. In these cases, two fractions, one of the suspended and colloid matters and a second of the dissolved organic substances, are prepared and oxidized separately. The method was tested with potassium hydrogen phthalate (KHP) as conventional COD reference substance and different types of wastewater samples. The oxidation of KHP was reproducible in a COD range of 20-500 mg/L with a mean recovery rate of 88.7% in comparison to the standard COD method (DIN 38409-41). Also in presence of 1000 mg/L chloride a recovery rate of 84.1% was reached. For a series of industrial and municipal wastewater samples a high correlation (R 2  = 0.9935) to the standard method with a mean recovery rate of 78.1% (±5.2%) was determined. Even though the results of the new method are not 100% of the standard method, its high correlation to the standard method and reproducibility offers an environmentally benign alternative method with no need to purchase new laboratory equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Transition Metal Catalyzed Reactions of Carbohydrates: a Nonoxidative Approach to Oxygenated Organics

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Mark

    1997-01-08

    There is a critical need for new environmentally friendly processes in the United States chemical industry as legislative and economic pressures push the industry to zero-waste and cradle-to-grave responsibility for the products they produce. Carbohydrates represent a plentiful, renewable resource, which for some processes might economically replace fossil feedstocks. While the conversion of biomass to fuels, is still not generally economical, the selective synthesis of a commodity or fine chemical, however, could compete effectively if appropriate catalytic conversion systems can be found. Oxygenated organics, found in a variety of products such as nylon and polyester, are particularly attractive targets. We believe that with concerted research efforts, homogeneous transition metal catalyzed reactions could play a significant role in bringing about this future green chemistry technology.

  13. Chemical shifts of oxygen-17 NMR in polyoxotungstates

    International Nuclear Information System (INIS)

    Kazanskij, L.P.; Fedotov, M.A.; Spitsyn, V.I.

    1977-01-01

    17 O NMR spectra of aqueous solutions containing paratungstate BH 2 W 12 O 42 10- and metatungstate H 2 W 12 O 40 6- anions have been measured. On the basis of the obtained data a scale of chemical shifts for oxygen atoms connected by various bonds with tungsten atoms is suggested. The obtained data are compared with the Raman spectra of crystalline salts and their aqueous solutions. Chemical shifts of 17 O NMR spectra have been also measured in other heteropolyanions

  14. Correlation of Secondary Organic Aerosol with Odd Oxygen in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Herndon, Scott C.; Onasch, Timothy B.; Wood, Ezra C.; Kroll, Jesse H.; Canagaratna, M. R.; Jayne, John T.; Zavala, Miguel A.; Knighton, W. Berk; Mazzoleni, Claudio; Dubey, Manvendra K.; Ulbrich, Ingrid M.; Jimenez, Jose L.; Seila, Robert; de Gouw, Joost A.; de Foy, B.; Fast, Jerome D.; Molina, Luisa T.; Kolb, C. E.; Worsnop, Douglas R.

    2008-08-05

    Data collected from a mountain location within the Mexico City limits are used to demonstrate a correlation between secondary organic aerosol and odd-oxygen (O3 + NO2). Positive matrix factorization techniques are employed to separate organic aerosol components: hydrocarbon-like organic aerosol; oxidized-organic aerosol; and biomass burning organic aerosol. The measured hydrocarbon-like organic aerosol is correlated with urban CO (8±1) µg m-3 ppmv-1. The measured oxidized-organic aerosol is associated with photochemical oxidation products and correlates with odd-oxygen with an apparent slope of (70-120) µg m-3 ppmv-1. The dependence of the oxidized-organic aerosol to odd-oxygen correlation on the nature of the gas-phase hydrocarbon profile is discussed.

  15. Differences in temperature, organic carbon and oxygen consumption among lowland streams

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Pedersen, N. L.

    2005-01-01

    1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or w......1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams...... the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C-1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream...... at ambient temperature by 30-40% and 80-130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal...

  16. Measurement of oxygen chemical diffusion in PuO2-x and analysis of oxygen diffusion in PuO2-x and (Pu,U)O2-x

    International Nuclear Information System (INIS)

    Kato, Masato; Uchida, Teppei; Sunaoshi, Takeo

    2013-01-01

    Oxygen chemical diffusion in PuO 2-x was investigated in the temperature range of 1473-1873 K by thermogravimetry as functions of oxygen-to-metal (O/M) ratios and temperatures. The oxygen chemical diffusion coefficients, D were determined assuming that the reduction curves were dominated by a diffusion process. The O/M ratio and Pu content dependence on the chemical diffusion coefficients were evaluated. The chemical diffusion coefficient had its minimum value at around O/M=1.98 and decreased with increasing Pu content in (U,Pu)O 2-x . The self-diffusion coefficients were evaluated. A model for describing the relationship among O/M ratio, oxygen chemical diffusion, and self-diffusion was proposed based on defect chemistry. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. General Observation of Photocatalytic Oxygen Reduction to Hydrogen Peroxide by Organic Semiconductor Thin Films and Colloidal Crystals.

    Science.gov (United States)

    Gryszel, Maciej; Sytnyk, Mykhailo; Jakešová, Marie; Romanazzi, Giuseppe; Gabrielsson, Roger; Heiss, Wolfgang; Głowacki, Eric Daniel

    2018-04-25

    Low-cost semiconductor photocatalysts offer unique possibilities for industrial chemical transformations and energy conversion applications. We report that a range of organic semiconductors are capable of efficient photocatalytic oxygen reduction to H 2 O 2 in aqueous conditions. These semiconductors, in the form of thin films, support a 2-electron/2-proton redox cycle involving photoreduction of dissolved O 2 to H 2 O 2 , with the concurrent photooxidation of organic substrates: formate, oxalate, and phenol. Photochemical oxygen reduction is observed in a pH range from 2 to 12. In cases where valence band energy of the semiconductor is energetically high, autoxidation competes with oxidation of the donors, and thus turnover numbers are low. Materials with deeper valence band energies afford higher stability and also oxidation of H 2 O to O 2 . We found increased H 2 O 2 evolution rate for surfactant-stabilized nanoparticles versus planar thin films. These results evidence that photochemical O 2 reduction may be a widespread feature of organic semiconductors, and open potential avenues for organic semiconductors for catalytic applications.

  18. Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris

    Science.gov (United States)

    Ziurys, L. M.; Milam, S. N.; Apponi, A. J.; Woolf, N. J.

    2007-06-01

    The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.

  19. Metal ferrite oxygen carriers for chemical looping combustion of solid fuels

    Science.gov (United States)

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-01-31

    The disclosure provides a metal ferrite oxygen carrier for the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The metal ferrite oxygen carrier comprises MFe.sub.xO.sub.y on an inert support, where MFe.sub.xO.sub.y is a chemical composition and M is one of Mg, Ca, Sr, Ba, Co, Mn, and combinations thereof. For example, MFe.sub.xO.sub.y may be one of MgFe.sub.2O.sub.4, CaFe.sub.2O.sub.4, SrFe.sub.2O.sub.4, BaFe.sub.2O.sub.4, CoFe.sub.2O.sub.4, MnFeO.sub.3, and combinations thereof. The MFe.sub.xO.sub.y is supported on an inert support. The inert support disperses the MFe.sub.xO.sub.y oxides to avoid agglomeration and improve performance stability. In an embodiment, the inert support comprises from about 5 wt. % to about 60 wt. % of the metal ferrite oxygen carrier and the MFe.sub.xO.sub.y comprises at least 30 wt. % of the metal ferrite oxygen carrier. The metal ferrite oxygen carriers disclosed display improved reduction rates over Fe.sub.2O.sub.3, and improved oxidation rates over CuO.

  20. Syngas Generation from Methane Using a Chemical-Looping Concept: A Review of Oxygen Carriers

    Directory of Open Access Journals (Sweden)

    Kongzhai Li

    2013-01-01

    Full Text Available Conversion of methane to syngas using a chemical-looping concept is a novel method for syngas generation. This process is based on the transfer of gaseous oxygen source to fuel (e.g., methane by means of a cycling process using solid oxides as oxygen carriers to avoid direct contact between fuel and gaseous oxygen. Syngas is produced through the gas-solid reaction between methane and solid oxides (oxygen carriers, and then the reduced oxygen carriers can be regenerated by a gaseous oxidant, such as air or water. The oxygen carrier is recycled between the two steps, and the syngas with a ratio of H2/CO = 2.0 can be obtained successively. Air is used instead of pure oxygen allowing considerable cost savings, and the separation of fuel from the gaseous oxidant avoids the risk of explosion and the dilution of product gas with nitrogen. The design and elaboration of suitable oxygen carriers is a key issue to optimize this method. As one of the most interesting oxygen storage materials, ceria-based and perovskite oxides were paid much attention for this process. This paper briefly introduced the recent research progresses on the oxygen carriers used in the chemical-looping selective oxidation of methane (CLSOM to syngas.

  1. Development of an oxygen carrier nanoemulsion for organ preservation

    CSIR Research Space (South Africa)

    Barnard, A

    2010-08-31

    Full Text Available high levels of chemical stability and biological inertness which makes them suitable for biological use1,2. Perfluorooctyl bromide (PFOB) is the particular PFC used in the CSIR oxygen carrier emulsion1,2....

  2. Quantum dots assisted photocatalysis for the chemiluminometric determination of chemical oxygen demand using a single interface flow system

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, Cristina I.C.; Frigerio, Christian [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal); Santos, Joao L.M., E-mail: joaolms@ff.up.pt [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal); Lima, Jose L.F.C. [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal)

    2011-08-12

    Highlights: {yields} A novel flow method for the determination of chemical oxygen demand is proposed. {yields} CdTe nanocrystals are irradiated with UV light to generate strong oxidizing species. {yields} Reactive species promote a fast catalytic degradation of organic matter. {yields} Luminol is used as a chemiluminescence probe for indirect COD assessment. {yields} A single interface flow system was implemented to automate the assays. - Abstract: A novel flow method for the determination of chemical oxygen demand (COD) is proposed in this work. It relies on the combination of a fully automated single interface flow system, an on-line UV photocatalytic unit and quantum dot (QD) nanotechnology. The developed approach takes advantage of CdTe nanocrystals capacity to generate strong oxidizing species upon irradiation with UV light, which fostered a fast catalytic degradation of the organic compounds. Luminol was used as a chemiluminescence (CL) probe for indirect COD assessment, since it is easily oxidized by the QD generated species yielding a strong CL emission that is quenched in the presence of the organic matter. The proposed methodology allowed the determination of COD concentrations between 1 and 35 mg L{sup -1}, with good precision (R.S.D. < 1.1%, n = 3) and a sampling frequency of about 33 h{sup -1}. The procedure was applied to the determination of COD in wastewater certified reference materials and the obtained results showed an excellent agreement with the certified values.

  3. Research progress of on-line automatic monitoring of chemical oxygen demand (COD) of water

    Science.gov (United States)

    Cai, Youfa; Fu, Xing; Gao, Xiaolu; Li, Lianyin

    2018-02-01

    With the increasingly stricter control of pollutant emission in China, the on-line automatic monitoring of water quality is particularly urgent. The chemical oxygen demand (COD) is a comprehensive index to measure the contamination caused by organic matters, and thus it is taken as one important index of energy-saving and emission reduction in China’s “Twelve-Five” program. So far, the COD on-line automatic monitoring instrument has played an important role in the field of sewage monitoring. This paper reviews the existing methods to achieve on-line automatic monitoring of COD, and on the basis, points out the future trend of the COD on-line automatic monitoring instruments.

  4. Measurement of oxygen chemical diffusion in PuO{sub 2-x} and analysis of oxygen diffusion in PuO{sub 2-x} and (Pu,U)O{sub 2-x}

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masato; Uchida, Teppei [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Ibaraki 319-1194 (Japan); Sunaoshi, Takeo [Inspection Development Company Ltd., 4-33 Muramatsu, Tokai-mura, Ibaraki 319-1194 (Japan)

    2013-02-15

    Oxygen chemical diffusion in PuO{sub 2-x} was investigated in the temperature range of 1473-1873 K by thermogravimetry as functions of oxygen-to-metal (O/M) ratios and temperatures. The oxygen chemical diffusion coefficients, D were determined assuming that the reduction curves were dominated by a diffusion process. The O/M ratio and Pu content dependence on the chemical diffusion coefficients were evaluated. The chemical diffusion coefficient had its minimum value at around O/M=1.98 and decreased with increasing Pu content in (U,Pu)O{sub 2-x}. The self-diffusion coefficients were evaluated. A model for describing the relationship among O/M ratio, oxygen chemical diffusion, and self-diffusion was proposed based on defect chemistry. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Physico-Chemical Properties of Kaolin-Organic Acid

    Directory of Open Access Journals (Sweden)

    Yeo S.W.

    2017-01-01

    Full Text Available Soil with more than 20% of organic content is classified as organic soil in Malaysia. Contents of organic soil consist of different types of organic and inorganic matter. Each type of organic matter has its own characteristic and its effect on the properties of the soil is different. Hence, a good understanding on the effect of specific organic and inorganic matter on the physico-chemical characteristic of organic soils can serve as a guide for predicting the properties of organic soils. The main objective is to unveil the effect of organic acid on the physico-chemical properties of soil. Artificial organic soil (kaolin mixed with organic acid was utilized in order to minimize the geochemical variability of studied soil. The organic acid which consists of humic acid and fulvic acid was extracted from highly humificated plant–based compost. The effect of organic acid on the physico-chemical properties of soil was determined by varying the concentration of organic acid. The specific gravity, Atterberg limits, pH, bulk chemical composition and the functional group of kaolin-organic acid were determined. It was found that the plasticity index, specific gravity and pH value were decreased with lowered concentration of organic acid. However, the liquid limits and plastic limits were found to be increased with the concentration decrement of organic acid. The analysis of XRF on the bulk chemical composition and analysis of FTIR spectra on the functional group of artificial organic soils with different concentration have confirmed little geochemical variability between samples.

  6. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-03-01

    Full Text Available The formation and aging of organic aerosols (OA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the saturation mass concentration of organic compounds containing oxygen, nitrogen, and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less-oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle-phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  7. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith

    2009-07-01

    The reduction of CO{sub 2} emissions, generally held to be one of the most significant contributors to global warming, is a major technological issue. CO{sub 2} Capture and Storage (CCS) techniques applied to large stationary sources such as coal-fired power plants could efficiently contribute to the global carbon mitigation effort. The oxyfuel process, which consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas highly concentrated in CO{sub 2}, is a technology considered for zero CO{sub 2} emission coal-fired power plants. The production of this O{sub 2}-rich combustion gas from air can be carried out using high purity oxygen separation membranes. Some of the most promising materials for this application are mixed ionic-electronic conducting (MIEC) materials with perovskite and K{sub 2}NiF{sub 4} perovskite-related structures. The present work examines the selection of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58), La{sub 2}NiO{sub 4+{delta}}, Pr{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (PSCF58) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF50) as membrane materials for the separation of O{sub 2} and N{sub 2} in the framework of the oxyfuel process with flue gas recycling. Annealing experiments were carried out on pellets exposed to CO{sub 2}, water vapour, O{sub 2} and Cr{sub 2}O{sub 3} in order to determine the thermo-chemical resistance to the atmospheres and the high temperature conditions present during membrane operation in a coal-fired power plant. The degradation of their microstructure was investigated using Scanning Electron Microscopy (SEM) in combination with electron dispersive spectroscopy (EDS) as well as X-Ray Diffraction (XRD). Also, the oxygen permeation fluxes of selected membranes were investigated as a function of temperature. The membrane materials selected were characterised using thermo-analytical techniques such as precision thermogravimetric

  8. Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2004-09-01

    The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon. Copyright 2004 Elsevier Ltd.

  9. Degradation of organic pollutants and characteristics of activated sludge in an anaerobic/anoxic/oxic reactor treating chemical industrial wastewater

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-09-01

    Full Text Available A laboratory-scale anaerobic/anoxic/oxic system operated at the hydraulic retention times (HRT of 20, 40, and 60 h with mixed liquor suspended solids (MLSS concentrations of 3 g/L and 6 g/L was considered for treating chemical industrial wastewater rich in complex organic compounds and total dissolved solids. Extending the HRT and increasing the MLSS concentration resulted in higher removal efficiency for chemical oxygen demand at 72%. Organic compounds in wastewater could be classified into easily-removed and refractory compounds during treatment. The easily-removed compounds consisted primarily of ethers, alcohols, and aldehydes, whereas the refractory compounds included mainly oxygen-containing heterocyclic and benzene-containing compounds. Results from energy-dispersive X-ray spectroscopy showed that several metal ions accumulated in activated sludge, particularly Fe(III. Fe accumulated mainly on the surface of sludge floc pellets and resulted in the compactness of activated sludge, which caused the values of mixed liquor volatile suspended solids /MLSS and sludge volume index to decrease.

  10. Fabrication and processing of next-generation oxygen carrier materials for chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nadarajah, Arunan [Univ. of Toledo, OH (United States)

    2017-04-26

    Among numerous methods of controlling the global warming effect, Chemical Looping Combustion is known to be the most viable option currently. A key factor to a successful chemical looping process is the presence of highly effective oxygen carriers that enable fuel combustion by going through oxidation and reduction in the presence of air and fuel respectively. In this study, CaMnO3-δ was used as the base material and doped on the A-site (Sr or La) and B-site (Fe, Ti, Zn and Al) by 10 mol % of dopants. Solid state reaction followed by mechanical extrusion (optimized paste formula) was used as the preparation method A series of novel doped perovskite-type oxygen carrier particles (CaxLa (Or Sa)1-x Mn1-yByO3-δ (B-site = Fe, Ti, Al, or Zr)) were synthesized by the proposed extrusion formula. The produced samples were characterized with XRD, SEM, BET and TGA techniques. According to the results obtained from TGA analysis, the oxygen capacity of the samples ranged between 1.2 for CLMZ and 1.75 for CSMF. Reactivity and oxygen uncoupling behaviors of the prepared samples were also evaluated using a fluidized bed chemical looping reactor using methane as the fuel at four different temperatures (800, 850, 900, 950 °C). All of the oxygen carriers showed oxygen uncoupling behavior and they were able to capture and release oxygen. Mass-based conversion of the perovskites was calculated and temperature increase proved to increase the mass-based conversion rate in all of the samples under study. Gas yield was calculated at 950 °C as well, and results showed that CLMZ, CM and CSMF showed 100% gas yields and CLMF and CSMZ showed approximately 85% yield in fluidized bed reactor, which is a high and acceptable quantity. Based on extended reactor tests the modified calcium manganese perovskite structures (CSMF) can be a good candidate for future pilot tests.

  11. Regenerable mixed copper-iron-inert support oxygen carriers for solid fuel chemical looping combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, Ranjani V.; Tian, Hanjing

    2016-12-20

    The disclosure provides an oxygen carrier for a chemical looping cycle, such as the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The oxygen carrier is comprised of at least 24 weight % (wt %) CuO, at least 10 wt % Fe2O3, and an inert support, and is typically a calcine. The oxygen carrier exhibits a CuO crystalline structure and an absence of iron oxide crystalline structures under XRD crystallography, and provides an improved and sustained combustion reactivity in the temperature range of 600.degree. C.-1000.degree. C. particularly for solid fuels such as carbon and coal.

  12. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Barik, Atanu; Indira Priyadarsini, K; Mohan, Hari; Bajaj, P N; Sapre, A V; Mittal, J P; Mukherjee, T [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)

    2006-10-15

    Singlet molecular oxygen ({sup 1}O{sub 2}) is an excited state of molecular oxygen, having antiparallel spin in the same {pi} antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  13. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    International Nuclear Information System (INIS)

    Barik, Atanu; Indira Priyadarsini, K.; Hari Mohan; Bajaj, P.N.; Sapre, A.V.; Mittal, J.P.; Mukherjee, T.

    2006-10-01

    Singlet molecular oxygen ( 1 O 2 ) is an excited state of molecular oxygen, having antiparallel spin in the same π antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  14. Chapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand

    Science.gov (United States)

    Delzer, Gregory C.; McKenzie, Stuart W.

    1999-01-01

    The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determinng how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. This report describes the field protocols used by U.S. Geological Survey (USGS) personnel to determine the five-day test for biochemical oxygen demand.

  15. Chemical homogeneity in the Orion Association: Oxygen abundances of B stars

    Directory of Open Access Journals (Sweden)

    Lanz T.

    2012-02-01

    Full Text Available We present non-LTE oxygen abundances for a sample of B stars in the Orion association. The abundance calculations included non-LTE line formation and used fully blanketed non-LTE model atmospheres. The stellar parameters were the same as adopted in the previous study by Cunha & Lambert (1994. We find that the young Orion stars in this sample of 10 stars are described by a single oxygen abundance with an average value of A(O = 8.78 and a small dispersion of ±0.05, dex which is of the order of the uncertainties in the analysis. This average oxygen abundance compares well with the average oxygen abundance obtained previously in Cunha & Lambert (1994: A(O = 8.72 ± 0.13 although this earlier study, based upon non-blanketed model atmospheres in LTE, displayed larger scatter. Small scatter of chemical abundances in Orion B stars had also been found in our previous studies for neon and argon; all based on the same effective temperature scale. The derived oxygen abundance distribution for the Orion association compares well with other results for the oxygen abundance in the solar neighborhood.

  16. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  17. Nanostructured palladium tailored via carbonyl chemical route towards oxygen reduction reaction

    International Nuclear Information System (INIS)

    Luo, Y.; Mora-Hernández, J.M.; Estudillo-Wong, L.A.; Arce-Estrada, E.M.; Alonso-Vante, N.

    2015-01-01

    Graphical Abstract: Mass-depending morphologies of nanostructured Palladium obtained via the carbonyl chemical route. Display Omitted -- Highlights: •Mass-depending morphology was observed in nanostructured palladium supported on carbon prepared by the carbonyl chemical route. •The Morphological effect of carbon supported Pd was investigated towards ORR. -- Abstract: Carbon supported palladium nanostructures were synthesized via the carbonyl chemical route. Compared with nanostructured platinum, prepared via carbonyl chemical route, Pd nanomaterials showed mass-loading morphology, whereas particle size and morphology of Pt nanostructures was constant. The oxygen reduction reaction (ORR) on nanostructured Pd, with different morphology in both acid and alkaline medium was investigated. A relationship, based on X-ray diffraction structural analysis pattern, transmission electron microscope, with the Pd morphological effect on ORR activity was identified

  18. The role of reactive oxygen species in the degradation of lignin derived dissolved organic matter

    Science.gov (United States)

    Waggoner, Derek C.; Wozniak, Andrew S.; Cory, Rose M.; Hatcher, Patrick G.

    2017-07-01

    Evidence suggests that reactive oxygen species (ROS) are important in transforming the chemical composition of the large pool of terrestrially-derived dissolved organic matter (DOM) exported from land to water annually. However, due to the challenges inherent in isolating the effects of individual ROS on DOM composition, the role of ROS in the photochemical alteration of DOM remains poorly characterized. In this work, terrestrial DOM was independently exposed to singlet oxygen (1O2), and superoxide (O2-rad under controlled laboratory conditions). Using ultra-high resolution mass spectrometry to track molecular level alterations of DOM by ROS, these findings suggest exposure to 1O2 (generated using Rose Bengal and visible light) removed formulas with an O/C > 0.3, and primarily resulted in DOM comprised of formulas with higher oxygen content, while O2-rad exposure (from KO2 in DMSO) removed formulas with O/C 1.5). Comparison of DOM altered by ROS in this study to riverine and coastal DOM showed that (20-80%) overlap in formulas, providing evidence for the role of ROS in shaping the composition of DOM exported from rivers to oceans.

  19. A pulsed oxygen - iodine chemical laser excited by a longitudinal electric discharge

    International Nuclear Information System (INIS)

    Vagin, Nikolai P; Yuryshev, Nikolai N

    2002-01-01

    The dependence of the energy parameters of an oxygen - iodine chemical laser with a bulk generation of iodine atoms in a longitudinal electric discharge on the length of the discharge gap is studied for various discharge energies and voltages and various working mixture compositions (at constant oxygen and iodine pressures). Analyses of the results suggests that temperature effects account for a twofold decrease in the specific energy yield for the lasing initiated by a longitudinal electric discharge compared to the photolytic initiation. (lasers)

  20. Chemical characterization of organic particulate matter from on-road traffic in São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    B. S. Oyama

    2016-11-01

    Full Text Available This study reports emission of organic particulate matter by light-duty vehicles (LDVs and heavy-duty vehicles (HDVs in the city of São Paulo, Brazil, where vehicles run on three different fuel types: gasoline with 25 % ethanol (called gasohol, E25, hydrated ethanol (E100, and diesel (with 5 % biodiesel. The experiments were performed at two tunnels: Jânio Quadros (TJQ, where 99 % of the vehicles are LDVs, and RodoAnel Mário Covas (TRA, where up to 30 % of the fleet are HDVs. Fine particulate matter (PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively. The samples were analyzed by thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS and by thermal–optical transmittance (TOT. Emission factors (EFs for organic aerosol (OA and organic carbon (OC were calculated for the HDV and the LDV fleet. We found that HDVs emitted more PM2.5 than LDVs, with OC EFs of 108 and 523 mg kg−1 burned fuel for LDVs and HDVs, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDVs and LDVs exhibited distinct features. Unique organic tracers for gasoline, biodiesel, and tire wear have been tentatively identified. nitrogen-containing compounds contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning or fast secondary production. Additionally, 70 and 65 % of the emitted mass (i.e. the OA originates from oxygenated compounds from LDVs and HDVs, respectively. This may be a consequence of the high oxygen content of the fuel. On the other hand, additional oxygenation may occur during fuel combustion. The high fractions of nitrogen- and oxygen-containing compounds show that chemical processing close to the engine / tailpipe region is an important factor influencing primary OA emission. The thermal-desorption analysis showed that HDVs emitted compounds with higher volatility, and with

  1. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    Science.gov (United States)

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  2. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system

    KAUST Repository

    Rydé n, Magnus; Lyngfelt, Anders; Mattisson, Tobias

    2011-01-01

    Particles of the perovskite material CaMn0.875Ti0.125O3 has been examined as oxygen carrier for chemical-looping with oxygen uncoupling, and for chemical-looping combustion of natural gas, by 70h of experiments in a circulating fluidized-bed reactor

  3. Comparison of Iron and Tungsten Based Oxygen Carriers for Hydrogen Production Using Chemical Looping Reforming

    Science.gov (United States)

    Khan, M. N.; Shamim, T.

    2017-08-01

    Hydrogen production by using a three reactor chemical looping reforming (TRCLR) technology is an innovative and attractive process. Fossil fuels such as methane are the feedstocks used. This process is similar to a conventional steam-methane reforming but occurs in three steps utilizing an oxygen carrier. As the oxygen carrier plays an important role, its selection should be done carefully. In this study, two oxygen carrier materials of base metal iron (Fe) and tungsten (W) are analysed using a thermodynamic model of a three reactor chemical looping reforming plant in Aspen plus. The results indicate that iron oxide has moderate oxygen carrying capacity and is cheaper since it is abundantly available. In terms of hydrogen production efficiency, tungsten oxide gives 4% better efficiency than iron oxide. While in terms of electrical power efficiency, iron oxide gives 4.6% better results than tungsten oxide. Overall, a TRCLR system with iron oxide is 2.6% more efficient and is cost effective than the TRCLR system with tungsten oxide.

  4. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    Science.gov (United States)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  5. Performance of calcium manganate as oxygen carrier in chemical looping combustion of biochar in a 10 kW pilot

    International Nuclear Information System (INIS)

    Schmitz, Matthias; Linderholm, Carl Johan

    2016-01-01

    Highlights: • A manganese-based perovskite material was used as oxygen carrier in chemical looping combustion. • The oxygen carrier’s performance was superior to materials previously tested in this reactor throughout the testing period. • Under stable conditions, oxygen demand was as low as 2.1% with a carbon capture efficiency of up to 98%. • No signs of agglomeration were detected. • Gaseous oxygen was released at all relevant fuel reactor temperatures. - Abstract: Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are carbon capture technologies which achieve gas separation by means of cycling oxidation and reduction of a solid oxygen carrier. In this study, the performance and CLOU properties of an oxygen carrier with perovskite structure, CaMn_0_._9Mg_0_._1O_3_−_δ_, were investigated in a 10 kW pilot. The fuel consisted of biochar with very low sulphur content. Around 37 h of operation with fuel were carried out in the 10 kW chemical looping combustor. Previous operational experience in this unit has been achieved using different natural minerals as oxygen carrier – mainly ilmenite and manganese ore. Parametric studies performed in this work included variation of fuel flow, solids circulation rate, temperature and fluidization gas in the fuel reactor. The oxygen carrier was exposed to a total 73 h of hot fluidization (T > 600 °C). No hard particle agglomerations were formed during the experiments. An oxygen demand as low as 2.1% could be reached under stable operating conditions, with a carbon capture efficiency of up to 98%. CLOU properties were observed at all fuel reactor temperatures, ensuring stable operation even without steam as gasification agent present in the fuel reactor. The results suggest that CaMn_0_._9Mg_0_._1O_3_−_δ is suitable for the use as oxygen carrier in chemical looping combustion of solid biochar and offers higher gas conversion than previously tested materials without CLOU

  6. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents.

    Science.gov (United States)

    Bobbitt, N Scott; Mendonca, Matthew L; Howarth, Ashlee J; Islamoglu, Timur; Hupp, Joseph T; Farha, Omar K; Snurr, Randall Q

    2017-06-06

    Owing to the vast diversity of linkers, nodes, and topologies, metal-organic frameworks can be tailored for specific tasks, such as chemical separations or catalysis. Accordingly, these materials have attracted significant interest for capture and/or detoxification of toxic industrial chemicals and chemical warfare agents. In this paper, we review recent experimental and computational work pertaining to the capture of several industrially-relevant toxic chemicals, including NH 3 , SO 2 , NO 2 , H 2 S, and some volatile organic compounds, with particular emphasis on the challenging issue of designing materials that selectively adsorb these chemicals in the presence of water. We also examine recent research on the capture and catalytic degradation of chemical warfare agents such as sarin and sulfur mustard using metal-organic frameworks.

  7. Airshed calculation of the sensitivity of pollutant formation to organic compound classes and oxygenates associated with alternative fuels

    International Nuclear Information System (INIS)

    McNair, L.; Russell, A.; Odman, M.T.

    1992-01-01

    This study uses a 3-D Eulerian photochemical model and an advanced chemical reaction mechanism to evaluate the sensitivity of pollutant levels to changes in emissions. In particular, the ozone forming potentials of classes of organic compounds are calculated, with particular emphasis on oxygenated organics associated with alternative fuels. Methanol, ethanol, MTBE, alkane and toluene emissions were found to add about one-fifth the ozone (on a carbon mass basis) as alkenes, aldehydes, non-toluene aromatics and ethene. On a per-carbon basis, formaldehyde added about ten times as much ozone as the least reactive organics tested. The results of the trajectory model-based study usually compare well with those found here. The pollution formation potentials can now be used in assessing the relative impact of various exhaust gas compositions

  8. Chemical and Oxygen Isotopic Composition of Roman and Late Antique Glass from Northern Greece

    Directory of Open Access Journals (Sweden)

    Alberta Silvestri

    2017-01-01

    Full Text Available The present paper emphasizes the importance of measuring the oxygen isotopic and chemical compositions of ancient glass, in order to constrain some features such as age, raw materials, and production technologies and to identify the “fingerprint” of local productions. In this context, thirty-nine Roman and late Antique glass samples and eight chert samples from northern Greece were selected and analysed for their oxygen isotopic and chemical compositions. Results show that the majority of glass samples are produced using natron as flux and have δ18O values of about 15.5‰, plus or minus a few tenths of one per mil, suggesting that raw materials probably come from Levantine area. Four samples are heavily enriched in 18O, and their chemical composition clearly shows that they were made with soda plant ash as flux. Isotopic and chemical data of Greek chert samples support the hypothesis of local production of the above samples. About half of the glass samples have chemical compositions, which allow their age to be constrained to the late Antique period. For the remaining glass, similarities with literature compositional groups are reported and discussed.

  9. Elimination kinetic model for organic chemicals in earthworms.

    NARCIS (Netherlands)

    Dimitrova, N.; Dimitrov, S.; Georgieva, D.; van Gestel, C.A.M.; Hankard, P.; Spurgeon, D.J.; Li, H.; Mekenyan, O.

    2010-01-01

    Mechanistic understanding of bioaccumulation in different organisms and environments should take into account the influence of organism and chemical depending factors on the uptake and elimination kinetics of chemicals. Lipophilicity, metabolism, sorption (bioavailability) and biodegradation of

  10. Sorption of organic chemicals at biogeochemical interfaces - calorimetric measurements

    Science.gov (United States)

    Krüger, J.; Lang, F.; Siemens, J.; Kaupenjohann, M.

    2009-04-01

    Biogeochemical interfaces in soil act as sorbents for organic chemicals, thereby controlling the degradation and mobility of these substances in terrestrial environments. Physicochemical properties of the organic chemicals and the sorbent determine sorptive interactions. We hypothesize that the sorption of hydrophobic organic chemicals ("R-determined" chemicals) is an entropy-driven partitioning process between the bulk aqueous phase and biogeochemical interface and that the attachment of more polar organic chemicals ("F-determined" chemicals) to mineral surfaces is due to electrostatic interactions and ligand exchange involving functional groups. In order to determine thermodynamic parameters of sorbate/sorbent interactions calorimetric titration experiments have been conducted at 20˚ C using a Nanocalorimeter (TAM III, Thermometric). Solutions of different organic substances ("R-determined" chemicals: phenanthrene, bisphenol A, "F-determined" chemicals: MCPA, bentazone) with concentrations of 100 mol l-1 were added to suspensions of pure minerals (goethite, muscovite, and kaolinite and to polygalacturonic acid (PGA) as model substance for biofilms in soil. Specific surface, porosity, N and C content, particle size and point of zero charge of the mineral were analyzed to characterize the sorbents. The obtained heat quantities for the initial injection of the organic chemicals to the goethite were 55 and 71 J for bisphenol A and phenanthrene ("R-determined representatives") and 92 and 105 J for MCPA and bentazone ("F-determined" representatives). Further experiments with muscovite, kaolinite and PGA are in progress to determine G and H of the adsorption process.

  11. Organic chemical degradation by remote study of the redox conditions

    Science.gov (United States)

    Fernandez, P. M.; Revil, A.; Binley, A. M.; Bloem, E.; French, H. K.

    2014-12-01

    Monitoring the natural (and enhanced) degradation of organic contaminants is essential for managing groundwater quality in many parts of the world. Contaminated sites often have limited access, hence non-intrusive methods for studying redox processes, which drive the degradation of organic compounds, are required. One example is the degradation of de-icing chemicals (glycols and organic salts) released to the soil near airport runways during winter. This issue has been broadly studied at Oslo airport, Gardermoen, Norway using intrusive and non-intrusive methods. Here, we report on laboratory experiments that aim to study the potential of using a self-potential, DCresistivity, and time-domain induced polarization for geochemical characterization of the degradation of Propylene Glycol (PG). PG is completely miscible in water, does not adsorb to soil particles and does not contribute to the electrical conductivity of the soil water. When the contaminant is in the unsaturated zone near the water table, the oxygen is quickly consumed and the gas exchange with the surface is insufficient to ensure aerobic degradation, which is faster than anaerobic degradation. Since biodegradation of PG is highly oxygen demanding, anaerobic pockets can exist causing iron and manganese reduction. It is hypothesised that nitrate would boost the degradation rate under such conditions. In our experiment, we study PG degradation in a sand tank. We provide the system with an electron highway to bridge zones with different redox potential. This geo-battery system is characterized by self-potential, resistivity and induced polarization anomalies. An example of preliminary results with self-potential at two different times of the experiment can be seen in the illustration. These will be supplemented with more direct information on the redox chemistry: in-situ water sampling, pH, redox potential and electrical conductivity measurements. In parallel, a series of batch experiments have been

  12. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms

    Science.gov (United States)

    Stripp, Sven T.; Goldet, Gabrielle; Brandmayr, Caterina; Sanganas, Oliver; Vincent, Kylie A.; Haumann, Michael; Armstrong, Fraser A.; Happe, Thomas

    2009-01-01

    Green algae such as Chlamydomonas reinhardtii synthesize an [FeFe] hydrogenase that is highly active in hydrogen evolution. However, the extreme sensitivity of [FeFe] hydrogenases to oxygen presents a major challenge for exploiting these organisms to achieve sustainable photosynthetic hydrogen production. In this study, the mechanism of oxygen inactivation of the [FeFe] hydrogenase CrHydA1 from C. reinhardtii has been investigated. X-ray absorption spectroscopy shows that reaction with oxygen results in destruction of the [4Fe-4S] domain of the active site H-cluster while leaving the di-iron domain (2FeH) essentially intact. By protein film electrochemistry we were able to determine the order of events leading up to this destruction. Carbon monoxide, a competitive inhibitor of CrHydA1 which binds to an Fe atom of the 2FeH domain and is otherwise not known to attack FeS clusters in proteins, reacts nearly two orders of magnitude faster than oxygen and protects the enzyme against oxygen damage. These results therefore show that destruction of the [4Fe-4S] cluster is initiated by binding and reduction of oxygen at the di-iron domain—a key step that is blocked by carbon monoxide. The relatively slow attack by oxygen compared to carbon monoxide suggests that a very high level of discrimination can be achieved by subtle factors such as electronic effects (specific orbital overlap requirements) and steric constraints at the active site. PMID:19805068

  13. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    OpenAIRE

    Mungall, Emma L.; Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A.; Papakyriakou, Tim; Willis, Megan D.; Liggio, John

    2017-01-01

    A biogeochemical connection between the atmosphere and the ocean is demonstrated whereby a marine source of oxygenated volatile organic compounds is identified. Compounds of this type are involved in the formation of secondary organic aerosol, which remains one of the most poorly understood components of Earth’s climate system due in part to the diverse sources of its volatile organic compound precursors. This is especially the case for marine environments, where there are more oxygenated vol...

  14. Atomic resolution chemical bond analysis of oxygen in La2CuO4

    Science.gov (United States)

    Haruta, M.; Nagai, T.; Lugg, N. R.; Neish, M. J.; Nagao, M.; Kurashima, K.; Allen, L. J.; Mizoguchi, T.; Kimoto, K.

    2013-08-01

    The distorted CuO6 octahedron in La2CuO4 was studied using aberration-corrected scanning transmission electron microscopy at atomic resolution. The near-edge structure in the oxygen K-edge electron energy-loss spectrum was recorded as a function of the position of the electron probe. After background subtraction, the measured spectrum image was processed using a recently developed inversion process to remove the mixing of signals on the atomic columns due to elastic and thermal scattering. The spectra were then compared with first-principles band structure calculations based on the local-density approximation plus on-site Coulomb repulsion (LDA + U) approach. In this article, we describe in detail not only anisotropic chemical bonding of the oxygen 2p state with the Cu 3d state but also with the Cu 4p and La 5d/4f states. Furthermore, it was found that buckling of the CuO2 plane was also detectable at the atomic resolution oxygen K-edge. Lastly, it was found that the effects of core-hole in the O K-edge were strongly dependent on the nature of the local chemical bonding, in particular, whether it is ionic or covalent.

  15. Pulsed chemical oxygen - iodine laser initiated by a transverse electric discharge

    International Nuclear Information System (INIS)

    Vagin, Nikolai P; Yuryshev, Nikolai N

    2001-01-01

    A pulsed chemical oxygen - iodine laser with a volume production of atomic iodine in a pulsed transverse electric discharge is studied. An increase in the partial oxygen pressure was shown to increase the pulse energy with retention of the pulse duration. At the same time, an increase in the iodide pressure and the discharge energy shortens the pulse duration. Pulses with a duration of 6.5 μs were obtained, which corresponds to a concentration of iodine atoms of 1.8 x 10 15 cm -3 . This concentration is close to the maximum concentration attained in studies of both cw and pulsed oxygen-iodine lasers. A specific energy output of 0.9 J litre -1 and a specific power of 75 kW litre -1 were obtained. The ways of increasing these parameters were indicated. It was found that SF 6 is an efficient buffer gas favouring improvements in the energy pulse parameters. (lasers)

  16. Oxygen-vacancy defects on BaTiO3 (001) surface: a quantum chemical study

    International Nuclear Information System (INIS)

    Duque, Carlos; Stashans, Arvids

    2003-01-01

    A quantum-chemical study of technologically important BaTiO 3 crystal and oxygen-vacancy defects on its (001) surface is reported in the present work. The computations are made using a quantum-chemical method developed for periodic systems (crystals), which is based on the Hartree-Fock theory. The atomic rearrangement due to the surface creation is obtained for a pure BaTiO 3 by means of the periodic large unit cell (LUC) model and using an automated geometry optimisation procedure. The same technique is employed to study the electronic and structural properties of the material due to the presence of an O vacancy and F centre (two electrons trapped in an oxygen vacancy). The computations are carried out for both cubic and tetragonal lattices

  17. Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting

    DEFF Research Database (Denmark)

    Wang, Xiaomei; Zhang, Shuichang; Wang, Huajian

    2017-01-01

    by oxygenated bottom waters. The transition to unit 3 reflects an increase in primary productivity, and the development of a more biologically active OMZ, that supported anoxygenic phototrophic bacteria. Still, in this unit, the bottom waters remained oxygenated. The overlying unit 2 represents the transition...... for the iron. However, the low organic carbon contents, low hydrogen index (HI) values, and the oxidized nature of the reactive iron pool indicate deposition in oxygenated bottom waters. We interpret unit 4 to represent a low-productivity ferruginous oxygen-minimum zone (OMZ) environment, underlain......The Xiamaling Formation is an exceptionally well-preserved sedimentary succession deposited on a marine passive margin about 1400 million years ago. We used a multi-proxy approach, including iron speciation, trace metal dynamics, and organic geochemistry, to explore the evolution of ocean chemistry...

  18. Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels

    Science.gov (United States)

    Lenfant, Claude; Torrance, John; English, Eugenia; Finch, Clement A.; Reynafarje, Cesar; Ramos, Jose; Faura, Jose

    1968-01-01

    The relationship between oxygen dissociation and 2,3-diphosphoglycerate (2,3-DPG) in the red cell has been studied in subjects moving from low to high altitude and vice versa. Within 24 hr following the change in altitude there was a change in hemoglobin affinity for oxygen; this modification therefore represents an important rapid adaptive mechanism to anoxia. A parallel change occurred in the organic phosphate content of the red cell. While this study does not provide direct evidence of a cause-effect relationship, the data strongly suggest that with anoxia, the observed rise in organic phosphate content of the red cell is responsible for increased availability of oxygen to tissues. Images PMID:5725278

  19. The evaluation of secondary system oxygen-scavenging chemicals using a water-circulating rig

    Energy Technology Data Exchange (ETDEWEB)

    Collins, M.W. [Nuclear Dept., HMS Sultan (United Kingdom)

    2002-07-01

    To assess the efficiency, mode of action and possible by-products of chemical dosing agents, e.g. oxygen scavengers, a circulating water rig was constructed. The rig uses a demineralized water supply as a source of make-up water to fill a recirculating loop of approx. 10 litres volume. The rig pipework is made of polythene with standard off-the shelf pipe fittings and connectors. The following parameters can be measured within the rig: pH and conductivity measured by in-line monitor, dissolved oxygen level, temperature. The system has already been used for some preliminary testing. The following oxygen scavengers have been used for tests: ascorbic acid (vitamin C), N,N-diethyl-hydroxylamine (DEHA), Hydroquinone, hydrazine hydrate and anhydrous sodium sulfite. (authors)

  20. The evaluation of secondary system oxygen-scavenging chemicals using a water-circulating rig

    International Nuclear Information System (INIS)

    Collins, M.W.

    2002-01-01

    To assess the efficiency, mode of action and possible by-products of chemical dosing agents, e.g. oxygen scavengers, a circulating water rig was constructed. The rig uses a demineralized water supply as a source of make-up water to fill a recirculating loop of approx. 10 litres volume. The rig pipework is made of polythene with standard off-the shelf pipe fittings and connectors. The following parameters can be measured within the rig: pH and conductivity measured by in-line monitor, dissolved oxygen level, temperature. The system has already been used for some preliminary testing. The following oxygen scavengers have been used for tests: ascorbic acid (vitamin C), N,N-diethyl-hydroxylamine (DEHA), Hydroquinone, hydrazine hydrate and anhydrous sodium sulfite. (authors)

  1. Effect of vapor-phase oxygen on chemical vapor deposition growth of graphene

    Science.gov (United States)

    Terasawa, Tomo-o.; Saiki, Koichiro

    2015-03-01

    To obtain a large-area single-crystal graphene, chemical vapor deposition (CVD) growth on Cu is considered the most promising. Recently, the surface oxygen on Cu has been found to suppress the nucleation of graphene. However, the effect of oxygen in the vapor phase was not elucidated sufficiently. Here, we investigate the effect of O2 partial pressure (PO2) on the CVD growth of graphene using radiation-mode optical microscopy. The nucleation density of graphene decreases monotonically with PO2, while its growth rate reaches a maximum at a certain pressure. Our results indicate that PO2 is an important parameter to optimize in the CVD growth of graphene.

  2. Treatment of toxic and hazardous organic wastes by wet oxidation process with oxygenated water at low temperature

    International Nuclear Information System (INIS)

    Piccinno, T.; Salluzzo, A.; Nardi, L.; Gili, M.; Luce, A.; Troiani, F.; Cornacchia, G.

    1989-11-01

    The wet oxidation process using air or molecular oxygen is a well-known process from long time. It is suitable to oxidize several types of waste refractory to the usual biological, thermal and chemical treatments. The drastic operating conditions (high pressures and temperatures) prevented its industrial development. In the last years a new interest was assigned to the process for the treatment of nuclear wastes (organic resins and exhaust organic wastes); the treatment is carried out at widely reduced operating conditions (atmospheric pressure and boiling temperature) by means of metallic catalysts and hydrogen peroxide. With some limits, the wet oxidation with hydrogen peroxide at low temperature can be applied to conventional waste waters containing toxic organic compounds. In the present report are summarized the activities developed at ENEA Fuel Cycle Department by the task force 'Deox' constituted by laboratory and plant specialists in order to verify the application of the wet oxidation process to the treatment of the toxic wastes. (author)

  3. Generation of atomic iodine via fluorine for chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Špalek, Otomar; Čenský, Miroslav; Picková, Irena; Kodymová, Jarmila; Jakubec, Ivo

    2007-01-01

    Roč. 334, - (2007), s. 167-174 ISSN 0301-0104 R&D Projects: GA ČR GA202/05/0359 Grant - others:USAF European Office for Research and Development(XE) FA 8655-05-M-4027 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40320502 Keywords : atomic iodine * atomic fluorine * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.805, year: 2007

  4. Predicting degradability of organic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Finizio, A; Vighi, M [Milan Univ. (Italy). Ist. di Entomologia Agraria

    1992-05-01

    Degradability, particularly biodegradability, is one of the most important factors governing the persistence of pollutants in the environment and consequently influencing their behavior and toxicity in aquatic and terrestrial ecosystems. The need for reliable persistence data in order to assess the environmental fate and hazard of chemicals by means of predictive approaches, is evident. Biodegradability tests are requested by the EEC directive on new chemicals. Neverthless, degradation tests are not easy to carry out and data on existing chemicals are very scarce. Therefore, assessing the fate of chemicals in the environment from the simple study of their structure would be a useful tool. Rates of degradation are a function of the rates of a series of processes. Correlation between degradation rates and structural parameters are will be facilitated if one of the processes is rate determining. This review is a survey of studies dealing with relationships between structure and biodegradation of organic chemicals, to identify the value and limitations of this approach.

  5. Real-Time Molecular Monitoring of Chemical Environment in ObligateAnaerobes during Oxygen Adaptive Response

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David. A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-02-25

    Determining the transient chemical properties of the intracellular environment canelucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms which enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier Transform Infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bonding in their cellular water. We observed a sequence of wellorchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.

  6. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    Science.gov (United States)

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  7. Electroenzymatic Reactions With Oxygen on Laccase-Modified Electrodes in Anhydrous (Pure) Organic Solvent

    DEFF Research Database (Denmark)

    Yarapolov, A.; Shleev, S.; Zaitseva, E.

    2007-01-01

    in two different ways: (i) by studying the electroreduction of oxygen in anhydrous DMSO via a direct electron transfer mechanism without proton donors and (ii) by doing the same experiments in the presence of laccase substrates, which display in pure organic solvents both the properties of electron......The electroenzymatic reactions of Trametes hirsuta laccase in the pure organic solvent dimethyl sulfoxide (DMSO) have been investigated within the framework for potential use as a catalytic reaction scheme for oxygen reduction. The bioelectrochemical characteristics of laccase were investigated...... donors as well as the properties of weak acids. The results obtained with laccase in anhydrous DMSO were compared with those obtained previously in aqueous buffer. It was shown that in the absence of proton donors under oxygenated conditions, formation of superoxide anion radicals is prevented at bare...

  8. Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture solid oxygen- and CO2-carriers

    CERN Document Server

    Fennell, Paul

    2015-01-01

    Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical loopingProvi

  9. Manual or automated measuring of antipsychotics' chemical oxygen demand.

    Science.gov (United States)

    Pereira, Sarah A P; Costa, Susana P F; Cunha, Edite; Passos, Marieta L C; Araújo, André R S T; Saraiva, M Lúcia M F S

    2018-05-15

    Antipsychotic (AP) drugs are becoming accumulated in terrestrial and aqueous resources due to their actual consumption. Thus, the search of methods for assessing the contamination load of these drugs is mandatory. The COD is a key parameter used for monitoring water quality upon the assessment of the effect of polluting agents on the oxygen level. Thus, the present work aims to assess the chemical oxygen demand (COD) levels of several typical and atypical antipsychotic drugs in order to obtain structure-activity relationships. It was implemented the titrimetric method with potassium dichromate as oxidant and a digestion step of 2h, followed by the measurement of remained unreduced dichromate by titration. After that, an automated sequential injection analysis (SIA) method was, also, used aiming to overcome some drawbacks of the titrimetric method. The results obtained showed a relationship between the chemical structures of antipsychotic drugs and their COD values, where the presence of aromatic rings and oxidable groups give higher COD values. It was obtained a good compliance between the results of the reference batch procedure and the SIA system, and the APs were clustered in two groups, with the values ratio between the methodologies, of 2 or 4, in the case of lower or higher COD values, respectively. The SIA methodology is capable of operating as a screening method, in any stage of a synthetic process, being also more environmentally friendly, and cost-effective. Besides, the studies presented open promising perspectives for the improvement of the effectiveness of pharmaceutical removal from the waste effluents, by assessing COD values. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Modeling the role of microplastics in Bioaccumulation of organic chemicals to marine aquatic organisms. Critical Review

    NARCIS (Netherlands)

    Koelmans, A.A.

    2015-01-01

    It has been shown that ingestion of microplastics may increase bioaccumulation of organic chemicals by aquatic organisms. This paper critically reviews the literature on the effects of plastic ingestion on the bioaccumulation of organic chemicals, emphasizing quantitative approaches and mechanistic

  11. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  12. Chemical evolution of organic aerosol in Los Angeles during the CalNex 2010 study

    Directory of Open Access Journals (Sweden)

    R. Holzinger

    2013-10-01

    Full Text Available During the CalNex study (15 May to 16 June 2010 a large suite of instruments was operated at the Los Angeles area ground supersite to characterize the sources and atmospheric processing of atmospheric pollution. The thermal-desorption proton-transfer-reaction mass-spectrometer (TD-PTR-MS was deployed to an urban area for the first time and detected 691 organic ions in aerosol samples, the mean total concentration of which was estimated as 3.3 μg m−3. Based on comparison to total organic aerosol (OA measurements, we estimate that approximately 50% of the OA mass at this site was directly measured by the TD-PTR-MS. Based on correlations with aerosol mass spectrometer (AMS OA components, the ions were grouped to represent hydrocarbon-like OA (HOA, local OA (LOA, semi-volatile oxygenated OA (SV-OOA, and low volatility oxygenated OA (LV-OOA. Mass spectra and thermograms of the ion groups are mostly consistent with the assumed sources and/or photochemical origin of the OA components. The mass spectra of ions representing the primary components HOA and LOA included the highest m/z, consistent with their higher resistance to thermal decomposition, and they were volatilized at lower temperatures (~ 150 °C. Photochemical ageing weakens C-C bond strengths (also resulting in chemical fragmentation, and produces species of lower volatility (through the addition of functional groups. Accordingly the mass spectra of ions representing the oxidized OA components (SV-OOA, and LV-OOA lack the highest masses and they are volatilized at higher temperatures (250–300 °C. Chemical parameters like mean carbon number (nC, mean carbon oxidation state (OSC, and the atomic ratios O / C and H / C of the ion groups are consistent with the expected sources and photochemical processing of the aerosol components. Our data suggest that chemical fragmentation gains importance over functionalization as photochemical age of OA increases. Surprisingly, the photochemical age of

  13. Miniaturized and green method for determination of chemical oxygen demand using UV-induced oxidation with hydrogen peroxide and single drop microextraction

    International Nuclear Information System (INIS)

    Akhoundzadeh, Jeyran; Chamsaz, Mahmoud; Costas, Marta; Lavilla, Isela; Bendicho, Carlos

    2013-01-01

    We report on a green method for the determination of low levels of chemical oxygen demand. It is based on the combination of (a) UV-induced oxidation with hydrogen peroxide, (b) headspace single-drop microextraction with in-drop precipitation, and (c) micro-turbidimetry. The generation of CO 2 after photolytic oxidation followed by its sequestration onto a microdrop of barium hydroxide gives rise to a precipitate of barium carbonate which is quantified by turbidimetry. UV-light induced oxidation was studied in the absence and presence of H 2 O 2 , ultrasound, and ferrous ion. Determinations of chemical oxygen demand were performed using potassium hydrogen phthalate as a model compound. The optimized method gives a calibration curve that is linear between 3.4 and 20 mg L −1 oxygen. The detection limit was 1.2 mg L −1 of oxygen, and the repeatability (as relative standard deviation) was around 5 %. The method was successfully applied to the determination of chemical oxygen demand in different natural waters and a synthetic wastewater. (author)

  14. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon

    Science.gov (United States)

    Daines, Stuart J.; Mills, Benjamin J. W.; Lenton, Timothy M.

    2017-02-01

    It is unclear why atmospheric oxygen remained trapped at low levels for more than 1.5 billion years following the Paleoproterozoic Great Oxidation Event. Here, we use models for erosion, weathering and biogeochemical cycling to show that this can be explained by the tectonic recycling of previously accumulated sedimentary organic carbon, combined with the oxygen sensitivity of oxidative weathering. Our results indicate a strong negative feedback regime when atmospheric oxygen concentration is of order pO2~0.1 PAL (present atmospheric level), but that stability is lost at pO2counterbalancing changes in the weathering of isotopically light organic carbon. This can explain the lack of secular trend in the Precambrian δ13C record, and reopens the possibility that increased biological productivity and resultant organic carbon burial drove the Great Oxidation Event.

  15. Mechanism of dark decomposition of iodine donor in the active medium of a pulsed chemical oxygen - iodine laser

    International Nuclear Information System (INIS)

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, A I; Sorokin, Vadim N

    2002-01-01

    A scheme is proposed that describes the dark decomposition of iodide - the donor of iodine - and the relaxation of singlet oxygen in the chlorine-containing active medium of a pulsed chemical oxygen - iodine laser (COIL). For typical compositions of the active media of pulsed COILs utilising CH 3 I molecules as iodine donors, a branching chain reaction of the CH 3 I decomposition accompanied by the efficient dissipation of singlet oxygen is shown to develop even at the stage of filling the active volume. In the active media with CF 3 I as the donor, a similar chain reaction is retarded due to the decay of CF 3 radicals upon recombination with oxygen. The validity of this mechanism is confirmed by a rather good agreement between the results of calculations and the available experimental data. The chain decomposition of alkyliodides accompanied by an avalanche production of iodine atoms represents a new way of efficient chemical production of iodine for a COIL. (active media)

  16. Chemical Oxygen Demand abatement in sewage using Micro-Aeration Enhanced Ecological Floating Bed

    Science.gov (United States)

    Shi, Hongle; Zhou, Gaofeng; Liu, Yiqing; Tan, Jiancong; Fu, Yongsheng

    2018-02-01

    The traditional ecological floating bed combined with micro-aeration system and artificial medium was developed for the removal of contaminants and remediation of surface water. This micro-aeration enhanced ecological floating bed (MAEEFB) consisted of aeration unit, microbial processing unit and aquatic plant unit. Batch experiments were conducted in different operating conditions on the removal of chemical oxygen demand (COD) in the sewage using MAEEFB. The removal rate of COD by MAEEFB, enhanced ecological floating bed (EEFB) and traditional ecological floating bed (TEFB) in the same reaction conditions was 59.2%, 56.9% and 30.6%, respectively, indicating that the combination of micro-aeration system and artificial medium could enhance the removal efficiency of COD in TEFB. In MAEEFB, the aeration intensity should be designed reasonablely considering both treatment efficiency and operation cost. Only increasing the specific surface area of the packing cannot effectively improve the purification efficiency of water. Factors like packing material, ability of intercepting organics and complicated extent of microorganisms attaching on the packing should also be considered.

  17. Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set

    Directory of Open Access Journals (Sweden)

    B. N. Murphy

    2011-08-01

    Full Text Available A module predicting the oxidation state of organic aerosol (OA has been developed using the two-dimensional volatility basis set (2D-VBS framework. This model is an extension of the 1D-VBS framework and tracks saturation concentration and oxygen content of organic species during their atmospheric lifetime. The host model, a one-dimensional Lagrangian transport model, is used to simulate air parcels arriving at Finokalia, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-08. Extensive observations were collected during this campaign using an aerosol mass spectrometer (AMS and a thermodenuder to determine the chemical composition and volatility, respectively, of the ambient OA. Although there are several uncertain model parameters, the consistently high oxygen content of OA measured during FAME-08 (O:C = 0.8 can help constrain these parameters and elucidate OA formation and aging processes that are necessary for achieving the high degree of oxygenation observed. The base-case model reproduces observed OA mass concentrations (measured mean = 3.1 μg m−3, predicted mean = 3.3 μg m−3 and O:C (predicted O:C = 0.78 accurately. A suite of sensitivity studies explore uncertainties due to (1 the anthropogenic secondary OA (SOA aging rate constant, (2 assumed enthalpies of vaporization, (3 the volatility change and number of oxygen atoms added for each generation of aging, (4 heterogeneous chemistry, (5 the oxidation state of the first generation of compounds formed from SOA precursor oxidation, and (6 biogenic SOA aging. Perturbations in most of these parameters do impact the ability of the model to predict O:C well throughout the simulation period. By comparing measurements of the O:C from FAME-08, several sensitivity cases including a high oxygenation case, a low oxygenation case, and biogenic SOA aging case are found to unreasonably depict OA aging, keeping in mind that this study does not consider

  18. Role of N2 molecules in pulse discharge production of I atoms for a pulsed chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2011-01-01

    A pulsed electric discharge is the most effective means to turn chemical oxygen-iodine laser (COIL) operation into the pulse mode by fast production of iodine atoms. Experimental studies and numerical simulations are performed on a pulsed COIL initiated by an electric discharge in a mixture CF 3 I : N 2 : O 2 ( 3 X) : O 2 (a 1 Δ g ) flowing out of a chemical singlet oxygen generator. A transverse pulsed discharge is realized at various iodide pressures. The model comprises a system of kinetic equations for neutral and charged species, the electric circuit equation, the gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are repeatedly re-calculated by the electron Boltzmann equation solver when the plasma parameters are changed. The processes accounted for in the Boltzmann equation include direct and stepwise excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions and second-kind collisions. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. A conclusion is drawn about satisfactory agreement between the theory and the experiment.

  19. Enhanced chemical sensing organic thin-film transistors

    Science.gov (United States)

    Tanese, M. C.; Torsi, L.; Farinola, G. M.; Valli, L.; Hassan Omar, O.; Giancane, G.; Ieva, E.; Babudri, F.; Palmisano, F.; Naso, F.; Zambonin, P. G.

    2007-09-01

    Organic thin film transistor (OTFT) sensors are capable of fast, sensitive and reliable detection of a variety of analytes. They have been successfully tested towards many chemical and biological "odor" molecules showing high selectivity, and displaying the additional advantage of being compatible with plastic technologies. Their versatility is based on the possibility to control the device properties, from molecular design up to device architecture. Here phenylene-thiophene based organic semiconductors functionalized with ad hoc chosen side groups are used as active layers in sensing OTFTs. These materials, indeed, combine the detection capability of organic molecules (particularly in the case of bio-substituted systems) with the electronic properties of the conjugated backbone. A new OTFT structure including Langmuir-Schäfer layer by layer organic thin films is here proposed to perform chemical detection of organic vapors, including vapor phase chiral molecules such as citronellol vapors, with a detection limit in the ppm range. Thermally evaporated α6T based OTFT sensors are used as well to be employed as standard system in order to compare sensors performances.

  20. Removal of trace organic chemical contaminants by a membrane bioreactor.

    Science.gov (United States)

    Trinh, T; van den Akker, B; Stuetz, R M; Coleman, H M; Le-Clech, P; Khan, S J

    2012-01-01

    Emerging wastewater treatment processes such as membrane bioreactors (MBRs) have attracted a significant amount of interest internationally due to their ability to produce high quality effluent suitable for water recycling. It is therefore important that their efficiency in removing hazardous trace organic contaminants be assessed. Accordingly, this study investigated the removal of trace organic chemical contaminants through a full-scale, package MBR in New South Wales, Australia. This study was unique in the context of MBR research because it characterised the removal of 48 trace organic chemical contaminants, which included steroidal hormones, xenoestrogens, pesticides, caffeine, pharmaceuticals and personal care products (PPCPs). Results showed that the removal of most trace organic chemical contaminants through the MBR was high (above 90%). However, amitriptyline, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, omeprazole, sulphamethoxazole and trimethoprim were only partially removed through the MBR with the removal efficiencies of 24-68%. These are potential indicators for assessing MBR performance as these chemicals are usually sensitive to changes in the treatment systems. The trace organic chemical contaminants detected in the MBR permeate were 1 to 6 orders of magnitude lower than guideline values reported in the Australian Guidelines for Water Recycling. The outcomes of this study enhanced our understanding of the levels and removal of trace organic contaminants by MBRs.

  1. Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago

    DEFF Research Database (Denmark)

    El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald Eugene

    2010-01-01

    of colonial organisms. The structures are up to 12 cm in size and have characteristic shapes, with a simple but distinct ground pattern of flexible sheets and, usually, a permeating radial fabric. Geochemical analyses suggest that the sediments were deposited under an oxygenated water column. Carbon...... and sulphur isotopic data indicate that the structures were distinct biogenic objects, fossilized by pyritization early in the formation of the rock. The growth patterns deduced from the fossil morphologies suggest that the organisms showed cell-to-cell signalling and coordinated responses, as is commonly...... associated with multicellular organization(9). The Gabon fossils, occurring after the 2.45-2.32-Gyr increase in atmospheric oxygen concentration(10), may be seen as ancient representatives of multicellular life, which expanded so rapidly 1.5 Gyr later, in the Cambrian explosion....

  2. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.

    Science.gov (United States)

    Djikaev, Yuri S; Ruckenstein, Eli

    2018-05-03

    We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.

  3. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  4. Establishment and intra-/inter-laboratory validation of a standard protocol of reactive oxygen species assay for chemical photosafety evaluation.

    Science.gov (United States)

    Onoue, Satomi; Hosoi, Kazuhiro; Wakuri, Shinobu; Iwase, Yumiko; Yamamoto, Toshinobu; Matsuoka, Naoko; Nakamura, Kazuichi; Toda, Tsuguto; Takagi, Hironori; Osaki, Naoto; Matsumoto, Yasuhiro; Kawakami, Satoru; Seto, Yoshiki; Kato, Masashi; Yamada, Shizuo; Ohno, Yasuo; Kojima, Hajime

    2013-11-01

    A reactive oxygen species (ROS) assay was previously developed for photosafety evaluation of pharmaceuticals, and the present multi-center study aimed to establish and validate a standard protocol for ROS assay. In three participating laboratories, two standards and 42 coded chemicals, including 23 phototoxins and 19 nonphototoxic drugs/chemicals, were assessed by the ROS assay according to the standardized protocol. Most phototoxins tended to generate singlet oxygen and/or superoxide under UV-vis exposure, but nonphototoxic chemicals were less photoreactive. In the ROS assay on quinine (200 µm), a typical phototoxic drug, the intra- and inter-day precisions (coefficient of variation; CV) were found to be 1.5-7.4% and 1.7-9.3%, respectively. The inter-laboratory CV for quinine averaged 15.4% for singlet oxygen and 17.0% for superoxide. The ROS assay on 42 coded chemicals (200 µm) provided no false negative predictions upon previously defined criteria as compared with the in vitro/in vivo phototoxicity, although several false positives appeared. Outcomes from the validation study were indicative of satisfactory transferability, intra- and inter-laboratory variability, and predictive capacity of the ROS assay. Copyright © 2012 John Wiley & Sons, Ltd.

  5. LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES

    Science.gov (United States)

    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...

  6. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms.

    Science.gov (United States)

    Bradbury, Louis M T; Shumskaya, Maria; Tzfadia, Oren; Wu, Shi-Biao; Kennelly, Edward J; Wurtzel, Eleanore T

    2012-07-03

    In photosynthetic organisms, carotenoids serve essential roles in photosynthesis and photoprotection. A previous report designated CruP as a secondary lycopene cyclase involved in carotenoid biosynthesis [Maresca J, et al. (2007) Proc Natl Acad Sci USA 104:11784-11789]. However, we found that cruP KO or cruP overexpression plants do not exhibit correspondingly reduced or increased production of cyclized carotenoids, which would be expected if CruP was a lycopene cyclase. Instead, we show that CruP aids in preventing accumulation of reactive oxygen species (ROS), thereby reducing accumulation of β-carotene-5,6-epoxide, a ROS-catalyzed autoxidation product, and inhibiting accumulation of anthocyanins, which are known chemical indicators of ROS. Plants with a nonfunctional cruP accumulate substantially higher levels of ROS and β-carotene-5,6-epoxide in green tissues. Plants overexpressing cruP show reduced levels of ROS, β-carotene-5,6-epoxide, and anthocyanins. The observed up-regulation of cruP transcripts under photoinhibitory and lipid peroxidation-inducing conditions, such as high light stress, cold stress, anoxia, and low levels of CO(2), fits with a role for CruP in mitigating the effects of ROS. Phylogenetic distribution of CruP in prokaryotes showed that the gene is only present in cyanobacteria that live in habitats characterized by large variation in temperature and inorganic carbon availability. Therefore, CruP represents a unique target for developing resilient plants and algae needed to supply food and biofuels in the face of global climate change.

  7. Classifying organic materials by oxygen-to-carbon elemental ratio to predict the activation regime of Cloud Condensation Nuclei (CCN

    Directory of Open Access Journals (Sweden)

    M. Kuwata

    2013-05-01

    Full Text Available The governing highly soluble, slightly soluble, or insoluble activation regime of organic compounds as cloud condensation nuclei (CCN was examined as a function of oxygen-to-carbon elemental ratio (O : C. New data were collected for adipic, pimelic, suberic, azelaic, and pinonic acids. Secondary organic materials (SOMs produced by α-pinene ozonolysis and isoprene photo-oxidation were also included in the analysis. The saturation concentrations C of the organic compounds in aqueous solutions served as the key parameter for delineating regimes of CCN activation, and the values of C were tightly correlated to the O : C ratios. The highly soluble, slightly soluble, and insoluble regimes of CCN activation were found to correspond to ranges of [O : C] > 0.6, 0.2 < [O : C] < 0.6, and [O : C] < 0.2, respectively. These classifications were evaluated against CCN activation data of isoprene-derived SOM (O : C = 0.69–0.72 and α-pinene-derived SOM (O : C = 0.38–0.48. Isoprene-derived SOM had highly soluble activation behavior, consistent with its high O : C ratio. For α-pinene-derived SOM, although CCN activation can be modeled as a highly soluble mechanism, this behavior was not predicted by the O : C ratio, for which a slightly soluble mechanism was anticipated. Complexity in chemical composition, resulting in continuous water uptake and the absence of a deliquescence transition that can thermodynamically limit CCN activation, might explain the difference in the behavior of α-pinene-derived SOM compared to that of pure organic compounds. The present results suggest that atmospheric particles dominated by hydrocarbon-like organic components do not activate (i.e., insoluble regime whereas those dominated by oxygenated organic components activate (i.e., highly soluble regime for typical atmospheric cloud life cycles.

  8. Encoding of Fundamental Chemical Entities of Organic Reactivity Interest using chemical ontology and XML.

    Science.gov (United States)

    Durairaj, Vijayasarathi; Punnaivanam, Sankar

    2015-09-01

    Fundamental chemical entities are identified in the context of organic reactivity and classified as appropriate concept classes namely ElectronEntity, AtomEntity, AtomGroupEntity, FunctionalGroupEntity and MolecularEntity. The entity classes and their subclasses are organized into a chemical ontology named "ChemEnt" for the purpose of assertion, restriction and modification of properties through entity relations. Individual instances of entity classes are defined and encoded as a library of chemical entities in XML. The instances of entity classes are distinguished with a unique notation and identification values in order to map them with the ontology definitions. A model GUI named Entity Table is created to view graphical representations of all the entity instances. The detection of chemical entities in chemical structures is achieved through suitable algorithms. The possibility of asserting properties to the entities at different levels and the mechanism of property flow within the hierarchical entity levels is outlined. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Physical and chemical characteristics of melon in organic farming

    Directory of Open Access Journals (Sweden)

    Rosete A. G. Kohn

    2015-07-01

    Full Text Available Melon farming is characterized as an important family agriculture activity and the organic production of fruits and vegetables has shown a large growth in terms of areas in Brazil and around the world. This work aimed to study the postharvest quality of melon cultivated in an organic system. The organic treatments constituted of base fertilizer with cattle manure vermicompost (recommended dose, ½ dose and double dose plus the use of biofertilizer (sprayed or sprayed + irrigated, and an additional treatment with chemical fertilization. The postharvest quality was evaluated through physico-chemical and phytochemical attributes. The organic management with half the recommended dose of vermicompost plus the sprayed biofertilizer and the chemical fertilization management produced fruits with higher levels of sugar, total carotenoids, ascorbic acid and folates, obtaining more balanced fruits, with a better phytochemical quality. The antioxidant capacity was defined mainly by the presence of the phenolic compounds, which were influenced by the type and the dose of the evaluated fertilizers, with superiority in the organic treatments with double the dose of cattle manure vermicompost.

  10. Chemical composition of gas-phase organic carbon emissions from motor vehicles and implications for ozone production.

    Science.gov (United States)

    Gentner, Drew R; Worton, David R; Isaacman, Gabriel; Davis, Laura C; Dallmann, Timothy R; Wood, Ezra C; Herndon, Scott C; Goldstein, Allen H; Harley, Robert A

    2013-10-15

    Motor vehicles are major sources of gas-phase organic carbon, which includes volatile organic compounds (VOCs) and other compounds with lower vapor pressures. These emissions react in the atmosphere, leading to the formation of ozone and secondary organic aerosol (SOA). With more chemical detail than previous studies, we report emission factors for over 230 compounds from gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from on-road vehicles in summer 2010. Second, we use a fuel composition-based approach to quantify uncombusted fuel components in exhaust using the emission factor for total uncombusted fuel in exhaust together with detailed chemical characterization of liquid fuel samples. There is good agreement between the two methods except for products of incomplete combustion, which are not present in uncombusted fuels and comprise 32 ± 2% of gasoline exhaust and 26 ± 1% of diesel exhaust by mass. We calculate and compare ozone production potentials of diesel exhaust, gasoline exhaust, and nontailpipe gasoline emissions. Per mass emitted, the gas-phase organic compounds in gasoline exhaust have the largest potential impact on ozone production with over half of the ozone formation due to products of incomplete combustion (e.g., alkenes and oxygenated VOCs). When combined with data on gasoline and diesel fuel sales in the U.S., these results indicate that gasoline sources are responsible for 69-96% of emissions and 79-97% of the ozone formation potential from gas-phase organic carbon emitted by motor vehicles.

  11. Reactive oxygen species and lipid peroxidation product-scavenging ability of yogurt organisms.

    Science.gov (United States)

    Lin, M Y; Yen, C L

    1999-08-01

    The antioxidative activity of the intracellular extracts of yogurt organisms was investigated. All 11 strains tested, including five strains of Streptococcus thermophilus and six strains of Lactobacillus delbrueckii ssp. bulgaricus, demonstrated an antioxidative effect on the inhibition of linoleic acid peroxidation. The antioxidative effect of intracellular extracts of 10(8) cells of yogurt organisms was equivalent to 25 to 96 ppm butylated hydroxytoluene, which indicated that all strains demonstrated excellent antioxidative activity. The scavenging of reactive oxygen species, hydroxyl radical, and hydrogen peroxide was studied for intracellular extracts of yogurt organisms. All strains showed reactive oxygen species-scavenging ability. Lactobacillus delbrueckii ssp. bulgaricus Lb demonstrated the highest hydroxyl radical-scavenging ability at 234 microM. Streptococcus thermophilus MC and 821 and L. delbrueckii ssp. bulgaricus 448 and 449 scavenged the most hydrogen peroxide at approximately 50 microM. The scavenging ability of lipid peroxidation products, t-butylhydroperoxide and malondialdehyde, was also evaluated. Results showed that the extracts were not able to scavenge the t-butylhydroperoxide. Nevertheless, malondialdehyde was scavenged well by most strains.

  12. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system

    KAUST Repository

    Rydén, Magnus

    2011-03-01

    Particles of the perovskite material CaMn0.875Ti0.125O3 has been examined as oxygen carrier for chemical-looping with oxygen uncoupling, and for chemical-looping combustion of natural gas, by 70h of experiments in a circulating fluidized-bed reactor system. For the oxygen uncoupling experiments, it was found that the particles released O2 in gas phase at temperatures above 720°C when the fuel reactor was fluidized with CO2. The effect increased with increased temperature, and with the O2 partial pressure in the air reactor. At 950°C, the O2 concentration in the outlet from the fuel reactor was in the order of 4.0vol%, if the particles were oxidized in air. For the chemical-looping combustion experiments the combustion efficiency with standard process parameters was in the order of 95% at 950°C, using 1000kg oxygen carrier per MW natural gas, of which about 30% was located in the fuel reactor. Reducing the fuel flow so that 1900kg oxygen carrier per MW natural gas was used improved the combustion efficiency to roughly 99.8%. The particles retained their physical properties, reactivity with CH4 and ability to release gas-phase O2 reasonably well throughout the testing period and there were no problems with the fluidization or formation of solid carbon in the reactor. X-ray diffraction showed that the particles underwent changes in their phase composition though. © 2010 Elsevier Ltd.

  13. Microwaves in organic chemistry and organic chemical

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2005-01-01

    Full Text Available The usual way of applying heat to a chemical reaction is the use of a Bunsen burner, an oil or some other type of bath, or an electric heater. In inorganic chemistry, microwave technology has been used since the late 1970s while it has been implemented in organic chemistry since the mid-1980s. Microwave heating has been used in the food industry for almost fifty years. The shorter reaction times and expanded reaction range that is offered by microwave technology are suited to the increased demands in industry. For example, there is a requirement in the pharmaceutical industry for a higher number of a novel chemical entities to be produced, which requires chemists to employ a number of resources to reduce time for the production of compounds. Also, microwaves are used in the food industry, as well as in the pyrolysis of waste materials, sample preparation, the solvent extraction of natural products and the hydrolysis of proteins and peptides.

  14. Oxygen diffusion in soils: Understanding the factors and processes needed for modeling

    Directory of Open Access Journals (Sweden)

    José Neira

    2015-08-01

    Full Text Available Oxygen is an important element for plant growth. Reducing its concentration in the soil affects plant physiological processes such as nutrient and water uptake as well as respiration, the redox potential of soil elements and the activity of microorganisms. The main mechanism of oxygen transport in the soil is by diffusion, a dynamic process greatly influenced by soil physical properties such as texture and structure, conditioning, pore size distribution, tortuosity and connectivity. Organic matter is a modifying agent of the soil's chemical and physical properties, affecting its structure and the porous matrix, which are determinants of oxygen transport. This study reviews the theory of soil gas diffusion and the effect of soil organic matter on the soil's physical properties and transport of gases. It also reviews gas diffusion models, particularly those including the effect of soil organic matter.

  15. Carotenoids Database: structures, chemical fingerprints and distribution among organisms.

    Science.gov (United States)

    Yabuzaki, Junko

    2017-01-01

    To promote understanding of how organisms are related via carotenoids, either evolutionarily or symbiotically, or in food chains through natural histories, we built the Carotenoids Database. This provides chemical information on 1117 natural carotenoids with 683 source organisms. For extracting organisms closely related through the biosynthesis of carotenoids, we offer a new similarity search system 'Search similar carotenoids' using our original chemical fingerprint 'Carotenoid DB Chemical Fingerprints'. These Carotenoid DB Chemical Fingerprints describe the chemical substructure and the modification details based upon International Union of Pure and Applied Chemistry (IUPAC) semi-systematic names of the carotenoids. The fingerprints also allow (i) easier prediction of six biological functions of carotenoids: provitamin A, membrane stabilizers, odorous substances, allelochemicals, antiproliferative activity and reverse MDR activity against cancer cells, (ii) easier classification of carotenoid structures, (iii) partial and exact structure searching and (iv) easier extraction of structural isomers and stereoisomers. We believe this to be the first attempt to establish fingerprints using the IUPAC semi-systematic names. For extracting close profiled organisms, we provide a new tool 'Search similar profiled organisms'. Our current statistics show some insights into natural history: carotenoids seem to have been spread largely by bacteria, as they produce C30, C40, C45 and C50 carotenoids, with the widest range of end groups, and they share a small portion of C40 carotenoids with eukaryotes. Archaea share an even smaller portion with eukaryotes. Eukaryotes then have evolved a considerable variety of C40 carotenoids. Considering carotenoids, eukaryotes seem more closely related to bacteria than to archaea aside from 16S rRNA lineage analysis. : http://carotenoiddb.jp. © The Author(s) 2017. Published by Oxford University Press.

  16. Stream Macroinvertebrate Occurrence along Gradients in Organic Pollution and Eutrophication

    DEFF Research Database (Denmark)

    Friberg, Nikolai; Skriver, Jens; Larsen, Søren Erik

    2010-01-01

    We analysed a large number of concurrent samples of macroinvertebrate communities and chemical indicators of eutrophication and organic pollution [total-P, total-N, NH4-N, biological oxygen demand (BOD5)] from 594 Danish stream sites. Samples were taken over an 11-year time span as part of the Da......We analysed a large number of concurrent samples of macroinvertebrate communities and chemical indicators of eutrophication and organic pollution [total-P, total-N, NH4-N, biological oxygen demand (BOD5)] from 594 Danish stream sites. Samples were taken over an 11-year time span as part...

  17. Study of dimensional changes during redox cycling of oxygen carrier materials for chemical looping combustion

    NARCIS (Netherlands)

    Fossdal, A.; Darell, O.; Lambert, A.; Schols, E.; Comte, E.; Leenman, R.N.; Blom, R.

    2015-01-01

    Dimensional and phase changes of four candidate oxygen carrier materials for chemical looping combustion are investigated by dilatometry and high-temperature X-ray diffraction during four redox cycles. NiO/Ni2AlO4 does not exhibit significant dimensional changes during cycling, and it is shown that

  18. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest canopy...

  19. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest...

  20. Chemically-resolved volatility measurements of organic aerosol fom different sources.

    Science.gov (United States)

    Huffman, J A; Docherty, K S; Mohr, C; Cubison, M J; Ulbrich, I M; Ziemann, P J; Onasch, T B; Jimenez, J L

    2009-07-15

    A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer for rapid determination of chemically resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from alpha-pinene and gasoline vapor. Almost all atmospheric models represent POA as nonvolatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semivolatile behavior and that most POAs characterized here were at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles some types of BBOA because of its relatively high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA under the relatively high concentrations used intraditional experiments was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are typically less volatile. Future experiments should systematically explore a wider range of mass concentrations to more fully characterize the volatility distributions of these OAs.

  1. Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals

    DEFF Research Database (Denmark)

    Lehto, M.; Karilainen, T.; Rog, T.

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C-60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene...... which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C-60 and organic chemicals represent different...... co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C-60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C-60 that is more...

  2. Determination of organic products resulting of chemical and radiochemical decompositions of bitumen. Applications to embedded bitumens

    International Nuclear Information System (INIS)

    Walczak, I.

    2000-01-01

    Bitumen can be used for embedding most of wastes because of its high impermeability and its relatively low reactivity with of chemicals. Bituminization is one of selected solutions in agreement with nuclear safety, waste compatibility and economic criteria. Bitumen, during storage, undergoes an auto-irradiation due to embedded radio-elements. During this stage,drums are not airtight then oxygen is present. In disposal configuration, water, which is a potential vector of radioactivity and organic matter, is an other hazard factor liable to deteriorate the containment characteristics of bitumen wastes. The generation of water-soluble organic complexing agents can affect the integrity of the wasteform due to an increase of the radionuclides solubility. The first aim of this work is the quantitative and qualitative characterisation of soluble organic matter in bitumen leachates. Different leaching solutions were tested (various pH, ionic strength, ratio S/V). When the pH of the leaching solutions increases, the total organic carbon released increases as well. Identified molecules are aromatics like naphthalene, oxidised compounds like alcohols, linear carbonyls, aromatics, glycols and nitrogen compounds. For the cement equilibrated solution (pH 13.5), the effect of ionic strength becomes significative and influences the release of soluble organic matter. This soluble organic matter can be bio-degraded if microorganisms can growth. The second aim of this work is to study the effect of radio-oxidative ageing on the bitumen confinement properties. During radio-oxidation, the chemical properties of bitumen are modified. The μ-IRTF analysis shows the formation of hydroxyl compounds and aromatic acids. The formation of these polar groups does not influence in our study the water uptake. However the organic matter release increases significantly with the irradiation dose. (author)

  3. Vibrationally Excited Carbon Monoxide Produced via a Chemical Reaction Between Carbon Vapor and Oxygen

    Science.gov (United States)

    Jans, Elijah R.; Eckert, Zakari; Frederickson, Kraig; Rich, Bill; Adamovich, Igor V.

    2017-06-01

    Measurements of the vibrational distribution function of carbon monoxide produced via a reaction between carbon vapor and molecular oxygen has shown a total population inversion on vibrational levels 4-7. Carbon vapor, produced using an arc discharge to sublimate graphite, is mixed with an argon oxygen flow. The excited carbon monoxide is vibrationally populated up to level v=14, at low temperatures, T=400-450 K, in a collision-dominated environment, 15-20 Torr, with total population inversions between v=4-7. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of the reaction enthalpy. Kinetic modeling of the flow reactor, including state specific vibrational processes, was performed to infer the vibrational distribution of the products of the reaction. The results show viability of developing of a new chemical CO laser from the reaction of carbon vapor and oxygen.

  4. Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong

    Science.gov (United States)

    Li, Yunchun

    Organic aerosols, as an important fraction of airborne particulate mass, significantly affect the environment, climate, and human health. Compared with inorganic species, characterization of individual organic compounds is much less complete and comprehensive because they number in thousands or more and are diverse in chemical structures. The source contributions of organic aerosols are far from being well understood because they can be emitted from a variety of sources as well as formed from photochemical reactions of numerous precursors. This thesis work aims to improve the characterization of polar organic compounds and source apportionment analysis of fine organic carbon (OC) in Hong Kong, which consists of two parts: (1) An improved analytical method to determine monocarboxylic acids, dicarboxylic acids, ketocarboxylic acids, and dicarbonyls collected on filter substrates has been established. These oxygenated compounds were determined as their butyl ester or butyl acetal derivatives using gas chromatography-mass spectrometry. The new method made improvements over the original Kawamura method by eliminating the water extraction and evaporation steps. Aerosol materials were directly mixed with the BF 3/BuOH derivatization agent and the extracting solvent hexane. This modification improves recoveries for both the more volatile and the less water-soluble compounds. This improved method was applied to study the abundances and sources of these oxygenated compounds in PM2.5 aerosol samples collected in Hong Kong under different synoptic conditions during 2003-2005. These compounds account for on average 5.2% of OC (range: 1.4%-13.6%) on a carbon basis. Oxalic acid was the most abundant species. Six C2 and C3 oxygenated compounds, namely oxalic, malonic, glyoxylic, pyruvic acids, glyoxal, and methylglyoxal, dominated this suite of oxygenated compounds. More efforts are therefore suggested to focus on these small compounds in understanding the role of oxygenated

  5. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.; Wang, Hanting; Gutié rrez, Leonardo A.; Romero-Maraccini, Ofelia C.; Niu, Xi-Zhi; Gin, Karina; Croue, Jean-Philippe; Nguyen, Thanh Ha

    2013-01-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3'-methoxyacetophenone (3'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  6. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.

    2013-09-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3\\'-methoxyacetophenone (3\\'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  7. Electrochemical catalytic reforming of oxygenated-organic compounds: a highly efficient method for production of hydrogen from bio-oil.

    Science.gov (United States)

    Yuan, Lixia; Chen, Yaqiong; Song, Chongfu; Ye, Tongqi; Guo, Qingxiang; Zhu, Qingshi; Torimoto, Youshifumi; Li, Quanxin

    2008-11-07

    A novel approach to produce hydrogen from bio-oil was obtained with high carbon conversion (>90%) and hydrogen yield (>90%) at Tcatalytic reforming of oxygenated-organic compounds over 18%NiO/Al(2)O(3) reforming catalyst; thermal electrons play important promoting roles in the decomposition and reforming of the oxygenated-organic compounds in the bio-oil.

  8. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals.

    Directory of Open Access Journals (Sweden)

    Maili Lehto

    Full Text Available In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.

  9. Generation of atomic iodine via fluorine for chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Jirasek, Vit; Spalek, Otomar; Censky, Miroslav; Pickova, Irena; Kodymova, Jarmila; Jakubec, Ivo

    2007-01-01

    A method of the chemical generation of atomic iodine for a chemical oxygen-iodine laser (COIL) using atomic fluorine as a reaction intermediate was studied experimentally. This method is based on the reaction between F 2 and NO providing F atoms, and the reaction of F with HI resulting in iodine atoms generation. Atomic iodine was produced with efficiency exceeding 40% relative to initial F 2 flow rate. This efficiency was nearly independent on pressure and total gas flow rate. The F atoms were stable in the reactor up to 2 ms. An optimum ratio of the reactants flow rates was F 2 :NO:HI = 1:1:1. A rate constant of the reaction of F 2 with HI was determined. The numerical modelling showed that remaining HI and IF were probably consumed in their mutual reaction. The reaction system was found suitable for employing in a generator of atomic iodine with its subsequent injection into a supersonic nozzle of a COIL

  10. Occupational chemical exposures in artificial organic fiber industries

    Energy Technology Data Exchange (ETDEWEB)

    Guirguis, S S; Cohen, M B

    1984-05-01

    This review discusses artificial organic fibers that are produced from materials of natural origin such as rayons, cellulose triacetates and proteins; or made from polymerised chemicals such as polyamides, polyesters, polyvinyls, modacrylics, carbon fibers, polyolefins, polyurethane and polytetrafluoroethylene. Chemicals involved include monomers, solvents, flame retardants, pigments and other additives. Occupational exposure to chemicals in the production stages are discussed and also the potential health hazards involved are reviewed. Current exposure levels, engineering controls and work practices for some of the chemicals used in the Ontario artificial fiber industry are discussed. Recommendations are made for areas that need further study and/or investigation.

  11. Metal organic frameworks for the catalytic detoxification of chemical warfare nerve agents

    Science.gov (United States)

    Hupp, Joseph T.; Farha, Omar K.; Katz, Michael J.; Mondloch, Joseph E.

    2017-04-18

    A method of using a metal organic framework (MOF) comprising a metal ion and an at least bidendate organic ligand to catalytically detoxify chemical warfare nerve agents including exposing the metal-organic-framework (MOF) to the chemical warfare nerve agent and catalytically decomposing the nerve agent with the MOF.

  12. Thermal and mechanical behaviour of oxygen carrier materials for chemical looping combustion in a packed bed reactor

    International Nuclear Information System (INIS)

    Jacobs, M.; Van Noyen, J.; Larring, Y.; Mccann, M.; Pishahang, M.; Amini, S.; Ortiz, M.; Galluci, F.; Sint-Annaland, M.V.; Tournigant, D.; Louradour, E.; Snijkers, F.

    2015-01-01

    Highlights: • Ilmenite-based oxygen carriers were developed for packed-bed chemical looping. • Addition of Mn_2O_3 increased mechanical strength and microstructure of the carriers. • Oxygen carriers were able to withstand creep and thermal cycling up to 1200 °C. • Ilmenite-based granules are a promising shape for packed-bed reactor conditions. - Abstract: Chemical looping combustion (CLC) is a promising carbon capture technology where cyclic reduction and oxidation of a metallic oxide, which acts as a solid oxygen carrier, takes place. With this system, direct contact between air and fuel can be avoided, and so, a concentrated CO_2 stream is generated after condensation of the water in the exit gas stream. An interesting reactor system for CLC is a packed bed reactor as it can have a higher efficiency compared to a fluidized bed concept, but it requires other types of oxygen carrier particles. The particles must be larger to avoid a large pressure drop in the reactor and they must be mechanically strong to withstand the severe reactor conditions. Therefore, oxygen carriers in the shape of granules and based on the mineral ilmenite were subjected to thermal cycling and creep tests. The mechanical strength of the granules before and after testing was investigated by crush tests. In addition, the microstructure of these oxygen particles was studied to understand the relationship between the physical properties and the mechanical performance. It was found that the granules are a promising shape for a packed bed reactor as no severe degradation in strength was noticed upon thermal cycling and creep testing. Especially, the addition of Mn_2O_3 to the ilmenite, which leads to the formation of an iron–manganese oxide, seems to results in stronger granules than the other ilmenite-based granules.

  13. Enhanced removal of chemical oxygen demand, nitrogen and phosphorus using the ameliorative anoxic/anaerobic/oxic process and micro-electrolysis.

    Science.gov (United States)

    Bao, K Q; Gao, J Q; Wang, Z B; Zhang, R Q; Zhang, Z Y; Sugiura, N

    2012-01-01

    Synthetic wastewater was treated using a novel system integrating the reversed anoxic/anaerobic/oxic (RAAO) process, a micro-electrolysis (ME) bed and complex biological media. The system showed superior chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal rates. Performance of the system was optimised by considering the influences of three major controlling factors, namely, hydraulic retention time (HRT), organic loading rate (OLR) and mixed liquor recirculation (MLR). TP removal efficiencies were 69, 87, 87 and 83% under the HRTs of 4, 8, 12 and 16 h. In contrast, HRT had negligible effects on the COD and TN removal efficiencies. COD, TN and TP removal efficiencies from synthetic wastewater were 95, 63 and 87%, respectively, at an OLR of 1.9 g/(L·d). The concentrations of COD, TN and TP in the effluent were less than 50, 15 and 1 mg/L, respectively, at the controlled MLR range of 75-100%. In this system, organics, TN and TP were primarily removed from anoxic tank regardless of the operational conditions.

  14. User's manual of BISHOP. A Bi-Phase, Sodium-Hydrogen-Oxygen system, chemical equilibrium calculation program

    International Nuclear Information System (INIS)

    Okano, Yasushi; Yamaguchi, Akira

    2001-07-01

    In an event of sodium leakage in liquid metal fast breeder reactors, liquid sodium flows out of piping, and droplet combustion might occur under a certain environmental condition. The combustion heat and reaction products should be evaluated in the sodium fire analysis codes for investigating the influence of the sodium leak age and fire incident. In order to analyze the reaction heat and products, the multi-phase chemical equilibrium calculation program for a sodium, oxygen and hydrogen system has been developed. The developed numerical program is named BISHOP, which denotes 'Bi-Phase, Sodium-Hydrogen-Oxygen, Chemical Equilibrium Calculation Program'. The Gibbs free energy minimization method is used because of the following advantages. Chemical species are easily added and changed. A variety of thermodynamic states, such as isothermal and isentropic changes, can be dealt with in addition to constant temperature and pressure processes. In applying the free energy minimization method to solve the multi-phase sodium reaction system, three new numerical calculation techniques are developed. One is theoretical simplification of phase description in equation system, the other is to extend the Gibbs free energy minimization method to a multi-phase system, and the last is to establish the efficient search for the minimum value. The reaction heat and products at the equilibrium state can be evaluated from the initial conditions, such as temperature, pressure and reactants, using BISHOP. This report describes the thermochemical basis of chemical equilibrium calculations, the system of equations, simplification models, and the procedure to prepare input data and usage of BISHOP. (author)

  15. Organic Pollutants in Shale Gas Flowback and Produced Waters

    NARCIS (Netherlands)

    Butkovskyi, Andrii; Bruning, Harry; Kools, Stefan A.E.; Rijnaarts, Huub H.M.; Wezel, van Annemarie P.

    2017-01-01

    Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses

  16. Erosion behaviour of physically vapour-deposited and chemically vapour-deposited SiC films coated on molybdenum during oxygenated argon beam thinning

    International Nuclear Information System (INIS)

    Shikama, T.; Kitajima, M.; Fukutomi, M.; Okada, M.

    1984-01-01

    The erosion behaviour during bombardment with a 5 keV argon beam at room temperature was studied for silicon carbide (SiC) films of thickness of about 10 μm coated on molybdenum by physical vapour deposition (PVD) and chemical vapour deposition (CVD). The PVD SiC (plasma-assisted ion plating) exhibited a greater thinning rate than the CVD SiC film. Electron probe X-ray microanalysis revealed that the chemical composition of PVD SiC was changed to a composition enriched in silicon by the bombardment, and there was a notable change in its surface morphology. The CVD SiC retained its initial chemical composition with only a small change in its surface morphology. Auger electron spectroscopy indicated that silicon oxide was formed on the surface of PVD SiC by the bombardment. The greater thinning rate and easier change in chemical composition in PVD SiC could be attributed to its readier chemical reaction with oxygen due to its more non-uniform structure and weaker chemical bonding. Oxygen was present as one of the impurities in the argon beam. (Auth.)

  17. Changes in the chemical characteristics of water-extracted organic matter from vermicomposting of sewage sludge and cow dung.

    Science.gov (United States)

    Xing, Meiyan; Li, Xiaowei; Yang, Jian; Huang, Zhidong; Lu, Yongsen

    2012-02-29

    The chemical changes of water-extractable organic matter (WEOM) from five different substrates of sewage sludge enriched with different proportions of cow dung after vermicomposting with Eisenia fetida were investigated using various analytical approaches. Results showed that dissolved organic carbon, chemical oxygen demand, and C/N ratio of the substrates decreased significantly after vermicomposting process. The aromaticity of WEOM from the substrates enhanced considerably, and the amount of volatile fatty acids declined markedly, especially for the cow dung substrate. Gel filtration chromatography analysis showed that the molecular weight fraction between 10(3) and 10(6) Da became the main part of WEOM in the final product. 1H nuclear magnetic resonance spectra revealed that the proportion of H moieties in the area of 0.00-3.00 ppm decreased, while increasing at 3.00-4.25 ppm after vermicomposting. Fluorescence spectra indicated that vermicomposting caused the degradation of protein-like groups, and the formation of fulvic and humic acid-like compounds in the WEOM of the substrates. Overall results indicate clearly that vermicomposting promoted the degradation and transformation of liable WEOM into biological stable substances in sewage sludge and cow dung alone, as well as in mixtures of both materials, and testing the WEOM might be an effective way to evaluate the biological maturity and chemical stability of vermicompost. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Oxygen Storage Capacity and Oxygen Mobility of Co-Mn-Mg-Al Mixed Oxides and Their Relation in the VOC Oxidation Reaction

    Directory of Open Access Journals (Sweden)

    María Haidy Castaño

    2015-05-01

    Full Text Available Co-Mn-Mg-Al oxides were synthesized using auto-combustion and co-precipitation techniques. Constant ratios were maintained with (Co + Mn + Mg/Al equal to 3.0, (Co + Mn/Mg equal to 1.0 and Co/Mn equal to 0.5. The chemical and structural composition, redox properties, oxygen storage capacity and oxygen mobility were analyzed using X-ray fluorescence (XRF, X-ray diffraction (XRD, Raman spectroscopy, scanning electron microscopy (SEM, temperature-programmed reduction of hydrogen (H2-TPR, oxygen storage capacity (OSC, oxygen storage complete capacity (OSCC and isotopic exchange, respectively. The catalytic behavior of the oxides was evaluated in the total oxidation of a mixture of 250 ppm toluene and 250 ppm 2-propanol. The synthesis methodology affected the crystallite size, redox properties, OSC and oxide oxygen mobility, which determined the catalytic behavior. The co-precipitation method got the most active oxide in the oxidation of the volatile organic compound (VOC mixture because of the improved mobility of oxygen and ability to favor redox processes in the material structure.

  19. Comparison of the chemical composition of dissolved organic matter in three lakes in Minnesota

    Science.gov (United States)

    Cao, Xiaoyan; Aiken, George R.; Butler, Kenna D.; Mao, Jingdong; Schmidt-Rohr, Klaus

    2018-01-01

    New information on the chemical composition of dissolved organic matter (DOM) in three lakes in Minnesota has been gained from spectral editing and two-dimensional nuclear magnetic resonance (NMR) methods, indicating the effects of lake hydrological settings on DOM composition. Williams Lake (WL), Shingobee Lake (SL), and Manganika Lake (ML) had different source inputs, and the lake water residence time (WRT) of WL was markedly longer than that of SL and ML. The hydrophobic organic acid (HPOA) and transphilic organic acid (TPIA) fractions combined comprised >50% of total DOM in these lakes, and contained carboxyl-rich alicyclic molecules (CRAM), aromatics, carbohydrates, and N-containing compounds. The previously understudied TPIA fractions contained fewer aromatics, more oxygen-rich CRAM, and more N-containing compounds compared to the corresponding HPOA. CRAM represented the predominant component in DOM from all lakes studied, and more so in WL than in SL and ML. Aromatics including lignin residues and phenols decreased in relative abundances from ML to SL and WL. Carbohydrates and N-containing compounds were minor components in both HPOA and TPIA and did not show large variations among the three lakes. The increased relative abundances of CRAM in DOM from ML, SL to WL suggested the selective preservation of CRAM with increased residence time.

  20. Oxygen and SO2 Consumption Rates in White and Rosé Wines: Relationship with and Effects on Wine Chemical Composition.

    Science.gov (United States)

    Carrascón, Vanesa; Bueno, Mónica; Fernandez-Zurbano, Purificación; Ferreira, Vicente

    2017-11-01

    This Article addresses the study of O 2 and SO 2 consumption rates of white and rosé wines, their relationship to the initial chemical composition, and their effects on the chemical changes experienced by wine during oxidation. Eight wines were subjected to five consecutive air-saturation cycles. O 2 was monitored periodically; SO 2 , color, and antioxidant indexes were determined after each cycle, and the initial and final compositions of the wines were thoroughly determined. Wines consumed oxygen at progressively decreasing rates. In the last cycles, after a strong decrease, consistent increases of oxygen levels were seen. Oxygen consumption rates were satisfactorily modeled, being proportional to wine copper, quercetin, and kaempherol contents and negatively proportional to cinnamic acids. SO 2 consumption rates were highly diverse between wines and were positively related to free SO 2 , Mn, and pH, among others. In the last saturations, SO 2 consumption took place regardless of O 2 consumption, implying that SO 2 should reduce chemical species oxidized in previous saturations. Some volatile phenols seem to be the end point of radical-mediated oxidation of polyphenols taking place preferably in the first saturation.

  1. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis

    Science.gov (United States)

    Tiveron, Ana Paula; Rosalen, Pedro Luiz; Franchin, Marcelo; Lacerda, Risia Cristina Coelho; Bueno-Silva, Bruno; Benso, Bruna; Denny, Carina; Ikegaki, Masaharu; de Alencar, Severino Matias

    2016-01-01

    South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1–OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory concentration (MIC) against Gram-positive bacteria Streptococcus mutans, Streptococcus oralis, and Streptococcus aureus (12.5–100 μg/mL). OP1, OP2, OP3, and OP4 were more effective against Pseudomonas aeruginosa (Gram-negative), with MIC values ranging from 100 to 200 μg/mL. OP6 showed anti-inflammatory activity by decreasing NF-kB activation and TNF-α release in RAW 264.7 macrophages, and expressing the NF-κB-luciferase reporter stable gene. Therefore, south Brazilian OP can be considered an excellent source of bioactive compounds with great potential of application in the pharmaceutical and food industry. PMID:27802316

  2. Dissolved Organic In Natural and Polluted Waters: Methodology and Results of Running Control of Chemical Oxygen Demand (cod) For The Inland and Marine Aquatic System

    Science.gov (United States)

    Melentyev, K. V.; Worontsov, A. M.

    Current control of dissolved organic matter in natural and waste waters is the definition traditionally of chemical oxygen demand (COD) -- one of the basic parameters of quality of water. According to the International Standard (ISO 6060), it requires not less than one hour, while in many cases the operative information about amount of dissolved organic matter in aquatic environments have importance for prevention of an emergency. The standard method is applicable to waters with meaning of COD above 30 mg O2/l and, as the chloride ion prevents, it could be difficult for assessment of organic matter in sea water. Besides it is based on dichromate oxidation of the sum of organic substances in strong acid conditions at the presence of silver and mercury, that resulted in formation toxic pollutants. Till now attempts of automation of the COD definition in aquatic system were limited, basically, to duplication of the technology submitted the above standard (automatic COD analyzers "SERES Co."-- France, or "Tsvet Co." - Russia). The system of ozone-chemiluminescence automatic control of organic matter in water (CS COD) is offered and designed. Its based on the ozone oxidation of these substances in flowing water system and measurement arising from luminescent effects. CS COD works in real time. An instrument uses for reaction the atmospheric air, doesn't require fill of reagents and doesn't make new toxic pollutants. The system was tested in laboratory, and biochemical control of organic matter in water samples gathered from the river Neva and other polluted inland water areas and basins in St. Petersburg region was fulfilled (distilled water was used as "zero" media). The results of systematization of these measurements are presented. The new special ozone generator and flowing reactor for real-time running control of different waters in natural conditions were developed, and several series of large - scale field experiments onboard research ship were provided

  3. A quantum-chemical study of oxygen-vacancy defects in PbTiO3 crystals

    International Nuclear Information System (INIS)

    Stashans, Arvids; Serrano, Sheyla; Medina, Paul

    2006-01-01

    Investigation of an oxygen vacancy and F center in the cubic and tetragonal lattices of PbTiO 3 crystals is done by means of quantum-chemical simulations. Displacements of defect-surrounding atoms, electronic and optical properties, lattice relaxation energies and some new effects due to the defects presence are reported and analyzed. A comparison with similar studies is made and conclusions are drawn on the basis of the obtained results

  4. Online measurement of biogenic organic acids in the boreal forest using atmospheric pressure chemical ionization mass spectrometry (APCI-MS)

    Science.gov (United States)

    Vogel, A. L.; Brüggemann, M.; ńijälä, M.; Ehn, M.; Junninen, H.; Corrigan, A. L.; Petäjä, T.; Worsnop, D. R.; Russell, L. M.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2012-04-01

    Emission of biogenic volatile organic compounds (BVOCs) by vegetation in the boreal forest and their subsequent atmospheric oxidation leads to the formation of secondary organic aerosol (SOA) which has important impacts on climate and human health. Oxidation of BVOCs produces a variety of mostly unidentified species in oxygenated organic aerosol (OOA). Presently aerosol mass spectrometers (AMS) are able to determine quantitative information about the relative oxygen to carbon content of organic aerosols and thereby reveal the photochemical age and volatility of organic aerosol by distinguishing between low volatile oxygenated organic aerosol (LV-OOA), semivolatile oxygenated organic aerosol (SV-OOA) and hydrocarbon like organic aerosol (HOA)[1]. However, the AMS can usually not be used to measure and quantify single organic compounds such as individual biogenic organic marker compounds. Here we show the results of online measurements of gas and particle phase biogenic acids during HUMPPA-COPEC 2010 at Hyytiälä, Finland. This was achieved by coupling a self built miniature Versatile Aerosol Concentration Enrichment System (mVACES) as described by Geller et al. [2] with an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI IT MS; Hoffmann et al., [3]). The benefits of the on-line APCI-MS are soft ionization with little fragmentation compared to AMS, high measurement frequency and less sampling artifacts than in the common procedure of taking filter samples, extraction and detection with LC-MS. Furthermore, the ion trap of the instrument allows MS/MS experiments to be performed by isolation of single m/z ratios of selected molecular species. By subsequent addition of energy, the trapped ions form characteristic fragments which enable structural insight on the molecular level. Comparison of APCI-MS data to AMS data, acquired with a C-ToF-AMS [4], revealed a good correlation coefficient for total organics and sulphate. Furthermore, data show

  5. Characterization of organic nitrate constituents of secondary organic aerosol (SOA) from nitrate-radical-initiated oxidation of limonene using high-resolution chemical ionization mass spectrometry

    Science.gov (United States)

    Faxon, Cameron; Hammes, Julia; Le Breton, Michael; Kant Pathak, Ravi; Hallquist, Mattias

    2018-04-01

    The gas-phase nitrate radical (NO3⚫) initiated oxidation of limonene can produce organic nitrate species with varying physical properties. Low-volatility products can contribute to secondary organic aerosol (SOA) formation and organic nitrates may serve as a NOx reservoir, which could be especially important in regions with high biogenic emissions. This work presents the measurement results from flow reactor studies on the reaction of NO3⚫ with limonene using a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS) combined with a Filter Inlet for Gases and AEROsols (FIGAERO). Major condensed-phase species were compared to those in the Master Chemical Mechanism (MCM) limonene mechanism, and many non-listed species were identified. The volatility properties of the most prevalent organic nitrates in the produced SOA were determined. Analysis of multiple experiments resulted in the identification of several dominant species (including C10H15NO6, C10H17NO6, C8H11NO6, C10H17NO7, and C9H13NO7) that occurred in the SOA under all conditions considered. Additionally, the formation of dimers was consistently observed and these species resided almost completely in the particle phase. The identities of these species are discussed, and formation mechanisms are proposed. Cluster analysis of the desorption temperatures corresponding to the analyzed particle-phase species yielded at least five distinct groupings based on a combination of molecular weight and desorption profile. Overall, the results indicate that the oxidation of limonene by NO3⚫ produces a complex mixture of highly oxygenated monomer and dimer products that contribute to SOA formation.

  6. Characterization of organic nitrate constituents of secondary organic aerosol (SOA from nitrate-radical-initiated oxidation of limonene using high-resolution chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    C. Faxon

    2018-04-01

    Full Text Available The gas-phase nitrate radical (NO3⚫ initiated oxidation of limonene can produce organic nitrate species with varying physical properties. Low-volatility products can contribute to secondary organic aerosol (SOA formation and organic nitrates may serve as a NOx reservoir, which could be especially important in regions with high biogenic emissions. This work presents the measurement results from flow reactor studies on the reaction of NO3⚫ with limonene using a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS combined with a Filter Inlet for Gases and AEROsols (FIGAERO. Major condensed-phase species were compared to those in the Master Chemical Mechanism (MCM limonene mechanism, and many non-listed species were identified. The volatility properties of the most prevalent organic nitrates in the produced SOA were determined. Analysis of multiple experiments resulted in the identification of several dominant species (including C10H15NO6, C10H17NO6, C8H11NO6, C10H17NO7, and C9H13NO7 that occurred in the SOA under all conditions considered. Additionally, the formation of dimers was consistently observed and these species resided almost completely in the particle phase. The identities of these species are discussed, and formation mechanisms are proposed. Cluster analysis of the desorption temperatures corresponding to the analyzed particle-phase species yielded at least five distinct groupings based on a combination of molecular weight and desorption profile. Overall, the results indicate that the oxidation of limonene by NO3⚫ produces a complex mixture of highly oxygenated monomer and dimer products that contribute to SOA formation.

  7. Potential of Biofilters for Treatment of De-Icing Chemicals

    OpenAIRE

    Raspati, Gema Sakti; Lindseth, Hanna Kristine; Muthanna, Tone Merete; Azrague, Kamal

    2018-01-01

    Organic de-icing chemicals, such as propylene glycol and potassium formate, cause environmental degradation in receiving water if left untreated, due to the high organic load resulting in oxygen depletion. Biofilters are commonly used for the treatment of biodegradable organic carbon in water treatment. This study investigated the potential for using biofilters for treating organic de-icing compounds. Lab-scale adsorption tests using filter media made of crushed clay (Filtralite) and granular...

  8. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale.

    Science.gov (United States)

    Malaj, Egina; von der Ohe, Peter C; Grote, Matthias; Kühne, Ralph; Mondy, Cédric P; Usseglio-Polatera, Philippe; Brack, Werner; Schäfer, Ralf B

    2014-07-01

    Organic chemicals can contribute to local and regional losses of freshwater biodiversity and ecosystem services. However, their overall relevance regarding larger spatial scales remains unknown. Here, we present, to our knowledge, the first risk assessment of organic chemicals on the continental scale comprising 4,000 European monitoring sites. Organic chemicals were likely to exert acute lethal and chronic long-term effects on sensitive fish, invertebrate, or algae species in 14% and 42% of the sites, respectively. Of the 223 chemicals monitored, pesticides, tributyltin, polycyclic aromatic hydrocarbons, and brominated flame retardants were the major contributors to the chemical risk. Their presence was related to agricultural and urban areas in the upstream catchment. The risk of potential acute lethal and chronic long-term effects increased with the number of ecotoxicologically relevant chemicals analyzed at each site. As most monitoring programs considered in this study only included a subset of these chemicals, our assessment likely underestimates the actual risk. Increasing chemical risk was associated with deterioration in the quality status of fish and invertebrate communities. Our results clearly indicate that chemical pollution is a large-scale environmental problem and requires far-reaching, holistic mitigation measures to preserve and restore ecosystem health.

  9. A simple QuEChERS-like extraction approach for molecular chemical characterization of organic aerosols: application to nitrated and oxygenated PAH derivatives (NPAH and OPAH) quantified by GC-NICIMS.

    Science.gov (United States)

    Albinet, A; Nalin, F; Tomaz, S; Beaumont, J; Lestremau, F

    2014-05-01

    An extraction procedure based on the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) approach has been developed and used for analysis of particle-bound nitrated and oxygenated PAH derivatives (NPAH and OPAH, respectively). Several analytical conditions, for example GC injection temperature and MS detection settings, were optimized. This analytical procedure enabled simultaneous GC-NICIMS quantification of 32 NPAH and 32 OPAH (or other oxygenated compounds), including typical components of secondary organic aerosol (SOA) formed by photooxidation of PAH (e.g. 2-formyl-trans-cinnamaldehyde and 6H-dibenzo[b,d]pyran-6-one). The QuEChERS-like approach was optimized, including the nature of the extraction solvent, the sorbent used for clean-up, and extraction time. The final extraction procedure was based on brief mechanical agitation (vortex mixing for 1.5 min), with 7 mL acetonitrile as solvent. Because dispersive solid-phase extraction (d-SPE) did not provide satisfactory results, SPE using SiO2 was selected for sample purification. Identical results were obtained when the QuEChERS-like and traditional pressurised solvent extraction (PLE) procedures were compared for analysis of fortified ambient air particle samples. The procedure was validated by analysis of two aerosol standard reference materials (NIST SRM 1649b (urban dust) and SRM 2787 (fine particulate matter, extraction methods, including PLE, the QuEChERS-like procedure resulted in increased productivity and reduced extraction cost. This paper shows that QuEChERS-like extraction procedures can be suitably adapted for molecular chemical characterization of aerosol samples and could be extended to other categories of compound.

  10. PREDICTING SOIL SORPTION COEFFICIENTS OF ORGANIC CHEMICALS USING A NEURAL NETWORK MODEL

    Science.gov (United States)

    The soil/sediment adsorption partition coefficient normalized to organic carbon (Koc) is extensively used to assess the fate of organic chemicals in hazardous waste sites. Several attempts have been made to estimate the value of Koc from chemical structure ...

  11. Dissolved natural organic matter (NOM) impacts photosynthetic oxygen production and electron transport in coontail Ceratophyllum demersum

    International Nuclear Information System (INIS)

    Pflugmacher, S.; Pietsch, C.; Rieger, W.; Steinberg, C.E.W.

    2006-01-01

    Dissolved natural organic matter (NOM) is dead organic matter exceeding, in freshwater systems, the concentration of organic carbon in all living organisms by far. 80-90% (w/w) of the NOM is made up of humic substances (HS). Although NOM possesses several functional groups, a potential effect on aquatic organisms has not been studied. In this study, direct effects of NOM from various origins on physiological and biochemical functions in the aquatic plant Ceratophyllum demersum are presented. Environmentally relevant concentrations of NOM cause inhibitory effects on the photosynthetic oxygen production of C. demersum. Various NOM sources and the synthetic humic substance HS1500 inhibit the photosynthetic oxygen production of the plant as observed with 1-amino-anthraquinone, a known inhibitor of plant photosynthesis. 1-Aminoanthraquinone may serve as an analogue for the quinoid structures in NOM and HS. Most likely, the effects of NOM may be related to quinoid structures and work downstream of photosynthesis at photosystem (PS) II

  12. Determinants of oxygen and carbon dioxide transfer during extracorporeal membrane oxygenation in an experimental model of multiple organ dysfunction syndrome.

    Science.gov (United States)

    Park, Marcelo; Costa, Eduardo Leite Vieira; Maciel, Alexandre Toledo; Silva, Débora Prudêncio E; Friedrich, Natalia; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Schettino, Guilherme; Azevedo, Luciano Cesar Pontes

    2013-01-01

    Extracorporeal membrane oxygenation (ECMO) has gained renewed interest in the treatment of respiratory failure since the advent of the modern polymethylpentene membranes. Limited information exists, however, on the performance of these membranes in terms of gas transfers during multiple organ failure (MOF). We investigated determinants of oxygen and carbon dioxide transfer as well as biochemical alterations after the circulation of blood through the circuit in a pig model under ECMO support before and after induction of MOF. A predefined sequence of blood and sweep flows was tested before and after the induction of MOF with fecal peritonitis and saline lavage lung injury. In the multivariate analysis, oxygen transfer had a positive association with blood flow (slope = 66, Pmembrane PaCO(2) (slope = -0.96, P = 0.001) and SatO(2) (slope = -1.7, Ptransfer had a positive association with blood flow (slope = 17, Pmembrane PaCO(2) (slope = 1.2, Ptransfers were significantly determined by blood flow. Oxygen transfer was modulated by the pre-membrane SatO(2) and CO(2), while carbon dioxide transfer was affected by the gas flow, pre-membrane CO(2) and hemoglobin.

  13. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  14. Efficacy and safety of a new superficial chemical peel using alpha-hydroxy acid, vitamin C and oxygen for melasma.

    Science.gov (United States)

    Kim, Won-Serk

    2013-02-01

    Facial skin pigmentary disorders can be resistant to conventional treatment. Superficial chemical peel is an effective and safe treatment in pigmentary problems including melasma, post-inflammatory hyperpigmentation and aging spots. To assess the efficacy and safety of new superficial chemical peel (Melasma peel, Theraderm®), this is composed of alpha-hydroxy acid (AHAs), vitamin C and oxygen for melasma. Twenty-five ethnic Korean patients (Fitzpatrick skin phototypes IV and V) with moderate to severe melasma were enrolled. The patients underwent four treatments at 1-2-week intervals for 8 weeks. Clinical improvement was evaluated on a 5-point scale by participants and by the same dermatologist, and adverse effects were checked during the study. Improvement in the degree of pigmentation, pores, and evenness were noted. Significant clinical improvement of hyperpigmentation was evident. No adverse effects were reported. New superficial chemical peel using AHAs, vitamin C and oxygen is an effective and very safe treatment for melasma.

  15. Defence biochemical mechanisms of the organisms against chemical pollution and ionizing radiations

    International Nuclear Information System (INIS)

    Olinescu, Radu

    2001-01-01

    Acute exposure to high concentrations / doses of chemical pollutants and ionizing radiation usually kills giving no chance for survival, if not immediately, than later followed by specific diseases. Fortunately, this acute exposure is accidental, but chronic, low level exposure is also damaging. The involvement of pollution, especially of chemically produced, one in the etiology of several diseases is still under intensive research. Compared to other kinds of pollution (radioactive, microbiological), the chemical one seldom kills suddenly; it acts slowly, silently, by accumulation into the tissues, eventually inducing a failure of certain organ. The body is continuously adapting to low level concentrations of chemicals from environment until a certain threshold. All organisms, including humans, have a limited capacity of resisting the effects of various types of pollutants. Extensive laboratory research, demonstrated that most of damaging organic pollutants cause the formation of free radicals when they penetrate into the body and are metabolized. Free radicals are very reactive and are known to damage tissues with potentially fatal results. Substantial experimental evidence in recent years has demonstrated that all organisms are endowed with versatile, efficient antioxidant systems, that provide protection against the formation or effects of free radicals. However, the antioxidant systems are limited and when their capacity of protection is exceeded, injury resulting in illness or death occurs. In most cases, the harmful effects of chemicals on organisms depend on the biotransformation step, where free radicals are produced as byproducts of the metabolic reactions. The damaging effects of chemical pollutants are mostly restricted to an important organ depending on the way of penetration, nature of the compound and concentration. The organisms possess specific and nonspecific defense systems, which act from the exposure step, with attempt to block the entry of

  16. Oxygen consumption during mineralization of organic compounds in water samples from a small sub-tropical reservoir (Brazil

    Directory of Open Access Journals (Sweden)

    Cunha-Santino Marcela Bianchessi da

    2003-01-01

    Full Text Available Assays were carried out to evaluate the oxygen consumption resulting from mineralization of different organic compounds: glucose, sucrose, starch, tannic acid, lysine and glycine. The compounds were added to 1 l of water sample from Monjolinho Reservoir. Dissolved oxygen and dissolved organic carbon were monitored during 20 days and the results were fitted to first order kinetics model. During the 20 days of experiments, the oxygen consumption varied from 4.5 mg.l-1 (tannic acid to 71.5 mg.l-1 (glucose. The highest deoxygenation rate (kD was observed for mineralization of tannic acid (0.321 day-1 followed by glycine, starch, lysine, sucrose and glucose (0.1004, 0.0504, 0.0486, 0.0251 and 0.0158 day-1, respectively. From theoretical calculations and oxygen and carbon concentrations we obtained the stoichiometry of the mineralization processes. Stoichiometric values varied from 0.17 (tannic acid to 2.55 (sucrose.

  17. Active packaged lamb with oxygen scavenger/carbon dioxide emitter sachet: physical-chemical and microbiological stability during refrigerated storage

    Directory of Open Access Journals (Sweden)

    Marco Antonio Trindade

    2013-09-01

    Full Text Available Lamb meat has been commercialized in Brazil almost exclusively as a frozen product due to the longer shelf life provided by freezing when compared to refrigeration. However, as a result of the current trend of increased demand for convenience products, a need has emerged for further studies to facilitate the marketing of refrigerated lamb cuts. The aim of the present study was to evaluate the contribution of active packaging technology in extending the shelf life of lamb loins (Longissimus lumborum stored under refrigeration (1±1 ° C when compared to the traditional vacuum packaging. For this purpose, two kinds of sachets were employed: oxygen scavenger sachet and oxygen scavenger/carbon dioxide emitter sachet. Experiments were conducted in three treatments: 1 Vacuum (Control, 2 Vacuum + oxygen scavenger sachet and 3 Vacuum + oxygen scavenger/carbon dioxide emitter sachet. Microbiological (counts of anaerobic psychrotrophs, coliform at 45 ° C, coagulase-positive staphylococci, Salmonella and lactic acid bacteria and physical-chemical (thiobarbituric acid reactive substances, objective color, pH value, water loss from cooking and shear force analyses were carried out weekly for a total storage period of 28 days. The experiment was performed three times for all treatments. Results showed that the lamb meat remained stable with respect to the majority of the evaluated physical and chemical indexes and remained within the standards established by Brazilian legislation for pathogenic microorganisms throughout the storage period in all three packaging systems. However, all treatments presented elevated counts of anaerobic psychrotrophic microorganisms and lactic acid bacteria, reaching values above 10(7 CFU/g at 28 days of storage. Thus, under the conditions tested, neither the oxygen scavenger sachet nor the dual function sachet (oxygen scavenger/carbon dioxide emitter were able to extend the shelf life of refrigerated lamb loin when added to this

  18. Analysing impact of oxygen and water exposure on roll-coated organic solar cell performance using impedance spectroscopy

    DEFF Research Database (Denmark)

    Arredondo, B.; Romero, B.; Beliatis, M. J.

    2018-01-01

    In this work we study the degradation of roll-coated flexible inverted organic solar cells in different atmospheres. We demonstrate that impedance spectroscopy is a powerful tool for elucidating degradation mechanisms; it is used here to distinguish the different degradation mechanisms due to water...... and oxygen. Identical cells were exposed to different accelerated degradation environments using water only, oxygen only, and both water and oxygen simultaneously, all of them enhanced with UV light. The photocurrent is dramatically reduced in the oxygen-degraded samples. Impedance measurements indicate...... of degradation differs for the water and oxygen degraded samples. While oxygen + UV light decreases the conductivity of the PEDOT:PSS layer, water + UV light changes the PEDOT:PSS work function inducing a depletion region at the anode....

  19. Toxicity of selected organic chemicals to the earthworm Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.F.; Loehr, R.C.; Malecki, M.R.; Milligan, D.L.; Durkin, P.R.

    A number of methods recently have been developed to biologically evaluate the impact of man's activities on soil ecosystems. Two test methods, the 2-d contact test and the 14-d artificial soil test, were used to evaluate the impact of six major classes of organic chemicals on the earthworm Eisenia fetida (Savigny). Of the organic chemicals tested, phenols and amines were the most toxic to the worms, followed in descending order of toxicity by the substituted aromatics, halogenated aliphatics, polycyclic aromatic hydrocarbons, and phthalates. No relationship was found between earthworm toxicity as determined by the contact test and rat, Rattus norvegicus Berkenhout and mouse, Mus musculus L. LD/sub 50/ values. The physicochemical parameters of water solubility, vapor pressure, and octanol/water partition coefficient for the chemicals tested in the contact test did not show a significant relationship to the E. fetida LC/sub 50/ values. These studies indicate that: (i) earthworms can be a suitable biomonitoring tool to assist in measuring the impact of organic chemicals in wastes added to soils and (ii) contact and artificial soil tests can be useful in measuring biological impacts.

  20. Thermal and mechanical behaviour of oxygen carrier materials for chemical looping combustion in a packed bed reactor

    NARCIS (Netherlands)

    Jacobs, M.; Van Noyen, J.; Larring, Y.; McCann, M.; Pishahang, M.; Amini, S.; Ortiz, M.; Galluci, F.; Sint-Annaland, M. V.; Tournigant, D.; Louradour, E.; Snijkers, F.

    2015-01-01

    Chemical looping combustion (CLC) is a promising carbon capture technology where cyclic reduction and oxidation of a metallic oxide, which acts as a solid oxygen carrier, takes place. With this system, direct contact between air and fuel can be avoided, and so, a concentrated CO2 stream is generated

  1. Acid-resistant organic coatings for the chemical industry: a review

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria Grundahl

    2017-01-01

    Industries that work with acidic chemicals in their processes need to make choices on how to properly contain the substances and avoid rapid corrosion of equipment. Certain organic coatings and linings can be used in such environments, either to protect vulnerable construction materials, or......, in combination with fiber reinforcement, to replace them. However, degradation mechanisms of organic coatings in acid service are not thoroughly understood and relevant quantitative investigations are scarce. This review describes the uses and limitations of acid-resistant coatings in the chemical industry...

  2. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    Science.gov (United States)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1997-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  3. Temperature effect on physical and chemical properties of secondary organic aerosol from m-xylene photooxidation

    Directory of Open Access Journals (Sweden)

    D. R. Cocker III

    2010-04-01

    Full Text Available The chemical and physical differences of secondary organic aerosol (SOA formed at select isothermal temperatures (278 K, 300 K, and 313 K are explored with respect to density, particle volatility, particle hygroscopicity, and elemental chemical composition. A transition point in SOA density, volatility, hygroscopicity and elemental composition is observed near 290–292 K as SOA within an environmental chamber is heated from 278 K to 313 K, indicating the presence of a thermally labile compound. No such transition points are observed for SOA produced at 313 K or 300 K and subsequently cooled to 278 K. The SOA formed at the lowest temperatures (278 K is more than double the SOA formed at 313 K. SOA formed at 278 K is less hydrophilic and oxygenated while more volatile and dense than SOA formed at 300 K or 313 K. The properties of SOA formed at 300 K and 313 K when reduced to 278 K did not match the properties of SOA initially formed at 278 K. This study demonstrates that it is insufficient to utilize the enthalpy of vaporization when predicting SOA temperature dependence.

  4. Computing chemical organizations in biological networks.

    Science.gov (United States)

    Centler, Florian; Kaleta, Christoph; di Fenizio, Pietro Speroni; Dittrich, Peter

    2008-07-15

    Novel techniques are required to analyze computational models of intracellular processes as they increase steadily in size and complexity. The theory of chemical organizations has recently been introduced as such a technique that links the topology of biochemical reaction network models to their dynamical repertoire. The network is decomposed into algebraically closed and self-maintaining subnetworks called organizations. They form a hierarchy representing all feasible system states including all steady states. We present three algorithms to compute the hierarchy of organizations for network models provided in SBML format. Two of them compute the complete organization hierarchy, while the third one uses heuristics to obtain a subset of all organizations for large models. While the constructive approach computes the hierarchy starting from the smallest organization in a bottom-up fashion, the flux-based approach employs self-maintaining flux distributions to determine organizations. A runtime comparison on 16 different network models of natural systems showed that none of the two exhaustive algorithms is superior in all cases. Studying a 'genome-scale' network model with 762 species and 1193 reactions, we demonstrate how the organization hierarchy helps to uncover the model structure and allows to evaluate the model's quality, for example by detecting components and subsystems of the model whose maintenance is not explained by the model. All data and a Java implementation that plugs into the Systems Biology Workbench is available from http://www.minet.uni-jena.de/csb/prj/ot/tools.

  5. Complex organic molecules in organic-poor massive young stellar objects

    DEFF Research Database (Denmark)

    Fayolle, Edith C.; Öberg, Karin I.; Garrod, Robin T.

    2015-01-01

    to search for complex organic molecules over 8-16 GHz in the 1 mm atmospheric window toward three MYSOs with known ice abundances, but without luminous molecular hot cores. Results. Complex molecules are detected toward all three sources at comparable abundances with respect to CH3OH to classical hot core......Context. Massive young stellar objects (MYSOs) with hot cores are classic sources of complex organic molecules. The origins of these molecules in such sources, as well as the small-and large-scale differentiation between nitrogen-and oxygen-bearing complex species, are poorly understood. Aims. We...... aim to use complex molecule abundances toward a chemically less explored class of MYSOs with weak hot organic emission lines to constrain the impact of hot molecular cores and initial ice conditions on the chemical composition toward MYSOs. Methods. We use the IRAM 30 m and the Submillimeter Array...

  6. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    International Nuclear Information System (INIS)

    Takeuchi, N; Ishii, Y; Yasuoka, K

    2012-01-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  7. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    Science.gov (United States)

    Takeuchi, N.; Ishii, Y.; Yasuoka, K.

    2012-02-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  8. Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.

    1993-09-01

    An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: to determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.

  9. A comparison of measured radionuclide release rates from Three Mile Island Unit-2 core debris for different oxygen chemical potentials

    International Nuclear Information System (INIS)

    Baston, V.F.; Hofstetter, K.J.; Ryan, R.F.

    1987-01-01

    Chemical and radiochemical analyses of reactor coolant samples taken during defueling of the Three Mile Island Unit-2 (TMI-2) reactor provide relevant data to assist in understanding the solution chemistry of the radionuclides retained within the TMI-2 reactor coolant system. Hydrogen peroxide was added to various plant systems to provide disinfection for microbial contamination and has provided the opportunity to observe radionuclide release under different oxygen chemical potentials. A comparison of the radionuclide release rates with and without hydrogen peroxide has been made for these separate but related cases, i.e., the fuel transfer canal and connecting spent-fuel pool A with the TMI-2 reactor plenum in the fuel transfer canal, core debris grab sample laboratory experiments, and the reactor vessel fluid and associated core debris. Correlation and comparison of these data indicate a physical parameter dependence (surface-to-volume ratio) affecting all radionuclide release; however, selected radionuclides also demonstrate a chemical dependence release under the different oxygen chemical potentials. Chemical and radiochemical analyses of reactor coolant samples taken during defueling of the Three Mile Island Unit-2 (TMI-2) reactor provide relevant data to assist in understanding the solution chemistry of the radionuclides retained within the TMI-2 reactor coolant system

  10. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments

    Science.gov (United States)

    Kohl, Issaku E.; Asatryan, Rubik; Bao, Huiming

    2012-10-01

    In both laboratory experiments and natural environments where microbial dissimilatory sulfate reduction (MDSR) occurs in a closed system, the δ34S ((34S/32S)sample/(34S/32S)standard - 1) for dissolved SO42- has been found to follow a typical Rayleigh-Distillation path. In contrast, the corresponding δ18O ((18O/16O)sample/(18O/16O)standard) - 1) is seen to plateau with an apparent enrichment of between 23‰ and 29‰ relative to that of ambient water under surface conditions. This apparent steady-state in the observed difference between δ18O and δ18OO can be attributed to any of these three steps: (1) the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO42-, (2) oxygen exchange between sulfite (or other downstream sulfoxy-anions) and water later in the MDSR reaction chain and its back reaction to APS and sulfate, and (3) the re-oxidation of produced H2S or precursor sulfoxy-anions to sulfate in environments containing Fe(III) or O2. This study examines the first step as a potential pathway for water oxygen incorporation into sulfate. We examined the structures and process of APS formation using B3LYP/6-31G(d,p) hybrid density functional theory, implemented in the Gaussian-03 program suite, to predict the potential for oxygen exchange. We conducted a set of in vitro, enzyme-catalyzed, APS formation experiments (with no further reduction to sulfite) to determine the degree of oxygen isotope exchange between the APS-sulfate and water. Triple-oxygen-isotope labeled water was used in the reactor solutions to monitor oxygen isotope exchange between water and APS sulfate. The formation and hydrolysis of APS were identified as potential steps for oxygen exchange with water to occur. Quantum chemical modeling indicates that the combination of sulfate with ATP has effects on bond strength and symmetry of the sulfate. However, these small effects impart little influence on the integrity of the SO42- tetrahedron due to the high activation energy required for

  11. Decomposition of halogenated organic chemicals in ionic liquid by ionizing radiation

    International Nuclear Information System (INIS)

    Kimura, A.; Taguchi, M.; Kojima, T.; Nagaishi, R.; Hiratsuka, H.

    2006-01-01

    Introduction: Halogenated organic chemicals such as polychlorodibenzo-p-dioxin, polychlorobiphenyls and hexachlorobenzene are widely spread in water environment. These pollutants are persistent against advanced oxidation treatments such as ozone/UV, ozone/hydrogen peroxide, ionizing radiation and photocatalysts. The ionizing radiation, however, can also produce homogeneously and quantitatively reducing species in water. On the other hand, room temperature ionic liquids (RTILs) have unique properties such as nonflammable, high polarity, low melting point, hydrophobicity and wide electrochemical window. The combined method of reduction by ionizing radiation and RTILs is investigated as a new environmental conservation technology. Experimental: Chlorophenol (CP) is selected as model chemicals having the main frame of halogenated organic chemicals. Each o - , m - and p-CP were irradiated with 60 Co γ-ray in each diethylmethyl(2-methoxy-ethyl)ammonium bis(trifluoromethylsulfonyl)imide (DEMMA- TFSI), diethylmethyl(2-methoxyethyl)-ammonium tetrafluoroborate (DEMMA-BF4), methanol and ethanol as solvent. Decomposition of CP and formation of irradiation products were studied using HPLC, LC-MS and ion chromatography. Results and discussion: Concentration of CP in each solution decreased as a function of dose. G-value was estimated from the slope at the primary stage of the decomposition curve. The G(-CP) and G(Phenol) were shown in Table 1. G(-CP) in the aliphatic alcohols was 0.21 to 0.37, which is lower than G-value of reducing species in the alcohols, e.g. G=1.0 to 1.5 for solvated electron. Since the rate constant for reaction of CP with hydrated electron is 1.3 x 10 9 mol -1 ·dm 3 ·s -1 , the reverse reaction is considered to attribute. G(-CP) in DEMMA-TFSI or DEMMA-BF4 was about 2 to 3 times higher than that in each alcohol. Lifetime of the reducing species in RTILs would be longer than that in each alcohol. G(-CP) in DEMMA-TFSI decreased by adding acetone or oxygen

  12. Peroxone mineralization of chemical oxygen demand for direct potable water reuse: Kinetics and process control.

    Science.gov (United States)

    Wu, Tingting; Englehardt, James D

    2015-04-15

    Mineralization of organics in secondary effluent by the peroxone process was studied at a direct potable water reuse research treatment system serving an occupied four-bedroom, four bath university residence hall apartment. Organic concentrations were measured as chemical oxygen demand (COD) and kinetic runs were monitored at varying O3/H2O2 dosages and ratios. COD degradation could be accurately described as the parallel pseudo-1st order decay of rapidly and slowly-oxidizable fractions, and effluent COD was reduced to below the detection limit (<0.7 mg/L). At dosages ≥4.6 mg L(-1) h(-1), an O3/H2O2 mass ratio of 3.4-3.8, and initial COD <20 mg/L, a simple first order decay was indicated for both single-passed treated wastewater and recycled mineral water, and a relationship is proposed and demonstrated to estimate the pseudo-first order rate constant for design purposes. At this O3/H2O2 mass ratio, ORP and dissolved ozone were found to be useful process control indicators for monitoring COD mineralization in secondary effluent. Moreover, an average second order rate constant for OH oxidation of secondary effluent organics (measured as MCOD) was found to be 1.24 × 10(7) ± 0.64 × 10(7) M(-1) S(-1). The electric energy demand of the peroxone process is estimated at 1.73-2.49 kW h electric energy for removal of one log COD in 1 m(3) secondary effluent, comparable to the energy required for desalination of medium strength seawater. Advantages/disadvantages of the two processes for municipal wastewater reuse are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. From bioavailability science to regulation of organic chemicals

    NARCIS (Netherlands)

    Ortega-Calvo, J.J.; Harmsen, J.; Parsons, J.R.; Semple, K.T.; Aitkin, M.D.; Ajao, C.; Eadsforth, C.; Galay-Burgos, M.; Naidu, R.; Oliver, R.; Peijnenburg, W.J.G.M.; Römbke, J.; Streck, G.; Versonnen, B.

    2015-01-01

    The bioavailability of organic chemicals in soil and sediment is an important area of scientific investigation for environmental scientists, although this area of study remains only partially recognized by regulators and industries working in the environmental sector. Regulators have recently

  14. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media.

    Science.gov (United States)

    Meunier, Sarah M; Todorovic, Biljana; Dare, Emma V; Begum, Afroza; Guillemette, Simon; Wenger, Andrew; Saxena, Priyanka; Campbell, J Larry; Sasges, Michael; Aucoin, Marc G

    2016-01-01

    Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media.

  15. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    Science.gov (United States)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  16. Where do organic chemicals found in soil systems come from

    International Nuclear Information System (INIS)

    Dragun, J.; Mason, S.A.; Barkach, J.H.

    1991-01-01

    Today's regulatory climate encourages the private sector to assess the environmental condition of their facilities. An environmental assessment often includes the collection of soil samples. Despite the trend to obtain reams of numbers to show the presence of chemicals, many misconceptions exist among environmental scientists and engineers regarding the interpretation of those numbers. The presence of organic chemicals in soil may or may not be problematic. This depends primarily upon the source. If an industrial point source is responsible for the spill or bulk release, then remedial activity usually ensues. However, if the source is not an industrial release, then remedial activity may not be required. This paper will briefly discuss the sources, other than industrial point sources, responsible for the presence of organic chemicals in soil systems

  17. Influence of oxygen gas on characteristics of self-organized luminous pattern formation observed in an atmospheric dc glow discharge using a liquid electrode

    International Nuclear Information System (INIS)

    Shirai, Naoki; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2014-01-01

    Self-organized luminous pattern formation is observed in the liquid surface of an atmospheric dc glow discharge using a liquid electrode with a miniature helium flow. The factors affecting pattern formation are the gap length, discharge current, helium mass flow rate and polarity. The pattern shape depends on the conductivity and temperature of the liquid electrode. A variety of patterns were observed by changing the conductivity and temperature of the liquid. We clarified that the self-organized pattern formation depends on the amount of electronegative gas, such as oxygen, in the gas in the electrode gap. When an oxygen gas flow was fed to the liquid surface from the outside in an obliquely downward direction, namely, the amount of oxygen gas on the liquid surface was increased locally, self-organized pattern formation was observed in the region with the increased amount of oxygen gas. When the amount of oxygen in the gas in the gap was changed by using a sheath flow system, the appearance of the pattern changed. The presence of oxygen gas strongly affected the self-organized pattern formation of the atmospheric dc discharge using a liquid anode. (paper)

  18. TMVOC, simulator for multiple volatile organic chemicals

    International Nuclear Information System (INIS)

    Pruess, Karsten; Battistelli, Alfredo

    2003-01-01

    TMVOC is a numerical simulator for three-phase non-isothermal flow of water, soil gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. It is an extension of the TOUGH2 general-purpose simulation program developed at the Lawrence Berkeley National Laboratory. TMVOC is designed for applications to contamination problems that involve hydrocarbon fuel or organic solvent spills in saturated and unsaturated zones. It can model contaminant behavior under ''natural'' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation. TMVOC is upwards compatible with T2VOC (Falta et al., 1995) and can be initialized from T2VOC-style initial conditions. The main enhancements in TMVOC relative to T2VOC are as follows: a multicomponent mixture of volatile organic chemicals can be modeled; any and all combinations of the three phases water-oil-gas are treated; several non-condensible gases may be present; diffusion is treated in all phases in a manner that is fully coupled with phase partitioning. This paper gives a brief summary of the methodology used in TMVOC as well as highlighting some implementation issues. Simulation of a NAPL spill and subsequent remediation is discussed for a 2-D vertical section of a saturated-unsaturated flow problem

  19. The fate of sulphur in the Cu-based Chemical Looping with Oxygen Uncoupling (CLOU) Process

    International Nuclear Information System (INIS)

    Adánez-Rubio, Iñaki; Abad, Alberto; Gayán, Pilar; García-Labiano, Francisco; Diego, Luis F. de; Adánez, Juan

    2014-01-01

    Highlights: • 15 h of CLOU experiments using lignite were carried out in a continuously unit. • The sulphur split between fuel- and air-reactor streams in the process was analysed. • Most of the sulphur introduced with the fuel exits as SO 2 at the fuel-reactor. • The use of a carbon separation system to reduce the S emission was evaluated. • Coals with high S content can be burnt in a CLOU process with a Cu-based material. - Abstract: The Chemical Looping with Oxygen Uncoupling (CLOU) process is a type of Chemical Looping Combustion (CLC) technology that allows the combustion of solid fuels with air, as with conventional combustion, through the use of oxygen carriers that release gaseous oxygen inside the fuel reactor. The aim of this work was to study the behaviour of the sulphur present in fuel during CLOU combustion. Experiments using lignite as fuel were carried out in a continuously operated 1.5 kW th CLOU unit during more than 15 h. Particles containing 60 wt.% CuO on MgAl 2 O 4 , prepared by spray drying, were used as the oxygen carrier in the CLOU process. The temperature in the fuel reactor varied between 900 and 935 °C. CO 2 capture, combustion efficiency and the sulphur split between fuel and air reactor streams in the process were analysed. Complete combustion of the fuel to CO 2 and H 2 O was found in all experiments. Most of the sulphur introduced with the fuel exited as SO 2 at the fuel reactor outlet, although a small amount of SO 2 was measured at the air reactor outlet. The SO 2 concentration in the air reactor exit flow decreased as the temperature in the fuel reactor increased. A carbon capture efficiency of 97.6% was achieved at 935 °C, with 87.9 wt.% of the total sulphur exiting as SO 2 in the fuel reactor. Both the reactivity and oxygen transport capacity of the oxygen carrier were unaffected during operation with a high sulphur content fuel, and agglomeration problems did not occur. Predictions were calculated regarding the use

  20. Organic chemicals in the environment

    International Nuclear Information System (INIS)

    Anderson, T.A.; Beauchamp, J.J.; Walton, B.T.

    1991-01-01

    Disappearance of 15 volatile and semivolatile organic compounds was determined in a mixture added to two different soil types using experimental procedures to distinguish abiotic losses from biological degradation over a 7-d period. Losses due to volatilization were quantified and mass balances were calculated for each compound. The compounds (methyl ethyl ketone; tetrahydrofuran; chlorobenzene; benzene; chloroform; carbon tetrachloride; p-xylene; 1,2-dichlorobenzene; cis-1,4-dich-loro-2-butene; 1,2,3-trichloropropane; 2-chloronaphthalene; ethylene dibromide; hexachlorobenzene; nitrobenzene; and toluene) were applied to the soil in a mixture such that the concentration of each chemical was 100 mg/kg soil (dry wt.). Apparent half-lives for the 15 organic compounds ranged from 14 C-toluene, were unsuccessful. Nonreversible sorption and preanalysis storage conditions were considered as contributors to this inability to achieve a mass balance. On the basis of these results, the authors strongly advise positive accounting for all test compounds and degradation products at the conclusion of studies involving volatile and semivolatile compounds

  1. Characterization of nano-bubbles as an oxygen carrier for in-situ bioremediation of organic pollutants in the subsurface

    Science.gov (United States)

    KIM, E.; Jung, J.; Kang, S.; Choi, Y.

    2016-12-01

    In-situ bioremediation using bubbles as an oxygen carrier has shown its applicability for aerobic biodegradation of organic pollutants in the subsurface. By recent progresses, generation of nano-sized bubbles is possible, which have enhanced oxygen transfer efficiencies due to their high interfacial area and stability. We are developing an in-situ bioremediation technique using nano-bubbles as an oxygen carrier. In this study, nano-bubbles were characterized for their size and oxygen supply capacity. Nano-bubbles were generated with pure oxygen and pure helium gas. The stable nano-bubbles suspended in water were sonicated to induce the bubbles to coalesce, making them to rise and be released out of the water. By removing the bubbles, the water volume was decreased by 0.006%. The gas released from the bubble suspension was collected to measure the amount of gas in the nano-bubbles. For sparingly soluble helium gas 17.9 mL/L was released from the bubble suspension, while for oxygen 46.2 mL/L was collected. For the oxygen nano-bubble suspension, it is likely that the release of dissolved oxygen (DO) contributed to the collected gas volume. After removing the oxygen nano-bubbles, 36.0 mg/L of DO was still present in water. Altogether, the oxygen nano-bubble suspension was estimated to have 66.2 mg/L of oxygen in a dissolved form and 25.6 mg/L as nano-bubbles. A high DO level in the water was possible because of their large Laplace pressure difference across the fluid interface. Applying Young-Laplace equation and ideal gas law, the bubble diameter was estimated to be approximately 10 nm, having an internal pressure of 323 atm. Considering the saturation DO of 8.26 mg/L for water in equilibrium with the atmosphere, the total oxygen content of 91.8 mg/L in the nano-bubble suspension suggests its great potential as an oxygen carrier. Studies are underway to verify the enhanced aerobic biodegradation of organic pollutants in soils by injecting nano-bubble suspensions.

  2. A quantum-chemical study of oxygen-vacancy defects in PbTiO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids [Laboratorio de Fisica, Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)]. E-mail: arvids@utpl.edu.ec; Serrano, Sheyla [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador); Escuela de Ingenierias, Universidad Politecnica Salesiana, Campus Sur, Rumichaca s/n y Moran Valverde, Apartado 17-12-536, Quito (Ecuador); Medina, Paul [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador)

    2006-05-31

    Investigation of an oxygen vacancy and F center in the cubic and tetragonal lattices of PbTiO{sub 3} crystals is done by means of quantum-chemical simulations. Displacements of defect-surrounding atoms, electronic and optical properties, lattice relaxation energies and some new effects due to the defects presence are reported and analyzed. A comparison with similar studies is made and conclusions are drawn on the basis of the obtained results.

  3. Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Shuang [State Key Laboratory of Environmental Criteria and Risk Assessment (China); Research Academy of Environmental Sciences, Beijing 100012 (China); Shu, Yun [Research Academy of Environmental Sciences, Beijing 100012 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Tian, Gang; Huang, Jiayu [Research Academy of Environmental Sciences, Beijing 100012 (China); Zhang, Fan, E-mail: zhangfan5188@vip.sina.com [Research Academy of Environmental Sciences, Beijing 100012 (China)

    2016-01-15

    Highlights: • Chlorine and fluorine are present mainly in an inorganic form on ash. • Correlations of carbon–oxygen complexes with mercury retention are established. • Concentrations of carbon–oxygen complexes on ash are related to coal type. • No effect of fluorine on mercury retention is observed. • Chlorine, fluorine and carbon in ash are enriched on surface. - Abstract: Fly ashes recovered from the particulate control devices at six pulverized coal boiler unites of China, are studied using an X-ray photoelectron spectroscopy (XPS) with a particular focus on the functionalities of fluorine (F), chlorine (Cl), carbon and oxygen on fly ash. It is found that the inorganic forms of F and Cl are predominant on the ash surface in comparison with their organics, and the proportion of organic Cl is relatively higher than that of organic F. Similar results are also obtained in the bulk by correlating the F and Cl contents with those of the unburnt carbon and other compositions in ash. Strong correlations of mercury retention with surface carbon–oxygen functional groups indicate that the C=O, OH/C−O and (O−C=O)−O on surface are of significant importance for mercury retention in fly ash. Their surface concentrations are related to coal type. The presence of Cl in fly ash helps with mercury retention. No obvious effect of F is observed.

  4. Persufflation (or gaseous oxygen perfusion) as a method of organ preservation.

    Science.gov (United States)

    Suszynski, Thomas M; Rizzari, Michael D; Scott, William E; Tempelman, Linda A; Taylor, Michael J; Papas, Klearchos K

    2012-06-01

    Improved preservation techniques have the potential to improve transplant outcomes by better maintaining donor organ quality and by making more organs available for allotransplantation. Persufflation, (PSF, gaseous oxygen perfusion) is potentially one such technique that has been studied for over a century in a variety of tissues, but has yet to gain wide acceptance for a number of reasons. A principal barrier is the perception that ex vivo PSF will cause in vivo embolization post-transplant. This review summarizes the extensive published work on heart, liver, kidney, small intestine and pancreas PSF, discusses the differences between anterograde and retrograde PSF, and between PSF and other conventional methods of organ preservation (static cold storage, hypothermic machine perfusion). Prospective implications of PSF within the broader field of organ transplantation, and in the specific application with pancreatic islet isolation and transplant are also discussed. Finally, key issues that need to be addressed before PSF becomes a more widely utilized preservation strategy are summarized and discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. The Pathway for Oxygen: Tutorial Modelling on Oxygen Transport from Air to Mitochondrion: The Pathway for Oxygen.

    Science.gov (United States)

    Bassingthwaighte, James B; Raymond, Gary M; Dash, Ranjan K; Beard, Daniel A; Nolan, Margaret

    2016-01-01

    The 'Pathway for Oxygen' is captured in a set of models describing quantitative relationships between fluxes and driving forces for the flux of oxygen from the external air source to the mitochondrial sink at cytochrome oxidase. The intervening processes involve convection, membrane permeation, diffusion of free and heme-bound O2 and enzymatic reactions. While this system's basic elements are simple: ventilation, alveolar gas exchange with blood, circulation of the blood, perfusion of an organ, uptake by tissue, and consumption by chemical reaction, integration of these pieces quickly becomes complex. This complexity led us to construct a tutorial on the ideas and principles; these first PathwayO2 models are simple but quantitative and cover: (1) a 'one-alveolus lung' with airway resistance, lung volume compliance, (2) bidirectional transport of solute gasses like O2 and CO2, (3) gas exchange between alveolar air and lung capillary blood, (4) gas solubility in blood, and circulation of blood through the capillary syncytium and back to the lung, and (5) blood-tissue gas exchange in capillaries. These open-source models are at Physiome.org and provide background for the many respiratory models there.

  6. Productivity variations, oxygen minimum zone and their impact on organic enrichment in the sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.

    of Somalia, the Arabian Peninsula, Iran, Pakistan and Eastern and Western shelves of India (except a part of inner shelf), irrespective of primary productivity variation (Fig. 3), is mainly ascribed to decomposition of organic matter in contact.... Nevertheless, moderate to very high concentrations of organic carbon (Fig. 1) are invariably associated with the entire slope sediments, forming a long and wide band in contact with oxygen minima from Saurashtra to the southern tip of India. It may...

  7. Chemical, green and organic manure effects on chemical properties on a savannah oxisol and on corn under conventional tillage and no-tillage

    Science.gov (United States)

    Mannigel, Anny R.; Alves, Marlene C.; Valério Filho, Walter V.

    2015-04-01

    Modern agriculture, in general, has always been based on the concept that natural resources are endless; however, this concept is changing. Concern for the environment is increasingly becoming part of farming practices, either by the awareness of society, or because the high cost of fertilizers or even the exhaustion of soils. The objective of this research was to evaluate the effects of the green manure and mineral fertilizer and/or organic manure and, on the chemical properties of an Oxisol, on "Savannah" (cerrado) area in Mato Grosso do Sul-Brazil, cultivated with corn (Zea mays L.) on the following management conditions: no-tillage and conventional tillage, on area previously under pasture (Brachiaria decumbens). The experimental design was a randomized blocks and the tested treatments were: control (without organic manure or chemical fertilizer); chemical fertilizer, as recommended for the culture and based on the chemical soil analysis; organic manure (cow manure); organic manure + half of the mineral fertilizer recommended rate; and the green manure Crotalaria juncea and Pennisetum americanum. The chemical analyses were the soil chemical analysis to the intent of soil fertility. Corn yield was evaluated. The collect of soil samples were realized in depths of 0.00-0.05 m and 0.05-0.10 m and 0.10-0.20 m. The organic manure and the organic manure + half of the mineral recommended rate increased P, Ca, Mg, K and Organic Matter in the first depth (0.00 - 0.05 m). These treatments also increased K and Mg at the second depth analyzed (0.05 - 0.10 m) and K in the depth from 0.10 - 0.20 m. Under conventional tillage management presents better crop results with an average grain yield of 3649 kg ha-1 versus 2374 kg ha-1 obtained under no-tillage. The use of chemical fertilizer, organic manure + half of the mineral recommended rate, Crotalaria juncea, organic manure and Pennisetum americanum increased corn yield by 84, 79, 58, 44 and 41 %, respectively.

  8. Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston

    Directory of Open Access Journals (Sweden)

    E. C. Wood

    2010-09-01

    Full Text Available Many recent models underpredict secondary organic aerosol (SOA particulate matter (PM concentrations in polluted regions, indicating serious deficiencies in the models' chemical mechanisms and/or missing SOA precursors. Since tropospheric photochemical ozone production is much better understood, we investigate the correlation of odd-oxygen ([Ox]≡[O3]+[NO2] and the oxygenated component of organic aerosol (OOA, which is interpreted as a surrogate for SOA. OOA and Ox measured in Mexico City in 2006 and Houston in 2000 were well correlated in air masses where both species were formed on similar timescales (less than 8 h and not well correlated when their formation timescales or location differed greatly. When correlated, the ratio of these two species ranged from 30 μg m−3/ppm (STP in Houston during time periods affected by large petrochemical plant emissions to as high as 160 μg m−3/ppm in Mexico City, where typical values were near 120 μg m−3/ppm. On several days in Mexico City, the [OOA]/[Ox] ratio decreased by a factor of ~2 between 08:00 and 13:00 local time. This decrease is only partially attributable to evaporation of the least oxidized and most volatile components of OOA; differences in the diurnal emission trends and timescales for photochemical processing of SOA precursors compared to ozone precursors also likely contribute to the observed decrease. The extent of OOA oxidation increased with photochemical aging. Calculations of the ratio of the SOA formation rate to the Ox production rate using ambient VOC measurements and traditional laboratory SOA yields are lower than the observed [OOA]/[Ox] ratios by factors of 5 to 15, consistent with several other models' underestimates of SOA. Calculations of this ratio using emission factors for organic compounds from gasoline and diesel exhaust do not reproduce the observed

  9. Chemical Characteristics of Organic Aerosols in Shanghai: A Study by Ultrahigh-Performance Liquid Chromatography Coupled With Orbitrap Mass Spectrometry

    Science.gov (United States)

    Wang, Xinke; Hayeck, Nathalie; Brüggemann, Martin; Yao, Lei; Chen, Hangfei; Zhang, Ci; Emmelin, Corinne; Chen, Jianmin; George, Christian; Wang, Lin

    2017-11-01

    Particulate matter 2.5 (PM2.5) filter samples were collected in July and October 2014 and January and April 2015 in urban Shanghai and analyzed using ultrahigh-performance liquid chromatography coupled to Orbitrap mass spectrometry. The measured chromatogram-mass spectra were processed by a nontarget screening approach to identify significant signals. In total, 810-1,510 chemical formulas of organic compounds in the negative polarity (negative electrospray ionization (ESI-)) and 860-1,790 in the positive polarity (ESI+), respectively, were determined. The chemical characteristics of organic aerosols (OAs) in Shanghai varied among different months and between daytime and nighttime. In the January samples, organics were generally richer in terms of both number and abundance, whereas those in the July samples were far lower. More CHO- (compounds containing only carbon, hydrogen, and oxygen and detected in ESI-) and CHOS- (sulfur-containing organics) were found in the daytime samples, suggesting a photochemical source, whereas CHONS- (nitrogen- and sulfur-containing organics) were more abundant in the nighttime samples, due to nocturnal nitrate radical chemistry. A significant number of monocyclic and polycyclic aromatic compounds, and nitrogen- and sulfur-containing heterocyclic compounds, were detected in all samples, indicating that biomass burning and fossil fuel combustion made important contributions to the OAs in urban Shanghai. Additionally, precursor-product pair analysis indicates that the epoxide pathway is an important formation route for organosulfates observed in Shanghai. Moreover, a similar analysis suggests that 35-57% of nitrogen-containing compounds detected in ESI+ could be formed through reactions between ammonia and carbonyls. Our study presents a comprehensive overview of OAs in urban Shanghai, which helps to understand their characteristics and sources.

  10. ESTIMATION OF INDUSTRIAL WASTE SAFETY BY THE “CHEMICAL OXYGEN DEMAND” INDEX

    Directory of Open Access Journals (Sweden)

    A. S. Kayshev

    2015-01-01

    Full Text Available One of the indices of industrial waste safety including distillers grains is chemical oxygen demand (COD, and its value (53591÷64184 mg O/dm3 shows that it can be considered as unsustainable waste. This high value of COD is conditioned by the absence of toxins in distillers grains, and by concentration of biologically active substances after which isolation the distillers grains index lowers by 74%. This allows considering the distillers grains as environmentally safe. The results received evidence the necessity for consideration of COD index only as an index of oxidized substances, but not the criteria of waste pollution.

  11. Formation of highly oxygenated organic molecules from aromatic compounds

    Science.gov (United States)

    Molteni, Ugo; Bianchi, Federico; Klein, Felix; El Haddad, Imad; Frege, Carla; Rossi, Michel J.; Dommen, Josef; Baltensperger, Urs

    2018-02-01

    Anthropogenic volatile organic compounds (AVOCs) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs) with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl). We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  12. Formation of highly oxygenated organic molecules from aromatic compounds

    Directory of Open Access Journals (Sweden)

    U. Molteni

    2018-02-01

    Full Text Available Anthropogenic volatile organic compounds (AVOCs often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs, such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene and ethylbenzene, as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl. We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  13. Effect of Various Organic Fertilizers Substitute Chemical Fertilizer on Cucumber Productions

    International Nuclear Information System (INIS)

    Piadang, Nattayana; Ratanapanit, Sittisuk; Chaowanklang, Pratuang; Ratanapanit; Nadtinee; Jaipakdee, Putinee; Ongsakitboriboon

    2006-09-01

    The effect of using the various organic fertilizer to substitute on the chemical fertilizer on cucumber, was carried out at Tambol Pattananikom, Amphur Pattananikom, Lopburi, Thailand, from December 1, 2005 to February 1, 2006 By using Randomized Comp let Block Design (RCBD), Contain with 4 treatments, chemical fertilizer: 16-16-16: 40 Kg/rai (Control), Pillet organic fertilizer: 50 Kg/rai, Bio extract from cow milk: 300 cc./ water 20 Ltr,.+ compost mixed in soil and bio fertilizer from the office of Atomic Energy Peace : 300 cc./water 20 Ltr. + campost mixed in soil (15 m. 2 /plot) were compared. Experiment result indicate that there were no significant differences on the yield. The highest yield of 25.91 kg/plot (27663.73 kg/rai) was obtained from chemical fertilizer, Fertilizer, followed by pillet organic fertilizer 22.88 kg/plot (2440.53 kg/rai), bio fertilizer 22.34 kg/pot (2382.93 kg/rai) and bio extract 19.03 kg/plot) (2029.87 kg/rai.

  14. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes

    Science.gov (United States)

    Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen

    2017-06-01

    Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ~3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries.

  15. Investigating Photosensitized Properties of Natural Organic Matter and Effluent Organic Matter

    KAUST Repository

    Niu, Xi-Zhi

    2013-05-01

    The photosensitized processes significantly enhance photolysis of various chemicals in the aqueous system with dissolved organic matter (DOM) as sensitizer. The excitation of chromophores on the DOM molecule further generates reactive species as triplet states DOM, singlet oxygen, hydroxyl radical, carbonate radical etc. We investigated the photosensitization properties of Beaufort Fulvic Acid, Suwannee River Fulvic Acid, South Platte River Fulvic Acid, and Jeddah wastewater treatment plant effluent organic matter with a sunlight simulator. DOM photochemical properties were characterized by observing their performances in 3DOM*, singlet oxygen, hydroxyl radical production with indirect probing protocols. Sensitized degradation of 0.1 μM and 0.02 μM 2, 4, 6- Trimethylphenol exhibited higher pseudo-first-order rate constant than that of 10 μM. Pre-irradiated DOMs were found to be depressed in photochemical properties. Photolysis of 5 different contaminants: ibuprofen, bisphenol A, acetaminophen, cimetidine, and caffeine were found to be enhanced in the presence of sensitizers. The possible reaction pathways were revealed. Long time irradiance induced change in contaminants degradation kinetics in some DOM solutions, which was proposed to be due to the irradiation initiated indirect transformation of DOMs. Key Words: Photolysis Dissolved Organic Matter, Triplet State DOM, Singlet Oxygen, Hydroxyl Radical, Contaminants Degradation.

  16. Emission and chemistry of organic compounds from biomass burning: measurements from an iodide time-of-flight chemical ionization mass spectrometer (I- ToF-CIMS) during the FIREX FireLab 2016 intensive

    Science.gov (United States)

    Yuan, B.; Krechmer, J. E.; Warneke, C.; Coggon, M.; Koss, A.; Lim, C. Y.; Selimovic, V.; Gilman, J.; Lerner, B. M.; Stark, H.; Kang, H.; Jimenez, J. L.; Yokelson, R. J.; Liggio, J.; Roberts, J. M.; Kroll, J. H.; De Gouw, J. A.

    2017-12-01

    Biomass burning can emit large amounts of many different organic compounds to the atmosphere. The emission strengths of these emitted organic compounds and their subsequent atmospheric chemistry are not well known. In this study, we deployed a time-of-flight chemical ionization mass spectrometer using iodide as reagent ions (Iodide ToF-CIMS) to measure direct emissions of organic compounds during the FIREX laboratory 2016 intensive in the USDA Fire Sciences Lab in Missoula, MT. An interpretation of the I­- TOF-CIMS mass spectra from biomass burning emissions will be presented. The dependence of the emissions of selected organic compounds with fuel types, combustion efficiency and fuel chemical compositions will be discussed. The I- TOF-CIMS also measured aged biomass burning smoke from a small smog chamber and an oxidative flow reactor (OFR). The I- TOF-CIMS consistently observed much higher signals of highly oxygenated organic compounds in the aged biomass burning smoke than in fresh emissions, indicative of strong secondary formation of these organic compounds in biomass burning plumes.

  17. Transport and Fate of Volatile Organic Chemical in Soils

    DEFF Research Database (Denmark)

    Petersen, Lis Wollesen

    Recently much attention has been paid to the behavior of volatile organic chemicals (VOCs) in the environment. This is due to the fact that the environmental pollution with these hazardous chemicals has drastically increased during the last decades. The present study is limited to consider...... the transport and fate of VOCs in the gaseous phase, thus contributing to the overall understanding of VOCs behavior in soil, which eventually will facilitate future cleanup....

  18. Integrating the Fenton's Process with Biofiltration by to Reduce Chemical Oxygen Demand of Winery Effluents.

    Science.gov (United States)

    Pipolo, Marco; Martins, Rui C; Quinta-Ferreira, Rosa M; Costa, Raquel

    2017-03-01

    The discharge of poorly decontaminated winery wastewater remains a serious environmental problem in many regions, and the industry is welcoming improved treatment methods. Here, an innovative decontamination approach integrating Fenton's process with biofiltration by Asian clams is proposed. The potential of this approach was assessed at the pilot scale using real effluent and by taking an actual industrial treatment system as a benchmark. Fenton peroxidation was observed to remove 84% of the effluent's chemical oxygen demand (COD), reducing it to 205 mg L. Subsequent biofiltration decreased the effluent's COD to approximately zero, well below the legal discharge limit of 150 mg L, in just 3 d. The reduction of the effluent's organic load through Fenton's process did not decrease its toxicity toward , but the effluent was much less harmful after biofiltration. The performance of the treatment proposed exceeded that of the integrated Fenton's process-sequencing batch reactor design implemented in the winery practice, where a residence time of around 10 d in the biological step typically results in 80 to 90% of COD removal. The method proposed is effective and compatible with typical winery budgets and potentially contributes to the management of a nuisance species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Evaluation of dissolved oxygen and organic substances concentrations in water of the nature reserve Alluvium Zitavy

    International Nuclear Information System (INIS)

    Palaticka, A.; Noskovic, J.; Babosova, M.

    2007-01-01

    In 2006 concentrations of dissolved oxygen and organic substances were evaluated in water in the Nature Reserve Alluvium Zitavy (indirect method based on their oxidation by K 2 Cr 2 0 7 was used). The results are represented in mg of O 2 · dm -3 . Taking of samples took place in 6 sampling sites in regular month intervals. Based on obtained data and according to the standard STN 75 7221 (Water quality -The classification of the water surface quality) water in individual sampling sites was ranked into the classes of the .water surface quality. From the data it is clear that the concentrations of dissolved oxygen and organic substances in the Nature Reserve Alluvium Zitavy changed in dependence on sampling sites and time. The highest mean concentrations of dissolved oxygen in dependence on sampling time were found out in spring months and the lowest concentrations in summer months. They ranged from 1.6 mg 0 2 · dm -3 (July) to 9.0 mg O 2 · dm -3 (March). Falling dissolved oxygen values can be related to successive increase of water temperature, thus good conditions were created for decomposition of organic matter by microorganisms in water and sediments in which they use dissolved oxygen. In dependence on sampling place the highest mean concentration of dissolved oxygen was in sampling site No. 4 (6.0 mg 0 2 · dm -3 ) which is situated in the narrowest place in the NR. The lowest value was in sampling site No. 2 (3.6 mg 0 2 · dm -3 ) which is a typical wetland ecosystem. High mean values of COD Cr in dependence on sampling time were determined in summer months and low values during winter moths. Dependence of COD Cr values on sampling site was also manifested. The lowest mean value was obtained in sampling site No. 4 (59.5 mg · dm -3 ) and the highest value in sampling site No. 5 (97.1 mg · dm -3 ) which is also a typical wetland. Based on the results and according to the STN 75 7221 we ranked water in all sampling sites into the 5 th class of the water

  20. A new fibre optic pulse oximeter probe for monitoring splanchnic organ arterial blood oxygen saturation.

    Science.gov (United States)

    Hickey, M; Samuels, N; Randive, N; Langford, R; Kyriacou, P A

    2012-12-01

    A new, continuous method of monitoring splanchnic organ oxygen saturation (SpO(2)) would make the early detection of inadequate tissue oxygenation feasible, reducing the risk of hypoperfusion, severe ischaemia, and, ultimately, death. In an attempt to provide such a device, a new fibre optic based reflectance pulse oximeter probe and processing system were developed followed by an in vivo evaluation of the technology on seventeen patients undergoing elective laparotomy. Photoplethysmographic (PPG) signals of good quality and high signal-to-noise ratio were obtained from the small bowel, large bowel, liver and stomach. Simultaneous peripheral PPG signals from the finger were also obtained for comparison purposes. Analysis of the amplitudes of all acquired PPG signals indicated much larger amplitudes for those signals obtained from splanchnic organs than those obtained from the finger. Estimated SpO(2) values for splanchnic organs showed good agreement with those obtained from the finger fibre optic probe and those obtained from a commercial device. These preliminary results suggest that a miniaturized 'indwelling' fibre optic sensor may be a suitable method for pre-operative and post-operative evaluation of splanchnic organ SpO(2) and their health. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Comparative toxicity of ten organic chemicals to four earthworm species

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.F.; Durkin, P.R.; Malecki, M.R.; Anatra, M.

    1986-01-01

    Ten organic chemicals were tested for toxicity to four earthworm species: Allolobophora tuberculata, Eisenia fetida, Eudrilus eugeniae and Perionyx excavatus, using the European Economic Community's (EEC) earthworm artificial soil and contact testing procedure. The phenols were the most toxic chemicals tested, followed by the amine, substituted benzenes, halogenated aliphatic hydrocarbon, polycyclic aromatic hydrocarbon and phthalate as the least toxic chemical tested. Correlations among species within each type of test for a given chemical were extremely high, suggesting that the selection of earthworm test species does not markedly affect the assessment of a chemical's toxicity. The correlation between the two tests was low for all test species. The contact test LC50 for a given chemical cannot be directly correlated to an artificial soil test LC50 for the same earthworm species.

  2. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring

    International Nuclear Information System (INIS)

    Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth

    2013-01-01

    Graphical abstract: -- Highlights: •Novel simply-fabricated all-organic electronics pH and oxygen optical monitor. •Excitation sources: directionally emitting, narrowed multicolor microcavity OLEDs. •Photodetectors: small molecule- or polymer-based with selective spectral responses. •Sensor film: structured high molecular weight polystyrene:polyethylene glycol blend. •×1.9 sensitivity enhancement and ×2.7 increase in the photoluminescence for oxygen. -- Abstract: Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs’ broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ∼20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ 0 /τ 100 (PL decay time τ at 0% O 2 /τ at 100% O 2 ) that is often used to express S

  3. Could a secular increase in organic burial explain the rise of oxygen? Insights from a geological carbon cycle model constrained by the carbon isotope record

    Science.gov (United States)

    Krissansen-Totton, J.; Kipp, M.; Catling, D. C.

    2017-12-01

    The stable isotopes of carbon in marine sedimentary rock provide a window into the evolution of the Earth system. Conventionally, a relatively constant carbon isotope ratio in marine sedimentary rocks has been interpreted as implying constant organic carbon burial relative to total carbon burial. Because organic carbon burial corresponds to net oxygen production from photosynthesis, it follows that secular changes in the oxygen source flux cannot explain the dramatic rise of oxygen over Earth history. Instead, secular declines in oxygen sink fluxes are often invoked as causes for the rise of oxygen. However, constant fractional organic burial is difficult to reconcile with tentative evidence for low phosphate concentrations in the Archean ocean, which would imply lower marine productivity and—all else being equal—less organic carbon burial than today. The conventional interpretation of the carbon isotope record rests on the untested assumption that the isotopic ratio of carbon inputs into the ocean reflect mantle isotopic values throughout Earth history. In practice, differing rates of carbonate and organic weathering will allow for changes in isotopic inputs, as suggested by [1] and [2]. However, these inputs can not vary freely because large changes in isotopic inputs would induce secular trends in carbon reservoirs, which are not observed in the isotope record. We apply a geological carbon cycle model to all Earth history, tracking carbon isotopes in crustal, mantle, and ocean reservoirs. Our model is constrained by the carbon isotope record such that we can determine the extent to which large changes in organic burial are permitted. We find both constant organic burial and 3-5 fold increases in organic burial since 4.0 Ga can be reconciled with the carbon isotope record. Changes in the oxygen source flux thus need to be reconsidered as a possible contributor to Earth's oxygenation. [1] L. A. Derry, Organic carbon cycling and the lithosphere, in Treatise on

  4. An approach to fabricating chemical sensors based on ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Park, Jae Young; Song, Dong Eon; Kim, Sang Sub

    2008-01-01

    Vertically and laterally aligned ZnO nanorod arrays were synthesized on Pt-coated Si substrates by catalyst-free metal organic chemical vapor deposition. An approach to fabricating chemical sensors based on the nanorod arrays using a coating-and-etching process with a photo-resist is reported. Tests of the devices as oxygen gas sensors have been performed. Our results demonstrate that the approach holds promise for the realization of sensitive and reliable nanorod array chemical sensors

  5. Combined organic matter and nitrogen removal from a chemical industry wastewater in a two-stage MBBR system.

    Science.gov (United States)

    Cao, S M S; Fontoura, G A T; Dezotti, M; Bassin, J P

    2016-01-01

    Pesticide-producing factories generate highly polluting wastewaters containing toxic and hazardous compounds which should be reduced to acceptable levels before discharge. In this study, a chemical industry wastewater was treated in a pre-denitrification moving-bed biofilm reactor system subjected to an increasing internal mixed liquor recycle ratio from 2 to 4. Although the influent wastewater characteristics substantially varied over time, the removal of chemical oxygen demand (COD) and dissolved organic carbon was quite stable and mostly higher than 90%. The highest fraction of the incoming organic matter was removed anoxically, favouring a low COD/N environment in the subsequent aerobic nitrifying tank and thus ensuring stable ammonium removal (90-95%). However, during pH and salt shock periods, nitrifiers were severely inhibited but gradually restored their full nitrifying capability as non-stressing conditions were reestablished. Besides promoting an increase in the maximum nitrification potential of the aerobic attached biomass from 0.34 to 0.63 mg [Formula: see text], the increase in the internal recycle ratio was accompanied by an increase in nitrogen removal (60-78%) and maximum specific denitrification rate (2.7-3.3 mg NOx(-)--N). Total polysaccharides (PS) and protein (PT) concentrations of attached biomass were observed to be directly influenced by the influent organic loading rate, while the PS/PT ratio mainly ranged from 0.3 to 0.5. Results of Microtox tests showed that no toxicity was found in the effluent of both the anoxic and aerobic reactors, indicating that the biological process was effective in removing residual substances which might adversely affect the receiving waters' ecosystem.

  6. Evaluation of the performance of high temperature conversion reactors for compound-specific oxygen stable isotope analysis.

    Science.gov (United States)

    Hitzfeld, Kristina L; Gehre, Matthias; Richnow, Hans-Hermann

    2017-05-01

    In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS 18 O/ 16 O monitoring for future method development is proposed.

  7. Electrical conductivity and oxygen exchange kinetics of La2NiO4+delta thin films grown by chemical vapor deposition

    DEFF Research Database (Denmark)

    Garcia, G.; Burriel, M.; Bonanos, Nikolaos

    2008-01-01

    Epitaxial c-axis oriented La2NiO4+delta films were deposited onto SrTiO3 and NdGaO3 substrates by the pulsed injection metal organic chemical vapor deposition technique. Experimental conditions were optimized in order to accurately control the composition, thickness, and texture of the layers. X......-ray diffraction was used to confirm the high crystalline quality of the obtained material. Electrical characterizations were performed on thin (50 nm) and thick (335 nm) layers. The total specific conductivity, which is predominantly electronic, was found to be larger for the thinner films measured (50 nm......), probably due to the effect of the strain present in the layers. Those thin films (50 nm) showed values even larger than those observed for single crystals and, to our knowledge, are the largest conductivity values reported to date for the La2NiO4+delta material. The oxygen exchange kinetics was studied...

  8. Kinetics of oxygen uncoupling of a copper based oxygen carrier

    International Nuclear Information System (INIS)

    Hu, Wenting; Donat, Felix; Scott, S.A.; Dennis, J.S.

    2016-01-01

    Highlights: • The kinetics of a Cu-based oxygen carrier was determined using a TGA. • A diffusion model was applied to remove mass transfer effects from rate parameters. • Thermodynamics are separated from kinetics, usually difficult for the CLOU reaction. • The rate parameters correctly described the behaviour in a fluidised bed. • The rate parameters can be used to predict performance of large CLOU systems. - Abstract: Here, an oxygen carrier consisting of 60 wt% CuO supported on a mixture of Al_2O_3 and CaO (23 wt% and 17 wt% respectively) was synthesised by wet-mixing powdered CuO, Al(OH)_3 and Ca(OH)_2, followed by calcination at 1000 °C. Its suitability for chemical looping with oxygen uncoupling (CLOU) was investigated. After 25 repeated redox cycles in either a thermogravimetric analyser (TGA) or a laboratory-scale fluidised bed, (with 5 vol% H_2 in N_2 as the fuel, and air as the oxidant) no significant change in either the oxygen uncoupling capacity or the overall oxygen availability of the carrier was found. In the TGA, it was found that the rate of oxygen release from the material was controlled by intrinsic chemical kinetics and external transfer of mass from the surface of the particles to the bulk gas. By modelling the various resistances, values of the rate constant for the decomposition were obtained. The activation energy of the reaction was found to be 59.7 kJ/mol (with a standard error of 5.6 kJ/mol) and the corresponding pre-exponential factor was 632 m"3/mol/s. The local rate of conversion within a particle was assumed to occur either (i) by homogeneous chemical reaction, or (ii) in uniform, non-porous grains, each reacting as a kinetically-controlled shrinking core. Upon cross validation against a batch fluidised bed experiment, the homogeneous reaction model was found to be more plausible. By accurately accounting for the various artefacts (e.g. mass transfer resistances) present in both TGA and fluidised bed experiments, it was

  9. Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.

    Science.gov (United States)

    Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L

    2017-08-01

    Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    Science.gov (United States)

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.

  11. Mechanism of pulse discharge production of iodine atoms from CF3I molecules for a chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2009-01-01

    The pulsed chemical oxygen-iodine laser (COIL) development is aimed at many new applications. Pulsed electric discharge is most effective in turning COIL operation into the pulse mode by instant production of iodine atoms. A numerical model is developed for simulations of the pulsed COIL initiated by an electric discharge. The model comprises a system of kinetic equations for neutral and charged species, electric circuit equation, gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are found by solving the electron Boltzmann equation, which is re-calculated in a course of computations when plasma parameters changed. The processes accounted for in the Boltzmann equation include excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions, second-kind collisions and stepwise excitation of molecules. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. Results of numerical simulations are compared with experimental laser pulse waveforms. It is concluded that there is satisfactory agreement between theory and the experiment. The prevailing mechanism of iodine atom formation from the CF 3 I donor in a very complex kinetic system of the COIL medium under pulse discharge conditions, based on their detailed numerical modelling and by comparing these results both with experimental results of other authors and their own experiments, is established. The dominant iodine atom production mechanism for conditions under study is the electron-impact dissociation of CF 3 I molecules. It was proved that in the conditions of the experiment the secondary chemical reactions with O atoms play an insignificant role.

  12. Screening of NiFe2O4 Nanoparticles as Oxygen Carrier in Chemical Looping Hydrogen Production

    DEFF Research Database (Denmark)

    Liu, Shuai; He, Fang; Huang, Zhen

    2016-01-01

    ) methods were used to prepare NiFe2O4 oxygen carriers. Samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurement, as well as Barrett-Joyner-Halenda (BJH......The objective of this paper is to systematically investigate the influences of different preparation methods on the properties of NiFe2O4 nanoparticles as oxygen carrier in chemical looping hydrogen production (CLH). The solid state (SS), coprecipitation (CP), hydrothermal (HT), and sol-gel (SG...... gas (24% H2 + 24% CO + 12% CO2 + N2 balance), then reacted with steam to produce H2, and finally fully oxidized by air. The NiFe2O4 oxygen carrier prepared by the sol gel method showed the best capacity for hydrogen production and the highest recovery degree of lattice oxygen, in agreement...

  13. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    Science.gov (United States)

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  14. Stoichiometric and Oxygen-Deficient VO2 as Versatile Hole Injection Electrode for Organic Semiconductors.

    Science.gov (United States)

    Fu, Keke; Wang, Rongbin; Katase, Takayoshi; Ohta, Hiromichi; Koch, Norbert; Duhm, Steffen

    2018-03-28

    Using photoemission spectroscopy, we show that the surface electronic structure of VO 2 is determined by the temperature-dependent metal-insulator phase transition and the density of oxygen vacancies, which depends on the temperature and ultrahigh vacuum (UHV) conditions. The atomically clean and stoichiometric VO 2 surface is insulating at room temperature and features an ultrahigh work function of up to 6.7 eV. Heating in UHV just above the phase transition temperature induces the expected metallic phase, which goes in hand with the formation of oxygen defects (up to 6% in this study), but a high work function >6 eV is maintained. To demonstrate the suitability of VO 2 as hole injection contact for organic semiconductors, we investigated the energy-level alignment with the prototypical organic hole transport material N, N'-di(1-naphthyl)- N, N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found, rendering an Ohmic contact for holes.

  15. Tooth Matrix Analysis for Biomonitoring of Organic Chemical Exposure: Current Status, Challenges, and Opportunities

    Science.gov (United States)

    Andra, Syam S.; Austin, Christine; Arora, Manish

    2015-01-01

    Epidemiological evidence supports associations between prenatal exposure to environmental organic chemicals and childhood health impairments. Unlike the common choice of biological matrices such as urine and blood that can be limited by short half-lives for some chemicals, teeth provide a stable repository for chemicals with half-life in the order of decades. Given the potential of the tooth bio-matrix to study long-term exposures to environmental organic chemicals in human biomonitoring programs, it is important to be aware of possible pitfalls and potential opportunities to improve on the current analytical method for tooth organics analysis. We critically review previous results of studies of this topic. The major drawbacks and challenges in currently practiced concepts and analytical methods in utilizing tooth bio-matrix are (i) no consideration of external (from outer surface) or internal contamination (from micro odontoblast processes), (ii) the misleading assumption that whole ground teeth represent prenatal exposures (latest formed dentine is lipid rich and therefore would absorb and accumulate more organic chemicals), (iii) reverse causality in exposure assessment due to whole ground teeth, and (iv) teeth are a precious bio-matrix and grinding them raises ethical concerns about appropriate use of a very limited resource in exposure biology and epidemiology studies. These can be overcome by addressing the important limitations and possible improvements with the analytical approach associated at each of the following steps (i) tooth sample preparation to retain exposure timing, (ii) organics extraction and pre-concentration to detect ultra-trace levels of analytes, (iii) chromatography separation, (iv) mass spectrometric detection to detect multi-class organics simultaneously, and (v) method validation, especially to exclude chance findings. To highlight the proposed improvements we present findings from a pilot study that utilizes tooth matrix biomarkers to

  16. Secondary organic aerosol formation from a large number of reactive man-made organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Derwent, Richard G., E-mail: r.derwent@btopenworld.com [rdscientific, Newbury, Berkshire (United Kingdom); Jenkin, Michael E. [Atmospheric Chemistry Services, Okehampton, Devon (United Kingdom); Utembe, Steven R.; Shallcross, Dudley E. [School of Chemistry, University of Bristol, Bristol (United Kingdom); Murrells, Tim P.; Passant, Neil R. [AEA Environment and Energy, Harwell International Business Centre, Oxon (United Kingdom)

    2010-07-15

    A photochemical trajectory model has been used to examine the relative propensities of a wide variety of volatile organic compounds (VOCs) emitted by human activities to form secondary organic aerosol (SOA) under one set of highly idealised conditions representing northwest Europe. This study applied a detailed speciated VOC emission inventory and the Master Chemical Mechanism version 3.1 (MCM v3.1) gas phase chemistry, coupled with an optimised representation of gas-aerosol absorptive partitioning of 365 oxygenated chemical reaction product species. In all, SOA formation was estimated from the atmospheric oxidation of 113 emitted VOCs. A number of aromatic compounds, together with some alkanes and terpenes, showed significant propensities to form SOA. When these propensities were folded into a detailed speciated emission inventory, 15 organic compounds together accounted for 97% of the SOA formation potential of UK man made VOC emissions and 30 emission source categories accounted for 87% of this potential. After road transport and the chemical industry, SOA formation was dominated by the solvents sector which accounted for 28% of the SOA formation potential.

  17. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  18. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    using two soils with different content of organic carbon (f(oc) of 1.5 and 6.5%, respectively). A quadruple blind test of the ER-V system using glass beads in stead of soil showed an acceptable recovery (65-85%) of all of the 11 VOCs tested. Only for the most volatile compound (heptane, K-H similar...... to 80) an unacceptable recovery was found (9%). The contact time needed for obtaining chemical equilibrium was tested in the ER-H system by performing five test with different duration (1, 2, 4, 7 and 19 days) using the low organic carbon soil. Seven days of contact time appeared sufficient...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...

  19. Potentiometric microdetermination of cadmium in organic compounds after oxygen flask combustion

    International Nuclear Information System (INIS)

    Campiglio, A.

    1986-01-01

    The sample is burnt in an oxygen flask and the combustion products are absorbed in 1Μ HNO 3 . After removal of interfering gases by boiling, the solution is transfered to the titration cell and neutralized with NaOH in the presence of methyl red; cd(II) is finally titrated potentiometrically in a buffered 50% ethanolic medium with 0.01Μ sodium diethyldithiocarbamate in 50% ethanol. A silver/sulphide ion-selective electrode and a double junction referenceelectrode containing a 10% KNO 3 solution in 26% ethanol in the outer compartment are used in combination with a Titroprocessor to detect the end point. The results obtained are very accurate and reproducible: the maximum error does not exceed 0.09%, the recovery of cadmium is in the range 99.67 to 99.95% and the rel. standard deviation is 0.05%. The potentiometric titration with diethyldithiocarbamate, which is useful to determine small Cd(II) amounts down to 30μg (2μg ml -1 ), as well as the oxygen flask combustion of organic cadmium compounds are discussed. (Author)

  20. On Study of Teaching Reform of Organic Chemistry Course in Applied Chemical Industry Technology

    Science.gov (United States)

    Zhang, Yunshen

    2017-11-01

    with the implementation of new curriculum reform, the education sees great changes in teaching methods. Teaching reform is profound in organic chemistry course in applied chemical industry technology. However, many problems which have never been noticed before occur when reform programs are implemented which harm students’ ability for learning and enthusiasm in side face. This paper proposes reform measures like combining theory and practice, improving professional quality, supplementing professional needs and integrating teaching into life after analyzing organic chemistry course teaching in applied chemical industry technology currently, hoping to play a role of reference for organic chemistry course teaching reform in applied chemical industry technology.

  1. Atomic oxygen-MoS sub 2 chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.B.; Martin, J.A. (Los Alamos National Lab., NM (USA)); Pope, L.E. (Sandia National Labs., Albuquerque, NM (USA)); Koontz, S.L. (National Aeronautics and Space Administration, Johnson Space Center, Houston, TX (USA))

    1990-10-01

    The present study shows that an O-atom translation energy of 1.5 eV, SO{sub 2} is generated and outgases from an anhydrous MoS{sub 2} surface with an initial reactivity nearly 50% that of kapton. The reaction of atomic oxygen with MoS{sub 2} has little or no translational energy barrier, i.e. thermally generated atomic oxygen reacts as readily as that having 1.5 eV of translational energy. For MoS{sub 2} films sputter-deposited at 50-70deg C, friction measurements showed a high initial friction coefficient (up to 0.25) for MoS{sub 2} surfaces exposed to atomic oxygen, which dropped to the normal low values after several cycles of operation in air and ultrahigh vacuum. For MoS{sub 2} films deposited at 200deg C, the friction coefficient was not affected by the O-atom exposure. (orig.).

  2. Effect of different chemical modification of carbon nanotubes for the oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Dumitru, Anca; Mamlouk, M.; Scott, K.

    2014-01-01

    The electrochemical reduction of oxygen on chemically modified multi-walled carbon nanotubes (CNTs) electrodes in 1 M KOH solution has been studied using the rotating ring disc electrode (RDE). The surface modification of CNTs has been estimated by XPS and Raman spectroscopy. The effect of different oxygen functionalities on the surface of carbon nanotube for the oxygen reduction reaction (ORR) is considered in terms of the number of electrons (n) involved. Electrochemical studies indicate that in the case of the modification of CNTs with citric acid and diazonium salts the n values were close to two in the measured potential range, and the electrochemical reduction is limited to the production of peroxide as the final product. In the case of the modification of carbon nanotubes with peroxymonosulphuric acid, in the measured potential range, the n value is close to 4 indicating the four-electron pathway for the ORR. By correlating ORR measurements with the XPS analysis, we propose that the increase in electrocatalytic activity towards the ORR, for CNT can be attributed to the increase in C-O groups on the surface of CNTs after modification with peroxymonosulphuric acid

  3. Removal of indicator organisms by chemical treatment of wastewater.

    Science.gov (United States)

    De Zutter, L; van Hoof, J

    1981-01-01

    Recently a new chemical wastewater treatment process based upon precipitation of proteins by sodium lignosulphonate under acid conditions is used to purify the wastewater from slaughterhouses and poultry processing plants. In order to determine the reduction of indicator organisms due to this treatment process, influent and effluent samples from two of such plants (plant A in a pig slaughterhouse and plant B in a poultry processing plant) were examined. The results demonstrated that the pH used in the process, has a considerable influence on the reduction of the indicator organisms. On the first sampling day in plant A the initial working-pH was 4 and the corresponding reduction of the different microorganisms varied from 0.7 to 1.5 log. According to the decrease of the pH to 2.3, the reduction increased to a minimum of at least 1.9 and a maximum of at least 4.5 log. In the other samples from this plant (working-pH 2.4) the elimination ranged from 1.8 to 4.0 log. In plant B, the removal of the indicator organisms brought about by a working-pH of 3.0 ranged from 2.1 to 3.1 log. The results showed that in comparison with the biological treatment processes this chemical wastewater treatment process realized a significant greater removal of indicator organisms.

  4. The influence of soil moisture, temperature and oxygen on the oxic decay of organic archaeological deposits

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Matthiesen, H.

    2015-01-01

    The sensitivity of organic-rich archaeological layers at Bryggen in Bergen, Norway, to changes in soil temperatures, water contents and oxygen concentrations is investigated. This is done by linking measurements of oxic decay at varying temperatures and water contents with on-site monitoring data...... using a one-pool decomposition model. The results show that the model can be used to elucidate the current in situ decay and to evaluate where and when the decay takes place. Future investigations need to include long-term incubation experiments and decay studies at zero or very low oxygen contents...

  5. Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals

    DEFF Research Database (Denmark)

    Thomas, Paul; Dawick, James; Lampi, Mark

    2015-01-01

    Toxicological research in the 1930s gave the first indications of the link between narcotic toxicity and the chemical activity of organic chemicals. More recently, chemical activity has been proposed as a novel exposure parameter that describes the fraction of saturation and that quantifies the p...

  6. Development of Bi-phase sodium-oxygen-hydrogen chemical equilibrium calculation program (BISHOP) using Gibbs free energy minimization method

    International Nuclear Information System (INIS)

    Okano, Yasushi

    1999-08-01

    In order to analyze the reaction heat and compounds due to sodium combustion, the multiphase chemical equilibrium calculation program for chemical reaction among sodium, oxygen and hydrogen is developed in this study. The developed numerical program is named BISHOP; which denotes Bi-Phase, Sodium - Oxygen - Hydrogen, Chemical Equilibrium Calculation Program'. Gibbs free energy minimization method is used because of the special merits that easily add and change chemical species, and generally deal many thermochemical reaction systems in addition to constant temperature and pressure one. Three new methods are developed for solving multi-phase sodium reaction system in this study. One is to construct equation system by simplifying phase, and the other is to expand the Gibbs free energy minimization method into multi-phase system, and the last is to establish the effective searching method for the minimum value. Chemical compounds by the combustion of sodium in the air are calculated using BISHOP. The Calculated temperature and moisture conditions where sodium-oxide and hydroxide are formed qualitatively agree with the experiments. Deformation of sodium hydride is calculated by the program. The estimated result of the relationship between the deformation temperature and pressure closely agree with the well known experimental equation of Roy and Rodgers. It is concluded that BISHOP can be used for evaluated the combustion and deformation behaviors of sodium and its compounds. Hydrogen formation condition of the dump-tank room at the sodium leak event of FBR is quantitatively evaluated by BISHOP. It can be concluded that to keep the temperature of dump-tank room lower is effective method to suppress the formation of hydrogen. In case of choosing the lower inflammability limit of 4.1 mol% as the hydrogen concentration criterion, formation reaction of sodium hydride from sodium and hydrogen is facilitated below the room temperature of 800 K, and concentration of hydrogen

  7. Determination of oxygen nonstoichiometry and diffusivity in mixed conducting oxides by oxygen Coulometric titration. II. Oxygen nonstoichiometry and defect model for La0.8Sr0.2CoO3-d

    NARCIS (Netherlands)

    Lankhorst, M.H.R.; Lankhorst, M.H.R.; Bouwmeester, Henricus J.M.

    1997-01-01

    The oxygen nonstoichiometry of La0.8Sr0.2CoO3-delta has been determined as a function of oxygen partial pressure and temperature using a high-temperature coulometric titration cell. For each measured value of the oxygen chemical potential, the oxygen nonstoichiometry is found to be nearly

  8. Visualising the equilibrium distribution and mobility of organic contaminants in soil using the chemical partitioning space.

    Science.gov (United States)

    Wong, Fiona; Wania, Frank

    2011-06-01

    Assessing the behaviour of organic chemicals in soil is a complex task as it is governed by the physical chemical properties of the chemicals, the characteristics of the soil as well as the ambient conditions of the environment. The chemical partitioning space, defined by the air-water partition coefficient (K(AW)) and the soil organic carbon-water partition coefficient (K(OC)), was employed to visualize the equilibrium distribution of organic contaminants between the air-filled pores, the pore water and the solid phases of the bulk soil and the relative importance of the three transport processes removing contaminants from soil (evaporation, leaching and particle erosion). The partitioning properties of twenty neutral organic chemicals (i.e. herbicides, pharmaceuticals, polychlorinated biphenyls and volatile chemicals) were estimated using poly-parameter linear free energy relationships and superimposed onto these maps. This allows instantaneous estimation of the equilibrium phase distribution and mobility of neutral organic chemicals in soil. Although there is a link between the major phase and the dominant transport process, such that chemicals found in air-filled pore space are subject to evaporation, those in water-filled pore space undergo leaching and those in the sorbed phase are associated with particle erosion, the partitioning coefficient thresholds for distribution and mobility can often deviate by many orders of magnitude. In particular, even a small fraction of chemical in pore water or pore air allows for evaporation and leaching to dominate over solid phase transport. Multiple maps that represent soils that differ in the amount and type of soil organic matter, water saturation, temperature, depth of surface soil horizon, and mineral matters were evaluated.

  9. [Formation mechanism and chemical safety of nonintentional chemical substances present in chlorinated drinking water and wastewater].

    Science.gov (United States)

    Onodera, Sukeo

    2010-09-01

    This paper reviews the formation mechanism and chemical safety of nonintentional chemical substances (NICS) present in chlorine-treated water containing organic contaminants. Undesirable compounds, i.e., NICS, may be formed under certain conditions when chlorine reacts with organic matter. The rate and extent of chlorine consumption with organics are strongly dependent on their chemical structures, particularly whether double bonds or sulfur and nitrogen atoms occur in the molecules. Organothiophosphorus pesticides (P=S type) are easily oxidized to their phosphorus compounds (P=O type) in chlorinated water containing HOCl as little as 0.5 mg/l, resulting in an increase in cholinesterase-inhibitory activity. Chlorination of phenols in water also produces a series of highly chlorinated compounds, including chlorophenols, chloroquinones, chlorinated carboxylic acids, and polychlorinated phenoxyphenols (PCPPs). In some of these chloroquinones, 2,6-dichloroalkylsemiquinones exhibit a strong mutagenic response as do positive controls used in the Ames test. 2-phenoxyphenols in these PCPPs are particularly interesting, as they are present in the chlorine-treated phenol solution and they are also precursors (predioxins) of the highly toxic chlorinated dioxins. Polynuclear aromatic hydrocarbons (PAHs) were found to undergo chemical changes due to hypochlorite reactions to give chloro-substituted PAHs, oxygenated (quinones) and hydroxylated (phenols) compounds, but they exhibit a lower mutagenic response. In addition, field work was performed in river water and drinking water to obtain information on chemical distribution and their safety, and the results are compared with those obtained in the model chlorination experiments.

  10. Effects of different organic materials and chemical fertilizers on ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... 2The Chamber of Agricultural Engineers, Gaziantep, Turkey. Accepted 5 July, 2010. This study was conducted under greenhouse conditions to investigate the effects of applied nutrients such as ... Key words: Organic material, chemical fertilizer, Pistacia vera L., soil ... systematic approach of soil and plant.

  11. On the Chemical Characterization of Organic Matter in Rain at Mexico City.

    Science.gov (United States)

    Montero-Martinez, G.; Andraca-Ayala, G. L.; Hernández-Nagay, D. P.; Mendoza-Trejo, A.; Rivera-Arellano, J.; Rosado-Abon, A.; Roy, P. D.

    2016-12-01

    The chemical composition of the aerosol plays a central role in atmospheric processes and has influence on the hydrological cycle. Clouds form through the nucleation of water vapor on certain atmospheric aerosol particles, called cloud condensation nuclei (CCN). Also, precipitating particles scavenge some other aerosol particles on their way to the surface. Atmospheric particles are a mixture of organic and inorganic materials, both soluble and insoluble in water. Aerosol chemical characterization indicates a larger variety of compounds in urban areas respect to other regions. Thus, chemical composition of rainwater may represent an important aspect for estimating atmospheric air pollution. It has been recognized that organic species present in aerosol particles are important in the formation of cloud droplets. Therefore, the information about the organic compounds in precipitation samples may be helpful to understand their effects on the formation of clouds and rain, as well as their sources. Organic acids are ubiquitous components of aerosols and have been identified in precipitation water. In this work, preliminary results of the content of soluble organic (neutral and acidic) matter in rainwater samples collected in Mexico City during 2015 will be presented. The organic compounds content was performed by using an ionic chromatographic methodology with gradient elution; so the total amount was evaluated as the sum of four fractions: neutral/basic, mono-, bi-, and poly-acid compounds. The outcomes suggest that most of the amount of organic substances soluble in water is contained by the neutral/basic and mono-acid fractions. Regarding the total amount of water soluble organic compounds, the rain samples collected in Mexico City are in agreement with some others reported for large urban areas.

  12. Real-Time Discrimination and Versatile Profiling of Spontaneous Reactive Oxygen Species in Living Organisms with a Single Fluorescent Probe.

    Science.gov (United States)

    Zhang, Ruilong; Zhao, Jun; Han, Guangmei; Liu, Zhengjie; Liu, Cui; Zhang, Cheng; Liu, Bianhua; Jiang, Changlong; Liu, Renyong; Zhao, Tingting; Han, Ming-Yong; Zhang, Zhongping

    2016-03-23

    Fluorescent probes are powerful tools for the investigations of reactive oxygen species (ROS) in living organisms by visualization and imaging. However, the multiparallel assays of several ROS with multiple probes are often limited by the available number of spectrally nonoverlapping chromophores together with large invasive effects and discrepant biological locations. Meanwhile, the spontaneous ROS profilings in various living organs/tissues are also limited by the penetration capability of probes across different biological barriers and the stability in reactive in vivo environments. Here, we report a single fluorescent probe to achieve the effective discrimination and profiling of hydroxyl radicals (•OH) and hypochlorous acid (HClO) in living organisms. The probe is constructed by chemically grafting an additional five-membered heterocyclic ring and a lateral triethylene glycol chain to a fluorescein mother, which does not only turn off the fluorescence of fluorescein, but also create the dual reactive sites to ROS and the penetration capability in passing through various biological barriers. The reactions of probe with •OH and HClO simultaneously result in cyan and green emissions, respectively, providing the real-time discrimination and quantitative analysis of the two ROS in cellular mitochondria. Surprisingly, the accumulation of probes in the intestine and liver of a normal-state zebrafish and the transfer pathway from intestine-to-blood-to-organ/tissue-to-kidney-to-excretion clearly present the profiling of spontaneous •OH and HClO in these metabolic organs. In particular, the stress generation of •OH at the fresh wound of zebrafish is successfully visualized for the first time, in spite of its extremely short lifetime.

  13. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    X. Pan

    2009-06-01

    Full Text Available Photodegradation of secondary organic aerosol (SOA prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone (0.1–300 ppm and D-limonene (0.02–3 ppm concentrations used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA prepared in these experiments. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  14. Chemical reactions in organic monomolecular layers. Condensation of hydrazine on carbonyl functions

    International Nuclear Information System (INIS)

    Rosilio, Charles; Ruaudel-Teixier, Annie.

    1976-01-01

    Evidence is given for chemical reactions of hydrazine (NH 2 -NH 2 ) with different carbonyl functional groups of organic molecules in the solid state, in monomolecular layer structures. The condensation of hydrazine with these molecules leads to conjugated systems by bridging the N-N links, to cyclizations, and also to polycondensations. The reactions investigated were followed up by infrared spectrophotometry, by transmission and metallic reflection. These chemical reactions revealed in the solid phase constitute a polycondensation procedure which is valuable in obtaining organized polymers in monomolecular layers [fr

  15. Top value platform chemicals: bio-based production of organic acids.

    Science.gov (United States)

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Unravelling chemical priming machinery in plants: the role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement.

    Science.gov (United States)

    Antoniou, Chrystalla; Savvides, Andreas; Christou, Anastasis; Fotopoulos, Vasileios

    2016-10-01

    Abiotic stresses severely limit crop yield and their detrimental effects are aggravated by climate change. Chemical priming is an emerging field in crop stress management. The exogenous application of specific chemical agents before stress events results in tolerance enhancement and reduction of stress impacts on plant physiology and growth. However, the molecular mechanisms underlying the remarkable effects of chemical priming on plant physiology remain to be elucidated. Reactive oxygen, nitrogen and sulfur species (RONSS) are molecules playing a vital role in the stress acclimation of plants. When applied as priming agents, RONSS improve stress tolerance. This review summarizes the recent knowledge on the role of RONSS in cell signalling and gene regulation contributing to abiotic stress tolerance enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Review of laboratory-based terrestrial bioaccumulation assessment approaches for organic chemicals: Current status and future possibilities.

    Science.gov (United States)

    Hoke, Robert; Huggett, Duane; Brasfield, Sandra; Brown, Becky; Embry, Michelle; Fairbrother, Anne; Kivi, Michelle; Paumen, Miriam Leon; Prosser, Ryan; Salvito, Dan; Scroggins, Rick

    2016-01-01

    In the last decade, interest has been renewed in approaches for the assessment of the bioaccumulation potential of chemicals, principally driven by the need to evaluate large numbers of chemicals as part of new chemical legislation, while reducing vertebrate test organism use called for in animal welfare legislation. This renewed interest has inspired research activities and advances in bioaccumulation science for neutral organic chemicals in aquatic environments. In January 2013, ILSI Health and Environmental Sciences Institute convened experts to identify the state of the science and existing shortcomings in terrestrial bioaccumulation assessment of neutral organic chemicals. Potential modifications to existing laboratory methods were identified, including areas in which new laboratory approaches or test methods could be developed to address terrestrial bioaccumulation. The utility of "non-ecotoxicity" data (e.g., mammalian laboratory data) was also discussed. The highlights of the workshop discussions are presented along with potential modifications in laboratory approaches and new test guidelines that could be used for assessing the bioaccumulation of chemicals in terrestrial organisms. © 2015 SETAC.

  18. Interactions between toxic chemicals and natural environmental factors--a meta-analysis and case studies.

    Science.gov (United States)

    Laskowski, Ryszard; Bednarska, Agnieszka J; Kramarz, Paulina E; Loureiro, Susana; Scheil, Volker; Kudłek, Joanna; Holmstrup, Martin

    2010-08-15

    The paper addresses problems arising from effects of natural environmental factors on toxicity of pollutants to organisms. Most studies on interactions between toxicants and natural factors, including those completed in the EU project NoMiracle (Novel Methods for Integrated Risk Assessment of Cumulative Stressors in Europe) described herein, showed that effects of toxic chemicals on organisms can differ vastly depending purely on external conditions. We compiled data from 61 studies on effects of temperature, moisture and dissolved oxygen on toxicity of a range of chemicals representing pesticides, polycyclic aromatic hydrocarbons, plant protection products of bacterial origin and trace metals. In 62.3% cases significant interactions (pnatural factors and chemicals were found, reaching 100% for the effect of dissolved oxygen on toxicity of waterborne chemicals. The meta-analysis of the 61 studies showed that the null hypothesis assuming no interactions between toxic chemicals and natural environmental factors should be rejected at p=2.7 x 10(-82) (truncated product method probability). In a few cases of more complex experimental designs, also second-order interactions were found, indicating that natural factors can modify interactions among chemicals. Such data emphasize the necessity of including information on natural factors and their variation in time and across geographic regions in ecological risk assessment. This can be done only if appropriate ecotoxicological test designs are used, in which test organisms are exposed to toxicants at a range of environmental conditions. We advocate designing such tests for the second-tier ecological risk assessment procedures. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers

    Science.gov (United States)

    Alvarez, D.A.; Cranor, W.L.; Perkins, S.D.; Clark, R.C.; Smith, S.B.

    2008-01-01

    Passive sampling methodologies were used to conduct a chemical and toxicologic assessment of organic contaminants in the surface waters of three geographically distinct agricultural watersheds. A selection of current-use agrochemicals and persistent organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides, were targeted using the polar organic chemical integrative sampler (POCIS) and the semipermeable membrane device passive samplers. In addition to the chemical analysis, the Microtox assay for acute toxicity and the yeast estrogen screen (YES) were conducted as potential assessment tools in combination with the passive samplers. During the spring of 2004, the passive samplers were deployed for 29 to 65 d at Leary Weber Ditch, IN; Morgan Creek, MD; and DR2 Drain, WA. Chemical analysis of the sampler extracts identified the agrochemicals predominantly used in those areas, including atrazine, simazine, acetochlor, and metolachlor. Other chemicals identified included deethylatrazine and deisopropylatrazine, trifluralin, fluoranthene, pyrene, cis- and trans-nonachlor, and pentachloroanisole. Screening using Microtox resulted in no acutely toxic samples. POCIS samples screened by the YES assay failed to elicit a positive estrogenic response. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  20. Organ nic pollutants in underground water

    International Nuclear Information System (INIS)

    Hussein, H. H.

    1998-01-01

    Many organic compounds have been diagnosed in underground and surface waters, and there are many theories that explain the source of the dangerous materials on Punic health. The source of pollution could be the underground stored fuel or the polluted water in farms saturated with agricultural insecticides and chemical fertilizers, or there could be leaks in sewage water wastes. The source of pollution could also be the water surfaces in the areas of garbage disposal or industrial and home waste discharge. Due to the fact that the underground water is separated from oxygen in the air, its ability on self-purification is very low, in that the micro-organism that will do the dismantling and decomposition of the organic materials that pollute the water are in need for oxygen. In the event that underground water is subject to pollution m there are many methods for t resting the polluted water including the chemical decomposition method by injecting the polluted areas with neutralizing or oxidizing chemicals, such as Ozone, Chlorine or Hydrogen Peroxide. The mechanical methods could be used for getting rid of the volatile organic materials. As to biological decomposition, it is done with the use of bacteria in dismantling the poisonous materials into un poisonous materials. The preliminary analysis of water samples in one of the water wells in Sar ir and Tazarbo in Great Jamahirieh indicated that the concentration of total organic compounds (TOC) exceeded the internationally allowed limits. This indicates a deterioration of quality of some of underground water resources. It is well known that some of the organic pollutants have a great role in causing dangerous diseases, such as the polynuclear aromatic hydrocarbons and some halogenated compounds that cause cancer. Therefore, much research is required in this field for diagnosing the polluting organic compounds and determining the suitability of this water for drinking or for human consumption. (author). 21 refs., 6 figs

  1. Radiation-chemical transformations of antioxidants of alkylated phenols class. 3. 2.2'-methylene-bis-4-methyl-6-tret-butylphenol bis-phenol transformations in the absence of oxygen

    International Nuclear Information System (INIS)

    Antonova, E.A.; Zhirkova, O.A.

    1993-01-01

    Experimental results on radiation-chemical yields of products in the course of bisphenol-agidol transformations in n-decane in the absence of oxygen are presented. It is ascertained that monophenols of different structure are the main stable products of radiation-chemical transformations of agidol. Radiation-chemical mechanism of required product formation is discussed

  2. 15 CFR Supplement No. 1 to Part 715 - Definition of an Unscheduled Discrete Organic Chemical

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Definition of an Unscheduled Discrete... WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING UNSCHEDULED DISCRETE ORGANIC CHEMICALS (UDOCs) Pt. 715, Supp. 1 Supplement No. 1 to Part 715—Definition of an Unscheduled Discrete Organic Chemical Unscheduled...

  3. Direct chemical oxidation: a non-thermal technology for the destruction of organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, G.B.; Cooper, J. F.; Lewis, P. R.; Adamson, M. G.

    1998-02-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment and chemical demilitarization and decontamination at LLNL since 1992, and is applicable to the destruction of virtually all solid or liquid organics, including: chlorosolvents, oils and greases, detergents, organic-contaminated soils or sludges, explosives, chemical and biological warfare agents, and PCB's. [1-15] The process normally operates at 80-100 C, a heating requirement which increases the difficulty of surface decontamination of large objects or, for example, treatment of a wide area contaminated soil site. The driver for DCO work in FY98 was thus to investigate the use of catalysts to demonstrate the effectiveness of the technology for organics destruction at temperatures closer to ambient. In addition, DCO is at a sufficiently mature stage of development that technology transfer to a commercial entity was a logical next step, and was thus included in FY98 tasks.

  4. The chemical and biological characteristics of coke-oven wastewater by ozonation

    International Nuclear Information System (INIS)

    Chang, E.-E.; Hsing, H.-J.; Chiang, P.-C.; Chen, M.-Y.; Shyng, J.-Y.

    2008-01-01

    A bench-scale bubble column reactor was used to investigate the biological and chemical characteristics of coke-oven wastewater after ozonation treatment through the examination of selected parameters. Color and thiocyanate could be removed almost entirely; however, organic matter and cyanide could not, due to the inadequate oxidation ability of ozone to remove ozonated byproducts under given experimental conditions. The removal of cyanide and total organic carbon were pH-dependent and were found to be efficient under neutral to alkaline conditions. The removal rate for thiocyanate was about five times that of cyanide. The ozone consumption ratio approached to about 1 at the early stage of ozonation (time TOC ) increased to 30%, indicating that easily degraded pollutants were degraded almost entirely. The effect of ozonation on the subsequent biological treatment unit (i.e., activated sludge process) was determined by observing the ratio of 5-day biological oxygen demand to chemical oxygen demand (BOD 5 /COD) and the specific oxygen utilization rate (SOUR). The results indicated that the contribution of ozonation to inhibition reduction was very significant but limited to the enhancement of biodegradation. The operation for ozonation of coke-oven wastewater was feasible under neutral condition and short ozone contact time in order to achieve better performance and cost savings

  5. Temperature influence on chemical toxicity to aquatic organisms

    International Nuclear Information System (INIS)

    Cairns, J. Jr.; Heath, A.G.; Parker, B.C.

    1975-01-01

    The literature on the effects of temperature on chemical toxicity to aquatic animals and microorganisms is reviewed. Microbial photosynthesis and respiration is briefly discussed. It is concluded that there is a paucity of information on the inter-relations of temperature and toxicants to algae, bacteria, and protozoa and that standards based on the in situ response of indigenous organisms to specific discharge areas should be developed

  6. Plasma chemical and electrical modelling of a negative DC corona in pure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Soria, C [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Pontiga, F [Departamento de FIsica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain)

    2004-02-01

    A complex plasma chemical and electrical model of a negative stationary wire-to-cylinder corona discharge in pure oxygen is presented. The corona discharge is assumed to have axial and azimuthal symmetry. The experimental current-voltage characteristic is required as input data, but there are no other adjustable or empirical parameters. The experimental validation of the results of the model comes from its prediction of the ozone concentration. The role played by different reactions and species is analysed in detail using the results of the simulation. The effect of the gas temperature and of the decomposition of ozone at the electrodes is also investigated. The agreement between the model and the experiments is excellent when the effect of ozone decomposition at the electrodes is taken into account.

  7. Plasma chemical and electrical modelling of a negative DC corona in pure oxygen

    International Nuclear Information System (INIS)

    Soria, C; Pontiga, F; Castellanos, A

    2004-01-01

    A complex plasma chemical and electrical model of a negative stationary wire-to-cylinder corona discharge in pure oxygen is presented. The corona discharge is assumed to have axial and azimuthal symmetry. The experimental current-voltage characteristic is required as input data, but there are no other adjustable or empirical parameters. The experimental validation of the results of the model comes from its prediction of the ozone concentration. The role played by different reactions and species is analysed in detail using the results of the simulation. The effect of the gas temperature and of the decomposition of ozone at the electrodes is also investigated. The agreement between the model and the experiments is excellent when the effect of ozone decomposition at the electrodes is taken into account

  8. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  9. Effects of gamma irradiation on physical-chemical properties and dewatering characteristics of sludges

    International Nuclear Information System (INIS)

    Groneman, A.F.

    1976-01-01

    Separation of solids from liquids is a paramount operation in the processes applied in treating sewage and waste waters. Therfore, studies were undertaken to investigate effects of gamma irradiation on the physical-chemical properties of sludges and the de-watering characteristics of anaerobically digested sludge and aerobically activated sludge. A dose of 300 krad reduced the specific resistance of anaerobically digested sludges from 33 x 10 sec 2 /g to approximately 10 x 10 9 sec 2 /g. This conditioning effect was little influenced by the presence of oxygen or nitrogen. Pasteurization increased the specific resistance to filtration up to 48 x 10 9 sec 2 /g. Dewatering characteristics of raw sludge were not affected by irradiation in the presence of oxygen but a slight conditioning effect was noticed when the sludge was irradiated under deaerated conditions. Experimental evidence indicated that gamma irradiation detached organic substances from the sludge flocks resulting in a decrease of the specific resistance and an increase in the Total Organic Carbon (TOC) and the Chemical Oxygen Demand (COD) in the filtrates. Elutriation reduced but did not eliminate the conditioning effect of gamma irradiation. (author)

  10. Changes in the chemical characteristics of water-extracted organic matter from vermicomposting of sewage sludge and cow dung

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Meiyan, E-mail: xingmeiyan@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Li, Xiaowei; Yang, Jian; Huang, Zhidong; Lu, Yongsen [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer Vermicomposting causes an increase in the aromaticity of WEOM from the substrates. Black-Right-Pointing-Pointer Vermicomposting homogenizes the molecular weight of WEOM from the substrates. Black-Right-Pointing-Pointer The WEOM from the vermicompost is characterized by high O-containing groups. Black-Right-Pointing-Pointer The WEOM from the vermicompost includes small aliphatic and protein-like groups. Black-Right-Pointing-Pointer The WEOM test is a good way to evaluate the biological maturity of vermicompost. - Abstract: The chemical changes of water-extractable organic matter (WEOM) from five different substrates of sewage sludge enriched with different proportions of cow dung after vermicomposting with Eisenia fetida were investigated using various analytical approaches. Results showed that dissolved organic carbon, chemical oxygen demand, and C/N ratio of the substrates decreased significantly after vermicomposting process. The aromaticity of WEOM from the substrates enhanced considerably, and the amount of volatile fatty acids declined markedly, especially for the cow dung substrate. Gel filtration chromatography analysis showed that the molecular weight fraction between 10{sup 3} and 10{sup 6} Da became the main part of WEOM in the final product. {sup 1}H nuclear magnetic resonance spectra revealed that the proportion of H moieties in the area of 0.00-3.00 ppm decreased, while increasing at 3.00-4.25 ppm after vermicomposting. Fluorescence spectra indicated that vermicomposting caused the degradation of protein-like groups, and the formation of fulvic and humic acid-like compounds in the WEOM of the substrates. Overall results indicate clearly that vermicomposting promoted the degradation and transformation of liable WEOM into biological stable substances in sewage sludge and cow dung alone, as well as in mixtures of both materials, and testing the WEOM might be an effective way to evaluate the biological maturity and

  11. Changes in the chemical characteristics of water-extracted organic matter from vermicomposting of sewage sludge and cow dung

    International Nuclear Information System (INIS)

    Xing, Meiyan; Li, Xiaowei; Yang, Jian; Huang, Zhidong; Lu, Yongsen

    2012-01-01

    Highlights: ► Vermicomposting causes an increase in the aromaticity of WEOM from the substrates. ► Vermicomposting homogenizes the molecular weight of WEOM from the substrates. ► The WEOM from the vermicompost is characterized by high O-containing groups. ► The WEOM from the vermicompost includes small aliphatic and protein-like groups. ► The WEOM test is a good way to evaluate the biological maturity of vermicompost. - Abstract: The chemical changes of water-extractable organic matter (WEOM) from five different substrates of sewage sludge enriched with different proportions of cow dung after vermicomposting with Eisenia fetida were investigated using various analytical approaches. Results showed that dissolved organic carbon, chemical oxygen demand, and C/N ratio of the substrates decreased significantly after vermicomposting process. The aromaticity of WEOM from the substrates enhanced considerably, and the amount of volatile fatty acids declined markedly, especially for the cow dung substrate. Gel filtration chromatography analysis showed that the molecular weight fraction between 10 3 and 10 6 Da became the main part of WEOM in the final product. 1 H nuclear magnetic resonance spectra revealed that the proportion of H moieties in the area of 0.00–3.00 ppm decreased, while increasing at 3.00–4.25 ppm after vermicomposting. Fluorescence spectra indicated that vermicomposting caused the degradation of protein-like groups, and the formation of fulvic and humic acid-like compounds in the WEOM of the substrates. Overall results indicate clearly that vermicomposting promoted the degradation and transformation of liable WEOM into biological stable substances in sewage sludge and cow dung alone, as well as in mixtures of both materials, and testing the WEOM might be an effective way to evaluate the biological maturity and chemical stability of vermicompost.

  12. Self-Organized Traveling Chemo-Hydrodynamic Fingers Triggered by a Chemical Oscillator.

    Science.gov (United States)

    Escala, D M; Budroni, M A; Carballido-Landeira, J; De Wit, A; Muñuzuri, A P

    2014-02-06

    Pulsatile chemo-hydrodynamic patterns due to a coupling between an oscillating chemical reaction and buoyancy-driven hydrodynamic flows can develop when two solutions of separate reactants of the Belousov-Zhabotinsky reaction are put in contact in the gravity field and conditions for chemical oscillations are met in the contact zone. In regular oscillatory conditions, localized periodic changes in the concentration of intermediate species induce pulsatile density gradients, which, in turn, generate traveling convective fingers breaking the transverse symmetry. These patterns are the self-organized result of a genuine coupling between chemical and hydrodynamic modes.

  13. Influence of oxygen partial pressure on defect concentrations and on oxygen diffusion in UO2+x

    International Nuclear Information System (INIS)

    Pizzi, Elisabetta

    2013-01-01

    The hyper-stoichiometric uranium dioxide (UO 2+x ) is stable over a wide range of temperature and compositions. Such variations of composition and the eventual presence of doping elements or impurities lead to a variation of anionic and electronic defect concentrations. Moreover, many properties of this material are affected by its composition modifications, in particular their atomic transport properties. Firstly we developed a point defect model to evaluate the dependence of the electronic and oxygen defect concentrations upon temperature, equilibrium oxygen partial pressure and impurity content. The physical constants of the model, in particular the equilibrium constants of the defect formation reactions were determined from deviation from stoichiometry and electrical conductivity measurements of literature. This work enabled us to interpret our measures of conductivity, oxygen chemical and self- diffusion coefficients. From a quantitative standpoint, the analysis of our experimental results allows to evaluate the oxygen interstitial diffusion coefficient but also its formation energy. Moreover, an estimate of oxygen di-interstitial formation energy is also provided. Presence of oxygen clusters leads oxygen self- and chemical diffusion to decrease. X-ray Absorption Spectroscopy characterization shows the presence of the same defect in the entire deviation from stoichiometry studied, confirming the approach used to develop the model. (author) [fr

  14. Oxygen termination of homoepitaxial diamond surface by ozone and chemical methods: An experimental and theoretical perspective

    Science.gov (United States)

    Navas, Javier; Araujo, Daniel; Piñero, José Carlos; Sánchez-Coronilla, Antonio; Blanco, Eduardo; Villar, Pilar; Alcántara, Rodrigo; Montserrat, Josep; Florentin, Matthieu; Eon, David; Pernot, Julien

    2018-03-01

    Phenomena related with the diamond surface of both power electronic and biosensor devices govern their global behaviour. In particular H- or O-terminations lead to wide variations in their characteristics. To study the origins of such aspects in greater depth, different methods to achieve oxygen terminated diamond were investigated following a multi-technique approach. DFT calculations were then performed to understand the different configurations between the C and O atoms. Three methods for O-terminating the diamond surface were performed: two physical methods with ozone at different pressures, and an acid chemical treatment. X-ray photoelectron spectroscopy, spectroscopic ellipsometry, HRTEM, and EELS were used to characterize the oxygenated surface. Periodic-DFT calculations were undertaken to understand the effect of the different ways in which the oxygen atoms are bonded to carbon atoms on the diamond surface. XPS results showed the presence of hydroxyl or ether groups, composed of simple Csbnd O bonds, and the acid treatment resulted in the highest amount of O on the diamond surface. In turn, ellipsometry showed that the different treatments led to the surface having different optical properties, such as a greater refraction index and extinction coefficient in the case of the sample subjected to acid treatment. TEM analysis showed that applying temperature treatment improved the distribution of the oxygen atoms at the interface and that this generates a thinner amount of oxygen at each position and higher interfacial coverage. Finally, DFT calculations showed both an increase in the number of preferential electron transport pathways when π bonds and ether groups appear in the system, and also the presence of states in the middle of the band gap when there are π bonds, Cdbnd C or Cdbnd O.

  15. PHYSICOCHEMICAL PROPERTIES AS PREDICTORS OF ORGANIC CHEMICAL EFFECTS ON SOIL MICROBIAL RESPIRATION

    Science.gov (United States)

    Structure-activity analysis was used to evaluate the effects of 19 hazardous organic chemicals on microbial respiration in two slightly acidic soils (a Captina silt loam from Roane County Tennessee, and a McLaurin sandy loam from Stone County, Mississippi), both low in organic ca...

  16. CHEMICAL CLEANING OF NANOFILTRATION MEMBRANES FOULED BY ORGANIC MATTERS

    Directory of Open Access Journals (Sweden)

    CHARLENE C. H. KOO

    2016-07-01

    Full Text Available Membrane fouling is a term to describe non-integral substance on membrane surface which results in rapid decline of permeation flux and deteriorate the performance of membrane. Chemical cleaning agents especially like alkaline cleaners are most widely employed to restore the membrane performance. This research mainly investigated the potential use of sodium hydroxide (NaOH and sodium hypochlorite (NaOCl as the chemical cleaning agents to restore the permeate flux of organically fouled nanofiltration (NF membranes under varying applied pressure and flow condition. The performances of the cleaning protocols were quantified using flux recovery and resistance removal. The results demonstrated that NaOCl is more effective than NaOH. This observation is also in line with FTIR analysis in which the transmittance intensity showed by FTIR spectra of NaOCl is higher than that of NaOH. The results also reported that higher flux recovery and resistance removal were achieved when the fouled NF membranes were cleaned with higher concentration of chemical agents and applied pressure. However, the improvements of flux recovery and resistance removal by increasing the applied pressure were found insignificant at higher applied pressure range (16 to 18 bar than the lower applied pressure range (i.e. 12 to 14 bar. This research plays an important role by identifying the key parameters that could restore the flux of organically fouled NF membranes significantly.

  17. Carbon mineralization and oxygen dynamics in sediments with deep oxygen penetration, Lake Superior

    DEFF Research Database (Denmark)

    Li, Jiying; Crowe, Sean Andrew; Miklesh, David

    2012-01-01

    To understand carbon and oxygen dynamics in sediments with deep oxygen penetration, we investigated eight locations (160–318-m depth) throughout Lake Superior. Despite the 2–4 weight percent organic carbon content, oxygen penetrated into the sediment by 3.5 to > 12 cm at all locations. Such deep ...... volume-specific carbon degradation rates were 0.3–1.5 µmol cm−3 d−1; bioturbation coefficient near the sediment surface was 3–8 cm2 yr−1. These results indicate that carbon cycling in large freshwater systems conforms to many of the same trends as in marine systems.......To understand carbon and oxygen dynamics in sediments with deep oxygen penetration, we investigated eight locations (160–318-m depth) throughout Lake Superior. Despite the 2–4 weight percent organic carbon content, oxygen penetrated into the sediment by 3.5 to > 12 cm at all locations. Such deep......, suggesting that temporal variability in deeply oxygenated sediments may be greater than previously acknowledged. The oxygen uptake rates (4.4–7.7 mmol m−2 d−1, average 6.1 mmol m−2 d−1) and carbon mineralization efficiency (∼ 90% of deposited carbon) were similar to those in marine hemipelagic and pelagic...

  18. Proceeding of US Army Corps of Engineers Workshop on Sediment Oxygen Demand Held in Providence, Rhode Island on 21-22 August 1990.

    Science.gov (United States)

    1992-06-01

    Eutrophication," Mar, Ecol, Prog., Ser. 3, pp 83-91. Pamatmat, M. M. 1971. "Oxygen Consumption by the Seabed. VI. Seasonal Cycle of Chemical Oxydation and...primarily ferrous iron) and easily degraded organic substances (primarily volatile fatty acids and alcohols ) within the sediment interstitial waters...compounds such as volatile fatty acids and alcohols , must be combined with oxygen through the process of microbial metabolism (see the paper by Jacobson

  19. A method to estimate the enthalpy of formation of organic compounds with chemical accuracy

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Meier, Robert J.; Sin, Gürkan

    2013-01-01

    through better correlation of data. For parameter estimation, a data-set containing 861 experimentally measured values of a wide variety of organic compounds (hydrocarbons, oxygenated compounds, nitrogenated compounds, multi-functional compounds, etc.) is used. The developed property model for Δf...

  20. Isolated Pt Atoms Stabilized by Amorphous Tungstenic Acid for Metal-Support Synergistic Oxygen Activation.

    Science.gov (United States)

    Zhang, Qian; Qin, Xixi; Duanmu, Fanpeng; Ji, Huiming; Shen, Zhurui; Han, Xiaopeng; Hu, Wenbin

    2018-06-05

    Oxygen activation plays a crucial role in many important chemical reactions such as organics oxidation and oxygen reduction. For developing highly active materials for oxygen activation, herein, we report an atomically dispersed Pt on WO3 nanoplates stabilized by in-situ formed amorphous H2WO4 out-layer and the mechanism for activating molecular oxygen. Experimental and theoretical studies demonstrate that the isolated Pt atoms coordinated with oxygen atoms from [WO6] and water of H2WO4, consequently leading to optimized surface electronic configuration and strong metal support interaction (SMSI). In exemplified reactions of butanone oxidation sensing and oxygen reduction, the atomic Pt/WO3 hybrid exhibits superior activity than those of Pt nanoclusters/WO3 and bare WO3 as well as enhanced long-term durability. This work will provide insight on the origin of activity and stability for atomically dispersed materials, thus promoting the development of highly efficient and durable single atom-based catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Intra-/inter-laboratory validation study on reactive oxygen species assay for chemical photosafety evaluation using two different solar simulators.

    Science.gov (United States)

    Onoue, Satomi; Hosoi, Kazuhiro; Toda, Tsuguto; Takagi, Hironori; Osaki, Naoto; Matsumoto, Yasuhiro; Kawakami, Satoru; Wakuri, Shinobu; Iwase, Yumiko; Yamamoto, Toshinobu; Nakamura, Kazuichi; Ohno, Yasuo; Kojima, Hajime

    2014-06-01

    A previous multi-center validation study demonstrated high transferability and reliability of reactive oxygen species (ROS) assay for photosafety evaluation. The present validation study was undertaken to verify further the applicability of different solar simulators and assay performance. In 7 participating laboratories, 2 standards and 42 coded chemicals, including 23 phototoxins and 19 non-phototoxic drugs/chemicals, were assessed by the ROS assay using two different solar simulators (Atlas Suntest CPS series, 3 labs; and Seric SXL-2500V2, 4 labs). Irradiation conditions could be optimized using quinine and sulisobenzone as positive and negative standards to offer consistent assay outcomes. In both solar simulators, the intra- and inter-day precisions (coefficient of variation; CV) for quinine were found to be below 10%. The inter-laboratory CV for quinine averaged 15.4% (Atlas Suntest CPS) and 13.2% (Seric SXL-2500V2) for singlet oxygen and 17.0% (Atlas Suntest CPS) and 7.1% (Seric SXL-2500V2) for superoxide, suggesting high inter-laboratory reproducibility even though different solar simulators were employed for the ROS assay. In the ROS assay on 42 coded chemicals, some chemicals (ca. 19-29%) were unevaluable because of limited solubility and spectral interference. Although several false positives appeared with positive predictivity of ca. 76-92% (Atlas Suntest CPS) and ca. 75-84% (Seric SXL-2500V2), there were no false negative predictions in both solar simulators. A multi-center validation study on the ROS assay demonstrated satisfactory transferability, accuracy, precision, and predictivity, as well as the availability of other solar simulators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Organic pollutants in shale gas flowback and produced waters : identification, potential ecological impact and implications for treatment strategies

    NARCIS (Netherlands)

    Butkovskyi, Andrii; Bruning, Harry; Kools, Stefan A E; Rijnaarts, Huub H M; van Wezel, Annemarie P

    2017-01-01

    Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses

  3. Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media

    Science.gov (United States)

    Yan, Xiaomei; Xu, Xiao; Liu, Qin; Guo, Jia; Kang, Longtian; Yao, Jiannian

    2018-06-01

    Iron single-atom catalyst in form of iron-nitrogen-carbon structure possesses the excellent catalytic activity in various chemical reactions. However, exploring a sustainable and stable single-atom metal catalyst still faces a great challenge due to low yield and complicated synthesis. Here, we report a functional multi-wall carbon nanotubes modified with iron phthalocyanine molecules via a liquid chemical reaction and realize the performance of similar single-atom catalysis for oxygen reduction reaction. A serial of characterizations strongly imply the structure change of iron phthalocyanine molecule and its close recombination with multi-wall carbon nanotubes, which are in favor of ORR catalysis. Compared to commercial platinum-carbon catalyst, composites exhibit superior activity for oxygen reduction reaction with higher half-wave potential (0.86 V), lower Tafel slope (38 mV dec-1), higher limiting current density and excellent electrochemical stability. The corresponding Zinc-air battery also presents higher maximum power density and discharge stability. Therefore, these findings provide a facile route to synthesize a highly efficient non-precious metal carbon-based catalyst.

  4. The behavior of various chemical forms of nickel in graphite furnace atomic absorption spectrometry under different chemical modification approaches

    International Nuclear Information System (INIS)

    Kowalewska, Zofia

    2012-01-01

    Various organic and inorganic Ni forms were investigated using graphite furnace atomic absorption spectrometry. Experiments without chemical modification showed a wide range of characteristic mass values for Ni (from 6.7 to 29 pg) and the importance of interaction with graphite. With the aim of achieving signal unification of organic Ni forms, different ways of chemical modification were tested. Some rules that govern the behavior of Ni were found and confirmed a significant role of the organic component of the analyte molecule in the analytical process. The application of air as an internal furnace gas in the pyrolysis phase and the Pd modifier injected with the sample solution improved the signal of porphyrins, while the application of iodine and methyltrioctylammonium chloride was required for organic compounds containing oxygen-bound Ni atoms. The Ni signal was strongly diminished when an aqueous solution containing hydrochloric acid was measured with the Pd modifier injected over the sample. Using the developed analytical methods, the range of characteristic mass values for various Ni forms totally dissolved in organic or aqueous solution was 6.5–7.9 pg. - Highlights: ► Some rules that govern behavior of organic Ni forms during GFAAS analysis were found. ► Interaction with graphite can significantly influence evaporation of porphyrins. ► Determination of Ni in form of porphyrins needs Pd organic modifier and air ashing. ► Determination of Ni in O-bound organic compounds needs pretreatment with I2+MTOACl. ► Chemical modification for GFAAS determination of Ni in HCl-containing solution.

  5. Reduction in OER with LET: evidence supporting the ''oxygen-in-the-track'' hypothesis

    International Nuclear Information System (INIS)

    Bryant, P.E.

    1976-01-01

    To account for the reduction in OER with increasing LET which is observed for a wide variety of cell systems. Neary (1965) invoked the hypothesis that molecular oxygen is generated within the particle tracks of the more densely ionizing radiations. With the proviso that the product generated may be a species other than oxygen, but with similar sensitizing properties, produced by different qualities of radiation in two different organisms: the alga Chlamydomonas reinhardii and the bacterium Shigella flexneri were calculated. These effective concentrations should be the same for any given quality if the formation of the product is a function only of physico-chemical events occurring within the tracks of particles, and is independent of the biological material in which energy deposition is taking place. A prerequisite for the calculation of effective amounts of oxygen in tracks of ionizing particles is a knowledge of how radiosentivity varies with oxygen concentration at low LET

  6. Piper gaudichaudianum Kunth: Seasonal Characterization of the Essential Oil Chemical Composition of Leaves and Reproductive Organs

    Directory of Open Access Journals (Sweden)

    Bianca Schindler

    2017-08-01

    Full Text Available ABSTRACT This study describes a comparative analysis of the essential oil (EO chemical composition of leaves and reproductive organs (inflorescences and fruits of Piper gaudichaudianum during the seasons of a year in order to determine the best collection time and the most suitable plant organ to obtain this extractive. The chemical composition of EO obtained from fresh leaves was compared to the dried ones, to verify if the drying process interferes in the extractive quality. The leaves were collected from a native population of Santa Maria, RS, Brazil, twice in each season, in triplicate, while inflorescences and fruits were sampled when they were present. The EO was obtained by hydrodistillation of the different plant organs for 3 h. The 20 EO samples were analyzed by gas chromatography (GC coupled to mass spectrometry and GC with flame ionization detector, in triplicate. Hierarchical cluster analysis (HCA and principal components analysis (PCA were performed to verify a possible formation of chemical groups (CG and the cohesion among them. The phenylpropanoid dillapiole was the major constituent of the EO in all seasons and in all plant organs, and myristicin was observed only in reproductive organs. The EO samples of this population were divided into two CG by HCA and PCA, showing the variability in chemical composition between different plant organs, however there was no chemical variability due to seasonality and phenophases. Since the drying of the leaves did not alter the EO chemical composition, this post-harvest procedure can be used without compromising the extrative quality.

  7. Tracing the origin of the oxygen-consuming organic matter in the hypoxic zone in a large eutrophic estuary: the lower reach of the Pearl River Estuary, China

    Science.gov (United States)

    Su, Jianzhong; Dai, Minhan; He, Biyan; Wang, Lifang; Gan, Jianping; Guo, Xianghui; Zhao, Huade; Yu, Fengling

    2017-09-01

    We assess the relative contributions of different sources of organic matter, marine vs. terrestrial, to oxygen consumption in an emerging hypoxic zone in the lower Pearl River Estuary (PRE), a large eutrophic estuary located in Southern China. Our cruise, conducted in July 2014, consisted of two legs before and after the passing of Typhoon Rammasun, which completely de-stratified the water column. The stratification recovered rapidly, within 1 day after the typhoon. We observed algal blooms in the upper layer of the water column and hypoxia underneath in bottom water during both legs. Repeat sampling at the initial hypoxic station showed severe oxygen depletion down to 30 µmol kg-1 before the typhoon and a clear drawdown of dissolved oxygen after the typhoon. Based on a three endmember mixing model and the mass balance of dissolved inorganic carbon and its isotopic composition, the δ13C of organic carbon remineralized in the hypoxic zone was -23.2 ± 1.1 ‰. We estimated that 65 ± 16 % of the oxygen-consuming organic matter was derived from marine sources, and the rest (35 ± 16 %) was derived from the continent. In contrast to a recently studied hypoxic zone in the East China Sea off the Changjiang Estuary where marine organic matter dominated oxygen consumption, here terrestrial organic matter significantly contributed to the formation and maintenance of hypoxia. How varying amounts of these organic matter sources drive oxygen consumption has important implications for better understanding hypoxia and its mitigation in bottom waters.

  8. Atmospheric emissions and long-range transport of persistent organic chemicals

    Directory of Open Access Journals (Sweden)

    Scheringer M.

    2010-12-01

    Full Text Available Persistent organic chemicals include several groups of halogenated compounds, such as polychlorinated biphenyls (PCBs, polybrominated diphenylethers (PBDEs, and polyfluorinated carboxylic acids (PFCAs. These chemicals remain for long times (years to decades in the environment and cycle between different media (air, water, sediment, soil, vegetation, etc.. The environmental distribution of this type of chemicals can conveniently be analyzed by multimedia models. Multimedia models consist of a set of coupled mass balance equations for the environmental media considered; they can be set up at various scales from local to global. Two applications of multimedia models to airborne chemicals are discussed in detail: the day-night cycle of PCBs measured in air near the surface, and the atmospheric long-range transport of volatile precursors of PFCAs, formation of PFCAs by oxidation of these precursors, and subsequent deposition of PFCAs to the surface in remote regions such as the Arctic.

  9. Glow discharge in singlet oxygen

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsyn, D.V.; Yuryshev, N.N.; Kochetov, I.V.; Napartovich, A.P.

    2003-01-01

    Currently, there is no experimental data on the plasma balance in gas mixtures with a high content of singlet delta oxygen O 2 ( 1 Δ g ). These data can be obtained by studying the parameters of an electric discharge in singlet oxygen produced by a chemical generator. The O 2 ( 1 Δ g ) molecules significantly change the kinetics of electrons and negative ions in plasma. Hence, the discharge conditions at low and high O 2 ( 1 Δ g ) concentrations are very different. Here, the parameters of the positive column of a glow discharge in a gas flow from a chemical singlet-oxygen generator are studied. It is experimentally shown that, at an O 2 ( 1 Δ g ) concentration of 50% and at pressures of 1.5 and 2 torr, the electric field required to sustain the discharge is considerably lower than in the case when all of the oxygen molecules are in the ground state. A theoretical model of the glow discharge is proposed whose predictions are in good agreement with the experimental data

  10. Calibration and use of the polar organic chemical integrative sampler--a critical review.

    Science.gov (United States)

    Harman, Christopher; Allan, Ian John; Vermeirssen, Etiënne L M

    2012-12-01

    The implementation of strict environmental quality standards for polar organic priority pollutants poses a challenge for monitoring programs. The polar organic chemical integrative sampler (POCIS) may help to address the challenge of measuring low and fluctuating trace concentrations of such organic contaminants, offering significant advantages over traditional sampling. In the present review, the authors evaluate POCIS calibration methods and factors affecting sampling rates together with reported environmental applications. Over 300 compounds have been shown to accumulate in POCIS, including pesticides, pharmaceuticals, hormones, and industrial chemicals. Polar organic chemical integrative sampler extracts have been used for both chemical and biological analyses. Several different calibration methods have been described, which makes it difficult to directly compare sampling rates. In addition, despite the fact that some attempts to correlate sampling rates with the properties of target compounds such as log K(OW) have been met with varying success, an overall model that can predict uptake is lacking. Furthermore, temperature, water flow rates, salinity, pH, and fouling have all been shown to affect uptake; however, there is currently no robust method available for adjusting for these differences. Overall, POCIS has been applied to a wide range of sampling environments and scenarios and has been proven to be a useful screening tool. However, based on the existing literature, a more mechanistic approach is required to increase understanding and thus improve the quantitative nature of the measurements. Copyright © 2012 SETAC.

  11. Metal–organic covalent network chemical vapor deposition for gas separation

    NARCIS (Netherlands)

    Boscher, N.D.; Wang, M.; Perrotta, A.; Heinze, K.; Creatore, A.; Gleason, K.K.

    2016-01-01

    The chemical vapor deposition (CVD) polymerization of metalloporphyrin building units is demonstrated to provide an easily up-scalable one-step method toward the deposition of a new class of dense and defect-free metal–organic covalent network (MOCN) layers. The resulting hyper-thin and flexible

  12. Development of oxygen sensing technology in an irradiated fuel rod. Characteristic test of oxygen sensor

    International Nuclear Information System (INIS)

    Saito, Junichi; Hoshiya, Taiji; Sakurai, Fumio; Sakai, Haruyuki

    1996-03-01

    At the Department of JMTR (Japan Materials Test Reactor), the re-instrumentation technologies to a high burnup fuel rod irradiated in an LWR have been developed to study irradiation behavior of the fuel during power transient. It has been progressed developing a chemical sensor as one of the re-instrumentation technologies. This report summarizes the results of characteristic tests of an oxygen sensor made of Yttria Stabilized Zirconia (YSZ) as a solid electrolyte. Several kinds of experiments were carried out to evaluate the electromotive force (emf) performance, stability and lifetime of the oxygen sensor with Ni/NiO, Cr/Cr 2 O 3 and Fe/FeO, respectively as a reference electrode. From the experimental data, it is suggested that the reference electrode of Ni/NiO reveals the most appropriate characteristic of the sensor to measure the partial oxygen pressure in a fuel rod. It is the final goal of this development to clarify the change of oxygen chemical potential in a fuel rod during power transient. (author)

  13. Recent advances in chemical evolution and the origins of life

    Science.gov (United States)

    Oro, John; Lazcano, Antonio

    1992-01-01

    Consideration is given to the ideas of Oparin and Haldane who independently suggested more than 60 years ago that the first forms of life were anaerobic, heterotrophic bacteria that emerged as the result of a long period of chemical abiotic synthesis of organic compounds. It is suggested that at least some requirements for life are met in the Galaxy due to the cosmic abundance of carbon, nitrogen, oxygen, and other biogenic elements; the existence of extraterrestrial organic compounds; and the processes of stellar and interstellar planetary formation.

  14. Accessing Synthetically-Challenging Isoindole-Based Materials for Assessment in Organic Photovoltaics via Chemical and Engineering Methodologies =

    Science.gov (United States)

    Dang, Jeremy

    Isoindoles are a broad class of compounds that comprise a very small space within the domain of established photoactive materials for organic photovoltaics (OPVs). Given this scarcity, combined with the performance appeal of presently and well known isoindole-based compounds such as the phthalocyanines, it is a worthy undertaking to develop new materials in this domain. This thesis aims to bring to light the suitability of five novel, or underexplored, classes of isoindole-based materials for OPVs. These classes are the boron subphthalocyanine (BsubPc) polymers, oxygen-bridged dimers of BsubPcs (mu-oxo-(BsubPc) 2), boron subnaphthalocyanines (BsubNcs), group XIII metal complexes of 1,3-bis(2-pyridylimino)isodinoline (BPI), and the boron tribenzosubporphyrins (BsubPys). The synthesis of these materials was proven to be challenging as evident in their low isolated yields, lengthy synthetic and purification processes, and/or batch-to-batch variations. This outcome was not surprising given their undeveloped chemical nature. The photo- and electro-physical properties were characterized and shown to be desirable for all classes other than the group XIII metal complexes of BPI for OPVs. mu-Oxo-(BsubPc)2 and BsubNcs show promise in this application while BsubPc polymers and BsubPys will be subjects of future exploration. The results from the work herein aid to develop and strengthen the fundamental understanding of the structure-property relationships of isoindole derivatives. On a broader scale, the work demonstrates their versatility as functional materials for OPVs and their possible expansion to other organic electronic technologies like organic light emitting diodes and organic field effect transistors.

  15. Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants

    Science.gov (United States)

    Panizza, Marco

    Electrochemical oxidation is a promising method for the treatment of wastewaters containing organic compounds. As a general rule, the electrochemical incineration of organics at a given electrode can take place at satisfactory rates and without electrode deactivation only at high anodic potentials in the region of the water discharge due to the participation of the intermediates of oxygen evolution. The nature of the electrode material strongly influences both the selectivity and the efficiency of the process. In particular, anodes with low oxygen evolution overpotential (i.e., good catalysts for oxygen evolution reactions), such as graphite, IrO2, RuO2, and Pt only permit the partial oxidation of organics, while anodes with high oxygen evolution overpotential (i.e., anodes that are poor catalysts for oxygen evolution reactions), such as SnO2, PbO2, and boron-doped diamond (BDD) favor the complete oxidation of organics to CO2 and so are ideal electrodes for wastewater treatment.However, the application of SnO2 and PbO2 anodes may be limited by their short service life and the risk of lead contamination, while BDD electrodes exhibit good chemical and electrochemical stability, a long life, and a wide potential window for water discharge, and are thus promising anodes for industrial-scale wastewater treatment.

  16. Regime of the dissolved oxygen in Iron Gates lakes

    International Nuclear Information System (INIS)

    Gruia, Emil; Marcoci, Simona

    1992-01-01

    During the period 1964-1987, in the dissolved oxygen regime of the Danube water elevate modifications occurred in the Iron Gates I and II area, in comparison with the relative stability of the previous period. The causes of this evolution were the water organic pollution, as a result of the socio-economical development of the riparian countries in the mentioned period, and the modifications of the water flow entailed by the building of the Iron Gates power system. As a result, physical, chemical and biological processes, different as intensity and manifestation from those in the previous period occurred. Consequently, the general ratio between demand and re-aeration processes has been modified. The paper has the following content: 1. Introduction; 2. Physico-chemical aspects; 3. Biological aspects; 4. Conclusions. (authors)

  17. Adjunctive Therapies During Extracorporeal Membrane Oxygenation to Enhance Multiple Organ Support in Critically Ill Children

    Directory of Open Access Journals (Sweden)

    Marguerite Orsi Canter

    2018-04-01

    Full Text Available Since the advent of extracorporeal membrane oxygenation (ECMO over 40 years ago, there has been increasing interest in the use of the extracorporeal circuit as a platform for providing multiple organ support. In this review, we will examine the evidence for the use of continuous renal replacement therapy, therapeutic plasma exchange, leukopheresis, adsorptive therapies, and extracorporeal liver support in conjunction with ECMO.

  18. Partitioning of polar and non-polar neutral organic chemicals into human and cow milk.

    Science.gov (United States)

    Geisler, Anett; Endo, Satoshi; Goss, Kai-Uwe

    2011-10-01

    The aim of this work was to develop a predictive model for milk/water partition coefficients of neutral organic compounds. Batch experiments were performed for 119 diverse organic chemicals in human milk and raw and processed cow milk at 37°C. No differences (milk were observed. The polyparameter linear free energy relationship model fit the calibration data well (SD=0.22 log units). An experimental validation data set including hormones and hormone active compounds was predicted satisfactorily by the model. An alternative modelling approach based on log K(ow) revealed a poorer performance. The model presented here provides a significant improvement in predicting enrichment of potentially hazardous chemicals in milk. In combination with physiologically based pharmacokinetic modelling this improvement in the estimation of milk/water partitioning coefficients may allow a better risk assessment for a wide range of neutral organic chemicals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Oxygen nonstoichiometry and thermo-chemical stability of La0.6Sr0.4CoO3−δ

    International Nuclear Information System (INIS)

    Kuhn, M.; Hashimoto, S.; Sato, K.; Yashiro, K.; Mizusaki, J.

    2013-01-01

    The oxygen nonstoichiometry of La 0.6 Sr 0.4 CoO 3−δ has been the topic of various reports in the literature, but has been exclusively measured at high oxygen partial pressures, pO 2 , and/or elevated temperatures. For applications of La 0.6 Sr 0.4 CoO 3−δ , such as solid oxide fuel cell cathodes or oxygen permeation membranes, knowledge of the oxygen nonstoichiometry and thermo-chemical stability over a wide range of pO 2 is crucial, as localized low pO 2 could trigger failure of the material and device. By employing coulometric titration combined with thermogravimetry, the oxygen nonstoichiometry of La 0.6 Sr 0.4 CoO 3−δ was measured at high and intermediate pO 2 until the material decomposed (at log(pO 2 /bar)≈−4.5 at 1073 K). For a gradually reduced sample, an offset in oxygen content suggests that La 0.6 Sr 0.4 CoO 3−δ forms a “super-reduced” solid solution before decomposing. When the sample underwent alternate reduction–oxidation, a hysteresis-like pO 2 dependence of the oxygen content in the decomposition pO 2 range was attributed to the reversible formation of ABO 3 and A 2 BO 4 phases. Reduction enthalpy and entropy were determined for the single-phase region and confirmed interpolated values from the literature. - Graphical abstract: Oxygen nonstoichiometry (shown as 3−δ) of La 0.6 Sr 0.4 CoO 3−δ as a function of pO 2 at 773–1173 K. The experimental data were obtained by thermogravimetric analysis (TG) and coulometric titration (measured either by a simple reduction (CT1) or a “two-step-forward one-step-back” reduction–oxidation (CT2) procedure). D1 and D2 denote the decomposition pO 2 . The solid lines are the fit to the thermogravimetry and CT1 data. The dashed lines represent the non-equilibrium region where the sample shows a super-reduced state. Highlights: ► Oxygen nonstoichiometry of La 0.6 Sr 0.4 CoO 3−δ at intermediate temperatures and p(O2). ► Experimental confirmation of previously interpolated

  20. Mathematical modeling of dissolved oxygen in fish ponds ...

    African Journals Online (AJOL)

    Mathematical modeling of dissolved oxygen in fish ponds. WJS Mwegoha, ME Kaseva, SMM Sabai. Abstract. A mathematical model was developed to predict the effects of wind speed, light, pH, Temperature, dissolved carbon dioxide and chemical oxygen demand (COD) on Dissolved Oxygen (DO) in fish ponds. The effects ...

  1. Tracing the origin of the oxygen-consuming organic matter in the hypoxic zone in a large eutrophic estuary: the lower reach of the Pearl River Estuary, China

    Directory of Open Access Journals (Sweden)

    J. Su

    2017-09-01

    Full Text Available We assess the relative contributions of different sources of organic matter, marine vs. terrestrial, to oxygen consumption in an emerging hypoxic zone in the lower Pearl River Estuary (PRE, a large eutrophic estuary located in Southern China. Our cruise, conducted in July 2014, consisted of two legs before and after the passing of Typhoon Rammasun, which completely de-stratified the water column. The stratification recovered rapidly, within 1 day after the typhoon. We observed algal blooms in the upper layer of the water column and hypoxia underneath in bottom water during both legs. Repeat sampling at the initial hypoxic station showed severe oxygen depletion down to 30 µmol kg−1 before the typhoon and a clear drawdown of dissolved oxygen after the typhoon. Based on a three endmember mixing model and the mass balance of dissolved inorganic carbon and its isotopic composition, the δ13C of organic carbon remineralized in the hypoxic zone was −23.2 ± 1.1 ‰. We estimated that 65 ± 16 % of the oxygen-consuming organic matter was derived from marine sources, and the rest (35 ± 16 % was derived from the continent. In contrast to a recently studied hypoxic zone in the East China Sea off the Changjiang Estuary where marine organic matter dominated oxygen consumption, here terrestrial organic matter significantly contributed to the formation and maintenance of hypoxia. How varying amounts of these organic matter sources drive oxygen consumption has important implications for better understanding hypoxia and its mitigation in bottom waters.

  2. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    2011-05-01

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  3. Gas-solids kinetics of CuO/Al2O3 as an oxygen carrier for high-pressure chemical looping processes : the influence of the total pressure

    NARCIS (Netherlands)

    San Pio Bordeje, M.A.; Gallucci, F.; Roghair, I.; van Sint Annaland, M.

    2017-01-01

    Copper oxide on alumina is often used as oxygen carrier for chemical looping combustion owing to its very high reduction rates at lower temperatures and its very good mechanical and chemical stability at not too high temperatures. In this work, the redox kinetics of CuO/Al2O3 have been studied at

  4. Radiolysis of organic triphenylmethane, anthraquinone, xanthene, oxazine, thiazine and azo dyes in polymeric films

    International Nuclear Information System (INIS)

    Khabarov, V.N.; Kozlov, L.L.; Molin, A.A.; Mekhanic, T.V.

    1988-01-01

    Effect of air oxygen and temperature (77 - 323 K) on decolorization radiation-chemical processes of triphenylmethane, anthraquinone, xanthene, oxazine, thiazine and azo dyes in different polymeric matrices is investigated. Radiation decolorization rate for the majority of dyes increases at the irradiation in O 2 presence, which is, presumably, connected with the dye oxidation by the singlet oxygen. The organic dyes manifest the most radiation resistance in polyethyleneterephthalate and polystyrene films

  5. Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting

    International Nuclear Information System (INIS)

    He, Xiao-Song; Xi, Bei-Dou; Cui, Dong-Yu; Liu, Yong; Tan, Wen-Bin; Pan, Hong-Wei; Li, Dan

    2014-01-01

    Highlights: • Electron transfer capability (ETC) of compost-derived DOM was investigated. • Composting treatment increased the ETC of DOM from municipal solid wastes. • The ETC increase related to humic matter, and molecule weight, and N and S content. - Abstract: Dissolved organic matter (DOM) can mediate electron transfer and change chemical speciation of heavy metals. In this study, the electron transfer capability (ETC) of compost-derived DOM was investigated through electrochemical approaches, and the factors influencing the ETC were studied using spectral and elemental analysis. The results showed that the electron accepting capacity (EAC) and electron donating capacity (EDC) of compost-derived DOM were 3.29–40.14 μmol e− (g C) −1 and 57.1– 346.07 μmol e− (g C) −1 , respectively. Composting treatment increased the fulvic- and humic-like substance content, oxygenated aliphatic carbon content, lignin-derived aromatic carbon content, molecule weight, and N and S content of DOM, but decreased the aliphatic carbon content and the C and H content. This conversion increased the EDC and EAC of the DOM during composting

  6. Algal growth inhibition test results of 425 organic chemical substances

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Christensen, Anne Munch; Nyholm, Niels

    2018-01-01

    The toxicity towards the algal species Pseudokirchneriella subcapitata of 425 organic chemical substances was tested in a growth inhibition test. Precautions were taken to prevent loss of the compounds from the water phase and the test system (closed test system, low biomass, shorter test duration......, silanized glass) and to keep pH constant by applying a higher alkalinity. Chemical phase distribution was modelled taking ionization, volatilisation, and adsorption to glass and biomass into consideration. If the modelled water concentration was below 90% of the nominal concentration the calculated EC...... values were corrected accordingly. The model helped to identify substances, where the calculated water concentration was too uncertain. Substances covering a wide range of physical-chemical properties and different modes of action were tested. Median effect concentrations (EC50) lower than 1000 mg/L were...

  7. Carbon coated (carbonous) catalyst in ebullated bed reactor for production of oxygenated chemicals from syngas/CO2

    International Nuclear Information System (INIS)

    Peizheng Zhou

    2002-01-01

    This report summarizes the work completed under DOE's Support of Advanced Fuel Research program, Contract No. DE-FG26-99FT40681. The contract period was October 2000 through September 2002. This R and D program investigated the modification of the mechanical strength of catalyst extrudates using Hydrocarbon Technologies, Inc. (HTI) carbon-coated catalyst technology so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO 2 efficiently and economically. Exothermic chemical reactions benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. The carbon-coated extrudates prepared using these procedures had sufficient attrition resistance and surface area for use in ebullated bed operation. The low cost of carbon coating makes the carbon-coated catalysts highly competitive in the market of catalyst extrudates

  8. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Xiao, Teng; Cui, Weipan [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Joseph, E-mail: jshinar@iastate.edu [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Ruth, E-mail: rshinar@iastate.edu [Microelectronics Research Center and Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2013-05-17

    Graphical abstract: -- Highlights: •Novel simply-fabricated all-organic electronics pH and oxygen optical monitor. •Excitation sources: directionally emitting, narrowed multicolor microcavity OLEDs. •Photodetectors: small molecule- or polymer-based with selective spectral responses. •Sensor film: structured high molecular weight polystyrene:polyethylene glycol blend. •×1.9 sensitivity enhancement and ×2.7 increase in the photoluminescence for oxygen. -- Abstract: Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs’ broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ∼20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ{sub 0}/τ{sub 100} (PL decay time τ at 0% O{sub 2}/τ at 100% O{sub 2}) that is often used

  9. In-silico identification and characterization of organic and inorganic chemical stress responding genes in yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Barozai, Muhammad Younas Khan; Bashir, Farrukh; Muzaffar, Shafia; Afzal, Saba; Behlil, Farida; Khan, Muzaffar

    2014-10-15

    To study the life processes of all eukaryotes, yeast (Saccharomyces cerevisiae) is a significant model organism. It is also one of the best models to study the responses of genes at transcriptional level. In a living organism, gene expression is changed by chemical stresses. The genes that give response to chemical stresses will provide good source for the strategies in engineering and formulating mechanisms which are chemical stress resistant in the eukaryotic organisms. The data available through microarray under the chemical stresses like lithium chloride, lactic acid, weak organic acids and tomatidine were studied by using computational tools. Out of 9335 yeast genes, 388 chemical stress responding genes were identified and characterized under different chemical stresses. Some of these are: Enolases 1 and 2, heat shock protein-82, Yeast Elongation Factor 3, Beta Glucanase Protein, Histone H2A1 and Histone H2A2 Proteins, Benign Prostatic Hyperplasia, ras GTPase activating protein, Establishes Silent Chromatin protein, Mei5 Protein, Nondisjunction Protein and Specific Mitogen Activated Protein Kinase. Characterization of these genes was also made on the basis of their molecular functions, biological processes and cellular components. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Chemical characterization of agricultural supplies applied to organic tomato cultivation

    International Nuclear Information System (INIS)

    Martins, T.C.G.; Nadai Fernandes de, E.A.; Ferrari, A.A.; Tagliaferro, F.S.; Bacchi, M.A.

    2008-01-01

    The agricultural supplies used in the organic system to control pests and diseases as well as to fertilize soil are claimed to be beneficial to plants and innocuous to human health and to the environment. The chemical composition of six agricultural supplies commonly used in the organic tomato culture, was evaluated by instrumental neutron activation analysis (INAA). Results were compared to the maximum limits established by the Environment Control Agency of the S?o Paulo State (CETESB) and the Guidelines for Organic Quality Standard of Instituto Biodinamico (IBD). Concentrations above reference values were found for Co, Cr and Zn in compost, Cr and Zn in cattle manure and Zn in rice bran. (author)

  11. Catalytic Deoxygenation of Renewable Chemicals   – Structure‐Performance Studies

    DEFF Research Database (Denmark)

    Malcho, Phillip

    Generation of chemicals from a viable feedstock is an increasingly interesting field. One of the major issues is the high oxygen ratios in biomass. There are a multitude of ways to remove oxygen from organic molecules. This thesis deals with two topics: The dehydration of glucose into HMF...... to provide a broad platform for the following chapters. Furthermore, the objectives for the thesis are listed here. Chapter 2 deals with the synthetic preparation of the catalysts and the catalytic setups. Chapter 3 deals with the dehydration of glucose into HMF in ionic liquids. The system was investigated...

  12. Process integration of chemical looping combustion with oxygen uncoupling in a coal-fired power plant

    International Nuclear Information System (INIS)

    Spinelli, Maurizio; Peltola, Petteri; Bischi, Aldo; Ritvanen, Jouni; Hyppänen, Timo; Romano, Matteo C.

    2016-01-01

    High-temperature solid looping processes for CCS (carbon capture and storage) represent a class of promising technologies that enables CO2 capture with relatively low net efficiency penalties. The novel concept of the CLOU (Chemical Looping with Oxygen Uncoupling) process is based on a system of two interconnected fluidized bed reactors that operate at atmospheric pressure. In the fuel reactor, the capability of certain metal oxides to spontaneously release molecular oxygen at high temperatures is exploited to promote the direct conversion of coal in an oxygen-rich atmosphere. As a novel CO_2 capture concept, the CLOU process requires the optimization of design and operation parameters, which may substantially influence the total power plant performance. This study approaches this issue by performing joint simulations of CLOU reactors using a 1.5D model and a steam cycle power plant. A sensitivity analysis has been performed to investigate the performance and main technical issues that are related to the integration of a CLOU island in a state-of-the-art USC (ultra-supercritical) power plant. In particular, the effect of the key process parameters has been evaluated. Superior performance has been estimated for the power plant, with electrical efficiencies of approximately 42% and more than 95% CO2 avoided. - Highlights: • Process modeling and simulation of CLOU integrated in USC coal power plant carried out. • Comprehensive sensitivity analysis on Cu-based CLOU process performed. • Electrical efficiencies of 42% and more than 95% CO_2 avoided obtained. • Reactor size and operating conditions suitable for industrial applications.

  13. An immersion calorimetric study of the interactions between some organic molecules and functionalized carbon nanotube surfaces

    International Nuclear Information System (INIS)

    Castillejos-López, E.; Bachiller-Baeza, B.; Guerrero-Ruiz, A.; Rodriguez-Ramos, I.

    2013-01-01

    Highlights: ► The interaction of organic chemicals with the surface of modified CNTs was studied. ► Specific π–π interactions between graphitic CNTs and toluene have been considered. ► Confinement effects in CNTs increase the adsorption strength of aromatic compounds. ► Methanol molecules form H-bonds with the oxygen functional groups on CNT surfaces. - Abstract: The interaction of organic chemicals with the surface of carbon nanotubes has been studied by immersion calorimetry revealing significant differences in the properties when these materials are modified thermally or chemically. Therefore, multiwall carbon nanotubes have been synthesized using a chemical vapour deposition procedure and subsequently aliquots were treated with HNO 3 at reflux, maintaining the reaction during different times, in order to incorporate oxygen surface groups, or were treated at 2873 K under inert atmosphere. The aim of this thermal treatment is to eliminate structural defects of the carbon nanostructures and to graphitize the amorphous carbon phases. These features were confirmed by high-resolution transmission electron microscopy. The immersion in organic compounds, including toluene, methanol and methylcyclohexane, of all these carbon nanotubes samples reveals that the surface properties are remarkably modified. Thus, the formation of different types of interaction, depending on the surface, gives place to changes in the immersion enthalpies

  14. Investigation of the Makeup, Source, and Removal Strategies for Total Organic Carbon in the Oxygen Generation System Recirculation Loop

    Science.gov (United States)

    Bowman, Elizabeth M.; Carpenter, Joyce; Roy, Robert J.; Van Keuren, Steve; Wilson, Mark E.

    2015-01-01

    Since 2007, the Oxygen Generation System (OGS) on board the International Space Station (ISS) has been producing oxygen for crew respiration via water electrolysis. As water is consumed in the OGS recirculating water loop, make-up water is furnished by the ISS potable water bus. A rise in Total Organic Carbon (TOC) was observed beginning in February, 2011, which continues through the present date. Increasing TOC is of concern because the organic constituents responsible for the TOC were unknown and had not been identified; hence their impacts on the operation of the electrolytic cell stack components and on microorganism growth rates and types are unknown. Identification of the compounds responsible for the TOC increase, their sources, and estimates of their loadings in the OGA as well as possible mitigation strategies are presented.

  15. Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers.

    Science.gov (United States)

    Tao, Rui; Wakelin, Steven A; Liang, Yongchao; Hu, Baowei; Chu, Guixin

    2018-01-15

    The effects of consecutive application of chemical fertilizer with or without organic fertilizer on soil N 2 O emissions and denitrifying community structure in a drip-irrigated field were determined. The four fertilizer treatments were (i) unfertilized, (ii) chemical fertilizer, (iii) 60% chemical fertilizer plus cattle manure, and (iv) 60% chemical fertilizer plus biofertilizer. The treatments with organic amendments (i.e. cattle manure and biofertilizer) reduced cumulative N 2 O emissions by 4.9-9.9%, reduced the N 2 O emission factor by 1.3-42%, and increased denitrifying enzyme activities by 14.3-56.2%. The nirK gene copy numbers were greatest in soil which received only chemical fertilizer. In contrast, nirS- and nosZ-copy numbers were greatest in soil amended with chemical fertilizer plus biofertilizer. Chemical fertilizer application with or without organic fertilizer significantly changed the community structure of nirK-type denitrifiers relative to the unfertilized soil. In comparison, the nirS- and nosZ-type denitrifier genotypes varied in treatments receiving organic fertilizer but not chemical fertilizer alone. The changes in the denitrifier communities were closely associated with soil organic carbon (SOC), NO 3 - , NH 4 + , water holding capacity, and soil pH. Modeling indicated that N 2 O emissions in this soil were primarily associated with the abundance of nirS type denitrifying bacteria, SOC, and NO 3 - . Overall, our findings indicate that (i) the organic fertilizers increased denitrifying enzyme activity, increased denitrifying-bacteria gene copy numbers, but reduced N 2 O emissions, and (ii) nirS- and nosZ-type denitrifiers were more sensitive than nirK-type denitrifiers to the organic fertilizers. Copyright © 2017. Published by Elsevier B.V.

  16. CAN GALACTIC CHEMICAL EVOLUTION EXPLAIN THE OXYGEN ISOTOPIC VARIATIONS IN THE SOLAR SYSTEM?

    International Nuclear Information System (INIS)

    Lugaro, Maria; Liffman, Kurt; Ireland, Trevor R.; Maddison, Sarah T.

    2012-01-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced 16 O-rich CO and 16 O-poor H 2 O, where the H 2 O subsequently combined with interstellar dust to form relatively 16 O-poor solids within the solar nebula. Another model for creating the different reservoirs of 16 O-rich gas and 16 O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the solar system dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the solar system. The GCE scenario is in contradiction with observations of the 18 O/ 17 O ratios in nearby molecular clouds and young stellar objects. It is very unlikely for GCE to produce a line of slope one when considering the effect of incomplete mixing of stellar ejecta in the interstellar medium. Furthermore, the assumption that the solar system dust was younger than the gas requires unusual timescales or the existence of an important stardust component that is not theoretically expected to occur nor has been identified to date.

  17. Chemical and Electrochemical Properties of La0.58Sr0.4Fe0.8Co0.2O3-δ (LSCF) Thin Films upon Oxygen Reduction and Evolution Reactions

    DEFF Research Database (Denmark)

    Pitscheider, Simon; Machala, Michael; Guan, Zixuan

    2017-01-01

    The Oxygen Evolution and Oxygen Reduction Reactions (OER/ORR), occurring at the oxygen electrode of Solid Oxide Cells (SOCs) in the two possible ways of operation, require substantial overpotentials, therefore lowering the operating efficiency of the cells. The reaction mechanisms occurring...... at these electrodes are still not completely understood due to their complexity and localized character at the interfaces between different materials or between the gas atmosphere and the electrocatalyst, and need in situ techniques with very high chemical sensitivity, with the additional difficulty of probing...... the materials as close as possible to their realistic operating conditions. In addition, the properties of LSCF are, despite numerous studies, still unclear in many aspects, despite LSCF being one of the state-of-the-art electrocatalysts used for SOCs. It is understood that the surface chemical composition...

  18. Radioactivity in chemical and organic fertilizer used in Egypt

    International Nuclear Information System (INIS)

    Abbady, A.G.E.; Yousef, A.M.M.; Abbady, A.; El-Taher, A.

    2005-01-01

    The Egypt Chemical factories (ECF); such as Talkha, Sues, Abo Qeyer, Kafer Elzayat, and Assuit factories, produces and markets a range of phosphate based fertilizers, including Simple Super Phosphate (SSP) fertilizer, Triple Super Phosphate (TSP) fertilizer and Urea. Phosphate fertilizers produced by ECF are derived from phosphate ore. In addition to phosphate minerals, these ores can contain significant amounts of a wide range of impurities, including heavy metals and naturally occurring radionuclides. This study was carried out to determine the content of radionuclides in fertilizer products produced by ECF and some organic fertilizer (animal manure) includes cow, sheep and chicken fertilizer. In both samples (Chemical and organic fertilizers), the activity concentrations of Ra 2 26 are higher than those Th 2 32. The radioactivity of 226 R a in chemical fertilizers ranged from 21.6 ± 3.6 to 111.2 ± 8.9 Bq kg-1, phosphate fertilizers TSP contained high contents of 226 R a. The average radioactivity of 226 R a in TSP was 79.3 ± 7.4 Bq kg-1, in SSP 51.2 ± 5 Bq kg-1, and in Urea 35.1± 3.5 Bq kg-1. The activity of 232 T h in the different fertilizers ranged from 1.3 ± 1.1 to 9.9 ± 3.2 Bq kg-1,the highest activity observed in SSP fertilizer. The activity of 40 K was found to be great in the TSP fertilizer, which contained a mean activity 478.1± 21.3 Bq kg-1. With respect to organic fertilizers the average radioactivity of 226 R a, 232 T h and 40 K are 40 ± 1.6 Bq kg-1, 3.1± 1.2 and 427.1± 20 Bq kg-1. The data are discussed and compared with those given in the literatures. This study could be useful as baseline data for radiation exposure to fertilizers, and their impact on human health

  19. Nitrogen and chemical oxygen demand removal from septic tank wastewater in subsurface flow constructed wetlands: substrate (cation exchange capacity) effects.

    Science.gov (United States)

    Collison, Robert S; Grismer, Mark E

    2014-04-01

    The current article focuses on chemical oxygen demand (COD) and nitrogen (ammonium and nitrate) removal performance from synthetic human wastewater as affected by different substrate rocks having a range of porosities and cation exchange capacities (CECs). The aggregates included lava rock, lightweight expanded shale, meta-basalt (control), and zeolite. The first three had CECs of 1 to 4 mequiv/100 gm, whereas the zeolite CEC was much greater (-80 mequiv/100 gm). Synthetic wastewater was gravity fed to each constructed wetland system, resulting in a 4-day retention time. Effluent samples were collected, and COD and nitrogen species concentrations measured regularly during four time periods from November 2008 through June 2009. Chemical oxygen demand and nitrogen removal fractions were not significantly different between the field and laboratory constructed wetland systems when corrected for temperature. Similarly, overall COD and nitrogen removal fractions were practically the same for the aggregate substrates. The important difference between aggregate effects was the zeolite's ammonia removal process, which was primarily by adsorption. The resulting single-stage nitrogen removal process may be an alternative to nitrification and denitrification that may realize significant cost savings in practice.

  20. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    Science.gov (United States)

    Pfrang, C.; Shiraiwa, M.; Pöschl, U.

    2011-07-01

    Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  1. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    Directory of Open Access Journals (Sweden)

    C. Pfrang

    2011-07-01

    Full Text Available Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  2. A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms

    OpenAIRE

    Ziveri, P.; Thoms, S.; Probert, I.; Geisen, M.; Langer, H.

    2012-01-01

    The oxygen isotopic composition (δ18O) of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from field experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy c...

  3. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a

  4. From consumption to harvest: Environmental fate prediction of excreted ionizable trace organic chemicals

    DEFF Research Database (Denmark)

    Polesel, Fabio; Plósz, Benedek G.; Trapp, Stefan

    2015-01-01

    Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation with freshwa......Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation...... with freshwater or reclaimed wastewater. Recent research has shown the tendency for these substances to accumulate in food crops. In this study, we developed and applied a simulation tool to predict the fate of three ionizable trace chemicals (triclosan-TCS, furosemide-FUR, ciprofloxacin-CIP) from human...... and a recently developed dynamic soil-plant uptake model. The simulation tool was tested using country-specific (e.g., consumption/emission rates, precipitation and temperature) input data. A Monte Carlo-based approach was adopted to account for the uncertainty associated to physico-chemical and biokinetic model...

  5. Solvent Effects on Oxygen-17 Chemical Shifts in Amides. Quantitative Linear Solvation Shift Relationships

    Science.gov (United States)

    Díez, Ernesto; Fabián, Jesús San; Gerothanassis, Ioannis P.; Esteban, Angel L.; Abboud, José-Luis M.; Contreras, Ruben H.; de Kowalewski, Dora G.

    1997-01-01

    A multiple-linear-regression analysis (MLRA) has been carried out using the Kamlet-Abboud-Taft (KAT) solvatochromic parameters in order to elucidate and quantify the solvent effects on the17O chemical shifts ofN-methylformamide (NMF),N,N-dimethylformamide (DMF),N-methylacetamide (NMA), andN,N-dimethylacetamide (DMA). The chemical shifts of the four molecules show the same dependence (in ppm) on the solvent polarity-polarizability, i.e., -22π*. The influence of the solvent hydrogen-bond-donor (HBD) acidities is slightly larger for the acetamides NMA and DMA, i.e., -48α, than for the formamides NMF and DMF, i.e., -42α. The influence of the solvent hydrogen-bond-acceptor (HBA) basicities is negligible for the nonprotic molecules DMF and DMA but significant for the protic molecules NMF and NMA, i.e., -9β. The effect of substituting the N-H hydrogen by a methyl group amounts to -5.9 ppm in NMF and 5.4 ppm in NMA. The effect of substituting the O=C-H hydrogen amounts to 5.5 ppm in NMF and 16.8 ppm in DMF. The model of specific hydration sites of amides by I. P. Gerothanassis and C. Vakka [J. Org. Chem.59,2341 (1994)] is settled in a more quantitative basis and the model by M. I. Burgar, T. E. St. Amour, and D. Fiat [J. Phys. Chem.85,502 (1981)] is critically evaluated.17O hydration shifts have been calculated for formamide (FOR) by the ab initio LORG method at the 6-31G* level. For a formamide surrounded by the four in-plane molecules of water in the first hydration shell, the calculated17O shift change due to the four hydrogen bonds, -83.2 ppm, is smaller than the empirical hydration shift, -100 ppm. The17O shift change from each out-of-plane water molecule hydrogen-bonded to the amide oxygen is -18.0 ppm. These LORG results support the conclusion that no more than four water molecules are hydrogen-bonded to the amide oxygen in formamide.

  6. Oxygen respiration rates of benthic foraminifera as measured with oxygen microsensors

    DEFF Research Database (Denmark)

    Geslin, E.; Risgaard-Petersen, N.; Lombard, Fabien

    2011-01-01

    of the foraminiferal specimens. The results show a wide range of oxygen respiration rates for the different species (from 0.09 to 5.27 nl cell−1 h−1) and a clear correlation with foraminiferal biovolume showed by the power law relationship: R = 3.98 10−3 BioVol0.88 where the oxygen respiration rate (R) is expressed......Oxygen respiration rates of benthic foraminifera are still badly known, mainly because they are difficult to measure. Oxygen respiration rates of seventeen species of benthic foraminifera were measured using microelectrodes and calculated on the basis of the oxygen fluxes measured in the vicinity...... groups (nematodes, copepods, ostracods, ciliates and flagellates) suggests that benthic foraminifera have a lower oxygen respiration rates per unit biovolume. The total contribution of benthic foraminifera to the aerobic mineralisation of organic matter is estimated for the studied areas. The results...

  7. Assessment of the oxygen consumption in the backfill. Geochemical modelling in a saturated backfill

    International Nuclear Information System (INIS)

    Grandia, Fidel; Domenech, Cristina; Arcos, David; Duro, Lara

    2006-11-01

    The consumption of oxygen in the deep disposal is a major concern due to the ability of this element to corrode the canisters where high level nuclear wastes (HLNW) are disposed. The anoxic conditions initially present in a deep geologic environment are disturbed by the excavation of the repository facilities. After sealing the deposition holes and tunnels using clay-based materials, oxygen remains dissolved in porewater or as a gas phase in the unsaturated pores. The main mechanisms of oxygen depletion that can be considered in the backfill materials are: (1) diffusion into the surrounding rock and (2) kinetic reactions with accessory minerals and organic matter existing in the backfill. In this report, a set of numerical simulations are carried out in one and two dimensions in order to test the effect on the oxygen concentration in the pore water of all these mechanisms. The backfill considered is a 0/70 mixture of MX-80 bentonite and crushed material from the excavation itself. In addition to organic matter, the solid phases with reducing capacity in the backfill are Fe(II)-bearing minerals: pyrite (FeS 2 ) and siderite (FeCO) (as accessory minerals in the bentonite) and Fe-biotite (from the crushed granite). In the simulations, other chemical processes like cation exchange and surface complexation onto clay surfaces, and thermodynamic equilibrium with calcite, gypsum and quartz are considered. Initial composition of porewater is obtained by equilibrating the Forsmark groundwater with the backfill material. The 1D simulation consists of a number of cells with no reactive minerals or organic matter representing granite. The central cell, however, contains oxygen and reactive minerals resembling a backfill. Oxygen is allowed to move only by diffusion. The 2D model simulates the interaction with a backfill of a granitic groundwater flowing through a fracture. Like in the 1D model, the backfill contains oxygen and reactive solids. The results are very similar in

  8. Assessment of the oxygen consumption in the backfill. Geochemical modelling in a saturated backfill

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Domenech, Cristina; Arcos, David; Duro, Lara [Enviros Spain S.L., Barcelona (Spain)

    2006-11-15

    The consumption of oxygen in the deep disposal is a major concern due to the ability of this element to corrode the canisters where high level nuclear wastes (HLNW) are disposed. The anoxic conditions initially present in a deep geologic environment are disturbed by the excavation of the repository facilities. After sealing the deposition holes and tunnels using clay-based materials, oxygen remains dissolved in porewater or as a gas phase in the unsaturated pores. The main mechanisms of oxygen depletion that can be considered in the backfill materials are: (1) diffusion into the surrounding rock and (2) kinetic reactions with accessory minerals and organic matter existing in the backfill. In this report, a set of numerical simulations are carried out in one and two dimensions in order to test the effect on the oxygen concentration in the pore water of all these mechanisms. The backfill considered is a 0/70 mixture of MX-80 bentonite and crushed material from the excavation itself. In addition to organic matter, the solid phases with reducing capacity in the backfill are Fe(II)-bearing minerals: pyrite (FeS{sub 2}) and siderite (FeCO) (as accessory minerals in the bentonite) and Fe-biotite (from the crushed granite). In the simulations, other chemical processes like cation exchange and surface complexation onto clay surfaces, and thermodynamic equilibrium with calcite, gypsum and quartz are considered. Initial composition of porewater is obtained by equilibrating the Forsmark groundwater with the backfill material. The 1D simulation consists of a number of cells with no reactive minerals or organic matter representing granite. The central cell, however, contains oxygen and reactive minerals resembling a backfill. Oxygen is allowed to move only by diffusion. The 2D model simulates the interaction with a backfill of a granitic groundwater flowing through a fracture. Like in the 1D model, the backfill contains oxygen and reactive solids. The results are very similar in

  9. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors

    Science.gov (United States)

    Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue

    2018-04-01

    Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.

  10. Organic-Chemical Clues to the Theory of Impacts as a Cause of Mass Extinctions

    Science.gov (United States)

    Sack, N. J.

    1988-11-01

    The reasons for the mass extinctions, which occur from time to time in Earth's history-as, e.g., the dinosaur extinction at the Cretaceous/Tertiary boundary 65 myr ago - are still not satisfactorily cleared up. A possible reason might be the impact of one or several comets of several kilometers in diameter. In this paper the astrophysical background of this hypothesis and organic-chemical processes during an impact will be discussed. Quantitative estimations are given, which show that the amount of organic substances brought to the Earth may be of the same order of magnitude as the normal biological production of organic material. Investigations are proposed to examine the organic-chemical composition of profiles of the Cretaceous/Tertiary boundary and other boundaries, at which mass extinction had occurred, in order to find anomalies as consequences of impacts.

  11. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    Science.gov (United States)

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; Li, Jinyang; Schwab, Mark J.; Brudvig, Gary W.; Taylor, André D.

    2016-01-01

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. Here, we show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O2 batteries. The heme's oxygen binding capability facilitates battery recharge by accepting and releasing dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. This study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage. PMID:27759005

  12. Controlled assembly of organic whispering-gallery-mode microlasers as highly sensitive chemical vapor sensors.

    Science.gov (United States)

    Gao, Miaomiao; Wei, Cong; Lin, Xianqing; Liu, Yuan; Hu, Fengqin; Zhao, Yong Sheng

    2017-03-09

    We demonstrate the fabrication of organic high Q active whispering-gallery-mode (WGM) resonators from π-conjugated polymer by a controlled emulsion-solvent-evaporation method, which can simultaneously provide optical gain and act as an effective resonant cavity. By measuring the shift of their lasing modes on exposure to organic vapor, we successfully monitored the slight concentration variation in the chemical gas. These microlaser sensors demonstrated high detection sensitivity and good signal repeatability under continuous chemical gas treatments. The results offer an effective strategy to design miniaturized optical sensors.

  13. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  14. Application of wastewater with high organic load for saline-sodic soil reclamation focusing on soil purification ability

    Directory of Open Access Journals (Sweden)

    M.A. Kameli

    2017-04-01

    Full Text Available Fresh water source scarcity in arid and semiarid area is limitation factor for saline-sodic soil reclamation. The reusing of agricultural drainage and industrial wastewater are preferred strategies for combating with this concern. The objective of current study was evaluation in application of industrial sugar manufacture wastewater due to high soluble organic compounds in saline-sodic and sodic soil. Also soil ability in wastewater organic compounds removal was second aim of present study. Saline-sodic and sodic soil sample was leached in soil column by diluted wastewater of amirkabir sugar manufacture in Khuzestan Province of Iran at constant water head. Sodium, electric conductivity and chemical oxygen demand of soil column leachate were measured per each pore volume. The experimental kinetics of wastewater organic compounds on two saline-sodic and sodic soil were also investigated by three pseudo second order, intra particle diffusion and elovich model. The results of current study showed that electric conductivity of saline-sodic soil was decreased to 90% during 3 initial pore volumes, from other side exchangeable sodium percent of saline-sodic and sodic soil decreased 30 and 71 percent, respectively. There were no significant different between wastewater chemical oxygen demand removal by saline-sodic and sodic soil in both batch and column studies. Wastewater chemical oxygen demand was decreased to 35% during pass through soil column. The results showed that the adsorption kinetics of wastewater organic compounds were best fitted by the pseudo-second order model with 99 percent correlation coefficient (r2=0.99%.

  15. Novel organic redox catalyst for the electroreduction of oxygen to hydrogen peroxide

    International Nuclear Information System (INIS)

    Wang, Andrew; Bonakdarpour, Arman; Wilkinson, David P.; Gyenge, Előd

    2012-01-01

    The organic redox catalysis of O 2 electroreduction to H 2 O 2 in acidic media has been investigated using several quinone and riboflavin catalysts supported on Vulcan XC72 carbon. The synthesis of a novel riboflavinyl–anthraquinone 2-carboxylate ester (RF–AQ) is reported. The activity and selectivity of organic redox catalysts (riboflavin, anthraquinone derivatives and riboflavinyl–anthraquinone 2-carboxylate ester) for the electrosynthesis of H 2 O 2 were investigated by the rotating ring-disk electrode (RRDE) method and potentiostatic electrolysis. Electrodes with 10 wt% RF–AQ loading on Vulcan XC-72 showed excellent electrocatalytic activity toward the two-electron oxygen reduction coupled with very good catalyst layer stability. The reaction mechanism for the organic redox catalysis by RF–AQ is discussed. Electroreduction of O 2 dissolved in 0.5 M H 2 SO 4 under potentiostatic conditions (0.1 V vs. RHE) at 21 °C using the composite RF–AQ/Vulcan XC72 catalyst (total loading 2.5 mg cm −2 ) deposited on unteflonated Toray ® carbon paper, generated H 2 O 2 with an initial rate of 21 μmol h −1 cm geo −2 and a stable current efficiency of 70%.

  16. Oxygen source-oriented control of atmospheric pressure chemical vapor deposition of VO2 for capacitive applications

    Directory of Open Access Journals (Sweden)

    Dimitra Vernardou

    2016-06-01

    Full Text Available Vanadium dioxides of different crystalline orientation planes have successfully been fabricated by chemical vapor deposition at atmospheric pressure using propanol, ethanol and O2 gas as oxygen sources. The thick a-axis textured monoclinic vanadium dioxide obtained through propanol presented the best electrochemical response in terms of the highest specific discharge capacity of 459 mAh g-1 with a capacitance retention of 97 % after 1000 scans under constant specific current of 2 A g-1. Finally, the electrochemical impedance spectroscopy indicated that the charge transfer of Li+ through the vanadium dioxide / electrolyte interface was easier for this sample enhancing significantly its capacitance performance.

  17. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    Science.gov (United States)

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  18. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Vos, de O.J.; Korthals, G.W.; Bruggen, van A.H.C.

    2006-01-01

    A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring

  19. Radiation resistance of organic azo dyes in aqueous solutions

    International Nuclear Information System (INIS)

    Khabarov, V.N.; Kozlov, L.L.

    1987-01-01

    The resistance to the action of the ionizing radiation of aqueous and aqueous-alcoholic solutions of organic mono- and diazo dyes was studied. The radiation chemical yield of decolorization of the dye, determined from the kinetic decolorization curves served as a quantitative criterion of the radiation resistance. The influence of pH, addition of ethanol, hydroquinone, thiourea, glucose and oxygen on the radiation resistance of the azo dyes was studied. An attempt was made to relate the efficiency of radiation decolorization to the chemical nature of the dye

  20. The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels

    DEFF Research Database (Denmark)

    Zhang, Shuichang; Wang, Xiaomei; Wang, Huajian

    2017-01-01

    shales are enriched in redox-sensitive trace metals, have high concentrations of total organic carbon (TOC), high hydrogen index (HI) and iron speciation indicating deposition under anoxic conditions. In contrast, the green-gray shales show no trace metal enrichments, have low TOC, low HI and iron...... speciation consistent with an oxygenated depositional setting. Altogether, unit 1 displays alternations between oxic and anoxic depositional environments, driving differences in carbon preservation consistent with observations from the modern ocean. We combined our TOC and HI results to calculate...

  1. Oxygenation measurement by multi-wavelength oxygen-dependent phosphorescence and delayed fluorescence: catchment depth and application in intact heart

    NARCIS (Netherlands)

    Balestra, Gianmarco M.; Aalders, Maurice C. G.; Specht, Patricia A. C.; Ince, Can; Mik, Egbert G.

    2015-01-01

    Oxygen delivery and metabolism represent key factors for organ function in health and disease. We describe the optical key characteristics of a technique to comprehensively measure oxygen tension (PO(2)) in myocardium, using oxygen-dependent quenching of phosphorescence and delayed fluorescence of

  2. Chemical stability of salt cake in the presence of organic materials

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1976-04-01

    High-level waste stored as salt cake is principally NaNO 3 . Some organic material is known to have been added to the waste tanks. It has been suggested that some of this organic material may have become nitrated and transformed to a detonable state. Arguments are presented to discount the presence of nitrated organics in the waste tanks. Nitrated organics generated accidentally usually explode at the time of formation. Detonation tests show that salt cake and ''worst-case'' organic mixtures are not detonable. Organic mixtures with salt cake are compared with black powder, a related exothermic reactant. Black-powder mixtures of widely varying composition can and do burn explosively; ignition temperatures are 300-450 0 C. However, black-powder-type mixes cannot be ignited by radiation and are shock-insensitive. Temperatures generated by radionuclide decay in the salt are below 175 0 C and would be incapable of igniting any of these mixtures. The expected effect of radiation on organics in the waste tanks is a slow dehydrogenation and depolymerization along with a slight increase in sensitivity to oxidation. The greatest explosion hazard, if any exists, is a hydrogen--oxygen explosion from water radiolysis, but the hydrogen must first be generated and then trapped so that the concentration of hydrogen can rise above 4 vol percent. This is impossible in salt cake. Final confirmation of the safety against organic-related explosive reactions in the salt cake will be based upon analytical determinations of organic concentrations. 12 tables, 5 fig

  3. How to compute isomerization energies of organic molecules with quantum chemical methods.

    Science.gov (United States)

    Grimme, Stefan; Steinmetz, Marc; Korth, Martin

    2007-03-16

    The reaction energies for 34 typical organic isomerizations including oxygen and nitrogen heteroatoms are investigated with modern quantum chemical methods that have the perspective of also being applicable to large systems. The experimental reaction enthalpies are corrected for vibrational and thermal effects, and the thus derived "experimental" reaction energies are compared to corresponding theoretical data. A series of standard AO basis sets in combination with second-order perturbation theory (MP2, SCS-MP2), conventional density functionals (e.g., PBE, TPSS, B3-LYP, MPW1K, BMK), and new perturbative functionals (B2-PLYP, mPW2-PLYP) are tested. In three cases, obvious errors of the experimental values could be detected, and accurate coupled-cluster [CCSD(T)] reference values have been used instead. It is found that only triple-zeta quality AO basis sets provide results close enough to the basis set limit and that sets like the popular 6-31G(d) should be avoided in accurate work. Augmentation of small basis sets with diffuse functions has a notable effect in B3-LYP calculations that is attributed to intramolecular basis set superposition error and covers basic deficiencies of the functional. The new methods based on perturbation theory (SCS-MP2, X2-PLYP) are found to be clearly superior to many other approaches; that is, they provide mean absolute deviations of less than 1.2 kcal mol-1 and only a few (computational thermochemistry methods.

  4. CHANGES IN SOIL CHEMICAL PROPERTIES OF ORGANIC PADDY FIELD WITH AZOLLA APPLICATION

    Directory of Open Access Journals (Sweden)

    Jauhari Syamsiyah

    2016-12-01

    Full Text Available The use of organic fertilizer is a way to improve soil fertility. Azolla can be used as organic fertilizer. This study aims to determine the effect of Azolla (Azolla mycrophylla. L on some soil chemical properties on organic paddy field. The field experiments used factorial complete randomized block design of three factors, namely Azolla (0 and 2 tons/ha, Manure (0 and 10 tons/ha and Rice Varieties (Mira1, Mentik Wangi and Merah Putih, with three times replication. Using Azolla on an organic paddy field does not significantly increase the levels of soil N, organic C, Cation Exchange Capacity and soil pH. However Azolla’s influence on soil available P is significant.

  5. Relating cloud condensation nuclei activity and oxidation level of alpha-pinene secondary organic aerosols

    DEFF Research Database (Denmark)

    Foverskov, Mia Frosch Mogensbæk; Bilde, M.; DeCarlo, P. F.

    2011-01-01

    During a series of smog chamber experiments, the effects of chemical and photochemical aging on the ability of organic aerosols generated from ozonolysis of alpha-pinene to act as cloud condensation nuclei (CCN) were investigated. In particular, the study focused on the relation between oxygenation...

  6. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    Science.gov (United States)

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  7. The chemical structure of the insoluble organic matter from carbonaceous meteorites

    Science.gov (United States)

    Derenne, S.; Robert, F.

    2008-09-01

    Carbonaceous chondrites are the most primitive objects of the solar system. They contain substantial amounts of carbon (up to 3%), mostly occurring in macromolecular insoluble organic matter (IOM). This IOM is generally considered as a record of interstellar synthesis and may contain precursors of prebiotic molecules possibly deposited on earth by meteoritic bombardments. For these reasons, chondritic IOM has been raising interest for long and it is therefore of special interest to decipher its chemical structure. It is now well established that the chemical structure of this macromolecular material is based on aromatic moieties linked by short aliphatic chains and comprising substantial amounts of heteroatoms. However, its precise chemical structure could only be recently specified. The aim of this presentation is to propose a molecular model for the chemical structure of IOM isolated from non-metamorphosed carbonaceous chondrites. This model is derived from a large set of data obtained through a combination of techniques including various spectrocopies, high resolution transmission electron microscopy (HRTEM) and chemical and thermal degradations. Cosmochemical implications of such a structure will also be discussed.

  8. Reactive oxygen species formed in aqueous mixtures of secondary organic aerosols and mineral dust influencing cloud chemistry and public health in the Anthropocene.

    Science.gov (United States)

    Tong, Haijie; Lakey, Pascale S J; Arangio, Andrea M; Socorro, Joanna; Kampf, Christopher J; Berkemeier, Thomas; Brune, William H; Pöschl, Ulrich; Shiraiwa, Manabu

    2017-08-24

    Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02-0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H 2 O 2 with Fe 2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H 2 O 2 and Fe 2+ . In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.

  9. Volatile chemical products emerging as largest petrochemical source of urban organic emissions

    Science.gov (United States)

    McDonald, Brian C.; de Gouw, Joost A.; Gilman, Jessica B.; Jathar, Shantanu H.; Akherati, Ali; Cappa, Christopher D.; Jimenez, Jose L.; Lee-Taylor, Julia; Hayes, Patrick L.; McKeen, Stuart A.; Cui, Yu Yan; Kim, Si-Wan; Gentner, Drew R.; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Harley, Robert A.; Frost, Gregory J.; Roberts, James M.; Ryerson, Thomas B.; Trainer, Michael

    2018-02-01

    A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.

  10. Chemical Equilibrium Models for the S3 State of the Oxygen-Evolving Complex of Photosystem II.

    Science.gov (United States)

    Isobe, Hiroshi; Shoji, Mitsuo; Shen, Jian-Ren; Yamaguchi, Kizashi

    2016-01-19

    We have performed hybrid density functional theory (DFT) calculations to investigate how chemical equilibria can be described in the S3 state of the oxygen-evolving complex in photosystem II. For a chosen 340-atom model, 1 stable and 11 metastable intermediates have been identified within the range of 13 kcal mol(-1) that differ in protonation, charge, spin, and conformational states. The results imply that reversible interconversion of these intermediates gives rise to dynamic equilibria that involve processes with relocations of protons and electrons residing in the Mn4CaO5 cluster, as well as bound water ligands, with concomitant large changes in the cluster geometry. Such proton tautomerism and redox isomerism are responsible for reversible activation/deactivation processes of substrate oxygen species, through which Mn-O and O-O bonds are transiently ruptured and formed. These results may allow for a tentative interpretation of kinetic data on substrate water exchange on the order of seconds at room temperature, as measured by time-resolved mass spectrometry. The reliability of the hybrid DFT method for the multielectron redox reaction in such an intricate system is also addressed.

  11. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Organic substances and pharmaceuticals engineering. Petrochemistry and chemical processing of alternative feedstock

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning organic substances and pharmaceuticals engineering, petrochemistry and chemical processing of alternative feedstock. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  12. Radiolysis of organic triphenylmethane, anthraquinone, xanthene, oxazine, thiazine, and azo dyes in polymers films

    International Nuclear Information System (INIS)

    Khabarov, V.N.; Kozlov, L.L.; Molin, A.A.; Mekhanik, T.V.

    1989-01-01

    The effect of the oxygen in the air and the temperature on radiochemical processes of decolorization of triphenylmethane, anthraquinone, xanthene, oxazine, thiazine, and azo dyes in polymer matrices of different chemical natures was studied. The rate of radiation decolorization for most of the dyes increases in irradiation in the presence of O 2 , which is hypothetically due to oxidation of the dye by singlet oxygen. The organic dyes exhibit the highest radiation stability in polyethylene terephthalate and polystyrene films

  13. Chemical attributes, total organic carbon stock and humified fractions of organic matter soil submitted to different systems of sugarcane management

    Directory of Open Access Journals (Sweden)

    Jean Sérgio Rosset

    2014-10-01

    Full Text Available Mechanized harvesting maintenance of trash from cane sugar and soil application of waste as vinasse and filter cake can improve the system of crop yield. Thus, this study aimed to evaluate the changes in the chemical, the stock of total organic carbon and humified organic matter fractions in an Oxisol cultivated with cane sugar with the following management systems: with sugarcane vinasse application (CCV, without application of burnt cane waste (CQS, with burnt cane vinasse application (CQV, with application of burnt cane filter cake (CQTF and burnt cane with joint application of vinasse and filter cake (CQVTF. For reference we used an area of natural vegetation (NV, Cerrado sensu stricto. Treatment CQVTF showed improvement in soil chemical properties, increased inventory levels of total organic carbon – TOC (values ranging from 21.28 to 40.02 Mg ha-1 and humified fractions of soil organic matter in relation to other treatments. The CQS area at a depth of 0-0.05 m, showed the greatest losses of soil TOC stocks (56.3% compared to NV. The adoption of management presented CCV and chemical attributes of the soil TOC stocks equivalent to those observed in areas with CQV CQTF and despite the short period of adoption (3 years. The TOC correlated with the sum of bases (r = 0.76 **, cation exchange capacity (r = 0.59 ** and base saturation (r = 0.63 **, while the humic acids (r = 0.40 ** fulvic acids (r = 0.49 ** and humin (r = 0.59 ** correlated with the cation exchange capacity of the soil. These results indicate that the preservation of trash in the management of cane sugar added to the application of vinasse and filter cake increases the TOC stocks promoting improvement in soil chemical properties.

  14. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    Science.gov (United States)

    Mungall, Emma L.; Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A.; Papakyriakou, Tim; Willis, Megan D.; Liggio, John

    2017-06-01

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  15. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer.

    Science.gov (United States)

    Mungall, Emma L; Abbatt, Jonathan P D; Wentzell, Jeremy J B; Lee, Alex K Y; Thomas, Jennie L; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A; Papakyriakou, Tim; Willis, Megan D; Liggio, John

    2017-06-13

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  16. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    Science.gov (United States)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical

  17. Micro Chemical Oxygen-Iodine Laser (COIL)

    National Research Council Canada - National Science Library

    Livermore-Clifford, Carol

    2007-01-01

    .... The MEMS SOG contained an array of reaction channels for the chemical reaction of BHP and chlorine gas, a liquid-gas separator based on capillary effects, and integrated heat exchangers for thermal management...

  18. Photochemistry of limonene secondary organic aerosol studied with chemical ionization mass spectrometry

    Science.gov (United States)

    Pan, Xiang

    Limonene is one of the most abundant monoterpenes in the atmosphere. Limonene easily reacts with gas-phase oxidants in air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products condense into particles. Chemicals in SOA particles can undergo further reactions with oxidants and with solar radiation that significantly change SOA composition over the course of several days. The goal of this work was to characterize radiation induced reaction in SOA. To perform experiments, we have designed and constructed an Atmospheric Pressure Chemical Ionization Mass Spectrometer (APCIMS) coupled to a photochemical cell containing SOA samples. In APCIMS, (H2O)nH 3O+ clusters are generated in a 63Ni source and react with gaseous organic analytes. Most organic chemicals are not fragmented by the ionization process. We have focused our attention on limonene SOA prepared in two different ways. The first type of SOA is produced by oxidation of limonene by ozone; and the second type of SOA is formed by the NO3-induced oxidation of limonene. They model the SOA formed under daytime and nighttime conditions, respectively. Ozone initiated oxidation is the most important chemical sink for limonene both indoors, where it is used for cleaning purposes, and outdoors. Terpenes are primarily oxidized by reactions with NO3 at night time. We generated limonene SOA under different ozone and limonene concentrations. The resulting SOA samples were exposed to wavelength-tunable radiation in the UV-Visible range between 270 nm and 630 nm. The results show that the photodegradation rates strongly depend on radiation wavelengths. Gas phase photodegradation products such as acetone, formaldehyde, acetaldehyde, and acetic acid were shown to have different production rates for SOA formed in different concentration conditions. Even for SOA prepared under the lowest concentrations, the SOA photodegradation was efficient. The conclusion is that exposure of SOA to

  19. Digesting the data - Effects of predator ingestion on the oxygen isotopic signature of micro-mammal teeth

    Science.gov (United States)

    Barham, Milo; Blyth, Alison J.; Wallwork, Melinda D.; Joachimski, Michael M.; Martin, Laure; Evans, Noreen J.; Laming, Belinda; McDonald, Bradley J.

    2017-11-01

    Biogenic minerals such as dental apatite have become commonly analysed archives preserving geochemical indicators of past environmental conditions and palaeoecologies. However, post-mortem, biogenic minerals are modified due to the alteration/replacement of labile components, and recent moves to utilise micro-mammal tooth δ18O signatures for refined Cenozoic terrestrial palaeoclimate reconstructions has lacked consideration of the chemical effects of predator digestion. Here, the physical and chemical condition of laboratory-raised mouse (Mus musculus) teeth have been investigated in conjunction with their bulk phosphate and tissue-specific δ18O values prior, and subsequent, to ingestion and excretion by various predator species (owls, mammals and a reptile). Substantial variability (up to 2‰) in the δ18O values of both undigested teeth and those ingested by specific predators suggests significant natural heterogeneity of individual prey δ18O. Statistically distinct, lower δ18O values (∼0.7‰) are apparent in teeth ingested by barn owls compared to undigested controls as a result of the chemically and enzymatically active digestive and waste-pellet environments. Overall, dentine tissues preserve lower δ18O values than enamel, while the greatest modification of oxygen isotope signals is exhibited in the basal enamel of ingested teeth as a result of its incompletely mineralised state. However, recognition of 18O-depletion in chemically purified phosphate analyses demonstrates that modification of original δ18O values is not restricted to labile oxygen-bearing carbonate and organic phases. The style and magnitude of digestive-alteration varies with predator species and no correlation was identified between specific physical or minor/trace-element (patterns or concentrations) modification of ingested teeth and disruption of their primary oxygen isotope values. Therefore, there is a current lack of any screening tool for oxygen isotope disruption as a result

  20. The modification of nanocomposite hybrid polymer surfaces by exposure to oxygen containing plasmas

    Science.gov (United States)

    Figueiredo, Ashley; Zimmermann, Katherine; Augustine, Brian; Hughes, Chris; Chusuei, Charles

    2006-11-01

    The wetting properties of the surfaces of the nanocomposite hybrid polymer poly[(propylmethacryl-heptaisobutyl- polyhedral oligomeric silsequioxane)-co-(methylmethacrylate)] (POSS-PMMA)has been studied before and after exposure to plasmas containing oxygen. The contact angle of water droplets on the surface showed a substantial decrease after plasma exposure indicating an increase in the hydrophilicity of the surface. A model was developed in which the plasma preferentially removed organic material including both the PMMA backbone and isobutyl groups from the corners of the POSS cages leaving behind a surface characterized by the silicon oxide-like POSS material. Measurements of surface concentrations of oxygen, silicon, and carbon by x-ray photoelectron spectroscopy (XPS) showed an increase in the amount of oxygen and silicon compared to carbon and the appropriate chemical shifts were observed in the XPS data to support the model of Si-O enrichment on the surface. Variable angle spectroscopic ellipsometry (VASE) and atomic force microscopy (AFM) measurements also supported the model and these results will be presented.

  1. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications

    Directory of Open Access Journals (Sweden)

    Christian Galasso

    2017-11-01

    Full Text Available As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein, which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i the biological functions of carotenoids and their benefits for human health, (ii the most common carotenoids from marine organisms and (iii carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production.

  2. Single-reactor process for producing liquid-phase organic compounds from biomass

    Science.gov (United States)

    Dumesic, James A [Verona, WI; Simonetti, Dante A [Middleton, WI; Kunkes, Edward L [Madison, WI

    2011-12-13

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  3. Measuring oxygen yields of a thermal conversion/elemental analyzer-isotope ratio mass spectrometer for organic and inorganic materials through injection of CO.

    Science.gov (United States)

    Yin, Xijie; Chen, Zhigang

    2014-12-01

    The thermal conversion/elemental analyzer-isotope ratio mass spectrometer (TC/EA-IRMS) is widely used to measure the δ(18) O value of various substances. A premise for accurate δ(18) O measurement is that the oxygen in the sample can be converted into carbon monoxide (CO) quantitatively or at least proportionally. Therefore, a precise method to determine the oxygen yield of TC/EA-IRMS measurements is needed. Most studies have used the CO peak area obtained from a known amount of a solid reference material (for example, benzoic acid) to calibrate the oxygen yield of the sample. Although it was assumed that the oxygen yield of the solid reference material is 100%, no direct evidence has been provided. As CO is the analyte gas for δ(18) O measurement by IRMS, in this study, we use a six-port valve to inject CO gas into the TC/EA. The CO is carried to the IRMS by the He carrier gas and the CO peak area is measured by the IRMS. The CO peak area thus obtained from a known amount of the injected CO is used to calibrate the oxygen yield of the sample. The oxygen yields of commonly used organic and inorganic reference materials such as benzoic acid (C6 H5 COOH), silver phosphate (Ag3 PO4 ), calcium carbonate (CaCO3 ) and silicon dioxide (SiO2 ) are investigated at different reactor temperatures and sample sizes. We obtained excellent linear correlation between the peak area for the injected CO and its oxygen atom amount. C6 H5 COOH has the highest oxygen yield, followed by Ag3 PO4 , CaCO3 and SiO2 . The oxygen yields of TC/EA-IRMS are less than 100% for both organic and inorganic substances, but the yields are relatively stable at the specified reactor temperature and for a given quantity of sample. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Screening organic chemicals in commerce for emissions in the context of environmental and human exposure.

    Science.gov (United States)

    Breivik, Knut; Arnot, Jon A; Brown, Trevor N; McLachlan, Michael S; Wania, Frank

    2012-08-01

    Quantitative knowledge of organic chemical release into the environment is essential to understand and predict human exposure as well as to develop rational control strategies for any substances of concern. While significant efforts have been invested to characterize and screen organic chemicals for hazardous properties, relatively less effort has been directed toward estimating emissions and hence also risks. Here, a rapid throughput method to estimate emissions of discrete organic chemicals in commerce has been developed, applied and evaluated to support screening studies aimed at ranking and identifying chemicals of potential concern. The method builds upon information in the European Union Technical Guidance Document and utilizes information on quantities in commerce (production and/or import rates), chemical function (use patterns) and physical-chemical properties to estimate emissions to air, soil and water within the OECD for five stages of the chemical life-cycle. The method is applied to 16,029 discrete substances (identified by CAS numbers) from five national and international high production volume lists. As access to consistent input data remains fragmented or even impossible, particular attention is given to estimating, evaluating and discussing uncertainties in the resulting emission scenarios. The uncertainty for individual substances typically spans 3 to 4 orders of magnitude for this initial tier screening method. Information on uncertainties in emissions is useful as any screening or categorization methods which solely rely on threshold values are at risk of leading to a significant number of either false positives or false negatives. A limited evaluation of the screening method's estimates for a sub-set of about 100 substances, compared against independent and more detailed emission scenarios presented in various European Risk Assessment Reports, highlights that up-to-date and accurate information on quantities in commerce as well as a detailed

  5. Prediction of Hydrolysis Products of Organic Chemicals under Environmental pH Conditions

    Science.gov (United States)

    Cheminformatics-based software tools can predict the molecular structure of transformation products using a library of transformation reaction schemes. This paper presents the development of such a library for abiotic hydrolysis of organic chemicals under environmentally relevant...

  6. Organic phosphorus fractionation in wetland soil profiles by chemical extraction and phosphorus-31 nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Li, Min; Zhang, Jing; Wang, Guangqian; Yang, Haijun; Whelan, Michael J.; White, Sue M.

    2013-01-01

    Highlights: ► Chemical sequential extraction and 31 P NMR spectroscopy were used for organic P analysis. ► Organic P includes orthophosphate, monoester and diester phosphate and pyrophosphate. ► Highly resistant organic P and monoester phosphate were the dominant organic P. ► HCl pretreatment can remove most inorganic P and increase organic P recovery rate. ► A comprehensive organic P chemical sequential fractionation approach was proposed. - Abstract: Organic P (OP) plays an important role in soil P cycling and is a potential P source for wetland plants. In this study, a modified chemical sequential fractionation method and 31 P nuclear magnetic resonance spectroscopy ( 31 P NMR) of NaOH–EDTA extracts were used to examine the distribution of organic P fractions and compounds in soil profiles of the Beijing Yeyahu Wetland, China. The influence of acid treatment prior to NaOH–EDTA extraction on 31 P NMR spectra was also investigated. Results show that highly resistant OP was the major class of organic P. The rank order of organic P fractions was highly resistant OP (on average accounting for 68.5% of total OP) > moderately resistant OP (15.8%m of total OP) > moderately labile OP (11.4% of total OP) > labile OP (4.3% of total OP). Most of the organic P fractions decreased with soil depth due to the accumulation of plant residues in surface soils and the deposition and diagenesis of soils. Moderately (r = 0.586, p < 0.01) and highly (r = 0.741, p < 0.01) resistant OP fractions were positively correlated with soil organic matter. Phosphorus compounds including orthophosphate (23–74.6% of total P in spectra), monoester phosphate (18.6–76%), diester phosphate (nil-7.8%) and pyrophosphate (nil-6.7%) were characterized using 31 P NMR. Monoester-P was the dominant soil organic P compound identified. The proportion of monoester-P increased significantly in NaOH–EDTA extracts with HCl pretreatment and it was confirmed by chemical analysis. Therefore, it

  7. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Guo

    2016-10-01

    Full Text Available The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclusion and future expectations are described herein.

  8. Ocean Ridges and Oxygen

    Science.gov (United States)

    Langmuir, C. H.

    2014-12-01

    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized

  9. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    Science.gov (United States)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  10. The organization for the prohibition of chemical weapons and the IAEA: A comparative overview

    International Nuclear Information System (INIS)

    Dorn, A.W.; Rolya, A.

    1993-01-01

    The long-awaited Chemical Weapons Convention (CWC) - which was endorsed in New York by the United Nations General Assembly on 30 November 1992 - was opened for signature on 13 January 1993. To oversee its implementation, a new international organization, the Organization for the Prohibition of Chemical Weapons (OPCW), will be established when the treaty enters into force, which could be as early as January 1995. The IAEA - as the only existing organization with a mandate for implementing an international verification system - is an important model for the structure and functioning of the OPCW. Many provisions in the CWC benefit from the lessons learned through the implementation of the IAEA's safeguards system in such matters as rights of access for inspectors, the designation of inspectors, and procedural arrangements. Overall, the structure of the IAEA and that foreseen for the OPCE are quite similar. There are, nonetheless, several structural differences. Most notably, the IAEA is charged with a dual mission, that of promoting the contribution of nuclear energy to social and economic development and of seeking to ensure that nuclear materials and facilities which have been placed under safeguards are not diverted from peaceful uses. The OPCW is responsible for achieving a complete ban on chemical weapons and is not responsible, at least as currently envisaged, for the promotion of peaceful uses of chemistry and chemical sciences

  11. Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao-Song [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Xi, Bei-Dou, E-mail: hexs82@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Cui, Dong-Yu [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Liu, Yong [Guangdong Key Laboratory of Agro-Environmental Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Tan, Wen-Bin; Pan, Hong-Wei; Li, Dan [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China)

    2014-03-01

    Highlights: • Electron transfer capability (ETC) of compost-derived DOM was investigated. • Composting treatment increased the ETC of DOM from municipal solid wastes. • The ETC increase related to humic matter, and molecule weight, and N and S content. - Abstract: Dissolved organic matter (DOM) can mediate electron transfer and change chemical speciation of heavy metals. In this study, the electron transfer capability (ETC) of compost-derived DOM was investigated through electrochemical approaches, and the factors influencing the ETC were studied using spectral and elemental analysis. The results showed that the electron accepting capacity (EAC) and electron donating capacity (EDC) of compost-derived DOM were 3.29–40.14 μmol{sub e−} (g C){sup −1} and 57.1– 346.07 μmol{sub e−} (g C){sup −1}, respectively. Composting treatment increased the fulvic- and humic-like substance content, oxygenated aliphatic carbon content, lignin-derived aromatic carbon content, molecule weight, and N and S content of DOM, but decreased the aliphatic carbon content and the C and H content. This conversion increased the EDC and EAC of the DOM during composting.

  12. Water and oxygen induced degradation of small molecule organic solar cells

    DEFF Research Database (Denmark)

    Hermenau, Martin; Riede, Moritz; Leo, Karl

    2011-01-01

    Small molecule organic solar cells were studied with respect to water and oxygen induced degradation by mapping the spatial distribution of reaction products in order to elucidate the degradation patterns and failure mechanisms. The active layers consist of a 30 nm bulk heterojunction formed......,4′-diamine p-doped with C60F36 (MeO-TPD:C60F36), which acted as hole transporting layer. Indium-tin-oxide (ITO) and aluminum served as hole and electron collecting electrode, respectively. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) in conjunction...... of aluminum oxide at the BPhen/Al interface, and diffusion of water into the ZnPc:C60 layer where ZnPc becomes oxidized. Finally, diffusion from the electrodes was found to have no or a negligible effect on the device lifetime....

  13. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    OpenAIRE

    K. C. CHONG; S. O. LAI; H. S. THIAM; H. C. TEOH; S. L. HENG

    2016-01-01

    The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA). Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology...

  14. Effects of organic solvents on hyaluronic acid nanoparticles obtained by precipitation and chemical crosslinking.

    Science.gov (United States)

    Bicudo, Rafaela Costa Souza; Santana, Maria Helena Andrade

    2012-03-01

    Hyaluronic acid is a hydrophilic mucopolysaccharide composed of alternating units of D-glucuronic acid and N-acetylglucosamine. It is used in many medical, pharmaceutical, and cosmetic applications, as sponges, films, or particle formulations. Hyaluronic acid nanoparticles can be synthesized free of oil and surfactants by nanoprecipitation in organic solvents, followed by chemical crosslinking. The organic solvent plays an important role in particles size and structure. Therefore, this study aimed to investigate the influence of acetone, ethanol, and isopropyl alcohol on the synthesis and physico-chemical properties of hyaluronic acid nanoparticles. Particles were crosslinked with adipic hydrazide and chloride carbodiimide under controlled conditions. The nanoparticles obtained with all three studied solvents were moderately electrostatically stable. Experiments with acetone produced the smallest particle size (120.44 nm) and polydispersity (0.27). The size and polydispersity of hyaluronic acid nanoparticles correlated with the surface tension between water and the organic solvents, not with the thermodynamic affinity of water for the organic solvents.

  15. The Rise of Oxygen in the Earth's Atmosphere Controlled by the Efficient Subduction of Organic Carbon

    Science.gov (United States)

    Duncan, M. S.; Dasgupta, R.

    2017-12-01

    Carbon cycling between the Earth's surface environment, i.e., the ocean-atmosphere system, and the Earth's interior is critical for differentiation, redox evolution, and long-term habitability of the planet. This carbon cycle is influenced heavily by the extent of carbon subduction. While the fate of carbonates during subduction has been discussed in numerous studies [e.g., 1], little is known how organic carbon is quantitatively transferred from the Earth's surface to the interior. Efficient subduction of organic carbon would remove reduced carbon from the surface environment over the long-term (≥100s Myrs) while release at subduction zone arc volcanoes would result in degassing of CO2. Here we conducted high pressure-temperature experiments to determine the carbon carrying capacity of slab derived, rhyolitic melts under graphite-saturated conditions over a range of P (1.5-3.0 GPa) and T (1100-1400 °C) at a fixed melt H2O content (2 wt.%) [2]. Based on our experimental data, we developed a thermodynamic model of CO2 dissolution in C-saturated slab melts, that allows us to quantify the extent of organic carbon mobility as a function of slab P, T, and fO2 during subduction through time. Our experimental data and thermodynamic model suggest that the subduction of graphitized organic C, and graphite/diamond formed by reduction of carbonates with depth [e.g., 3], remained efficient even in ancient, hotter subduction zones - conditions at which subduction of carbonates likely remained limited [1]. Considering the efficiency the subduction of organic C and potential conditions for ancient subduction, we suggest that the lack of remobilization in subduction zones and deep sequestration of organic C in the mantle facilitated the rise and maintenance atmospheric oxygen in the Paleoproterozoic and is causally linked to the Great Oxidation Event (GOE). Our modeling shows that episodic subduction and organic C sequestration pre-GOE may also explain occasional whiffs of

  16. Correlations between the 1H NMR chemical shieldings and the pKa values of organic acids and amines.

    Science.gov (United States)

    Lu, Juanfeng; Lu, Tingting; Zhao, Xinyun; Chen, Xi; Zhan, Chang-Guo

    2018-06-01

    The acid dissociation constants and 1 H NMR chemical shieldings of organic compounds are important properties that have attracted much research interest. However, few studies have explored the relationship between these two properties. In this work, we theoretically studied the NMR chemical shifts of a series of carboxylic acids and amines in the gas phase and in aqueous solution. It was found that the negative logarithms of the experimental acid dissociation constants (i.e., the pK a values) of the organic acids and amines in aqueous solution correlate almost linearly with the corresponding calculated NMR chemical shieldings. Key factors that affect the theoretically predicted pK a values are discussed in this paper. The present work provides a new way to predict the pK a values of organic/biochemical compounds. Graphical abstract The chemical shielding values of organic acids and amines correlate near linearly with their corresponding pK a values.

  17. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    Science.gov (United States)

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Oxygen levels versus chemical pollutants: do they have similar influence on macrofaunal assemblages? A case study in a harbour with two opposing entrances

    International Nuclear Information System (INIS)

    Guerra-Garcia, J.M.; Garcia-Gomez, J.C.

    2005-01-01

    Generally, harbours are polluted zones characterised by low values of hydrodynamism and oxygen in the water column and high concentrations of pollutants in sediments. The harbour of Ceuta, North Africa, has an unusual structure; it is located between two bays connected by a channel, which increases the water movement and exchange in the harbour, maintaining moderate oxygen levels in the water-sediment interface. Nevertheless, high concentration of organic matter, nutrients and heavy metals were measured in sediments from this harbour. Under these unusual conditions (high levels of pollution but total saturation of oxygen in the water column) we studied the responses of soft-bottom macrobenthic communities using uni and multivariate analyses. The number of species was similar inside and outside the harbour but the species composition differed between internal and external stations; oxygen levels seem to control the 'quantity' of species whereas pollutants control the 'quality' of them. - A high diversity of benthic animals was found in a polluted harbour where high oxygen levels occurred

  19. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers

    NARCIS (Netherlands)

    Peng, Feng Jiao; Pan, Chang Gui; Zhang, Min; Zhang, Nai Sheng; Windfeld, Ronja; Salvito, Daniel; Selck, Henriette; Brink, Van den Paul J.; Ying, Guang Guo

    2017-01-01

    Urban rivers may receive contamination from various sources including point sources like domestic sewage and nonpoint sources (e.g., runoff), resulting in contamination with various chemicals. This study investigated the occurrence of emerging organic contaminants (3 endocrine disrupting

  20. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene Mark

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrifica......Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic...... denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off...... Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically...

  1. The effect of the controlled oxygen on the incineration of radio contaminated organic compounds

    International Nuclear Information System (INIS)

    Yahata, Taneaki; Abe, Jiro; Hoshino, Akira.

    1982-02-01

    It is very important to resolve the method of safety storage and the reduction of volume of radio contaminated waste for utilization of atomic energies. Presently, the amounts of radio contaminated organic compounds such as ion exchange resin, vinyl chloride resin and so on are increased year by year. These compounds are very difficult to burning because of the occurrence of soot or flying ash, so that the waste are solidified using with cement or asphalt. But the burning of these compounds are most efficient method for reduction of volume of the wastes. The present work is an attempt to evaluate the effect of controlled oxygen on the incineration of these compounds, using by differential thermoelectrobalance. The given off gas from these compounds are mixture of hydrocarbon and free carbon examined by mass spectrography. As the result of this study, these compounds are decomposed perfectly under 5 - 10% of oxygen gas flow at about 650 0 C and the off gas from the compounds is disappeared contact with heated copper oxide without soot or flying ash. (author)

  2. Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance

    KAUST Repository

    Trinh, Cong

    2012-07-10

    We present a chemical annealing process for organic thin films. In this process, a thin film of a molecular material, such as zinc tetraphenylporphyrin (ZnTPP), is exposed to a vapor of nitrogen-based ligand (e.g., pyrazine, pz, and triazine, tz), forming a film composed of the metal-ligand complex. Fast and quantitative formation of the complex leads to marked changes in the morphology and optical properties of the film. X-ray diffraction studies show that the chemical annealing process converts amorphous ZnTPP films to crystalline ZnTPP•ligand films, whose porphryin planes lie nearly parallel to the substrate (average deviation is 8° for the ZnTPP•pz film). Organic solar cells were prepared with ZnTPP donor and C 60 acceptor layers. Devices were prepared with and without chemical annealing of the ZnTPP layer with a pyrazine ligand. The devices with chemically annealed ZnTPP donor layer show an increase in short-circuit current (J SC) and fill factor (FF) relative to analogous unannealed devices, presumably because of enhanced exciton diffusion length and improved charge conductivity. The open circuit voltages (V OC) of the chemically annealed devices are lower than their unannealed counterpart because of enhanced polaron pair recombination at the donor/acceptor heterojunction. A net improvement of 5-20% in efficiency has been achieved, after chemical annealing of ZnTPP films with pyrazine. © 2012 American Chemical Society.

  3. Outcome of organs procured from donors on extracorporeal membrane oxygenation support: an analysis of kidney and liver allograft data.

    Science.gov (United States)

    Carter, Timothy; Bodzin, Adam S; Hirose, Hitoshi; West, Sharon; Hasz, Richard; Maley, Warren R; Cavarocchi, Nicholas C

    2014-07-01

    Extracorporeal membrane oxygenation has become rescue therapy for adults with overwhelming cardiac and/or respiratory failure. Not all patients are saved, creating a new cohort of potential organ donors. This study examines the outcomes of liver and kidney allografts procured from donors on extracorporeal membrane oxygenation (ECMO). A retrospective review was conducted through the local organ procurement organization. Donors on ECMO prior to notification were classified into donation after brain death (DBD) and donation after cardiac death (DCD). We compared short-term outcome data against published standards. Between 1995 and 2012, 97 organs were procured from 41 donors supported on ECMO. There were 68 kidneys donated, 51 were transplanted and 17 discarded. Excluding extended criteria donors, 29 DBD and 13 DCD kidneys were transplanted from donors supported on ECMO. Delayed graft function occurred in 34% of DBD kidneys and 38% of DCD kidneys. Kidney allograft survival at one yr was 93%. Twenty-four livers were procured, nine discarded, and 15 transplanted. Ninety-three percent of liver transplant recipients were alive with graft function at one yr. Donation after brain death kidneys procured from donors on ECMO perform similarly to non-ECMO organs with regard to delayed graft function (DGF), one-yr graft survival and function. Livers from ECMO donors have a higher discard rate than non-ECMO donors, but function similarly at six months and one yr. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Thermochemical modeling of nuclear fuel and the effects of oxygen potential buffers

    Energy Technology Data Exchange (ETDEWEB)

    Loukusa, Henri, E-mail: henri.loukusa@vtt.fi; Ikonen, Timo; Valtavirta, Ville; Tulkki, Ville

    2016-12-01

    The elemental and chemical composition of nuclear fuel pellets are key factors influencing the material properties of the pellets. The oxidation state of the fuel is one of the most important chemical properties influencing the material properties of the fuel, and it can only be determined with the knowledge of the chemical composition. A measure of the oxidation state is the oxygen chemical potential of the fuel. It can be buffered by redox pairs, such as the well-known Mo/MoO{sub 2} pair. In this work, the elemental composition of the fuel is obtained from a burnup calculation and the temperature and pressure calculated with a fuel performance code. An estimate of the oxygen potential of fuel is calculated with Gibbs energy minimization. The results are compared against experimental data from the literature. The significance of the UMoO{sub 6} compound and its buffering effect on the oxygen potential is emphasized. - Highlights: • A Gibbs energy minimization routine has been developed for nuclear fuel modeling. • The initial stoichiometry affects the development of the oxygen potential of fuel. • UMoO{sub 6} is found to buffer the oxygen potential of nuclear fuel.

  5. Raman scattering studies of YBa2Cu3O7-x thin films grown by chemical vapor deposition and metal-organic deposition

    International Nuclear Information System (INIS)

    Lee, E.; Yoon, S.; Um, Y.M.; Jo, W.; Seo, C.W.; Cheong, H.; Kim, B.J.; Lee, H.G.; Hong, G.W.

    2007-01-01

    We present results of Raman scattering studies of superconducting YBa 2 Cu 3 O 7-x (YBCO) films grown by chemical vapor deposition and metal-organic deposition methods. It is shown by X-ray diffraction that all the as-grown YBCO films have a highly c-axis oriented and in-plane aligned texture. Raman scattering measurements were used to investigate optical phonon modes, oxygen contents, structural properties, and second-phases of the YBCO coated conductors. Raman spectra of YBCO films with lower-transport qualities exhibit additional phonon modes at ∼300 cm -1 , ∼600 cm -1 , and ∼630 cm -1 , which are related to second-phases such as Ba 2 Cu 3 O 5.9 and BaCuO 2 . Our results strongly suggest that Raman scattering be useful for optimizing YBCO film growth conditions

  6. Chemical structure of the Chromophoric Dissolved Organic Matter (CDOM) fluorescent matter.

    Science.gov (United States)

    Blough, N. V.; Del Vecchio, R.; Cartisano, C. M.; Bianca, M.

    2017-12-01

    The structure(s), distribution and dynamics of CDOM have been investigated over the last several decades largely through optical spectroscopy (including both absorption and fluorescence) due to the fairly inexpensive instrumentation and the easy-to-gather data (over thousands published papers from 1990-2016). Yet, the chemical structure(s) of the light absorbing and emitting species or constituents within CDOM has only recently being proposed and tested through chemical manipulation of selected functional groups (such as carbonyl and carboxylic/phenolic containing molecules) naturally occurring within the organic matter pool. Similarly, fitting models (among which the PArallel FACtor analysis, PARAFAC) have been developed to better understand the nature of a subset of DOM, the CDOM fluorescent matter (FDOM). Fluorescence spectroscopy coupled with chemical tests and PARAFAC analyses could potentially provide valuable insights on CDOM sources and chemical nature of the FDOM pool. However, despite that applications (and publications) of PARAFAC model to FDOM have grown exponentially since its first application/publication (2003), a large fraction of such publications has misinterpreted the chemical meaning of the delivered PARAFAC `components' leading to more confusion than clarification on the nature, distribution and dynamics of the FDOM pool. In this context, we employed chemical manipulation of selected functional groups to gain further insights on the chemical structure of the FDOM and we tested to what extent the PARAFAC `components' represent true fluorophores through a controlled chemical approach with the ultimate goal to provide insights on the chemical nature of such `components' (as well as on the chemical nature of the FDOM) along with the advantages and limitations of the PARAFAC application.

  7. Source apportionment of submicron organic aerosol collected from Atlanta, Georgia, during 2014-2015 using the aerosol chemical speciation monitor (ACSM)

    Science.gov (United States)

    Rattanavaraha, Weruka; Canagaratna, Manjula R.; Budisulistiorini, Sri Hapsari; Croteau, Philip L.; Baumann, Karsten; Canonaco, Francesco; Prevot, Andre S. H.; Edgerton, Eric S.; Zhang, Zhenfa; Jayne, John T.; Worsnop, Douglas R.; Gold, Avram; Shaw, Stephanie L.; Surratt, Jason D.

    2017-10-01

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was redeployed at the Jefferson Street (JST) site in downtown Atlanta, Georgia (GA) for 1 year (March 20, 2014-February 08, 2015) to chemically characterize non-refractory submicron particulate matter (NR-PM1) in near real-time and to assess whether organic aerosol (OA) types and amounts change from year-to-year. Submicron organic aerosol (OA) mass spectra were analyzed by season using multilinear engine (ME-2) to apportion OA subtypes to potential sources and chemical processes. A suite of real-time collocated measurements from the Southeastern Aerosol Research and Characterization (SEARCH) network was compared with ME-2 factor solutions to aid in the interpretation of OA subtypes during each season. OA tracers measured from high-volume filter samples using gas chromatography interfaced with electron ionization-mass spectrometry (GC/EI-MS) also aided in identifying OA sources. The initial application of ME-2 to the yearlong ACSM dataset revealed that OA source apportionment by season was required to better resolve sporadic OA types. Spring and fall OA mass spectral datasets were separated into finer periods to capture potential OA sources resulting from non-homogeneous emissions during transitioning periods. NR-PM1 was highest in summer (16.7 ± 8.4 μg m-3) and lowest in winter (8.0 ± 5.7 μg m-3), consistent with prior studies. OA dominated NR-PM1 mass (56-74% on average) in all seasons. Hydrocarbon-like OA (HOA) from primary emissions was observed in all seasons, averaging 5-22% of total OA mass. Strong correlations of HOA with carbon monoxide (CO) (R = 0.71-0.88) and oxides of nitrogen (NOx) (R = 0.55-0.79) indicated that vehicular traffic was the likely source. Biomass burning OA (BBOA) was observed in all seasons, with lower contributions (2%) in summer and higher in colder seasons (averaging 8-20% of total OA mass). BBOA correlated strongly with levoglucosan (R = 0.78-0.95) during colder seasons

  8. Direct conversion of radioactive and chemical waste containing metals, ceramics, amorphous solids, and organics to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1994-01-01

    The Glass Material Oxidation and Dissolution System (CMODS) is a new process for direct conversion of radioactive, mixed, and chemical wastes to glass. The wastes can be in the chemical forms of metals, ceramics, amorphous solids, and organics. GMODS destroys organics and it incorporates heavy metals and radionuclides into a glass. Processable wastes may include miscellaneous spent fuels (SF), SF hulls and hardware, plutonium wastes in different forms, high-efficiency particulate air (HEPA) filters, ion-exchange resins, failed equipment, and laboratory wastes. Thermodynamic calculations indicate theoretical feasibility. Small-scale laboratory experiments (< 100 g per test) have demonstrated chemical laboratory feasibility for several metals. Additional work is needed to demonstrate engineering feasibility

  9. Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance

    KAUST Repository

    Watson, Valerie J.

    2013-06-03

    Commercially available activated carbon (AC) powders made from different precursor materials (coal, peat, coconut shell, hardwood, and phenolic resin) were electrochemically evaluated as oxygen reduction catalysts and tested as cathode catalysts in microbial fuel cells (MFCs). AC powders were characterized in terms of surface chemistry and porosity, and their kinetic activities were compared to carbon black and platinum catalysts in rotating disk electrode (RDE) tests. Cathodes using the coal-derived AC had the highest power densities in MFCs (1620 ± 10 mW m-2). Peat-based AC performed similarly in MFC tests (1610 ± 100 mW m-2) and had the best catalyst performance, with an onset potential of Eonset = 0.17 V, and n = 3.6 electrons used for oxygen reduction. Hardwood based AC had the highest number of acidic surface functional groups and the poorest performance in MFC and catalysis tests (630 ± 10 mW m-2, Eonset = -0.01 V, n = 2.1). There was an inverse relationship between onset potential and quantity of strong acid (pKa < 8) functional groups, and a larger fraction of microporosity was negatively correlated with power production in MFCs. Surface area alone was a poor predictor of catalyst performance, and a high quantity of acidic surface functional groups was determined to be detrimental to oxygen reduction and cathode performance. © 2013 American Chemical Society.

  10. Oxygen-Reducing Biocathodes Operating with Passive Oxygen Transfer in Microbial Fuel Cells

    KAUST Repository

    Xia, Xue

    2013-02-19

    Oxygen-reducing biocathodes previously developed for microbial fuel cells (MFCs) have required energy-intensive aeration of the catholyte. To avoid the need for aeration, the ability of biocathodes to function with passive oxygen transfer was examined here using air cathode MFCs. Two-chamber, air cathode MFCs with biocathodes produced a maximum power density of 554 ± 0 mW/m 2, which was comparable to that obtained with a Pt cathode (576 ± 16 mW/m2), and 38 times higher than that produced without a catalyst (14 ± 3 mW/m2). The maximum current density with biocathodes in this air-cathode MFC was 1.0 A/m2, compared to 0.49 A/m2 originally produced in a two-chamber MFC with an aqueous cathode (with cathode chamber aeration). Single-chamber, air-cathode MFCs with the same biocathodes initially produced higher voltages than those with Pt cathodes, but after several cycles the catalytic activity of the biocathodes was lost. This change in cathode performance resulted from direct exposure of the cathodes to solutions containing high concentrations of organic matter in the single-chamber configuration. Biocathode performance was not impaired in two-chamber designs where the cathode was kept separated from the anode solution. These results demonstrate that direct-air biocathodes can work very well, but only under conditions that minimize heterotrophic growth of microorganisms on the cathodes. © 2013 American Chemical Society.

  11. Chemical, Sensorial and Rheological Properties of a New Organic Rice Bran Beverage

    OpenAIRE

    Gerson Luis FACCIN; Letícia Adélia MIOTTO; Leila do Nascimento VIEIRA; Pedro Luiz Manique BARRETO; Edna Regina AMANTE

    2009-01-01

    Rice bran is a solid residue from rice polishing that is used in animal nutrition and rice oil production. Cultivation conditions with agro-toxics, lipids instability, and tendency for mycotoxin contamination restrict its application in human nutrition. Therefore, organic agriculture is an alternative to use the properties of rice bran. Rice bran beverage is a new cereal product from organic rice. This work presents the preliminary results of the chemical and rheological studies of a bath pas...

  12. Biogeochemical relationships between ultrafiltered dissolved organic matter and picoplankton activity in the Eastern Mediterranean Sea

    NARCIS (Netherlands)

    Meador, Travis B.; Gogou, Alexandra; Spyres, Georgina; Herndl, Gerhard J.; Krasakopoulou, Evangelia; Psarra, Stella; Yokokawa, Taichi; De Corte, Daniele; Zervakis, Vassilis; Repeta, Daniel J.

    2010-01-01

    We targeted the warm, subsurface waters of the Eastern Mediterranean Sea (EMS) to investigate processes that are linked to the chemical composition and cycling of dissolved organic carbon (DOC) in seawater. The apparent respiration of semi-labile DOC accounted for 27 +/- 18% of oxygen consumption in

  13. The effect of the indoor environment on the fate of organic chemicals in the urban landscape.

    Science.gov (United States)

    Cousins, Anna Palm

    2012-11-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK(OA) and the impact of the ventilation rate on the urban fate of organic chemicals. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Metal–organic framework-based catalysts: Chemical fixation of CO2 with epoxides leading to cyclic organic carbonates

    Directory of Open Access Journals (Sweden)

    M. Hassan eBeyzavi

    2015-01-01

    Full Text Available As a C1 feedstock, CO2 has the potential to be uniquely highly economical in both a chemical and a financial sense. In particular, the highly atom-economical acid-catalyzed cycloaddition of CO2 to epoxides to yield cyclic organic carbonates (OCs, a functionality having many important industrial applications, is an attractive reaction for the utilization of CO2 as a chemical feedstock. Metal–organic frameworks (MOFs are promising candidates in catalysis as they are a class of crystalline, porous and functional materials with remarkable properties including great surface area, high stability, open channels and permanent porosity. MOFs structure tunability and their affinity for CO2, makes them great catalysts for the formation of OCs using CO2 and epoxides. In this review, we examine MOF-based catalytic materials for the cycloaddition of carbon dioxide to epoxides. Catalysts are grouped based on the location of catalytic sites, i.e., at the struts, nodes, defect sites, or some combination thereof. Additionally, important features of each catalyst system are critically discussed.

  15. Using solid phase micro extraction to determine salting-out (Setschenow) constants for hydrophobic organic chemicals.

    NARCIS (Netherlands)

    Jonker, M.T.O.; Muijs, B.

    2010-01-01

    With increasing ionic strength, the aqueous solubility and activity of organic chemicals are altered. This so-called salting-out effect causes the hydrophobicity of the chemicals to be increased and sorption in the marine environment to be more pronounced than in freshwater systems. The process can

  16. Chemometrics-assisted spectrophotometry method for the determination of chemical oxygen demand in pulping effluent.

    Science.gov (United States)

    Chen, Honglei; Chen, Yuancai; Zhan, Huaiyu; Fu, Shiyu

    2011-04-01

    A new method has been developed for the determination of chemical oxygen demand (COD) in pulping effluent using chemometrics-assisted spectrophotometry. Two calibration models were established by inducing UV-visible spectroscopy (model 1) and derivative spectroscopy (model 2), combined with the chemometrics software Smica-P. Correlation coefficients of the two models are 0.9954 (model 1) and 0.9963 (model 2) when COD of samples is in the range of 0 to 405 mg/L. Sensitivities of the two models are 0.0061 (model 1) and 0.0056 (model 2) and method detection limits are 2.02-2.45 mg/L (model 1) and 2.13-2.51 mg/L (model 2). Validation experiment showed that the average standard deviation of model 2 was 1.11 and that of model 1 was 1.54. Similarly, average relative error of model 2 (4.25%) was lower than model 1 (5.00%), which indicated that the predictability of model 2 was better than that of model 1. Chemometrics-assisted spectrophotometry method did not need chemical reagents and digestion which were required in the conventional methods, and the testing time of the new method was significantly shorter than the conventional ones. The proposed method can be used to measure COD in pulping effluent as an environmentally friendly approach with satisfactory results.

  17. Comparison of precursors for pulsed metal-organic chemical vapor deposition of HfO2 high-K dielectric thin films

    International Nuclear Information System (INIS)

    Teren, Andrew R.; Thomas, Reji; He, Jiaqing; Ehrhart, Peter

    2005-01-01

    Hafnium oxide films were deposited on Si(100) substrates using pulsed metal-organic chemical vapor deposition (CVD) and evaluated for high-K dielectric applications. Three types of precursors were tested: two oxygenated ones, Hf butoxide-dmae and Hf butoxide-mmp, and an oxygen-free one, Hf diethyl-amide. Depositions were carried out in the temperature range of 350-650 deg. C, yielding different microstructures ranging from amorphous to crystalline, monoclinic, films. The films were compared on the basis of growth rate, phase development, density, interface characteristics, and electrical properties. Some specific features of the pulsed injection technique are considered. For low deposition temperatures the growth rate for the amide precursor was significantly higher than for the mixed butoxide precursors. A thickness-dependent amorphous to crystalline phase transition temperature was found for all precursors. There is an increase of the film density along with the deposition temperature from values as low as 5 g/cm 3 at 350 deg. C to values close to the bulk value of 9.7 g/cm 3 at 550 deg. C. Crystallization is observed in the same temperature range for films of typically 10-20 nm thickness. However, annealing studies show that this density increase is not simply related to the crystallization of the films. Similar electrical properties could be observed for all precursors and the dielectric constant of the films reaches values similar to the best values reported for bulk crystalline HfO 2

  18. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  19. The effect of the indoor environment on the fate of organic chemicals in the urban landscape

    International Nuclear Information System (INIS)

    Cousins, Anna Palm

    2012-01-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical–chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK OA and the impact of the ventilation rate on the urban fate of organic chemicals. -- Highlights: ► A novel indoor-inclusive multimedia urban fate model is developed and applied. ► Emissions indoors may increase the urban chemical residence time. ► Indoor removal from surfaces constitutes an additional loss process

  20. Spring Blooms Observed with Biochemical Profiling Floats from a Chemical and Biological Perspective

    Science.gov (United States)

    Plant, J. N.; Johnson, K. S.; Sakamoto, C.; Jannasch, H. W.; Coletti, L. J.; Elrod, V.

    2015-12-01

    Recently there has been renewed interest in the mechanisms which control the seasonal increases in plankton biomass (spring blooms). Changes in physical and chemical forcing (light, wind, heat and nutrients) may increase the specific growth rate of phytoplankton. These changes may also shift the predator - prey relationships within the food web structure, which can alter the balance between plankton growth and loss rates. Biogeochemical profiling floats provide a means to observe the seasonal evolution of spring blooms from a physical, chemical and biological perspective in near real time. Floats equipped with optical sensors to measure nitrate, oxygen, chlorophyll fluorescence, and optical backscatter now have a presence in many ocean regions including the North Pacific, Subarctic Pacific, North Atlantic, South Atlantic and the Southern Ocean. Data from these regions are used to compare and contrast the evolution of spring blooms. The evolution of the bloom is examined using both chemical (oxygen, nitrate) and biooptical (phytoplankton from chlorophyll fluorescence and particulate organic carbon from optical backscatter) sensors under vastly different environmental conditions.

  1. Removal of chemical oxygen demand from textile wastewater using a natural coagulant

    Energy Technology Data Exchange (ETDEWEB)

    Ramavandi, Bahman [Bushehr University of Medical Sciences, Bushehr (Iran, Islamic Republic of); Farjadfard, Sima [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2014-01-15

    A biomaterial was successfully synthesized from Plantago ovata by using an FeCl{sub 3}-induced crude extract (FCE). The potential of FCE to act as a natural coagulant was tested for the pretreatment of real textile wastewater. Tests were performed to evaluate the effects of FCE quantity, salt concentration, and wastewater pH on chemical oxygen demand (COD) reduction during a coagulation/flocculation process. Experimental results indicated that the wastewater could be effectively treated by using a coagulation/flocculation process, where the BOD{sub 5}/COD ratio of the effluent was improved to 0.48. A low coagulant dose, 1.5mg/L, achieved a high COD removal percentage, 89%, at operational conditions of neutral pH and room temperature. The experimental data revealed that the maximum COD removal occurred at water pH<8. Increasing the salt promoted the COD removal. The settling and filterability characteristics of the sludge were also studied. Scanning electron microscopy and energy dispersive spectroscopy studies were conducted to determine the sludge structure and composition, respectively. Overall, FCE as an eco-friendly biomaterial was revealed to be a very efficient coagulant and a promising option for the removal of COD from wastewaters.

  2. Engineering the oxygen coordination in digital superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Seyoung [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Materials Science, Northwestern University, Evanston, Illinois 60202, USA; Andersen, Tassie K. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Materials Science, Northwestern University, Evanston, Illinois 60202, USA; Hong, Hawoong [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Rosenberg, Richard A. [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Marks, Laurence D. [Department of Materials Science, Northwestern University, Evanston, Illinois 60202, USA; Fong, Dillon D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

    2017-12-01

    The oxygen sublattice in the complex oxides is typically composed of corner-shared polyhedra, with transition metals at their centers. The electronic and chemical properties of the oxide depend on the type and geometric arrangement of these polyhedra, which can be controlled through epitaxial synthesis. Here, we use oxide molecular beam epitaxy to create SrCoOx:SrTiO3 superlattices with tunable oxygen coordination environments and sublattice geometries. Using soft X-ray spectroscopy, we find that the chemical state of Co can be varied with the polyhedral arrangement, demonstrating a new strategy for achieving unique electronic properties in the transition metal oxides.

  3. Decontamination of chemical-warfare agent simulants by polymer surfaces doped with the singlet oxygen generator zinc octaphenoxyphthalocyanine.

    Science.gov (United States)

    Gephart, Raymond T; Coneski, Peter N; Wynne, James H

    2013-10-23

    Using reactive singlet oxygen (1O2), the oxidation of chemical-warfare agent (CWA) simulants has been demonstrated. The zinc octaphenoxyphthalocyanine (ZnOPPc) complex was demonstrated to be an efficient photosensitizer for converting molecular oxygen (O2) to 1O2 using broad-spectrum light (450-800 nm) from a 250 W halogen lamp. This photosensitization produces 1O2 in solution as well as within polymer matrices. The oxidation of 1-naphthol to naphthoquinone was used to monitor the rate of 1O2 generation in the commercially available polymer film Hydrothane that incorporates ZnOPPc. Using electrospinning, nanofibers of ZnOPPc in Hydrothane and polycarbonate were formed and analyzed for their ability to oxidize demeton-S, a CWA simulant, on the surface of the polymers and were found to have similar reactivity as their corresponding films. The Hydrothane films were then used to oxidize CWA simulants malathion, 2-chloroethyl phenyl sulfide (CEPS), and 2-chloroethyl ethyl sulfide (CEES). Through this oxidation process, the CWA simulants are converted into less toxic compounds, thus decontaminating the surface using only O2 from the air and light.

  4. Optical detection of singlet oxygen from single cells

    DEFF Research Database (Denmark)

    Snyder, John; Skovsen, Esben; Lambert, John D. C.

    2006-01-01

    The lowest excited electronic state of molecular oxygen, singlet molecular oxygen, O2(a 1g), is a reactive species involved in many chemical and biological processes. To better understand the roles played by singlet oxygen in biological systems, particularly at the sub-cellular level, optical tools...... including across the cell membrane into the extracellular environment. On one hand, these results demonstrate that the behavior of singlet oxygen in an intact cell can be significantly different from that inferred from model bulk studies. More generally, these results provide a new perspective...

  5. Organic Nitrogen in Atmospheric Drops and Particles: Concentrations, (Limited) Speciation, and Chemical Transformations

    Science.gov (United States)

    Anastasio, C.; Zhang, Q.

    2003-12-01

    While quite a bit is known of the concentrations, speciation, and chemistry of inorganic forms of nitrogen in the atmosphere, the same cannot be said for organic forms. Despite this, there is growing evidence that organic N (ON) is ubiquitous in the atmosphere, especially in atmospheric condensed phases such as fog/cloud drops and aerosol particles. Although the major compounds that make up organic N are generally unknown, as are the sources of these compounds, it is clear that there are significant fluxes of ON between the atmosphere and ecosystems. It also appears that organic N can have significant effects in both spheres. The goal of our recent work in this area has been to better describe the atmospheric component of the biogeochemistry of organic nitrogen. Based on particle, gas, and fogwater samples from Northern California we have made three major findings: 1) Organic N represents a significant component, approximately 20%, of the total atmospheric N loading in these samples. This is broadly consistent with studies from other locations. 2) Amino compounds, primarily as combined amino acids, account for approximately 20% of the measured ON in our condensed phase samples. Given the properties of amino acids, these compounds could significantly affect the chemical and physical properties of atmospheric particles. 3) Organic nitrogen in atmospheric particles and drops is transformed to inorganic forms - primarily ammonium, nitrate, and nitrogen oxides (NOx) - during exposure to sunlight and/or ozone. These chemical reactions likely increase the bioavailability of the condensed phase nitrogen pool and enhance its biological effects after deposition to ecosystems.

  6. Oxygen Dependent Biocatalytic Processes

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard

    Enzyme catalysts have the potential to improve both the process economics and the environ-mental profile of many oxidation reactions especially in the fine- and specialty-chemical industry, due to their exquisite ability to perform stereo-, regio- and chemo-selective oxida-tions at ambient...... to aldehydes and ketones, oxyfunctionalization of C-H bonds, and epoxidation of C-C double bonds. Although oxygen dependent biocatalysis offers many possibilities, there are numerous chal-lenges to be overcome before an enzyme can be implemented in an industrial process. These challenges requires the combined...... far below their potential maximum catalytic rate at industrially relevant oxygen concentrations. Detailed knowledge of the en-zyme kinetics are therefore required in order to determine the best operating conditions and design oxygen supply to minimize processing costs. This is enabled...

  7. Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions.

    Science.gov (United States)

    Tagliazucchi, Mario; de la Cruz, Mónica Olvera; Szleifer, Igal

    2010-03-23

    The competition between chemical equilibrium, for example protonation, and physical interactions determines the molecular organization and functionality of biological and synthetic systems. Charge regulation by displacement of acid-base equilibrium induced by changes in the local environment provides a feedback mechanism that controls the balance between electrostatic, van der Waals, steric interactions and molecular organization. Which strategies do responsive systems follow to globally optimize chemical equilibrium and physical interactions? We address this question by theoretically studying model layers of end-grafted polyacids. These layers spontaneously form self-assembled aggregates, presenting domains of controlled local pH and whose morphologies can be manipulated by the composition of the solution in contact with the film. Charge regulation stabilizes micellar domains over a wide range of pH by reducing the local charge in the aggregate at the cost of chemical free energy and gaining in hydrophobic interactions. This balance determines the boundaries between different aggregate morphologies. We show that a qualitatively new form of organization arises from the coupling between physical interactions and protonation equilibrium. This optimization strategy presents itself with polyelectrolytes coexisting in two different and well-defined protonation states. Our results underline the need of considering the coupling between chemical equilibrium and physical interactions due to their highly nonadditive behavior. The predictions provide guidelines for the creation of responsive polymer layers presenting self-organized patterns with functional properties and they give insights for the understanding of competing interactions in highly inhomogeneous and constrained environments such as those relevant in nanotechnology and those responsible for biological cells function.

  8. The New World Health Organization Recommendations on Perioperative Administration of Oxygen to Prevent Surgical Site Infections: A Dangerous Reductionist Approach?

    Science.gov (United States)

    Wenk, Manuel; Van Aken, Hugo; Zarbock, Alexander

    2017-08-01

    In October 2016, the World Health Organization (WHO) published recommendations for preventing surgical site infections (SSIs). Among those measures is a recommendation to administer oxygen at an inspired fraction of 80% intra- and postoperatively for up to 6 hours. SSIs have been identified as a global health problem, and the WHO should be commended for their efforts. However, this recommendation focuses only on the patient's "wound," ignores other organ systems potentially affected by hyperoxia, and may ultimately worsen patient outcomes.The WHO advances a "strong recommendation" for the use of a high inspired oxygen fraction even though the quality of evidence is only moderate. However, achieving this goal by disregarding other potentially lethal complications seems inappropriate, particularly in light of the weak evidence underpinning the use of high fractions of oxygen to prevent SSI. Use of such a strategy thus should be intensely discussed by anesthesiologists and perioperative physicians.Normovolemia, normotension, normoglycemia, normothermia, and normoventilation can clearly be safely applied to most patients in most clinical scenarios. But the liberal application of hyperoxemia intraoperatively and up to 6 hours postoperatively, as suggested by the WHO, is questionable from the viewpoint of anesthesia and perioperative medicine, and its effects will be discussed in this article.

  9. Controlling Oxygen Mobility in Ruddlesden–Popper Oxides

    Directory of Open Access Journals (Sweden)

    Dongkyu Lee

    2017-03-01

    Full Text Available Discovering new energy materials is a key step toward satisfying the needs for next-generation energy conversion and storage devices. Among the various types of oxides, Ruddlesden–Popper (RP oxides (A2BO4 are promising candidates for electrochemical energy devices, such as solid oxide fuel cells, owing to their attractive physicochemical properties, including the anisotropic nature of oxygen migration and controllable stoichiometry from oxygen excess to oxygen deficiency. Thus, understanding and controlling the kinetics of oxygen transport are essential for designing optimized materials to use in electrochemical energy devices. In this review, we first discuss the basic mechanisms of oxygen migration in RP oxides depending on oxygen nonstoichiometry. We then focus on the effect of changes in the defect concentration, crystallographic orientation, and strain on the oxygen migration in RP oxides. We also briefly review their thermal and chemical stability. Finally, we conclude with a perspective on potential research directions for future investigation to facilitate controlling oxygen ion migration in RP oxides.

  10. A procedure for the measurement of Oxygen Consumption Rates (OCRs) in red wines and some observations about the influence of wine initial chemical composition.

    Science.gov (United States)

    Marrufo-Curtido, Almudena; Carrascón, Vanesa; Bueno, Mónica; Ferreira, Vicente; Escudero, Ana

    2018-05-15

    The rates at which wine consumes oxygen are important technological parameters for whose measurement there are not accepted procedures. In this work, volumes of 8 wines are contacted with controlled volumes of air in air-tight tubes containing oxygen-sensors and are further agitated at 25 °C until O 2 consumption is complete. Three exposure levels of O 2 were used: low (10 mg/L) and medium or high (18 or 32 mg/L plus the required amount to oxidize all wine SO 2 ). In each oxygen level, 2-4 independent segments following pseudo-first order kinetics were identified, plus an initial segment at which wine consumed O 2 very fast. Overall, multivariate data techniques identify six different Oxygen-Consumption-Rates (OCRs) as required to completely define wine O 2 consumption. Except the last one, all could be modeled from the wine initial chemical composition. Total acetaldehyde, Mn, Cu/Fe, blue and red pigments and gallic acid seem to be essential to determine these OCRs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen.

    Science.gov (United States)

    Gurlo, Alexander

    2006-10-13

    Tin dioxide is the most commonly used material in commercial gas sensors based on semiconducting metal oxides. Despite intensive efforts, the mechanism responsible for gas-sensing effects on SnO(2) is not fully understood. The key step is the understanding of the electronic response of SnO(2) in the presence of background oxygen. For a long time, oxygen interaction with SnO(2) has been treated within the framework of the "ionosorption theory". The adsorbed oxygen species have been regarded as free oxygen ions electrostatically stabilized on the surface (with no local chemical bond formation). A contradiction, however, arises when connecting this scenario to spectroscopic findings. Despite trying for a long time, there has not been any convincing spectroscopic evidence for "ionosorbed" oxygen species. Neither superoxide ions O(2)(-), nor charged atomic oxygen O,(-) nor peroxide ions O(2)(2-) have been observed on SnO(2) under the real working conditions of sensors. Moreover, several findings show that the superoxide ion does not undergo transformations into charged atomic oxygen at the surface, and represents a dead-end form of low-temperature oxygen adsorption on reduced metal oxide.

  12. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads.

    Science.gov (United States)

    Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L

    2013-04-21

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.

  13. Mitochondrial Respiration and Oxygen Tension.

    Science.gov (United States)

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H

    2017-01-01

    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  14. Identification of specific organic contaminants in different units of a chemical production site.

    Science.gov (United States)

    Dsikowitzky, L; Botalova, O; al Sandouk-Lincke, N A; Schwarzbauer, J

    2014-07-01

    Due to the very limited number of studies dealing with the chemical composition of industrial wastewaters, many industrial organic contaminants still escape our view and consequently also our control. We present here the chemical characterization of wastewaters from different units of a chemical complex, thereby contributing to the characterization of industrial pollution sources. The chemicals produced in the investigated complex are widely and intensively used and the synthesis processes are common and applied worldwide. The chemical composition of untreated and treated wastewaters from the chemical complex was investigated by applying a non-target screening which allowed for the identification of 39 organic contaminants. According to their application most of them belonged to four groups: (i) unspecific educts or intermediates of industrial syntheses, (ii) chemicals for the manufacturing of pharmaceuticals, (iii) educts for the synthesis of polymers and resins, and (iv) compounds known as typical constituents of municipal sewage. A number of halogenated compounds with unknown toxicity and with very high molecular diversity belonged to the second group. Although these compounds were completely removed or degraded during wastewater treatment, they could be useful as "alarm indicators" for industrial accidents in pharmaceutical manufacturing units or for malfunctions of wastewater treatment plants. Three potential branch-specific indicators for polymer manufacturing were found in the outflow of the complex. Among all compounds, bisphenol A, which was present in the leachate water of the on-site waste deposit, occurred in the highest concentrations of up to 20 000 μg L(-1). The comparison of contaminant loads in the inflow and outflow of the on-site wastewater treatment facility showed that most contaminants were completely or at least significantly removed or degraded during the treatment, except two alkylthiols, which were enriched during the treatment process

  15. Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances.

    Science.gov (United States)

    Czech, Hendryk; Miersch, Toni; Orasche, Jürgen; Abbaszade, Gülcin; Sippula, Olli; Tissari, Jarkko; Michalke, Bernhard; Schnelle-Kreis, Jürgen; Streibel, Thorsten; Jokiniemi, Jorma; Zimmermann, Ralf

    2018-01-15

    Combustion technologies of small-scale wood combustion appliances are continuously developed decrease emissions of various pollutants and increase energy conversion. One strategy to reduce emissions is the implementation of air staging technology in secondary air supply, which became an established technique for modern wood combustion appliances. On that account, emissions from a modern masonry heater fuelled with three types of common logwood (beech, birch and spruce) and a modern pellet boiler fuelled with commercial softwood pellets were investigated, which refer to representative combustion appliances in northern Europe In particular, emphasis was put on the organic constituents of PM2.5, including polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs) and phenolic species, by targeted and non-targeted mass spectrometric analysis techniques. Compared to conventional wood stoves and pellet boilers, organic emissions from the modern appliances were reduced by at least one order of magnitude, but to a different extent for single species. Hence, characteristic ratios of emission constituents and emission profiles for wood combustion identification and speciation do not hold for this type of advanced combustion technology. Additionally, an overall substantial reduction of typical wood combustion markers, such as phenolic species and anhydrous sugars, were observed. Finally, it was found that slow ignition of log woods changes the distribution of characteristic resin acids and phytosterols as well as their thermal alteration products, which are used as markers for specific wood types. Our results should be considered for wood combustion identification in positive matrix factorisation or chemical mass balance in northern Europe. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    Science.gov (United States)

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  17. A CHEMICAL KINETICS NETWORK FOR LIGHTNING AND LIFE IN PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Rimmer, P. B.; Helling, Ch

    2016-01-01

    There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion–neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon, and oxygen chemistry accurately within a temperature range between 100 and 30,000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD 209458b, Jupiter, and the present-day Earth using a simple one-dimensional photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting for CO 2 , H 2 , CO, and O 2 , but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that the production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.

  18. A CHEMICAL KINETICS NETWORK FOR LIGHTNING AND LIFE IN PLANETARY ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Rimmer, P. B.; Helling, Ch, E-mail: pr33@st-andrews.ac.uk [School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS (United Kingdom)

    2016-05-01

    There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion–neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon, and oxygen chemistry accurately within a temperature range between 100 and 30,000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD 209458b, Jupiter, and the present-day Earth using a simple one-dimensional photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting for CO{sub 2}, H{sub 2}, CO, and O{sub 2}, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that the production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.

  19. Investigation of the Correlation between Odd Oxygen and Secondary Organic Aerosol in Mexico City and Houston

    Science.gov (United States)

    Many recent models underpredict secondary organic aerosol (SOA) particulate matter(PM) concentrations in polluted regions, indicating serious deficiencies in the models' chemical mechanisms and/or missing SOA precursors. Since tropospheric photochemical ozone production is much b...

  20. Evaluation of Oxygen Concentrators and Chemical Oxygen Generators at Altitude and Temperature Extremes

    Science.gov (United States)

    2015-04-22

    Current COGs typically contain one or more of the following solid compounds: sodium chlorate , sodium perchlorate, potassium superoxide, or...produces heat. The COGs evaluated in this study are the O2PAK, TraumAid, and BOB. 3.2.1 O2PAK. The main ingredient in the O2PAK is sodium chlorate ...In 1902, the Lancet reported on Kamm’s oxygen generator invention for medical use. The device used chlorate cakes and manganese oxide and, when

  1. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Apel, Eric; Emmons, L.; Karl, Thomas G.; Flocke, Frank M.; Hills, A. J.; Madronich, Sasha; Lee-Taylor, J.; Fried, Alan; Weibring, P.; Walega, J.; Richter, Dirk; Tie, X.; Mauldin, L.; Campos, Teresa; Weinheimer, Andrew J.; Knapp, David; Sive, B.; Kleinman, Lawrence I.; Springston, S.; Zaveri, Rahul A.; Ortega, John V.; Voss, Paul B.; Blake, D. R.; Baker, Angela K.; Warneke, Carsten; Welsh-Bon, Daniel; de Gouw, Joost A.; Zheng, J.; Zhang, Renyi; Rudolph, Jochen; Junkermann, W.; Riemer, D.

    2010-01-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on March 18 and the NCAR C130 one day later on March 19. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the March 19 plume and to help interpret the OH

  2. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Apel, E.; Springston, S.; Karl, T.; Emmons, L.; Flocke, F.; Hills, A. J.; Madronich, S.; Lee-Taylor, J.; Fried, A.; Weibring, P.; Walega, J.; Richter, D., Tie, X.; Mauldin, L.; Campos, T.; Sive, B.; Kleinman, L.; Springston, S., Zaveri, R.; deGouw, J.; Zheng, J.; Zhang, R.; Rudolph, J.; Junkermann, W.; Riemer, D. D.

    2009-11-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18 March and the NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19 March plume and to help interpret the OH

  3. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Directory of Open Access Journals (Sweden)

    E. C. Apel

    2010-03-01

    Full Text Available The volatile organic compound (VOC distribution in the Mexico City Metropolitan Area (MCMA and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs but with a substantial contribution from oxygenated volatile organic compounds (OVOCs, predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry model and MOZART (Model for Ozone and Related chemical Tracers were able to approximate the observed MCMA daytime patterns and absolute values of the VOC OH reactivity. The MOZART model is also in agreement with observations showing that NMHCs dominate the reactivity distribution except in the afternoon hours. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height.

    A northeast transport event was studied in which air originating in the MCMA was intercepted aloft with the Department of Energy (DOE G1 on 18 March and downwind with the National Center for Atmospheric Research (NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind; ozone was shown to be photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial extent and temporal evolution of the plume

  4. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water.

    Science.gov (United States)

    Mass, Tali; Genin, Amatzia; Shavit, Uri; Grinstein, Mor; Tchernov, Dan

    2010-02-09

    Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism's photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO(2). No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs.

  5. The I2 dissociation mechanisms in the chemical oxygen-iodine laser revisited.

    Science.gov (United States)

    Waichman, K; Barmashenko, B D; Rosenwaks, S

    2012-06-28

    The recently suggested mechanism of I(2) dissociation in the chemical oxygen-iodine laser (COIL) [K. Waichman, B. D. Barmashenko, and S. Rosenwaks, J. Appl. Phys. 106, 063108 (2009); and J. Chem. Phys. 133, 084301 (2010)] was largely based on the suggestion of V. N. Azyazov, S. Yu. Pichugin, and M. C. Heaven [J. Chem. Phys. 130, 104306 (2009)] that the vibrational population of O(2)(a) produced in the chemical generator is high enough to play an essential role in the dissociation. The results of model calculations based on this mechanism agreed very well with measurements of the small signal gain g, I(2) dissociation fraction F, and temperature T in the COIL. This mechanism is here revisited, following the recent experiments of M. V. Zagidullin [Quantum Electron. 40, 794 (2010)] where the observed low population of O(2)(b, v = 1) led to the conclusion that the vibrational population of O(2)(a) at the outlet of the generator is close to thermal equilibrium value. This value corresponds to a very small probability, ∼0.05, of O(2)(a) energy pooling to the states O(2)(X,a,b, v > 0). We show that the dissociation mechanism can reproduce the experimentally observed values of g, F, and T in the COIL only if most of the energy released in the processes of O(2)(a) energy pooling and O(2)(b) quenching by H(2)O ends up as vibrational energy of the products, O(2)(X,a,b), where the vibrational states v = 2 and 3 are significantly populated. We discuss possible reasons for the differences in the suggested vibrational population and explain how these differences can be reconciled.

  6. Micro-oxygenation of red wine: techniques, applications, and outcomes.

    Science.gov (United States)

    Schmidtke, Leigh M; Clark, Andrew C; Scollary, Geoff R

    2011-02-01

    Wine micro-oxygenation (MOX) is the controlled addition of oxygen to wine in a manner designed to ensure that complete mass transfer of molecular oxygen from gaseous to dissolved state occurs. MOX was initially developed to improve the body, structure, and fruitfulness in red wines with high concentrations of tannins and anthocyanins, by replicating the ingress of oxygen thought to arise from barrel maturation, but without the need for putting all wine to barrel. This review describes the operational parameters essential for the effective performance of the micro-oxidation process as well as the chemical and microbiological outcomes. The methodologies for introducing oxygen into the wine, the rates of oxygen addition, and their relationship to oxygen solubility in the wine matrix are examined. The review focuses on the techniques used for monitoring the MOX process, including sensory assessment, physicochemical properties, and the critical balance of the rate of oxygen addition in relation to maintaining the sulfur dioxide concentration. The chemistry of oxygen reactivity with wine components, the changes in wine composition that occur as a consequence of MOX, and the potential for wine spoilage if proper monitoring is not adopted are examined. Gaps in existing knowledge are addressed focusing on the limitations associated with the transfer of concepts from research trials in small volume tanks to commercial practice, and the dearth of kinetic data for the various chemical and physical processes that are claimed to occur during MOX.

  7. Effects of radiation and chemical substances on cells and organism

    International Nuclear Information System (INIS)

    Fremuth, F.

    1981-01-01

    The book treats the radiation chemistry part of biophysics and applied biophysics in the sphere of ionizing radiation. Discussed are the concepts of radiation units and radioactivity units and the relative biological efficiency. The effects of ionizing and UV radiations are analyzed at the level of macromolecular changes. Chapters dealing with genetic radiation effects discuss the effects at the cellular level with respect to cell proliferation. All these problems are used to illustrate the effect on the organism as a whole. The chapters on applied biophysics deal with the indications of radiation and chemical damage, sensitivity of cells and the organism, and the study and influencing of growth at the cellular level. The concluding chapter is devoted to the environmental impact of radiation. (J.P.)

  8. Oxygen no longer plays a major role in Body Size Evolution

    Science.gov (United States)

    Datta, H.; Sachson, W.; Heim, N. A.; Payne, J.

    2015-12-01

    When observing the long-term relationship between atmospheric oxygen and the maximum size in organisms across the Geozoic (~3.8 Ga - present), it appears that as oxygen increases, organism size grows. However, during the Phanerozoic (541 Ma - Present) oxygen levels varied, so we set out to test the hypothesis that oxygen levels drive patterns marine animal body size evolution. Expected decreases in maximum size due to a lack of oxygen do not occur, and instead, body size continues to increase regardless. In the oxygen data, a relatively low atmospheric oxygen percentage can support increasing body size, so our research tries to determine whether lifestyle affects body size in marine organisms. The genera in the data set were organized based on their tiering, motility, and feeding, such as a pelagic, fully-motile, predator. When organisms fill a certain ecological niche to take advantage of resources, they will have certain life modes, rather than randomly selected traits. For example, even in terrestrial environments, large animals have to constantly feed themselves to support their expensive terrestrial lifestyle which involves fairly consistent movement, and the structural support necessary for that movement. Only organisms with access to high energy food sources or large amounts of food can support themselves, and that is before they expend energy elsewhere. Organisms that expend energy frugally when active or have slower metabolisms in comparison to body size have a more efficient lifestyle and are generally able to grow larger, while those who have higher energy demands like predators are limited to comparatively smaller sizes. Therefore, in respect to the fossil record and modern measurements of animals, the metabolism and lifestyle of an organism dictate its body size in general. With this further clarification on the patterns of evolution, it will be easier to observe and understand the reasons for the ecological traits of organisms today.

  9. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism.

    Science.gov (United States)

    Broman, Elias; Sjöstedt, Johanna; Pinhassi, Jarone; Dopson, Mark

    2017-08-09

    A key characteristic of eutrophication in coastal seas is the expansion of hypoxic bottom waters, often referred to as 'dead zones'. One proposed remediation strategy for coastal dead zones in the Baltic Sea is to mix the water column using pump stations, circulating oxygenated water to the sea bottom. Although microbial metabolism in the sediment surface is recognized as key in regulating bulk chemical fluxes, it remains unknown how the microbial community and its metabolic processes are influenced by shifts in oxygen availability. Here, coastal Baltic Sea sediments sampled from oxic and anoxic sites, plus an intermediate area subjected to episodic oxygenation, were experimentally exposed to oxygen shifts. Chemical, 16S rRNA gene, metagenomic, and metatranscriptomic analyses were conducted to investigate changes in chemistry fluxes, microbial community structure, and metabolic functions in the sediment surface. Compared to anoxic controls, oxygenation of anoxic sediment resulted in a proliferation of bacterial populations in the facultative anaerobic genus Sulfurovum that are capable of oxidizing toxic sulfide. Furthermore, the oxygenated sediment had higher amounts of RNA transcripts annotated as sqr, fccB, and dsrA involved in sulfide oxidation. In addition, the importance of cryptic sulfur cycling was highlighted by the oxidative genes listed above as well as dsvA, ttrB, dmsA, and ddhAB that encode reductive processes being identified in anoxic and intermediate sediments turned oxic. In particular, the intermediate site sediments responded differently upon oxygenation compared to the anoxic and oxic site sediments. This included a microbial community composition with more habitat generalists, lower amounts of RNA transcripts attributed to methane oxidation, and a reduced rate of organic matter degradation. These novel data emphasize that genetic expression analyses has the power to identify key molecular mechanisms that regulate microbial community responses

  10. Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB; Sagemann, J.

    1998-01-01

    The temperature dependence of representative initial and terminal steps of organic carbon remineralization was measured at 2 temperate sites with annual temperature ranges of 0 to 30 degrees C and 4 to 15 degrees C and 2 Arctic sites with temperatures of 2.6 and -1.7 degrees C. Slurried sediments...... were incubated in a temperature gradient block spanning a temperature range of ca 45 degrees C. The initial step of organic carbon remineralization, macromolecule hydrolysis, was measured via the enzymatic hydrolysis of fluorescently labeled polysaccharides. The terminal steps of organic carbon...... remineralization were monitored through consumption of oxygen and reduction of (SO42-)-S-35. At each of the 4 sites, the temperature response of the initial step of organic carbon remineralization was similar to that of the terminal steps. Although optimum temperatures were always well above ambient environmental...

  11. The Effect of H2O2 Interference in Chemical Oxygen Demand Removal During Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Afsane Chavoshani

    2016-07-01

    Full Text Available Hydrogen peroxide (H2O2 is one of the most oxidants in AOPs. By H2O2 dissociation, hydroxyl radical with a standard oxidation potential of 2.7 is produced. It is reported H2O¬ residual in AOPs has been led to interference in chemical oxygen demand (COD test and it is able to hinder biological treatment of waste water. Because of high mixed organic load of solid waste leachate, this study investigated effect of H2O2 interference in COD removal from solid waste leachate. In this study effect of parameters such as pH (3,5,7,12, H2O2 dose (0.01, 0.02, 0.03, 0.04 mol l-1, and time reaction(10,20,30,40,50,60 min evaluated on H2O2 interference in COD removal from solid waste leachate. Optimum pH and concentration were 3 and 0.02 moll-1 respectively. With increasing reaction time, COD removal was increased. The false COD obtained between 0.49mg per 1mg of H2O2. The average of COD removal by H2O2 for 60 min was 6.57%. Also reaction rate of this process was 0.0029 min-1. The presence of H2O2 leads to overestimation of COD values after reaction time because it consumes the oxidation agent. The extent of H2O2 interference in COD analysis was proportional to the remaining H2O2 concentration at the moment of sampling.

  12. Evaluation of Predicted and Observed Data on Biotransformation of Twenty-Nine Trace Organic Chemicals

    KAUST Repository

    Bertolini, Maria

    2011-07-01

    Trace organic chemicals present in household products, pesticides, pharmaceuticals and personal care products may have adverse ecotoxicological effects once they are released to the environment. These chemicals are usually transported with the sewage to wastewater treatment facilities, where they might be attenuated depending on the degree of treatment applied prior to discharge to receiving streams. This study evaluates the removal performance of 29 trace organic compounds during two different activated sludge treatment systems. Predominant attenuation processes such as biotransformation and sorption for the target compounds were identified. Biotransformation rate constants determined in this study were used to assess removal of compounds from other treatment plants with similar operational conditions, using data gathered from the literature. The commercial software Catalogic was applied to predict environmental fate of chemicals. The software program consisted of four models able to simulate molecular transformations and to generate degradation trees. In order to assess the accuracy of this program in predicting biotransformation, one biodegradation model is used to contrast predicted degradation pathway with metabolic pathways reported in the literature. The predicted outcome was correct for more than 40 percent of the 29 targeted substances, while 38 percent of the chemicals exhibited some degree of lower agreement between predicted and observed pathways. Percent removal data determined for the two treatment facilities was compared with transformation probability output from Catalogic. About 80 percent of the 29 compounds exhibited a good correlation between probability of transformation of the parent compound and percent removal data from the two treatment plants (R2 = 0.82 and 0.9). Based upon findings for 29 trace organic chemicals regarding removal during activated sludge treatment, attacked fragments present in their structures, predicted data from

  13. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    Science.gov (United States)

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.

  14. Oxygen consumption by hydrazine in long sample lines

    International Nuclear Information System (INIS)

    Chi, Lisheng; Turner, Carl-W.

    2012-09-01

    In nuclear power plants secondary side system dissolved oxygen concentration is a strictly controlled chemistry parameter intended to minimize corrosion and fouling of steam cycle components. Low dissolved oxygen concentration is maintained by a combination of mechanical de-aeration and chemical reaction. The dissolved oxygen concentration in feedwater is monitored by sampling systems to ensure it remains within station specification during operation. The sample lines in a nuclear power plant's sampling system can be from 5 to nearly 200 meters in length, resulting in sample residence times between the take-off point to the analyzer from a few seconds to several minutes, depending on the flow rate and the length of the sample line. For many chemical parameters the residence time is of no concern. For measurements of dissolved oxygen and hydrazine in the secondary coolant, however, for residence times longer than one minute, it is uncertain whether the sample is representative of conditions in the secondary coolant, especially for samples taken from locations where the temperature is well over 100 deg. C. To address this concern, a series of tests were conducted under both warm-up and power operation conditions, respectively, to investigate the effect of temperature, residence time, sample line length, surface area, hydrazine-to-oxygen ratio, and the concentrations of dissolved oxygen and hydrazine on the consumption of oxygen by hydrazine. The test results revealed that dissolved oxygen measurements in CANDU plants are underestimated to various degrees, depending on the sampling system operating conditions. Two distinct types of behaviours are observed for the oxygen removal rate: 1) the percentage removal of dissolved oxygen is invariant with time during the tests, and increases with increasing residence time in the test section, when the reaction between hydrazine and oxygen is better described by a homogenous reaction mechanism, and 2) the percentage oxygen

  15. Development of oxygen and pH sensors for aqueous systems

    International Nuclear Information System (INIS)

    Stvartak, C.; Alcock, C.B.; Li, B.; Wang, L.; Fergus, J.W.; Bakshi, N.

    1994-04-01

    Corrosion science has long recognized that two of the most important parameters in characterizing the corrosivity of an aqueous environment are oxygen chemical potential and pH. These parameters not only determine the thermodynamic driving forces for various corrosion reactions, but also characterize the rates of these reactions and hence the lifetime of a particular component. The primary goal of this project is to develop an electrochemical oxygen and pH sensor for continuous use in the cycle chemistry control of power plants. In the past year, electrochemical sensors with a metal/metal oxide or metal/metal hydride internal reference electrode and a fluoride-based electrolyte tube have been developed and tested in this laboratory. The corrosion tests showed that the LaF 3 -based solid electrolyte was very stable both chemically and physically in water. Furthermore, its electrical conductivity is 4 to 5 orders of magnitude higher than that of stabilized zirconia below 573 K (300 degree C), which is the main advantage of a fluoride-based electrolyte at low temperatures. With this electrolyte and the selected internal oxygen reference electrode (Ag/Ag 2 O), the electrochemical probe demonstrated Nernstian responses to the oxygen chemical potential and pH of the aqueous solution with good reproducibility. A similar cell with Zr/ZrH 1+x as the internal hydrogen reference electrode showed promising pH sensing characteristics. It is proposed that these two cells be combined to form a double-headed electrochemical probe to determine oxygen chemical potential and pH in the solution simultaneously

  16. Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage.

    Science.gov (United States)

    Gibert, Oriol; de Pablo, Joan; Luis Cortina, José; Ayora, Carlos

    2004-11-01

    The current approach of the biological treatment of acid mine drainage by means of a passive remediation system involves the choice of an appropriate organic substrate as electron donor for sulphate reducers. Nowadays this selection is one of the critical steps in the performance of such treatment, as this depends to a great extent on the degradability of the organic substrate. Thus, a prior characterisation of the organic substrate predicting its biodegradability would be desirable before embarking on an extensive large-scale application. The aim of this study was to correlate the chemical composition (lignin content) of four different natural organic substrates (compost, sheep and poultry manures, oak leaf) and their capacity to sustain bacterial activity in an attempt to predict biodegradation from chemical characterisation. The results showed that the lower the content of lignin in the organic substrate, the higher its biodegradability and capacity for developing bacterial activity. Of the four organic materials, sheep and poultry manures and oak leaf evolved reducing conditions and sustained active sulphidogenesis, which coupled with the decrease in sulphate concentration indicated bacterial activity. Sheep manure was clearly the most successful organic material as electron donor (sulphate removal >99%), followed by poultry manure and oak leaf (sulphate removal of 80%). Compost appeared to be too poor in carbon to promote sulphate-reducing bacteria activity by itself. Column experiments emphasised the importance of considering the residence time as a key factor in the performance of continuous systems. With a residence time of 0.73 days, sheep manure did not promote sulphidogenesis. However, extending residence time to 2.4 and 9.0 days resulted in an increase in the sulphate removal to 18% and 27%, respectively.

  17. The effect of the indoor environment on the fate of organic chemicals in the urban landscape

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Anna Palm, E-mail: anna.cousins@ivl.se

    2012-11-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK{sub OA} and the impact of the ventilation rate on the urban fate of organic chemicals. -- Highlights: Black-Right-Pointing-Pointer A novel indoor-inclusive multimedia urban fate model is developed and applied. Black-Right-Pointing-Pointer Emissions indoors may increase the urban chemical residence time. Black

  18. Effective oxygen-consumption rates in fermentation broths with filamentous organisms

    Energy Technology Data Exchange (ETDEWEB)

    Reuss, M; Bajpai, R K; Berke, W

    1982-01-01

    The concept of coupling molecular diffusion and reaction has been applied in the past to various biological systems with clearly defined geometrical properties like pellets and immobilised enzymes/microorganisms. This paper investigates the use of the same principle to characterise the diffusional limitation in suspensions of filamentous microorganisms. Experimental results of oxygen-uptake measurements from Aspergillus niger fermentations in a 50 cu.dm turbine-agitated fermentor are presented with theoretical predictions of coupled diffusion and oxygen kinetics. Results are discussed on the basis of turbulence theory so that the mycelial broth can be structured in hypothetical spherical elements. Consideration of local energy-dissipation rates in the impeller region provides reasonable explanation of the strong influence of the impeller/tank diameter ratio on the effective oxygen-uptake rate at a given power input. (Refs. 18).

  19. Toxin detection using a tyrosinase-coupled oxygen electrode.

    Science.gov (United States)

    Smit, M H; Rechnitz, G A

    1993-02-15

    An enzyme-based "electrochemical canary" is described for the detection of cyanide. The sensing system imitates cyanide's site of toxicity in the mitochondria. The terminal sequence of electron transfer in aerobic respiration is mimicked by mediator coupling of tyrosinase catalysis to an electro-chemical system. An enzyme-coupled oxygen electrode is created which is sensitive to selective poisoning. Biocatalytic reduction of oxygen is promoted by electrochemically supplying tyrosinase with electrons. Thus, ferrocyanide is generated at a cathode and mediates the enzymatic reduction of oxygen to water. An enzyme-dependent reductive current can be monitored which is inhibited by cyanide in a concentration-dependent manner. Oxygen depletion in the reaction layer can be minimized by addressing enzyme activity using a potential pulsing routine. Enzyme activity is electrochemically initiated and terminated and the sensor becomes capable of continuous monitoring. Cyanide poisoning of the biological component is reversible, and it can be reused after rinsing. The resulting sensor detects cyanide based on its biological activity rather than its physical or chemical properties.

  20. Estimate the Chemical Formula of Organic Compounds from Mass Spectrometry Data

    International Nuclear Information System (INIS)

    Tigor Nauli

    2002-01-01

    Mass spectrometer is one of the analysis methods that can determine molecular weight of a substance precisely. Molecular ionic mass measured by the spectrometer represents sum of its isotopes weight with high abundance. It is not equal to the atomic weights from average total of natural isotope of elements. Therefore, a single mass measurement suffices to decide the formula of a substance. Formula determination using mass data by trial and error is a cumbersome work. An algorithm developed by Lederberg can be used to predict molecular formulas from an integer molecular weight. It will search for all linear combination of mass after the molecular weight divided by one of its isotopes weight. Selection of the right molecular formula from a list of possible formulas can be assisted by the relative abundance of its isotopes. The heavy isotopes will appear in the spectrum as small peaks at one or more unit m/z next to the parent peak. The heights of smaller peak (P M+1 , P M+2 , ... ) compared with the height of parent peak (P M ) depend on the atom and its relative heavy isotopes. Hence, the relative peak heights could designate molecular formula of the substance. A computer application will help in producing a list of all possible molecular formulas from inputs of molecular ion peak results from mass spectrometry. The program calculates relative peak heights implementing Beynon rule. The output becomes a tool for choosing the actual formula of the substance. Although the formula algorithm could be implemented in all chemical groups, the computer program is purely made for an organic substance consists of carbon, hydrogen, oxygen and nitrogen. The computer outputs will inform the odd or even of ionic pairs and the number of bond and rings in the substance also. (author)

  1. Screening of perfluorinated chemicals (PFCs) in various aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Sanjuan, Maria; Meyer, Johan; Damasio, Joana; Faria, Melissa; Barata, Carlos; Lacorte, Silvia [IDAEA-CSIC, Department of Environmental Chemistry, Barcelona (Spain)

    2010-10-15

    The aim of this study was to evaluate the occurrence of five perfluorinated chemicals (perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), and perfluorobutane sulfonic acid) in aquatic organisms dwelling in either freshwater or marine ecosystems. Organisms selected were insect larvae, oysters, zebra mussels, sardines, and crabs, which are widespread in the environment and may represent potential bioindicators of exposure to PFCs. The study comprises the optimization of a solid-liquid extraction method and determination by high-performance liquid chromatography coupled to tandem mass spectrometry. Using spiked zebra mussels at 10 and 100 ng/g level, the method developed provided recoveries of 96% and 122%, and 82% to 116%, respectively, and a limit of detection between 0.07 and 0.22 ng/g ww. The method was highly sensitivity and robust to determine PFC compounds in a wide array of biological matrices, and no matrix interferents nor blank contamination was observed. Among organisms studied, none of the bivalves accumulated PFCs, and contrarily, insect larvae, followed by fish and crabs contained levels ranging from 0.23 to 144 ng/g ww of PFOS, from 0.14 to 4.3 ng/g ww of PFOA, and traces of PFNA and PFHxS. Assessment of the potential use of aquatic organisms for biomonitoring studies is further discussed. (orig.)

  2. Ceramic oxygen transport membrane array reactor and reforming method

    Science.gov (United States)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.

    2017-10-03

    The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.

  3. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quantum chemical calculations of using density functional theory ...

    Indian Academy of Sciences (India)

    K RACKESH JAWAHER

    2018-02-15

    Feb 15, 2018 ... Quantum chemical calculations have been employed to study the molecular effects produced by. Cr2O3/SnO2 optimised structure. ... are exploited in solar cells [2], high-capacity lithium– storage [3], solid-state chemical ..... bond distance of metal–oxygen is positively (0.5 Е) deviated to oxygen–oxygen ...

  5. The influence of oxygen exposure time on the composition of macromolecular organic matter as revealed by surface sediments on the Murray Ridge (Arabian Sea)

    Science.gov (United States)

    Nierop, Klaas G. J.; Reichart, Gert-Jan; Veld, Harry; Sinninghe Damsté, Jaap S.

    2017-06-01

    The Arabian Sea represents a prime example of an open ocean extended oxygen minimum zone (OMZ) with low oxygen concentrations (down to less than 2 μM) between 200 and 1000 m water depth. The OMZ impinges on the ocean floor, affecting organic matter (OM) mineralization. We investigated impact of oxygen depletion on the composition of macromolecular OM (MOM) along a transect through the OMZ on the slopes of the Murray Ridge. This sub-marine high in the northern Arabian Sea, with the top at approximately 500 m below sea surface (mbss), intersects the OMZ. We analyzed sediments deposited in the core of OMZ (suboxic conditions), directly below the OMZ (dysoxic conditions) and well below the OMZ (fully oxic conditions). The upper 18 cm of sediments from three stations recovered at different depths were studied. MOM was investigated by Rock Eval and flash pyrolysis techniques. The MOM was of a predominant marine origin and inferred from their pyrolysis products, most biomolecules (tetra-alkylpyrrole pigments, polysaccharides, proteins and their transformation products, and polyphenols including phlorotannins), showed a progressive relative degradation with increasing exposure to oxygen. Alkylbenzenes and, in particular, aliphatic macromolecules increased relatively. The observed differences in MOM composition between sediment deposited under various bottom water oxygen conditions (i.e. in terms of concentration and exposure time) was much larger than within sediment cores, implying that early diagenetic alteration of organic matter depends largely on bottom water oxygenation rather than subsequent anaerobic degradation within the sediments, even at longer time scales.

  6. Practical use of chemical probes for reactive oxygen species produced in biological systems by {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Hee; Moon, Yu Ran; Chung, Byung Yeoup; Kim, Jae-Sung [Radiation Research Division for Bio-technology, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Lee, Kang-Soo [Crop Production and Technology Major, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Cho, Jae-Young [Bio-environmental Science Major, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Jin-Hong [Radiation Research Division for Bio-technology, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)], E-mail: jhongkim@kaeri.re.kr

    2009-05-15

    Application of chemical probes, for detection of reactive oxygen species (ROS), was tested during {gamma}-irradiation. The ethanol/{alpha}-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) and 3,3'-diaminobenzidine (DAB) were structurally stable enough to detect {sup {center_dot}}OH and H{sub 2}O{sub 2}, increasingly generated by {gamma}-irradiation up to 1000 Gy. Interestingly, the production rate of H{sub 2}O{sub 2}, but not {sup {center_dot}}OH, during {gamma}-irradiation, was significantly different between in vitro systems of lettuce and spinach. These results suggest that 4-POBN and DAB could be utilized as a semi-quantitative probe to quantify {sup {center_dot}}OH and H{sub 2}O{sub 2}, produced by {gamma}-irradiation up to 1000 Gy.

  7. Effects of various organic and chemical fertilizers on growth indices of basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    S.M.K. Tahami

    2016-05-01

    Full Text Available In order to develop the high intensive agriculture, more chemical fertilizers are applied to the soil that resulting in soil degradation and environment deterioration. Application of organic manure is an important approach for maintaining and improving the soil fertility and increasing fertilizer use efficiency. Therefore, in order to evaluate the effect of organic manures and chemical fertilizer on growth indices and biological yield of basil (Ocimum basilicum L., an experiment was conducted at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during growing season of 2008-2009. A complete randomized block design with six treatments and three replications was used. The treatments were: cow manure, sheep manure, chicken manure, vermicompost, chemical NPK fertilizers and control (no fertilizer. The results showed that the use of organic fertilizers significantly increased seed and biological yield of basil compared with chemical fertilizer and control. The maximum and the minimum dry weights were observed at 105 days after planting, in sheep and cow manures, respectively. Gradually during the period of plant growth and development to reproduction phase percent of stem decreased and dry weight of inflorescence increased. The highest and the lowest leaf area index were observed at 90 days after planting, in cow manure and control, respectively, and then decreased in all treatments. The maximum crop growth rate in most of treatments at 90 days after planting was obtained, except the control which plant growth rate was lowest. Net assimilation rate (NAR in most treatments increased until 75 days after planting and then declined. While the highest and the lowest NAR were observed at 75 days after planting in chicken manure and chemical treatment, respectively.

  8. Chemically pretreating slaughterhouse solid waste to increase the efficiency of anaerobic digestion.

    Science.gov (United States)

    Flores-Juarez, Cyntia R; Rodríguez-García, Adrián; Cárdenas-Mijangos, Jesús; Montoya-Herrera, Leticia; Godinez Mora-Tovar, Luis A; Bustos-Bustos, Erika; Rodríguez-Valadez, Francisco; Manríquez-Rocha, Juan

    2014-10-01

    The combined effect of temperature and pretreatment of the substrate on the anaerobic treatment of the organic fraction of slaughterhouse solid waste was studied. The goal of the study was to evaluate the effect of pretreating the waste on the efficiency of anaerobic digestion. The effect was analyzed at two temperature ranges (the psychrophilic and the mesophilic ranges), in order to evaluate the effect of temperature on the performance of the anaerobic digestion process for this residue. The experiments were performed in 6 L batch reactors for 30 days. Two temperature ranges were studied: the psychrophilic range (at room temperature, 18°C average) and the mesophilic range (at 37°C). The waste was pretreated with NaOH before the anaerobic treatment. The result of pretreating with NaOH was a 194% increase in the soluble chemical oxygen demand (COD) with a dose of 0.6 g NaOH per g of volatile suspended solids (VSS). In addition, the soluble chemical oxygen demand/total chemical oxygen demand ratio (sCOD/tCOD) increased from 0.31 to 0.7. For the anaerobic treatment, better results were observed in the mesophilic range, achieving 70.7%, 47% and 47.2% removal efficiencies for tCOD, total solids (TS), and volatile solids (VS), respectively. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Production of chemicals and fuels from biomass

    Science.gov (United States)

    Qiao, Ming; Woods, Elizabeth; Myren, Paul; Cortright, Randy; Kania, John

    2018-01-23

    Methods, reactor systems, and catalysts are provided for converting in a continuous process biomass to fuels and chemicals, including methods of converting the water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  10. Investigation of the singlet delta oxygen and ozone yields from the pulsed radiolysis of oxygen and oxygen-noble gas mixtures

    International Nuclear Information System (INIS)

    Zediker, M.S.

    1984-01-01

    The experiments discussed herein were performed with a flowing gas apparatus coupled to the University of Illinois TRIGA reactor. The detectors (lambda = 1.27 μ 634 nm) were calibrated with a novel NO 2 titration scheme and the absorbed dose was estimated from the ozone concentrations measured in pure oxygen. The results of these experiments revealed an O 2 (a 1 Δ) production efficiency of 0.14% for direct nuclear pumping in an argon-oxygen mixture. Extensive modeling of the oxygen and argon-oxygen mixtures were benchmarked against these and other experiments. However, good agreement over a broad absorbed dose range was only possible if the O 4 + + O 4 - neutralization reaction was assumed to be nondissociative. In a second set of experiments with a nuclear sustained electrical discharge (low E/N), the O 2 (a 1 Δ) production efficiency was approx.0.40% for the electrical power densities examined. In addition, the O 2 (a 1 Δ) was observed to scale with the square root of the electrical power deposition but was independent of the oxygen concentration. A simple analytic model was developed which explains this behavior as a characteristic of an externally sustained discharge involving an electron attaching gas such as oxygen. The results of these experiments and the modeling of the chemical kinetics are discussed with an emphasis on optimizing the O 2 (a 1 Δ) and O 3 yields

  11. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis; Zhang, Yi; Schlenker, Cody W.; Ryu, Koungmin; Thompson, Mark E.; Zhou, Chongwu

    2010-01-01

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD

  12. Lithium-Oxygen Batteries: At a Crossroads?

    DEFF Research Database (Denmark)

    Vegge, Tejs; García Lastra, Juan Maria; Siegel, Donald Jason

    2017-01-01

    In this current opinion, we critically review and discuss some of the most important recent findings in the field of rechargeable lithium-oxygen batteries. We discuss recent discoveries like the evolution of reactive singlet oxygen and the use of organic additives to bypass reactive LiO2 reaction...... intermediates, and their possible implications on the potential for commercialization of lithium-oxygen batteries. Finally, we perform a critical assessment of lithium-superoxide batteries and the reversibility of lithium-hydroxide batteries....

  13. Quality improvement in determination of chemical oxygen demand in samples considered difficult to analyze, through participation in proficiency-testing schemes

    DEFF Research Database (Denmark)

    Raposo, Francisco; Fernández-Cegrí, V.; De la Rubia, M.A.

    2010-01-01

    Chemical oxygen demand (COD) is a critical analytical parameter in waste and wastewater treatment, more specifically in anaerobic digestion, although little is known about the quality of measuring COD of anaerobic digestion samples. Proficiency testing (PT) is a powerful tool that can be used...... to test the performance achievable in the participants laboratories, so we carried out a second PT of COD determination in samples considered ‘‘difficult’’ to analyze (i.e. solid samples and liquid samples with high concentrations of suspended solids). The results obtained (based on acceptable z...

  14. Dissolved Oxygen Dynamics in Backwaters of North America's Largest River Swamp

    Science.gov (United States)

    Bueche, S. M.; Xu, Y. J.; Reiman, J. H.

    2017-12-01

    The Atchafalaya River (AR) is the largest distributary of the Mississippi River flowing through south-central Louisiana, creating North America's largest river swamp basin - the Atchafalaya River Basin (ARB). Prior to human settlement, the AR's main channel was highly connected to this large wetland ecosystem. However, due to constructed levee systems and other human modifications, much of the ARB is now hydrologically disconnected from the AR's main channel except during high flow events. This lack of regular inputs of fresh, oxygenated water to these wetlands, paired with high levels of organic matter decomposition in wetlands, has caused low oxygen-deprived hypoxic conditions in the ARB's back waters. In addition, due to the incredibly nutrient-rich and warm nature of the ARB, microbial decomposition in backwater areas with limited flow often results in potentially stressful, if not lethal, levels of DO for organisms during and after flood pulses. This study aims to investigate dynamics of dissolved oxygen in backwaters of the Atchafalaya River Basin, intending to answer a crucial question about hydrological and water quality connectivity between the river's mainstem and its floodplain. Specifically, the study will 1) conduct field water quality measurements, 2) collect composite water samples for chemical analysis of nutrients and carbon, 3) investigate DO dynamics over different seasons for one year, and 4) determine the major factors that affect DO dynamics in this unique swamp ecosystem. The study is currently underway; therefore, in this presentation we will share the major findings gained in the past several months and discuss backwater effects on river chemistry.

  15. Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry

    Science.gov (United States)

    Xu, Jianzhong; Zhang, Qi; Shi, Jinsen; Ge, Xinlei; Xie, Conghui; Wang, Junfeng; Kang, Shichang; Zhang, Ruixiong; Wang, Yuhang

    2018-01-01

    Recent studies have revealed a significant influx of anthropogenic aerosol from South Asia to the Himalayas and Tibetan Plateau (TP) during pre-monsoon period. In order to characterize the chemical composition, sources, and transport processes of aerosol in this area, we carried out a field study during June 2015 by deploying a suite of online instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) and a multi-angle absorption photometer (MAAP) at Nam Co station (90°57' E, 30°46' N; 4730 m a.s.l.) at the central of the TP. The measurements were made at a period when the transition from pre-monsoon to monsoon occurred. The average ambient mass concentration of submicron particulate matter (PM1) over the whole campaign was ˜ 2.0 µg m-3, with organics accounting for 68 %, followed by sulfate (15 %), black carbon (8 %), ammonium (7 %), and nitrate (2 %). Relatively higher aerosol mass concentration episodes were observed during the pre-monsoon period, whereas persistently low aerosol concentrations were observed during the monsoon period. However, the chemical composition of aerosol during the higher aerosol concentration episodes in the pre-monsoon season was on a case-by-case basis, depending on the prevailing meteorological conditions and air mass transport routes. Most of the chemical species exhibited significant diurnal variations with higher values occurring during afternoon and lower values during early morning, whereas nitrate peaked during early morning in association with higher relative humidity and lower air temperature. Organic aerosol (OA), with an oxygen-to-carbon ratio (O / C) of 0.94, was more oxidized during the pre-monsoon period than during monsoon (average O / C ratio of 0.72), and an average O / C was 0.88 over the entire campaign period, suggesting overall highly oxygenated aerosol in the central TP. Positive matrix factorization of the high-resolution mass spectra of OA identified two oxygenated

  16. Perbedaan Efektivitas Zeolit Dan Manganese Greensand Untuk Menurunkan Kadar Fosfat Dan Chemical Oxygen Demand Limbah Cair “Laundry Zone” Di Tembalang

    OpenAIRE

    Lavina, Dahona Lenthe; Sulistyani, Sulistyani; Rahadjo, Mursid

    2016-01-01

    Laundry business is a business in clothes washing services. Preliminary test results show that the levels of phosphate and COD laundry liquid wastes is 12,36 mg/l and 5.920 mg/l. These levels exceeded the water quality standard of waste that phosphate concentration of 2 mg/l and COD concentration of 100 mg/l. This research aimed to determine the difference effectiveness of zeolite and manganese greensand to decrease phosphate and chemical oxygen demand on waste "laundry zone" in Tembalang. T...

  17. Potential of Biofilters for Treatment of De-Icing Chemicals

    Directory of Open Access Journals (Sweden)

    Gema Sakti Raspati

    2018-05-01

    Full Text Available Organic de-icing chemicals, such as propylene glycol and potassium formate, cause environmental degradation in receiving water if left untreated, due to the high organic load resulting in oxygen depletion. Biofilters are commonly used for the treatment of biodegradable organic carbon in water treatment. This study investigated the potential for using biofilters for treating organic de-icing compounds. Lab-scale adsorption tests using filter media made of crushed clay (Filtralite and granular activated carbon were conducted. Further, a column filtration experiment testing two different crushed clay size ranges was carried out investigating the effect of filter media depth, nutrient addition, and filtration rate. The surrogate parameter used to monitor the removal of de-icing chemicals was dissolved organic carbon (DOC. The adsorption test showed no significant adsorption of DOC was observed. The column test showed that the most active separation occurred in the first ~20 cm of the filter depth. This was confirmed by results from (1 water quality analysis (i.e., DOC removal and adenosine tri-phosphate (ATP measurement; and (2 calculations based on a filtration performance analysis (Iwasaki model and filter hydraulic evaluation (Lindquist diagram. The results showed that, for the highest C:N:P ratio tested (molar ratio of 24:7:1, 50–60% DOC removal was achieved. The addition of nutrients was found to be important for determining the biofilter performance.

  18. Electrooxidation of organics in waste water

    Science.gov (United States)

    Hitchens, G. D.; Murphy, Oliver J.; Kaba, Lamine; Verostko, Charles E.

    1990-01-01

    Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. Research sponsored by NASA is currently being pursued to demonstrate the feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space-habitat humidity condensates. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. This paper discusses the electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water-reclamation applications. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are described. The design of an electrochemical system that incorporates a membrane-based electrolyte based on parametric test data and current fuel-cell technology is presented.

  19. VASCULAR PLANTS AS ENGINEERS OF OXYGEN IN AQUATIC SYSTEMS

    Science.gov (United States)

    The impact of organisms on oxygen is one of the most dramatic examples of ecosystem engineering on Earth. In aquatic systems, which have much lower oxygen concentrations than the atmosphere, vascular aquatic plants can affect oxygen concentrations significantly not only on long t...

  20. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris; Xiao, Mao [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-10-15

    Highlights: • Systematic study of UVR acclimation and its impact on chemical toxicity in C. reinhardtii. • UVR acclimation is mediated through fast and reversible physiological defense mechanisms. • Pigment analysis suggests a role of lutein in UVR acclimation. • Co-tolerance to rose bengal suggests a role of singlet oxygen defense in UVR acclimation. • Knowledge on the toxic mechanism of chemicals needed to predict co-tolerance. - Abstract: The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the

  1. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity

    International Nuclear Information System (INIS)

    Korkaric, Muris; Xiao, Mao; Behra, Renata; Eggen, Rik I.L.

    2015-01-01

    Highlights: • Systematic study of UVR acclimation and its impact on chemical toxicity in C. reinhardtii. • UVR acclimation is mediated through fast and reversible physiological defense mechanisms. • Pigment analysis suggests a role of lutein in UVR acclimation. • Co-tolerance to rose bengal suggests a role of singlet oxygen defense in UVR acclimation. • Knowledge on the toxic mechanism of chemicals needed to predict co-tolerance. - Abstract: The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the

  2. Light, stress and herbivory : from photoprotection to trophic interactions using Arabidopsis thaliana as a model organism

    OpenAIRE

    Frenkel, Martin

    2008-01-01

    Photosynthesis is the most important process for nearly all life on earth. Photosynthetic organisms capture and transfer light energy from the sun into chemical energy which in turn provides a resource base for heterotrophic organisms. Natural light regimes are irregular and vary over magnitudes. At a certain light intensity, metabolic processes cannot keep up with the electron flow produced by the primary photoreactions, and thus reactive oxygen species (ROS) are produced. ROS are highly rea...

  3. Passive sampling of bioavailable organic chemicals in Perry County, Missouri cave streams.

    Science.gov (United States)

    Fox, J Tyler; Adams, Ginny; Sharum, Martin; Steelman, Karen L

    2010-12-01

    Two types of passive samplers--semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS)--were deployed in spring 2008 to assess bioavailable concentrations of aquatic contaminants in five cave streams and resurgences in Perry County, Missouri. Study sites represent areas of high cave biodiversity and the only known habitat for grotto sculpin (Cottus carolinae). Time-weighted average (TWA) water concentrations were calculated for 20 compounds (n = 9 SPMDs; n = 11 POCIS) originating primarily from agricultural sources, including two organochlorine insecticides, dieldrin and heptachlor epoxide, which were found at levels exceeding U.S. EPA criteria for the protection of aquatic life. GIS data were used to quantify and map sinkhole distribution and density within the study area. Infiltration of storm runoff and its influence on contaminant transport were also evaluated using land cover and hydrological data. This work provides evidence of cave stream contamination by a mix of organic chemicals and demonstrates the applicability of passive samplers for monitoring water quality in dynamic karst environments where rapid transmission of storm runoff makes instantaneous water sampling difficult.

  4. Short-term effects of different organic amendments on soil chemical, biochemical and biological indicators

    Science.gov (United States)

    Mondelli, Donato; Aly, Adel; Yirga Dagnachew, Ababu; Piscitelli, Lea; Dumontet, Stefano; Miano, Teodoro

    2014-05-01

    The limited availability of animal manure and the high cost of good quality compost lead to difficult soil quality management under organic agriculture. Therefore, it is important to find out alternative organic soil amendments and more flexible strategies that are able to sustain crop productivity and maintain and enhance soil quality. A three years study was carried out in the experimental fields of the Mediterranean Agronomic Institute of Bari located in Valenzano, Italy. The main objective of this research is to investigate the effects of different fertility management strategies on soil quality in order to estimate the role of innovative matrices for their use in organic farming. The experiment consists of seven treatments applied to a common crop rotation. The treatments include alternative organic amendments (1- olive mill wastewater OMW, 2- residues of mushroom cultivation MUS, 3- coffee chaff COF), common soil amendments (4- compost COM, 5- faba bean intercropping LEG, 6- cow manure - MAN) and as a reference treatment (7- mineral fertilizer COV). The soil quality was assessed before and after the application of the treatments, through biological (microbial biomass carbon and nitrogen, soil respiration and metabolic quotient), biochemical (soil enzymatic activities: β-glucosidase, alkaline phospatase, urease, fluorescein diacetate (FDA) hydrolysis), and chemical (pH, soil organic carbon, soil organic matter, total nitrogen, available phosphorous, exchangeable potassium, dissolved organic carbon and total dissolved nitrogen) indicators. Based on the results obtained after the second year, all treatments were able to improve various soil chemical parameters as compared to mineral fertilizer. The incorporation of COF and OMW seemed to be more effective in improving soil total N and exchangeable K, while MAN significantly increased available P. All the amendments enhance dissolved organic C, soil respiration, microbial biomass and metabolic quotient as

  5. Oxygen vacancies: The origin of n -type conductivity in ZnO

    Science.gov (United States)

    Liu, Lishu; Mei, Zengxia; Tang, Aihua; Azarov, Alexander; Kuznetsov, Andrej; Xue, Qi-Kun; Du, Xiaolong

    2016-06-01

    Oxygen vacancy (VO) is a common native point defect that plays crucial roles in determining the physical and chemical properties of metal oxides such as ZnO. However, fundamental understanding of VO is still very sparse. Specifically, whether VO is mainly responsible for the n -type conductivity in ZnO has been still unsettled in the past 50 years. Here, we report on a study of oxygen self-diffusion by conceiving and growing oxygen-isotope ZnO heterostructures with delicately controlled chemical potential and Fermi level. The diffusion process is found to be predominantly mediated by VO. We further demonstrate that, in contrast to the general belief of their neutral attribute, the oxygen vacancies in ZnO are actually +2 charged and thus responsible for the unintentional n -type conductivity as well as the nonstoichiometry of ZnO. The methodology can be extended to study oxygen-related point defects and their energetics in other technologically important oxide materials.

  6. Extracorporeal Membrane Oxygenation for the Support of a Potential Organ Donor with a Fatal Brain Injury before Brain Death Determination

    Directory of Open Access Journals (Sweden)

    Sung Wook Chang

    2016-05-01

    Full Text Available The shortage of available organ donors is a significant problem and various efforts have been made to avoid the loss of organ donors. Among these, extracorporeal membrane oxygenation (ECMO has been introduced to help support and manage potential donors. Many traumatic brain injury patients have healthy organs that might be eligible for donation for transplantation. However, the condition of a donor with a fatal brain injury may rapidly deteriorate prior to brain death determination; this frequently results in the loss of eligible donors. Here, we report the use of venoarterial ECMO to support a potential donor with a fatal brain injury before brain death determination, and thereby preserve donor organs. The patient successfully donated his liver and kidneys after brain death determination.

  7. Treatment of toxic and hazardous organic wastes by wet oxidation process with oxygenated water at low temperature; Trattamento dei rifiuti tossici e nocivi organici mediante il processo di ossidazione ad umido con acqua ossigenata a bassa temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Piccinno, T; Salluzzo, A; Nardi, L [ENEA - Dipartimento Ciclo del Combustibile, Centro Ricerche Energia, Casaccia (Italy); Gili, M; Luce, A; Troiani, F [ENEA - Dipartimento Ciclo del Combustibile, Centro Ricerche Energia, Saluggia (Italy); Cornacchia, G [ENEA - Dipartimento Ciclo del Combustibile, Centro Ricerche Energia, Trisaia (Italy)

    1989-11-15

    The wet oxidation process using air or molecular oxygen is a well-known process from long time. It is suitable to oxidize several types of waste refractory to the usual biological, thermal and chemical treatments. The drastic operating conditions (high pressures and temperatures) prevented its industrial development. In the last years a new interest was assigned to the process for the treatment of nuclear wastes (organic resins and exhaust organic wastes); the treatment is carried out at widely reduced operating conditions (atmospheric pressure and boiling temperature) by means of metallic catalysts and hydrogen peroxide. With some limits, the wet oxidation with hydrogen peroxide at low temperature can be applied to conventional waste waters containing toxic organic compounds. In the present report are summarized the activities developed at ENEA Fuel Cycle Department by the task force 'Deox' constituted by laboratory and plant specialists in order to verify the application of the wet oxidation process to the treatment of the toxic wastes. (author)

  8. Methanol Formation via Oxygen Insertion Chemistry in Ices

    Science.gov (United States)

    Bergner, Jennifer B.; Öberg, Karin I.; Rajappan, Mahesh

    2017-08-01

    We present experimental constraints on the insertion of oxygen atoms into methane to form methanol in astrophysical ice analogs. In gas-phase and theoretical studies this process has previously been demonstrated to have a very low or nonexistent energy barrier, but the energetics and mechanisms have not yet been characterized in the solid state. We use a deuterium UV lamp filtered by a sapphire window to selectively dissociate O2 within a mixture of O2:CH4 and observe efficient production of CH3OH via O(1D) insertion. CH3OH growth curves are fit with a kinetic model, and we observe no temperature dependence of the reaction rate constant at temperatures below the oxygen desorption temperature of 25 K. Through an analysis of side products we determine the branching ratio of ice-phase oxygen insertion into CH4: ˜65% of insertions lead to CH3OH, with the remainder leading instead to H2CO formation. There is no evidence for CH3 or OH radical formation, indicating that the fragmentation is not an important channel and that insertions typically lead to increased chemical complexity. CH3OH formation from O2 and CH4 diluted in a CO-dominated ice similarly shows no temperature dependence, consistent with expectations that insertion proceeds with a small or nonexistent barrier. Oxygen insertion chemistry in ices should therefore be efficient under low-temperature ISM-like conditions and could provide an important channel to complex organic molecule formation on grain surfaces in cold interstellar regions such as cloud cores and protoplanetary disk midplanes.

  9. Methanol Formation via Oxygen Insertion Chemistry in Ices

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, Jennifer B. [Harvard University Department of Chemistry and Chemical Biology, 10 Oxford Street, Cambridge, MA 02138 (United States); Öberg, Karin I.; Rajappan, Mahesh [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-08-10

    We present experimental constraints on the insertion of oxygen atoms into methane to form methanol in astrophysical ice analogs. In gas-phase and theoretical studies this process has previously been demonstrated to have a very low or nonexistent energy barrier, but the energetics and mechanisms have not yet been characterized in the solid state. We use a deuterium UV lamp filtered by a sapphire window to selectively dissociate O{sub 2} within a mixture of O{sub 2}:CH{sub 4} and observe efficient production of CH{sub 3}OH via O({sup 1}D) insertion. CH{sub 3}OH growth curves are fit with a kinetic model, and we observe no temperature dependence of the reaction rate constant at temperatures below the oxygen desorption temperature of 25 K. Through an analysis of side products we determine the branching ratio of ice-phase oxygen insertion into CH{sub 4}: ∼65% of insertions lead to CH{sub 3}OH, with the remainder leading instead to H{sub 2}CO formation. There is no evidence for CH{sub 3} or OH radical formation, indicating that the fragmentation is not an important channel and that insertions typically lead to increased chemical complexity. CH{sub 3}OH formation from O{sub 2} and CH{sub 4} diluted in a CO-dominated ice similarly shows no temperature dependence, consistent with expectations that insertion proceeds with a small or nonexistent barrier. Oxygen insertion chemistry in ices should therefore be efficient under low-temperature ISM-like conditions and could provide an important channel to complex organic molecule formation on grain surfaces in cold interstellar regions such as cloud cores and protoplanetary disk midplanes.

  10. Improved exposure estimation in soil screening and cleanup criteria for volatile organic chemicals.

    Science.gov (United States)

    DeVaull, George E

    2017-09-01

    Soil cleanup criteria define acceptable concentrations of organic chemical constituents for exposed humans. These criteria sum the estimated soil exposure over multiple pathways. Assumptions for ingestion, dermal contact, and dust exposure generally presume a chemical persists in surface soils at a constant concentration level for the entire exposure duration. For volatile chemicals, this is an unrealistic assumption. A calculation method is presented for surficial soil criteria that include volatile depletion of chemical for these uptake pathways. The depletion estimates compare favorably with measured concentration profiles and with field measurements of soil concentration. Corresponding volatilization estimates compare favorably with measured data for a wide range of volatile and semivolatile chemicals, including instances with and without the presence of a mixed-chemical residual phase. Selected examples show application of the revised factors in estimating screening levels for benzene in surficial soils. Integr Environ Assess Manag 2017;13:861-869. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  11. Radiochemical problems of radiation chemical synthesis in n, γ-field of nuclear reactor

    International Nuclear Information System (INIS)

    Mironov, V.P.; Frejdus, N.V.; Bugaenko, L.T.; Kalyazin, E.P.; Petryaev, E.P.

    1981-01-01

    A wide applicability of products of radiation chemical synthesis (RCS), using n, γ-irradiation, is limited by possible contamination of the latter with long-lived radioactive isotopes of chemical elements included in the composition of the reagent and compounds syntesized (chemically non-separable radionuclides - CNR). A technique of the determination of the limit accumulation CNR on the basis of radiation chemical parameters of the synthesis (radiation-chemical yield, the dose rate absorbed, singleness of purpose of RCS etc.) and radiochemical parameters of formation and accumulation of CNR (radiochemical yields of CNR in the products of radiolysis, neutron fluence, the reagent purity etc.) is suggested. The radiochemical evaluation of CNR accumulation (tritium and carbon-14), formed at the expense of activation with neutrons of chemical elements of water and organic substances, consisting of hydrogen, carbon and oxygen has shown that at relatively low yields of final products (> or approximately 3 molecules/100 eV) no accumulation of radionuclides in concentrations reaching the average admissible concentration takes place [ru

  12. Engineering the oxygen coordination in digital superlattices

    Science.gov (United States)

    Cook, Seyoung; Andersen, Tassie K.; Hong, Hawoong; Rosenberg, Richard A.; Marks, Laurence D.; Fong, Dillon D.

    2017-12-01

    The oxygen sublattice in complex oxides is typically composed of corner-shared polyhedra, with transition metals at their centers. The electronic and chemical properties of the oxide depend on the type and geometric arrangement of these polyhedra, which can be controlled through epitaxial synthesis. Here, we use oxide molecular beam epitaxy to create SrCoOx:SrTiO3 superlattices with tunable oxygen coordination environments and sublattice geometries. Using synchrotron X-ray scattering in combination with soft X-ray spectroscopy, we find that the chemical state of Co can be varied with the polyhedral arrangement, with higher Co oxidation states increasing the valence band maximum. This work demonstrates a new strategy for engineering unique electronic structures in the transition metal oxides using short-period superlattices.

  13. Chemical Reactions Catalyzed by Metalloporphyrin-Based Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Kelly Aparecida Dias de Freitas Castro

    2013-06-01

    Full Text Available The synthetic versatility and the potential application of metalloporphyrins (MP in different fields have aroused researchers’ interest in studying these complexes, in an attempt to mimic biological systems such as cytochrome P-450. Over the last 40 years, synthetic MPs have been mainly used as catalysts for homogeneous or heterogeneous chemical reactions. To employ them in heterogeneous catalysis, chemists have prepared new MP-based solids by immobilizing MP onto rigid inorganic supports, a strategy that affords hybrid inorganic-organic materials. More recently, materials obtained by supramolecular assembly processes and containing MPs as building blocks have been applied in a variety of areas, like gas storage, photonic devices, separation, molecular sensing, magnets, and heterogeneous catalysis, among others. These coordination polymers, known as metal-organic frameworks (MOFs, contain organic ligands or complexes connected by metal ions or clusters, which give rise to a 1-, 2- or 3-D network. These kinds of materials presents large surface areas, Brønsted or redox sites, and high porosity, all of which are desirable features in catalysts with potential use in heterogeneous phases. Building MOFs based on MP is a good way to obtain solid catalysts that offer the advantages of bioinspired systems and zeolitic materials. In this mini review, we will adopt a historical approach to present the most relevant MP-based MOFs applicable to catalytic reactions such as oxidation, reduction, insertion of functional groups, and exchange of organic functions.

  14. Tolerance of Oncomelania hupensis quadrasi to varying concentrations of dissolved oxygen and organic pollution*

    Science.gov (United States)

    Garcia, Rolando G.

    1972-01-01

    Ecological investigations were made of habitats containing natural populations of the snail Oncomelania hupensis quadrasi and of habitats free from the snail in the island of Leyte, Philippines. This species of snail is a vector of Schistosoma japonicum in the Philippines. Snail-infested habitats had dissolved oxygen levels of 3.8-9.85 ppm but snail-free habitats had levels of only 0.08-3.6 ppm. Snail-infested habitats were less polluted by organic matter than habitats that were snail-free. Larger numbers of chlorophyll-bearing algae were present in both the water and the soil of snail-infested habitats. Other factors, including temperature, pH, hydrogen carbonate alkalinity, and relative humidity, were also investigated. PMID:4538906

  15. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    International Nuclear Information System (INIS)

    Shinar, Joseph; Shinar, Ruth

    2008-01-01

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of ∼2 x 10 5 h (∼23 yr) at ∼150 Cd m -2 (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m -2 ). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor. (topical review)

  16. Aerobic growth at nanomolar oxygen concentrations

    DEFF Research Database (Denmark)

    Stolper, Daniel Aaron; Revsbech, Niels Peter; Canfield, Donald Eugene

    2010-01-01

    that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes. Our study expands both the environmental range and temporal history...... of aerobic organisms....

  17. Organic and chemical manure of the bean (Phaseolus vulgaris) in alluvial soils of intermediate climate

    International Nuclear Information System (INIS)

    Tamayo V, Alvaro; Munoz A, Rodrigo

    1997-01-01

    With the purpose to evaluate the effect on bean production ICA CITARA variety, four sources of organic matter (hen manure, pig manure, cow manure, and earthworm manure) in four doses 280,500 y 1.000 kg/ha with the same doses of chemical fertilization, were evaluated the experiment was carried out at Tulio Ospina Research Center, located at Bello (Antioquia) of medium climate with 1.320 m.s.n.m. This was established using an alluvial soil (Tropofluvent), frenk, with low contents of organic, matter (2,2%), phosphorus (10 ppm), and potassium (0,10 meq/l00 g). the results, after six consecutive harvests on the same plots, showed highly significative differences among treatments. The highest yield (1.836 kg/ha) was obtained when to the chemical fertilization (300 kg of 10-30-10) was added with 250 kg/ha of hen manure, followed by the application of 100 kg/ha, of cow manure (1.812 kg/ha). Chemical fertilization without organic matter produced 1.640 kg/ha of bean, which was very similar to the addition of 1.000 kg/ha of cow manure and earthworm manure with yields of 1.688 kg/ha and 1.635 kg/ha respectively

  18. Organic Acids Regulation of Chemical-Microbial Phosphorus Transformations in Soils.

    Science.gov (United States)

    Menezes-Blackburn, Daniel; Paredes, Cecilia; Zhang, Hao; Giles, Courtney D; Darch, Tegan; Stutter, Marc; George, Timothy S; Shand, Charles; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Blackwell, Martin; Wearing, Catherine; Haygarth, Philip M

    2016-11-01

    We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg -1 . However, low organic acid doses (<2 mmol kg -1 ) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K d ) and desorption rate constants (k -1 ) decreased whereas an increase in the response time of solution P equilibration (T c ) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.

  19. Controlling organic chemical hazards in food manufacturing: a hazard analysis critical control points (HACCP) approach.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-08-01

    Hazard analysis by critical control points (HACCP) is a systematic approach to the identification, assessment and control of hazards. Effective HACCP requires the consideration of all hazards, i.e., chemical, microbiological and physical. However, to-date most 'in-place' HACCP procedures have tended to focus on the control of microbiological and physical food hazards. In general, the chemical component of HACCP procedures is either ignored or limited to applied chemicals, e.g., food additives and pesticides. In this paper we discuss the application of HACCP to a broader range of chemical hazards, using organic chemical contaminants as examples, and the problems that are likely to arise in the food manufacturing sector. Chemical HACCP procedures are likely to result in many of the advantages previously identified for microbiological HACCP procedures: more effective, efficient and economical than conventional end-point-testing methods. However, the high costs of analytical monitoring of chemical contaminants and a limited understanding of formulation and process optimisation as means of controlling chemical contamination of foods are likely to prevent chemical HACCP becoming as effective as microbiological HACCP.

  20. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques

  1. Oxygen effect in radiation biology: caffeine and serendipity

    International Nuclear Information System (INIS)

    Kesavan, P.C.

    2005-01-01

    The 'hit theory' developed in 1920s to explain the actions of ionizing radiation on cells and organisms was purely physical, and its limitation was its inadequacy to address the contemporary findings such as the oxygen enhancement of radiobiological damage, and the increased radio- sensitivity of dividing compared to non-dividing cells. The textbooks written prior to 1970s did not either refer at all to oxygen as a radiosensitizer, or had mentioned it only in a passing manner; yet 'oxygen effect' was emerging as the central dogma in radiation biology. The oxygen effect in radiation biology is highly interdisciplinary encompassing atomic physics (i.e. interaction of photon with matter), radiation chemistry (formation of reactive oxygen species), molecular signalling, gene expression and genetic alterations in cells (mutation, cancer) or the cell death (apoptosis, necrosis, mitotic catastrophe, etc.). Cell death in higher organisms is now recognized as the precursor of possible error-free cell replacement repair. (author)

  2. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors

    International Nuclear Information System (INIS)

    Kasinski, Slawomir; Wojnowska-Baryla, Irena

    2014-01-01

    Highlights: • The use of an passively aerated reactor enables effective stabilization of OFMSW. • Convective air flow does not inhibit the aerobic stabilization of waste. • The use of an passively aerated reactor reduces the heat loss due to convection. • The volume of supplied air exceeds 1.7–2.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m 3 /h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold

  3. 78 FR 37222 - Columbia Organic Chemical Company Site, Columbia, Richland County, South Carolina; Notice of...

    Science.gov (United States)

    2013-06-20

    ... Protection Agency (EPA). ACTION: Notice of Settlement. SUMMARY: Under 122(h) of the Comprehensive... Agency has entered into a settlement with Stephen Reichlyn concerning the Columbia Organic Chemical...

  4. Controlled growth of epitaxial CeO2 thin films with self-organized nanostructure by chemical solution method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude

    2013-01-01

    Chemical solution deposition is a versatile technique to grow oxide thin films with self-organized nanostructures. Morphology and crystallographic orientation control of CeO2 thin films grown on technical NiW substrates by a chemical solution deposition method are achieved in this work. Based...

  5. Production of chemicals and fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  6. Role of Short-Range Chemical Ordering in (GaN) 1–x (ZnO) x for Photodriven Oxygen Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dennis P. [Department; Neuefeind, Joerg C. [Chemical; Koczkur, Kallum M. [Department; Bish, David L. [Department; Skrabalak, Sara E. [Department

    2017-07-21

    (GaN)1–x(ZnO)x (GZNO) is capable of visible-light driven water splitting, but its bandgap at x ≤ 0.15 (>2.7 eV) results in poor visible-light absorption. Unfortunately, methods to narrow its bandgap by incorporating higher ZnO concentrations are accompanied by extensive Urbach tailing near the absorption-edge, which is indicative of structural disorder or chemical inhomogeneities. We evaluated whether this disorder is intrinsic to the bond-length distribution in GZNO or is a result of defects introduced from the loss of Zn during nitridation. Here, the synthesis of GZNO derived from layered double hydroxide (LDH) precursors is described which minimizes Zn loss and chemical inhomogeneities and enhances visible-light absorption. The average and local atomic structures of LDH-derived GZNO were investigated using X-ray and neutron scattering and are correlated with their oxygen evolution rates. An isotope-contrasted neutron-scattering experiment was conducted in conjunction with reverse Monte Carlo (RMC) simulations. We showed that a bond-valence bias in the RMC refinements reproduces the short-range ordering (SRO) observed in structure refinements using isotope-contrasted neutron data. The findings suggest that positional disorder of cation–anion pairs in GZNO partially arises from SRO and influences local bond relaxations. Furthermore, particle-based oxygen evolution reactions (OERs) in AgNO3 solution reveal that the crystallite size of GZNO correlates more than positional disorder with oxygen evolution rate. These findings illustrate the importance of examining the local structure of multinary photocatalysts to identify dominant factors in particulate-based photodriven oxygen evolution.

  7. Theoretical study of coupling mechanisms between oxygen diffusion, chemical reaction, mechanical stresses in a solid-gas reactive system

    International Nuclear Information System (INIS)

    Creton, N.; Optasanu, V.; Montesin, T.; Garruchet, S.

    2008-01-01

    This paper offers a study of oxygen dissolution into a solid, and its consequences on the mechanical behaviour of the material. In fact, mechanical strains strongly influence the oxidation processes and may be, in some materials, responsible for cracking. To realize this study, mechanical considerations are introduced into the classical diffusion laws. Simulations were made for the particular case of uranium dioxide, which undergoes the chemical fragmentation. According to our simulations, the hypothesis of a compression stress field into the oxidised UO 2 compound near the internal interface is consistent with some oxidation mechanisms of oxidation experimentally observed. More generally, this work will be extended to the simulation to an oxide layer growth on a metallic substrate. (authors)

  8. Band gap effects of hexagonal boron nitride using oxygen plasma

    International Nuclear Information System (INIS)

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-01-01

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing

  9. Band gap effects of hexagonal boron nitride using oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sevak Singh, Ram; Leong Chow, Wai [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yingjie Tay, Roland [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Hon Tsang, Siu [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Mallick, Govind [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Tong Teo, Edwin Hang, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  10. Aerobic growth at nanomolar oxygen concentrations

    DEFF Research Database (Denmark)

    Stolper, Daniel; Revsbech, Niels Peter; Canfield, Donald Eugene

    2010-01-01

    that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes. Our study expands both the environmental range and temporal history...... of aerobic organisms....

  11. Determination of organic products resulting of chemical and radiochemical decompositions of bitumen. Applications to embedded bitumens; Determination des produits organiques d'alterations chimiques et radiochimiques du bitume. Applications aux enrobes bitumes

    Energy Technology Data Exchange (ETDEWEB)

    Walczak, I

    2000-01-27

    Bitumen can be used for embedding most of wastes because of its high impermeability and its relatively low reactivity with of chemicals. Bituminization is one of selected solutions in agreement with nuclear safety, waste compatibility and economic criteria. Bitumen, during storage, undergoes an auto-irradiation due to embedded radio-elements. During this stage,drums are not airtight then oxygen is present. In disposal configuration, water, which is a potential vector of radioactivity and organic matter, is an other hazard factor liable to deteriorate the containment characteristics of bitumen wastes. The generation of water-soluble organic complexing agents can affect the integrity of the wasteform due to an increase of the radionuclides solubility. The first aim of this work is the quantitative and qualitative characterisation of soluble organic matter in bitumen leachates. Different leaching solutions were tested (various pH, ionic strength, ratio S/V). When the pH of the leaching solutions increases, the total organic carbon released increases as well. Identified molecules are aromatics like naphthalene, oxidised compounds like alcohols, linear carbonyls, aromatics, glycols and nitrogen compounds. For the cement equilibrated solution (pH 13.5), the effect of ionic strength becomes significative and influences the release of soluble organic matter. This soluble organic matter can be bio-degraded if microorganisms can growth. The second aim of this work is to study the effect of radio-oxidative ageing on the bitumen confinement properties. During radio-oxidation, the chemical properties of bitumen are modified. The {mu}-IRTF analysis shows the formation of hydroxyl compounds and aromatic acids. The formation of these polar groups does not influence in our study the water uptake. However the organic matter release increases significantly with the irradiation dose. (author)

  12. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-04-10

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  13. Elimination of Gaseous Microemboli from Cardiopulmonary Bypass using Hypobaric Oxygenation

    Science.gov (United States)

    Gipson, Keith E.; Rosinski, David J.; Schonberger, Robert B.; Kubera, Cathryn; Mathew, Eapen S.; Nichols, Frank; Dyckman, William; Courtin, Francois; Sherburne, Bradford; Bordey, Angelique F; Gross, Jeffrey B.

    2014-01-01

    Background Numerous gaseous microemboli (GME) are delivered into the arterial circulation during cardiopulmonary bypass (CPB). These emboli damage end organs through multiple mechanisms that are thought to contribute to neurocognitive deficits following cardiac surgery. Here, we use hypobaric oxygenation to reduce dissolved gases in blood and greatly reduce GME delivery during CPB. Methods Variable subatmospheric pressures were applied to 100% oxygen sweep gas in standard hollow fiber microporous membrane oxygenators to oxygenate and denitrogenate blood. GME were quantified using ultrasound while air embolism from the surgical field was simulated experimentally. We assessed end organ tissues in swine postoperatively using light microscopy. Results Variable sweep gas pressures allowed reliable oxygenation independent of CO2 removal while denitrogenating arterial blood. Hypobaric oxygenation produced dose-dependent reductions of Doppler signals produced by bolus and continuous GME loads in vitro. Swine were maintained using hypobaric oxygenation for four hours on CPB with no apparent adverse events. Compared with current practice standards of O2/air sweep gas, hypobaric oxygenation reduced GME volumes exiting the oxygenator (by 80%), exiting the arterial filter (95%), and arriving at the aortic cannula (∼100%), indicating progressive reabsorption of emboli throughout the CPB circuit in vivo. Analysis of brain tissue suggested decreased microvascular injury under hypobaric conditions. Conclusions Hypobaric oxygenation is an effective, low-cost, common sense approach that capitalizes on the simple physical makeup of GME to achieve their near-total elimination during CPB. This technique holds great potential for limiting end-organ damage and improving outcomes in a variety of patients undergoing extracorporeal circulation. PMID:24206970

  14. Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life

    NARCIS (Netherlands)

    Bakir, A.; O'Connor, I.A.; Rowland, S.J.; Hendriks, A.J.; Thompson, R.C.

    2016-01-01

    It has been hypothesised that, if ingested, plastic debris could act as vector for the transfer of chemical contaminants from seawater to organisms, yet modelling suggest that, in the natural environment, chemical transfer would be negligible compared to other routes of uptake. However, to date, the

  15. Coupling of anodic oxidation and adsorption by granular activated carbon for chemical oxygen demand removal from 4,4'-diaminostilbene-2,2'-disulfonic acid wastewater.

    Science.gov (United States)

    Wang, Lizhang; Zhao, Yuemin

    2010-01-01

    Experiments were performed to reduce chemical oxygen demand (COD) from 4,4'-diaminostilbene-2,2'-disulfonic (DSD) acid manufacturing wastewater using electrochemical oxidation coupled with adsorption by granular activated carbon. The COD removal is affected by the residence time and applied voltage. When the residence time is increased, lower value of COD effluent could be obtained, however, the average current efficiency (ACE) decreased rapidly, and so does the applied voltage. In addition, aeration could effectively enhance COD removal efficiency and protect anodes from corrosion. Furthermore, the acidic condition is beneficial to the rapid decrease of COD and the values of pH effluent are independent of the initial solution pH. The optimization conditions obtained from these experiments are applied voltage of 4.8 V, residence time of 180 min and air-liquid ratio of 4.2 with the COD effluent of about 690 mg L⁻¹. In these cases, the ACE and energy consumption are 388% and 4.144 kW h kg⁻¹ COD, respectively. These perfect results from the experiments illustrate that the combined process is a considerable alternative for the treatment of industrial wastewater containing high concentration of organic pollutants and salinity.

  16. A Neat Trick Using Oxalic Acid Dihydrate and Potassium Permanganate and Other Experiments with Small Organic Amine or Oxygenated Compounds

    Science.gov (United States)

    Kelland, Malcolm A.

    2011-01-01

    Solid potassium permanganate (KMnO[subscript 4]) is shown to react in a variety of ways with small organic amines or oxygenated compounds depending on whether they are liquids or solids and whether water is present. In particular, its reaction with solid oxalic acid dihydrate can be initiated by the moisture in one's breath, making an intriguing…

  17. Evaluation of alternative nonflame technologies for destruction of hazardous organic waste

    International Nuclear Information System (INIS)

    Schwinkendorf, W.E.; Musgrave, B.C.; Drake, R.N.

    1997-04-01

    The US Department of Energy's Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX SM , Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis

  18. Effects of rainfalls variability and physical-chemical parameters on enteroviruses in sewage and lagoon in Yopougon, Côte d'Ivoire

    Science.gov (United States)

    Momou, Kouassi Julien; Akoua-Koffi, Chantal; Traoré, Karim Sory; Akré, Djako Sosthène; Dosso, Mireille

    2017-07-01

    The aim of this study was to assess the variability of the content of nutrients, oxidizable organic and particulate matters in raw sewage and the lagoon on the effect of rainfall. Then evaluate the impact of these changes in the concentration of enteroviruses (EVs) in waters. The sewage samples were collected at nine sampling points along the channel, which flows, into a tropical lagoon in Yopougon. Physical-chemical parameters (5-day Biochemical Oxygen Demand, Chemical Oxygen Demand, Suspended Particulate Matter, Total Phosphorus, Orthophosphate, Total Kjeldahl Nitrogen and Nitrate) as well as the concentration of EV in these waters were determined. The average numbers of EV isolated from the outlet of the channel were 9.06 × 104 PFU 100 ml-1. Consequently, EV was present in 55.55 and 33.33 % of the samples in the 2 brackish lagoon collection sites. The effect of rainfall on viral load at the both sewage and brackish lagoon environments is significant correlate (two-way ANOVA, P < 0.05). Furthermore, in lagoon environment, nutrients (Orthophosphate, Total Phosphorus), 5-day Biochemical Oxygen Demand, Chemical Oxygen Demand and Suspended Particulate Matter were significant correlated with EVs loads ( P < 0.05 by Pearson test). The overall results highlight the problem of sewage discharge into the lagoon and correlation between viral loads and water quality parameters in sewage and lagoon.

  19. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays

    International Nuclear Information System (INIS)

    Liu Jie; Bibari, Olivier; Marchand, Gilles; Benabid, Alim-Louis; Sauter-Starace, Fabien; Appaix, Florence; De Waard, Michel

    2011-01-01

    Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.

  20. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jie; Bibari, Olivier; Marchand, Gilles; Benabid, Alim-Louis; Sauter-Starace, Fabien [CEA, LETI-Minatec, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Appaix, Florence; De Waard, Michel, E-mail: fabien.sauter@cea.fr, E-mail: michel.dewaard@ujf-grenoble.fr [Inserm U836, Grenoble Institute of Neuroscience, Site Sante la Tronche, Batiment Edmond J Safra, Chemin Fortune Ferrini, BP170, 38042 Grenoble Cedex 09 (France)

    2011-05-13

    Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.

  1. Determination of oxygen nonstoichiometry and diffusivity in mixed conducting oxides by oxygen Coulometric titration

    NARCIS (Netherlands)

    Lankhorst, M.H.R.; Lankhorst, Martijn H.R.; Bouwmeester, Henricus J.M.

    1997-01-01

    Oxygen coulometric titration has been applied to measure chemical diffusion in La0.8Sr0.2CoO3-δ between 700 and 1000°C. The transient current response to a potentiostatic step has been transformed from the time domain to the frequency domain. The equivalent circuit used to fit the resulting

  2. Apparatus for chemical synthesis

    Science.gov (United States)

    Kong, Peter C [Idaho Falls, ID; Herring, J Stephen [Idaho Falls, ID; Grandy, Jon D [Idaho Falls, ID

    2011-05-10

    A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

  3. X-ray photoelectron spectroscopy of HUPA organic substances: natural and synthetic humic compounds

    International Nuclear Information System (INIS)

    Barre, N.; Mercier-Bion, F.; Reiller, P.

    2004-01-01

    X-ray photoelectron spectroscopy (XPS) results on the characterisation of the HUPA organic materials, i.e. natural humic substances ''GOHY 573'' (fulvic acid FA and humic acid HA) extracted from the Gorleben ground waters, and synthetic humic acids ''M1'' and ''M42'' obtained from a standard melanoidin preparation from FZ Rossendorf, are presented in this paper. XPS investigations were focused on the determination of the chemical environment of the major elements as carbon, nitrogen, oxygen and sulphur, and on the identification of trace metals trapped by these organic compounds. (orig.)

  4. Hydrogen Production from Cyclic Chemical Looping Steam Methane Reforming over Yttrium Promoted Ni/SBA-16 Oxygen Carrier

    Directory of Open Access Journals (Sweden)

    Sanaz Daneshmand-Jahromi

    2017-09-01

    Full Text Available In this work, the modification of Ni/SBA-16 oxygen carrier (OC with yttrium promoter is investigated. The yttrium promoted Ni-based oxygen carrier was synthesized via co-impregnation method and applied in chemical looping steam methane reforming (CL-SMR process, which is used for the production of clean energy carrier. The reaction temperature (500–750 °C, Y loading (2.5–7.4 wt. %, steam/carbon molar ratio (1–5, Ni loading (10–30 wt. % and life time of OCs over 16 cycles at 650 °C were studied to investigate and optimize the structure of OC and process temperature with maximizing average methane conversion and hydrogen production yield. The synthesized OCs were characterized by multiples techniques. The results of X-ray powder diffraction (XRD and energy dispersive X-ray spectroscopy (EDX of reacted OCs showed that the presence of Y particles on the surface of OCs reduces the coke formation. The smaller NiO species were found for the yttrium promoted OC and therefore the distribution of Ni particles was improved. The reduction-oxidation (redox results revealed that 25Ni-2.5Y/SBA-16 OC has the highest catalytic activity of about 99.83% average CH4 conversion and 85.34% H2 production yield at reduction temperature of 650 °C with the steam to carbon molar ratio of 2.

  5. THE ANALYSIS OF PHYSICO-CHEMICAL PROPERTIES OF TWO UNKNOWN FILTER MATERIALS

    Directory of Open Access Journals (Sweden)

    Iwona Skoczko

    2016-07-01

    Full Text Available One of the most important technological processes of water treatment is the process of filtration. Scientists and producers keep on searching new filtration materials which allow for better water purification, are simple in exploitation and do not add chemical substances to the treated water. Therefore, the aim of the present study was to analyze physical and chemical parameters of two unknown porous masses X1 and X2. Such physical parameters as color, granulation, bulk density, the equivalent diameter, the coefficient of uniformity and the porosity of the material were measured and determined. Additionally, the possibility of water treatment was studied during the filtration process in the laboratory tests. Chemical parameters were examined in the water flowing through the mass, such as pH, conductivity and COD-Mn as a general indicator of the content of organic substances in the water. Both studied porous masses were characterized by uniform size of particles. But they were not efficient enough in satisfactory reduction of oxygen consumption. Mass X2 slightly better adsorbed organic substances. It was found that the tested unknown mass filter slightly increase the pH of the filtered water.

  6. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    Science.gov (United States)

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  7. Effect of Organic Solvents in Preparation of Silica-Based Chemical Gel Decontaminates for Decontamination of Nuclear Facilities

    International Nuclear Information System (INIS)

    Yoon, Suk Bon; Jung, Chong Hun; Kim, Chang Ki; Choi, Byung Seon; Lee, Kune Woo; Moon, Jei Kwon

    2011-01-01

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment such as stainless steel components, other iron-based steel and alloys, metal surfaces, structural materials and so on. Chemical decontamination technology in particular is a highly effective method to remove the radioactive contamination through a chemical dissolution or a redox reaction. However, this method has the serious drawback due to the generation of large amounts of the radioactive liquid wastes. Recently, a few literatures have been reported for the preparation of the chemical gel decontaminants to reduce the amount of the radioactive liquid wastes and to enhance the decontamination efficiency through increasing the contact time between the gels and the radioactive contaminants. In the preparation of the chemical gels, the control of the viscosity highly depends on the amount of a coviscosifier used among the components of the chemical gels consisted of a viscosifier, a coviscosifier, and a chemical decontaminant. In this works, a new effective method for the preparation of the chemical gel was investigated by introducing the organic solvents. The mixture solution of the coviscosifier and organic solvent was more effective in the control of the viscosity compared with that of the coviscosifier only in gels. Furthermore, the decontamination efficiency of the chemical gels measured by using the multi-channel analyzer (MCA) showed the high decontamination factor for Co-60 and Cs-137 contaminated on the surface of the stainless steel 304

  8. Oxygen ingress : a practical look at typical ingress mechanisms and the consequences

    Energy Technology Data Exchange (ETDEWEB)

    Lerbscher, J. [Baker Hughes Canada, Calgary, AB (Canada); Marlowe, D. [ChevronTexaco, Kenai, AK (United States); Thomas, J. [Baker Hughes, Edmonton, AB (Canada)

    2008-07-01

    This paper discussed methods of identifying and treating oxygen corrosion in hydrocarbon processing facilities. Oxygen corrosion is often misdiagnosed during the course of corrosion failure analyses. Measures to find the source of ingress are only typically initiated when test results demonstrate significant sources of oxygen within processing systems. The iron oxides produced as byproducts from oxygen reactions increase pitting and corrosion rates, and most of the chemical inhibitors used in oil and gas processing are not designed to work in the presence of oxygen. Oxygen reacts with hydrogen sulfide (H{sub 2}S) to form elemental sulfur. The high pressures used in processing facilities enhance the thermodynamic and kinetic tendencies of the chemical reactions with oxygen. Sulfur particles are known to enhance corrosion rates by an order of magnitude, and can also cause fouling and flow restrictions. Oxygen ingress can occur via vapor recovery unit, vacuum excursions, and liquid storage tanks. Symptoms that indicate oxygen ingress can include the presence of iron compounds in solid samples; the presence of sulfur; fouling of wet gas transmission lines; the presence of ionic polysulfides in the aqueous phase; higher corrosion rates than predicted; and the degradation of glycols in dehydration units. Portable gas chromatography, oxygen detection vials, and X-ray diffraction analysis techniques are used to detect oxygen ingress. Real time oxygen monitors are also connected to SCADA systems. It was concluded that oxygen testing should be conducted periodically in order to identify and eliminate its source of entry. A technical summary of corrosive species was included. 1 tab., 15 figs.

  9. Continuous Real-time Viability Assessment of Kidneys Based on Oxygen Consumption

    Science.gov (United States)

    Weegman, B.P.; Kirchner, V.A.; Scott, W.E.; Avgoustiniatos, E.S.; Suszynski, T.M.; Ferrer-Fabrega, J.; Rizzari, M.D.; Kidder, L.S.; Kandaswamy, R.; Sutherland, D.E.R.; Papas, K.K.

    2010-01-01

    Background Current ex vivo quality assessment of donor kidneys is limited to vascular resistance measurements and histological analysis. New techniques for the assessment of organ quality before transplantation may further improve clinical outcomes while expanding the depleted deceased-donor pool. We propose the measurement of whole organ oxygen consumption rate (WOOCR) as a method to assess the quality of kidneys in real time before transplantation. Methods Five porcine kidneys were procured using a donation after cardiac death (DCD) model. The renal artery and renal vein were cannulated and the kidney connected to a custom-made hypothermic machine perfusion (HMP) system equipped with an inline oxygenator and fiber-optic oxygen sensors. Kidneys were perfused at 8°C, and the perfusion parameters and partial oxygen pressures (pO2) were measured to calculate WOOCR. Results Without an inline oxygenator, the pO2 of the perfusion solution at the arterial inlet and venous outlet diminished to near 0 within minutes. However, once adequate oxygenation was provided, a significant pO2 difference was observed and used to calculate the WOOCR. The WOOCR was consistently measured from presumably healthy kidneys, and results suggest that it can be used to differentiate between healthy and purposely damaged organs. Conclusions Custom-made HMP systems equipped with an oxygenator and inline oxygen sensors can be applied for WOOCR measurements. We suggest that WOOCR is a promising approach for the real-time quality assessment of kidneys and other organs during preservation before transplantation. PMID:20692397

  10. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  11. Chemical principles underpinning the performance of the metal-organic framework HKUST-1.

    Science.gov (United States)

    Hendon, Christopher H; Walsh, Aron

    2015-07-15

    A common feature of multi-functional metal-organic frameworks is a metal dimer in the form of a paddlewheel, as found in the structure of Cu 3 ( btc ) 2 (HKUST-1). The HKUST-1 framework demonstrates exceptional gas storage, sensing and separation, catalytic activity and, in recent studies, unprecedented ionic and electrical conductivity. These results are a promising step towards the real-world application of metal-organic materials. In this perspective, we discuss progress in the understanding of the electronic, magnetic and physical properties of HKUST-1, representative of the larger family of Cu···Cu containing metal-organic frameworks. We highlight the chemical interactions that give rise to its favourable properties, and which make this material well suited to a range of technological applications. From this analysis, we postulate key design principles for tailoring novel high-performance hybrid frameworks.

  12. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    KAUST Repository

    Regnery, J.; Wing, A.D.; Alidina, M.; Drewes, J.E.

    2015-01-01

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory

  13. Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance

    KAUST Repository

    Trinh, Cong; Whited, Matthew T.; Steiner, Andrew; Tassone, Christopher J.; Toney, Michael F.; Thompson, Mark E.

    2012-01-01

    We present a chemical annealing process for organic thin films. In this process, a thin film of a molecular material, such as zinc tetraphenylporphyrin (ZnTPP), is exposed to a vapor of nitrogen-based ligand (e.g., pyrazine, pz, and triazine, tz

  14. Determination of organic products resulting of chemical and radiochemical decompositions of bitumen. Applications to embedded bitumens; Determination des produits organiques d'alterations chimiques et radiochimiques du bitume. Applications aux enrobes bitumes

    Energy Technology Data Exchange (ETDEWEB)

    Walczak, I

    2000-01-27

    Bitumen can be used for embedding most of wastes because of its high impermeability and its relatively low reactivity with of chemicals. Bituminization is one of selected solutions in agreement with nuclear safety, waste compatibility and economic criteria. Bitumen, during storage, undergoes an auto-irradiation due to embedded radio-elements. During this stage,drums are not airtight then oxygen is present. In disposal configuration, water, which is a potential vector of radioactivity and organic matter, is an other hazard factor liable to deteriorate the containment characteristics of bitumen wastes. The generation of water-soluble organic complexing agents can affect the integrity of the wasteform due to an increase of the radionuclides solubility. The first aim of this work is the quantitative and qualitative characterisation of soluble organic matter in bitumen leachates. Different leaching solutions were tested (various pH, ionic strength, ratio S/V). When the pH of the leaching solutions increases, the total organic carbon released increases as well. Identified molecules are aromatics like naphthalene, oxidised compounds like alcohols, linear carbonyls, aromatics, glycols and nitrogen compounds. For the cement equilibrated solution (pH 13.5), the effect of ionic strength becomes significative and influences the release of soluble organic matter. This soluble organic matter can be bio-degraded if microorganisms can growth. The second aim of this work is to study the effect of radio-oxidative ageing on the bitumen confinement properties. During radio-oxidation, the chemical properties of bitumen are modified. The {mu}-IRTF analysis shows the formation of hydroxyl compounds and aromatic acids. The formation of these polar groups does not influence in our study the water uptake. However the organic matter release increases significantly with the irradiation dose. (author)

  15. Kinetics of the high temperature oxygen exchange reaction on 238PuO2 powder

    International Nuclear Information System (INIS)

    Whiting, Christofer E.; Du, Miting; Felker, L. Kevin; Wham, Robert M.; Barklay, Chadwick D.; Kramer, Daniel P.

    2015-01-01

    Oxygen exchange reactions performed on PuO 2 suggest the reaction is influenced by at least three mechanisms: an internal chemical reaction, surface mobility of active species/defects, and surface exchange of gaseous oxygen with lattice oxygen. Activation energies for the surface mobility and internal chemical reaction are presented. Determining which mechanism is dominant appears to be a complex function including at least specific surface area and temperature. Thermal exposure may also impact the oxygen exchange reaction by causing reductions in the specific surface area of PuO 2 . Previous CeO 2 surrogate studies exhibit similar behavior, confirming that CeO 2 is a good qualitative surrogate for PuO 2 , in regards to the oxygen exchange reaction. Comparison of results presented here with previous work on the PuO 2 oxygen exchange reaction allows complexities in the previous work to be explained. These explanations allowed new conclusions to be drawn, many of which confirm the conclusions presented here. - Highlights: • PuO 2 Oxygen exchange kinetics can be influenced by at least 3 different mechanisms. • An internal chemical reaction controls the rate at high temperature and large SSA. • Surface mobility and surface exchange influence rate at lower temperatures and SSA. • Exchange temperatures may alter SSA and make data difficult to interpret.

  16. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals

  17. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Shinar, Joseph [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Ruth [Microelectronics Research Center, Iowa State University, Ames, IA 50011 (United States)

    2008-07-07

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of {approx}2 x 10{sup 5} h ({approx}23 yr) at {approx}150 Cd m{sup -2} (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m{sup -2}). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor. (topical review)

  18. Characterization of carbonaceous solids by oxygen chemisorption

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Palmer, A.; Duguay, D.G.; McConnell, D.G.; Henson, D.E.

    1988-06-01

    Oxygen chemisorption of high and low carbon carbonaceous solids was measured in an electro-microbalance at 200 degrees C in air. A linear correlation between the amount of chemisorbed oxygen and H/C ratio as well as aromaticity was established for the high carbon solids. For the low carbon solids a linear correlation was established between the amount of chemisorbed oxygen and the content of organic matter. Experimental observations are discussed in terms of structural aspects of the solids. Oxygen chemisorption is a suitable technique for a rapid characterization of carbonaceous solids including coal. 15 refs., 7 figs., 3 tabs.

  19. An oxygen pressure sensor using surface acoustic wave devices

    Science.gov (United States)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  20. Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system.

    Science.gov (United States)

    Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C

    2007-07-26

    Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.