WorldWideScience

Sample records for oxygen radicals nitrogen

  1. Functionalised Oximes: Emergent Precursors for Carbon-, Nitrogen- and Oxygen-Centred Radicals

    Directory of Open Access Journals (Sweden)

    John C. Walton

    2016-01-01

    Full Text Available Oxime derivatives are easily made, are non-hazardous and have long shelf lives. They contain weak N–O bonds that undergo homolytic scission, on appropriate thermal or photochemical stimulus, to initially release a pair of N- and O-centred radicals. This article reviews the use of these precursors for studying the structures, reactions and kinetics of the released radicals. Two classes have been exploited for radical generation; one comprises carbonyl oximes, principally oxime esters and amides, and the second comprises oxime ethers. Both classes release an iminyl radical together with an equal amount of a second oxygen-centred radical. The O-centred radicals derived from carbonyl oximes decarboxylate giving access to a variety of carbon-centred and nitrogen-centred species. Methods developed for homolytically dissociating the oxime derivatives include UV irradiation, conventional thermal and microwave heating. Photoredox catalytic methods succeed well with specially functionalised oximes and this aspect is also reviewed. Attention is also drawn to the key contributions made by EPR spectroscopy, aided by DFT computations, in elucidating the structures and dynamics of the transient intermediates.

  2. Oxygen free radicals in rheumatoid arthritis

    NARCIS (Netherlands)

    P. Biemond (Pieter)

    1986-01-01

    textabstractCurrent knowledge strongly suggests that oxygen free radicals are involved in the pathogenesis of RA. Additional information about the mechanism of free radical attack is necessary in order to find out if interaction with the mechanism of free radical damage can be used in the treatment

  3. DPPH and oxygen free radicals as pro-oxidant of biomolecules.

    Science.gov (United States)

    Letelier, María Eugenia; Molina-Berríos, Alfredo; Cortés-Troncoso, Juan; Jara-Sandoval, José; Holst, Marianne; Palma, Karina; Montoya, Margarita; Miranda, Dante; González-Lira, Víctor

    2008-03-01

    Numerous investigations exist about the alterations that oxygen free radicals can provoke on biomolecules; these modifications can be prevented and/or reversed by different antioxidants agents. On the other hand, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), a stable nitrogen synthetic radical, is used to evaluate the antioxidant capacity of medicinal herbal products; however, the structural changes that this radical provoke on the herbal active principles are not clear yet. In this work, we compared the redox reactivity of oxygen free radicals and DPPH radical on phospholipids and protein thiol groups present in rat liver microsomes. Cu2+/ascorbate was used as generator system of oxygen free radical and as antioxidant, an extract of Buddleja globosa's leaves. Cu2+/ascorbate provoked microsomal lipid peroxidation, microsomal thiols oxidation and oxygen consumption; all of these phenomena were inhibited by B. globosa extract. On the other hand, DPPH was bleached in different extension by the herbal extract and phosphatidyl choline; beside, DPPH decreased microsomal thiols content, but this phenomenon were not prevented by the herbal extract. Furthermore, DPPH did not induce oxygen consumption and neither modified the oxygen consumption induced by Cu2+/ascorbate. Distinct redox mechanisms may explain the differences between the reactivity of DPPH and oxygen free radicals on biomolecules, which is discussed.

  4. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    Science.gov (United States)

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  5. Oxygen radical microscopy in living plant tissues

    DEFF Research Database (Denmark)

    Kristiansen, Kim Anker; Møller, Ian Max; Schulz, Alexander

    the ROS production stems from the mitochondria and peroxisomes as is seen in animal cells. At the Bioimaging Center at KVL we employ different techniques to induce, detect and monitor ROS production, distribution and in and among living plant cells. Both confocal laser scanning microscopy and 2-photon......Reactive oxygen species (ROS) play a crucial role in a wide variety of processes. Initiation of many different cellular pathways, crosstalk between cells, developmental signalling in planta, programmed cell death and hypersensitive response in connection with plant-pathogen interactions are among...... the different roles ROS play. On the other hand ROS also cause damage to cellular components at sub-lethal to lethal levels. In photosynthesizing plants the major production of ROS origin from the chloroplast. ROS is a by product from the Photosystem I/II handling of light energy. In nonphotosynthesizing plants...

  6. Fluorophore-based sensor for oxygen radicals in processing plasmas

    International Nuclear Information System (INIS)

    Choudhury, Faraz A.; Shohet, J. Leon; Sabat, Grzegorz; Sussman, Michael R.; Nishi, Yoshio

    2015-01-01

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye

  7. Fluorophore-based sensor for oxygen radicals in processing plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Faraz A.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Sabat, Grzegorz; Sussman, Michael R. [Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Nishi, Yoshio [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-11-15

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye.

  8. Radical fragmentation of six-membered oxygen-containing heterocycles

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Kosobutskij, V.S.; Shadyro, O.I.

    1982-01-01

    Using chromatography, the composition and radiation-chemical yields of final products of desctruction of six-member saturated oxygen-containing heterocycles (the effect of #betta#-radiation on aqueous solutions of tetrahydropyran, 1,3-dioxane, 2,2 dimethyl-1,3 dioxane, 1,4-dioxane, paraldehyde) have been determined. It is established that the identified products are formed at the expense of decomposition of primary radicals of the initial compounds and point to the realization of the following fragmentation ways: 1) #betta#-scattering, 2) #betta#-scattering with a subsequent 1,5 migration of an H atom, 3) simultaneous rupture of two vicinal, relative to the radical center, bonds. A formation mechanism of the substances desctruction products is suggested. Material balance of the product yields of 1,3-dioxane radical synchronous decomposition is presented

  9. β-diketones containing oxygen atom in fluorinated radical

    International Nuclear Information System (INIS)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G.

    1981-01-01

    The synthesis of a number of new aliphatic fluorinated β- diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed [ru

  10. beta. -diketones containing oxygen atom in fluorinated radical

    Energy Technology Data Exchange (ETDEWEB)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G. (AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1981-10-01

    The synthesis of a number of new aliphatic fluorinated ..beta..-diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed.

  11. Generation of various radicals in nitrogen plasma and their behavior in media

    International Nuclear Information System (INIS)

    Uhm, Han S.

    2015-01-01

    Research on the generation of radicals in nitrogen plasma shows that the most dominant radicals are excited nitrogen molecules in the metastable state of N 2 (A 3 ∑ u + ). Hydroxyl molecules are generated from the dissociation of water molecules upon contact with excited nitrogen molecules. The estimated densities of various radicals in nitrogen plasma with an electron temperature of 1 eV are presented in this study. The behavior of these radicals in media is also investigated. Excited nitrogen molecules in the N 2 (A 3 ∑ u + ) state from a plasma jet are injected into water, after which the molecules disappear instantaneously within a few tens of nm, producing hydroxyl molecules. Hydrogen peroxide, hydrogen dioxide, and nitrogen monoxide molecules can diffuse much deeper into water, implying the possibility that a chemical reaction between hydrogen dioxide and nitrogen monoxide molecules produces hydroxyl molecules in deep water, even though density in this case may not be very high

  12. Enhancement by platelets of oxygen radical responses of human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, K.K.; Powell, J.; Johnson, K.J.; Ward, P.A.

    1986-03-01

    When human blood neutrophils were incubated with immune complexes (consisting of IgG antibody) in the presence of platelets, there was a 2 to 10 fold enhancement in the generation of O-/sub 2/ and H/sub 2/O/sub 2/. This enhancement phenomenon was proportional to the dose of immune complex added and the number of platelets present. The response was not agonist specific since similar enhancement also occurred with the following agonists: phorbol myristate acetate, opsonized zymosan particles and the chemotactic peptide N-formyl-met-leu-phe. The platelet related phenomenon of enhanced O-/sub 2/ generation could not be reproduced by the addition of serotonin, histamine or platelet-derived growth factor and was not affected by prior treatment of platelets with cyclooxygenase inhibitors (indomethacin, piroxicam) or lipoxygenase inhibitors (nafazatrom, BW755C or nordihydroguaiaretic acid). However, activation of platelets by thrombin caused release into the platelet supernatant fluid of a factor that, only in the presence of immune complexes, caused enhanced O-/sub 2/ responses to neutrophils. These data indicate that platelets potentiate oxygen radical responses of human neutrophils and suggest a mechanisms by which platelets may participate in tissue injury which is mediated by oxygen radical products from activated neutrophils.

  13. Enhancement by platelets of oxygen radical responses of human neutrophils

    International Nuclear Information System (INIS)

    McCulloch, K.K.; Powell, J.; Johnson, K.J.; Ward, P.A.

    1986-01-01

    When human blood neutrophils were incubated with immune complexes (consisting of IgG antibody) in the presence of platelets, there was a 2 to 10 fold enhancement in the generation of O- 2 and H 2 O 2 . This enhancement phenomenon was proportional to the dose of immune complex added and the number of platelets present. The response was not agonist specific since similar enhancement also occurred with the following agonists: phorbol myristate acetate, opsonized zymosan particles and the chemotactic peptide N-formyl-met-leu-phe. The platelet related phenomenon of enhanced O- 2 generation could not be reproduced by the addition of serotonin, histamine or platelet-derived growth factor and was not affected by prior treatment of platelets with cyclooxygenase inhibitors (indomethacin, piroxicam) or lipoxygenase inhibitors (nafazatrom, BW755C or nordihydroguaiaretic acid). However, activation of platelets by thrombin caused release into the platelet supernatant fluid of a factor that, only in the presence of immune complexes, caused enhanced O- 2 responses to neutrophils. These data indicate that platelets potentiate oxygen radical responses of human neutrophils and suggest a mechanisms by which platelets may participate in tissue injury which is mediated by oxygen radical products from activated neutrophils

  14. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    OpenAIRE

    K. C. CHONG; S. O. LAI; H. S. THIAM; H. C. TEOH; S. L. HENG

    2016-01-01

    The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA). Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology...

  15. Oxygen free radical altered immunoglobin G in the etiopathogenesis of rheumatoid arthritis

    NARCIS (Netherlands)

    H.A. Kleinveld (Henk)

    1990-01-01

    textabstractThe particular association of RA with anti-lgG antibodies suggests an important role of lgG in the etiology and pathology of RA. One of the suggested mechanisms by which lgG could be altered is exposure to oxygen free radicals. During inflammation large amounts of oxygen free radicals

  16. Enantioselective radical reactions. Evaluation of nitrogen protecting groups in the synthesis of β2-amino acids

    Science.gov (United States)

    Sibi, Mukund P.; Patil, Kalyani

    2006-01-01

    We have investigated the effect of nitrogen protecting groups in radical addition trapping experiments leading to β2-amino acids. Of the three N-protecting groups examined, the phthalimido group was optimal with respect to both yields and enantioselectivity. Additionally, radical additions to more complex acrylates were also investigated, which provided access to functionalized β2-amino acids in modest selectivity. PMID:16799704

  17. Enantioselective radical reactions. Evaluation of nitrogen protecting groups in the synthesis of beta-amino acids.

    Science.gov (United States)

    Sibi, Mukund P; Patil, Kalyani

    2006-02-20

    We have investigated the effect of nitrogen protecting groups in radical addition trapping experiments leading to beta(2)-amino acids. Of the three N-protecting groups examined, the phthalimido group was optimal with respect to both yields and enantioselectivity. Additionally, radical additions to more complex acrylates were also investigated, which provided access to functionalized beta(2)-amino acids in modest selectivity.

  18. Reactivity of amino acid anions with nitrogen and oxygen atoms.

    Science.gov (United States)

    Wang, Zhe-Chen; Li, Ya-Ke; He, Sheng-Gui; Bierbaum, Veronica M

    2018-02-14

    For many decades, astronomers have searched for biological molecules, including amino acids, in the interstellar medium; this endeavor is important for investigating the hypothesis of the origin of life from space. The space environment is complex and atomic species, such as nitrogen and oxygen atoms, are widely distributed. In this work, the reactions of eight typical deprotonated amino acids (glycine, alanine, cysteine, proline, aspartic acid, histidine, tyrosine, and tryptophan) with ground state nitrogen and oxygen atoms are studied by experiment and theory. These amino acid anions do not react with nitrogen atoms. However, the reactions of these ions with oxygen atoms show an intriguing variety of ionic products and the reaction rate constants are of the order of 10 -10 cm 3 s -1 . Density functional calculations provide detailed mechanisms of the reactions, and demonstrate that spin conversion is essential for some processes. Our study provides important data and insights for understanding the kinetic and dynamic behavior of amino acids in space environments.

  19. Effect of nitrogen and oxygen on radiolysis of iodide solution

    Energy Technology Data Exchange (ETDEWEB)

    Karasawa, H; Endo, M [Hitachi Ltd., Power and Industrial System R+D Divisions, Ibaraki (Japan)

    1996-12-01

    The effect of nitrogen and oxygen on radiolysis of iodide solution was examined. Direct decomposition of nitrogen by {gamma}-radiation produced nitric acid to decrease a water pH. This resulted in the iodine formation in the radiolysis of iodide solution. Hydrogen peroxide was produced by the radiolysis of water containing oxygen. This worked a reducing agent to suppress the formation of iodine in the radiolysis of iodide solution. In the analytical model, fourteen iodine species were considered and reaction scheme consisted in 124 reactions. The analytical model could estimate the oxidation state of iodide ions. (author) 4 figs., 4 refs.

  20. With medium-chain triglycerides, higher and faster oxygen radical production by stimulated polymorphonuclear leukocytes occurs.

    Science.gov (United States)

    Kruimel, J W; Naber, A H; Curfs, J H; Wenker, M A; Jansen, J B

    2000-01-01

    Parenteral lipid emulsions are suspected of suppressing the immune function. However, study results are contradictory and mainly concern the conventional long-chain triglyceride emulsions. Polymorphonuclear leukocytes were preincubated with parenteral lipid emulsions. The influence of the lipid emulsions on the production of oxygen radicals by these stimulated leukocytes was studied by measuring chemiluminescence. Three different parenteral lipid emulsions were tested: long-chain triglycerides, a physical mixture of medium- and long-chain triglycerides, and structured triglycerides. Structured triglycerides consist of triglycerides where the medium- and long-chain fatty acids are attached to the same glycerol molecule. Stimulated polymorphonuclear leukocytes preincubated with the physical mixture of medium- and long-chain triglycerides showed higher levels of oxygen radicals (p triglycerides or structured triglycerides. Additional studies indicated that differences in results of various lipid emulsions were not caused by differences in emulsifier. The overall production of oxygen radicals was significantly lower after preincubation with the three lipid emulsions compared with controls without lipid emulsion. A physical mixture of medium- and long-chain triglycerides induced faster production of oxygen radicals, resulting in higher levels of oxygen radicals, compared with long-chain triglycerides or structured triglycerides. This can be detrimental in cases where oxygen radicals play either a pathogenic role or a beneficial one, such as when rapid phagocytosis and killing of bacteria is needed. The observed lower production of oxygen radicals by polymorphonuclear leukocytes in the presence of parenteral lipid emulsions may result in immunosuppression by these lipids.

  1. Kinetics of several oxygenated carbon-centered free radical reactions with NO2.

    Science.gov (United States)

    Rissanen, Matti P; Arppe, Suula L; Timonen, Raimo S

    2013-05-16

    Five oxygenated carbon-centered free radical reactions with nitrogen dioxide (NO2) have been studied in direct time-resolved measurements. Experiments were conducted in a temperature-controlled flow tube reactor coupled to a 193 nm exciplex laser photolysis and a resonance gas lamp photoionization mass spectrometer. Reactions were investigated under pseudofirst-order conditions, with the NO2 concentrations of the experiments in great excess over the initial radical concentrations ([R]0 CH3CO radical reactions with NO2 and, hence, includes the three smallest hydroxyalkyl radical species (CH2OH, CH2CH2OH, and CH3CHOH). The obtained rate coefficients are high with the temperature-dependent rate coefficients given by a formula k(T) = k300K × (T/300 K)(-n) as (in units of cm(3) molecule(-1) s(-1)): k(CH2OH + NO2) = (8.95 ± 2.70) × 10(-11) × (T/300 K)(-0.54±0.27) (T = 298-363 K), k(CH2CH2OH + NO2) = (5.99 ± 1.80) × 10(-11) × (T/300 K)(-1.49±0.45)(T = 241-363 K), k(CH3CHOH + NO2) = (7.48 ± 2.24) × 10(-11) × (T/300 K)(-1.36±0.41) (T = 266-363 K), k(CH3OCH2 + NO2) = (7.85 ± 2.36) × 10(-11) × (T/300 K)(-0.93±0.28) (T = 243-363 K), and k(CH3CO + NO2) = (2.87 ± 0.57) × 10(-11) × (T/300 K)(-2.45±0.49) (T = 241-363 K), where the uncertainties refer to the estimated overall uncertainties of the values obtained. The determined rate coefficients show negative temperature dependence with no apparent bath gas pressure dependence under the current experimental conditions (241-363 K and about 1-3 Torr helium). This behavior is typical for a radical-radical addition mechanism with no potential energy barrier above the energy of the separated reactants in the entrance channel of the reaction. Unfortunately the absence of detected product signals prevented gaining deeper insight into the reaction mechanism.

  2. Kinetics of liquid lithium reaction with oxygen-nitrogen mixtures

    International Nuclear Information System (INIS)

    Gil, T.K.; Kazimi, M.S.

    1986-01-01

    A series of experiments have been conducted in order to characterize the kinetics of lithium chemical reaction with a mixture of oxygen and nitrogen. Three mixed gas compositions were used; 80% N 2 and 20% O 2 , 90% N 2 and 10% O 2 , and 95% N 2 and 5% O 2 . The reaction rate was obtained as a function of lithium temperature and the oxygen fraction. Liquid lithium temperature varied from 400 to 1100 0 C. By varying the composition, the degree of inhibition of the lithium-nitrogen reaction rate due to the presence of oxygen was observed. The results indicate that the lithium-nitrogen reaction rate depended on both the fraction of oxygen present and lithium temperature. The lithium nitride layer formed from the reaction also had a significant inhibition effect on the lithium-nitrogen reaction rate while the lithium-oxygen reaction rate was not as greatly hindered. LITFIRE, a computer code which simulates temperature and pressure history in a containment building following lithium spills, was modified by including (1) an improved model for the lithium-nitrogen reaction rate and (2) a model for the lithium-CO 2 reaction. LITFIRE was used to simulate HEDL's LC-2 and LA-5 experiments, and the predicted temperatures and pressures were in a reasonable agreement. Furthermore, LITFIRE was applied to a prototypical fusion reactor containment in order to simulate the consequences of a lithium spill accident. The result indicated that if nitrogen was used as containment building gas during the accident, the consequences of the accident would be less severe than those with air. The pressure rise in the building was found to be reduced by 50% and the maximum temperature of the combustion zone was limited to 900 0 C instead of 1200 0 C in the case of air

  3. Antioxidant capacity and oxygen radical diseases in the preterm newborn.

    Science.gov (United States)

    Rogers, S; Witz, G; Anwar, M; Hiatt, M; Hegyi, T

    2000-06-01

    Bronchopulmonary dysplasia, intraventricular hemorrhage, necrotizing enterocolitis, and retinopathy of prematurity may be different manifestations of oxygen radical diseases of prematurity (ORDP). To test the hypothesis that the antioxidant capacity of cord blood serum will predict risk of ORDP. An inception cohort of premature neonates was followed up from birth until discharge or death to determine if outcome was related to cord blood serum antioxidant capacity, as determined by a manual assay measuring the relative inhibition of oxidation of 2,2'-azino-di-(3-ethylbenzthiazoline)-6 sulfonic acid (ABTS). Possible correlations between antioxidant capacity and various perinatal factors were also tested. Level 3 newborn intensive care unit. All inborn very low-birth-weight neonates from whom cord blood was available and for whom maternal consent was obtained were included. Newborns who died in the first week of life or who had major congenital malformations were excluded. A convenience sample of newborns weighing more than 1500 g was used to perfect assay and explore confounders. Significant ORDP was defined as the presence of intraventricular hemorrhage greater than grade 2, retinopathy of prematurity greater than stage 1, bronchopulmonary dysplasia at the postconceptional age of 36 weeks, or necrotizing enterocolitis with the hypothesis that neonates with ORDP will have lower antioxidant capacity in cord blood serum. Serum antioxidant capacity at birth correlated with gestational age for the entire sample of 41 neonates and for the 26 neonates born before 32 weeks' gestation. After correction for gestational age, cord serum antioxidant capacity did not correlate with maternal smoking, preeclampsia, chorioamnionitis, cord pH Apgar scores, or any of the ORDP studied. Cord serum antioxidant capacity correlates with gestational age but does not predict ORDP risk.

  4. Thermotransport of nitrogen and oxygen in β-zirconium

    NARCIS (Netherlands)

    Vogel, D.L.; Rieck, G.D.

    1971-01-01

    An investigation of thermotransport of nitrogen in ß-zirconium is reported. Using a method previously described, the heat of transport turned out to be 25.1 kcal/mole with a standard deviation of 2.5 kcal/mole. The formerly published value of the heat of transport of oxygen in ß-zirconium, viz. 20

  5. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids—A Review

    Science.gov (United States)

    Truscott, T. George

    2018-01-01

    We report on studies of reactions of singlet oxygen with carotenoids and retinoids and a range of free radical studies on carotenoids and retinoids with emphasis on recent work, dietary carotenoids and the role of oxygen in biological processes. Many previous reviews are cited and updated together with new data not previously reviewed. The review does not deal with computational studies but the emphasis is on laboratory-based results. We contrast the ease of study of both singlet oxygen and polyene radical cations compared to neutral radicals. Of particular interest is the switch from anti- to pro-oxidant behavior of a carotenoid with change of oxygen concentration: results for lycopene in a cellular model system show total protection of the human cells studied at zero oxygen concentration, but zero protection at 100% oxygen concentration. PMID:29301252

  6. Oxygen etching mechanism in carbon-nitrogen (CNx) domelike nanostructures

    International Nuclear Information System (INIS)

    Acuna, J. J. S.; Figueroa, C. A.; Kleinke, M. U.; Alvarez, F.; Biggemann, D.

    2008-01-01

    We report a comprehensive study involving the ion beam oxygen etching purification mechanism of domelike carbon nanostructures containing nitrogen. The CN x nanodomes were prepared on Si substrate containing nanometric nickel islands catalyzed by ion beam sputtering of a carbon target and assisting the deposition by a second nitrogen ion gun. After preparation, the samples were irradiated in situ by a low energy ion beam oxygen source and its effects on the nanostructures were studied by x-ray photoelectron spectroscopy in an attached ultrahigh vacuum chamber, i.e., without atmospheric contamination. The influence of the etching process on the morphology of the samples and structures was studied by atomic force microscopy and field emission gun-secondary electron microscopy, respectively. Also, the nanodomes were observed by high resolution transmission electron microscopy. The oxygen atoms preferentially bond to carbon atoms by forming terminal carbonyl groups in the most reactive parts of the nanostructures. After the irradiation, the remaining nanostructures are grouped around two well-defined size distributions. Subsequent annealing eliminates volatile oxygen compounds retained at the surface. The oxygen ions mainly react with nitrogen atoms located in pyridinelike structures

  7. Free radicals, oxygen and radiosensitizing drugs: a very brief introduction

    International Nuclear Information System (INIS)

    Willson, R.

    1981-01-01

    A review is presented of the historical aspects of the search for radiation sensitizing drugs. Metronidazole, Flagyl and misonidazole are undergoing clincial trials as the result of basic free radical and cellular research. Studies at the molecular, biochemical and cellular levels are described. From the information obtained it now appears that several processes may be involved in sensitization: interference with charge recombination due to a sensitizer having a high electron affinity; an increase in the yield of oxidizing hydroxyl radicals by electron sequestration; interference with radical combination reactions due to a sensitizer having a high one electron oxidation potential; oxidation or organic radicals so fixing them; formation of products which are toxic; and changes in the biochemistry of the cell. 106 references, 4 figures

  8. CRC handbook of methods for oxygen radical research

    National Research Council Canada - National Science Library

    Greenwald, Robert A

    1985-01-01

    .... This volume is divided into five sections. Section I deals with preparative methodology for isolation and purification of the components of the oxy radical experimental systems used most frequently, including all the three forms of SOD...

  9. Excimer laser corneal surgery and free oxygen radicals.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Akata, F; Hasanreisoğlu, B; Türközkan, N

    1996-01-01

    Corneal photoablation with 193 nm argon fluoride excimer laser is a new technique for the treatment of refractive errors and for removing corneal opacities and irregularities. Ultraviolet radiation and thermal injury induce free radical formation in the tissues. The aim of this study was to confirm the production of free radicals by excimer laser photoablation in rabbits. The thermal changes of the posterior corneal surface were recorded during excimer laser photoablation. The lipid peroxide (LPO) levels and superoxide dismutase (SOD) activities of aqueous humour were measured after excimer laser keratectomy. The aqueous LPO levels were not changed after excimer laser ablation, but both the thermal increase in the cornea during the photoablation and the decreased aqueous SOD activities suggest that free radicals are formed in the cornea during excimer laser keratectomy, and that they may be responsible for some of the complications of excimer laser corneal surgery.

  10. Involvement of active oxygen in lipid peroxide radical reaction of epidermal homogenate following ultraviolet light exposure

    International Nuclear Information System (INIS)

    Nishi, J.; Ogura, R.; Sugiyama, M.; Hidaka, T.; Kohno, M.

    1991-01-01

    To elucidate the radical mechanism of lipid peroxidation induced by ultraviolet light (UV) irradiation, an electron spin resonance (ESR) study was made on epidermal homogenate prepared from albino rat skin. The exposure of the homogenate to UV light resulted in an increase in lipid peroxide content, which was proportional to the time of UV exposure. Using ESR spin trapping (dimethyl-1-pyrroline-N-oxide, DMPO), the DMPO spin adduct spectrum of lipid radicals (L.) was measured following UV exposure (DMPO-L.:aN = 15.5 G, aH = 22.7 G), as was the spectrum of DMPO-hydroxyl radical (DMPO-OH, aN = aH = 15.5 G). In the presence of superoxide dismutase, the DMPO spin adduct spectrum of lipid radicals was found to be reduced remarkably. Therefore, it was shown that the generation of the lipid radicals partially involves superoxide anion radicals, in addition to hydroxyl radicals. In the ESR free-radical experiment, an ESR signal appeared at g = 2.0064 when the ESR tube filled with homogenate was exposed to UV light at -150 degrees C. The temperature-dependent change in the ESR free radical signal of homogenate exposed to UV light was observed at temperatures varying from -150 degrees C to room temperature. By using degassed samples, it was confirmed that oxygen is involved in the formation of the lipid peroxide radicals (LOO.) from the lipid radicals (L.)

  11. 40 CFR 415.490 - Applicability; description of the oxygen and nitrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... oxygen and nitrogen production subcategory. 415.490 Section 415.490 Protection of Environment... POINT SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.490 Applicability; description of the oxygen and nitrogen production subcategory. The provisions of this subpart are applicable to...

  12. Effects of oxygen radical scavengers on the inactivation of SS phi X174 DNA by the semi-quinone free radical of the antitumor agent etoposide

    NARCIS (Netherlands)

    van Maanen, M.J.; Mans, D.R.A.; Lafleur, M.V.M.; Van Schaik, M A; de Vries, J; Vermeulen, N P; Retèl, J.; Lankelma, J

    1990-01-01

    We have studied the effects of oxygen radical scavengers on the inactivation of ss phi X174 DNA by the semi-quinone free radical of the antitumor agent etoposide (VP 16-213), which was generated from the ortho-quinone of etoposide at pH greater than or equal to 7.4. A semi-quinone free radical of

  13. The G-factor in molecular nitrogen, oxygen and air

    International Nuclear Information System (INIS)

    Mentzoni, M.

    1987-06-01

    The electron energy relaxation in molecular nitrogen and oxygen is found experimentally using the methods of microwave cross-modulation, transport coeffisients, and flowing afterglows. On the basis of these results the excess electron energy loss factor, the G-factor, has been computed for nitrogen, oxygen and air as a function of electron temperature for various published effective electron collision frequencies. It is shown that the lack of a definitive theory for rotational excitation of O 2 , and very conflicting experimental results for this gas, yield a G-factor in air with a large degree of uncertainty. In spite of this uncertanty it is shown that the formula G = 18.9xT -1.5 , with T being the electron temperature in deg. K, agrees within 15% of the results obtained from swarm data and microwave cross-modulation

  14. Oxygen and nitrogen diffusion in coal-molecular sieve

    International Nuclear Information System (INIS)

    Stefanescu, Doina Maria

    1996-01-01

    Recently, the air separation process based on selective adsorption of carbon-molecular sieves has been developed strongly. The separation is based on the system kinematics and depends on the oxygen diffusion in adsorber micropores. The oxygen is preferentially adsorbed and in given conditions it is possible to obtain nitrogen of high purity. Recent theoretical and experimental studies concerning the production of nitrogen by PSA process have shown that the obtained performances can not be described by a constant diffusion model. The paper present the 'dual' model assumed for O 2 and N 2 diffusion through molecular sieve as well as the experimental data obtained in the adsorption study on carbon material produced at ICIS to determine the diffusivity values in micropores

  15. Nitrogen Oxygen Recharge System for the International Space Station

    Science.gov (United States)

    Williams, David E.; Dick, Brandon; Cook, Tony; Leonard, Dan

    2009-01-01

    The International Space Station (ISS) requires stores of Oxygen (O2) and Nitrogen (N2) to provide for atmosphere replenishment, direct crew member usage, and payload operations. Currently, supplies of N2/O2 are maintained by transfer from the Space Shuttle. Following Space Shuttle is retirement in 2010, an alternate means of resupplying N2/O2 to the ISS is needed. The National Aeronautics and Space Administration (NASA) has determined that the optimal method of supplying the ISS with O2/N2 is using tanks of high pressure N2/O2 carried to the station by a cargo vehicle capable of docking with the ISS. This paper will outline the architecture of the system selected by NASA and will discuss some of the design challenges associated with this use of high pressure oxygen and nitrogen in the human spaceflight environment.

  16. Hydrogen Radicals, Nitrogen Radicals, and the Production of Ozone in the Middle and Upper Troposphere

    Science.gov (United States)

    Bui, T. P.

    1997-01-01

    The concentrations of hydrogen radicals, OH and HO2, in the middle and upper troposphere were measured simultaneously with those of NO, O3,CO, H20, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field.

  17. Foil bearing performance in liquid nitrogen and liquid oxygen

    Science.gov (United States)

    Genge, Gary G.; Saville, Marshall; Gu, Alston

    1993-01-01

    Space transfer vehicles and other power and propulsion systems require long-life turbopumps. Rolling-element bearings used in current turbopumps do not have sufficient life for these applications. Process fluid foil bearings have established long life, with exceptional reliability, over a wide range of temperatures and fluids in many high-speed turbomachinery applications. However, actual data on bearing performance in cryogenic fluids has been minimal. The National Aeronautics and Space Administration (NASA) and AlliedSignal Aerospace Systems and Equipment (ASE) have attempted to characterize the leaf-type compliant foil bearing in oxygen and nitrogen. The work performed under a joint internal research and development program between Marshall Space Flight Center (MSFC) and ASE demonstrated that the foil bearing has load capacities of at least 266 psi in liquid oxygen and 352 psi in liquid nitrogen. In addition, the bearing demonstrated a direct damping coefficient of 40 to 50 lb-sec/in. with a damping ratio of .7 to 1.4 in. liquid nitrogen using a bearing sized for upper-stage turbopumps. With the results from this testing and the years of successful use in air cycle machines and other applications, leaf-type compliant foil bearings are ready for testing in liquid oxygen turbopumps.

  18. Kinetics of irreversible thermal decomposition of dissociating nitrogen dioxide with nitrogen oxide or oxygen additions

    International Nuclear Information System (INIS)

    Gvozdev, A.A.

    1987-01-01

    The effect of NO or O 2 admixtures on kinetics of the irreversible thermal decomposition of nitrogen dioxide at temperatures 460-520 deg C and pressures 4-7 MPa has been studied. It follows from experimental data that the rate of N 2 O 4 formation reduces with the increase of partial pressure of oxygen or decrease of partial pressure of nitrogen oxide. The same regularity is seen for the rate of nitrogen formation. The rate constants of N 2 O formation in dissociating nitrogen tetroxide with oxygen or nitrogen oxide additions agree satisfactorily with previously published results, obtained in stoichiometric mixtures. The appreciable discrepancy at 520 deg C is bind with considerable degree of nitrogen oxide transformation which constitutes approximately 14%. It is determined that the kinetics of formation of the products of irreversible N 2 O and N 2 decomposition in stoichiometric and non-stoichiometric 2NO 2 ↔ 2NO+O 2 mixtures is described by identical 3NO → N 2 O+NO 2 and N 2 O+NO → N 2 +NO 2 reactions

  19. Hydrogen Radicals, Nitrogen Radicals, and the Production of O3 in the Upper Troposphere

    Science.gov (United States)

    Wennberg, P. O.; Hanisco, T. F.; Jaegle, L.; Jacob, D. J.; Hintsa, E. J.; Lanzendorf, E. J.; Anderson, J. G.; Gao, R.-S.; Keim, E. R.; Donnelly, S. G.; hide

    1998-01-01

    The concentrations of the hydrogen radicals OH and HO2 in the middle and upper troposphere were measured simultaneously with those of NO, O3, CO, H2O, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field. The data allow a direct examination of the processes that produce O3, in this region of the atmosphere. Comparison of the measured concentrations of OH and HO2 with calculations based on their production from water vapor, ozone, and methane demonstrate that these sources are insufficient to explain the observed radical concentrations in the upper troposphere. The photolysis of carbonyl and peroxide compounds transported to this region from the lower troposphere may provide the source of HO(x) required to sustain the measured abundances of these radical species. The mechanism by which NO affects the production of 03 is also illustrated by the measurements. In the upper tropospheric air masses sampled, the production rate for ozone (determined from the measured concentrations of HO2 and NO) is calculated to be about 1 part per billion by volume each day.This production rate is faster than previously thought and implies that anthropogenic activities that add NO to the upper troposphere, such as biomass burning and aviation, will lead to production of more 03 than expected.

  20. Role of oxygen free radicals in the induction of sister chromatid exchanges by cigarette smoke

    International Nuclear Information System (INIS)

    Lee, C.K.; Brown, B.G.; Rice, W.Y. Jr.; Doolittle, D.J.

    1989-01-01

    Cigarette smoke has been reported to contain free radicals and free radical generators in both the gas and particulate phases. Studies in our laboratory have shown that both cigarette smoke condensate (CSC) and smoke bubbled through phosphate buffered saline solution (smoke-PBS) increased sister chromatid exchanges (SCE) in Chinese hamster ovary cells in a dose-dependent manner. Since oxygen free radicals have been shown to cause SCEs and other chromosomal damage, we investigated the role of these radicals in the induction of SCEs by CSC and smoke-PBS. Addition of the antioxidant enzymes catalase and superoxide dismutase or the oxygen-radical scavenger ascorbic acid failed to reduce the SCE frequency in the presence of either CSC or smoke-PBS. Additional studies indicated that the quantity of hydrogen peroxide produced in CSC or smoke-PBS is too small to account for the observed SCE induction. It appears, therefore, that SCE induction by CSC or smoke-PBS does not involve the participation of oxygen free radicals

  1. The scavenger activities of tea polyphenol and quercetin against oxygen radicals

    International Nuclear Information System (INIS)

    Fang Ruoying; Cheng Jiwu; Hu Tianxi; Tu Tiecheng; Dong Jirong; Wang Wenfeng; Lin nianyun

    1992-01-01

    Studies of free radical biology and medicine have shown that carcinogenesis, vascular diseases of heart and brain, radiation injuries, ageing etc are strictly correlated with free radical injury of tissues. Thus, pharmacologists and biologists are focusing attention on searching for scavengers, especially naturally occurring antioxidant of oxidizing free radicals. Previous studies have indicated that phenolic antioxidants have efficient scavenger activities. Utilizing following methods including chemical luminescence, ESR spectroscopy and pulse radiolysis techniques the scavenger activities of tea polyphenols and quercetin against active species of oxygen have been studied

  2. Preparation and use of nitrogen (2) oxide of special purity for production of oxygen and nitrogen isotopes

    International Nuclear Information System (INIS)

    Polevoj, A.S.

    1989-01-01

    Problems related with production of oxygen and nitrogen isotopes by means of low-temperature rectification of nitrogen (2) oxide are analyzed. Special attention, in particular, is payed to the techniques of synthesis and high purification of initial NO, utilization of waste flows formed during isotope separation. Ways to affect the initial isotope composition of nitrogen oxide and the rate of its homogeneous-isotope exchange, which provide for possibility of simultaneous production of oxygen and nitrogen isotopes by means of NO rectification, are considered. Description of a new technique for high purification of nitrogen oxide, prepared at decomposition of nitric acid by sulfurous anhydride, suggested by the author is presented

  3. Glove box adaptation of oxygen, nitrogen and hydrogen determinator

    International Nuclear Information System (INIS)

    Ramanjaneyulu, P.S.; Phanindra Kumar, M.; Kulkarni, A.S.; Revathi, R.; Saxena, M.K.; Tomar, B.S.

    2017-01-01

    Radioanalytical Chemistry Division (RACD) is involved in chemical quality assurance (CQA) of various nuclear fuels and materials related to various DAE projects including FBTR and PFBR. Determination of oxygen, nitrogen and hydrogen in these fuels is one of the important steps in the CQA of material. For this purpose, O, N and H determinator was indigenously designed, fabricated and commissioned with the help of M/s Chromatography and Instruments Company Ltd., Vadodara, India. The present article describes about glove box adaptation of this instrument and various safety features incorporated in the glove box and instrument at Lab. C-25, RACD, as per the recommendations of the plant level safety committee

  4. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    K. C. CHONG

    2016-07-01

    Full Text Available The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA. Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology in gas separation as it requires low energy consumption and relatively moderate production volume, if compared to the conventional gas production techniques. These advantages have spurred much interest from industries and academics to speed up the commercial viability of the O2/N2 separation via membrane technology. In this review, the conventional and membrane technologies in O2/N2 separation, as well as recent development of membrane fabrication techniques and materials are reviewed. The latest membrane performance in O2/N2 separation is also tabulated and discussed.

  5. Gastric injury induced by hemorrhage, local ischemia, and oxygen radical generation

    International Nuclear Information System (INIS)

    Wadhwa, S.S.; Perry, M.A.

    1987-01-01

    Gastric mucosal injury caused by local intra-arterial generation of oxygen-derived free radicals was compared with gastric injury caused by 30 min of hemorrhage-induced ischemia or local ischemia. The index of injury was the loss of 51 Cr-labeled red cells across the gastric mucosa. Generation of oxygen radicals in the celiac artery caused a rapid increase in mucosal blood loss during the period of radical generation, and this loss was maintained after radical production ceased. Local ischemia produced similar mucosal injury; however, this occurred after reperfusion of the stomach and not during the ischemic episode. Hemorrhage-induced ischemia produced a threefold greater mucosal blood loss than local ischemia. The results of this study indicate that (1) oxygen radicals generated enzymatically in the blood supply to the stomach cause mucosal bleeding of similar magnitude to that observed after local ischemia and (2) that gastric ischemia induced by systemic hypotension produces more severe gastric injury than the same level of local hypotension

  6. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species

    International Nuclear Information System (INIS)

    Roberts, Ruth A.; Smith, Robert A.; Safe, Stephen; Szabo, Csaba; Tjalkens, Ronald B.; Robertson, Fredika M.

    2010-01-01

    'Oxidative and Nitrative Stress in Toxicology and Disease' was the subject of a symposium held at the EUROTOX meeting in Dresden 15th September 2009. Reactive oxygen (ROS) and reactive nitrogen species (RNS) produced during tissue pathogenesis and in response to viral or chemical toxicants, induce a complex series of downstream adaptive and reparative events driven by the associated oxidative and nitrative stress. As highlighted by all the speakers, ROS and RNS can promote diverse biological responses associated with a spectrum of disorders including neurodegenerative/neuropsychiatric and cardiovascular diseases. Similar pathways are implicated during the process of liver and skin carcinogenesis. Mechanistically, reactive oxygen and nitrogen species drive sustained cell proliferation, cell death including both apoptosis and necrosis, formation of nuclear and mitochondrial DNA mutations, and in some cases stimulation of a pro-angiogenic environment. Here we illustrate the pivotal role played by oxidative and nitrative stress in cell death, inflammation and pain and its consequences for toxicology and disease pathogenesis. Examples are presented from five different perspectives ranging from in vitro model systems through to in vivo animal model systems and clinical outcomes.

  7. Development of sensors for monitoring oxygen and free radicals in plant physiology

    Science.gov (United States)

    Chaturvedi, Prachee

    Oxygen plays a critical role in the physiology of photosynthetic organisms, including bioenergetics, metabolism, development, and stress response. Oxygen levels affect photosynthesis, respiration, and alternative oxidase pathways. Likewise, the metabolic rate of spatially distinct plant cells (and therefore oxygen flux) is known to be affected by biotic stress (e.g., herbivory) and environmental stress (e.g., salt/nutrient stress). During aerobic metabolism, cells produce reactive oxygen species (ROS) as a by product. Plants also produce ROS during adaptation to stress (e.g., abscisic acid (ABA) mediated stress responses). If stress conditions are prolonged, ROS levels surpass the capacity of detoxifying mechanisms within the cell, resulting in oxidative damage. While stress response pathways such as ABA-mediated mechanisms have been well characterized (e.g., water stress, inhibited shoot growth, synthesis of storage proteins in seeds), the connection between ROS production, oxygen metabolism and stress response remains unknown. In part, this is because details of oxygen transport at the interface of cell(s) and the surrounding microenvironment remains nebulous. The overall goal of this research was to develop oxygen and Free radical sensors for studying stress signaling in plants. Recent developments in nanomaterials and data acquisition systems were integrated to develop real-time, non-invasive oxygen and Free radical sensors. The availability of these sensors for plant physiologists is an exciting opportunity to probe the functional realm of cells and tissues in ways that were not previously possible.

  8. Effects of Actinobacillus pleuropneumoniae cytotoxins on generation of oxygen radicals by porcine neutrophils

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    1999-03-01

    Full Text Available Cytotoxins produced by Actinobacillus pleuropneumoniae (App suggested to be the most important pathogenic and virulent factors for this organism. However, the mechanisms on how the cytotoxins contribute to the disease process remain unclear. The purpose of this study is to investigate the effect of the cytotoxins on the oxidative-burst metabolism of porcine neutrophils. In this study, neutrophils were firstly loaded with an oxidative probe dichlorofluorescin diacetate (DCFHDA then expose to cytotoxins. Cells producing oxygen radicals emitted fluorescence and its intensity was measured with a FACScan flow cytometer. All cytotoxins derived from either App serotypes producing ApxI and ApxII, App serotypes producing ApxII only, or App serotypes producing ApxII and ApxIII were capable of stimulating neutrophils for oxygen-radical generation. However, compared with phorbol myristate acetate (PMA, App cytotoxins were much weaker as stimulants for oxygen radicals. In addition, Apx preparation stimulated an oxidative-burst metabolism of neutrophils at a low, narrow range of Apx doses. At higher doses, the toxins inhibit the oxidative burst metabolism. The effects of cytotoxins produced by App during infection on recruited neutrophils into the lungs are assumed to be comparable to those observed in this in vitro study. Neutrophils, and other host cells, adjacent to the bacteria become lysis due to high toxin concentration, whereas those at some distance to the bacteria produce oxygen radicals which in turn cause tissue damage or necrosis.

  9. Induction of oxygen free radical generation in human monocytes by lipoprotein(a)

    DEFF Research Database (Denmark)

    Riis Hansen, P; Kharazmi, A; Jauhiainen, M

    1994-01-01

    The mechanism behind the association of elevated plasma lipoprotein(a) [Lp(a)] levels with atherosclerotic disease is unknown. In the present study, Lp(a) induced generation of oxygen free radicals by monocytes from selected healthy individuals in vitro. This observation may provide a link between...

  10. Rate constants for the reactions of free radicals with oxygen in solution

    International Nuclear Information System (INIS)

    Maillard, B.; Ingold, K.U.; Scaiano, J.C.

    1983-01-01

    The kinetics of the rections of several free radicals with oxygen have been examined in solution at 300 K using laser flash photolysis techniques. The reactions of resonance-stabilized radicals are only slightly slower than those of nonstabilized radicals: for example, for tert-butyl (in cyclohexane), 4.93 x 10 9 ; benzyl, 2.36 x 10 9 (in cyclohexane); cyclohexadienyl (in benzene), 1.64 x 10 9 M -1 s -1 . The reaction of butyl-tin (n-Bu 3 Sn.) radicals is unusually fast (7.5 x 10 9 M -1 s -1 ), a fact that has been tentatively attributed to a relaxation of spin selection rules due to heavy atom effects. 1 table

  11. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    Science.gov (United States)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  12. Oxygen, nitrogen and sulphide fluxes in the Black Sea

    Directory of Open Access Journals (Sweden)

    S.K. KONOVALOV

    2000-12-01

    Full Text Available The fluxes and production/consumption rates of oxygen, nitrate, ammonium and sulphide are estimated in the paper utilising results of the 1.5-dimensional stationary model of vertical exchange in the Black Sea (Samodurov & Ivanov, 1998. The profiles of the vertical flux and rate of production/consumption of these substances have revealed a number of intriguing features in the biogeochemical nature of the Black Sea. An approximate redox balance of the counter-fluxes of nitrate and ammonium into the sub-oxic zone has been revealed confirming that intensive denitrification may be the primary loss of nitrogen in the Black Sea. A low ratio of the nitrate stock to the flux of nitrate from the oxycline confirms the possibility of prominent changes in the distribution of nitrate on the time scale of a year. The ratio of the nitrate to oxygen vertical flux has revealed a lack of nitrate in the oxycline above the nitrate maximum. The lateral (related to the "Bosporus plume" flux of oxygen in the layer of the main pycnocline appears to be very important for the existing biogeochemical structure of the Black sea water column being the reason of sulphide consumption inside the anoxic zone and changes in the ammonium-sulphide stoichiometry of the anoxic zone, the primary reason of the existence of the sub-oxic layer and the basic reason of relative stability of the sulphide onset.

  13. Free radicals, reactive oxygen species, oxidative stress and its classification.

    Science.gov (United States)

    Lushchak, Volodymyr I

    2014-12-05

    Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Inhibition of nitrogenase by oxygen in marine cyanobacteria controls the global nitrogen and oxygen cycles

    Science.gov (United States)

    Berman-Frank, I.; Chen, Y.-B.; Gerchman, Y.; Dismukes, G. C.; Falkowski, P. G.

    2005-03-01

    Cyanobacterial N2-fixation supplies the vast majority of biologically accessible inorganic nitrogen to nutrient-poor aquatic ecosystems. The process, catalyzed by the heterodimeric protein complex, nitrogenase, is thought to predate that of oxygenic photosynthesis. Remarkably, while the enzyme plays such a critical role in Earth's biogeochemical cycles, the activity of nitrogenase in cyanobacteria is markedly inhibited in vivo at a post-translational level by the concentration of O2 in the contemporary atmosphere leading to metabolic and biogeochemical inefficiency in N2 fixation. We illustrate this crippling effect with data from Trichodesmium spp. an important contributor of "new nitrogen" to the world's subtropical and tropical oceans. The enzymatic inefficiency of nitrogenase imposes a major elemental taxation on diazotrophic cyanobacteria both in the costs of protein synthesis and for scarce trace elements, such as iron. This restriction has, in turn, led to a global limitation of fixed nitrogen in the contemporary oceans and provides a strong biological control on the upper bound of oxygen concentration in Earth's atmosphere.

  15. Synoviocytes, not chondrocytes, release free radicals after cycles of anoxia/re-oxygenation

    International Nuclear Information System (INIS)

    Schneider, Nicole; Mouithys-Mickalad, Ange L.; Lejeune, Jean-Philippe; Deby-Dupont, Ginette P.; Hoebeke, Maryse; Serteyn, Didier A.

    2005-01-01

    By oxymetry and electron paramagnetic resonance (EPR), we investigated the effects of repeated anoxia/re-oxygenation (A/R) periods on the respiration and production of free radicals by synoviocytes (rabbit HIG-82 cell line and primary equine synoviocytes) and equine articular chondrocytes. Three periods of 20 min anoxia followed by re-oxygenation were applied to 10 7 cells; O 2 consumption was measured before anoxia and after each re-oxygenation. After the last A/R, cellular free radical formation was investigated by EPR spectroscopy with spin trapping technique (n = 3 for each cell line). Both types of synoviocytes showed a high O 2 consumption, which was slowered after anoxia. By EPR with the spin trap POBN, we proved a free radical formation. Results were similar for equine and rabbit synoviocytes. For chondrocytes, we observed a low O 2 consumption, unchanged by anoxia, and no free radical production. These observations suggest an oxidant activity of synoviocytes, potentially important for the onset of osteoarthritis

  16. Anaerobic nitrogen turnover by sinking diatom aggregates at varying ambient oxygen levels

    DEFF Research Database (Denmark)

    Stief, Peter; Kamp, Anja; Thamdrup, Bo

    2016-01-01

    nitrate supply. Sinking diatom aggregates can contribute directly to fixed-nitrogen loss in low-oxygen environments in the ocean and vastly expand the ocean volume in which anaerobic nitrogen turnover is possible, despite relatively high ambient oxygen levels. Depending on the extent of intracellular......In the world’s oceans, even relatively low oxygen levels inhibit anaerobic nitrogen cycling by free-living microbes. Sinking organic aggregates, however, might provide oxygen-depleted microbial hotspots in otherwise oxygenated surface waters. Here, we show that sinking diatom aggregates can host...

  17. Liquid Nitrogen (Oxygen Simulant) Thermodynamic Vent System Test Data Analysis

    Science.gov (United States)

    Hedayat, A.; Nelson, S. L.; Hastings, L. J.; Flachbart, R. H.; Tucker, S. P.

    2005-01-01

    In designing systems for the long-term storage of cryogens in low-gravity (space) environments, one must consider the effects of thermal stratification on tank pressure that will occur due to environmental heat leaks. During low-gravity operations, a Thermodynamic Vent System (TVS) concept is expected to maintain tank pressure without propellant resettling. A series of TVS tests was conducted at NASA Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as a liquid oxygen (LO2) simulant. The tests were performed at tank til1 levels of 90%, 50%, and 25%, and with a specified tank pressure control band. A transient one-dimensional TVS performance program is used to analyze and correlate the test data for all three fill levels. Predictions and comparisons of ullage pressure and temperature and bulk liquid saturation pressure and temperature with test data are presented.

  18. Nitrogen and Triple Oxygen Isotopic Analyses of Atmospheric Particulate Nitrate over the Pacific Ocean

    Science.gov (United States)

    Kamezaki, Kazuki; Hattori, Shohei; Iwamoto, Yoko; Ishino, Sakiko; Furutani, Hiroshi; Miki, Yusuke; Miura, Kazuhiko; Uematsu, Mitsuo; Yoshida, Naohiro

    2017-04-01

    Nitrate plays a significant role in the biogeochemical cycle. Atmospheric nitrate (NO3- and HNO3) are produced by reaction precursor as NOx (NO and NO2) emitted by combustion, biomass burning, lightning, and soil emission, with atmospheric oxidants like ozone (O3), hydroxyl radical (OH), peroxy radical and halogen oxides. Recently, industrial activity lead to increases in the concentrations of nitrogen species (NOx and NHy) throughout the environment. Because of the increase of the amount of atmospheric nitrogen deposition, the oceanic biogeochemical cycle are changed (Galloway et al., 2004; Kim et al., 2011). However, the sources and formation pathways of atmospheric nitrate are still uncertain over the Pacific Ocean because the long-term observation is limited. Stable isotope analysis is useful tool to gain information of sources, sinks and formation pathways. The nitrogen stable isotopic composition (δ15N) of atmospheric particulate NO3- can be used to posses information of its nitrogen sources (Elliott et al., 2007). Triple oxygen isotopic compositions (Δ17O = δ17O - 0.52 ×δ18O) of atmospheric particulate NO3- can be used as tracer of the relative importance of mass-independent oxygen bearing species (e.g. O3, BrO; Δ17O ≠ 0 ‰) and mass-dependent oxygen bearing species (e.g. OH radical; Δ17O ≈ 0 ‰) through the formation processes from NOx to NO3- in the atmosphere (Michalski et al., 2003; Thiemens, 2006). Here, we present the isotopic compositions of atmospheric particulate NO3- samples collected over the Pacific Ocean from 40˚ S to 68˚ N. We observed significantly low δ15N values for atmospheric particulate NO3- on equatorial Pacific Ocean during both cruises. Although the data is limited, combination analysis of δ15N and Δ17O values for atmospheric particulate NO3- showed the possibility of the main nitrogen source of atmospheric particulate NO3- on equatorial Pacific Ocean is ammonia oxidation in troposphere. Furthermore, the Δ17O values

  19. Contamination of liquid oxygen by pressurized gaseous nitrogen

    Science.gov (United States)

    Zuckerwar, Allan J.; King, Tracy K.; Ngo, Kim Chi

    1989-01-01

    The penetration of pressurized gaseous nitrogen (GN2) into liquid oxygen (LOX) was investigated experimentally in the 7-inch High Temperature Tunnel, the pilot tunnel for the 8-foot High Temperature Tunnel (8'HTT) at Langley Research Center. A preliminary test using a nuclear monitor revealed the extent of the liquid nitrogen (LN2) build-up at the LOX interface as a function of GN2 pressure. Then an adaptation of the differential flash vaporization technique was used to determine the binary diffusivity of the LOX-LN2 system at a temperature of 90.2 K. The measured value D equals 0.000086 sq cm/s + or - 25 percent together with two prior measurements at lower temperatures revealed an excellent fit to the Arrhenius equation, yielding a pre-exponential factor D sub 0 equals 0.0452 sq cm/s and an activation enthalpy H equals 1.08 kcal/mol. At a pressure of 1700 psi and holding time of 15 min, the penetration of LN2 into LOX (to a 1 percent contamination level) was found to be 0.9 cm, indicating but minimal impact upon 8'HTT operations.

  20. Liquid Nitrogen (Oxygen Simulent) Thermodynamic Venting System Test Data Analysis

    Science.gov (United States)

    Hedayat, A.; Nelson, S. L.; Hastings, L. J.; Flachbart, R. H.; Tucker, S. P.

    2005-01-01

    In designing systems for the long-term storage of cryogens in low gravity space environments, one must consider the effects of thermal stratification on excessive tank pressure that will occur due to environmental heat leakage. During low gravity operations, a Thermodynamic Venting System (TVS) concept is expected to maintain tank pressure without propellant resettling. The TVS consists of a recirculation pump, Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. Using a small amount of liquid extracted by the pump and passing it though the J-T valve, then through the heat exchanger, the bulk liquid and ullage are cooled, resulting in lower tank pressure. A series of TVS tests were conducted at the Marshall Space Flight Center using liquid nitrogen as a liquid oxygen simulant. The tests were performed at fill levels of 90%, 50%, and 25% with gaseous nitrogen and helium pressurants, and with a tank pressure control band of 7 kPa. A transient one-dimensional model of the TVS is used to analyze the data. The code is comprised of four models for the heat exchanger, the spray manifold and injector tubes, the recirculation pump, and the tank. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature are compared with data. Details of predictions and comparisons with test data regarding pressure rise and collapse rates will be presented in the final paper.

  1. Thermal relaxation of molecular oxygen in collisions with nitrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Andrienko, Daniil A., E-mail: daniila@umich.edu; Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, 1320 Beal Ave., Ann Arbor, Michigan 48108 (United States)

    2016-07-07

    Investigation of O{sub 2}–N collisions is performed by means of the quasi-classical trajectory method on the two lowest ab initio potential energy surfaces at temperatures relevant to hypersonic flows. A complete set of bound–bound and bound–free transition rates is obtained for each precollisional rovibrational state. Special attention is paid to the vibrational and rotational relaxations of oxygen as a result of chemically non-reactive interaction with nitrogen atoms. The vibrational relaxation of oxygen partially occurs via the formation of an intermediate NO{sub 2} complex. The efficient energy randomization results in rapid vibrational relaxation at low temperatures, compared to other molecular systems with a purely repulsive potential. The vibrational relaxation time, computed by means of master equation studies, is nearly an order of magnitude lower than the relaxation time in N{sub 2}–O collisions. The rotational nonequilibrium starts to play a significant effect at translational temperatures above 8000 K. The present work provides convenient relations for the vibrational and rotational relaxation times as well as for the quasi-steady dissociation rate coefficient and thus fills a gap in data due to a lack of experimental measurements for this system.

  2. Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China

    Science.gov (United States)

    Fang, Y. T.; Koba, K.; Wang, X. M.; Wen, D. Z.; Li, J.; Takebayashi, Y.; Liu, X. Y.; Yoh, M.

    2011-02-01

    Nitric acid (HNO3) or nitrate (NO3-) is the dominant sink for reactive nitrogen oxides (NOx = NO + NO2) in the atmosphere. In many Chinese cities, HNO3 is becoming a significant contributor to acid deposition. In the present study, we measured nitrogen (N) and oxygen (O) isotopic composition of NO3- in 113 precipitation samples collected from Guangzhou City in southern China over a two-year period (2008 and 2009). We attempted to better understand the spatial and seasonal variability of atmospheric NOx sources and the NO3- formation pathways in this N-polluted city in the Pearl River Delta region. The δ15N values of NO3- (versus air N2) ranged from -4.9 to +10.1‰, and averaged +3.9‰ in 2008 and +3.3‰ in 2009. Positive δ15N values were observed throughout the year, indicating the anthropogenic contribution of NOx emissions, particularly from coal combustion. Different seasonal patterns of δ15N-NO3- were observed between 2008 and 2009, which might reflect different human activities associated with the global financial crisis and the intensive preparations for the 16th Asian Games. Nitrate δ18O values (versus Vienna Standard Mean Ocean Water) varied from +33.4 to +86.5‰ (average +65.0‰ and +67.0‰ in 2008 and 2009, respectively), a range being lower than those reported for high latitude and polar areas. Sixteen percent of δ18O values was observed lower than the expected minimum of +55‰ at our study site. This was likely caused by the reaction of NO with peroxy radicals; peroxy radicals can compete with O3 to convert NO to NO2, thereby donate O atoms with much lower δ18O value than that of O3 to atmospheric NO3-. Our results highlight that the influence of human activities on atmospheric chemistry can be recorded by the N and O isotopic composition of atmospheric NO3- in a N-polluted city.

  3. HFE gene variants and iron-induced oxygen radical generation in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Sangiuolo, Federica; Puxeddu, Ermanno; Pezzuto, Gabriella; Cavalli, Francesco; Longo, Giuliana; Comandini, Alessia; Di Pierro, Donato; Pallante, Marco; Sergiacomi, Gianluigi; Simonetti, Giovanni; Zompatori, Maurizio; Orlandi, Augusto; Magrini, Andrea; Amicosante, Massimo; Mariani, Francesca; Losi, Monica; Fraboni, Daniela; Bisetti, Alberto; Saltini, Cesare

    2015-02-01

    In idiopathic pulmonary fibrosis (IPF), lung accumulation of excessive extracellular iron and macrophage haemosiderin may suggest disordered iron homeostasis leading to recurring microscopic injury and fibrosing damage. The current study population comprised 89 consistent IPF patients and 107 controls. 54 patients and 11 controls underwent bronchoalveolar lavage (BAL). Haemosiderin was assessed by Perls' stain, BAL fluid malondialdehyde (MDA) by high-performance liquid chromatography, BAL cell iron-dependent oxygen radical generation by fluorimetry and the frequency of hereditary haemochromatosis HFE gene variants by reverse dot blot hybridisation. Macrophage haemosiderin, BAL fluid MDA and BAL cell unstimulated iron-dependent oxygen radical generation were all significantly increased above controls (pHFE allelic variants was markedly higher in IPF compared with controls (40.4% versus 22.4%, OR 2.35, p=0.008) and was associated with higher iron-dependent oxygen radical generation (HFE variant 107.4±56.0, HFE wild type (wt) 59.4±36.4 and controls 16.7±11.8 fluorescence units per 10(5) BAL cells; p=0.028 HFE variant versus HFE wt, p=0.006 HFE wt versus controls). The data suggest iron dysregulation associated with HFE allelic variants may play an important role in increasing susceptibility to environmental exposures, leading to recurring injury and fibrosis in IPF. Copyright ©ERS 2015.

  4. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.

    Science.gov (United States)

    Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja

    2011-07-01

    Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.

  5. Nitrogen narcosis induced by repetitive hyperbaric nitrogen oxygen mixture exposure impairs long-term cognitive function in newborn mice.

    Directory of Open Access Journals (Sweden)

    Bin Peng

    Full Text Available Human beings are exposed to compressed air or a nitrogen-oxygen mixture, they will produce signs and symptoms of nitrogen narcosis such as amnesia or even loss of memory, which may be disappeared once back to the normobaric environment. This study was designed to investigate the effect of nitrogen narcosis induced by repetitive hyperbaric nitrogen-oxygen mixture exposure on long-term cognitive function in newborn mice and the underlying mechanisms. The electroencephalogram frequency was decreased while the amplitude was increased in a pressure-dependent manner during 0.6, 1.2, 1.8 MPa (million pascal nitrogen-oxygen mixture exposures in adult mice. Nitrogen narcosis in postnatal days 7-9 mice but not in adult mice induced by repetitive hyperbaric exposure prolonged the latency to find the platform and decreased the number of platform-site crossovers during Morris water maze tests, and reduced the time in the center during the open field tests. An increase in the expression of cleaved caspase-3 in the hippocampus and cortex were observed immediately on the first day after hyperbaric exposure, and this lasted for seven days. Additionally, nitrogen narcosis induced loss of the dendritic spines but not of the neurons, which may mainly account for the cognitive dysfunction. Nitrogen narcosis induced long-term cognitive and emotional dysfunction in the postnatal mice but not in the adult mice, which may result from neuronal apoptosis and especially reduction of dendritic spines of neurons.

  6. Effect of Rubia cordifolia, Fagonia cretica linn, and Tinospora cordifolia on free radical generation and lipid peroxidation during oxygen-glucose deprivation in rat hippocampal slices

    International Nuclear Information System (INIS)

    Rawal, Avinash; Muddeshwar, Manohar; Biswas, Saibal

    2004-01-01

    The major damaging factor during and after the ischemic/hypoxic insult is the generation of free radicals, which leads to apoptosis, necrosis, and ultimately cell death. Rubia cordifolia (RC), Fagonia cretica linn (FC), and Tinospora cordifolia (TC) have been reported to contain a wide variety of antioxidants and have been in use in the eastern system of medicine for various disorders. Hippocampal slices were subjected to oxygen-glucose deprivation (OGD) and divided into three groups, control, OGD, and OGD+drug treated. Cytosolic reduced glutathione (GSH), nitric oxide [NO, measured as nitrite (NO 2 )]. EPR was used to establish the antioxidant effect of RC, FC, and TC with respect to superoxide anion (O2-), hydroxyl radicals (OH), nitric oxide (NO) radical, and peroxynitrite anion (ONOO - ) generated from pyrogallol, menadione, DETA-NO, and Sin-1, respectively. RT-PCR was performed for the three herbs to assess their effect on the expression of γ-glutamylcysteine ligase (GCLC), iNOS, and GAPDH gene expression. All the three herbs were effective in elevating the GSH levels and expression of the GCLC. The herbs also exhibited strong free radical scavenging properties against reactive oxygen and nitrogen species as revealed by electron paramagnetic resonance spectroscopy, diminishing the expression of iNOS gene. RC, FC, and TC therefore attenuate oxidative stress mediated cell injury during OGD and exert the above effects at both the cytosolic as well as at gene expression levels and may be effective therapeutic tool against ischemic brain damage

  7. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    Science.gov (United States)

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  8. Generation of Oxygen Free Radicals by Proflavine: Implication in Protein Degradation

    Directory of Open Access Journals (Sweden)

    Mansour K.M. Gatasheh

    2017-07-01

    Full Text Available Proflavine, an acridine dye, is a known DNA intercalating agent. In the present study, we show that proflavine alone on photoillumination can generate reactive oxygen species (ROS. These proflavine-derived ROS cause damage to proteins, and this effect is enhanced when the divalent metal ion Cu (II is included in the reaction. Bathocuproine, a specific Cu (I sequestering agent, when present in the reaction mixture containing Cu (II, was found to inhibit the protein degradation, showing that Cu (I is an essential intermediate in the reaction. The effect of several scavengers of ROS such as superoxide dismutase, sodium azide, potassium iodide, and thiourea were examined on the protein damaging reaction. Potassium iodide was found to be the most effective in inhibiting protein damage followed by sodium azide and thiourea. Our results indicate the involvement of superoxide, singlet oxygen, triplet oxygen, and hydroxyl radicals in proflavine-induced damage to proteins.

  9. Role of macrophages and oxygen radicals in IgA induced lung injury in the rat

    International Nuclear Information System (INIS)

    Johnson, K.J.; Ward, P.A.; Kunkel, R.G.; Wilson, B.S.

    1986-01-01

    Acute lung injury in the rat has been induced by the instillation of affinity-purified mouse monoclonal IgA antibody with specific reactivity to dinitrophenol (DNP) coupled to albumin. This model of lung injury requires an intact complement system but not neutrophils, and evidence suggests that pulmonary macrophages are the critical effector cell. Macrophages retrievable from the lungs of the IgA immune complex treated rats are considerably increased in number as compared to control animals which received only the antibody. In addition these cells show evidence of activation in vivo with greater spontaneous generation of the superoxide anion (O 2 - ) as well as significantly enhanced O 2 - response in the presence of a second stimulus. Inhibition studies in vivo suggest that the lung injury is mediated by oxygen radical generation by the pulmonary macrophages. Pretreatment of rats with superoxide dismutase (SOD), catalase, the iron chelator deferoxamine or the hydroxyl radical scavenger dimethyl sulfoxide (DMSO) all markedly suppressed the development of the lung injury. In summary, these studies suggest that IgA immune complex injury in the rat lung is mediated by oxygen radical formation from pulmonary macrophages

  10. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution

    International Nuclear Information System (INIS)

    Wang Lian; Yan Lifeng; Zhao Peitao; Torimoto, Yoshifumi; Sadakata, Masayoshi; Li Quanxin

    2008-01-01

    A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O - water) has been investigated. The O - water, generated by bubbling of the O - (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O - water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (C=O) groups were introduced onto the polystyrene surfaces via the O - water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O - water is also considered as a 'clean solution' without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially

  11. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest canopy...

  12. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest...

  13. MICROBIAL DEGRADATION OF NITROGEN, OXYGEN AND SULFUR HETEROCYCLIC COMPOUNDS UNDER ANAEROBIC CONDITIONS: STUDIES WITH AQUIFER SAMPLES

    Science.gov (United States)

    The potential for anaerobic biodegradation of 12 heterocyclic model compounds was studied. Nine of the model compounds were biotransformed in aquifer slurries under sulfate-reducing or methanogenic conditions. The nitrogen and oxygen heterocyclic compounds were more susceptible t...

  14. Determination of oxygen and nitrogen in coal by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Hamrin, C.E. Jr.; Johannes, A.H.; James, W.D. Jr.; Sun, G.H.; Ehmann, W.D.

    1979-01-01

    The purpose of this study was to measure oxygen and nitrogen in coals using instrumental neutron activation analysis. For six U.S. coals total oxygen ranged from 9.4 to 28.7% and total nitrogen varied from 0.72 to 1.61%. To obtain values of organic oxygen and nitrogen either a low-temperature-ashing (LTA) method or an acid-treatment (AT) method was suitable for bituminous coals. The mean difference of the experimentally determined values (Osub(dmmf))sub(LTA) - (Osub(dmmf))sub(AT) = -0.82, s = 0.51, [dmmf = dry, mineral-matter-free basis], was found to be statistically significant at the 95% confidence level, but the comparable difference for nitrogen was not. By the LTA method oxygen and nitrogen on the dmmf basis for bituminous coals showed no statistically significant difference with calculated dmmf values. Nitrogen was detected in all the LTAs varying from 0.38 to 1.67%. Formation of insoluble CaF 2 in the acid-treatment method caused an interference in the nitrogen determination due to the 19 F (n, 2n) 18 F reaction but was correctable. In addition, recoil proton reactions on C and O leading to the formation of 13 N must be accounted for in all nitrogen determinations in the coal matrix. (author)

  15. Degradation mechanisms of 4-chlorophenol in a novel gas-liquid hybrid discharge reactor by pulsed high voltage system with oxygen or nitrogen bubbling.

    Science.gov (United States)

    Zhang, Yi; Zhou, Minghua; Hao, Xiaolong; Lei, Lecheng

    2007-03-01

    The effect of gas bubbling on the removal efficiency of 4-chlorophenol (4-CP) in aqueous solution has been investigated using a novel pulsed high voltage gas-liquid hybrid discharge reactor, which generates gas-phase discharge above the water surface simultaneously with the spark discharge directly in the liquid. The time for 100% of 4-CP degradation in the case of oxygen bubbling (7 min) was much shorter than that in the case of nitrogen bubbling (25 min) as plenty of hydrogen peroxide and ozone formed in oxygen atmosphere enhanced the removal efficiency of 4-CP. Except for the main similar intermediates (4-chlorocatechol, hydroquinone and 1,4-benzoquinone) produced in the both cases of oxygen and nitrogen bubbling, special intermediates (5-chloro-3-nitropyrocatechol, 4-chloro-2-nitrophenol, nitrate and nitrite ions) were produced in nitrogen atmosphere. The reaction pathway of 4-CP in the case of oxygen bubbling was oxygen/ozone attack on the radical hydroxylated derivatives of 4-CP. However, in the case of nitrogen bubbling, hydroxylation was the main reaction pathway with effect of N atom on degradation of 4-CP.

  16. Relationship between oxygen free radicals, cytokines, cortisol and stress complications in patients with acute cerebrovascular disease

    International Nuclear Information System (INIS)

    Zhu Yingbin; Wang Bingjie; Li Yunchao

    2010-01-01

    Objective: To investigate the relationship between oxygen free radicals, cytokines, cortisol and stress complications in patients with acute cerebrovascular disease (ACVD). Methods: Serum levels of superoxide dismutases (SOD), malonaldehyde (MDA) (with biochemistry) interleukin-6 (IL-6), tumor necrosis factor (TNF-α) and cortisol (with RIA) were measured in 32 patients with acute cerebrovascular disease (ACVD) plus stress complications and 48 patients without stress complications as well as 36 controls. Results: Serum SOD contents in non-stressed group were higher than those in stressed group (P<0.05) but lower than those of the controls (P<0.05). However the levels of MDA, IL-6, TNF-α and cortisol were highest in the stressed group and lowest in the controls (all P<0.05). Conclusion: Oxygen free radicals, IL-6, TNF-α and cortisol were involved in stress complications in patients with ACVD. Monitoring the levels of serum SOD, MDA, IL-6, TNF-α and cortisol could be useful for predicting stress complications and evaluating the therapeutic effect. (authors)

  17. Separation of isotopes of nitrogen and oxygen by low temperature distillation of nitrogen oxide

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Shohei; Tonooka, Yasuhiko; Kaetsu, Hayato

    1987-02-01

    In general, the distillation parameters, such as the number of theoretical plate (NTP) and the height equivalent to a theoretical plate (HETP), can be obtained from the operation at the steady state. However, it is time-consuming to achieve the steady state especially in the case of isotope separation. In this paper, with the purpose of simultaneous separation of isotopes of nitrogen and oxygen by NO distillation, we tried to determine the distillation parameters by an analytical method through the transient-state operation. It was confirmed that the results from the analysis were in good agreement with those observed for the operation at the steady state. Enrichment of the isotopes was carried out using a distillation column with a height of 1 m and inside diameter of 12 mm. The dependence of HETP on liquid flow rate was measured by the proposed method. The obtained HETP values were from 2 to 4 cm. The operation time of about 5 h was found to be long enough to determine the distillation parameters.

  18. Separation of isotopes of nitrogen and oxygen by low temperature distillation of nitrogen oxide

    International Nuclear Information System (INIS)

    Isomura, Shohei; Tonooka, Yasuhiko; Kaetsu, Hayato

    1987-01-01

    In general, the distillation parameters, such as the number of theoretical plate (NTP) and the height equivalent to a theoretical plate (HETP), can be obtained from the operation at the steady state. However, it is time-consuming to achieve the steady state especially in the case of isotope separation. In this paper, with the purpose of simultaneous separation of isotopes of nitrogen and oxygen by NO distillation, we tried to determine the distillation parameters by an analytical method through the transient-state operation. It was confirmed that the results from the analysis were in good agreement with those observed for the operation at the steady state. Enrichment of the isotopes was carried out using a distillation column with a height of 1 m and inside diameter of 12 mm. The dependence of HETP on liquid flow rate was measured by the proposed method. The obtained HETP values were from 2 to 4 cm. The operation time of about 5 h was found to be long enough to determine the distillation parameters. (author)

  19. Oxygen radical detoxification enzymes in doxorubicin-sensitive and -resistant P388 murine leukemia cells

    International Nuclear Information System (INIS)

    Ramu, A.; Cohen, L.; Glaubiger, D.

    1984-01-01

    One of the proposed mechanisms for the cytotoxic effects of anthracycline compounds suggests that the effect is mediated through the formation of intracellular superoxide radicals. It is therefore possible that doxorubicin resistance is associated with increased intracellular enzyme capacity to convert these superoxide radicals to inactive metabolites. We have measured the relative activities of superoxide dismutase, glutathione peroxidase, and catalase in P388 mouse leukemia cells and in a doxorubicin-resistant subline. Since oxygen-reactive metabolites also play a role in mediating the cytotoxicity of ionizing radiation, the radiosensitivity of both cell lines was also studied. No significant differences in superoxide dismutase activity between these cell lines was observed, indicating that they have a similar capacity to convert superoxide anion radicals to hydrogen peroxide. P388 cells that are resistant to doxorubicin have 1.5 times the glutathione content and 1.5 times the activity of glutathione peroxidase measured in drug-sensitive P388 cells. However, incubation with 1-chloro-2,4-dinitrobenzene, which covalently binds glutathione, had no effect on the sensitivity of either cell line to doxorubicin. Measured catalase activity in drug-resistant P388 cells was one-third of the activity measured in doxorubicin-sensitive P388 cells. The activity of this enzyme was much higher than that of glutathione peroxidase in terms of H 2 O 2 deactivation in both cell lines. It is therefore unlikely that doxorubicin-resistant P388 cells have an increased ability to detoxify reactive oxygen metabolites when compared to drug-sensitive cells. Doxorubicin-resistant P388 cells were significantly more sensitive to X-irradiation than were drug-sensitive P388 cells. These observations suggest that the difference in catalase activity in these cell lines may be associated with the observed differences in radiosensitivity

  20. Demonstration using EPR spin-trapping of an oxygen-dependent, carbon-centered free radical generated by soybean lipoxygenase

    International Nuclear Information System (INIS)

    Carpenter, M.F.; Smith, F.L.

    1986-01-01

    Purified prostaglandin synthase produces a carbon-centered, oxygen-dependent free radical which they have shown forms a spin-trapped adduct with 4-POBN and has characteristic hyperfine spin coupling constants (hfsc). As production of this radical is cyclooxygenase-dependent, additional studies on radical production were done using soybean lipoxygenase. The latter generates a lipid substrate-derived free radical trapped by the EPR spin trap 4-POBN [α-(4-pyridyl 1-oxide)N-tert-butyl nitrone]. With linoleate as substrate, the hfsc are a/sub N/ = 15.5 G, a/sub β//sup H/ = 2.7 G. This signal is inhibited by ETYA, various antioxidants and heat inactivation of the enzyme. Additional hfsc are not seen when the enzyme is incubated in an 17 O 2 atmosphere, but the signal is inhibited by anaerobeosis. Substitution of 13 C 18 carbon free fatty acids from Chlorella pyrenoisdosa for linoleate produces 2 new lines for each of the original 6 observed with 12 C substrate; the new spectrum has hfsc of a/sub N/ = 16.0 G, a/sub β//sup H/ = 2.4 G, a/sub β/ 13 C = 4.2 G. This demonstrates that the radical is carbon centered and oxygen-dependent and appears not to be the same radical formed by enzymic hydrogen abstraction from the lipid substrate. This radical and the prostaglandin synthase-dependent radical appear to be nearly identical

  1. Reactivity Of Radiolytically-Produced Nitrogen Oxide Radicals Toward Aromatic Compounds

    International Nuclear Information System (INIS)

    Elias, Gracy

    2010-01-01

    radiolysis of the modifier (Cs-7SB), which solvates both metal complexes, is responsible for this change. These reactions presumably occur due to reactions with radiolytically-produced nitrogen-centered radicals like (sm b ullet)NO, (sm b ullet)NO 2 and (sm b ullet)NO 3 . Anisole (C 6 H 5 -OCH 3 ) was used in this study as a surrogate for Cs-7SB, since both are aryl ethers. Toluene was used as a surrogate for Cs-7SB because of the alkyl group on the benzene ring in both molecules. Anisole, highly reactive in acids, is a small molecule compared to Cs-7SB and the nitration products are easier to identify compared to those for the larger Cs-7SB molecule. Toluene is less reactive than anisole. Therefore, the highly reactive anisole and the less reactive toluene were considered in this study as model compounds to compare the reaction mechanisms and the nitrated products in acidic media under irradiation. Experiments were designed to elucidate the mechanism of the nitration of aromatic rings in γ-irradiated aqueous nitric acid. Since a suite of radical and ionic reactive species are produced in this condensed-phase system, solutions of nitric acid, neutral nitrate and neutral nitrite were irradiated in separate experiments to isolate selected reactive species. Product nitration species were assessed by high performance liquid chromatography (HPLC) with a reversed phase C-18 column and photodiode array detector. The nitrated anisole product distributions were the same with and without radiation in acidic solution, although more products were formed with radiation. In the irradiated acidic condensed phase, radiation-enhanced nitrous acid-catalyzed nitrosonium ion electrophilic aromatic substitution followed by oxidation reactions dominated over radical addition reactions. In contrast, the distribution of nitrated derivatives for toluene showed nitronium ion electrophilic substitution in the unirradiated acidic medium as a result of thermal nitration only at elevated temperatures

  2. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-06-01

    Full Text Available Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of nitrogen and oxygen amount in WMD (weld metal deposit.

  3. Role of oxygen free radicals in the proliferation of myofibroblasts induced by AngII

    Directory of Open Access Journals (Sweden)

    Liying Wang

    2013-02-01

    Full Text Available Previous studies have demonstrated the important role of angiotension II (AngII in promoting proliferation of myofibroblasts (myoFbs and myocardial fibrosis. However, the underlying mechanisms and the role of oxygen free radicals in the proliferation of myofibroblasts induced by AngII are unclear. The present study was designed to shed light on this issue through exploration of AngII signaling pathways via in vitro experiments. Primary cultures of neonatal rat myoFbs were divided into five groups which were treated with AngII (10−8 to 10−6 M, AngII with the antioxidant N-acetyl-L-cysteine (NAC, or normal culture medium. We observed the proliferation of myoFbs as induced by AngII at different concentrations with MTT. Reactive oxygen species (ROS levels in myoFbs were detected by monitoring the fluorescence of 2′,7′-dichlorofluorescein. The contents and levels of oxygen free radicals (OH· in the three groups were detected by spectrophotometer, immunocytochemical staining, and confocal fluorescence. Western blot and image analysis were used to measure membrane translocation and expression of phospho-protein kinase Cα. MyoFbs incubated with AngII (10−8 to 10−6 M for 24 h increased their rate of proliferation, the content of OH·, and expression of ROS (P<0.01 vs. control group, whereas these parameters decreased in the presence of NAC. Immunocytochemistry, confocal fluorescence staining and image analysis showed that AngII could promote the translocation and expression of p-PKCα in membrane, and the antioxidant NAC blocked this increase (P<0.01. Western blot results also showed that NAC could inhibit the expression of p-PKCα.

  4. Oxygen nitrogen and ozone: application in wastewater treatment and environment protection

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Julio A.G. [Oxigenio do Brasil, Sao Paulo, SP (Brazil)

    1993-12-31

    Oxygen`s versatility as an oxidant and as a combustion atmosphere provides clean solutions to different industries. Oxygen also finds excellent application for the regeneration of eutrophic surface waters where high biochemical oxygen demand loading demands extra available oxygen for life support. When even stronger oxidizing properties are needed, ozone may act as a supplement. Nitrogen, on the other hand, has excellent cooling capacity, resulting in practical application in solvent recapture, enabling processes to meet emission standards while allowing solvent recycle for reuse. 7 figs., 1 tab.

  5. Oxygen nitrogen and ozone: application in wastewater treatment and environment protection

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Julio A.G. [Oxigenio do Brasil, Sao Paulo, SP (Brazil)

    1994-12-31

    Oxygen`s versatility as an oxidant and as a combustion atmosphere provides clean solutions to different industries. Oxygen also finds excellent application for the regeneration of eutrophic surface waters where high biochemical oxygen demand loading demands extra available oxygen for life support. When even stronger oxidizing properties are needed, ozone may act as a supplement. Nitrogen, on the other hand, has excellent cooling capacity, resulting in practical application in solvent recapture, enabling processes to meet emission standards while allowing solvent recycle for reuse. 7 figs., 1 tab.

  6. Oxidative generation of guanine radicals by carbonate radicals and their reactions with nitrogen dioxide to form site specific 5-guanidino-4-nitroimidazole lesions in oligodeoxynucleotides.

    Science.gov (United States)

    Joffe, Avrum; Mock, Steven; Yun, Byeong Hwa; Kolbanovskiy, Alexander; Geacintov, Nicholas E; Shafirovich, Vladimir

    2003-08-01

    A simple photochemical approach is described for synthesizing site specific, stable 5-guanidino-4-nitroimidazole (NIm) adducts in single- and double-stranded oligodeoxynucleotides containing single and multiple guanine residues. The DNA sequences employed, 5'-d(ACC CG(1)C G(2)TC CG(3)C G(4)CC) and 5'-d(ACC CG(1)C G(2)TC C), were a portion of exon 5 of the p53 tumor suppressor gene, including the codons 157 (G(2)) and 158 (G(3)) mutation hot spots in the former sequence with four Gs and the codon 157 (G(2)) mutation hot spot in the latter sequence with two Gs. The nitration of oligodeoxynucleotides was initiated by the selective photodissociation of persulfate anions to sulfate radicals induced by UV laser pulses (308 nm). In aqueous solutions, of bicarbonate and nitrite anions, the sulfate radicals generate carbonate anion radicals and nitrogen dioxide radicals by one electron oxidation of the respective anions. The guanine residue in the oligodeoxynucleotide is oxidized by the carbonate anion radical to form the neutral guanine radical. While the nitrogen dioxide radicals do not react with any of the intact DNA bases, they readily combine with the guanine radicals at either the C8 or the C5 positions. The C8 addition generates the well-known 8-nitroguanine (8-nitro-G) lesions, whereas the C5 attack produces unstable adducts, which rapidly decompose to NIm lesions. The maximum yields of the nitro products (NIm + 8-nitro-G) were typically in the range of 20-40%, depending on the number of guanine residues in the sequence. The ratio of the NIm to 8-nitro-G lesions gradually decreases from 3.4 in the model compound, 2',3',5'-tri-O-acetylguanosine, to 2.1-2.6 in the single-stranded oligodeoxynucleotides and to 0.8-1.1 in the duplexes. The adduct of the 5'-d(ACC CG(1)C G(2)TC C) oligodeoxynucleotide containing the NIm lesion in codon 157 (G(2)) was isolated in HPLC-pure form. The integrity of this adduct was established by a detailed analysis of exonuclease digestion

  7. The role of nitrogen in the formation of oxygen-related thermal donors in silicon

    International Nuclear Information System (INIS)

    Griffin, J.A.; Hartung, J.; Weber, J.

    1989-01-01

    Nitrogen doped silicon is investigated by Photothermal Ionisation Spectroscopy (PTIS) and Infrared Absorption (IR). The Shallow Thermal Donors (STD) are observed in this nitrogen doped Cz-silicon as well as the deeper Thermal Donors (TD). The Thermal Donor Growth in nitrogen doped material is reduced in comparison to nominally undoped oxygen-rich silicon. The half-widths of the spectral lines arising from the STD-transitions are observed to be dependent on the nitrogen concentration. The results suggest only a catalytic role of N in the STD-growth. (author) 13 refs., 3 figs., 1 tab

  8. N,2,3,4-Tetrasubstituted Pyrrolidines through Tandem Lithium Amide Conjugate Addition/Radical Cyclization/Oxygenation Reactions

    Czech Academy of Sciences Publication Activity Database

    Kafka, František; Pohl, Radek; Císařová, I.; Mackman, R.; Bahador, G.; Jahn, Ullrich

    2016-01-01

    Roč. 2016, č. 22 (2016), s. 3862-3871 ISSN 1434-193X R&D Projects: GA ČR GA13-40188S Grant - others:COST(XE) CM1201 Institutional support: RVO:61388963 Keywords : tandem reactions * nitrogen heterocycles * Michael addition * radical reactions * cyclization * enolates Subject RIV: CC - Organic Chemistry Impact factor: 2.834, year: 2016

  9. Prevention of alloimmunization by ultraviolet-B irradiation. Inactivation of leukocytes and the generation of active oxygen and radicals

    International Nuclear Information System (INIS)

    Takahashi, Tsuneo; Mogi, Yuko; Sekiguchi, Sadayoshi; Akasaka, Junichi; Kamo, Naoki; Kuwabara, Mikinori.

    1994-01-01

    UV-B irradiation of platelet concentrates (PC) has been tried in several institutes to inactivate leukocytes in PC and prevent alloimmunization on platelet transfusion. However, the mechanism of inactivation of leukocytes contaminating PC has not been fully understood. It is known that UV-B light is absorbed by photosensitizers in cells and produces active oxygen and radicals, such as singlet oxygen, superioxide anions and hydroxyl radicals. These active oxygen or radicals should injure cellular components and this could cause the suppression of cellular functions. In this study, we investigated the relationships among UV-B irradiation, free radical generation and leukocyte inactivation. We found the evidence that active oxygen and radicals were produced in peripheral blood mononuclear cells by UV-B irradiation. UV-B irradiation suppressed the stimulatory function of leukocytes in a mixed lymphocyte reaction (MLR), and the suppression depended on the dosage of UV-B. Even a low dosage of UV-B, 10 J/m 2 , could inhibit the MLR if the irradiated cells were incubated at 37degC for 24 hours before co-culture with responder cells. Treatments of cells with the exogenous singlet oxygen or superoxide anions also caused suppression of the stimulatory function in the MLR, inhibition of capping formation of HLA-DR antigens, and an increase of intracellular free Ca 2+ levels as did the UV-B treatment. These results indicate that the active oxygen or radicals generated in UV-B-irradiated leukocytes could be one of the causes of leukocyte inactivation. (author0

  10. Ozone production, nitrogen oxides, and radical budgets in Mexico City: observations from Pico de Tres Padres

    Science.gov (United States)

    Wood, E. C.; Herndon, S. C.; Onasch, T. B.; Kroll, J. H.; Canagaratna, M. R.; Kolb, C. E.; Worsnop, D. R.; Neuman, J. A.; Seila, R.; Zavala, M.; Knighton, W. B.

    2008-08-01

    Observations at a mountain-top site within the Mexico City basin are used to characterize ozone production and destruction, the nitrogen oxide budget, and the radical budget during the MILAGRO campaign. An ozone production rate of ~50 ppbv/h was observed in a stagnant air mass during the afternoon of 12 March 2006, which is among the highest observed anywhere in the world. Approximately half of the ozone destruction was due to the oxidation of NO2. During this time period ozone production was VOC-limited, deduced by a comparison of the radical production rates and the formation rate of NOx oxidation products (NOz) For [NOx]/[NOy] values between 0.2 and 0.8, gas-phase HNO3 typically accounted for less than 10% of NOz and accumulation-mode particulate nitrate (NO3-(PM)) accounted for 20% 70% of NOz, consistent with high ambient NH3 concentrations. The fraction of NOz accounted for by the sum of HNO3(g) and NO3-(PM) decreased with photochemical processing. This decrease is apparent even when dry deposition of HNO3 is accounted for, and indicates that HNO3 formation decreased relative to other NOx "sink" processes during the first 12 h of photochemistry and/or a significant fraction of the nitrate was associated with the coarse aerosol size mode. The ozone production efficiency of NOx on 11 and 12 March 2006 was approximately 7 on a time scale of one day. A new metric for ozone production efficiency that relates the dilution-adjusted ozone mixing ratio to cumulative OH exposure is proposed.

  11. Effect of nitrogen precursors on the electrochemical performance of nitrogen-doped reduced graphene oxide towards oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Li Ting, E-mail: nicolesoo90@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Loh, Kee Shyuan, E-mail: ksloh@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Mohamad, Abu Bakar, E-mail: drab@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Daud, Wan Ramli Wan, E-mail: wramli@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Wong, Wai Yin, E-mail: waiyin.wwy@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); School of Engineering, Taylor' s University' s Lakeside Campus, No. 1, Jalan Taylor' s, 46500 Subang Jaya, Selangor (Malaysia)

    2016-08-25

    A series of nitrogen-doped reduced graphene oxides (NGs) with different ratios are synthesized by thermal annealing of graphene oxide with melamine or urea. The total nitrogen content in NG is high, with values of up to 5.88 at.%. The NG samples prepared by melamine exhibited thin transparent graphene sheets structure, with consist of higher nitrogen doping level and quaternary N content compared to those NG samples prepared from urea. Electrochemical characterizations show that NG is a promising metal-free electrocatalyst for an oxygen reduction reaction (ORR). Incorporation of nitrogen atoms into graphene basal plane can enhances its electrocatalytic activity toward ORR in alkaline media. The onset potential and mean number of electron transfers on NG 1 are −0.10 V and 3.80 respectively, which is higher than that of reduced graphene oxide (−0.15 V, 3.52). This study suggests that quaternary-N of the NG samples is the active site which determines the ORR activity Moreover, the NG samples with the transparent layer of graphene-like structure have better ORR performances than that of bulk graphite-like NG samples. - Highlights: • Synthesis of nitrogen-doped graphene (NG) via thermal annealing. • The effects of the nitrogen precursors on the synthesized NG are discussed. • Electrochemical performances of the NG are correlated to N doping and EASA. • Graphitic-N is proposed to be the active site for ORR.

  12. Effect of nitrogen precursors on the electrochemical performance of nitrogen-doped reduced graphene oxide towards oxygen reduction reaction

    International Nuclear Information System (INIS)

    Soo, Li Ting; Loh, Kee Shyuan; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Wong, Wai Yin

    2016-01-01

    A series of nitrogen-doped reduced graphene oxides (NGs) with different ratios are synthesized by thermal annealing of graphene oxide with melamine or urea. The total nitrogen content in NG is high, with values of up to 5.88 at.%. The NG samples prepared by melamine exhibited thin transparent graphene sheets structure, with consist of higher nitrogen doping level and quaternary N content compared to those NG samples prepared from urea. Electrochemical characterizations show that NG is a promising metal-free electrocatalyst for an oxygen reduction reaction (ORR). Incorporation of nitrogen atoms into graphene basal plane can enhances its electrocatalytic activity toward ORR in alkaline media. The onset potential and mean number of electron transfers on NG 1 are −0.10 V and 3.80 respectively, which is higher than that of reduced graphene oxide (−0.15 V, 3.52). This study suggests that quaternary-N of the NG samples is the active site which determines the ORR activity Moreover, the NG samples with the transparent layer of graphene-like structure have better ORR performances than that of bulk graphite-like NG samples. - Highlights: • Synthesis of nitrogen-doped graphene (NG) via thermal annealing. • The effects of the nitrogen precursors on the synthesized NG are discussed. • Electrochemical performances of the NG are correlated to N doping and EASA. • Graphitic-N is proposed to be the active site for ORR.

  13. Kinetics of Several Oxygen-Containing Carbon-Centered Free Radical Reactions with Nitric Oxide.

    Science.gov (United States)

    Rissanen, Matti P; Ihlenborg, Marvin; Pekkanen, Timo T; Timonen, Raimo S

    2015-07-16

    Kinetics of four carbon-centered, oxygen-containing free radical reactions with nitric oxide (NO) were investigated as a function of temperature at a few Torr pressure of helium, employing flow tube reactors coupled to a laser-photolysis/resonance-gas-discharge-lamp photoionization mass spectrometer (LP-RPIMS). Rate coefficients were directly determined from radical (R) decay signals under pseudo-first-order conditions ([R]0 ≪ [NO]). The obtained rate coefficients showed negative temperature dependences, typical for a radical-radical association process, and can be represented by the following parametrizations (all in units of cm(3) molecule(-1) s(-1)): k(CH2OH + NO) = (4.76 × 10(-21)) × (T/300 K)(15.92) × exp[50700/(RT)] (T = 266-363 K, p = 0.79-3.44 Torr); k(CH3CHOH + NO) = (1.27 × 10(-16)) × (T/300 K)(6.81) × exp[28700/(RT)] (T = 241-363 K, p = 0.52-3.43 Torr); k(CH3OCH2 + NO) = (3.58 ± 0.12) × 10(-12) × (T/300 K)(-3.17±0.14) (T = 221-363 K, p = 0.50-0.80 Torr); k(T)3 = 9.62 × 10(-11) × (T/300 K)(-5.99) × exp[-7100/(RT)] (T = 221-473 K, p = 1.41-2.95 Torr), with the uncertainties given as standard errors of the fits and the overall uncertainties estimated as ±20%. The rate of CH3OCH2 + NO reaction was measured in two density ranges due to its observed considerable pressure dependence, which was not found in the studied hydroxyalkyl reactions. In addition, the CH3CO + NO rate coefficient was determined at two temperatures resulting in k298K(CH3CO + NO) = (5.6 ± 2.8) × 10(-13) cm(3) molecule(-1) s(-1). No products were found during these experiments, reasons for which are briefly discussed.

  14. Oxygen, nitrogen and air broadening of HCN spectral lines at terahertz frequencies

    International Nuclear Information System (INIS)

    Yang Chun; Buldyreva, Jeanna; Gordon, Iouli E.; Rohart, Francois; Cuisset, Arnaud; Mouret, Gael; Bocquet, Robin; Hindle, Francis

    2008-01-01

    The room-temperature nitrogen- and oxygen-broadening coefficients of hydrogen cyanide spectral lines have been measured in the 0.5-3 THz (17-100 cm -1 ) frequency range (purely rotational transitions with 5≤J≤36) by a continuous-wave terahertz spectrometer based on a photomixing source. An improved version of the Robert and Bonamy semiclassical formalism has been used to calculate the oxygen-broadening coefficients and resulted in a good agreement with these measurements. The nitrogen and oxygen data are combined to provide the air-broadening coefficients as used by the HITRAN database. A significant difference is observed between the measured and tabulated values for transitions with high values of the rotational quantum number. A new polynomial representation is suggested for inclusion in HITRAN. A similar polynomial expression has been derived for the nitrogen broadening to aid the studies of Titan's atmosphere

  15. Oxygen, nitrogen and air broadening of HCN spectral lines at terahertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Yang Chun [Laboratoire de Physico-Chimie de l' Atmosphere, UMR CNRS 8101, Universite du Littoral Cote d' Opale, 189A Av. Maurice Schumann, 59140 Dunkerque (France); Buldyreva, Jeanna [Institut UTINAM, UMR CNRS 6213, Universite de Franche-Comte, 16, Route de Gray, 25030 Besancon Cedex (France); Gordon, Iouli E. [Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, 60 Garden Street, Cambridge, MA 02138-1516 (United States); Rohart, Francois [Laboratoire de Physique des Lasers, Atomes et Molecules, UMR CNRS 8523, Batiment P5-135, Universite de Lille 1, 59655 Villeneuve d' Ascq Cedex (France); Cuisset, Arnaud; Mouret, Gael; Bocquet, Robin [Laboratoire de Physico-Chimie de l' Atmosphere, UMR CNRS 8101, Universite du Littoral Cote d' Opale, 189A Av. Maurice Schumann, 59140 Dunkerque (France); Hindle, Francis [Laboratoire de Physico-Chimie de l' Atmosphere, UMR CNRS 8101, Universite du Littoral Cote d' Opale, 189A Av. Maurice Schumann, 59140 Dunkerque (France)], E-mail: francis.hindle@univ-littoral.fr

    2008-11-15

    The room-temperature nitrogen- and oxygen-broadening coefficients of hydrogen cyanide spectral lines have been measured in the 0.5-3 THz (17-100 cm{sup -1}) frequency range (purely rotational transitions with 5{<=}J{<=}36) by a continuous-wave terahertz spectrometer based on a photomixing source. An improved version of the Robert and Bonamy semiclassical formalism has been used to calculate the oxygen-broadening coefficients and resulted in a good agreement with these measurements. The nitrogen and oxygen data are combined to provide the air-broadening coefficients as used by the HITRAN database. A significant difference is observed between the measured and tabulated values for transitions with high values of the rotational quantum number. A new polynomial representation is suggested for inclusion in HITRAN. A similar polynomial expression has been derived for the nitrogen broadening to aid the studies of Titan's atmosphere.

  16. Induction of radiation resistance and radio-protective mechanism. On the reactive oxygen and free radical

    International Nuclear Information System (INIS)

    Yukawa, Osami

    2003-01-01

    Radical scavenging system for reactive oxygen species (ROS) leading to radio-protection is reviewed on findings in animals, tissues and cells. Protection against oxygen toxicity in evolution can be seen in anaerobes' superoxide dismutase (SOD) over 3500 million years ago. ROS is generated endogenously and also by radiation. However, the intracellular sites of the generated ROS are different depending on its cause. The protection is done through enzymes like SOD, peroxidase, catalase, glutathione-related enzymes and through substances like GSH, α-tocopherol, ascorbic acid etc. Induction of ROS scavenging substances related with radio-resistance includes the responses to the low dose radiation (5-50 cGy) in those enzymes described above; to middle to high dose radiation (1-30 Gy) in a similar and in other unknown mechanisms; to exposure of ROS like H 2 O 2 at low concentration; and to antioxidant treatment. The cross-resistance between radiation and drugs suggests necessity of this induction. (N.I.)

  17. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    Science.gov (United States)

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  18. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor.

    Science.gov (United States)

    Varas, Rodrigo; Guzmán-Fierro, Víctor; Giustinianovich, Elisa; Behar, Jack; Fernández, Katherina; Roeckel, Marlene

    2015-08-01

    The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A case study of ozone production, nitrogen oxides, and the radical budget in Mexico City

    Directory of Open Access Journals (Sweden)

    E. C. Wood

    2009-04-01

    Full Text Available Observations at a mountain-top site within the Mexico City basin are used to characterize ozone production and destruction, nitrogen oxide speciation and chemistry, and the radical budget, with an emphasis on a stagnant air mass observed on one afternoon. The observations compare well with the results of recent photochemical models. An ozone production rate of ~50 ppbv/h was observed in a stagnant air mass during the afternoon of 12 March 2006, which is among the highest observed anywhere in the world. Approximately half of the ozone destruction was due to the oxidation of NO2. During this time period ozone production was VOC-limited, deduced by a comparison of the radical production rates and the formation rate of NOx oxidation products (NOz. For [NOx]/[NOy] values between 0.2 and 0.8, gas-phase HNO3 typically accounted for less than 10% of NOz and accumulation-mode particulate nitrate (NO3(PM1 accounted for 20%–70% of NOz, consistent with high ambient NH3 concentrations. The fraction of NOz accounted for by the sum of HNO3(g and NO3(PM1 decreased with photochemical processing. This decrease is apparent even when dry deposition of HNO3 is accounted for, and indicates that HNO3 formation decreased relative to other NOx "sink" processes during the first 12 h of photochemistry and/or a significant fraction of the nitrate was associated with the coarse aerosol size mode. The ozone production efficiency of NOx on 11 and 12 March 2006 was approximately 7 on a time scale of one day. A new metric for ozone production efficiency that relates the dilution-adjusted ozone mixing ratio to cumulative OH exposure is proposed.

  20. The oxygen-centered radicals scavenging activity of sulfasalazine and its metabolites. A direct protection of the bowel.

    Science.gov (United States)

    Prónai, L; Yukinobu, I; Láng, I; Fehér, J

    1992-01-01

    Oxygen-centered radicals, such as superoxide (O2-) and hydroxyl radicals (.OH) generated by phagocytes have been suggested to be involved in the pathogenesis of chronic inflammations of the bowel, such as Crohn's disease and colitis ulcerosa. Recently, sulfasalazine (SASP) and its metabolites have been reported to exert their effects as a direct scavenger of oxygen-centered radicals in the bowel. To scavenge oxygen-centered radicals in vivo, however, SASP and its metabolites have to react with O2- and/or .OH in vitro very rapidly, furthermore they have to reach an appropriate (possible millimolar) concentration range at the site of inflammation. To test this possibility, we investigated the direct O2- and .OH scavenging activity of SASP and its metabolites using the specific electron paramagnetic resonance/spin trapping method, and we compared the 50% inhibition rates of SASP and its metabolites with their known concentrations in the bowel and in the human plasma. It was found that SASP and its metabolites, such as 5-amino-salicylic acid (5-ASA), and acetyl-5-amino-salicylic acid (AC-5-ASA), but not sulfapyridine (SP) and acetyl-sulfapyridine (Ac-SP) have a direct O2- and .OH scavenging activity in vitro systems. Among the compounds, SASP and 5-ASA can reach a concentration which is appropriate to scavenge oxygen-centered radicals in the bowel but not in the human plasma. It was concluded that the in vivo antiinflammatory effects of SASP and its metabolites are, at least partly, due to the direct oxygen-centered scavenging activity of these drugs.

  1. Influence of nitrogen oxides NO and NO2 on singlet delta oxygen production in pulsed discharge

    International Nuclear Information System (INIS)

    Ionin, A A; Klimachev, Yu M; Kozlov, A Yu; Kotkov, A A; Rulev, O A; Seleznev, L V; Sinitsyn, D V; Vagin, N P; Yuryshev, N N; Kochetov, I V; Napartovich, A P

    2009-01-01

    The influence of nitrogen oxides NO and NO 2 on the specific input energy (SIE) and the time behaviour of singlet delta oxygen (SDO) luminescence excited by a pulsed e-beam sustained discharge in oxygen were experimentally and theoretically studied. NO and NO 2 addition into oxygen results in a small increase and decrease in the SIE, respectively, the latter being connected with a large energy of electron affinity to NO 2 . The addition of 0.1-0.3% nitrogen oxides was experimentally and theoretically demonstrated to result in a notable enhancement of the SDO lifetime, which is related to a decrease in the atomic oxygen concentration in afterglow. It was experimentally demonstrated that to get a high SDO concentration at the gas pressure 30-60 Torr for a time interval of less than ∼0.5 s one needs to add not less than 0.2% nitrogen oxides into oxygen. The temperature dependence of the relaxation constant for SDO quenching by unexcited oxygen was estimated by using experimental data on the time behaviour of SDO luminescence.

  2. Production of perhydroxy radical (HO2) and oxygen in the radiolysis of aqueous solution and the LET effects

    International Nuclear Information System (INIS)

    Imamura, Masashi

    1987-01-01

    This article aims to review the results concerning the production of perhydroxy radical (HO 2 ) and oxygen from irradiated aqueous solutions and the LET effects on these products, beginning with a brief introduction to the elementary primary processes in radiolysis of aqueous solution. Oxygen, if produced in the radiolysis of aqueous solution, may be considered responsible for the decreased oxygen enhancement ratio (OER) in biological systems exposed to high LET radiation. A Harwell's group has determined oxygen generated from aqueous ferrous solutions irradiated with heavy ions and concluded that the oxygen is a precursor of perhydroxy radicals. The LET-dependent yields for perhydroxy radical have been determined by LaVerne and Schuler; the analysis of their results sheds light into the reactions taking place in high-LET track cores. In conjunction with these results, the possible contributions to the LET effects are pointed out and discussed of the energetic secondary electrons ejected from the track core by knock-on collision with heavy ions and of the variation in the track core size with energy of the heavy particles. (author)

  3. Nitrogen fixation in the activated sludge treatment of thermomechanical pulping wastewater: effect of dissolved oxygen.

    Science.gov (United States)

    Slade, A H; Anderson, S M; Evans, B G

    2003-01-01

    N-ViroTech, a novel technology which selects for nitrogen-fixing bacteria as the bacteria primarily responsible for carbon removal, has been developed to treat nutrient limited wastewaters to a high quality without the addition of nitrogen, and only minimal addition of phosphorus. Selection of the operating dissolved oxygen level to maximise nitrogen fixation forms a key component of the technology. Pilot scale activated sludge treatment of a thermomechanical pulping wastewater was carried out in nitrogen-fixing mode over a 15 month period. The effect of dissolved oxygen was studied at three levels: 14% (Phase 1), 5% (Phase 2) and 30% (Phase 3). The plant was operated at an organic loading of 0.7-1.1 kg BOD5/m3/d, a solids retention time of approximately 10 d, a hydraulic retention time of 1.4 d and a F:M ratio of 0.17-0.23 mg BOD5/mg VSS/d. Treatment performance was very stable over the three dissolved oxygen operating levels. The plant achieved 94-96% BOD removal, 82-87% total COD removal, 79-87% soluble COD removal, and >99% total extractives removal. The lowest organic carbon removals were observed during operation at 30% DO but were more likely to be due to phosphorus limitation than operation at high dissolved oxygen, as there was a significant decrease in phosphorus entering the plant during Phase 3. Discharge of dissolved nitrogen, ammonium and oxidised nitrogen were consistently low (1.1-1.6 mg/L DKN, 0.1-0.2 mg/L NH4+-N and 0.0 mg/L oxidised nitrogen). Discharge of dissolved phosphorus was 2.8 mg/L, 0.1 mg/L and 0.6 mg/L DRP in Phases 1, 2 and 3 respectively. It was postulated that a population of polyphosphate accumulating bacteria developed during Phase 1. Operation at low dissolved oxygen during Phase 2 appeared to promote biological phosphorus uptake which may have been affected by raising the dissolved oxygen to 30% in Phase 3. Total nitrogen and phosphorus discharge was dependent on efficient secondary clarification, and improved over the course of

  4. Effect of oxygen breathing on micro oxygen bubbles in nitrogen-depleted rat adipose tissue at sea level and 25 kPa altitude exposures

    DEFF Research Database (Denmark)

    Randsoe, Thomas; Hyldegaard, Ole

    2012-01-01

    The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing...... at 101.3 kPa (sea level) or at 25 kPa altitude exposures during continued oxygen breathing. In keeping with previous observations and bubble kinetic models, we hypothesize that oxygen breathing may contribute to oxygen bubble growth at altitude. Anesthetized rats were exposed to 3 h of oxygen...... prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently...

  5. EQUILIBRIUM AND KINETIC NITROGEN AND OXYGEN-ISOTOPE FRACTIONATIONS BETWEEN DISSOLVED AND GASEOUS N2O

    NARCIS (Netherlands)

    INOUE, HY; MOOK, WG

    1994-01-01

    Experiments were performed to determine the equilibrium as well as kinetic stable nitrogen and oxygen isotope fractionations between aqueous dissolved and gaseous N2O. The equilibrium fractionations, defined as the ratio of the isotopic abundance ratios (15R and 18R, respectively) of gaseous and

  6. ANALYTICAL EMPLOYMENT OF STABLE ISOTOPES OF CARBON, NITROGEN, OXYGEN AND HYDROGEN FOR FOOD AUTHENTICATION

    Directory of Open Access Journals (Sweden)

    E. Novelli

    2011-04-01

    Full Text Available Stable isotopes of carbon, nitrogen, oxygen and hydrogen were used for analytical purposes for the discrimination of the type of production (farming vs. fishing in the case of sea bass and for geographical origin in the case of milk. These results corroborate similar experimental evidences and confirm the potential of this analytical tool to support of food traceability.

  7. Ethylene formation from methionine as a method to evaluate oxygen free radical scavenging and metal inactivation by cosmetics.

    Science.gov (United States)

    Galey, J B; Millecamps, F; Nguyen, Q L

    1991-04-01

    Synopsis It has been proposed that oxygen free radicals are involved in skin aging. This paper describes a new method for the evaluation of oxygen free radical scavenging by cosmetic products. It is based on the measurement, by gas chromatography, of ethylene produced during the oxidation of methionine by the hydroxyl radical. OH. is produced by an iron catalyzed superoxide-driven Fenton reaction in which superoxide is obtained by photochemical oxygen reduction. The cosmetic is applied, together with methionine, riboflavine, NADH, FeCl(3) and EDTA, on a glass microfibre filter and submitted to UVA exposure through a quartz cell. Ethylene is then measured from aliquots of the atmosphere inside the cell. Catalase or Desferal completely inhibits ethylene production. SOD or high concentrations of hydroxyl radical scavengers (Mannitol, DMSO etc.) afford a partial protection. Thus the efficiency of O(2) (-)., H(2)O(2) and OH. scavengers and iron chelators can be measured. The main advantage of this test is that it is performed in conditions which simulate skin during UV exposure (e.g. air and UV exposed thin layer). Furthermore, as it is non-invasive, it can also be applied to human skin in vivo.

  8. Nitrogen fixation and molecular oxygen: comparative genomic reconstruction of transcription regulation in Alphaproteobacteria

    Directory of Open Access Journals (Sweden)

    Olga V Tsoy

    2016-08-01

    Full Text Available Biological nitrogen fixation plays a crucial role in the nitrogen cycle. An ability to fix atmospheric nitrogen, reducing it to ammonium, was described for multiple species of Bacteria and Archaea. Being a complex and sensitive process, nitrogen fixation requires a complicated regulatory system, also, on the level of transcription. The transcriptional regulatory network for nitrogen fixation was extensively studied in several representatives of the class Alphaproteobacteria. This regulatory network includes the activator of nitrogen fixation NifA, working in tandem with the alternative sigma-factor RpoN as well as oxygen-responsive regulatory systems, one-component regulators FnrN/FixK and two-component system FixLJ. Here we used a comparative genomics analysis for in silico study of the transcriptional regulatory network in 50 genomes of Alphaproteobacteria. We extended the known regulons and proposed the scenario for the evolution of the nitrogen fixation transcriptional network. The reconstructed network substantially expands the existing knowledge of transcriptional regulation in nitrogen-fixing microorganisms and can be used for genetic experiments, metabolic reconstruction, and evolutionary analysis.

  9. THE REDSHIFT EVOLUTION OF OXYGEN AND NITROGEN ABUNDANCES IN EMISSION-LINE SDSS GALAXIES

    International Nuclear Information System (INIS)

    Thuan, Trinh X.; Pilyugin, Leonid S.; Zinchenko, Igor A.

    2010-01-01

    The oxygen and nitrogen abundance evolutions with redshift and galaxy stellar mass in emission-line galaxies from the Sloan Digital Sky Survey (SDSS) are investigated. This is the first such study for nitrogen abundances, and it provides an additional constraint for the study of the chemical evolution of galaxies. We have devised a criterion to recognize and exclude from consideration active galactic nuclei and star-forming galaxies with large errors in the line flux measurements. To select star-forming galaxies with accurate line fluxes measurements, we require that, for each galaxy, the nitrogen abundances derived with various calibrations based on different emission lines agree. Using this selection criterion, subsamples of star-forming SDSS galaxies have been extracted from catalogs of the Max-Planck-Institute for Astrophysics/Johns Hopkins University group. We found that the galaxies of highest masses, those with masses ∼>10 11.2 M sun , have not been enriched in both oxygen and nitrogen over the last ∼3 Gyr: they have formed their stars in the so distant past that these have returned their nucleosynthesis products to the interstellar medium before z = 0.25. The galaxies in the mass range from ∼10 11.0 M sun to ∼10 11.2 M sun do not show an appreciable enrichment in oxygen, but do show some enrichment in nitrogen: they also formed their stars before z = 0.25 but later in comparison to the galaxies of highest masses; these stars have not returned nitrogen to the interstellar medium before z = 0.25 because they have not had enough time to evolve. This suggests that stars with lifetimes of 2-3 Gyr, in the 1.5-2 M sun mass range, contribute to the nitrogen production. Finally, galaxies with masses ∼ 11 M sun show enrichment in both oxygen and nitrogen during the last 3 Gyr: they have undergone appreciable star formation and have converted up to ∼20% of their mass into stars over this period. Both oxygen and nitrogen enrichments increase with decreasing

  10. Remote Sensing of Dissolved Oxygen and Nitrogen in Water Using Raman Spectroscopy

    Science.gov (United States)

    Ganoe, Rene; DeYoung, Russell J.

    2013-01-01

    The health of an estuarine ecosystem is largely driven by the abundance of dissolved oxygen and nitrogen available for maintenance of plant and animal life. An investigation was conducted to quantify the concentration of dissolved molecular oxygen and nitrogen in water by means of Raman spectroscopy. This technique is proposed for the remote sensing of dissolved oxygen in the Chesapeake Bay, which will be utilized by aircraft in order to survey large areas in real-time. A proof of principle system has been developed and the specifications are being honed to maximize efficiency for the final application. The theoretical criteria of the research, components of the experimental system, and key findings are presented in this report

  11. Radiation-induced damage in T4 bacteriophage: the effect of superoxid radicals and molecular oxygen. Progress report, December 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Samuni, A.; Chevion, M.; Halpern, Y.S.; Ilan, Y.A.; Czapski, G.

    1978-01-01

    The sensitivity of T4 bacteriophage towards γ irradiation has been studied in phosphate buffer suspensions. The spectrum of the water radicals was controlled by a careful choice of the appropriate saturating gas and the addition of radical scavengers. Thus, it was possible to distinguish between the effects of molecular oxygen and the superoxide radicals formed through its reactions. About 90 percent of the damage was caused by the water radicals formed in the bulk suspensions. These probably affected the phage proteins; only the remainder of the damage involved the viral DNA. The oxygen enhancement ratio observed was not connected in any way with the formation of the superoxide radicals. The results confirmed that the OH radicals are the reactive species, while e - /sub aq/ as well as the superoxide radical do not contribute to the radiodamage

  12. Nitrogen diffusion in hafnia and the impact of nitridation on oxygen and hydrogen diffusion: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyanarayanan, Rajesh, E-mail: rajessat@in.ibm.com, E-mail: rajesh.sathiyanarayanan@gmail.com; Pandey, R. K.; Murali, K. V. R. M. [IBM Semiconductor Research and Development Center, Bangalore 560045 (India)

    2015-01-21

    Using first-principles simulations, we have computed incorporation energies and diffusion barriers of ammonia, the nitrogen molecule and atomic nitrogen in monoclinic hafnia (m-HfO{sub 2}). Our calculations show that ammonia is likely to dissociate into an NH{sub 2} molecular unit, whereas the nitrogen molecule remains as a molecule either in the interstitial space or at an oxygen lattice site. The lowest energy pathway for the diffusion of atomic nitrogen interstitials consists of the hopping of the nitrogen interstitial between neighboring three-coordinated lattice oxygen atoms that share a single Hf atom, and the barrier for such hops is determined by a switching mechanism. The substitutional nitrogen atom shows a preference for diffusion through the doubly positive oxygen vacancy-mediated mechanism. Furthermore, we have investigated the impact of nitrogen atoms on the diffusion barriers of oxygen and hydrogen interstitials in m-HfO{sub 2}. Our results show that nitrogen incorporation has a significant impact on the barriers for oxygen and hydrogen diffusion: nitrogen atoms attract oxygen and hydrogen interstitials diffusing in the vicinity, thereby slowing down (reducing) their diffusion (diffusion length)

  13. Protection by free oxygen radical scavenging enzymes against salicylate-induced embryonic malformations in vitro.

    Science.gov (United States)

    Karabulut, A K; Ulger, H; Pratten, M K

    2000-08-01

    Salicylates are among the oldest and most widely used drugs and are known to lead to foetal death, growth retardation and congenital abnormalities in experimental animals. In this study, the effects of acetyl salicylic acid (ASA), salicylic acid (SAL) and sodium salicylate (NaSAL) on early organogenesis and the interaction of these molecules with free radicals has been investigated. Postimplantation rat embryos were cultured in vitro from day 9.5 of gestation for 48 hr. ASA, SAL and NaSAL were added to whole rat serum at concentrations between 0.1 and 0.6 mg/ml. Also, the lowest effective concentration of ASA for all parameters (0.3 mg/ml) and the same concentration of NaSAL and SAL was added to the culture media in the presence of superoxide dismutase (SOD) (30 U/ml) or glutathione (0.5 micromol/ml). The growth and development of embryos was compared and each embryo was evaluated for the presence of any malformations. When compared to growth of control embryos, the salicylates decreased all growth and developmental parameters in a concentration-responsive manner. There was also a concentration-related increase in overall dysmorphology, including the incidence of haematoma in the yolk sac and neural system, open neural tube, abnormal tail torsion and the absence of fore limb bud. When SOD was added in the presence of ASA, growth and developmental parameters were improved and there was a significant decrease in the incidence of malformations. Addition of SOD also decreased the incidence of malformations in the presence of SAL, but did not effect the growth and developmental parameters of SAL and NaSAL. There was no significant difference between the embryos grown in the presence of these three molecules on the addition of glutathione. The effects of salicylates might involve free oxygen radicals by the non-enzymatic production of the highly teratogenic metabolites 2,3- and 2,5-dihydroxybenzoic acid. An enhanced production of these metabolites in embryonic tissues

  14. Energy transfers between N_2(A"3Σ) nitrogen metastable molecules and oxygen atoms and molecules

    International Nuclear Information System (INIS)

    De Souza, Antonio Rogerio

    1985-01-01

    This research thesis aims at determining reaction coefficients for energy transfers between nitrogen in its metastable status and oxygen atoms and molecules, the variation of these coefficients with respect to temperature (mainly in the 200-400 K range), products formed and more particularly branching rates of O("1S) oxygen and of NO_2. Reaction coefficients are experimentally determined by using the technique of post-discharge in flow. The experimental set-up is described and the study of the best operating conditions is reported. In the next part, the author reports the study of the energy transfer between nitrogen in its metastable status N_2(A) and oxygen molecules. Reaction coefficients are determined for the first three vibrational levels. The author then reports the study of the transfer of N_2(A) molecules on oxygen atoms in their fundamental status. Reactions coefficients and their variations are determined for the three first vibrational levels. The author describes the dissociation method and the method of detection of atomic oxygen. A kinetic model is proposed for the analysis of formed products during a post-discharge in flow, and the branching rate for the formation of O("1S) oxygen between 190 and 365 K is determined. The author finally discusses publications on the role of these reactions in the interpretation of some atmospheric phenomena

  15. Photoprotective effect of vitamins A and E on polyamine and oxygenated free radical metabolism in hairless mouse epidermis.

    Science.gov (United States)

    Khettab, N; Amory, M C; Briand, G; Bousquet, B; Combre, A; Forlot, P; Barey, M

    1988-12-01

    The purpose of this study was to confirm the photoprotective effect on skin of vitamins A and E, due to inhibition of polyamine synthesis and production of free radicals. These variables were measured in the lumbar epidermis of the female hairless mouse subjected to UVA + B irradiation. Polyamines were assayed in epidermal homogenate by HPLC, and production of oxygenated free radicals was determined by spectrofluorometric assay of malonyl dialdehyde. It was determined that butyl-hydroxy-toluene and vitamin E inhibited production of free radicals (56% and 60%, respectively) and caused a significant reduction in polyamine biosynthesis (P less than 0.01), whereas the inhibitory effect of malonyl dialdehyde induced by vitamin A (30%) had no associated effect on polyamine metabolism.

  16. Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application

    Science.gov (United States)

    Mo, Zaiyong; Zheng, Ruiping; Peng, Hongliang; Liang, Huagen; Liao, Shijun

    2014-01-01

    Well defined nitrogen-doped graphene (NG) is prepared by a transfer doping approach, in which the graphene oxide (GO) is deoxidized and nitrogen doped by the vaporized polyaniline, and the GO is prepared by a thermal expansion method from graphite oxide. The content of doped nitrogen in the doped graphene is high up to 6.25 at% by the results of elements analysis, and oxygen content is lowered to 5.17 at%. As a non-precious metal cathode electrocatalyst, the NG catalyst exhibits excellent activity toward the oxygen reduction reaction, as well as excellent tolerance toward methanol. In 0.1 M KOH solution, its onset potential, half-wave potential and limiting current density for the oxygen reduction reaction reach 0.98 V (vs. RHE), 0.87 V (vs. RHE) and 5.38 mA cm-2, respectively, which are comparable to those of commercial 20 wt% Pt/C catalyst. The well defined graphene structure of the catalyst is revealed clearly by HRTEM and Raman spectra. It is suggested that the nitrogen-doping and large surface area of the NG sheets give the main contribution to the high ORR catalytic activity.

  17. Antioxidant activity of the giant jellyfish Nemopilema nomurai measured by the oxygen radical absorbance capacity and hydroxyl radical averting capacity methods.

    Science.gov (United States)

    Harada, Kazuki; Maeda, Toshimichi; Hasegawa, Yoshiro; Tokunaga, Takushi; Ogawa, Shinya; Fukuda, Kyoko; Nagatsuka, Norie; Nagao, Keiko; Ueno, Shunshiro

    2011-01-01

    The giant jellyfish Nemopilema nomurai (reaching sizes of up to 2 m diameter and 150 kg), which forms dense blooms, has caused extensive damage to fisheries by overloading trawl nets, while its toxic nematocysts cause dermatological symptoms. Giant jellyfish are currently discarded on the grounds of pest control. However, the giant jellyfish is considered to be edible and is part of Chinese cuisine. Therefore, we investigated whether any benefits for human health may be derived from consumption of the jellyfish in order to formulate medicated diets. Antioxidant activity of Nemopilema nomurai was measured using the oxygen radical absorbance capacity (ORAC) and hydroxyl radical averting capacity (HORAC) methods. Based on the results, the ORAC value of the giant jellyfish freeze-dried sample was 541 µmol trolox equivalent (TE)/100 g and the HORAC value was 3,687 µmol gallic acid equivalent (GAE)/100 g. On the other hand, the IC50 value of hydroxyl radical scavenging activity measured by using the electron spin resonance method was 3.3%. In conclusion, the results suggest that the freeze-dried powder of the giant jellyfish Nemopilema nomurai is a potentially beneficial food for humans.

  18. Does ibuprofen treatment in patent ductus arteriosus alter oxygen free radicals in premature infants?

    Science.gov (United States)

    Akar, Melek; Yildirim, Tulin G; Sandal, Gonca; Bozdag, Senol; Erdeve, Omer; Altug, Nahide; Uras, Nurdan; Oguz, Serife S; Dilmen, Ugur

    2017-04-01

    Introduction Ibuprofen is used widely to close patent ductus arteriosus in preterm infants. The anti-inflammatory activity of ibuprofen may also be partly due to its ability to scavenge reactive oxygen species and reactive nitrogen species. We evaluated the interaction between oxidative status and the medical treatment of patent ductus arteriosus with two forms of ibuprofen. Materials and methods This study enrolled newborns of gestational age ⩽32 weeks, birth weight ⩽1500 g, and postnatal age 48-96 hours, who received either intravenous or oral ibuprofen to treat patent ductus arteriosus. Venous blood was sampled before ibuprofen treatment from each patient to determine antioxidant and oxidant concentrations. Secondary samples were collected 24 hours after the end of the treatment. Total oxidant status and total antioxidant capacity were measured using Erel's method. This prospective randomised study enrolled 102 preterm infants with patent ductus arteriosus. The patent ductus arteriosus closure rate was significantly higher in the oral ibuprofen group (84.6 versus 62%) after the first course of treatment (p=0.011). No significant difference was found between the pre- and post-treatment total oxidant status and total antioxidant capacity in the groups. Discussion Ibuprofen treatment does not change the total oxidant status or total antioxidant capacity. We believe that the effect of ibuprofen treatment in inducing ischaemia overcomes the scavenging effect of ibuprofen.

  19. Enhancement of oxygen transfer and nitrogen removal in a membrane separation bioreactor for domestic wastewater treatment.

    Science.gov (United States)

    Chiemchaisri, C; Yamamoto, K

    2005-01-01

    Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid-liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 degrees C. As the temperature was stepwise decreased from 25 to 5 degrees C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 degrees C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2-3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.

  20. The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2

    Science.gov (United States)

    Salawitch, R. J.; Wofsy, S. C.; Wennberg, P. O.; Cohen, R. C.; Anderson, J. G.; Fahey, D. W.; Gao, R. S.; Keim, E. R.; Woodbridge, E. L.; Stimpfle, R. M.; hide

    1994-01-01

    In situ measurements of hydrogen, nitrogen, and chlorine radicals obtained through sunrise and sunset in the lower stratosphere during SPADE are compared to results from a photochemical model constrained by observed concentrations of radical precursors and environmental conditions. Models allowing for heterogeneous hydrolysis of N205 on sulfate aerosols agree with measured concentrations of NO, NO2, and ClO throughout the day, but fail to account for high concentrations of OH and H02 observed near sunrise and sunset. The morning burst of [OH] and [HO2] coincides with the rise of [NO] from photolysis of N02, suggesting a new source of HO, that photolyzes in the near UV (350 to 400 nm) spectral region. A model that allows for the heterogeneous production of HN02 results in an excellent simulation of the diurnal variations of [OH] and [HO2].

  1. Roles of oxygen radicals and elastase in citric acid-induced airway constriction of guinea-pigs

    OpenAIRE

    Lai, Y -L; Chiou, W -Y; Lu, F J; Chiang, L Y

    1999-01-01

    Antioxidants attenuate noncholinergic airway constriction. To further investigate the relationship between tachykinin-mediated airway constriction and oxygen radicals, we explored citric acid-induced bronchial constriction in 48 young Hartley strain guinea-pigs, divided into six groups: control; citric acid; hexa(sulphobutyl)fullerenes+citric acid; hexa(sulphobutyl)fullerenes+phosphoramidon+citric acid; dimethylthiourea (DMTU)+citric acid; and DMTU+phosphoramidon+citric acid. Hexa(sulphobutyl...

  2. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.; Piwnik J.

    2015-01-01

    Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was pr...

  3. Hypoxia/reoxygenation increases the permeability of endothelial cell monolayers: Role of oxygen radicals

    International Nuclear Information System (INIS)

    Inauen, W.; Payne, D.K.; Kvietys, P.R.; Granger, D.N.

    1990-01-01

    We assessed the effect of hypoxia/reoxygenation on 14C-albumin flux across endothelial monolayers. Cultured bovine pulmonary artery endothelial cells were grown to confluence on nitrocellulose filters (pore size 12 microns). The endothelialized filters were mounted in Ussing-type chambers which were filled with cell culture medium (M 199). Equimolar amounts (33 nM) of 14C-labeled and unlabeled albumin were added to the hot and cold chambers, respectively. The monolayers were then exposed to successive periods (90 min) of normoxia (pO2 145 mmHg), hypoxia (pO2 20 mmHg), and reoxygenation (pO2 145 mmHg). A gas bubbling system was used to control media pO2 and to ensure adequate mixing. Four aliquots of culture media were taken during each period in order to calculate the 14C-albumin permeability across the endothelialized filter. In some experiments, either the xanthine oxidase inhibitor, oxypurinol (10 microM), or superoxide dismutase (600 U/mL), was added to the media immediately prior to the experiments. As compared to the normoxic control period, albumin permeability was 1.5 times higher during hypoxia (p less than 0.01) and 2.3 times higher during reoxygenation (p less than 0.01). The reoxygenation-induced increase in albumin permeability was prevented by either oxypurinol or superoxide dismutase. These data indicate that xanthine oxidase-derived oxygen radicals contribute to the hypoxia/reoxygenation-induced endothelial cell dysfunction. The altered endothelial barrier function induced by hypoxia/reoxygenation is consistent with the microvascular dysfunction observed following reperfusion of ischemic tissues

  4. Effect of early rehabilitation training on oxygen free radical generation and nerve injury in patients with cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Zhao-Shu Liu

    2017-08-01

    Full Text Available Objective: To study the effect of early rehabilitation training combined with edaravone on oxygen free radical generation and nerve injury in patients with cerebral hemorrhage. Methods: A total of 56 patients with acute cerebral hemorrhage who were treated in Zigong Third People’s Hospital between July 2014 and March 2017 were selected and randomly divided into early rehabilitation group and routine rehabilitation group, the early rehabilitation group began the rehabilitation training 2 d after cerebral hemorrhage condition was stabilized, and routine rehabilitation group began the rehabilitation training 14 d after cerebral hemorrhage. Serum contents of oxygen free radicals, nerve injury markers and neurotrophic molecules were detected 28 d and 56 d after cerebral hemorrhage. Results: 28 d and 56 d after cerebral hemorrhage, serum MDA, AOPP, 8-OHdG, GFAP, NSE, Tf, Ft and S100B levels of early rehabilitation group were significantly lower than those of routine rehabilitation group while BDNF, NGF, NTF-α and IGF-I levels were significantly higher than those of routine rehabilitation group. Conclusion: Early rehabilitation training combined with edaravone for cerebral hemorrhage can inhibit the oxygen free radical generation, reduce the degree of nerve injury and improve the neurotrophic state.

  5. Measurement and modeling of ozone and nitrogen oxides produced by laser breakdown in oxygen-nitrogen atmospheres.

    Science.gov (United States)

    Gornushkin, Igor B; Stevenson, Chris L; Galbács, Gábor; Smith, Ben W; Winefordner, James D

    2003-11-01

    The production of ozone nad nitrogen oxides was studied during multiple laser breakdown in oxygen-nitrogen mixtures at atmospheric pressure. About 2000 laser shots at 10(10) W cm-2 were delivered into a sealed reaction chamber. The chamber with a long capillary was designed to measure absorption of O3, NO, and NO2 as a function of the number of laser shots. The light source for absorption measurements was the continuum radiation emitted by the plasma during the first 0.2 microsecond of its evolution. A kinetic model was developed that encompassed the principal chemical reactions between the major atmospheric components and the products of laser breakdown. In the model, the laser plasma was treated as a source of nitric oxide and atomic oxygen, whose rates of production were calculated using measured absorption by NO, NO2, and O3. The calculated concentration profiles for NO, NO2, and O3 were in good agreement with measured profiles over a time scale of 0-200 s. The steady-state concentration of ozone was measured in a flow cell in air. For a single breakdown in air, the estimated steady-state yield of ozone was 2 x 10(12) molecules, which agreed with the model prediction. This study can be of importance for general understanding of laser plasma chemistry and for elucidating the nature of spectral interferences and matrix effects that may take place in applied spectrochemical analysis.

  6. Detonation limits of clouds of coal dust in mixtures of oxygen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.H.; Fearnley, P.J.; Nettleton, M.A.

    1987-09-01

    Ignition and the subsequent acceleration of flame in clouds of coal dust dispersed in mixtures of oxygen and nitrogen have been studied. Two coal sizes, 24 and 54 ..mu..m, in concentrations ranging from 0.05 to 0.22 kg/m/sup 3/ were employed. Flame acceleration and the approach to transition to a stable detonation were monitored by a combination of microwave interferometry and pressure measurements. Flame and shock velocities up to 1.85 km/sec were observed. Ignition distances were found to be independent of the concentrations of dust and oxygen and particle size.

  7. Electrocatalytic analysis of superoxide anion radical using nitrogen-doped graphene supported Prussian Blue as a biomimetic superoxide dismutase

    International Nuclear Information System (INIS)

    Liu, Tingting; Niu, Xiangheng; Shi, Libo; Zhu, Xiang; Zhao, Hongli; Lana, Minbo

    2015-01-01

    Graphical abstract: Prussian Blue (PB) cubes supported on nitrogen-doped graphene sheets (NGS) were synthesized using a simple and scalable method, and the utilization of the PB-NGS hybrid as an efficient superoxide dismutase mimic in the electrochemical sensing of O 2 ·− was demonstrated. - Highlights: • Facile and scalable synthesis of Prussian Blue cubes supported on nitrogen-doped graphene; • Nitrogen-doped graphene supported Prussian Blue as an efficient biomimetic superoxide dismutase for the electrocatalytic sensing of superoxide anion; • Good sensitivity, excellent selectivity and attractive long-term stability for superoxide anion sensing. - Abstract: Considering the double-sided roles of superoxide anion radical, monitoring of its track in living systems is attracting increasing academic and practical interest. Here we synthesized Prussian Blue (PB) cubes that were supported on nitrogen-doped graphene sheets (NGS) using a facile and scalable method, and explored their potential utilization in the electrochemical sensing of superoxide anion. As an efficient superoxide dismutase mimic, direct electron transfer of the prepared PB-NGS hybrid immobilized on a screen-printed gold electrode was harvested in physiological media. With the bifunctional activities, the synthetic mimic could catalyze the dismutation of superoxide anion via the redox cycle of active iron. By capturing the electro-reduction amperometric responses of superoxide anion radical to hydrogen peroxide in the cathodic polarization, highly sensitive determination (a sensitivity of as high as 0.32 μA cm −2 μM −1 ) of the target was achieved, with no interference from common coexisting species including ascorbic acid, dopamine, and uric acid observed. Compared to natural superoxide dismutases, the artificial enzyme mimic exhibited favorable activity stability, indicating its promising applications in the in vivo long-term monitoring of superoxide anion

  8. Stable isotope ratio measurements in hydrogen, nitrogen, and oxygen using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.; Milanovich, F.P.

    1975-01-01

    A method for measuring stable isotope ratios using laser Raman scattering was developed which may prove of significant utility and benefit in stable isotope tracer studies. Crude isotope ratio measurements obtained with a low-power laser indicate that with current technology it should be possible to construct an isotope ratio measurement system using laser Raman scattering that is capable of performing 0.1 percent accuracy isotope ratio measurements of 16 O/ 18 O in natural abundance oxygen gas or 14 N/ 15 N in natural abundance nitrogen gas in times less than two minutes per sample. Theory pertinent to the technique, designs of specific isotope ratio spectrometer systems, and data relating to isotope ratio measurements in hydrogen, nitrogen, and oxygen are presented. In addition, the current status of several studies utilizing this technique is discussed. (auth)

  9. Sputtering of solid nitrogen and oxygen by keV hydrogen ions

    DEFF Research Database (Denmark)

    Ellegaard, O.; Schou, Jørgen; Stenum, B.

    1994-01-01

    Electronic sputtering of solid nitrogen and oxygen by keV hydrogen ions has been studied at two low-temperature setups. The yield of the sputtered particles has been determined in the energy regime 4-10 keV for H+, H-2+ and H-3+ ions. The yield for oxygen is more than a factor of two larger than...... that for nitrogen. The energy distributions of the sputtered N2 and O2 molecules were measured for hydrogen ions in this energy regime as well. The yields from both solids turn out to depend on the sum of the stopping power of all atoms in the ion. The yield increases as a quadratic function of the stopping power...

  10. Investigations into detonations of coal dust suspensions in oxygen-nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.; Fearnley, P.; Nettleton, M.

    1987-03-01

    The effect of particle size (practically monodispersed), volatile content and composition of gaseous oxygen-nitrogen mixtures on initiating flame acceleration rates in coal dust suspensions is investigated experimentally. Description is given of apparatus, material used and experiments carried out. The authors discusses: microwave interferograms, pressure oscillograms for various oxygen-nitrogen mixtures; development of ionization front speed in relation to distance from diaphragm; effect of composition on shock wave advance rates. It is concluded that: microwave interferometry can successfully be used in recording initiation of coal dust suspension detonations; ignition of confined coal dust suspensions by shock waves originated by detonation front in stoichiometric oxyacetylene mixtures can be explained by heating of coal particles in shock compression stream to ignition temperature (1000 K) by combined convection and radiation heat transfer. 16 refs.

  11. Influences of Air, Oxygen, Nitrogen, and Carbon Dioxide Nanobubbles on Seed Germination and Plant Growth.

    Science.gov (United States)

    Ahmed, Ahmed Khaled Abdella; Shi, Xiaonan; Hua, Likun; Manzueta, Leidy; Qing, Weihua; Marhaba, Taha; Zhang, Wen

    2018-05-23

    Nanobubbles (NBs) hold promise in green and sustainable engineering applications in diverse fields (e.g., water/wastewater treatment, food processing, medical applications, and agriculture). This study investigated the effects of four types of NBs on seed germination and plant growth. Air, oxygen, nitrogen, and carbon dioxide NBs were generated and dispersed in tap water. Different plants, including lettuce, carrot, fava bean, and tomato, were used in germination and growth tests. The seeds in water-containing NBs exhibited 6-25% higher germination rates. Especially, nitrogen NBs exhibited considerable effects in the seed germination, whereas air and carbon dioxide NBs did not significantly promote germination. The growth of stem length and diameter, leave number, and leave width were promoted by NBs (except air). Furthermore, the promotion effect was primarily ascribed to the generation of exogenous reactive oxygen species by NBs and higher efficiency of nutrient fixation or utilization.

  12. Os radicais livres de oxigênio e as doenças pulmonares Oxygen free radicals and pulmonary disease

    Directory of Open Access Journals (Sweden)

    Dahir Ramos de Andrade Júnior

    2005-02-01

    Full Text Available Os radicais livres de oxigênio são moléculas que apresentam elétrons não pareados em sua órbita externa, capazes de transformar outras moléculas com as quais se encontram, como proteínas, carbohidratos, lípides e o ácido desoxirribonucleico. Essas moléculas são geradas em situações clínicas onde microambientes de hipóxia são seguidos por microambientes de reoxigenação. Nesse grupo estão o choque hemodinâmico, a septicemia, a resposta inflamatória sistêmica, as hepatites fulminantes, o transplante de órgãos, e a insuficiência respiratória, entre outras condições. Neste trabalho discutimos os principais conceitos sobre os radicais livres de oxigênio: os principais tipos, sua formação e a forma como atuam sobre todas as estruturas celulares provocando lesão tecidual significativa. Os principais sistemas de defesa antioxidante existentes para combater o estresse oxidativo são comentados, com destaque para a glutationa, superóxido dismutase, catalase, glutationa peroxidase e N-acetilcisteína. A influência dos radicais livres de oxigênio sobre as principais doenças pulmonares também é discutida, com ênfase nos produtos do cigarro, doença pulmonar obstrutiva crônica, asma, apnéia obstrutiva do sono e síndrome do desconforto respiratório agudo.Oxygen free radicals are molecules that present unpaired electrons in their outer orbit and can transform other molecules such as proteins, carbohydrates, lipids and deoxyribonucleic acid. Oxygen free radicals are produced in various clinical conditions in which hypoxic microenvironments are generated and reoxygenation follows. Such situations include clinical shock, septicemia, systemic inflammatory response, fulminant hepatitis, organ transplant and respiratory failure. In this review, we discuss the main concepts related to oxygen free radicals: the principal types and their formation, as well as the way in which they affect cellular structures and cause

  13. Nitrogen oxidative activation in the radiolysis process of dioxide hydrocarbon composition, oxygen-nitrogen over 3-d transition metals

    International Nuclear Information System (INIS)

    Rustamov, V.R.; Garibov, A.A.; Kerimov, V.K.; Aliyev, S.M.; Nasirova, Kh.Y.

    2004-01-01

    The radiochemical process of nitrogen fixation in carbon dioxide, oxygen-nitrogen composition in 3-d metal (iron, nickel) was studied. Bifunctional character of surface's role in the generation of radiolysis products was postulated: a) Chemisorption's of molecular ions (N 2 + , CO 2 + , O 2 + ) on the surface of metal and their dissociative neutralization. b) Coordination of nitrogen and carbon oxide being generated in nitrosyl and carbonyl-nitrosyl complex of iron and nickel. Total yield of the products is over the rang 6,4†7,5, to explain radiolysis' what contribution of only neutral products is impossible. Evidently in the generation of final products, defined contribution brings in molecular ions N 2 + (N + ) and CO 2 + . Interaction character of these ions with nickel proposes the formation of the relation between unpaired electrons N 2 + and CO 2 + with unfilled d-sub level of this metals with the nickel nitride generation [N i -N=N + ] and binding energy in ion diazotate decreases to twice. The yield of nitrogen dioxide on radiolysis of the air gave G NO2 =0,8±0,2 molecule/100eV which is proper to the date in the literature. Kinetic curve appears rapidly in the saturation. Air radiolysis over iron gave the following results: G NO 2 = 2,75 ± 0,25, G N 2 O = 9,0 ± 1,0 molecule/100eV. Thus total yield of radiolysis products is Σ G = 10,5 ± 12,0 molecule/100eV. (author)

  14. Nitrogen oxidative activation in the radiolysis process of dioxide hydrocarbon composition, oxygen-nitrogen over 3-D transition metals

    International Nuclear Information System (INIS)

    Rustamov, V.R.; Garibov, A.A.; Kerimov, V.K.; Aliyev, S.M.; Nasirova, Kh.Y.

    2004-01-01

    Full text: The radiochemical process of nitrogen fixation in carbon dioxide, oxygen-nitrogen composition in 3-d metal (iron, nickel) was studied. Bifunctional character of surface's role in the generation of radiolysis products was postulated: a) Chemisorption's of molecular ions (N 2 + , CO 2 + , O 2 + ) on the surface of metal and their dissociative neutralization. b) Coordination of nitrogen and carbon oxide being generated in nitrosyl and carbonyl-nitrosyl complex of iron and nickel. Total yield of the products is over the rang 6,4†7,5, to explain radiolysis' what contribution of only neutral products is impossible. Evidently in the generation of final products, defined contribution brings in molecular ions N 2 + (N + ) and CO 2 + . Interaction character of these ions with nickel proposes the formation of the relation between unpaired electrons N 2 + and CO 2 + with unfilled d-sub level of this metals with the nickel nitride generation [N i -N=N + ] and binding energy in ion diazotate decreases to twice. The yield of nitrogen dioxide on radiolysis of the air gave G NO2 =0,8±0,2 molecule/100eV which is proper to the date in the literature. Kinetic curve appears rapidly in the saturation. Air radiolysis over iron gave the following results: G NO 2 = 2,75 ± 0,25, G N 2 O = 9,0 ± 1,0 molecule/100eV. Thus total yield of radiolysis products is Σ G = 10,5 ± 12,0 molecule/100eV

  15. Anaerobic Nitrogen Turnover by Sinking Diatom Aggregates at Varying Ambient Oxygen Levels

    Directory of Open Access Journals (Sweden)

    Peter eStief

    2016-02-01

    Full Text Available In the world’s oceans, even relatively low oxygen (O2 levels inhibit anaerobic nitrogen cycling by free-living microbes. Sinking organic aggregates, however, might provide oxygen-depleted microbial hotspots in otherwise oxygenated surface waters. Here we show that sinking diatom aggregates can host anaerobic nitrogen cycling at ambient O2 levels well above the hypoxic threshold. Aggregates were produced from the ubiquitous diatom Skeletonema marinoi and the natural microbial community of seawater. Microsensor profiling through the center of sinking aggregates revealed internal anoxia at ambient 40% air saturation (~100 µmol O2 L-1 and below. Accordingly, anaerobic nitrate turnover inside the aggregates was evident within this range of ambient O2 levels. In incubations with 15N-labeled nitrate, individual Skeletonema aggregates produced NO2- (up to 10.7 nmol N h-1 per aggregate, N2 (up to 7.1 nmol N h-1, NH4+ (up to 2.0 nmol N h-1, and N2O (up to 0.2 nmol N h-1. Intriguingly, nitrate stored inside the diatom cells served as an additional, internal nitrate source for N2 production, which may partially uncouple anaerobic nitrate turnover by diatom aggregates from direct ambient nitrate supply. Sinking diatom aggregates can contribute directly to fixed-nitrogen loss in low-oxygen environments in the ocean and vastly expand the ocean volume in which anaerobic nitrogen turnover is possible, despite relatively high ambient O2 levels. Depending on the extent of intracellular nitrate consumption during the sinking process, diatom aggregates may also be involved in the long-distance export of nitrate to the deep ocean.

  16. Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Qiliang Wei

    2015-09-01

    Full Text Available Nitrogen-doped carbon materials, including nitrogen-doped carbon nanotubes (NCNTs and nitrogen-doped graphene (NG, have attracted increasing attention for oxygen reduction reaction (ORR in metal-air batteries and fuel cell applications, due to their optimal properties including excellent electronic conductivity, 4e− transfer and superb mechanical properties. Here, the recent progress of NCNTs- and NG-based catalysts for ORR is reviewed. Firstly, the general preparation routes of these two N-doped carbon-allotropes are introduced briefly, and then a special emphasis is placed on the developments of both NCNTs and NG as promising metal-free catalysts and/or catalyst support materials for ORR. All these efficient ORR electrocatalysts feature a low cost, high durability and excellent performance, and are thus the key factors in accelerating the widespread commercialization of metal-air battery and fuel cell technologies.

  17. Preparation of nitrogen-doped graphitic carboncages as electrocatalyst for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Yan, Jing; Meng, Hui; Yu, Wendan; Yuan, Xiaoli; Lin, Worong; Ouyang, Wenpeng; Yuan, Dingsheng

    2014-01-01

    Nitrogen-doped carbon nanomaterials have been attracted increasing research interests in lithium-O 2 and Zinc-O 2 batteries, ultracapacitors and fuel cells. Herein, nitrogen-doped graphitic carboncages (N-GCs) have been prepared by mesoporous Fe 2 O 3 as a catalyst and lysine as a nitrogen doped carbon source. Due to the catalysis of Fe 2 O 3 , the N-GCs have a high graphitization degree at a low temperature, which is detected by X-ray diffraction and Raman spectrometer. Simultaneously, the heteroatom nitrogen is in-situ doped into carbon network. Therefore, the excellent electrocatalysis performance for oxygen reduction reaction is expected. The electrochemical measurement indicates that The N-GCs for oxygen reduction reaction in O 2 -saturated 0.1 mol L −1 KOH show a four-electron transfer process and exhibit excellent electrocatalytic activity (E ORR = -0.05 V vs. Ag/AgCl) and good stability (i/i 0 = 90% at -0.35 V after 4000 s with a rotation rate of 1600 rpm)

  18. Forensic applications of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments

    Science.gov (United States)

    Silva, S.R.; Ging, P.B.; Lee, R.W.; Ebbert, J.C.; Tesoriero, A.J.; Inkpen, E.L.

    2002-01-01

    Ground and surface waters in urban areas are susceptible to nitrate contamination from septic systems, leaking sewer lines, and fertilizer applications. Source identification is a primary step toward a successful remediation plan in affected areas. In this respect, nitrogen and oxygen isotope ratios of nitrate, in conjunction with hydrologic data and water chemistry, have proven valuable in urban studies from Austin, Texas, and Tacoma, Washington. In Austin, stream water was sampled during stremflow and baseflow conditions to assess surface and subsurface sources of nitrate, respectively. In Tacoma, well waters were sampled in adjacent sewered and un-sewered areas to determine if locally high nitrate concentrations were caused by septic systems in the un-sewered areas. In both studies, sewage was identified as a nitrate source and mixing between sewage and other sources of nitrate was apparent. In addition to source identification, combined nitrogen and oxygen isotopes were important in determining the significance of denitrification, which can complicate source assessment by reducing nitrate concentrations and increasing ??15N values. The two studies illustrate the value of nitrogen and oxygen isotopes of nitrate for forensic applications in urban areas. ?? Published by Elsevier Science Ltd. on behalf of AEHS.

  19. Light absorption and the photoformation of hydroxyl radical and singlet oxygen in fog waters

    Science.gov (United States)

    Kaur, R.; Anastasio, C.

    2017-09-01

    The atmospheric aqueous-phase is a rich medium for chemical transformations of organic compounds, in part via photooxidants generated within the drops. Here we measure light absorption, photoformation rates and steady-state concentrations of two photooxidants - hydroxyl radical (•OH) and singlet molecular oxygen (1O2*) - in 8 illuminated fog waters from Davis, California and Baton Rouge, Louisiana. Mass absorption coefficients for dissolved organic compounds (MACDOC) in the samples are large, with typical values of 10,000-15,000 cm2 g-C-1 at 300 nm, and absorption extends to wavelengths as long as 450-600 nm. While nitrite and nitrate together account for an average of only 1% of light absorption, they account for an average of 70% of •OH photoproduction. Mean •OH photoproduction rates in fogs at the two locations are very similar, with an overall mean of 1.2 (±0.7) μM h-1 under Davis winter sunlight. The mean (±1σ) lifetime of •OH is 1.6 (±0.6) μs, likely controlled by dissolved organic compounds. Including calculated gas-to-drop partitioning of •OH, the average aqueous concentration of •OH is approximately 2 × 10-15 M (midday during Davis winter), with aqueous reactions providing approximately one-third of the hydroxyl radical source. At this concentration, calculated lifetimes of aqueous organics are on the order of 10 h for compounds with •OH rate constants of 1 × 1010 M-1 s-1 or higher (e.g., substituted phenols such as syringol (6.4 h) and guaiacol (8.4 h)), and on the order of 100 h for compounds with rate constants near 1 × 109 M-1 s-1 (e.g., isoprene oxidation products such as glyoxal (152 h), glyoxylic acid (58 h), and pyruvic acid (239 h)). Steady-state concentrations of 1O2* are approximately 100 times higher than those of •OH, in the range of (0.1-3.0) × 10-13 M. Since 1O2* is a more selective oxidant than •OH, it will only react appreciably with electron-rich species such as dimethyl furan (lifetime of 2.0 h) and

  20. Effects of exogenous oxygen derived free radicals on myocardial capillary permeability, vascular tone, and incidence of ventricular arrhythmias in the canine heart

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Bjerrum, P J

    1992-01-01

    The aim was to examine the effects of exogenous oxygen derived free radicals on myocardial capillary permeability for a small hydrophilic indicator, postischaemic vascular tone, and the occurrence of arrhythmias in the canine heart in vivo.......The aim was to examine the effects of exogenous oxygen derived free radicals on myocardial capillary permeability for a small hydrophilic indicator, postischaemic vascular tone, and the occurrence of arrhythmias in the canine heart in vivo....

  1. Reaction of hypochlorite with amino acids and peptides : EPR evidence for rapid rearrangement and fragmentation of nitrogen-centred radicals

    International Nuclear Information System (INIS)

    Hawkins, C.L.; Davies, M.J.

    1998-01-01

    Various amino acid side chains have been shown to be particularly susceptible to attack and modification by hypochlorite (HOCl). It is known that tyrosine is readily chlorinated by HOCl to give 3-chlorotyrosine and this product has been employed as a marker of HOCl-mediated damage to proteins. Cysteine and methionine react rapidly with HOCl to give oxy acids and cystine (from cysteine) and sulphoxides (from methionine). Lysine and amino acids which lack the above functional groups also react with HOCl via the free amino group which results in the generation of unstable chloramine intermediates; subsequent decomposition of these species gives NH 3 , CO 2 and aldehydes. While the products of reaction of HOCl with amino acids and peptides are reasonably well characterised, the mechanism(s) by which these products arise is less well understood. Electron paramagnetic resonance (EPR) spectroscopy with spin trapping and UV/visible spectroscopy has been employed to examine the reaction of HOCl with amino acids and some small peptides. Reaction of HOCl with N-acetyl amino acids or small peptides gives radicals predominantly at α-carbon sites via reaction at N-terminal free amino groups or amide (peptide) bonds. It is proposed that these carbon-centred radicals are produced as a result of the rearrangement of initial nitrogen-centred radicals formed on cleavage of the N-CI bond of the chloramine/chloramide species by a 1,2-shift reaction

  2. Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue

    Science.gov (United States)

    Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.

    2015-09-01

    The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH•) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH• are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.

  3. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream.

    Science.gov (United States)

    Nishizawa, Manabu; Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-08-01

    Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ(15)NNO2- and δ(18)ONO2-, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of "Candidatus Nitrosocaldus." The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ(18)O value of nitrite produced from ammonia oxidation varied with the δ(18)O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ(18)ONO2- in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of

  4. Nitrogen transformation of reclaimed wastewater in a pipeline by oxygen injection.

    Science.gov (United States)

    Rodríguez-Gómez, L E; Alvarez, M; Rodríguez-Sevilla, J; Marrero, M C; Hernández, A

    2009-06-01

    A study of oxygen injection was performed in a completely filled gravity pipe, which is part of the South Tenerife reclaimed wastewater reuse scheme (Spain), in order to inhibit the appearance of anaerobic conditions by a nitrification-denitrification process. The pipe was 0.6 m in diameter and 62 km long and made of cast iron with a concrete inner coating, A high-pressure oxygen injection system was installed at 16 km from the pipe inlet, where severe anaerobic conditions appear. Experiments on oxygen injection were carried out with three different concentrations (7, 15 and 30 mg l(-1) O2). In all experiments, oxygen dissolved properly after injection, and no gas escapes were detected during water transportation. Most oxygen was consumed in the nitrification process, due to the low COD/NH4-N ratio, leading to a maximum production of oxidized nitrogen compounds of 7.5 mg l(-1) NO(x)-N with the 30 mg l(-1) O2 dose. Nitrification occured with nitrite accumulation, attributed to the presence of free ammonia within the range 1.2-1.4 mg l(-). Once the oxygen had been consumed, an apparent half-order denitrification took place, with limitation of biodegradable organic matter. The anoxic conditions led to a complete inhibition of sulphide generation.

  5. Inactivation of catalase by free radicals derived from oxygen via gamma radiolysis

    International Nuclear Information System (INIS)

    Malhaire, J.P.; Gardes-Albert, M.; Ferradini, C.; Sabourault, D.; Ribiere, C.

    1991-01-01

    The inactivation of catalase (10 -5 mol/l) by OH· or OH·/O 2 - · free radicals, at pH 7.4, has been investigated using γ radiolysis with doses up to 9000 Gy. Maxima initial G-values of catalase inactivation have been determined. These values are inferior to those of the free radicals OH· and O 2 - · produced by water radiolysis. Nevertheless, the presence of O 2 /O 2 - · enhances the inactivation due to OH· radicals. The general shape of the inactivation curves as a function of the radiation dose is biphasic: an initial rapid phase (from 0 to ∼ 500 Gy) followed by a slow phase (from ∼ 500 to 9000 Gy). The addition of H 2 O 2 at the beginning of irradiation decreases the inactivation yield by OH· radicals. This phenomenon could be due to the formation of compound-I (catalase-H 2 O 2 ) which would be less sensitive towards OH· radicals than catalase. In the presence of 0.1 mol/l ethanol, catalase (5 x 10 -6 mol/l) is not inactived by O 2 - · and RO 2 · (from ethanol) radicals for an irradiation dose of 2000 Gy, implying a complete protecting effect by ethanol [fr

  6. One step synthesis of chlorine-free Pt/Nitrogen-doped graphene composite for oxygen reduction reaction

    KAUST Repository

    Varga, Tamá s; Varga, Á gnes Tí mea; Ballai, Gergő; Haspel, Henrik; Kukovecz, Á kos; Kó nya, Z.

    2018-01-01

    Chlorine-free Platinum/nitrogen-doped graphene oxygen reduction reaction catalysts were synthesized by a one step method of annealing a mixture of platinum acetylacetonate and graphene oxide under ammonia atmosphere. Nanoparticles with close

  7. Microbial Nitrogen Transformations in the Oxygen Minimum Zone off Peru, 01 February 1985 to 05 March 1985 (NODC Accession 9200026)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NITROP - 85 was the major field of experiment of an N.S.F. funded program entitled "Microbial Nitrogen Transformations in the Oxygen Minimum Zone off Peru". this...

  8. Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis

    Directory of Open Access Journals (Sweden)

    Rachel McCormick

    2016-08-01

    Data demonstrate that satellite cell proliferation increased when cells were grown in 6% O2 compared with 20% O2. Myoblasts grown in 20% O2 showed an increase in DCF fluorescence and DHE oxidation compared with myoblasts grown at 6% O2. Myotubes grown in 20% O2 also showed an increase in DCF and DAF-FM fluorescence and DHE oxidation compared with myotubes grown in 6% O2. The catalase and MnSOD contents were also increased in myoblasts and myotubes that were maintained in 20% O2 compared with myoblasts and myotubes grown in 6% O2. These data indicate that intracellular RONS activities in myoblasts and myotubes at rest are influenced by changes in environmental oxygen concentration and that the increased ROS may influence myogenesis in a negative manner.

  9. Nitrogen, oxygen or sulfur containing heterocyclic compounds as analgesic drugs used as modulators of the nitroxidative stress.

    Science.gov (United States)

    Salat, Kinga; Moniczewski, Andrzej; Librowski, Tadeusz

    2013-03-01

    Numerous lines of evidence suggest that heterocyclic compounds used as analgesic, anti-inflammatory and anti-migraine agents can be potent regulators of the nitroxidative stress and targeting free nitrogen and oxygen radicals is a very promising strategy for future pain management. Both classical analgesics (nonsteroidal anti-inflammatory drugs, opioid drugs) and many analgesic adjuvants, including desipramine, duloxetine, fluoxetine, paroxetine, escitalopram, phenytoin or carbamazepine and α-lipoic acid can modulate the balance between pro-oxidant and antioxidant processes in the mammalian tissues and these properties of drugs such as indomethacin, meloxicam, tenoxicam, valdecoxib or some metabolites of analgesic drugs formed by the activity of tissue peroxidases may contribute to their clinical efficacy and drug-related toxic effects, including gastrointestinal ulcers, hepatic failure, agranulocytosis, aplastic anemia, neutropenia, opiate-induced hyperalgesia and tolerance. The antioxidant capacities of novel heterocyclic compounds, including the compounds acting either by prevention of formation or catalyzed decomposition of peroxynitrite anion (ONOO-), namely the peroxynitrite decomposition catalysts or as superoxide (O2 •-)-scavengers which are the functional mimetics of superoxide dismutase (SOD) enzymes (SODm), as well as the derivatives of 6-nitro-3,4-methylenedioxyphenyl-Nacylhydrazone (LASSBio-881) or γ-butyrolactone (LPP1, BM113, BM113A, BM138 and BM138A) are also discussed as potent and promising future heterocyclic analgesics.

  10. Modeling of recovery mechanism of ozone zero phenomenaby adding small amount of nitrogen in atmospheric pressure oxygen dielectric barrier discharges

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2013-09-01

    Ozone zero phenomena in an atmospheric pressure oxygen dielectric barrier discharges have been one of the major problems during a long time operation of ozone generators. But it is also known that the adding a small amount of nitrogen makes the recover from the ozone zero phenomena. To make clear the mechanism of recovery, authors have been simulated the discharges with using the results of Ref. 3. As a result, the recovery process can be seen and ozone density increased. It is found that the most important species would be nitrogen atoms. The reaction of nitrogen atoms and oxygen molecules makes oxygen atoms which is main precursor species of ozone. This generation of oxygen atoms is effective to increase ozone. The dependence of oxygen atom density (nO) and nitrogen atom density (nN) ratio was examined in this paper. In the condition of low nN/nO ratio case, generation of nitrogen oxide is low, and the quenching of ozone by the nitrogen oxide would be low. But in the high ratio condition, the quenching of ozone by nitrogen oxide would significant. This work was supported by KAKENHI(23560352).

  11. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  12. Modelling of zircaloy-4 degradation in oxygen and nitrogen mixtures at high temperature

    International Nuclear Information System (INIS)

    Lasserre-Gagnaire, Marina

    2013-01-01

    Zircaloy-4 claddings provide the first containment of UO 2 fuel in Pressurised Water Reactors. It has been demonstrated that the fuel assemblies cladding could be exposed to air at high temperature in several accidental situations such as a loss of cooling accident in a spent fuel storage When mixed to oxygen at high temperature, the nitrogen, usually used as an inert gas, causes the accelerated corrosion of the cladding. The kinetic curves obtained by thermogravimetry reveal two stages: a pre-transition and a post-transition one. The pre-transition stage corresponds to the growth of a protective dense oxide layer: the kinetic rate decreases with time and is controlled by oxygen vacancy diffusion in the oxide layer. In the post-transition stage, the oxide layer is no longer protective and the kinetic rate increases with time. Images obtained by optical microscopy of a sample in the post-transition stage reveal the presence of corroded zones characterized by a porous scale with zirconium nitride precipitates at metal - oxide interface. Corrosion of Zy4 plates at 850 deg. C under mixed oxygen - nitrogen atmospheres has been studied during the post-transition stage. A sequence of three reactions is proposed to explain the mechanism of nitrogen-enhanced corrosion and the porosity of the corroded regions. The accelerating effect of nitrogen in the corrosion scale can therefore be described on the basis of an autocatalytic effect of the zirconium nitride precipitates. Then, it is demonstrated that the steady-state approximation as well as the existence of an elementary step controlling the growth process are valid during the post-transition stage. Thanks to the study of the variations of the surface rate of growth with the oxygen and nitrogen partial pressure, the rate-determining step is identified as the external interface reaction step of the oxidation of the zirconium nitride precipitates. Finally, a nucleation and growth model used for thermal reactions in powders

  13. Esterified dendritic TAM radicals with very high stability and enhanced oxygen sensitivity.

    Science.gov (United States)

    Song, Yuguang; Liu, Yangping; Hemann, Craig; Villamena, Frederick A; Zweier, Jay L

    2013-02-15

    In this work, we have developed a new class of dendritic TAM radicals (TG, TdG, and dTdG) through a convergent method based on the TAM core CT-03 or its deuterated analogue dCT-03 and trifurcated Newkome-type monomer. Among these radicals, dTdG exhibits the best EPR properties with sharpest EPR singlet and highest O(2) sensitivity due to deuteration of both the ester linker groups and the TAM core CT-03. Like the previous dendritic TAM radicals, these new compounds also show extremely high stability toward various reactive species owing to the dendritic encapsulation. The highly charged nature of these molecules resulting from nine carboxylate groups prevents concentration-dependent EPR line broadening at physiological pH. Furthermore, we demonstrate that these TAM radicals can be easily derivatized (e.g., PEGylation) at the nine carboxylate groups and the resulting PEGylated analogue dTdG-PEG completely inhibits the albumin binding, thereby enhancing suitability for in vivo applications. These new dendritic TAM radicals show great potential for in vivo EPR oximetric applications and provide insights on approaches to develop improved and targeted EPR oximetric probes for biomedical applications.

  14. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction

    Science.gov (United States)

    Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo

    2017-11-01

    With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.

  15. The scavenging of free radical and oxygen species activities and hydration capacity of collagen hydrolysates from walleye pollock ( Theragra chalcogramma) skin

    Science.gov (United States)

    Zhuang, Yongliang; Li, Bafang; Zhao, Xue

    2009-06-01

    Fish skin collagen hydrolysates (FSCH) were prepared from walleye pollock ( Theragra chalcogramma) using a mixture of enzymes, namely trypsin and flavourzyme. The degree of hydrolysis of the skin collagen was 27.3%. FSCH was mainly composed of low-molecular-weight peptides and the relative proportion of <1000Da fraction was 70.6%. Free radical and oxygen species scavenging activities of FSCH were investigated in four model systems, including diphenylpicrylhy-drazyl radical (DPPH), superoxide anion radical, hydroxyl radical and hydrogen peroxide model, and compared with that of a native antioxidant, reduced glutathione (GSH). FSCH was also evaluated by water-absorbing and water-holding capacity. The results showed that FSCH was able to scavenge free radical and oxygen species significantly and to enhance water-absorbing and water-holding capacity remarkably. Therefore, FSCH may have potential applications in the medicine and food industries.

  16. Depletion of oxygen, nitrate and nitrite in the Peruvian oxygen minimum zone cause an imbalance of benthic nitrogen fluxes

    Science.gov (United States)

    Sommer, S.; Gier, J.; Treude, T.; Lomnitz, U.; Dengler, M.; Cardich, J.; Dale, A. W.

    2016-06-01

    Oxygen minimum zones (OMZ) are key regions for fixed nitrogen loss in both the sediments and the water column. During this study, the benthic contribution to N cycling was investigated at ten sites along a depth transect (74-989 m) across the Peruvian OMZ at 12°S. O2 levels were below detection limit down to ~500 m. Benthic fluxes of N2, NO3-, NO2-, NH4+, H2S and O2 were measured using benthic landers. Flux measurements on the shelf were made under extreme geochemical conditions consisting of a lack of O2, NO3- and NO2- in the bottom water and elevated seafloor sulphide release. These particular conditions were associated with a large imbalance in the benthic nitrogen cycle. The sediments on the shelf were densely covered by filamentous sulphur bacteria Thioploca, and were identified as major recycling sites for DIN releasing high amounts of NH4+up to 21.2 mmol m-2 d-1 that were far in excess of NH4+ release by ammonification. This difference was attributed to dissimilatory nitrate (or nitrite) reduction to ammonium (DNRA) that was partly being sustained by NO3- stored within the sulphur oxidizing bacteria. Sediments within the core of the OMZ (ca. 200-400 m) also displayed an excess flux of N of 3.5 mmol m-2 d-1 mainly as N2. Benthic nitrogen and sulphur cycling in the Peruvian OMZ appears to be particularly susceptible to bottom water fluctuations in O2, NO3- and NO2-, and may accelerate the onset of pelagic euxinia when NO3- and NO2- become depleted.

  17. Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system.

    Science.gov (United States)

    Ji, Youzhi; Bai, Jing; Li, Jinhua; Luo, Tao; Qiao, Li; Zeng, Qingyi; Zhou, Baoxue

    2017-11-15

    A highly selective method for transforming ammonia nitrogen to N 2 was proposed, based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions (PEC-chlorine) system. The PEC-chlorine system was facilitated by a visible light response WO 3 nanoplate array (NPA) electrode in an ammonia solution containing chloride ions (Cl - ). Under illumination, photoholes from WO 3 promote the oxidation of Cl - to chlorine radical (Cl). This radical can selectively transform ammonia nitrogen to N 2 (79.9%) and NO 3 - (19.2%), similar to the breakpoint chlorination reaction. The ammonia nitrogen removal efficiency increased from 10.6% (PEC without Cl - ) to 99.9% with the PEC-chlorine system within 90 min operation, which can be attributed to the cyclic reactions between Cl - /Cl and the reaction intermediates (NH 2 , NHCl, etc.) that expand the degradation reactions from the surface of the electrodes to the whole solution system. Moreover, Cl is the main radical species contributing to the transformation of ammonia nitrogen to N 2 , which is confirmed by the tBuOH capture experiment. Compared to conventional breakpoint chlorination, the PEC-chlorine system is a more economical and efficient means for ammonia nitrogen degradation because of the fast removal rate, no additional chlorine cost, and its use of clean energy (since it is solar-driven). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A Generalizable Top-Down Nanostructuring Method of Bulk Oxides: Sequential Oxygen-Nitrogen Exchange Reaction.

    Science.gov (United States)

    Lee, Lanlee; Kang, Byungwuk; Han, Suyoung; Kim, Hee-Eun; Lee, Moo Dong; Bang, Jin Ho

    2018-05-27

    A thermal reaction route that induces grain fracture instead of grain growth is devised and developed as a top-down approach to prepare nanostructured oxides from bulk solids. This novel synthesis approach, referred to as the sequential oxygen-nitrogen exchange (SONE) reaction, exploits the reversible anion exchange between oxygen and nitrogen in oxides that is driven by a simple two-step thermal treatment in ammonia and air. Internal stress developed by significant structural rearrangement via the formation of (oxy)nitride and the creation of oxygen vacancies and their subsequent combination into nanopores transforms bulk solid oxides into nanostructured oxides. The SONE reaction can be applicable to most transition metal oxides, and when utilized in a lithium-ion battery, the produced nanostructured materials are superior to their bulk counterparts and even comparable to those produced by conventional bottom-up approaches. Given its simplicity and scalability, this synthesis method could open a new avenue to the development of high-performance nanostructured electrode materials that can meet the industrial demand of cost-effectiveness for mass production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis of 2D Nitrogen-Doped Mesoporous Carbon Catalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Zhipeng Yu

    2017-02-01

    Full Text Available 2D nitrogen-doped mesoporous carbon (NMC is synthesized by using a mesoporous silica film as hard template, which is then investigated as a non-precious metal catalyst for the oxygen reduction reaction (ORR. The effect of the synthesis conditions on the silica template and carbon is extensively investigated. In this work, we employ dual templates—viz. graphene oxide and triblock copolymer F127—to control the textural features of a 2D silica film. The silica is then used as a template to direct the synthesis of a 2D nitrogen-doped mesoporous carbon. The resultant nitrogen-doped mesoporous carbon is characterized by transmission electron microscopy (TEM, nitrogen ad/desorption isotherms, X-ray photoelectron spectroscopy (XPS, cyclic voltammetry (CV, and rotating disk electrode measurements (RDE. The electrochemical test reveals that the obtained 2D-film carbon catalyst yields a highly electrochemically active surface area and superior electrocatalytic activity for the ORR compared to the 3D-particle. The superior activity can be firstly attributed to the difference in the specific surface area of the two catalysts. More importantly, the 2D-film morphology makes more active sites accessible to the reactive species, resulting in a much higher utilization efficiency and consequently better activity. Finally, it is noted that all the carbon catalysts exhibit a higher ORR activity than a commercial Pt catalyst, and are promising for use in fuel cells.

  20. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Xu, Jingjing; Lu, Shiyao; Chen, Xu; Wang, Jianan; Zhang, Bo; Zhang, Xinyu; Xiao, Chunhui; Ding, Shujiang

    2017-12-01

    Investigating low-cost and highly active electrocatalysts for oxygen reduction reactions (ORR) is of crucial importance for energy conversion and storage devices. Herein, we design and prepare mesoporous carbon supported nitrogen-doped carbon by pyrolysis of polyaniline coated on CMK-3. This electrocatalyst exhibits excellent performance towards ORR in alkaline media. The optimized nitrogen-doped mesoporous electrocatalyst show an onset potential (E onset) of 0.95 V (versus reversible hydrogen electrode (RHE)) and half-wave potential (E 1/2) of 0.83 V (versus RHE) in 0.1 M KOH. Furthermore, the as-prepared catalyst presents superior durability and methanol tolerance compared to commercial Pt/C indicating its potential applications in fuel cells and metal-air batteries.

  1. Assessment of nitrogen and oxygen isotopic fractionation during nitrification and its expression in the marine environment.

    Science.gov (United States)

    Casciotti, Karen L; Buchwald, Carolyn; Santoro, Alyson E; Frame, Caitlin

    2011-01-01

    Nitrification is a microbially-catalyzed process whereby ammonia (NH(3)) is oxidized to nitrite (NO(2)(-)) and subsequently to nitrate (NO(3)(-)). It is also responsible for production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Because the microbes responsible for nitrification are primarily autotrophic, nitrification provides a unique link between the carbon and nitrogen cycles. Nitrogen and oxygen stable isotope ratios have provided insights into where nitrification contributes to the availability of NO(2)(-) and NO(3)(-), and where it constitutes a significant source of N(2)O. This chapter describes methods for determining kinetic isotope effects involved with ammonia oxidation and nitrite oxidation, the two independent steps in the nitrification process, and their expression in the marine environment. It also outlines some remaining questions and issues related to isotopic fractionation during nitrification. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Junchao Yu

    Full Text Available Hyperbaric oxygen (HBO therapy through breathing oxygen at the pressure of above 1 atmosphere absolute (ATA is useful for varieties of clinical conditions, especially hypoxic-ischemic diseases. Because of generation of reactive oxygen species (ROS, breathing oxygen gas at high pressures can cause oxygen toxicity in the central nervous system, leading to multiple neurological dysfunction, which limits the use of HBO therapy. Studies have shown that Hydrogen gas (H2 can diminish oxidative stress and effectively reduce active ROS associated with diseases. However, the effect of H2 on ROS generated from HBO therapy remains unclear. In this study, we investigated the effect of H2 on ROS during HBO therapy using PC12 cells. PC12 cells cultured in medium were exposed to oxygen gas or mixed oxygen gas and H2 at 1 ATA or 5 ATA. Cells viability and oxidation products and ROS were determined. The data showed that H2 promoted the cell viability and inhibited the damage in the cell and mitochondria membrane, reduced the levels of lipid peroxidation and DNA oxidation, and selectively decreased the levels of •OH but not disturbing the levels of O2•-, H2O2, or NO• in PC12 cells during HBO therapy. These results indicated that H2 effectively reduced •OH, protected cells against oxygen toxicity resulting from HBO therapy, and had no effect on other ROS. Our data supported that H2 could be potentially used as an antioxidant during HBO therapy.

  3. Highly Functionalized Cyclopentane Derivatives by Tandem Michael Addition/Radical Cyclization/Oxygenation Reactions

    Czech Academy of Sciences Publication Activity Database

    Holan, Martin; Pohl, Radek; Císařová, I.; Klepetářová, Blanka; Jones, P. G.; Jahn, Ullrich

    2015-01-01

    Roč. 21, č. 27 (2015), s. 9877-9888 ISSN 0947-6539 R&D Projects: GA ČR GA13-40188S Institutional support: RVO:61388963 Keywords : cyclization * domino reactions * electron transfer * Michael addition * radical reactions Subject RIV: CC - Organic Chemistry Impact factor: 5.771, year: 2015

  4. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors

    Science.gov (United States)

    Liu, Haiyan; Song, Huaihe; Chen, Xiaohong; Zhang, Su; Zhou, Jisheng; Ma, Zhaokun

    2015-07-01

    A kind of nitrogen- and oxygen-containing activated carbon nanotubes (ACNTs) has been prepared by carbonization and activation of polyaniline nanotubes obtained by rapidly mixed reaction. The ACNTs show oxygen content of 15.7% and nitrogen content of 2.97% (atomic ratio). The ACNTs perform high capacitance and good rate capability (327 F g-1 at the current density of 10 A g-1) when used as the electrode materials for supercapacitors. Hydrogen reduction has been further used to investigate the effects of surface functional groups on the electrochemical performance. The changes for both structural component and electrochemical performance reveal that the quinone oxygen, pyridinic nitrogen, and pyrrolic nitrogen of carbon have the most obvious influence on the capacitive property because of their pseudocapacitive contributions.

  5. Formation of mixed ligand complexes of UO22+ involving some nitrogen and oxygen donor ligands

    International Nuclear Information System (INIS)

    Singh, Mamta; Ram Nayan

    1996-01-01

    The complexation reactions of UO 2 2+ ion with nitrogen and oxygen donor ligands, 1-amino-2-naphthol-4-sulphonic acid, o-aminophenol (ap), 2-hydroxybenzoic acid (sa), 3-carboxy-4-hydroxybenzenesulphonic acid (ss) and 1,2-dihydroxybenzene (ca) have been investigated in aqueous solution employing the pH-titration technique. Analysis of the experimental data recorded at 25 degC and at an ionic strength of 0.10 M KNO 3 indicates formation of binary, hydroxo and ternary complexes of uranium. Formation constant values of the existing species have been evaluated and the results have been discussed. (author). 21 refs., 2 figs., 2 tabs

  6. Microbial removal of fixed nitrogen in an oceanic oxygen minimum zone

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Thamdrup, Bo; Revsbech, Niels Peter

    We quantified the removal of fixed nitrogen as N2 production by anammox and N2 and N2O production by denitrification over a distance of 1900 km along the coast of Chile and Peru, using short-term incubations with 15N-labeled substrates. The eastern tropical South Pacific (ETSP) holds an oxygen...... and that denitrification is needed for the mineralization of organic matter and production of NH4+ for anammox. Our data from frequent sampling along a 1900 km cruise track parallel to the coast of Chile and Peru show that denitrification does indeed occur, but less frequent and at higher rates than anammox...

  7. From nitrogen enrichment to oxygen depletion: a mechanistic model of coastal marine ecosystems response

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Nitrogen (N) emissions from anthropogenic sources may enrich coastal waters and lead to marine eutrophication impacts. Processes describing N-limited primary production (PP), zooplankton grazing, and bacterial respiration of sinking organic carbon, were modelled to quantify the potential dissolved...... oxygen (DO) consumption as a function of N input. Such indicator is the basis for an eXposure Factor (XF) applied in Life Cycle Impact Assessment (LCIA) to estimate impacts from N enrichment. The Large Marine Ecosystems (LME) biogeographical classification system was adopted to address the spatial...

  8. Microstructure and tribology of carbon, nitrogen, and oxygen implanted ferrous materials

    International Nuclear Information System (INIS)

    Williamson, D.L.

    1993-01-01

    Nitrogen, carbon, and oxygen ions have been implanted into ferrous materials under unusual conditions of elevated temperatures and very high dose rates. The tribological durabilities of the resulting surfaces are examined with a special type of pin-on-disc wear test apparatus and found in most cases to be dramatically improved compared to surfaces prepared with conventional implantation conditions. Near-surface microstructures and compositions are characterized after implantation and after wear testing by backscatter Moessbauer spectroscopy, X-ray diffraction, scanning electron microscopy, and Auger electron spectroscopy. These data provide evidence for the predominant mechanisms responsible for the observed sliding wear behavior induced by each of the three species. (orig.)

  9. Locations of oxygen, nitrogen and carbon atoms in vanadium determined by neutron diffraction

    International Nuclear Information System (INIS)

    Hiraga, K.; Onozuka, T.; Hirabayashi, M.

    1977-01-01

    The occupation sites of oxygen, nitrogen, and carbon atoms dissolved interstitially in vanadium have been determined by means of neutron diffraction with use of single crystals of VOsub(0.032), VNsub(0.013) and VCsub(0.006). It is revealed that the interstitial atoms occupy, randomly, the octahedral sites in the b.c.c. host lattice of the three crystals. Neutron diffraction is advantageous for the present purpose, since the coherent scattering amplitudes of the solute atoms are much larger than that of the vanadium atom. (Auth.)

  10. Measurement of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen

    International Nuclear Information System (INIS)

    Wiedenbeck, M.E.; Greiner, D.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    The results of an investigation of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen (E approx. 80 to 230 MeV/amu) made using the U.C. Berkeley HKH instrument aboard the ISEE-3 spacecraft are reported. The combination of high mass resolution and a large statistical sample makes possible a precise determination of the relative isotopic abundances for these elements. In local interplanetary space we find: 13 C/C = 0.067 +- 0.008, 15 N/N = 0.54 +- 0.03, 17 O/O 18 O/O = 0.019 +- 0.003

  11. Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air

    Science.gov (United States)

    Porter, H. S.; Jackman, C. H.; Green, A. E. S.

    1976-01-01

    Relativistic electron and proton impact cross sections are obtained and represented by analytic forms which span the energy range from threshold to 1 GeV. For ionization processes, the Massey-Mohr continuum generalized oscillator strength surface is parameterized. Parameters are determined by simultaneous fitting to (1) empirical data, (2) the Bethe sum rule, and (3) doubly differential cross sections for ionization. Branching ratios for dissociation and predissociation from important states of N2 and O2 are determined. The efficiency for the production of atomic nitrogen and oxygen by protons with kinetic energy less than 1 GeV is determined using these branching ratio and cross section assignments.

  12. Ethylbenzene induces microsomal oxygen free radical generation: antibody-directed characterization of the responsible cytochrome P450 enzymes.

    Science.gov (United States)

    Serron, S C; Dwivedi, N; Backes, W L

    2000-05-01

    Small aromatic hydrocarbons cause changes in oxidative metabolism by modulating the levels of cytochrome P450 enzymes, with the changes in these enzymes being responsible for qualitative changes in aromatic hydrocarbon metabolism. The goal of this study was to determine if exposure to the small alkylbenzene ethylbenzene (EB) leads to an increase in hepatic free radical production. Male F344 rats were treated with ip injections of EB (10 mmol/kg) and compared to corn oil controls. Hepatic free radical production was examined by measuring the conversion of 2',7'-dichlorofluorescin diacetate (DCFH-DA) to its fluorescent product 2',7'-dichlorofluorescein (DCF). A significant elevation of fluorescent DCF production was observed after treatment with EB, despite the lack of effect on overall cytochrome P450 levels. This process was shown to be inhibitable by metyrapone, an inhibitor of P450. DCF production was also inhibited by catalase, suggesting that hydrogen peroxide (H(2)O(2)) is one of the reactive oxygen intermediates involved in EB-mediated reactive oxygen species (ROS) formation. Interestingly, superoxide dismutase (SOD) did not inhibit DCF production in corn oil-treated rats but was an effective inhibitor in the EB-treated groups. In an effort to determine if the increase in ROS production was related to changes in specific P450 enzymes, DCF production was measured in the presence of anti-CYP2B, anti-CYP2C11, anti-CYP2E1, and anti-CYP3A2 inhibitory antibodies. Anti-CYP2B antibodies inhibited DCF production in EB-treated, but not corn oil groups, which is consistent with the low constitutive levels of this enzyme and its induction by EB. The data also demonstrate that CYP2B contributes to ROS production. Anti-CYP2C11 did not influence DCF production in either group. ROS formation in corn oil-treated rats as well as in ethylbenzene-treated rats was also inhibited with antibodies to anti-CYP2E1 and anti-CYP3A2. These results suggest that CYP2C11 does not appear to

  13. Oxygen Limited Bioreactors System For Nitrogen Removal Using Immobilized Mix Culture

    Science.gov (United States)

    Pathak, B. K.; Sumino, T.; Saiki, Y.; Kazama, F.

    2005-12-01

    Recently nutrients concentrations especially nitrogen in natural water is alarming in the world wide. Most of the effort is being done on the removal of high concentration of nitrogen especially from the wastewater treatment plants. The removal efficiency is targeted in all considering the effluent discharge standard set by the national environment agency. In many cases, it does not meet the required standard and receiving water is being polluted. Eutrophication in natural water bodies has been reported even if the nitrogen concentration is low and self purification of natural systems itself is not sufficient to remove the nitrogen due to complex phenomenon. In order to recover the pristine water environment, it is very essential to explore bioreactor systems for natural water systems using immobilized mix culture. Microorganism were entrapped in Polyethylene glycol (PEG) prepolymer gel and cut into 3mm cubic immobilized pellets. Four laboratory scale micro bio-reactors having 0.1 L volumes were packed with immobilized pellets with 50% compact ratio. RUN1, RUN2, RUN3 and RUN4 were packed with immobilized pellets from reservoirs sediments, activated sludge (AS), mixed of AS, AG and biodegradable plastic and anaerobic granules (AG) respectively. Water from Shiokawa Reservoirs was feed to all reactors with supplemental ammonia and nitrite nitrogen as specified in the results and discussions. The reactors were operated dark incubated room in continuous flow mode with hydraulic retention time of 12 hours under oxygen limiting condition. Ammonium, nitrate nitrite nitrogen and total organic carbon (TOC) concentrations were measured as described in APWA and AWWA (1998). Laboratory scale four bioreactors containing different combination of immobilized cell were monitored for 218 days. Influent NH4+-N and NO2--N concentration were 2.27±0.43 and 2.05±0.41 mg/l respectively. Average dissolved oxygen concentration and pH in the reactors were 0.40-2.5 mg/l and pH 6

  14. Insertion of molecular oxygen into a palladium(II) methyl bond: a radical chain mechanism involving palladium(III) intermediates.

    Science.gov (United States)

    Boisvert, Luc; Denney, Melanie C; Hanson, Susan Kloek; Goldberg, Karen I

    2009-11-04

    The reaction of (bipy)PdMe(2) (1) (bipy = 2,2'-bipyridine) with molecular oxygen results in the formation of the palladium(II) methylperoxide complex (bipy)PdMe(OOMe) (2). The identity of the product 2 has been confirmed by independent synthesis. Results of kinetic studies of this unprecedented oxygen insertion reaction into a palladium alkyl bond support the involvement of a radical chain mechanism. Reproducible rates, attained in the presence of the radical initiator 2,2'-azobis(2-methylpropionitrile) (AIBN), reveal that the reaction is overall first-order (one-half-order in both [1] and [AIBN], and zero-order in [O(2)]). The unusual rate law (half-order in [1]) implies that the reaction proceeds by a mechanism that differs significantly from those for organic autoxidations and for the recently reported examples of insertion of O(2) into Pd(II) hydride bonds. The mechanism for the autoxidation of 1 is more closely related to that found for the autoxidation of main group and early transition metal alkyl complexes. Notably, the chain propagation is proposed to proceed via a stepwise associative homolytic substitution at the Pd center of 1 with formation of a pentacoordinate Pd(III) intermediate.

  15. Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica

    Directory of Open Access Journals (Sweden)

    J. Savarino

    2007-01-01

    Full Text Available Throughout the year 2001, aerosol samples were collected continuously for 10 to 15 days at the French Antarctic Station Dumont d'Urville (DDU (66°40' S, l40°0' E, 40 m above mean sea level. The nitrogen and oxygen isotopic ratios of particulate nitrate at DDU exhibit seasonal variations that are among the most extreme observed for nitrate on Earth. In association with concentration measurements, the isotope ratios delineate four distinct periods, broadly consistent with previous studies on Antarctic coastal areas. During austral autumn and early winter (March to mid-July, nitrate concentrations attain a minimum between 10 and 30 ng m−3 (referred to as Period 2. Two local maxima in August (55 ng m−3 and November/December (165 ng m−3 are used to assign Period 3 (mid-July to September and Period 4 (October to December. Period 1 (January to March is a transition period between the maximum concentration of Period 4 and the background concentration of Period 2. These seasonal changes are reflected in changes of the nitrogen and oxygen isotope ratios. During Period 2, which is characterized by background concentrations, the isotope ratios are in the range of previous measurements at mid-latitudes: δ18Ovsmow=(77.2±8.6‰; Δ17O=(29.8±4.4‰; δ15Nair=(−4.4±5.4‰ (mean ± one standard deviation. Period 3 is accompanied by a significant increase of the oxygen isotope ratios and a small increase of the nitrogen isotope ratio to δ18Ovsmow=(98.8±13.9‰; Δ17O=(38.8±4.7‰ and δ15Nair=(4.3±8.20‰. Period 4 is characterized by a minimum 15N/14N ratio, only matched by one prior study of Antarctic aerosols, and oxygen isotope ratios similar to Period 2: δ18Ovsmow=(77.2±7.7‰; Δ17O=(31.1±3.2‰; δ15Nair=(−32.7±8.4‰. Finally, during Period 1, isotope ratios reach minimum values for oxygen and intermediate values for nitrogen: δ18Ovsmow=63.2±2.5‰; Δ17O=24.0±1.1‰; δ15Nair=−17.9±4.0‰. Based on the measured

  16. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific ocean.

    Science.gov (United States)

    Jayakumar, Amal; Chang, Bonnie X; Widner, Brittany; Bernhardt, Peter; Mulholland, Margaret R; Ward, Bess B

    2017-10-01

    Biological nitrogen fixation (BNF) was investigated above and within the oxygen-depleted waters of the oxygen-minimum zone of the Eastern Tropical North Pacific Ocean. BNF rates were estimated using an isotope tracer method that overcame the uncertainty of the conventional bubble method by directly measuring the tracer enrichment during the incubations. Highest rates of BNF (~4 nM day -1 ) occurred in coastal surface waters and lowest detectable rates (~0.2 nM day -1 ) were found in the anoxic region of offshore stations. BNF was not detectable in most samples from oxygen-depleted waters. The composition of the N 2 -fixing assemblage was investigated by sequencing of nifH genes. The diazotrophic assemblage in surface waters contained mainly Proteobacterial sequences (Cluster I nifH), while both Proteobacterial sequences and sequences with high identities to those of anaerobic microbes characterized as Clusters III and IV type nifH sequences were found in the anoxic waters. Our results indicate modest input of N through BNF in oxygen-depleted zones mainly due to the activity of proteobacterial diazotrophs.

  17. Oxygen Response of the Wine Yeast Saccharomyces cerevisiae EC1118 Grown under Carbon-Sufficient, Nitrogen-Limited Enological Conditions

    Science.gov (United States)

    Aceituno, Felipe F.; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W.; Melo, Francisco

    2012-01-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations. PMID:23001663

  18. Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions.

    Science.gov (United States)

    Aceituno, Felipe F; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W; Melo, Francisco; Agosin, Eduardo

    2012-12-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.

  19. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction.

    Science.gov (United States)

    Zitolo, Andrea; Ranjbar-Sahraie, Nastaran; Mineva, Tzonka; Li, Jingkun; Jia, Qingying; Stamatin, Serban; Harrington, George F; Lyth, Stephen Mathew; Krtil, Petr; Mukerjee, Sanjeev; Fonda, Emiliano; Jaouen, Frédéric

    2017-10-16

    Single-atom catalysts with full utilization of metal centers can bridge the gap between molecular and solid-state catalysis. Metal-nitrogen-carbon materials prepared via pyrolysis are promising single-atom catalysts but often also comprise metallic particles. Here, we pyrolytically synthesize a Co-N-C material only comprising atomically dispersed cobalt ions and identify with X-ray absorption spectroscopy, magnetic susceptibility measurements and density functional theory the structure and electronic state of three porphyrinic moieties, CoN 4 C 12 , CoN 3 C 10,porp and CoN 2 C 5 . The O 2 electro-reduction and operando X-ray absorption response are measured in acidic medium on Co-N-C and compared to those of a Fe-N-C catalyst prepared similarly. We show that cobalt moieties are unmodified from 0.0 to 1.0 V versus a reversible hydrogen electrode, while Fe-based moieties experience structural and electronic-state changes. On the basis of density functional theory analysis and established relationships between redox potential and O 2 -adsorption strength, we conclude that cobalt-based moieties bind O 2 too weakly for efficient O 2 reduction.Nitrogen-doped carbon materials with atomically dispersed iron or cobalt are promising for catalytic use. Here, the authors show that cobalt moieties have a higher redox potential, bind oxygen more weakly and are less active toward oxygen reduction than their iron counterpart, despite similar coordination.

  20. Cement Pastes and Mortars Containing Nitrogen-Doped and Oxygen-Functionalized Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mauricio Martínez-Alanis

    2016-01-01

    Full Text Available Cement pastes and mortars based on ordinary Portland cement containing nitrogen-doped multiwalled carbon nanotubes (MWCNT-Nx or oxygen-functionalized multiwalled carbon nanotubes (MWCNT-Ox are investigated. To incorporate MWCNTs into the cementitious matrix, the as-produced carpets are dispersed over periods of 1 and 2 hours in distilled water at pH levels of 1 and 7. The cement pastes are prepared by adding 0.1 wt% of MWCNTs to cement powder, followed by characterization with SEM and X-ray diffraction (XRD at an early age (first hours of hydration. The mortars are mechanically characterized during the hydration process for a period of 28 days. SEM characterization of cement pastes revealed that the carbon nanotubes are well incorporated in the cementitious matrix, with the hydrated cement grains interconnected by long carbon nanotubes. XRD characterizations demonstrated that, during the hydration of cement pastes, different peaks emerged that were associated with ettringite, hydrated calcium silicate, and calcium hydroxide, among other structures. Results of the compressive strength measurements for mortars simultaneously mixed with MWCNT-Nx and MWCNT-Ox reached an increment of approximately 30% in compressive strength. In addition, density functional theory calculations were performed in nitrogen-doped and oxygen-functionalized carbon nanotubes interacting with a cement grain.

  1. Fractionation of Nitrogen and Oxygen Isotopes and Roles of Bacteria during Denitrification

    Science.gov (United States)

    Kang, J.; Buyanjargal, A.; Jeen, S. W.

    2017-12-01

    Nitrate in groundwater can cause health and environmental problems when not properly treated. The purpose of this study was to develop a treatment method for nitrate in groundwater using organic carbon-based reactive mixtures (i.e., wood chips and gravel) through column experiments and to evaluate reaction mechanisms responsible for the treatment. The column experiments were operated for a total of 19 months. The results from the geochemical analyses for the experiments suggest that cultures of denitrifying bacteria used organic carbon while utilizing nitrate as their electron acceptor via denitrification process. Proteobacteria was the most abundant phylum in all samples, accounting for 45.7% of the bacterial reads, followed by Firmicutes (22.6%) and Chlorobi (10.6%). Bacilli, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria_c consisted of 32, 30, 23, 11, and 2% of denitrifying bacteria class. The denitrification process caused fractionation of nitrogen and oxygen isotopes of nitrate while nitrate concentration decreased. When fitted to the Rayleigh's fractionation model, enrichment factors (ɛ) were 11.5‰ and 5.6‰ for 15N and 18O isotopes, respectively. Previous studies suggested that nitrogen isotope enrichment factors of denitrification are within the range of 4.7 to 40‰ and oxygen isotopic enrichment factors are between 8 and 18.3‰. This study shows that nitrate in groundwater can be effectively treated using passive treatment systems, such as permeable reactive barriers (PRBs), and denitrificaton is the dominant process reponsible for the removal of nitrate.

  2. Measurement of total-body oxygen, nitrogen, and carbon in vivo by photon activation analysis

    International Nuclear Information System (INIS)

    Ulin, K.

    1984-01-01

    With the aim of assessing nutritional status, the feasibility of measuring the total body quantities of the major body elements, i.e. oxygen, nitrogen, and carbon, using the photon beam of a 45 MV betatron and a whole-body counter, has been evaluated in detail. Following photon activation a single energy γ-radiation (.511 MeV) is observed from all three elements to be measured. The half-lives of 15 O, 13 N, and 11 C, however, are sufficiently different (20.5 min, 10.0 min, and 20.4 min. respectively) to permit their measurement from an analysis of the measured decay curve. Following corrections for interfering reactions, a computer curve-fitting algorithm is used to resolve the data into 15 O, 13 N, and 11 C components. Measurements of O, N, and C have been made both in phantoms and in live and dead rats. A comparison of the body composition results from this technique with results from chemical analysis indicates that measured carbon can quite accurately predict total body fat. The comparison of the total body nitrogen measurement by photon activation with total body protein by chemical analysis was inconclusive and suggests that further work be done to verify the estimated accuracy of the nitrogen measurement

  3. Ultrasonic cavitation erosion of Ti in 0.35% NaCl solution with bubbling oxygen and nitrogen.

    Science.gov (United States)

    Li, D G; Wang, J D; Chen, D R; Liang, P

    2015-09-01

    The influences of oxygen and nitrogen on the ultrasonic cavitation erosion of Ti in 0.35%NaCl solution at room temperature, were investigated using a magnetostrictive-induced ultrasonic cavitation erosion (CE) facility and scanning electron microscopy (SEM). The roles of oxygen and nitrogen in the composition and the electronic property of the passive film on Ti, were studied by Mott-Schottky plot and X-ray photoelectron spectroscopy (XPS). The results showed that the mass loss of Ti in 0.35%NaCl solution increased with increasing cavitation time. Bubbling oxygen can evidently increase the resistance of ultrasonic cavitation erosion comparing with bubbling nitrogen. XPS results showed that the thickness of the passive film on Ti in 0.35%NaCl solution in the case of bubbling oxygen for 3 weeks, was about 7 nm, and the passive film was mainly composed of TiO2 with an anatase structure. While TiO2 with a rutile structure was found to be the major component of the passive film on Ti in 0.35%NaCl solution in the case of bubbling nitrogen for 3 weeks, and the film thickness was 5 nm. The results extracted from Mott-Schottky plot showed that the passive film on Ti in the case of bubbling oxygen had more donor density than the passive film on Ti in the case of bubbling nitrogen. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones

    Directory of Open Access Journals (Sweden)

    Jennifer B. Glass

    2015-09-01

    Full Text Available Iron (Fe and copper (Cu are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO3-, NO2-, Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8 occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu.

  5. Oxidative damage of U937 human leukemic cells caused by hydroxyl radical results in singlet oxygen formation.

    Directory of Open Access Journals (Sweden)

    Marek Rác

    Full Text Available The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules.

  6. Nitrogen transformation under different dissolved oxygen levels by the anoxygenic phototrophic bacterium Marichromatium gracile.

    Science.gov (United States)

    Hong, Xuan; Chen, Zhongwei; Zhao, Chungui; Yang, Suping

    2017-06-01

    Marichromatium gracile: YL28 (M. gracile YL28) is an anoxygenic phototrophic bacterial strain that utilizes ammonia, nitrate, or nitrite as its sole nitrogen source during growth. In this study, we investigated the removal and transformation of ammonium, nitrate, and nitrite by M. gracile YL28 grown in a combinatorial culture system of sodium acetate-ammonium, sodium acetate-nitrate and sodium acetate-nitrite in response to different initial dissolved oxygen (DO) levels. In the sodium acetate-ammonium system under aerobic conditions (initial DO = 7.20-7.25 mg/L), we detected a continuous accumulation of nitrate and nitrite. However, under semi-anaerobic conditions (initial DO = 4.08-4.26 mg/L), we observed a temporary accumulation of nitrate and nitrite. Interestingly, under anaerobic conditions (initial DO = 0.36-0.67 mg/L), there was little accumulation of nitrate and nitrite, but an increase in nitrous oxide production. In the sodium acetate-nitrite system, nitrite levels declined slightly under aerobic conditions, and nitrite was completely removed under semi-anaerobic and anaerobic conditions. In addition, M. gracile YL28 was able to grow using nitrite as the sole nitrogen source in situations when nitrogen gas produced by denitrification was eliminated. Taken together, the data indicate that M. gracile YL28 performs simultaneous heterotrophic nitrification and denitrification at low-DO levels and uses nitrite as the sole nitrogen source for growth. Our study is the first to demonstrate that anoxygenic phototrophic bacteria perform heterotrophic ammonia-oxidization and denitrification under anaerobic conditions.

  7. The impact of oxygen availability on stress survival and radical formation of Bacillus cereus

    NARCIS (Netherlands)

    Mols, J.M.; Pier, I.; Zwietering, M.H.; Abee, T.

    2009-01-01

    Both the growth and stress survival of two model Bacillus cereus strains, ATCC 14579 and ATCC 10987, were tested in three different conditions varying in oxygen availability, i.e., aerobic, microaerobic and anaerobic conditions. Both B. cereus strains displayed highest growth rates and yields under

  8. Radiation-induced damage in E. coli B: The effect of superoxide radicals and molecular oxygen. Progress report, December 1, 1978--November 30, 1979

    International Nuclear Information System (INIS)

    Samuni, A.; Czapski, G.

    The roles of superoxide radicals and of molecular oxygen in the radiodamage of E. coli B suspended in dilute phosphate buffer were studied. The presence of high concentrations of polyethylene glycol in the γ-irradiated cell suspensions, had no effect on bacterial radiosensitivity. This indicates that the damage was primarily endogenous, i.e. originated intracellularly. Saturation of the cell suspensions with N 2 O doubled the radiosensitivity, thus indicating that OH radicals are responsible for the majority of the damage (indirect radiation effect). The presence of oxygen either in the absence or presence of N 2 O brought about roughly a three-fold increase in the radiosensitivity. Since in the presence of N 2 O all e - /sub aq/ are scavenged by the nitrous oxide rather than by oxygen, this shows that superoxide radicals play no role in the bacterial radiodamage. Our results substantiate the attribution of the oxygen effect to a direct interaction of O 2 with the hydroxyl-radical-damaged sites on vital biomolecules, and exclude any significant contribution of e - /sub aq/ and superoxide radicals to the cellular radiodamage

  9. Study of the metastable singlet of molecular nitrogen and of oxygen atoms in discharges and post-discharges

    International Nuclear Information System (INIS)

    Magne, Lionel

    1991-01-01

    Whereas discharges in nitrogen, in oxygen and in their mixtures are used in many different industrial processes (surface treatment, nitridation, oxidation, and so on), in order to get a better knowledge on nitrogen electronic states, this research thesis reports the study of the metastable singlet state of molecular nitrogen, and of oxygen atoms in their fundamental state. The molecular metastable has been observed by far-UV optical emission spectroscopy, in the positive column of a continuous discharge and in time post-discharge. As far as continuous discharge is concerned, the author measured the vibrational distribution of this state. A kinetic model has been developed, and calculated vibrational distributions are in good agreement with measurements. The density of oxygen atoms in fundamental state in time post-discharge has been measured by far-UV absorption optical spectroscopy. The probability of atom re-association of glass walls is deduced from the obtained results [fr

  10. DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b

    International Nuclear Information System (INIS)

    Moses, Julianne I.; Visscher, C.; Fortney, J. J.; Showman, A. P.; Lewis, N. K.; Griffith, C. A.; Klippenstein, S. J.; Shabram, M.; Friedson, A. J.; Marley, M. S.; Freedman, R. S.

    2011-01-01

    We have developed a one-dimensional photochemical and thermochemical kinetics and diffusion model to study the effects of disequilibrium chemistry on the atmospheric composition of 'hot-Jupiter' exoplanets. Here we investigate the coupled chemistry of neutral carbon, hydrogen, oxygen, and nitrogen species on HD 189733b and HD 209458b and we compare the model results with existing transit and eclipse observations. We find that the vertical profiles of molecular constituents are significantly affected by transport-induced quenching and photochemistry, particularly on the cooler HD 189733b; however, the warmer stratospheric temperatures on HD 209458b help maintain thermochemical equilibrium and reduce the effects of disequilibrium chemistry. For both planets, the methane and ammonia mole fractions are found to be enhanced over their equilibrium values at pressures of a few bar to less than an mbar due to transport-induced quenching, but CH 4 and NH 3 are photochemically removed at higher altitudes. Disequilibrium chemistry also enhances atomic species, unsaturated hydrocarbons (particularly C 2 H 2 ), some nitriles (particularly HCN), and radicals like OH, CH 3 , and NH 2 . In contrast, CO, H 2 O, N 2 , and CO 2 more closely follow their equilibrium profiles, except at pressures ∼ 2 O, and N 2 are photochemically destroyed and CO 2 is produced before its eventual high-altitude destruction. The enhanced abundances of CH 4 , NH 3 , and HCN are expected to affect the spectral signatures and thermal profiles of HD 189733b and other relatively cool, transiting exoplanets. We examine the sensitivity of our results to the assumed temperature structure and eddy diffusion coefficients and discuss further observational consequences of these models.

  11. Carp head kidney leukocytes display different patterns of oxygen radical production after stimulation with PAMPs and DAMPs

    DEFF Research Database (Denmark)

    Jiménez, Natalia Ivonne Vera; Nielsen, Michael Engelbrecht

    2013-01-01

    . Consistent with a pathogen eradication strategy, ROS responses to PAMP stimulation (β-glucan) was fast, vigorous and highly dominated by production of superoxide anion. In contrast, stimulation with DAMPs led to a slow, subtle but long-lasting production of oxygen radicals dominated by hydrogen peroxide....... Using an in vitro model of scratch-wounded CCB fibroblast cell cultures and a novel PhotoID proliferation assay, stimulation with low and continuous levels of hydrogen peroxide (5μM) led to a slight increase in the percentage of wound recovery and thus promoted wound closure. In contrast, high doses...... and thereby potential tissue damage. Direct in vitro stimulation with β-glucans did not impact fibroblast scratch-wound recovery, which further suggests that interaction with tissue-resident leukocytes or other components of the fish immune system are required to induce fibroblast proliferation and thus...

  12. Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Vikkisk, Merilin; Kruusenberg, Ivar; Joost, Urmas; Shulga, Eugene; Tammeveski, Kaido

    2013-01-01

    Highlights: ► Pyrolysis in the presence of urea was used for nitrogen doping of carbon nanotubes. ► N-doped carbon nanotubes were used as catalysts for the oxygen reduction reaction. ► N-doped carbon material showed a high catalytic activity for ORR in alkaline media. ► N-containing CNT material is an attractive cathode catalyst for alkaline membrane fuel cells. - Abstract: The electrochemical reduction of oxygen was studied on nitrogen-doped multi-walled carbon nanotube (NCNT) modified glassy carbon (GC) electrodes employing the rotating disk electrode (RDE) method. Nitrogen doping was achieved by simple pyrolysis of the carbon nanotube material in the presence of urea. The surface morphology and composition of the NCNT samples were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed a rather uniform distribution of NCNTs on the GC electrode substrate. The XPS analysis showed a successful doping of carbon nanotubes with nitrogen species. The RDE results revealed that in alkaline solution the N-doped nanotube materials showed a remarkable electrocatalytic activity towards oxygen reduction. At low overpotentials the reduction of oxygen followed a two-electron pathway on undoped carbon nanotube modified GC electrodes, whereas on NCNT/GC electrodes a four-electron pathway of O 2 reduction predominated. The results obtained are significant for the development of nitrogen-doped carbon-based cathodes for alkaline membrane fuel cells.

  13. Degradation of methyl and ethyl mercury into inorganic mercury by other reactive oxygen species besides hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Ikuo; Takahashi, Hitoshi (Kumamoto Univ. Medical School (Japan). Inst. for Medical Immunology)

    1992-01-01

    Degradation of methyl mercury (MeHg) and ethyl Hg (EtHg) with reactive oxygens was studied in vitro by using peroxidase-hydrogen peroxide (H{sub 2}O{sub 2})-halide and rose bengal-ultraviolet light A systems. For this purpose, the direct determination method for inorganic Hg was employed. Both systems could effectively degrade EtHg, and MeHg to some extent. Degradation of MeHg and EtHg with the myeloperoxidase (MPO)-H{sub 2}O{sub 2}-chloride system was inhibited by MPO inhibitors (cyanide and azide), catalase, hypochlorous acid (HOCl) scavengers (glycine, alanine, serine and taurine), 1,4-diazabicyclo(2,2,2)octane and 2,5-dimethylfuran, but not by hydroxyl radical scavengers (ethanol and mannitol). Iodide was more effective than chloride as the halide component. Lactoperoxidase (LPO) could substitute for MPO in the iodide, but not the chloride system. With MPO-H{sub 2}O{sub 2}-chloride, MPO-H{sub 2}O{sub 2}-iodide and LPO-H{sub 2}O{sub 2}-iodide systems, we observed the increased degradation of EtHg in deuterium oxide (D{sub 2}O) medium better than that in H{sub 2}O medium. The D{sub 2}O effect upon MeHg degradation was extremely weak. These results suggested that HOCl (or HOI) might be also capable of degrading MeHg and EtHg, besides the hydroxyl radical already reported by us. Singlet oxygen could degrade EtHg but not MeHg. (orig.).

  14. A scenario analysis of effects of reduced nitrogen input on oxygen conditions in the Kattegat and the Belt Sea

    DEFF Research Database (Denmark)

    Hansen, I.S.; Ærtebjerg, G.; Richardson, K.

    1995-01-01

    A numerical tool has been developed for analyzing the potential effects of reduced nitrogen loading to the Kattegat and the Belt Sea. The analyzed effects relate to general trends in the occurrence of hypoxia and anoxia in the water below the pycnocline during the summer and autumn. Nitrogen...... is assumed to be the nutrient controlling production in these waters. The tool is a dynamic numerical model which includes the dominant hydrodynamic processes of the study area as well as the nitrogen cycle and is linked to oxygen conditions. The model has been calibrated based on the average intraannual...

  15. Isotopic-spectral determination of hydrogen, nitrogen, oxygen and carbon in semiconductor materials

    International Nuclear Information System (INIS)

    Dudich, G.K.; Eremeev, V.A.; Li, V.N.; Nemets, V.M.

    1981-01-01

    Techniques of low-temperature isotopic-spectral determination of impurities of hydrogen, nitrogen, oxygen and carbon in semiconductor materials Bi, Ge, Pb tellurides are developed. The techniques include selection into special vessel with the known volume (exchanger) of sample analyzed, dosed introduction into exchanger of rare isotope of the element determined ( 2 H, 15 N, 18 O, 13 C) in the form of isotope-containing gas, balancing of the determined element isotopes in the system sample-isotope, containing gas, spectroscopic, determination of its isotope composition in gaseous phase of the system and calculation of the amount of the element determined in the sample. The lower boundaries of the amounts determined constitute 10 -7 , 10 -7 , 10 -6 and 10 -5 mass % respectively when sample of 20 g are used [ru

  16. Reactive Oxygen and Nitrogen Species in the Development of Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    David J.R. Fulton

    2017-07-01

    Full Text Available Pulmonary arterial hypertension (PAH is a progressive disease of the lung vasculature that involves the loss of endothelial function together with inappropriate smooth muscle cell growth, inflammation, and fibrosis. These changes underlie a progressive remodeling of blood vessels that alters flow and increases pulmonary blood pressure. Elevated pressures in the pulmonary artery imparts a chronic stress on the right ventricle which undergoes compensatory hypertrophy but eventually fails. How PAH develops remains incompletely understood and evidence for the altered production of reactive oxygen and nitrogen species (ROS, RNS respectively in the pulmonary circulation has been well documented. There are many different types of ROS and RNS, multiple sources, and collective actions and interactions. This review summarizes past and current knowledge of the sources of ROS and RNS and how they may contribute to the loss of endothelial function and changes in smooth muscle proliferation in the pulmonary circulation.

  17. Characterization of hydrogen, nitrogen, oxygen, carbon and sulfur in nuclear fuel (UO2) and cladding nuclear rod materials

    International Nuclear Information System (INIS)

    Crewe, Maria Teresa I.; Lopes, Paula Corain; Moura, Sergio C.; Sampaio, Jessica A.G.; Bustillos, Oscar V.

    2011-01-01

    The importance of Hydrogen, Nitrogen, Oxygen, Carbon and Sulfur gases analysis in nuclear fuels such as UO 2 , U 3 O 8 , U 3 Si 2 and in the fuel cladding such as Zircaloy, is a well known as a quality control in nuclear industry. In UO 2 pellets, the Hydrogen molecule fragilizes the metal lattice causing the material cracking. In Zircaloy material the H2 molecules cause the boiling of the cladding. Other gases like Nitrogen, Oxygen, Carbon and Sulfur affect in the lattice structure change. In this way these chemical compounds have to be measure within specify parameters, these measurement are part of the quality control of the nuclear industry. The analytical procedure has to be well established by a convention of the quality assurance. Therefore, the Oxygen, Carbon, Sulfur and Hydrogen are measured by infrared absorption (IR) and the nitrogen will be measured by thermal conductivity (TC). The gas/metal analyzer made by LECO Co. model TCHEN-600 is Hydrogen, Oxygen and Nitrogen analyzer in a variety of metals, refractory and other inorganic materials, using the principle of fusion by inert gas, infrared and thermo-coupled detector. The Carbon and Sulfur compounds are measure by LECO Co. model CS-400. A sample is first weighed and placed in a high purity graphite crucible and is casted on a stream of helium gas, enough to release the oxygen, nitrogen and hydrogen. During the fusion, the oxygen present in the sample combines with the carbon crucible to form carbon monoxide. Then, the nitrogen present in the sample is analyzed and released as molecular nitrogen and the hydrogen is released as gas. The hydrogen gas is measured by infrared absorption, and the sample gases pass through a trap of copper oxide which converts CO to CO 2 and hydrogen into water. The gases enter the cell where infrared water content is then converted making the measurement of total hydrogen present in the sample. The Hydrogen detection limits for the nuclear fuel is 1 μg/g for the Nitrogen

  18. Cardiomyocyte hypertrophy induced by Endonuclease G deficiency requires reactive oxygen radicals accumulation and is inhibitable by the micropeptide humanin.

    Science.gov (United States)

    Blasco, Natividad; Cámara, Yolanda; Núñez, Estefanía; Beà, Aida; Barés, Gisel; Forné, Carles; Ruíz-Meana, Marisol; Girón, Cristina; Barba, Ignasi; García-Arumí, Elena; García-Dorado, David; Vázquez, Jesús; Martí, Ramon; Llovera, Marta; Sanchis, Daniel

    2018-06-01

    The endonuclease G gene (Endog), which codes for a mitochondrial nuclease, was identified as a determinant of cardiac hypertrophy. How ENDOG controls cardiomyocyte growth is still unknown. Thus, we aimed at finding the link between ENDOG activity and cardiomyocyte growth. Endog deficiency induced reactive oxygen species (ROS) accumulation and abnormal growth in neonatal rodent cardiomyocytes, altering the AKT-GSK3β and Class-II histone deacethylases (HDAC) signal transduction pathways. These effects were blocked by ROS scavengers. Lack of ENDOG reduced mitochondrial DNA (mtDNA) replication independently of ROS accumulation. Because mtDNA encodes several subunits of the mitochondrial electron transport chain, whose activity is an important source of cellular ROS, we investigated whether Endog deficiency compromised the expression and activity of the respiratory chain complexes but found no changes in these parameters nor in ATP content. MtDNA also codes for humanin, a micropeptide with possible metabolic functions. Nanomolar concentrations of synthetic humanin restored normal ROS levels and cell size in Endog-deficient cardiomyocytes. These results support the involvement of redox signaling in the control of cardiomyocyte growth by ENDOG and suggest a pathway relating mtDNA content to the regulation of cell growth probably involving humanin, which prevents reactive oxygen radicals accumulation and hypertrophy induced by Endog deficiency. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus.

    Science.gov (United States)

    Ceja-Navarro, Javier A; Nguyen, Nhu H; Karaoz, Ulas; Gross, Stephanie R; Herman, Donald J; Andersen, Gary L; Bruns, Thomas D; Pett-Ridge, Jennifer; Blackwell, Meredith; Brodie, Eoin L

    2014-01-01

    Coarse woody debris is an important biomass pool in forest ecosystems that numerous groups of insects have evolved to take advantage of. These insects are ecologically important and represent useful natural analogs for biomass to biofuel conversion. Using a range of molecular approaches combined with microelectrode measurements of oxygen, we have characterized the gut microbiome and physiology of Odontotaenius disjunctus, a wood-feeding beetle native to the eastern United States. We hypothesized that morphological and physiological differences among gut regions would correspond to distinct microbial populations and activities. In fact, significantly different communities were found in the foregut (FG), midgut (MG)/posterior hindgut (PHG) and anterior hindgut (AHG), with Actinobacteria and Rhizobiales being more abundant toward the FG and PHG. Conversely, fermentative bacteria such as Bacteroidetes and Clostridia were more abundant in the AHG, and also the sole region where methanogenic Archaea were detected. Although each gut region possessed an anaerobic core, micron-scale profiling identified radial gradients in oxygen concentration in all regions. Nitrogen fixation was confirmed by (15)N2 incorporation, and nitrogenase gene (nifH) expression was greatest in the AHG. Phylogenetic analysis of nifH identified the most abundant transcript as related to Ni-Fe nitrogenase of a Bacteroidetes species, Paludibacter propionicigenes. Overall, we demonstrate not only a compartmentalized microbiome in this beetle digestive tract but also sharp oxygen gradients that may permit aerobic and anaerobic metabolism to occur within the same regions in close proximity. We provide evidence for the microbial fixation of N2 that is important for this beetle to subsist on woody biomass.

  20. Unlocking the Electrocatalytic Activity of Chemically Inert Amorphous Carbon-Nitrogen for Oxygen Reduction: Discerning and Refactoring Chaotic Bonds

    DEFF Research Database (Denmark)

    Zhang, Caihong; Zhang, Wei; Wang, Dong

    2017-01-01

    Mild annealing enables inactive nitrogen (N)-doped amorphous carbon (a-C) films abundant with chaotic bonds prepared by magnetron sputtering to become effective for the oxygen reduction reaction (ORR) by virtue of generating pyridinic N. The rhythmic variation of ORR activity elaborates well...... on the subtle evolution of the amorphous C−N bonds conferred by spectroscopic analysis....

  1. Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Gabriela; Pekarová, Michaela; Lojek, Antonín

    2010-01-01

    Roč. 49, č. 3 (2010), s. 133-139 ISSN 1436-6207 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : polyunsaturated fatty acids * reactive oxygen species * reactive nitrogen species Subject RIV: BO - Biophysics Impact factor: 3.343, year: 2010

  2. The compositional study of nitrogen and oxygen compounds in products of heavy oil primary and secondary upgrading processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chmielowiec, J.

    1986-02-01

    The primary objective was to characterize nitrogen and oxygen compound types in the upgraded products derived from Athabasca bitumen. Nitrogen compounds, depending on their nature and concentrations, in charge stocks to catalytic processess (hydro-processes and reforming) can severely limit or poison the catalyst activity. Oxygen compounds are corrosive (especially naphthenic acids) and can promote gum formation as part of the deterioration of the hydrocarbons in the petroleum product. A secondary objective was to evaluate the advantages and limitations of in-house mass spectrometry and infrared spectroscopy methods for analyzing specific classes of polar compounds in naphthas, middle distillates, and gas oils. An analytical procedure that was based on the discrimination of polar compound classes using liquid chromatography followed by mass spectrometric analysis was tested. The chemical intelligence on the fractions obtained from Athabasca bitumen and its upgrading products has been advanced by determining structural characteristics of the nitrogen and oxygen components. This report describes the determination of the distributions of nitrogen and oxygen compounds in samples from various process streams. This procedure is capable of providing information useful for evaluating hydrodenitrogenation and hydrodeoxygenation reactions.

  3. Mitochondrial Signaling in Plants Under Hypoxia: Use of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS)

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Møller, Ian Max

    2015-01-01

    Hypoxia commonly occurs in roots in water-saturated soil and in maturing and germinating seeds. We here review the role of the mitochondria in the cellular response to hypoxia with an emphasis on the turnover of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) and their potential...

  4. Effects of scavengers of reactive oxygen and radical species on cell survival following photodynamic treatment in vitro: comparison to ionizing radiation

    International Nuclear Information System (INIS)

    Henderson, B.W.; Miller, A.C.

    1986-01-01

    The effects of various scavengers of reactive oxygen and/or radical species on cell survival in vitro of EMT6 and CHO cells following photodynamic therapy (PDT) or gamma irradiation were compared. None of the agents used exhibited major direct cytotoxicity. Likewise, none interfered with cellular porphyrin uptake, and none except tryptophan altered singlet oxygen production during porphyrin illumination. The radioprotector cysteamine (MEA) was equally effective in reducing cell damage in both modalities. In part, this protection seems to have been induced by oxygen consumption in the system due to MEA autoxidation under formation of H 2 O 2 . The addition of catalase, which prevents H 2 O 2 buildup, reduced the effect of MEA to the same extent in both treatments. Whether the remaining protection was due to MEA's radical-reducing action or some remaining oxygen limitation is unclear. The protective action of MEA was not mediated by a doubling of cellular glutathione levels, since addition of buthionine sulfoximine, which prevented glutathione increase, did not diminish the observed MEA protection. The hydroxyl radical scavenger mannitol also afforded protection in both, but it was approximately twice as effective in gamma irradiation as in PDT. This is consistent with the predominant role of OH radicals in ionizing radiation damage and their presumed minor involvement in PDT damage. Superoxide dismutase, a scavenger of O 2 , acted as a radiation protector but was not significantly effective in PDT. Catalase, which scavenges H 2 O 2 , was ineffective in both modalities. Tryptophan, an efficient singlet oxygen scavenger, reduced cell death through PDT by several orders of magnitude while being totally ineffective in gamma irradiation. These data reaffirm the predominant role of 1O2 in the photodynamic cell killing but also indicate some involvement of free radical species

  5. The Distribution of Hydrogen, Nitrogen, and Chlorine Radicals in the Lower Stratosphere: Implications for Changes in O3 due to Emission of NO(y) from Supersonic Aircraft

    Science.gov (United States)

    Salawitch, R. J.; Wofsy, S. C.; Wennberg, P. O.; Cohen, R. C.; Anderson, J. G.; Fahey, D. W.; Gao, R. S.; Keim, E. R.; Woodbridge, E. L.; Stimpfle, R. M.; hide

    1994-01-01

    In situ measurements of hydrogen, nitrogen, and chlorine radicals obtained in the lower stratosphere during the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) are compared to results from a photochemical model that assimilates measurements of radical precursors and environmental conditions. Models allowing for heterogeneous hydrolysis of N2O5 agree well with measured concentrations of NO and ClO, but concentrations of HO2 and OH are underestimated by 10 to 25%, concentrations of NO2 are overestimated by 10 to 30%, and concentrations of HCl are overestimated by a factor of 2. Discrepancies for [OH] and [HO2] are reduced if we allow for higher yields of O(sup 1)D) from 03 photolysis and for heterogeneous production of HNO2. The data suggest more efficient catalytic removal of O3 by hydrogen and halogen radicals relative to nitrogen oxide radicals than predicted by models using recommended rates and cross sections. Increases in [O3] in the lower stratosphere may be larger in response to inputs of NO(sub y) from supersonic aircraft than estimated by current assessment models.

  6. The influence of riverine nitrogen on the dynamics of the North Sea oxygen minimum zone

    Science.gov (United States)

    Große, Fabian; Kreus, Markus; Lenhart, Hermann; Pätsch, Johannes

    2016-04-01

    The mitigation of eutrophication and its concomitants, like oxygen deficiency in bottom waters, is one of the major aspects of the ecological management of coastal marine ecosystems. In the past, biogeochemical models helped to significantly improve the understanding of the interaction of the physical and biological processes driving eutrophication. Anthropogenic river input of nitrogen (N) and phosphorus (P) is the main driver for eutrophication. Nevertheless, the quantification of their influence in a specific region remains an important issue, since it is as crucial for an efficient management as it is difficult to obtain. During the past decade, a quantitative method applicable to biogeochemical models - often referred to as `trans-boundary nutrient transports' (TBNT) - became more and more popular in the context of marine ecosystem management. This method allows for the tracing of elements from various sources, e.g., nitrogen (N) from different rivers, throughout the whole process chain of the applied model. By this, it provides valuable information about the contributions from different sources to the overall amount and turnover of an element in different areas of the model domain. This information constitutes the basis for the quantification, evaluation and optimisation of river input reduction targets for the tributaries, which are defined in relation to their ecological consequences in the marine environment. In existing studies, the TBNT method has been applied to a variety of biogeochemical models, e.g. to quantify the atmospheric contribution to total N in the North Sea (Troost et al., 2013). This study presents a novel approach to link the TBNT method applied to N to the biological processes driving the oxygen dynamics in the bottom layer of the North Sea. For this purpose, simulations from the biogeochemical model ECOHAM (ECOlogical model HAMburg) are analysed for the years 2002 and 2010, with the focus on the southern central North Sea, the region of

  7. Oxygen radicals in experimental shock: effects of spin-trapping nitrones in ameliorating shock pathophysiology (see comments)

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, G.P. (Institute of Anesthesiology and Intensive Care, University of Florence, Careggi Hospital, (Italy))

    1992-04-01

    Circulatory shock is accepted as a consequence of an acute oxygen radical overgeneration. Spin-trapping nitrones inactivate free radicals by forming relatively stable adducts. Three spin-trapping nitrones (N-tert-phenyl-butyl-nitrone; alpha-4-pyridyl-oxide-N-tert-butyl-nitrone; 5-5,dimethyl,1,pyrroline-N-oxide) were tested regarding their role in the pathophysiology and evolution of circulatory shock in rats. A prospective, randomized, controlled trial of spin-trapping nitrones in rats experiencing three different models of circulatory shock was designed. In the first group, endotoxic, traumatic, and mesenteric artery occlusion shock (all 100% lethal in control experiments) was prevented by the ip administration of N-tert-phenyl-butyl-nitrone (150 mg/kg); alpha-4-pyridyl-oxide-N-tert-butyl-nitrone (100 mg/kg); or 5-5,dimethyl,1,pyrroline-N-oxide (100 mg/kg). However, the evolution of shock was unaffected by the same compounds when all three nitrones had been previously inactivated by exposure to light and air. In the second group, microcirculatory derangements that were provoked by endotoxin and were observed in the mesocecum of rats were completely prevented by pretreatment with either peritoneal administration of each of the three nitrones or by their topical application to the microscopic field. While the rats survived after systemic treatment, those rats receiving topical nitrones died from endotoxic shock. In the third group, cell-membrane stiffness (a sign of peroxidative damage) was measured by spin-probes and electron-spin resonance in mitochondrial and microsomal membranes. Cell membranes obtained from shocked rats were more rigid than those membranes of controls. However, the membranes obtained from rats that were submitted to trauma or endotoxin after pretreatment with N-tert-phenyl-butyl-nitrone had normal stiffness.

  8. Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia.

    Science.gov (United States)

    Prabhakar, Nanduri R; Peng, Ying-Jie; Yuan, Guoxiang; Nanduri, Jayasri

    2018-05-01

    Sleep apnea is a prevalent respiratory disease characterized by periodic cessation of breathing during sleep causing intermittent hypoxia (IH). Sleep apnea patients and rodents exposed to IH exhibit elevated sympathetic nerve activity and hypertension. A heightened carotid body (CB) chemoreflex has been implicated in causing autonomic abnormalities in IH-treated rodents and in sleep apnea patients. The purpose of this article is to review the emerging evidence showing that interactions between reactive oxygen species (ROS) and gaseous transmitters as a mechanism cause hyperactive CB by IH. Rodents treated with IH exhibit markedly elevated ROS in the CB, which is due to transcriptional upregulation of pro-oxidant enzymes by hypoxia-inducible factor (HIF)-1 and insufficient transcriptional regulation of anti-oxidant enzymes by HIF-2. ROS, in turn, increases cystathionine γ-lyase (CSE)-dependent H 2 S production in the CB. Blockade of H 2 S synthesis prevents IH-evoked CB activation. However, the effects of ROS on H 2 S production are not due to direct effects on CSE enzyme activity but rather due to inactivation of heme oxygenase-2 (HO-2), a carbon monoxide (CO) producing enzyme. CO inhibits H 2 S production through inactivation of CSE by PKG-dependent phosphorylation. During IH, reduced CO production resulting from inactivation of HO-2 by ROS releases the inhibition of CO on CSE thereby increasing H 2 S. Inhibiting H 2 S synthesis prevented IH-evoked sympathetic activation and hypertension.

  9. Biphasic effect of oxygen radicals on prostaglandin production by rat mesangial cells

    International Nuclear Information System (INIS)

    Adler, S.; Stahl, R.A.K.; Baker, P.J.; Chen, Y.P.; Pritzl, P.M.; Couser, W.G.

    1987-01-01

    Cultured rat mesangial cells were exposed to a reactive oxygen species (ROS) generating system (xanthine plus xanthine oxidase) to explore the effect of ROS on their metabolism of arachidonic acid (AA). Cell viability, as assessed by 51 Cr release, was not affected by the concentrations of xanthine plus xanthine oxidase used. Prostaglandin E 2 (PGE 2 ) production following exposure to increasing quantities of xanthine plus xanthine oxidase was significantly decreased when cells were stimulated with the calcium ionophore A23187 or AA. Maximum suppression of production was seen within 10 min of ROS exposure. Thromboxane B 2 production was similarly decreased. This effect was reversed by addition of catalase to the ROS generating system but not by superoxide dismutase or mannitol, which suggested that H 2 O 2 was the responsible metabolite. High levels of H 2 O 2 suppressed PGE 2 production. Lower levels of H 2 O 2 resulted in significant stimulation of base-line PGE 2 production. Analysis of release of 3 H]AA-labeled metabolites from A23187-stimulated cells showed no effect of H 2 O 2 on phospholipase activity. Thus ROS can stimulate or inhibitor AA metabolism in the glomerular mesangium, which may have important effects on glomerular hemodynamics during glomerular injury

  10. Nitrogen Oxides in the Nocturnal Boundary Layer: Chemistry of Nitrous Acid (HONO) and the Nitrate Radical (N03)

    Energy Technology Data Exchange (ETDEWEB)

    Jochen Stutz

    2005-05-24

    Summary Chemical processes occurring at night in the lowest part of the urban atmosphere, the so called nocturnal boundary layer (NBL), can influence the composition of the atmosphere during the night as well as the following day. They may impact the budgets of some of the most important pollutants, such as ozone and nitrogen oxides, as well as influence size and composition of particular matter. Few studies have thus far concentrated on the nocturnal chemistry of the urban NBL, most likely due to the strong influence of vertical transport and mixing, which requires the measurement of trace gas profiles instead of simple point observations. Motivated by our lack of observations and understanding of nocturnal chemistry, the focus of this project was the study of the vertical distribution of trace gases and the altitude dependence of nocturnal chemistry under polluted conditions through field observations and modeling studies. The analysis of three field experiments (TEXAQS, Houston, 2000; Phoenix Sunrise Ozone Experiment, 2001; NAPOX, Boston, 2002), two of which were performed in this project, showed that ozone concentrations typically increase with height in the lowest 150m, while NO2 typically decreases. NO3, the dominant nocturnal radical species, showed much higher concentrations in the upper part of the NBL, and was often not present at the ground. With the help of a one-dimensional chemical transport model, developed in this project, we found that the interaction of ground emissions of NOx and hydrocarbons, together with their vertical transport, is responsible for the vertical profiles. The dominant chemical reactions influencing ozone, NO2 and NO3 are the reaction of ozone and NO3 with freshly emitted NO. Sensitivity studies with our model showed that the magnitude of the trace gas gradients depend both on the emission rates and the vertical stability of the NBL. Observations and model analysis clearly show that nocturnal chemistry in urban areas is altitude

  11. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  12. Critical role of oxygen radicals in the initiation of hepatic depression after trauma hemorrhage.

    Science.gov (United States)

    Jarrar, D; Wang, P; Cioffi, W G; Bland, K I; Chaudry, I H

    2000-11-01

    Although depression in hepatocellular function occurs early after trauma and severe hemorrhage and persists despite fluid resuscitation, it remains unknown whether reactive oxygen species (ROS) play any role in the initiation of hepatocellular depression and damage under those conditions. We hypothesized that administration of a ROS scavenger at the beginning of resuscitation will attenuate organ injury after severe shock. Male Sprague-Dawley rats (275-325 g) underwent laparotomy (i.e., induction of soft tissue trauma) and were then bled to and maintained at a mean arterial pressure of 40 mm Hg until 40% of the maximal bleed-out volume was returned in the form of Ringer's lactate. The animals were then resuscitated with four times the volume of maximal bleed-out with RL over 60 minutes. The ROS scavenger 2-mercaptopropionyl glycine (30 mg/kg) or vehicle was administered intravenously as a bolus at the beginning of resuscitation. At 2 hours after the completion of crystalloid resuscitation or the equivalent interval after sham-operation, cardiac index was measured by a dye dilution technique. Hepatocellular function, i.e., the maximum velocity of indocyanine green clearance (Vmax) and the efficiency of the active transport (Km), was determined using an in vivo hemoreflectometer. Serum levels of tumor necrosis factor (TNF)-alpha and alanine aminotransferase were determined with ELISA and colorimetrically, respectively. The results indicate that at 2 hours after trauma hemorrhage and resuscitation, cardiac index and hepatocellular function were markedly depressed with concomitantly increased serum levels of TNF-alpha and alanine aminotransferase (p hepatic function and markedly attenuated liver enzyme release and serum levels of TNF-alpha (p trauma hemorrhage and resuscitation.

  13. [Generation of Superoxide Radicals by Complex III in Heart Mitochondria and Antioxidant Effect of Dinitrosyl Iron Complexes at Different Partial Pressure of Oxygen].

    Science.gov (United States)

    Dudylina, A L; Ivanova, M V; Shumaev, K B; Ruuge, E K

    2016-01-01

    The EPR spin-trapping technique and EPR-oximetry were used to study generation of superoxide radicals in heart mitochondria isolated from Wistar rats under conditions of variable oxygen concentration. Lithium phthalocyanine and TEMPONE-15N-D16 were chosen to determine oxygen content in a gas-permeable capillary tube containing mitochondria. TIRON was used as a spin trap. We investigated the influence of different oxygen concentrations in incubation mixture and demonstrated that heart mitochondria can generate superoxide in complex III at different partial pressure of oxygen as well as under the conditions of deep hypoxia (partial pressure of oxygen, but the magnitude and kinetic characteristics of the effect depended on the concentration of the drug.

  14. Oxoferryl-Porphyrin Radical Catalytic Intermediate in Cytochrome bd Oxidases Protects Cells from Formation of Reactive Oxygen Species*

    Science.gov (United States)

    Paulus, Angela; Rossius, Sebastiaan Gijsbertus Hendrik; Dijk, Madelon; de Vries, Simon

    2012-01-01

    The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b558 that donates electrons to a binuclear heme b595/heme d center. The reaction with O2 and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O2, the O–O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b595. Compound I accumulates to 0.75–0.85 per enzyme in agreement with its much higher rate of formation (∼20,000 s−1) compared with its rate of decay (∼1,900 s−1). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b558 before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O–O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O–O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species. PMID:22287551

  15. Pancreatic nitric oxide and oxygen free radicals in the early stages of streptozotocin-induced diabetes mellitus in the rat

    Directory of Open Access Journals (Sweden)

    González E.

    2000-01-01

    Full Text Available The objective of the present study was to explore the regulatory mechanisms of free radicals during streptozotocin (STZ-induced pancreatic damage, which may involve nitric oxide (NO production as a modulator of cellular oxidative stress. Removal of oxygen species by incubating pancreatic tissues in the presence of polyethylene glycol-conjugated superoxide dismutase (PEG-SOD (1 U/ml produced a decrease in nitrite levels (42% and NO synthase (NOS activity (50% in diabetic but not in control samples. When NO production was blocked by N G-monomethyl-L-arginine (L-NMMA (600 µM, SOD activity increased (15.21 ± 1.23 vs 24.40 ± 2.01 U/mg dry weight. The increase was abolished when the NO donor, spermine nonoate, was added to the incubating medium (13.2 ± 1.32. Lipid peroxidation was lower in diabetic tissues when PEG-SOD was added (0.40 ± 0.02 vs 0.20 ± 0.03 nmol/mg protein, and when L-NMMA blocked NOS activity in the incubating medium (0.28 ± 0.05; spermine nonoate (100 µM abolished the decrease in lipoperoxide level (0.70 ± 0.02. We conclude that removal of oxygen species produces a decrease in pancreatic NO and NOS levels in STZ-treated rats. Moreover, inhibition of NOS activity produces an increase in SOD activity and a decrease in lipoperoxidation in diabetic pancreatic tissues. Oxidative stress and NO pathway are related and seem to modulate each other in acute STZ-induced diabetic pancreas in the rat.

  16. Mechanisms of electron transfer from structrual Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals

    Science.gov (United States)

    Yuan, Songhu; Liu, Xixiang; Liao, Wenjuan; Zhang, Peng; Wang, Xiaoming; Tong, Man

    2018-02-01

    Production of hydroxyl radicals (radOH) has been recently revealed upon oxygenation of sediments in redox-dynamic subsurface environments. In particular, Fe(II)-bearing clay minerals are the major sediment components contributing to radOH production upon oxygenation, and the produced radOH can oxidize contaminants and inactivate bacteria. Whereas, the mechanisms of radOH production from oxygenation of Fe(II)-bearing clay minerals remain elusive. The objectives of this study were to identify the structural variation of Fe(II) entities during the oxidation of Fe(II)-bearing clay minerals by O2, and to unravel the mechanisms of electron transfer within the mineral structure and from mineral to O2 for radOH production. Nontronite (NAu-2, 23% Fe) which was chemically reduced to 54.5% Fe(II) in total Fe was used as a model Fe(II)-bearing clay mineral. Production of radOH and oxidation of Fe(II) were measured during the oxidation of reduced NAu-2 by O2. A wide spectrum of spectroscopic techniques, including Fourier transform infrared spectroscopy (FTIR), Fe K-edge X-ray absorption spectroscopy (XAS), Mössbauer spectra, and X-ray photoelectron spectroscopy (XPS), were employed to explore the structural variation of Fe(II) entities in NAu-2 and the electron transfer within NAu-2 and from NAu-2 to O2. For 180 min oxidation of 1 g/L reduced NAu-2, a biphasic radOH production was observed, being quick within the initial 15 min and slow afterwards. Production of radOH correlates well with oxidation of Fe(II) in the reduced NAu-2. Within the initial 15 min, trioctahedral Fe(II)-Fe(II)-Fe(II) entities and edge Fe(II) in the reduced NAu-2 were preferentially and quickly oxidized, and electrons from the interior Fe(II)-Fe(II)-Fe(II) entities were most likely ejected from the basal siloxane plane to O2. Meanwhile, trioctahedral Fe(II)-Fe(II)-Fe(II) entities were mainly transformed to dioctahedral Fe(II)-Fe(II) entities. When the time of oxygenation was longer than 15 min

  17. Nitrogen and chemical oxygen demand removal from septic tank wastewater in subsurface flow constructed wetlands: substrate (cation exchange capacity) effects.

    Science.gov (United States)

    Collison, Robert S; Grismer, Mark E

    2014-04-01

    The current article focuses on chemical oxygen demand (COD) and nitrogen (ammonium and nitrate) removal performance from synthetic human wastewater as affected by different substrate rocks having a range of porosities and cation exchange capacities (CECs). The aggregates included lava rock, lightweight expanded shale, meta-basalt (control), and zeolite. The first three had CECs of 1 to 4 mequiv/100 gm, whereas the zeolite CEC was much greater (-80 mequiv/100 gm). Synthetic wastewater was gravity fed to each constructed wetland system, resulting in a 4-day retention time. Effluent samples were collected, and COD and nitrogen species concentrations measured regularly during four time periods from November 2008 through June 2009. Chemical oxygen demand and nitrogen removal fractions were not significantly different between the field and laboratory constructed wetland systems when corrected for temperature. Similarly, overall COD and nitrogen removal fractions were practically the same for the aggregate substrates. The important difference between aggregate effects was the zeolite's ammonia removal process, which was primarily by adsorption. The resulting single-stage nitrogen removal process may be an alternative to nitrification and denitrification that may realize significant cost savings in practice.

  18. Free radicals in biology. Volume II

    International Nuclear Information System (INIS)

    Pryor, W.A.

    1976-01-01

    This volume continues the treatment of topics in free radical biology and free radical pathology from Volume I. In the first chapter, pyridinyl radicals, radicals which are models for those derived from NAD, are discussed. Pyridinyl radicals can be synthesized and isolated and directly studied in a number of chemical systems. The next chapter treats the role of glutathione in the cell. It is becoming even more apparent that this vital thiol controls a large number of important cellular functions. The GSH/GSSG balance has recently been implicated as a control for cellular development; this balance also may be important in relaying the effects of oxidants from one site to another in the body. The next chapter outlines the reactions of singlet oxygen; some of these involve free radicals and some do not. This reactive intermediate appears to be important both in photochemical smog and in cellular chemistry where singlet oxygen is produced by nonphotochemical processes. The production of free radicals from dry tissues, a controversial area with conflicting claims is reviewed. The next chapter outlines the current status of the studies of photochemical smog. The next two chapters treat specific reactive materials which are present in smog. The first discusses the chemistry of nitrogen oxides and ozone. The second chapter treats the chemistry of the peroxyacyl nitrites. These compounds, although present in only small concentration, are among the most toxic components of smog. The last two chapters treat radiation damage to proteins and radiation protection and radical reactions produced by radiation in nucleic acids

  19. Standard Gibbs free energies of reactions of ozone with free radicals in aqueous solution: quantum-chemical calculations.

    Science.gov (United States)

    Naumov, Sergej; von Sonntag, Clemens

    2011-11-01

    Free radicals are common intermediates in the chemistry of ozone in aqueous solution. Their reactions with ozone have been probed by calculating the standard Gibbs free energies of such reactions using density functional theory (Jaguar 7.6 program). O(2) reacts fast and irreversibly only with simple carbon-centered radicals. In contrast, ozone also reacts irreversibly with conjugated carbon-centered radicals such as bisallylic (hydroxycylohexadienyl) radicals, with conjugated carbon/oxygen-centered radicals such as phenoxyl radicals, and even with nitrogen- oxygen-, sulfur-, and halogen-centered radicals. In these reactions, further ozone-reactive radicals are generated. Chain reactions may destroy ozone without giving rise to products other than O(2). This may be of importance when ozonation is used in pollution control, and reactions of free radicals with ozone have to be taken into account in modeling such processes.

  20. Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity.

    Science.gov (United States)

    Li, Jia; Liu, Kang; Gao, Xiang; Yao, Bin; Huo, Kaifu; Cheng, Yongliang; Cheng, Xiaofeng; Chen, Dongchang; Wang, Bo; Sun, Wanmei; Ding, Dong; Liu, Meilin; Huang, Liang

    2015-11-11

    Efficient utilization and broader commercialization of alternative energies (e.g., solar, wind, and geothermal) hinges on the performance and cost of energy storage and conversion systems. For now and in the foreseeable future, the combination of rechargeable batteries and electrochemical capacitors remains the most promising option for many energy storage applications. Porous carbonaceous materials have been widely used as an electrode for batteries and supercapacitors. To date, however, the highest specific capacitance of an electrochemical double layer capacitor is only ∼200 F/g, although a wide variety of synthetic approaches have been explored in creating optimized porous structures. Here, we report our findings in the synthesis of porous carbon through a simple, one-step process: direct carbonization of kelp in an NH3 atmosphere at 700 °C. The resulting oxygen- and nitrogen-enriched carbon has a three-dimensional structure with specific surface area greater than 1000 m(2)/g. When evaluated as an electrode for electrochemical double layer capacitors, the porous carbon structure demonstrated excellent volumetric capacitance (>360 F/cm(3)) with excellent cycling stability. This simple approach to low-cost carbonaceous materials with unique architecture and functionality could be a promising alternative to fabrication of porous carbon structures for many practical applications, including batteries and fuel cells.

  1. Oxygen- and nitrogen-chemisorbed carbon nanostructures for Z-scheme photocatalysis applications

    International Nuclear Information System (INIS)

    Qian Zhao; Pathak, Biswarup; Nisar, Jawad; Ahuja, Rajeev

    2012-01-01

    Here focusing on the very new experimental finding on carbon nanomaterials for solid-state electron mediator applications in Z-scheme photocatalysis, we have investigated different graphene-based nanostructures chemisorbed by various types and amounts of species such as oxygen (O), nitrogen (N) and hydroxyl (OH) and their electronic structures using density functional theory. The work functions of different nanostructures have also been investigated by us to evaluate their potential applications in Z-scheme photocatalysis for water splitting. The N-, O–N-, and N–N-chemisorbed graphene-based nanostructures (32 carbon atoms supercell, corresponding to lattice parameter of about 1 nm) are found promising to be utilized as electron mediators between reduction level and oxidation level of water splitting. The O- or OH-chemisorbed nanostructures have potential to be used as electron conductors between H 2 -evolving photocatalysts and the reduction level (H + /H 2 ). This systematic study is proposed to understand the properties of graphene-based carbon nanostructures in Z-scheme photocatalysis and guide experimentalists to develop better carbon-based nanomaterials for more efficient Z-scheme photocatalysis applications in the future.

  2. A system for removing both oxygen and nitrogen from a rare gas-hydrocarbon mixture

    International Nuclear Information System (INIS)

    Dijkman, W.H.

    1989-01-01

    A study has been made how to remove nitrogen from a mixture of a rare gas and a hydrocarbon in addition to the removal of oxygen, H 2 O and gaseous oxides. The purpose was to find a simple method for the purification of drift-chamber gases in a recirculation system. Such a method would reduce the operating costs of the large detectors presently constructed for LEP. A promising technique has been developed. First results of a chemical reactor using the novel technique are presented. The N 2 content of Ar/air mixtures containing up to 28% air could be reduced to a level of 20 ppm at a flow rate of 0.11 m 3 /h (200 ppm at 1.0 m 3 /h); and the O 2 content to 30 and 300 ppm respectively. Water and gaseous oxides concentrations were always below 5 ppm. Some of the practical problems still to be solved are discussed and suggestions are given for further development and applications. The method can in principle be of more general use. (orig.)

  3. The influence of oxygen and nitrogen doping on GeSbTe phase-change optical recording media properties

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrov, D.; Shieh, H.-P.D

    2004-03-15

    Nitrogen and oxygen doped and co-doped GeSbTe (GST) films for phase-change optical recording are investigated. It is found that the crystallization temperature increased as well as the crystalline microstructure refined by doping. The carrier-to-noise ratio (CNR) and erasability of phase-change optical disks are improved being up to 52 and 35 dB, respectively, by using an appropriate nitrogen doping or co-doping concentration in the recording layer. Optical disks with co-doped recording layer are found to be superior in the recording characteristics then the single doped recording layer disks.

  4. Study progress on free radicals and graves disease

    International Nuclear Information System (INIS)

    Zhang Ruiguo; Jin Jianhua

    2009-01-01

    Free radical-mediated oxidative injury has been closely implicated in the occurrence and development of many diseases. Graves disease was also accompanied by changes of the free radicals, especially for reactive oxygen species and reactive nitrogen, et al, and the oxidative stress can cause a certain degree of injury on the thyroid and other human important organs. Antithyroid drug and 131 I treatment of Graves disease, the oxidative and antioxidative parameters can also be changed. (authors)

  5. Methanol Droplet Extinction in Oxygen/Carbon-dioxide/Nitrogen Mixtures in Microgravity: Results from the International Space Station Experiments

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Ferkul, Paul V.; Hicks, Michael C.; Williams, Forman A.

    2012-01-01

    Motivated by the need to understand the flammability limits of condensed-phase fuels in microgravity, isolated single droplet combustion experiments were carried out in the Combustion Integrated Rack Facility onboard the International Space Station. Experimental observations of methanol droplet combustion and extinction in oxygen/carbon-dioxide/nitrogen mixtures at 0.7 and 1 atmospheric pressure in quiescent microgravity environment are reported for initial droplet diameters varying between 2 mm to 4 mm in this study.The ambient oxygen concentration was systematically lowered from test to test so as to approach the limiting oxygen index (LOI) at fixed ambient pressure. At one atmosphere pressure, ignition and some burning were observed for an oxygen concentration of 13% with the rest being nitrogen. In addition, measured droplet burning rates, flame stand-off ratios, and extinction diameters are presented for varying concentrations of oxygen and diluents. Simplified theoretical models are presented to explain the observed variations in extinction diameter and flame stand-off ratios.

  6. Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation

    International Nuclear Information System (INIS)

    Lacatusu, I.; Badea, N.; Badea, G.; Oprea, O.; Mihaila, M.A.; Kaya, D.A.; Stan, R.; Meghea, A.

    2015-01-01

    The development of nano-dosage forms of phytochemicals represents a significant progress of the scientific approach in the biomedical research. The aim of this study was to assess the effectiveness of lipid nanocarriers based on natural oils (grape seed oil, fish oil and laurel leaf oil) in counteracting free radicals and combating certain tumor cells. No drug was encapsulated in the nanocarriers. The cytotoxic effect exerted by bioactive nanocarriers against two tumor cells, MDA-MB 231 and HeLa cell lines, and two normal cells, L929 and B16 cell lines, was measured using the MTT assay, while oxidative damage was assessed by measuring the total antioxidant activity using chemiluminescence analysis. The best performance was obtained for nanocarriers based on an association of grape seed and laurel leaf oils, with a capacity to scavenge about 98% oxygen free radicals. A dose of nanocarriers of 5 mg·mL −1 has led to a drastic decrease in tumor cell proliferation even in the absence of an antitumor drug (e.g. about 50% viability for MDA-MB 231 cell line and 60% viability for HeLa cell line). A comparative survival profile of normal and tumor cells, which were exposed to an effective dose of 2.5 mg·mL −1 lipid nanocarriers, has revealed a death rate of 20% for normal B16 cells and of 40% death rate for MDA-MB 231 and HeLa tumor cells. The results in this study imply that lipid nanocarriers based on grape seed oil in association with laurel leaf oil could be a candidate to reduce the delivery system toxicity and may significantly improve the therapeutic efficacy of antitumor drugs in clinical applications. - Highlights: • Functional lipid nanocarriers with unique features and broad spectrum effectiveness • Lipid nanocarriers based on laureal leaf oil (LLO) and grape seed oil (GSO) • Antioxidant activity has reached 98% for nanocarriers containing 25% GSO and 2% LLO. • LLO exerts a significant cytotoxic effect against HeLa and MDA-MB 231 tumor cells. • 50

  7. Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Lacatusu, I.; Badea, N.; Badea, G.; Oprea, O. [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No 1, 011061 Bucharest (Romania); Mihaila, M.A. [Institute of Virusology “Stefan S. Nicolau”, Center of Immunology, Bravu Road, No. 285, 030304 Bucharest (Romania); Kaya, D.A. [Department of Field Crops, Faculty of Agriculture, Mustafa Kemal University, 31030 Antakya, Hatay (Turkey); Stan, R., E-mail: rl_stan2000@yahoo.com [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No 1, 011061 Bucharest (Romania); Meghea, A. [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No 1, 011061 Bucharest (Romania)

    2015-11-01

    The development of nano-dosage forms of phytochemicals represents a significant progress of the scientific approach in the biomedical research. The aim of this study was to assess the effectiveness of lipid nanocarriers based on natural oils (grape seed oil, fish oil and laurel leaf oil) in counteracting free radicals and combating certain tumor cells. No drug was encapsulated in the nanocarriers. The cytotoxic effect exerted by bioactive nanocarriers against two tumor cells, MDA-MB 231 and HeLa cell lines, and two normal cells, L929 and B16 cell lines, was measured using the MTT assay, while oxidative damage was assessed by measuring the total antioxidant activity using chemiluminescence analysis. The best performance was obtained for nanocarriers based on an association of grape seed and laurel leaf oils, with a capacity to scavenge about 98% oxygen free radicals. A dose of nanocarriers of 5 mg·mL{sup −1} has led to a drastic decrease in tumor cell proliferation even in the absence of an antitumor drug (e.g. about 50% viability for MDA-MB 231 cell line and 60% viability for HeLa cell line). A comparative survival profile of normal and tumor cells, which were exposed to an effective dose of 2.5 mg·mL{sup −1} lipid nanocarriers, has revealed a death rate of 20% for normal B16 cells and of 40% death rate for MDA-MB 231 and HeLa tumor cells. The results in this study imply that lipid nanocarriers based on grape seed oil in association with laurel leaf oil could be a candidate to reduce the delivery system toxicity and may significantly improve the therapeutic efficacy of antitumor drugs in clinical applications. - Highlights: • Functional lipid nanocarriers with unique features and broad spectrum effectiveness • Lipid nanocarriers based on laureal leaf oil (LLO) and grape seed oil (GSO) • Antioxidant activity has reached 98% for nanocarriers containing 25% GSO and 2% LLO. • LLO exerts a significant cytotoxic effect against HeLa and MDA-MB 231 tumor

  8. The development of a non-cryogenic nitrogen/oxygen supply system. [using hydrazine/water electrolysis

    Science.gov (United States)

    Greenough, B. M.; Mahan, R. E.

    1974-01-01

    A hydrazine/water electrolysis process system module design was fabricated and tested to demonstrate component and module performance. This module is capable of providing both the metabolic oxygen for crew needs and the oxygen and nitrogen for spacecraft leak makeup. The component designs evolved through previous R and D efforts, and were fabricated and tested individually and then were assembled into a complete module which was successfully tested for 1000 hours to demonstrate integration of the individual components. A survey was made of hydrazine sensor technology and a cell math model was derived.

  9. The Effect of Nitrogen-Doped ATO Nanotubes on Radical Multiplication of Buffer Media by Visible Light Photocatalysis Rather UV

    Directory of Open Access Journals (Sweden)

    Kan-Hung Hu

    2012-01-01

    Full Text Available The use of TiO2 in photodynamic therapy for the treatment of cancer has generally been studied in cultured cancer cells in serum-containing RPMI 1640 medium under visible light application rather than ultraviolet (UV light. An ordered channel array of N-doped anodic titanium dioxide (ATO has been successfully made for visible light application. ATO nanotubes in the anatase form with a length of 10 μm are more effective than nanotubes of 1.8 μm in length as a photocatalyst for radical multiplication in buffer solution by generating hydroxyl radicals and superoxide radical anions under UV-A exposure. Only the N-doped ATO is applicable to visible light photocatalysis for radical multiplication in RPMI 1640+1% FBS and acrylamide, a free radical carrier.

  10. Influence of oxygen, nitrogen and carbonic gas during gamma irradiation of 'Sitophilus zeamais' Mots. and 'Zabrotes subfasciatus' (Boh.)

    International Nuclear Information System (INIS)

    Wiendl, F.M.; Tornisielo, V.L.; Walder, J.M.N.; Sgrillo, R.B.

    1976-01-01

    Zero to twenty-four hour old adults of the corn-weevil (S. zeamais) and of the bean weevil (Z. subfasciatus) with their food were irradiated with 5 krad of gamma rays from a Co-60 source (dose rate of 96.25 krad/h). The foodstuffs for the corn weevil were maize and rice as well as common beans for the bean weevil. Before irradiation, the insects of each treatment were exposed to 30 minutes gas fluxes of air, oxygen, nitrogen or carbonic gas, respectively. After irradiation, insects were kept in a temperature controlled chamber at 28 0 C. Losses in weight of the foodstuffs were recorded for 51 weeks. The greatest weight loss was found in the treatment with air flux. Weight losses decreased with the nitrogen, carbonic gas and oxygen treatments, respectively [pt

  11. Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages.

    Science.gov (United States)

    Gong, Yunqian; Yu, Bin; Yang, Wen; Zhang, Xiaoling

    2016-05-15

    Phosphorus and nitrogen doped carbon dots (PN-CDs) were conveniently prepared by carbonization of adenosine-5'-triphosphate using a hydrothermal treatment. The PN-CDs with P/C atomic ratio of ca. 9.2/100 emit blue luminescence with high quantum yields of up to 23.5%. The PN-CDs were used as a novel sensing platform for live cell imaging of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including ClO(-), ONOO(-), and NO in macrophages. The nanosensor design is based on our new finding that the strong fluorescence of the PN-CDs can be sensitively and selectively quenched by ROS and RNS both in vitro and in vivo. These results reveal that the PN-CDs can serve as a sensitive sensor for rapid imaging of ROS and RNS signaling with high selectivity and contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Defect-induced Catalysis toward the Oxygen Reduction Reaction in Single-walled Carbon Nanotube: Nitrogen doped and Non-nitrogen doped

    International Nuclear Information System (INIS)

    Lu, Di; Wu, Dan; Jin, Jian; Chen, Liwei

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) are post-treated by argon (Ar) or ammonia (NH 3 ) plasma irradiation to introduce defects that are potentially related to catalysis towards the oxygen reduction reaction (ORR). Electrochemical characterization in alkali medium suggests that the plasma irradiated SWNTs demonstrate enhanced catalytic activity toward the ORR with a positively shifted threshold potential. Moreover the enhanced desired four-electron pathway catalytic activity, which exhibited as the positive shifted threshold potential, is independent of the nitrogen dopant. The nature of the defects is probed with Raman and X-ray photoelectron spectroscopy. The results indicate that the non-nitrogen doped defects of SWNTs contribute to the actual active site for the ORR.

  13. Diffusion of oxygen in nitrogen in the pores of graphite. Preliminary results on the effect of oxidation on diffusivity

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, G. F.; Sharratt, E. W.

    1962-10-15

    Preliminary results are reported from an experimental study of the effect of burnoff on the diffusivity of oxygen in nitrogen within the pores of graphite. It is found that the ratio of effective diffusivity to ''free gas'' diffusivity changes about four-fold in the range 0-9% total oxidation. The viscous permeability, B0, increases in almost the same proportion over the same range.

  14. Determination of occluded oxygen, nitrogen and hydrogen in zircalloy-4 by vacuum extraction coupled to gas chromatography

    International Nuclear Information System (INIS)

    Vega, O.; Imakuma, K.

    1983-01-01

    The technique of vacuum extraction at high temperatures was used for the liberation of gases from zircalloy-4 samples; oxygen, nitrogen and hydrogen were quantitatively analysed by gas chromatography. Two different sets of zircalloy-4 samples were examined. The results for O 2 , N 2 and H 2 quantitative analyses satisfy the requirements for the characterization of the zircalloy-4 quality. (C.L.B.) [pt

  15. Nature of infrared-active phonon sidebands to internal vibrations: Spectroscopic studies of solid oxygen and nitrogen

    Science.gov (United States)

    Brodyanski, A. P.; Medvedev, S. A.; Vetter, M.; Kreutz, J.; Jodl, H. J.

    2002-09-01

    The ir-active phonon sidebands to internal vibrations of oxygen and nitrogen were precisely investigated by Fourier transform infrared spectroscopy in the fundamental and first overtone spectral regions from 10 K to the boiling points at ambient pressure. We showed that an analysis of ir-active phonon sidebands yields important information on the internal vibrations of molecules in a condensed medium (solid or liquid), being complementary to Raman data on vibron frequencies. Analyzing the complete profile of these bands, we determined the band origin frequencies and explored their temperature behavior in all phases of both substances. We present unambiguous direct experimental proofs that this quality corresponds to the frequency of internal vibrations of single molecules. Considering solid oxygen and nitrogen as two limiting cases for simple molecular solids, we interpret this result as a strong evidence for a general fact that an ir-active phonon sideband possesses the same physical origin in pure molecular solids and in impurity centers. The key characteristics of the fundamental vibron energy zone (environmental and resonance frequency shifts) were deduced from the combined analysis of ir and Raman experimental data and their temperature behavior was explored in solid and liquid phases of oxygen and nitrogen at ambient pressure. The character of the short-range orientational order was established in the β-nitrogen based on our theoretical analysis consistent with the present experimental results. We also present the explanation of the origin of pressure-caused changes in the frequency of the Raman vibron mode of solid oxygen at low temperatures.

  16. Heavily Graphitic-Nitrogen Self-doped High-porosity Carbon for the Electrocatalysis of Oxygen Reduction Reaction

    Science.gov (United States)

    Feng, Tong; Liao, Wenli; Li, Zhongbin; Sun, Lingtao; Shi, Dongping; Guo, Chaozhong; Huang, Yu; Wang, Yi; Cheng, Jing; Li, Yanrong; Diao, Qizhi

    2017-11-01

    Large-scale production of active and stable porous carbon catalysts for oxygen reduction reaction (ORR) from protein-rich biomass became a hot topic in fuel cell technology. Here, we report a facile strategy for synthesis of nitrogen-doped porous nanocarbons by means of a simple two-step pyrolysis process combined with the activation of zinc chloride and acid-treatment process, in which kidney bean via low-temperature carbonization was preferentially adopted as the only carbon-nitrogen sources. The results show that this carbon material exhibits excellent ORR electrocatalytic activity, and higher durability and methanol-tolerant property compared to the state-of-the-art Pt/C catalyst for the ORR, which can be mainly attributed to high graphitic-nitrogen content, high specific surface area, and porous characteristics. Our results can encourage the synthesis of high-performance carbon-based ORR electrocatalysts derived from widely-existed natural biomass.

  17. Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction.

    Science.gov (United States)

    Zhou, Huang; Zhang, Jian; Amiinu, Ibrahim Saana; Zhang, Chenyu; Liu, Xiaobo; Tu, Wenmao; Pan, Mu; Mu, Shichun

    2016-04-21

    Porous nitrogen-doped graphene with a very high surface area (1152 m(2) g(-1)) is synthesized by a novel strategy using intrinsically porous biomass (soybean shells) as a carbon and nitrogen source via calcination and KOH activation. To redouble the oxygen reduction reaction (ORR) activity by tuning the doped-nitrogen content and type, ammonia (NH3) is injected during thermal treatment. Interestingly, this biomass-derived graphene catalyst exhibits the unique properties of mesoporosity and high pyridine-nitrogen content, which contribute to the excellent oxygen reduction performance. As a result, the onset and half-wave potentials of the new metal-free non-platinum catalyst reach -0.009 V and -0.202 V (vs. SCE), respectively, which is very close to the catalytic activity of the commercial Pt/C catalyst in alkaline media. Moreover, our catalyst has a higher ORR stability and stronger CO and CH3OH tolerance than Pt/C in alkaline media. Importantly, in acidic media, the catalyst also exhibits good ORR performance and higher ORR stability compared to Pt/C.

  18. Oxygen- and nitrogen-co-doped activated carbon from waste particleboard for potential application in high-performance capacitance

    International Nuclear Information System (INIS)

    Shang, Tong-Xin; Ren, Ru-Quan; Zhu, Yue-Mei; Jin, Xiao-Juan

    2015-01-01

    Graphical abstract: All electrodes showed excellent capacitance and retention versus discharge current density from 0.05 to 5 A/g. - Abstract: Oxygen- and nitrogen-co-doped activated carbons were obtained from phosphoric acid treated nitrogen-doped activated carbons which were prepared from waste particleboard bonded with urea-formaldehyde resin adhesives. The activated carbon samples obtained were tested as supercapacitors in two-electrode cell and extensive wetting 7 M KOH electrolytes. Their structural properties and surface chemistry, before the electrical testing, were investigated using elemental analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, Raman spectra, and adsorption of nitrogen. Activated carbon treated by 4 M phosphoric acid of the highest capacitance (235 F/g) was measured in spite of a relatively lower surface (1360 m 2 /g) than that of the activated carbon treated by 2 M phosphoric acid (1433 m 2 /g). The surface chemistry, and especially oxygen- and nitrogen-containing functional groups, was found of paramount importance for the capacitive behavior and for the effective pore space utilization by the electrolyte ions

  19. Effect of hydrogen oxygen and nitrogen, on the tendency of welded joints of titanium alloys to moderate failure

    International Nuclear Information System (INIS)

    Gorshkov, A.I.; Matyushin, B.A.

    1976-01-01

    The admissible limits have been defined of gaseous impurities content in the metal of welded joints of titanium alloys, with due accout for the phase composition and alloying system. The proposed procedure of testing disk specimens most adequately simulates the behavior of welded joints in full-scale strures. The tests lasting 2.5 to 3 years permit to consider the effect of temporal processes (hydrogen diffusion, relaxation of stresses, phase transformations, etc.) on the durability of a weld. The hydrogen content in the metal of welded joints of OT4 alloy should not exceed 0.008%, that of VT14 alloy should not exceed 0.008%, and that of VT20 alloy should not exceed 0.015% (at an oxygen content of no more than 0.15% and a nitrogen content of no more than 0.03%), the oxygen content being 0.25%, 0.2% and 0.2%, respectxvely (at a hydrogen content of no more than 0.008% and a nitrogen of no more than 0.03%), ;nd the nitrogen content being 0.1%, 0.06% and 0.08%, respectively (at hydrogen content of no more than 0.008% and an oxygen content of no more than 0.15%

  20. Migration of methyl and phenyl radicals, oxygen and sulphur atoms in certain diphenylthiophosphorane derivatives under electron impact

    International Nuclear Information System (INIS)

    Cauquis, G.; Divisia, B.; Ulrich, J.

    The fragmentation of various diphenylthiophosphoranes (Ph 2 P(S)R) subjected to electron impact gives rise to rearrangements dependent on the nature of the radical R. Migrations of phenyl or methyl radicals from phosphorus towards sulphur were thus observed for R=Ph, CH 3 , CH 2 Ph and NH 2 . When an electrophilic centre is formed, during a fragmentation, on a carbon in the α-position of the diphenylthiophosphoranyl radical, migrations of sulphur atoms and phenyl radicals take place from the phosphorus towards the carbon. This is found to be the case with certain fragmentations of diazo 5 and 6 compounds [fr

  1. Cyclosporine treatment reduces oxygen free radical generation and oxidative stress in the brain of hypoxia-reoxygenated newborn piglets.

    Directory of Open Access Journals (Sweden)

    Richdeep S Gill

    Full Text Available Oxygen free radicals have been implicated in the pathogenesis of hypoxic-ischemic encephalopathy. It has previously been shown in traumatic brain injury animal models that treatment with cyclosporine reduces brain injury. However, the potential neuroprotective effect of cyclosporine in asphyxiated neonates has yet to be fully studied. Using an acute newborn swine model of hypoxia-reoxygenation, we evaluated the effects of cyclosporine on the brain, focusing on hydrogen peroxide (H(2O(2 production and markers of oxidative stress. Piglets (1-4 d, 1.4-2.5 kg were block-randomized into three hypoxia-reoxygenation experimental groups (2 h hypoxia followed by 4 h reoxygenation (n = 8/group. At 5 min after reoxygenation, piglets were given either i.v. saline (placebo, controls or cyclosporine (2.5 or 10 mg/kg i.v. bolus in a blinded-randomized fashion. An additional sham-operated group (n = 4 underwent no hypoxia-reoxygenation. Systemic hemodynamics, carotid arterial blood flow (transit-time ultrasonic probe, cerebral cortical H(2O(2 production (electrochemical sensor, cerebral tissue glutathione (ELISA and cytosolic cytochrome-c (western blot levels were examined. Hypoxic piglets had cardiogenic shock (cardiac output 40-48% of baseline, hypotension (mean arterial pressure 27-31 mmHg and acidosis (pH 7.04 at the end of 2 h of hypoxia. Post-resuscitation cyclosporine treatment, particularly the higher dose (10 mg/kg, significantly attenuated the increase in cortical H(2O(2 concentration during reoxygenation, and was associated with lower cerebral oxidized glutathione levels. Furthermore, cyclosporine treatment significantly attenuated the increase in cortical cytochrome-c and lactate levels. Carotid blood arterial flow was similar among groups during reoxygenation. Conclusively, post-resuscitation administration of cyclosporine significantly attenuates H(2O(2 production and minimizes oxidative stress in newborn piglets following hypoxia-reoxygenation.

  2. Improving the Characteristics of Sn-doped In{sub 2}O{sub 2} Grown at Room Temperature with Oxygen Radical-Assisted Electron Beam Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Min-Suk [Korea Institute of Industrial Technology, Gwangju (Korea, Republic of); Seo, Inseok [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-07-15

    Sn-doped In{sub 2}O{sub 3} (Indium tin oxide, ITO) is widely utilized in numerous industrial applications due to its high electrical conductivity and high optical transmittance in the visible region. High quality ITO thin-films have been grown at room temperature by oxygen radical assisted e-beam evaporation without any post annealing or plasma treatment. The introduction of oxygen radicals during e-beam growth greatly improved the surface morphology and structural properties of the ITO films. The obtained ITO film exhibits higher carrier mobility of 43.2 cm{sup 2}/V·s and larger optical transmittance of 84.6%, resulting in a higher figure of merit of ∼ 2.8 × 10{sup −2} Ω{sup −1}, which are quite comparable to the ITO film deposited by conventional e-beam evaporation. These results show that ITO films grown by oxygen radical assisted e-beam evaporation at room temperature with high optical transmittance and high electron conductivity have a great potential for organic optoelectronic devices.

  3. Improving the characteristics of Sn-doped In2O2 grown at room temperature with oxygen radical-assisted electron beam deposition

    Science.gov (United States)

    Oh, Min-Suk; Seo, Inseok

    2017-07-01

    Sn-doped In2O3 (Indium tin oxide, ITO) is widely utilized in numerous industrial applications due to its high electrical conductivity and high optical transmittance in the visible region. High quality ITO thin-films have been grown at room temperature by oxygen radical assisted e-beam evaporation without any post annealing or plasma treatment. The introduction of oxygen radicals during e-beam growth greatly improved the surface morphology and structural properties of the ITO films. The obtained ITO film exhibits higher carrier mobility of 43.2 cm2/V·s and larger optical transmittance of 84.6%, resulting in a higher figure of merit of ˜ 2.8 × 10-2 Ω-1, which are quite comparable to the ITO film deposited by conventional e-beam evaporation. These results show that ITO films grown by oxygen radical assisted e-beam evaporation at room temperature with high optical transmittance and high electron conductivity have a great potential for organic optoelectronic devices.

  4. Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Yeol [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Kim, Na Young [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of); Shin, Dong Yun [Chungbuk National University, Department of Environmental Engineering (Korea, Republic of); Park, Hee-Young [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of); Lee, Sang-Soo [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Joon Kwon, S. [Korea Institute of Science and Technology, Nanophotonics Research Center (Korea, Republic of); Lim, Dong-Hee [Chungbuk National University, Department of Environmental Engineering (Korea, Republic of); Bong, Ki Wan [Korea University, Department of Chemical and Biological Engineering (Korea, Republic of); Son, Jeong Gon, E-mail: jgson@kist.re.kr [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Kim, Jin Young, E-mail: jinykim@kist.re.kr [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of)

    2017-03-15

    Transition metals, such as iron (Fe)- or cobalt (Co)-based nanomaterials, are promising electrocatalysts for oxygen reduction reactions (ORR) in fuel cells due to their high theoretical activity and low cost. However, a major challenge to using these metals in place of precious metal catalysts for ORR is their low efficiency and poor stability, thus new concepts and strategies should be needed to address this issue. Here, we report a hybrid aciniform nanostructures of Fe nanofragments embedded in thin nitrogen (N)-doped graphene (Fe@N-G) layers via a heat treatment of graphene oxide-wrapped iron oxide (Fe{sub 2}O{sub 3}) microparticles with melamine. The heat treatment leads to transformation of Fe{sub 2}O{sub 3} microparticles to nanosized zero-valent Fe fragments and formation of core-shell structures of Fe nanofragments and N-doped graphene layers. Thin N-doped graphene layers massively promote electron transfer from the encapsulated metals to the graphene surface, which efficiently optimizes the electronic structure of the graphene surface and thereby triggers ORR activity at the graphene surface. With the synergistic effect arising from the N-doped graphene and Fe nanoparticles with porous aciniform nanostructures, the Fe@N-G hybrid catalyst exhibits high catalytic activity, which was evidenced by high E{sub 1/2} of 0.82 V, onset potential of 0.93 V, and limiting current density of 4.8 mA cm{sup −2} indicating 4-electron ORR, and even exceeds the catalytic stability of the commercial Pt catalyst.

  5. AMPK signaling in skeletal muscle during exercise: Role of reactive oxygen and nitrogen species.

    Science.gov (United States)

    Morales-Alamo, David; Calbet, Jose A L

    2016-09-01

    Reactive oxygen and nitrogen species (RONS) are generated during exercise depending on intensity, duration and training status. A greater amount of RONS is released during repeated high-intensity sprint exercise and when the exercise is performed in hypoxia. By activating adenosine monophosphate-activated kinase (AMPK), RONS play a critical role in the regulation of muscle metabolism but also in the adaptive responses to exercise training. RONS may activate AMPK by direct an indirect mechanisms. Directly, RONS may activate or deactivate AMPK by modifying RONS-sensitive residues of the AMPK-α subunit. Indirectly, RONS may activate AMPK by reducing mitochondrial ATP synthesis, leading to an increased AMP:ATP ratio and subsequent Thr(172)-AMPK phosphorylation by the two main AMPK kinases: LKB1 and CaMKKβ. In presence of RONS the rate of Thr(172)-AMPK dephosphorylation is reduced. RONS may activate LKB1 through Sestrin2 and SIRT1 (NAD(+)/NADH.H(+)-dependent deacetylase). RONS may also activate CaMKKβ by direct modification of RONS sensitive motifs and, indirectly, by activating the ryanodine receptor (Ryr) to release Ca(2+). Both too high (hypoxia) and too low (ingestion of antioxidants) RONS levels may lead to Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation causing inhibition of Thr(172)-AMPKα phosphorylation. Exercise training increases muscle antioxidant capacity. When the same high-intensity training is applied to arm and leg muscles, arm muscles show signs of increased oxidative stress and reduced mitochondrial biogenesis, which may be explained by differences in RONS-sensing mechanisms and basal antioxidant capacities between arm and leg muscles. Efficient adaptation to exercise training requires optimal exposure to pulses of RONS. Inappropriate training stimulus may lead to excessive RONS formation, oxidative inactivation of AMPK and reduced adaptation or even maladaptation. Theoretically, exercise programs should be designed taking into account the

  6. Correlation among Singlet-Oxygen Quenching, Free-Radical Scavenging, and Excited-State Intramolecular-Proton-Transfer Activities in Hydroxyflavones, Anthocyanidins, and 1-Hydroxyanthraquinones.

    Science.gov (United States)

    Nagaoka, Shin-Ichi; Bandoh, Yuki; Nagashima, Umpei; Ohara, Keishi

    2017-10-26

    Singlet-oxygen ( 1 O 2 ) quenching, free-radical scavenging, and excited-state intramolecular proton-transfer (ESIPT) activities of hydroxyflavones, anthocyanidins, and 1-hydroxyanthraquinones were studied by means of laser, stopped-flow, and steady-state spectroscopies. In hydroxyflavones and anthocyanidins, the 1 O 2 quenching activity positively correlates to the free-radical scavenging activity. The reason for this correlation can be understood by considering that an early step of each reaction involves electron transfer from the unfused phenyl ring (B-ring), which is singly bonded to the bicyclic chromen or chromenylium moiety (A- and C-rings). Substitution of an electron-donating OH group at B-ring enhances the electron transfer leading to activation of the 1 O 2 quenching and free-radical scavenging. In 3-hydroxyflavones, the OH substitution at B-ring reduces the activity of ESIPT within C-ring, which can be explained in terms of the nodal-plane model. As a result, the 1 O 2 quenching and free-radical scavenging activities negatively correlate to the ESIPT activity. A catechol structure at B-ring is another factor that enhances the free-radical scavenging in hydroxyflavones. In contrast to these hydroxyflavones, 1-hydroxyanthraquinones having an electron-donating OH substituent adjacent to the O-H---O═C moiety susceptible to ESIPT do not show a simple correlation between their 1 O 2 quenching and ESIPT activities, because the OH substitution modulates these reactions.

  7. Determination of oxygen, nitrogen, and silicon in Nigerian fossil fuels by 14 MeV neutron activation analysis

    International Nuclear Information System (INIS)

    Hannan, M.A.; Oluwole, A.F.; Kehinde, L.O.; Borisade, A.B.

    2003-01-01

    Classification, assessment, and utilization of coal and crude oil extracts are enhanced by analysis of their oxygen content. Values of oxygen obtained 'by difference' from chemical analysis have proved inaccurate. The oxygen, nitrogen, and silicon content of Nigerian coal samples, crude oils, bitumen extracts, and tar sand samples were measured directly using instrumental fast neutron activation analysis (FNAA). The total oxygen in the coal ranges from 5.20% to 23.3%, in the oil and extracts from 0.14% to 1.08%, and in the tar sands from 38% to 47%. The nitrogen content in the coal ranges from 0.54% to 1.35%, in the crude oil and bitumen extracts from ≤ 0.014% to 0.490%, and in the tar sands from 0.082% to 0.611%. The silicon content in the coal ranges from 1.50% to 8.86%; in the oil and the bitumen extracts it is <1%, and in the tar sands between 25.1% and 37.5%. The results show that Nigerian coals are mostly sub-bituminous. However, one of the samples showed bituminous properties as evidenced by the dry ash-free (daf) percent of carbon obtained. This same sample indicated a higher ash content resulting in a comparatively high percentage of silicon. In oils and tar sands from various locations, a comparison of elements is made. (author)

  8. Antioxidant potential of Aesculus hippocastanum extract and escin against reactive oxygen and nitrogen species.

    Science.gov (United States)

    Vašková, J; Fejerčáková, A; Mojžišová, G; Vaško, L; Patlevič, P

    2015-01-01

    Antioxidant, anti-inflammatory and venoconstrictor properties have been attributed to extracts from Aesculus hippocastanum. These unusual and diverse properties may be possibly basically linked with ability to scavenge free radicals. The scavenging capacity of dry horse chestnut extract of and escin have been investigated in vitro against superoxide anion radicals, hydroxyl radicals, nitrites and peroxynitrite. In general, the activity of the whole extract against superoxide radicals did not exceed 15% at pH 7.4, but the highest inhibition (46.11%) was recorded against hydroxyl radicals at a concentration of 100 µg.ml-1; however, the activity against other radicals was lower. Escin demonstrated a better ability to counteract nitric oxide oxidation products, nitrites. However, the efficiency of the whole extract completely disappeared as the concentration increased. Both extracts showed very low activity towards peroxynitrite. Escin was even able to induce peroxynitrite formation at the lower concentrations used. Whole extract showed better antiradical properties compared to its main active ingredient, escin, probably due to potential synergistic interaction with a mixture of compounds present in the plant extract. These findings can be the basis of both the presentation of side-effects and the persistence of disease in spite of ongoing treatment.

  9. ASRDI oxygen technology survey. Volume 5: Density and liquid level measurement instrumentation for the cryogenic fluids oxygen, hydrogen, and nitrogen

    Science.gov (United States)

    Roder, H. M.

    1974-01-01

    Information is presented on instrumentation for density measurement, liquid level measurement, quantity gauging, and phase measurement. Coverage of existing information directly concerned with oxygen was given primary emphasis. A description of the physical principle of measurement for each instrumentation type is included. The basic materials of construction are listed if available from the source document for each instrument discussed. Cleaning requirements, procedures, and verification techniques are included.

  10. Mesoporous nitrogen-doped carbon microfibers derived from Mg-biquinoline-dicarboxy compound for efficient oxygen electroreduction

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Aiguo, E-mail: agkong@chem.ecnu.edu.cn [School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Fan, Xiaohong; Chen, Aoling [School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Zhang, Hengiang [School of Chemistry and Chemical Engineering, Hebei Normal University for Nationalities, Chengde 067000 (China); Shan, Yongkui, E-mail: agkong@chem.ecnu.edu.cn [School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China)

    2017-02-15

    An in-situ MgO-templating synthesis route was introduced to obtain the mesoporous nitrogen-doped carbon microfibers by thermal conversion of new Mg-2,2′-biquinoline 4,4-dicarboxy acid coordination compound (Mg-DCA) microfibers. The investigated crystal structure of Mg-DCA testified that the assembling of Mg{sup 2+} and DCA through Mg-O coordination bond and hydrogen bond contributed to the formation of one-dimensional (1D) crystalline Mg-DCA microfibers. The nitrogen-doped carbons derived from the pyrolysis of Mg-DCA showed the well-defined microfiber morphology with high mesopore-surface area. Such mesoporous microfibers exhibited the efficient catalytic activity for oxygen reduction reaction (ORR) in alkaline solutions with better stability and methanol-tolerance performance. - Graphical abstract: Mesoporous nitrogen-doped carbon microfibers with efficient oxygen electroreduction activity were prepared by thermal conversion of new Mg-biquinoline-based coordination compound microfibers.

  11. Kinetics and mechanisms of the reactions of alkyl radicals with oxygen and with complexes of Co(III), Ru(III), and Ni(III)

    International Nuclear Information System (INIS)

    Kelley, D.

    1990-01-01

    The kinetics of the reactions of C 2 H 5 radical with Co(NH 3 ) 5 X 2+ , Ru(NH 3 ) 5 X 2+ , and Co(dmgH) 2 (X) (Y) (X = Br, Cl, N 3 , SCN; Y = H 2 O, CH 3 CN) complexes were studied using laser flash photolysis of ethylcobalt complexes. The kinetics were obtained by the kinetic probe method. Some relative rate constants were also determined by a competition method based on ethyl halide product ratios. The kinetics of colligation reactions of a series of alkyl radicals with β-Ni(cyclam) 2+ were studied using flaser flash photolysis of alkylcobalt complexes. Again, the kinetics were obtained by employing the kinetic probe competition method. The kinetics of the unimolecular homolysis of a series of RNi(cyclam)H 2 O 2+ were studied. Activation parameters were obtained for the unimolecular homolysis of C 2 H 5 Ni(cyclam)H 2 O 2+ . Kinetic and thermodynamic data obtained from these reactions were compared with those for the σ-bonded organometallic complexes. The kinetics of the unimolecular homolysis of a series of RNi(cyclam)H 2 O 2+ complexes were studied by monitoring the formation of the oxygen insertion product RO 2 Ni(cyclam)H 2 O 2+ . The higher rate constants for the reactions of alkyl radicals with oxygen in solution, as compared with those measured in the gas phase, were discussed. 30 refs

  12. 3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures

    Science.gov (United States)

    Teunissen, Jannis; Ebert, Ute

    2016-08-01

    We investigate how photoionization, electron avalanches and space charge affect the inception of nanosecond pulsed discharges. Simulations are performed with a 3D PIC-MCC (particle-in-cell, Monte Carlo collision) model with adaptive mesh refinement for the field solver. This model, whose source code is available online, is described in the first part of the paper. Then we present simulation results in a needle-to-plane geometry, using different nitrogen/oxygen mixtures at atmospheric pressure. In these mixtures non-local photoionization is important for the discharge growth. The typical length scale for this process depends on the oxygen concentration. With 0.2% oxygen the discharges grow quite irregularly, due to the limited supply of free electrons around them. With 2% or more oxygen the development is much smoother. An almost spherical ionized region can form around the electrode tip, which increases in size with the electrode voltage. Eventually this inception cloud destabilizes into streamer channels. In our simulations, discharge velocities are almost independent of the oxygen concentration. We discuss the physical mechanisms behind these phenomena and compare our simulations with experimental observations.

  13. Development of Nanofiller-Modulated Polymeric Oxygen Enrichment Membranes for Reduction of Nitrogen Oxides in Coal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jianzhong Lou; Shamsuddin Ilias

    2010-12-31

    North Carolina A&T State University in Greensboro, North Carolina, has undertaken this project to develop the knowledge and the material to improve the oxygen-enrichment polymer membrane, in order to provide high-grade oxygen-enriched streams for coal combustion and gasification applications. Both experimental and theoretical approaches were used in this project. The membranes evaluated thus far include single-walled carbon nano-tube, nano-fumed silica polydimethylsiloxane (PDMS), and zeolite-modulated polyimide membranes. To document the nanofiller-modulated polymer, molecular dynamics simulations have been conducted to calculate the theoretical oxygen molecular diffusion coefficient and nitrogen molecular coefficient inside single-walled carbon nano-tube PDMS membranes, in order to predict the effect of the nano-tubes on the gas-separation permeability. The team has performed permeation and diffusion experiments using polymers with nano-silica particles, nano-tubes, and zeolites as fillers; studied the influence of nano-fillers on the self diffusion, free volume, glass transition, oxygen diffusion and solubility, and perm-selectivity of oxygen in polymer membranes; developed molecular models of single-walled carbon nano-tube and nano-fumed silica PDMS membranes, and zeolites-modulated polyimide membranes. This project partially supported three graduate students (two finished degrees and one transferred to other institution). This project has resulted in two journal publications and additional publications will be prepared in the near future.

  14. One step synthesis of chlorine-free Pt/Nitrogen-doped graphene composite for oxygen reduction reaction

    KAUST Repository

    Varga, Tamás

    2018-03-14

    Chlorine-free Platinum/nitrogen-doped graphene oxygen reduction reaction catalysts were synthesized by a one step method of annealing a mixture of platinum acetylacetonate and graphene oxide under ammonia atmosphere. Nanoparticles with close to the ideal particle size for oxygen reduction reaction (ORR) were formed, i.e., with diameter of 3–4 nm (500 and 600 °C) and 6 nm (700 °C). X-ray photoelectron spectroscopy confirmed the successful introduction of both pyridinic and pyrrolic type nitrogen moieties into the graphene layers, which indicates a strong interaction between the nanoparticles and the graphene layers. The electrocatalytic activity of glassy carbon electrodes (GCE) modified with the synthesized Pt/NG samples for oxygen reduction was compared to that of a platinum/carbon black catalyst modified electrode in acidic and alkaline media. Based on the measured limiting current densities and calculated electron transfer number, the highest activity was measured in acidic and alkaline media on the samples annealed at 600 and 700 °C, respectively.

  15. Simultaneous Measurement of Nitrogen and Oxygen Isotopes of Nitrate to Evaluate Nitrate Sources and Processes in Catchments

    Energy Technology Data Exchange (ETDEWEB)

    Ohte, Nobuhito [Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo (Japan); Nagata, Toshi; Tayasu, Ichiro [Center for Ecological Research, Kyoto University, Ohtsu (Japan); Kyozu, Ayato; Yoshimizu, Chikage [CREST, Japan Science and Technology Agency, Center for Ecological Research, Kyoto University, Ohtsu (Japan); Osaka, Ken' ichi [Carbon and Nutrient Cycles Division, National Institute for Agro-Environmental Sciences, Tsukuba, (Japan)

    2013-05-15

    We review studies on applied isotope analytical techniques for identifying sources and transformations of river nitrate (NO{sub 3}{sup -}) to examine the influences of water pollution, excess nutrient (nitrogen) loads and ecosystem disturbances in river systems. We also discuss the current status and future perspectives of the application of NO{sub 3}{sup -} isotope measurements to the assessment of river nutrients. Our review shows that in recent years simultaneous measurements of nitrogen and oxygen isotopes ({delta}{sup 15}N and {delta}{sup 18}O) of NO{sub 3}{sup -} have been increasingly used to identify the sources and pathways of nitrogen in river systems. The {delta}{sup 15}N value of NO{sub 3}{sup -} is a useful indicator to evaluate the contributions of sewage and/or animal waste to NO{sub 3}{sup -} load, and the {delta}{sup 18}O value can be used for estimation of the contribution of NO{sub 3}{sup -} derived through atmospheric deposition. The microbial denitrification method is currently a most useful tool to measure the {delta}{sup 15}N and {delta}{sup 18}O values of NO{sub 3}{sup -} simultaneously, because of its capability for high throughput of samples. This method allows us to conduct a comprehensive investigation of spatial and temporal variations and mechanisms of nitrogen transport and transformation in rivers and catchments in more precise and effective manner. (author)

  16. Feed-derived volatile basic nitrogen increases reactive oxygen species production of blood leukocytes in lactating dairy cows.

    Science.gov (United States)

    Tsunoda, Ei; Gross, Josef J; Kawashima, Chiho; Bruckmaier, Rupert M; Kida, Katsuya; Miyamoto, Akio

    2017-01-01

    The present study investigated over 9 months the changes of fermentative quality of total mixed rations (TMR) containing grass silage (GS) as a major component, associated with changes in the volatile basic nitrogen (VBN) levels in an experimental dairy farm. Effects of VBN levels in TMR on metabolic parameters, reactive oxygen species (ROS) production by blood polymorphonuclear leukocytes (PMNs) and conception rates for dairy cows were analyzed. According to VBN levels in TMR during survey periods, three distinct phases were identified; phase A with low VBN; phase B with high VBN; and phase C with mid-VBN. Metabolic parameters in blood were all within normal range. However, during phases B and C, nitrogen metabolic indices such as blood urea nitrogen and milk urea nitrogen showed higher levels compared to those in phase A, and a simultaneous increase in ROS production by blood PMNs and the load on hepatic function in metabolic parameters was observed in the cows with a lower conception rate. This suggests that feeding TMR with elevated VBN levels due to poor fermented GS results in stimulation of ROS production by PMNs by ammonia, and negatively affects metabolism and reproductive performance in lactating dairy cow. © 2016 Japanese Society of Animal Science.

  17. A continuous-flow system for measuring in vitro oxygen and nitrogen metabolism in separated stream communities

    DEFF Research Database (Denmark)

    Prahl, C.; Jeppesen, E.; Sand-Jensen, Kaj

    1991-01-01

    on the stream bank, consists of several macrophyte and sediment chambers equipped with a double-flow system that ensures an internal water velocity close to that in the stream and which, by continuously renewing the water, mimics diel fluctuation in stream temperature and water chemistry. Water temperature...... production and dark respiration occurred at similar rates (6-7g O2 m-2 day-1), net balance being about zero. Inorganic nitrogen was consumed both by the sediment and to a greater extent by the macrophytes, the diel average consumption being 1g N m-2 day-1. 3. The sum of the activity in the macrophyte...... and sediment chambers corresponded to the overall activity of the stream section as determined by upstream/downstream mass balance. This indicates that the results obtained with the continuous-flow chambers realistically describe the oxygen and the nitrogen metabolism of the stream....

  18. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions

    Science.gov (United States)

    Mun, Bong-Gyu; Khan, Abdul Latif; Waqas, Muhammad; Kim, Hyun-Ho; Shahzad, Raheem; Imran, Muhammad

    2018-01-01

    This study investigated the regulatory role of exogenous salicylic acid (SA) in rice and its effects on toxic reactive oxygen and nitrogen species during short-term salinity stress. SA application (0.5 and 1.0 mM) during salinity-induced stress (100 mM NaCl) resulted in significantly longer shoot length and higher chlorophyll and biomass accumulation than with salinity stress alone. NaCl-induced reactive oxygen species production led to increased levels of lipid peroxidation in rice plants, which were significantly reduced following SA application. A similar finding was observed for superoxide dismutase; however, catalase (CAT) and ascorbate peroxidase (APX) were significantly reduced in rice plants treated with SA and NaCl alone and in combination. The relative mRNA expression of OsCATA and OsAPX1 was lower in rice plants during SA stress. Regarding nitrogenous species, S-nitrosothiol (SNO) was significantly reduced initially (one day after treatment [DAT]) but then increased in plants subjected to single or combined stress conditions. Genes related to SNO biosynthesis, S-nitrosoglutathione reductase (GSNOR1), NO synthase-like activity (NOA), and nitrite reductase (NIR) were also assessed. The mRNA expression of GSNOR1 was increased relative to that of the control, whereas OsNOA was expressed at higher levels in plants treated with SA and NaCl alone relative to the control. The mRNA expression of OsNR was decreased in plants subjected to single or combination treatment, except at 2 DAT, compared to the control. In conclusion, the current findings suggest that SA can regulate the generation of NaCl-induced oxygen and nitrogen reactive species in rice plants. PMID:29558477

  19. High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin

    Science.gov (United States)

    Raj, C. Justin; Rajesh, Murugesan; Manikandan, Ramu; Yu, Kook Hyun; Anusha, J. R.; Ahn, Jun Hwan; Kim, Dong-Won; Park, Sang Yeup; Kim, Byung Chul

    2018-05-01

    Activated carbon containing nitrogen functionalities exhibits excellent electrochemical property which is more interesting for several renewable energy storage and catalytic applications. Here, we report the synthesis of microporous oxygen and nitrogen doped activated carbon utilizing chitin from the gladius of squid fish. The activated carbon has large surface area of 1129 m2 g-1 with microporous network and possess ∼4.04% of nitrogen content in the form of pyridinic/pyrrolic-N, graphitic-N and N-oxide groups along with oxygen and carbon species. The microporous oxygen/nitrogen doped activated carbon is utilize for the fabrication of aqueous and flexible supercapacitor electrodes, which presents excellent electrochemical performance with maximum specific capacitance of 204 Fg-1 in 1 M H2SO4 electrolyte and 197 Fg-1 as a flexible supercapacitor. Moreover, the device displays 100% of specific capacitance retention after 25,000 subsequent charge/discharge cycles in 1 M H2SO4 electrolyte.

  20. OH radicals from the indirect actions of X-rays induce cell lethality and mediate the majority of the oxygen enhancement effect.

    Science.gov (United States)

    Hirayama, Ryoichi; Ito, Atsushi; Noguchi, Miho; Matsumoto, Yoshitaka; Uzawa, Akiko; Kobashi, Gen; Okayasu, Ryuichi; Furusawa, Yoshiya

    2013-11-01

    We examined OH radical-mediated indirect actions from X irradiation on cell killing in wild-type Chinese hamster ovary cell lines (CHO and AA8) under oxic and hypoxic conditions, and compared the contribution of direct and indirect actions under both conditions. The contribution of indirect action on cell killing can be estimated from the maximum degree of protection by dimethylsulfoxide, which suppresses indirect action by quenching OH radicals without affecting the direct action of X rays on cell killing. The contributions of indirect action on cell killing of CHO cells were 76% and 50% under oxic and hypoxic conditions, respectively, and those for AA8 cells were 85% and 47%, respectively. Therefore, the indirect action on cell killing was enhanced by oxygen during X irradiation in both cell lines tested. Oxygen enhancement ratios (OERs) at the 10% survival level (D10 or LD90) for CHO and AA8 cells were 2.68 ± 0.15 and 2.76 ± 0.08, respectively. OERs were evaluated separately for indirect and direct actions, which gave the values of 3.75 and 2.01 for CHO, and 4.11 and 1.32 for AA8 cells, respectively. Thus the generally accepted OER value of ∼3 is best understood as the average of the OER values for both indirect and direct actions. These results imply that both indirect and direct actions on cell killing require oxygen for the majority of lethal DNA damage, however, oxygen plays a larger role in indirect than for direct effects. Conversely, the lethal damage induced by the direct action of X rays are less affected by oxygen concentration.

  1. C-H functionalization directed by transformable nitrogen heterocycles: synthesis of ortho-oxygenated arylnaphthalenes from arylphthalazines.

    Science.gov (United States)

    Rastogi, Shiva K; Medellin, Derek C; Kornienko, Alexander

    2014-01-21

    Two protocols for oxygenation of aromatic C-H bonds ortho-positioned to the phthalazine ring were developed. The transannulation of the phthalazine ring to a naphthalene moiety by an Inverse Electron Demand Diels-Alder (IEDDA) reaction led to the synthesis of naphtho[2,1-c]chromenes, 1-(ortho-hydroxyaryl)naphthalenes and 6,7-dihydrobenzo[b]naphtho[1,2-d]oxepine. This new strategy based on the utilization of transformable nitrogen heterocycles in C-H functionalization chemistry can be potentially applicable to the synthesis of a broad range of biaryl compounds.

  2. Nitrogen and Fluorine-Codoped Carbon Nanowire Aerogels as Metal-Free Electrocatalysts for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Biwei [Energy and Environmental Directory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA

    2017-07-11

    The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.

  3. A survey of the reaction rate constants for the thermal dissociation and recombination of nitrogen and oxygen

    Science.gov (United States)

    Marraffa, Lionel; Dulikravich, George S.; Keeney, Timothy C.; Deiwert, George S.

    1988-01-01

    The objective of the present report is to survey the various values of forward and backward reaction rate constants used by investigators in the field of high-temperature (T greater than 2000 K) gas reactions involving nitrogen and oxygen only. The objective is to find those values that correlate well so that they can be used for the studies of hypersonic flow and supersonic combustion with reasonable confidence. Relatively good agreement among these various values is observed for temperatures lower than 10,000 K.

  4. Characterization of silicon oxynitride films prepared by the simultaneous implantation of oxygen and nitrogen ions into silicon

    International Nuclear Information System (INIS)

    Hezel, R.; Streb, W.

    1985-01-01

    Silicon oxynitride films about 5 nm in thickness were prepared by simultaneously implanting 5 keV oxygen and nitrogen ions into silicon at room temperature up to saturation. These films with concentrations ranging from pure silicon oxide to silicon nitride were characterized using Auger electron spectroscopy, electron energy loss spectroscopy and depth-concentration profiling. The different behaviour of the silicon oxynitride films compared with those of silicon oxide and silicon nitride with regard to thermal stability and hardness against electron and argon ion irradiation is pointed out. (Auth.)

  5. The effects of reactive oxygen and nitrogen species during yeast replicative ageing

    Czech Academy of Sciences Publication Activity Database

    Wilhelm, J.; Fuksová, H.; Schwippelová, Z.; Vytášek, R.; Pichová, Alena

    2006-01-01

    Roč. 27, 1-4 (2006), s. 185-193 ISSN 0951-6433 R&D Projects: GA ČR(CZ) GA301/03/0289 Institutional research plan: CEZ:AV0Z50200510 Keywords : free radicals * lipofuscin-like pigments * nitrotyrosine Subject RIV: EE - Microbiology, Virology Impact factor: 1.095, year: 2006

  6. Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles

    Directory of Open Access Journals (Sweden)

    Konstantinos Fiotakis

    2009-02-01

    Full Text Available Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR and spin- trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2·- and hydroxyl (HO· radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2’-deoxyguanosine (a biomarker for carcinogenesis.Also, we observed synergistic effects in the generation of HO·, through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc. and ambient particulate matter (PM, such as PM10, PM2.5 and diesel exhaust particles (DEP. The highest synergistic effects was observed with the asbestos fibres (freshly grounded, PM2.5 and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and “bio-filters” with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase.

  7. Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles

    Science.gov (United States)

    Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Konstantinos

    2009-01-01

    Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS) in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR) and spin-trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2•−) and hydroxyl (HO•) radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT) solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2’-deoxyguanosine (a biomarker for carcinogenesis). Also, we observed synergistic effects in the generation of HO•, through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc.) and ambient particulate matter (PM), such as PM10, PM2.5 and diesel exhaust particles (DEP). The highest synergistic effects was observed with the asbestos fibres (freshly grounded), PM2.5 and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and “bio-filters” with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase. PMID:19440393

  8. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river

    Science.gov (United States)

    Desmet, N. J. S.; Van Belleghem, S.; Seuntjens, P.; Bouma, T. J.; Buis, K.; Meire, P.

    When macrophytes are growing in the river, the vegetation induces substantial changes to the water quality. Some effects are the result of direct interactions, such as photosynthetic activity or nutrient uptake, whereas others may be attributed to indirect effects of the water plants on hydrodynamics and river processes. This research focused on the direct effect of macrophytes on oxygen dynamics and nutrient cycling. Discharge, macrophyte biomass density, basic water quality, dissolved oxygen and nutrient concentrations were in situ monitored throughout the year in a lowland river (Nete catchment, Belgium). In addition, various processes were investigated in more detail in multiple ex situ experiments. The field and aquaria measurement results clearly demonstrated that aquatic plants can exert considerable impact on dissolved oxygen dynamics in a lowland river. When the river was dominated by macrophytes, dissolved oxygen concentrations varied from 5 to 10 mg l -1. Considering nutrient retention, it was shown that the investigated in-stream macrophytes could take up dissolved inorganic nitrogen (DIN) from the water column at rates of 33-50 mg N kgdry matter-1 h. And DIN fluxes towards the vegetation were found to vary from 0.03 to 0.19 g N ha -1 h -1 in spring and summer. Compared to the measured changes in DIN load over the river stretch, it means that about 3-13% of the DIN retention could be attributed to direct nitrogen uptake from the water by macrophytes. Yet, the role of macrophytes in rivers should not be underrated as aquatic vegetation also exerts considerable indirect effects that may have a greater impact than the direct fixation of nutrients into the plant biomass.

  9. Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Tresp, H; Hammer, M U; Winter, J; Reuter, S; Weltmann, K-D

    2013-01-01

    In this paper the qualitative and quantitative detection of oxygen radicals in liquids after plasma treatment with an atmospheric pressure argon plasma jet by electron paramagnetic resonance spectroscopy is investigated. Absolute values for · OH and O 2 ·- radical concentration and their net production rate in plasma-treated liquids are determined without the use of additional scavenging chemicals such as superoxide dismutase (SOD) or mannitol (D-MAN). The main oxygen-centred radical generation in PBS was found to originate from the superoxide radical. It is shown that hidden parameters such as the manufacturer of chemical components could have a big influence on the comparability and reproducibility of the results. Finally, the effect of a shielding gas device for the investigated plasma jet with a shielding gas composition of varying oxygen-to-nitrogen ratio on radical generation after plasma treatment of phosphate-buffered saline solution was investigated. (paper)

  10. Nitrogen and triple oxygen isotopes in near-road air samples using chemical conversion and thermal decomposition.

    Science.gov (United States)

    Smirnoff, Anna; Savard, Martine M; Vet, Robert; Simard, Marie-Christine

    2012-12-15

    The determination of triple oxygen (δ(18)O and δ(17)O) and nitrogen isotopes (δ(15)N) is important when investigating the sources and atmospheric paths of nitrate and nitrite. To fully understand the atmospheric contribution into the terrestrial nitrogen cycle, it is crucial to determine the δ(15)N values of oxidised and reduced nitrogen species in precipitation and dry deposition. In an attempt to further develop non-biotic methods and avoid expensive modifications of the gas-equilibration system, we have combined and modified sample preparation procedures and analytical setups used by other researchers. We first chemically converted NO(3)(-) and NH(4)(+) into NO(2)(-) and then into N(2)O. Subsequently, the resulting gas was decomposed into N(2) and O(2) and analyzed by isotope ratio mass spectrometry (IRMS) using a pre-concentration system equipped with a gold reduction furnace. The δ(17)O, δ(18)O and δ(15)N values of nitrate and nitrite samples were acquired simultaneously in one run using a single analytical system. Most importantly, the entire spectrum of δ(17)O, δ(18)O and/or δ(15)N values was determined from atmospheric nitrate, nitric oxide, ammonia and ammonium. The obtained isotopic values for air and precipitation samples were in good agreement with those from previous studies. We have further advanced chemical approaches to sample preparation and isotope analyses of nitrogen-bearing compounds. The proposed methods are inexpensive and easily adaptable to a wide range of laboratory conditions. This will substantially contribute to further studies on sources and pathways of nitrate, nitrite and ammonium in terrestrial nitrogen cycling. Copyright © 2012 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.

  11. Involvement of oxygen free radicals in the respiratory uncoupling induced by free calcium and ADP-magnesium in isolated cardiac mitochondria: comparing reoxygenation in cultured cardiomyocytes.

    Science.gov (United States)

    Meynier, Alexandra; Razik, Hafida; Cordelet, Catherine; Grégoire, Stéphane; Demaison, Luc

    2003-01-01

    Recently, we have observed that the simultaneous application of free calcium (fCa) and ADP-magnesium (Mg) reduced the ADP:O ratio in isolated cardiac mitochondria. The uncoupling was prevented by cyclosporin A, an inhibitor of the permeability transition pore. The purpose of this study was to know if the generation of oxygen free radicals (OFR) is involved in this phenomenon and if it occurs during reoxygenation (Reox) of cultured cardiomyocytes. Cardiac mitochondria were harvested from male Wistar rats. Respiration was assessed in two media with different fCa concentrations (0 or 0.6 microM) with palmitoylcarnitine and ADP-Mg as respiration substrates. The production of Krebs cycle intermediates (KCI) was determined. Without fCa in the medium, the mitochondria displayed a large production of citrate + isocitrate + alpha-ketoglutarate. fCa drastically reduced these KCI and promoted the accumulation of succinate. To know if OFR are involved in the respiratory uncoupling, the effect of 4OH-TEMPO (250 microM), a hydrosoluble scavenger of OFR, was tested. 4OH-TEMPO completely abolished the fCa- and ADP-Mg-induced uncoupling. Conversely, vitamin E contributed to further decreasing the ADP:O ratio. Since no hydrosoluble electron acceptor was added in our experiment, the oxygen free radical-induced oxidized vitamin E was confined near the mitochondrial membranes, which should reduce the ADP:O ratio by opening the permeability transition pore. The generation of OFR could result from the matrix accumulation of succinate. Taken together, these results indicate that mitochondrial Ca uptake induces a slight increase in membrane permeability. Thereafter, Mg enters the matrix and, in combination with Ca, stimulates the isocitrate and/or alpha-ketoglutarate dehydrogenases. Matrix succinate favors oxygen free radical generation that further increases membrane permeability and allows respiratory uncoupling through proton leakage. To determine whether the phenomenon takes place

  12. Nitrogen

    Science.gov (United States)

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  13. Lanthanide ions (III) as sensitizers of melatonin oxidation in reaction mixtures providing reactive species of oxygen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Małgorzata, E-mail: mkaczmar@amu.edu.pl

    2015-06-15

    Chemiluminescence (CL) of the reactive systems providing strong oxidants (reactive species of oxygen and nitrogen) containing lanthanide ions (III) and melatonin, was studied. Kinetic curves of emission decay and spectral distributions of chemiluminescence were obtained. Analysis of differences in the intensity of chemiluminescence and CL spectra proved that excitation of Tb(III) and Dy(III) ions takes place with the energy transfer from the products of melatonin oxidation: N{sup 1}-acetyl-N{sup 2}-formyl-5-methoxykynuramine (AFMK) and N{sup 1}-acetyl-5-methoxykynuramine (AMK) to the lanthanide ions. In the system Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) a linear correlation was established between the integrated CL intensity and melatonin concent. - Highlights: • Chemiluminescence (CL) of melatonin (Mel) oxidation by reactive species of oxygen and nitrogen. • Tb(III) and Dy(III) ions as sensitizers of a melatonin oxidation process. • New CL method for determination of melatonin in pharmaceutical preparations based on CL of Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) system.

  14. Polyol synthesis in Aspergillus niger : influence of oxygen availability, carbon and nitrogen sources on the metabolism

    DEFF Research Database (Denmark)

    Diano, Audrey; Bekker-Jensen, S; Dynesen, Jens Østergaard

    2006-01-01

    Polyol production has been studied in Aspergillus niger under different conditions. Fermentations have been run using high concentration of glucose or xylose as carbon source and ammonium or nitrate as nitrogen source. The growth of biomass, as freely dispersed hyphae, led to an increase of medium...

  15. Radicais livres de oxigênio: um software introdutório Oxygen free radicals: an introductory software

    Directory of Open Access Journals (Sweden)

    Daniela K. Yokaichiya

    2000-04-01

    Full Text Available Though Free Radicals is one of the most frequently explored scientific subjects in mass communication media, the topic is absent of many Biochemistry introductory courses, especially those in which the students do not have a good chemical background. To overcome this contradictory situation we have developed a software treating this topic in a very simple way. The software is divided in four sections: (1 definition and description of free radicals, (2 production pathways, (3 mechanism of action and (4 enzymatic and non enzymatic protection. The instructional capacity of the software has been both qualitative and quantitatively evaluated through its application in undergraduate courses. The software is available in the INTERNET at the site: http://www.unicamp.br/ib/bioquimica/ensino.

  16. Production and correlation of reactive oxygen and nitrogen species in gas- and liquid-phase generated by helium plasma jets under different pulse widths

    Science.gov (United States)

    Liu, Zhijie; Zhou, Chunxi; Liu, Dingxin; Xu, Dehui; Xia, Wenjie; Cui, Qingjie; Wang, Bingchuan; Kong, Michael G.

    2018-01-01

    In this paper, we present the effects of the pulse width (PW) on the plasma jet's discharge characteristics, particularly focusing on the production and correlation of the reactive oxygen and nitrogen species (RONS) in gas- and liquid-phase. It is found that the length of plasma jet plume first increases before the PW of 10 μs, then gradually decreases and finally almost remains unchanged beyond 150 μs. The plasma bullet disappears after the falling edge of the voltage pulse at low PW, while it terminates far ahead of the falling edge of voltage pulse at high PW. This is mainly attributed to accumulation of space charges that lead to weakening of the reduced electric field with an increase of PW from low to high. More important, it is found that the excited reactive species, the positive and negative ions from plasma jet, and the concentrations of NO2- and NO3- in deionized water exposed to plasma jet also display the first increasing and then decreasing change trend with increase of PW, while the concentration of H2O2 in water almost displays the linearly increasing trend. This mainly results from the formation of the H3O+ and HO2-, as well as their ion water clusters that can produce more OH radicals to be converted into H2O2, while the NO2- and NO3- in gas phase can transport into water and exist most stably in water. The water cluster formation at gas-liquid interface is an important key process that can affect the chemical nature and dose of aqueous RONS in water; this is beneficial for understanding how the RONS are formed in liquid-phase.

  17. Oxygen amendment on growth and nitrogen-use efficiency of flooded Italian Basil

    Science.gov (United States)

    Flooding is a frequent and often unavoidable cause of stress, in vegetable production in Florida. Flooding results in hypoxia i.e., oxygen deficiency. This study was conducted with traditional Italian basil (Ocimum basilicum L.), cv. Genovese OG, treated with either a fast- or slow-release solid oxy...

  18. Ruthenium supported on nitrogen-doped carbon nanotubes for the oxygen reduction reaction in alkaline

    CSIR Research Space (South Africa)

    Mabena, LF

    2012-10-01

    Full Text Available between 0 and 10 wt.%. The activity of the prepared nanocatalysts toward the oxygen reduction reaction (ORR) was characterized using the rotating disk electrode and voltammetry techniques. The ORR activity was higher at lower concentrations of Ru on N...

  19. Adsorption Energies of Carbon, Nitrogen, and Oxygen Atoms on the Low-temperature Amorphous Water Ice: A Systematic Estimation from Quantum Chemistry Calculations

    Science.gov (United States)

    Shimonishi, Takashi; Nakatani, Naoki; Furuya, Kenji; Hama, Tetsuya

    2018-03-01

    We propose a new simple computational model to estimate the adsorption energies of atoms and molecules to low-temperature amorphous water ice, and we present the adsorption energies of carbon (3 P), nitrogen (4 S), and oxygen (3 P) atoms based on quantum chemistry calculations. The adsorption energies were estimated to be 14,100 ± 420 K for carbon, 400 ± 30 K for nitrogen, and 1440 ± 160 K for oxygen. The adsorption energy of oxygen is consistent with experimentally reported values. We found that the binding of a nitrogen atom is purely physisorption, while that of a carbon atom is chemisorption, in which a chemical bond to an O atom of a water molecule is formed. That of an oxygen atom has a dual character, with both physisorption and chemisorption. The chemisorption of atomic carbon also implies the possibility of further chemical reactions to produce molecules bearing a C–O bond, though this may hinder the formation of methane on water ice via sequential hydrogenation of carbon atoms. These properties would have a large impact on the chemical evolution of carbon species in interstellar environments. We also investigated the effects of newly calculated adsorption energies on the chemical compositions of cold dense molecular clouds with the aid of gas-ice astrochemical simulations. We found that abundances of major nitrogen-bearing molecules, such as N2 and NH3, are significantly altered by applying the calculated adsorption energy, because nitrogen atoms can thermally diffuse on surfaces, even at 10 K.

  20. Nitrogen ligation to manganese in the photosynthetic oxygen-evolving complex: Continuous-wave and pulsed EPR studies of Photosystem II particles containing 14N or 15N

    International Nuclear Information System (INIS)

    DeRose, V.J.; Yachandra, V.K.; McDermott, A.E.; Britt, R.D.; Sauer, K.; Klein, M.P.

    1991-01-01

    The possibility of nitrogen ligation to the Mn in the oxygen-evolving complex from photosystem II was investigated with electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) spectroscopies using 14 N- and 15 N-labeled preparations. Oxygen-evolving preparations were isolated from a thermophilic cyanobacterium, Synechococcus sp., grown on a medium containing either 14 NO 3 - or 15 NO - 3 as the sole source of nitrogen. The substructure on the multiline EPR signal, which arises from Mn in the S 2 state of the enzyme, was measured with continuous-wave EPR. No changes were detected in the substructure peak positions upon substitution of 15 N for 14 N, indicating that this substructure is not due to superhyperfine coupling from nitrogen ligands. To detect potential nitrogen ligands with superhyperfine couplings of lesser magnitude than could be observed with conventional EPR methods, electron spin-echo envelope modulation experiments were also performed on the multiline EPR signal. The Fourier transform of the light-minus-dark time domain ESEEM data shows a peak at 4.8 MHz in 14 N samples which is absent upon substitution with 15 N. This gives unambiguous evidence for weak hyperfine coupling of nitrogen to the Mn of the oxygen-evolving complex. Possible origins of this nitrogen interaction are discussed

  1. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    International Nuclear Information System (INIS)

    Hamilton, D.C.

    1986-01-01

    Measurements are reported for the electrical conductivity of liquid nitrogen (N 2 ), oxygen (O 2 ) and benzene (C 6 H 6 ), and Hugoniot equation of state of liquid 1-butene (C 4 H 8 ) under shock compressed conditions. The conductivity data span 7 x 10 -4 to 7 x 10 1 Ω -1 cm -1 over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs

  2. Unravelling chemical priming machinery in plants: the role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement.

    Science.gov (United States)

    Antoniou, Chrystalla; Savvides, Andreas; Christou, Anastasis; Fotopoulos, Vasileios

    2016-10-01

    Abiotic stresses severely limit crop yield and their detrimental effects are aggravated by climate change. Chemical priming is an emerging field in crop stress management. The exogenous application of specific chemical agents before stress events results in tolerance enhancement and reduction of stress impacts on plant physiology and growth. However, the molecular mechanisms underlying the remarkable effects of chemical priming on plant physiology remain to be elucidated. Reactive oxygen, nitrogen and sulfur species (RONSS) are molecules playing a vital role in the stress acclimation of plants. When applied as priming agents, RONSS improve stress tolerance. This review summarizes the recent knowledge on the role of RONSS in cell signalling and gene regulation contributing to abiotic stress tolerance enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Fixed-nitrogen loss associated with sinking zooplankton carcasses in a coastal oxygen minimum zone (Golfo Dulce, Costa Rica)

    DEFF Research Database (Denmark)

    Stief, Peter; Lundgaard, Ann Sofie Birch; Morales Ramirez, Alvaro

    2017-01-01

    Oxygen minimum zones (OMZs) in the ocean are of key importance for pelagic fixed-nitrogen loss (N-loss) through microbial denitrification and anaerobic ammonium oxidation (anammox). Recent studies document that zooplankton is surprisingly abundant in and around OMZs and that the microbial community...... associated with carcasses of a large copepod species mediates denitrification. Here, we investigate the complex N-cycling associated with sinking zooplankton carcasses exposed to the steep O2 gradient in a coastal OMZ (Golfo Dulce, Costa Rica). 15N-stable-isotope enrichment experiments revealed...... that the carcasses of abundant copepods and ostracods provide anoxic microbial hotspots in the pelagic zone by hosting intense anaerobic N-cycle activities even in the presence of ambient O2. Carcass-associated anaerobic N-cycling was clearly dominated by dissimilatory nitrate reduction to ammonium (DNRA) at up...

  4. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    Science.gov (United States)

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs).

  5. Benefits of oxygen and nitrogen plasma treatment in Vero cell affinity to poly(lactide-co-glycolide acid

    Directory of Open Access Journals (Sweden)

    Andrea Rodrigues Esposito

    2013-01-01

    Full Text Available Cell adhesion on materials surface is critical because this phenomenon occurs before other events, as cell spreading, cell migration and cell differentiation. it is commonly accepted that the adhesion of cells on solid substrate is influenced by several substratum surface properties, such as wettability, surface charge, roughness and topography. plasma technique is a convenient method for modifying surface properties of materials without affecting physical properties. in this study, poly(lactide-co-glycolide, plga, membranes were modified by oxygen and nitrogen plasma to improve polymer hydrophilicity and verify their effect on vero cells culture. the plga membranes, which were characterized by sem and contact angle, showed increased surface rugosity and narrower contact angles. cell adhesion, cytotoxicity assay, sem and cytochemistry analysis showed that plasma treatment was beneficial to cell growth by improving cell-polymer interaction. Cell adhesion on materials surface is critical because this phenomenon occurs before other events, as cell spreading, cell migration and cell differentiation. It is commonly accepted that the adhesion of cells on solid substrate is influenced by several substratum surface properties, such as wettability, surface charge, roughness and topography. Plasma technique is a convenient method for modifying surface properties of materials without affecting physical properties. In this study, poly(lactide-co-glycolide, PLGA, membranes were modified by oxygen and nitrogen plasma to improve polymer hydrophilicity and verify their effect on Vero cells culture. The PLGA membranes, which were characterized by SEM and contact angle, showed increased surface rugosity and narrower contact angles. Cell adhesion, cytotoxicity assay, SEM and cytochemistry analysis showed that plasma treatment was beneficial to cell growth by improving cell-polymer interaction.

  6. The Oxygen and Nitrogen Abundance of Leo A and GR 8

    Science.gov (United States)

    van Zee, L.; Skillman, E. D.; Haynes, M. P.

    1999-05-01

    Gas phase abundances are one of the best measures of the intrinsic metallicity of low mass galaxies. We recently obtained low resolution long slit optical spectra of several HII regions in Leo A and GR 8 with the Palomar 5m telescope. Previous studies of the resolved stellar population of Leo A indicated that the stars have metallicities approximately 2% of solar (Tolstoy et al. 1998). Preliminary analysis of the HII region spectra, and that of a planetary nebula, indicates that the gas phase oxygen abundance of Leo A is approximately 3% of solar. This confirms the result of Skillman et al. (1989), who also derived an oxygen abundance for Leo A from a planetary nebula. Similarly, for GR 8 we find a mean oxygen abundance of 5% of solar. For all the HII regions, the derived log(N/O) is -1.5 +/- 0.1, as has been found for other low metallicity systems. These new observations of multiple HII regions in Leo A and GR 8 confirm that metals in low mass galaxies are well mixed.

  7. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    Science.gov (United States)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  8. Simultaneous reduction and nitrogen functionalization of graphene oxide using lemon for metal-free oxygen reduction reaction

    Science.gov (United States)

    Begum, Halima; Ahmed, Mohammad Shamsuddin; Cho, Sung; Jeon, Seungwon

    2017-12-01

    Inspire by the vision of finding a simple and green method for simultaneous reduction and nitrogen (N)-functionalization of graphene oxide (GO), a N-rich reduced graphene oxide (rGO) has been synthesized through a facile and ecofriendly hydrothermal strategy while most of the existing methods are involving with multiple steps and highly toxic reducing agents that are harmful to human health and environment. In this paper, the simultaneous reduction and N-functionalization of GO using as available lemon juice (denoted as Lem-rGO) for metal-free electrocatalysis towards oxygen reduction reaction (ORR) is described. The proposed method is based on the reduction of GO using of the reducing and the N-precursor capability of ascorbic acid and citric acid as well as the nitrogenous compounds, respectively, that containing in lemon juice. The resultant Lem-rGO has higher reduction degree, higher specific surface area and better crystalline nature with N-incorporation than that of well investigated ascorbic acid and citric acid treated rGO. As a result, it shows better ORR electrocatalytic activity in respect to the improved onset potential, electron transfer rate and kinetics than those typical rGO catalysts. Moreover, it shows a significant tolerance to the anodic fuels and durability than the Pt/C during ORR.

  9. Nitrogen, Sulfur, and Oxygen Isotope Ratios of Animal- and Plant-Based Organic Fertilizers Used in South Korea.

    Science.gov (United States)

    Shin, Woo-Jin; Ryu, Jong-Sik; Mayer, Bernhard; Lee, Kwang-Sik; Kim, Insu

    2017-05-01

    Organic fertilizers are increasingly used in agriculture in Asia and elsewhere. Tracer techniques are desirable to distinguish the fate of nutrients added to agroecosystems with organic fertilizers from those contained in synthetic fertilizers. Therefore, we determined the nitrogen, sulfur, and oxygen isotope ratios of nitrogen- and sulfur-bearing compounds in animal- and plant-based organic fertilizers (ABOF and PBOF, respectively) used in South Korea to evaluate whether they are isotopically distinct. The δN values of total and organic nitrogen for ABOF ranged from +7 to +19‰ and were higher than those of PBOF (generally fertilizer compounds in the plant-soil-water system, whereas PBOFs have similar δN values to synthetic fertilizers. However, δO values for nitrate (δO) from organic fertilizer samples (fertilizers. The δS values of total sulfur, organic sulfur compounds (e.g., carbon-bonded sulfur and hydriodic acid-reducible sulfur), and sulfate for ABOFs yielded wide and overlapping ranges of +0.3 to +6.3, +0.9 to +7.2, and -2.6 to +14.2‰, whereas those for PBOFs varied from -3.4 to +7.7, +1.4 to +9.4, and -4.1 to +12.5‰, respectively, making it challenging to distinguish the fate of sulfur compounds from ABOF and PBOF in the environment using sulfur isotopes. We conclude that the δN values of ABOFs and the O values of organic fertilizers are distinct from those of synthetic fertilizers and are a promising tool for tracing the fate of nutrients added by organic fertilizers to agroecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Effects of iron salts and haemosiderin from a thalassaemia patient on oxygen radical damage as measured in the comet assay

    NARCIS (Netherlands)

    Anderson, D.; Yardley-Jones, A.; Hambly, R.J.; Vives-Bauza, C.; Smykatz-Kloss, V.; Chua-anusorn, W.; Webb, J.

    2000-01-01

    Thalassaemia is a group of genetic diseases where haemoglobin synthesis is impaired. This chronic anaemia leads to increased dietary iron absorption, which develops into iron overload pathology. Treatment through regular transfusions increases oxygen capacity but also provides iron through the red

  11. Spin accumulation in Si channels using CoFe/MgO/Si and CoFe/AlOx/Si tunnel contacts with high quality tunnel barriers prepared by radical-oxygen annealing

    International Nuclear Information System (INIS)

    Akushichi, T.; Shuto, Y.; Sugahara, S.; Takamura, Y.

    2015-01-01

    We investigate spin injection into Si channels using three-terminal spin-accumulation (3T-SA) devices with high-quality CoFe/MgO/n-Si and CoFe/AlO x /n-Si tunnel spin-injectors whose tunnel barriers are formed by radical oxidation of Mg and Al thin films deposited on Si(100) substrates and successive annealing under radical-oxygen exposure. When the MgO and AlO x barriers are not treated by the radical-oxygen annealing, the Hanle-effect signals obtained from the 3T-SA devices are closely fitted by a single Lorentz function representing a signal due to trap spins. On the other hand, when the tunnel barriers are annealed under radical-oxygen exposure, the Hanle-effect signals can be accurately fitted by the superposition of a Lorentz function and a non-Lorentz function representing a signal due to accumulated spins in the Si channel. These results suggest that the quality improvement of tunnel barriers treated by radical-oxygen annealing is highly effective for spin-injection into Si channels

  12. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    Science.gov (United States)

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  13. Carbon, nitrogen and oxygen isotope fractionation during food cooking: Implications for the interpretation of the fossil human record.

    Science.gov (United States)

    Royer, Aurélien; Daux, Valérie; Fourel, François; Lécuyer, Christophe

    2017-08-01

    Stable isotope data provide insight into the reconstruction of ancient human diet. However, cooking may alter the original stable isotope compositions of food due to losses and modifications of biochemical and water components. To address this issue, carbon, nitrogen and oxygen isotope ratios were measured on meat aliquots sampled from various animals such as pork, beef, duck and chicken, and also from the flesh of fishes such as salmon, European seabass, European pilchard, sole, gilt-head bream, and tuna. For each specimen, three pieces were cooked according to the three most commonly-known cooking practices: boiling, frying and roasting on a barbecue. Our data show that cooking produced isotopic shifts up to 1.8‰, 3.5‰, and 5.2‰ for δ 13 C, δ 15 N, and δ 18 O values, respectively. Such variations between raw and cooked food are much greater than previously estimated in the literature; they are more sensitive to the type of food rather than to the cooking process itself, except in the case of boiling. Reconstructions of paleodietary may thus suffer slight bias in cases of populations with undiversified diets that are restrained toward a specific raw or cooked product, or using a specific cooking mode. In cases of oxygen isotope compositions from skeletal remains (bones, teeth), they not only constitute a valuable proxy for reconstructing past climatic conditions, but they could also be used to improve our knowledge of past human diet. © 2017 Wiley Periodicals, Inc.

  14. Nitrogen-Doped Carbon Nanoparticles for Oxygen Reduction Prepared via a Crushing Method Involving a High Shear Mixer

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2017-09-01

    Full Text Available The disposal of agricultural wastes such as fresh banana peels (BPs is an environmental issue. In this work, fresh BPs were successfully transformed into nitrogen-doped carbon nanoparticles (N-CNPs by using a high shear mixer facilitated crushing method (HSM-FCM followed by carbonization under Ar atmosphere. Ammonia-activated N-CNPs (N-CNPs-NH3 were prepared via subsequent ammonia activation treatments at a high temperature. The as-prepared N-CNPs and N-CNPs-NH3 materials both exhibited high surface areas (above 700 m2/g and mean particle size of 50 nm. N-CNPs-NH3 showed a relatively higher content of pyridinic and graphitic N compared to N-CNPs. In alkaline media, N-CNPs-NH3 showed superior performances as an oxygen reduction reaction (ORR catalyst (E0 = −0.033 V, J = 2.4 mA/cm2 compared to N-CNPs (E0 = 0.07 V, J = 1.8 mA/cm2. In addition, N-CNPs-NH3 showed greater oxygen reduction stability and superior methanol crossover avoidance than a conventional Pt/C catalyst. This study provides a novel, simple, and scalable approach to valorize biomass wastes by synthesizing highly efficient electrochemical ORR catalysts.

  15. Development of a non-cryogenic nitrogen/oxygen supply system. [for spacecraft environments

    Science.gov (United States)

    1977-01-01

    Modular components were refined or replaced to improve the performance of the electrolysis module in a system which generates both oxygen and hydrogen from hydrazine hydrate. Significant mechanical and electrical performance improvements were achieved in the cathode. Improvements were also made in the phase separation area but at considerable cost in time and money and to the detriment of other investigative areas. Only the pump/bubble separator failed in a manner necessitating redesign. Its failure was, however, due to its being operated above the temperature range for which it was designed. The basic electrolysis cell design was not changed.

  16. Nano-Aluminum Reaction with Nitrogen in the Burn Front of Oxygen-Free Energetic Materials

    International Nuclear Information System (INIS)

    Tappan, B. C.; Son, S. F.; Moore, D. S.

    2006-01-01

    Nano-particulate aluminum metal was added to the high nitrogen energetic material triaminoguanidium azotetrazolate (TAGzT) in order to determine the effects on decomposition behavior. Standard safety testing (sensitivity to impact, spark and friction) are reported and show that the addition of nano-Al actually decreases the sensitivity of the pure TAGzT. Thermo-equilibrium calculations (Cheetah) indicate that the all of the Al reacts to form AlN in TAGzT decomposition, and the calculated specific impulses are reported. T-Jump/FTIR spectroscopy was performed on the neat TAGzT. Emission spectra were collected to determine the temperature of AlN formation in combustion. Burning rates were also collected, and the effects of nano-Al on rates are discussed

  17. Effect of dissolved oxygen on nitrogen removal and process control in aerobic granular sludge reactor

    International Nuclear Information System (INIS)

    Yuan Xiangjuan; Gao Dawen

    2010-01-01

    A sequencing batch reactor (SBR) with aerobic granular sludge was operated to determine the effect of different DO concentrations on biological nitrogen removal process and to investigate the spatial profiles of DO, ORP and pH as online control parameters in such systems. The results showed that DO concentration had a significant effect on nitrification efficiencies and the profiles of DO, ORP and pH. The specific nitrification rate was decreased from 0.0595 mgNH 4 + -N/(gMLSS min) to 0.0251 mgNH 4 + -N/(gMLSS min) after DO concentration was dropped off from 4.5 mg/L to 1.0 mg/L. High DO concentration improved the nitrification and increased the volumetric NH 4 + -N removal. Low DO concentration enhanced TIN removal, while prolonged the nitrification duration. Also there existed a good correlation between online control parameters (ORP, pH) and nutrient (COD, NH 4 + -N, NO 2 - -N, NO 3 - -N) variations in aerobic granular sludge reactor when DO was 2.5 mg/L, 3.5 mg/L and 4.5 mg/L. However it was difficult to identify the end of nitrification and denitrification when DO was 1.0 mg/L, due to no apparent bending points on ORP and pH curves. In conclusion, the optimal DO concentration was suggested at 2.5 mg/L as it not only achieved high nitrogen removal efficiency and decreased the reaction duration, but also saved operation cost by aeration and mixing.

  18. Matrix-isolation studies on the radiation-induced chemistry in H₂O/CO₂ systems: reactions of oxygen atoms and formation of HOCO radical.

    Science.gov (United States)

    Ryazantsev, Sergey V; Feldman, Vladimir I

    2015-03-19

    The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media.

  19. Carbon and nitrogen uptake of calcareous benthic foraminifera along a depth-related oxygen gradient in the OMZ of the Arabian Sea

    Directory of Open Access Journals (Sweden)

    Annekatrin Julie Enge

    2016-02-01

    Full Text Available Foraminifera are an important faunal element of the benthos in oxygen-depleted settings such as Oxygen Minimum Zones (OMZs where they can play a relevant role in the processing of phytodetritus. We investigated the uptake of phytodetritus (labeled with 13C and 15N by cal-careous foraminifera in the 0-1 cm sediment horizon under different oxygen concentrations within the OMZ in the eastern Arabian Sea. The in situ tracer experiments were carried out along a depth transect on the Indian margin over a period of 4 to 10 days. The uptake of phy-todetrital carbon within 4 days by all investigated species shows that phytodetritus is a rele-vant food source for foraminifera in OMZ sediments. The decrease of total carbon uptake from 540 to 1100 m suggests a higher demand for carbon by species in the low-oxygen core region of the OMZ or less food competition with macrofauna. Especially Uvigerinids showed high uptake of phytodetrital carbon at the lowest oxygenated site. Variation in the ratio of phytodetrital carbon to nitrogen between species and sites indicates that foraminiferal carbon and nitrogen use can be decoupled and different nutritional demands are found between spe-cies. Lower ratio of phytodetrital carbon and nitrogen at 540 m could hint for greater demand or storage of food-based nitrogen, ingestion or hosting of bacteria under almost anoxic condi-tions. Shifts in the foraminiferal assemblage structure (controlled by oxygen or food availabil-ity and in the presence of other benthic organisms account for observed changes in the pro-cessing of phytodetritus in the different OMZ habitats. Foraminifera dominate the short-term processing of phytodetritus in the OMZ core but are less important in the lower OMZ bounda-ry region of the Indian margin as biological interactions and species distribution of foraminif-era change with depth and oxygen levels.

  20. Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide.

    Science.gov (United States)

    Hirakawa, Hiroaki; Hashimoto, Masaki; Shiraishi, Yasuhiro; Hirai, Takayuki

    2017-08-09

    Ammonia (NH 3 ) is an essential chemical in modern society. It is currently manufactured by the Haber-Bosch process using H 2 and N 2 under extremely high-pressure (>200 bar) and high-temperature (>673 K) conditions. Photocatalytic NH 3 production from water and N 2 at atmospheric pressure and room temperature is ideal. Several semiconductor photocatalysts have been proposed, but all suffer from low efficiency. Here we report that a commercially available TiO 2 with a large number of surface oxygen vacancies, when photoirradiated by UV light in pure water with N 2 , successfully produces NH 3 . The active sites for N 2 reduction are the Ti 3+ species on the oxygen vacancies. These species act as adsorption sites for N 2 and trapping sites for the photoformed conduction band electrons. These properties therefore promote efficient reduction of N 2 to NH 3 . The solar-to-chemical energy conversion efficiency is 0.02%, which is the highest efficiency among the early reported photocatalytic systems. This noble-metal-free TiO 2 system therefore shows a potential as a new artificial photosynthesis for green NH 3 production.

  1. The determination of carbon, nitrogen and oxygen in TiCsub(x)Nsub(y)Osub(z) with the Auger electron spectroscopy (AES)

    International Nuclear Information System (INIS)

    Schneider, H.; Nold, E.; Miller, H.T.

    1980-01-01

    The possibility of determining the carbon, nitrogen and oxygen contents in TiCsub(x)Nsub(y)Osub(z) with the Auger-electron-spectroscopy (AES) is discussed. As an example the concentration dependence over the cross section of 1 μm thick TiN-layers is presented. (orig.)

  2. Biomass-Derived Oxygen and Nitrogen Co-Doped Porous Carbon with Hierarchical Architecture as Sulfur Hosts for High-Performance Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2017-11-01

    Full Text Available In this work, a facile strategy to synthesize oxygen and nitrogen co-doped porous carbon (ONPC is reported by one-step pyrolysis of waste coffee grounds. As-prepared ONPC possesses highly rich micro/mesopores as well as abundant oxygen and nitrogen co-doping, which is applied to sulfur hosts as lithium/sulfur batteries’ appropriate cathodes. In battery testing, the sulfur/oxygen and nitrogen co-doped porous carbon (S/ONPC composite materials reveal a high initial capacity of 1150 mAh·g−1 as well as a reversible capacity of 613 mAh·g−1 after the 100th cycle at 0.2 C. Furthermore, when current density increases to 1 C, a discharge capacity of 331 mAh·g−1 is still attainable. Due to the hierarchical porous framework and oxygen/nitrogen co-doping, the S/ONPC composite exhibits a high utilization of sulfur and good electrochemical performance via the immobilization of the polysulfides through strong chemical binding.

  3. Oxygen toxicity

    Directory of Open Access Journals (Sweden)

    C. A. van der Westhuizen

    1990-07-01

    Full Text Available Oxygen has been discovered about 200 years ago. Since then the vital physiological involvement of oxygen in various biologi­cal processes, mainly energy production, has been established. However, in the body molecular oxygen can be converted to toxic oxygen metabolites such as superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These toxic metabolites are produced mainly in the mitochondria, plasma membranes and endoplasmic reticulum.

  4. Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures as efficient bicatalysts for oxygen reduction and evolution reactions

    Science.gov (United States)

    Qi, Chunling; Zhang, Li; Xu, Guancheng; Sun, Zhipeng; Zhao, Aihua; Jia, Dianzeng

    2018-01-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play crucial roles in efficient energy conversion and storage solutions. Here, Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures (denoted as Co@Co3O4/NCs) are prepared via a simple two-step and in situ approach by carbonization and subsequent oxidation of Co-MOF containing high contents of carbon and nitrogen. When evaluated as electrocatalyst towards both ORR and OER in a KOH electrolyte solution, the as-fabricated Co@Co3O4/NC-2 exhibits similar ORR catalytic activity to the commercial Pt/C catalyst, but superior stability and good methanol tolerance. Furthermore, the as-fabricated catalysts also show promising catalytic activity for OER. The effective catalytic activities originate from the synergistic effects between well wrapped Co@Co3O4 nanoparticles and nitrogen doped carbon structures.

  5. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    Science.gov (United States)

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  6. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    Science.gov (United States)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

  7. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    International Nuclear Information System (INIS)

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe 3 ) 4 Ru(X)(Y) and (DMPM) 2 Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe 3 ) 4 Ru(Ph)(Me) or (PMe 3 ) 4 Ru(Ph) 2 leads to the ruthenium benzyne complex (PMe 3 ) 4 Ru(η 2 -C 6 H 4 ) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO 2 and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe 3 ) 4 Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs

  8. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{sub 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

  9. An eddy-stimulated hotspot for fixed nitrogen-loss from the Peru oxygen minimum zone

    Science.gov (United States)

    Altabet, M. A.; Ryabenko, E.; Stramma, L.; Wallace, D. W. R.; Frank, M.; Grasse, P.; Lavik, G.

    2012-12-01

    Fixed nitrogen (N) loss to biogenic N2 in intense oceanic O2 minimum zones (OMZ) accounts for a large fraction of the global N sink and is an essential control on the ocean's N-budget. However, major uncertainties exist regarding microbial pathways as well as net impact on the magnitude of N-loss and the ocean's overall N-budget. Here we report the discovery of a N-loss hotspot in the Peru OMZ associated with a coastally trapped mesoscale eddy that is marked by an extreme N-deficit matched by biogenic N2 production, high NO2- levels, and the highest isotope enrichments observed so far in OMZ's for the residual NO3-. High sea surface chlorophyll in seaward flowing streamers provides evidence for offshore eddy transport of highly productive, inshore water. Resulting pulses in the downward flux of particles likely stimulated heterotrophic dissimilatory NO3- reduction and subsequent production of biogenic N2 within the OMZ. A shallower biogenic N2 maximum within the oxycline is likely a feature advected by the eddy streamer from the shelf. Eddy-associated temporal-spatial heterogeneity of N-loss, mediated by a local succession of microbial processes, may explain inconsistencies observed among prior studies. Similar transient enhancements of N-loss likely occur within all other major OMZ's exerting a major influence on global ocean N and N isotope budgets.

  10. Epitaxial growth of InN on c-plane sapphire by pulsed laser deposition with r.f. nitrogen radical source

    International Nuclear Information System (INIS)

    Ohta, J.; Fujioka, H.; Honke, T.; Oshima, M.

    2004-01-01

    We have grown InN films on c-plane sapphire substrates by pulsed laser deposition (PLD) with a radio frequency nitrogen radical source for the first time and investigated the effect of the substrate surface nitridation on the structural and electrical properties of InN films with reflection high energy electron diffraction (RHEED), atomic force microscope, the Hall effect measurements and high-resolution X-ray diffraction (HRXRD). RHEED and HRXRD characterizations revealed that high-quality InN grows epitaxially on sapphire by PLD and its epitaxial relationship is InN (0 0 0 1) parallel sapphire (0 0 0 1) and InN [2 -1 -1 0] parallel sapphire [1 0 -1 0]. The InN crystalline quality and the electron mobility are improved by the substrate nitridation process. The area of the pits at the InN surface is reduced by the substrate nitridation process probably due to the reduction in the interface energy between InN and the substrate. The full width at half maximum of the -1 -1 2 4 X-ray rocking curve for InN grown by the present technique without using any buffer layers was as small as 34.8 arcmin. These results indicate that the present technique is promising for the growth of the high-quality InN films

  11. Ralstonia solanacearum uses inorganic nitrogen metabolism for virulence, ATP production, and detoxification in the oxygen-limited host xylem environment.

    Science.gov (United States)

    Dalsing, Beth L; Truchon, Alicia N; Gonzalez-Orta, Enid T; Milling, Annett S; Allen, Caitilyn

    2015-03-17

    Genomic data predict that, in addition to oxygen, the bacterial plant pathogen Ralstonia solanacearum can use nitrate (NO3(-)), nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) as terminal electron acceptors (TEAs). Genes encoding inorganic nitrogen reduction were highly expressed during tomato bacterial wilt disease, when the pathogen grows in xylem vessels. Direct measurements found that tomato xylem fluid was low in oxygen, especially in plants infected by R. solanacearum. Xylem fluid contained ~25 mM NO3(-), corresponding to R. solanacearum's optimal NO3(-) concentration for anaerobic growth in vitro. We tested the hypothesis that R. solanacearum uses inorganic nitrogen species to respire and grow during pathogenesis by making deletion mutants that each lacked a step in nitrate respiration (ΔnarG), denitrification (ΔaniA, ΔnorB, and ΔnosZ), or NO detoxification (ΔhmpX). The ΔnarG, ΔaniA, and ΔnorB mutants grew poorly on NO3(-) compared to the wild type, and they had reduced adenylate energy charge levels under anaerobiosis. While NarG-dependent NO3(-) respiration directly enhanced growth, AniA-dependent NO2(-) reduction did not. NO2(-) and NO inhibited growth in culture, and their removal depended on denitrification and NO detoxification. Thus, NO3(-) acts as a TEA, but the resulting NO2(-) and NO likely do not. None of the mutants grew as well as the wild type in planta, and strains lacking AniA (NO2(-) reductase) or HmpX (NO detoxification) had reduced virulence on tomato. Thus, R. solanacearum exploits host NO3(-) to respire, grow, and cause disease. Degradation of NO2(-) and NO is also important for successful infection and depends on denitrification and NO detoxification systems. The plant-pathogenic bacterium Ralstonia solanacearum causes bacterial wilt, one of the world's most destructive crop diseases. This pathogen's explosive growth in plant vascular xylem is poorly understood. We used biochemical and genetic approaches to show

  12. Nature of oxygen containing radicals in radiation chemistry and photochemistry of aqueous solutions. Annual progress report, September 1978--July 1979

    International Nuclear Information System (INIS)

    Czapski, G.

    1979-01-01

    The proposed research is a continuation of the work conducted under this contract and is outlined. During this year, the main emphasis will be given to study further the properties of HO 2 and O 2 - and OH, mainly in their role in biological systems. We will continue to study and elucidate how O 2 - reacts in biological systems. The toxicity of O 2 - is quite well established, but the mechanism is still obscure. The Haber Weiss reaction most probably can not account for the toxicity of O 2 - nor for the formation of singlet oxygen, nor of OH. We will study if reduction of Fe 3+ complexes by O 2 - in biological systems does catalyze the Haber Weiss reaction and if OH is formed in this mechanism. The role of oxygen, radiosensitizers in radiation damage of bacteriophages and cells will be further studied, as well as on E. Coli and Enzymes. We will try to elucidate the formation and role of OH, O 2 - and O 2 in these systems as well as the relative contribution of endogenous and exogenous damage, and the role of direct and indirect radiation damage to cells. We intend also to study if SOD (super oxide dismutase) does react only with O 2 - or also with biological peroxides (RO 2 ) and Hydroperoxides (RO 2 H). Further studies of O 2 - and O 2 with various cytochromes, and hemoglobins is planned

  13. Enhancement of alpha particles-induced cell transformation by oxygen free radicals and tumor necrosis factor released from phagocytes

    International Nuclear Information System (INIS)

    Gong Yifen; Guo Renfeng; Zhu Maoxiang; Shou Jiang; Ge Guixiu; Yang Zhihua; Hieber, L.; Peters, K.; Schippel, C.

    1997-01-01

    To illustrate the role of several endogenous factors released from phagocytes under chronic inflammation in radiation-induced cancer. C 3 T 10 T 1/2 and SHE cells were used as targets, and 238 Pu alpha source was used in alpha irradiation. The enhancement of TF in alpha particles-induced cell transformation by PMA-stimulated human blood and zymosan-stimulated U-937 cells was studied using formation of transformed foci. Transformation frequency (TF) of C 3 H 10 T 1/2 cells exposed to alpha particles of 0.5 Gy increased 2.1 and 2.8 fold by PMA-and PMA-stimulated neutrophils, respectively. TF of irradiated SHE cells at a dose of 0.5 Gy increased 12 fold by the addition of the supernatant of macrophage-like U-937 cell line. It was shown that TF of irradiated SHE cells at above dose increased 8 fold by the supernatant treated with anti-TNF-α could be subcultured continuously in vitro. The cells at 40 th passage and two lines of monoclone cells have the ability to develop malignant tumors in nude mice. The overdose of free radicals and TNF-α released from neutrophils and macrophages have played an important role in low dose radiation-induced cancer

  14. An eddy-stimulated hotspot for fixed nitrogen-loss from the Peru oxygen minimum zone

    Directory of Open Access Journals (Sweden)

    M. A. Altabet

    2012-12-01

    Full Text Available Fixed nitrogen (N loss to biogenic N2 in intense oceanic O2 minimum zones (OMZ accounts for a large fraction of the global N sink and is an essential control on the ocean's N-budget. However, major uncertainties exist regarding microbial pathways as well as net impact on the magnitude of N-loss and the ocean's overall N-budget. Here we report the discovery of a N-loss hotspot in the Peru OMZ associated with a coastally trapped mesoscale eddy that is marked by an extreme N-deficit matched by biogenic N2 production, high NO2 levels, and the highest isotope enrichments observed so far in OMZ's for the residual NO3. High sea surface chlorophyll in seaward flowing streamers provides evidence for offshore eddy transport of highly productive, inshore water. Resulting pulses in the downward flux of particles likely stimulated heterotrophic dissimilatory NO3 reduction and subsequent production of biogenic N2 within the OMZ. A shallower biogenic N2 maximum within the oxycline is likely a feature advected by the eddy streamer from the shelf. Eddy-associated temporal-spatial heterogeneity of N-loss, mediated by a local succession of microbial processes, may explain inconsistencies observed among prior studies. Similar transient enhancements of N-loss likely occur within all other major OMZ's exerting a major influence on global ocean N and N isotope budgets.

  15. Synergistic effect of Nitrogen-doped hierarchical porous carbon/graphene with enhanced catalytic performance for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Dewang; Yuan, Wenjing; Li, Cun; Song, Jiming; Xie, Anjian, E-mail: anjx@163.com; Shen, Yuhua, E-mail: s_yuhua@163.com

    2017-01-30

    Graphical abstract: This work demonstrates an example for turning rubbish into valuable products and addresses the disposal issue of waste biomass simultaneously for environment clean. And the typical sample exhibits excellent catalytic performance toward ORR, which is similar to that of commercial Pt/C. - Highlights: • This work demonstrates an example for turning rubbish into valuable products and addresses the disposal issue of waste biomass. • The HPC/RGO composite not only prevents the aggregation of RGO, but also takes advantage of the synergy between them. • This method was accessible, without using any activator, which is an effective strategy for the large scale application of FCs. - Abstract: Developing efficient and economical catalysts for the oxygen reduction reaction (ORR) is important to promote the commercialization of fuel cells. Here, we report a simple and environmentally friendly method to prepare nitrogen (N) –doped hierarchical porous carbon (HPC)/reduced graphene oxide (RGO) composites by reusing waste biomass (pomelo peel) coupled with graphene oxide (GO). This method is green, low-cost and without using any acid or alkali activator. The typical sample (N-HPC/RGO-1) contains 5.96 at.% nitrogen and larger BET surface area (1194 m{sup 2}/g). Electrochemical measurements show that N-HPC/RGO-1 exhibits not only a relatively positive onset potential and high current density, but also considerable methanol tolerance and long-term durability in alkaline media as well as in acidic media. The electron transfer number is close to 4, which means that it is mostly via a four-electron pathway toward ORR. The excellent catalytic performance of N-HPC/RGO-1 is due to the synergistic effect of the inherent interwoven network structure of HPC, the good electrical conductivity of RGO, and the heteroatom doping for the composite. More importantly, this work demonstrates a good example for turning discarded rubbish into valuable functional products and

  16. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Chen, Jinwei, E-mail: jwchen@scu.edu.cn; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin, E-mail: rl.wang@scu.edu.cn

    2016-12-15

    Graphical abstract: A hybrid catalyst was prepared via a quite green and simple method to achieve an one-pot synthesis of the N-doping carbon, tungsten carbides, and iron/cobalt carbides. It exhibited comparable electrocatalytic activity, higher durability and ability to methanol tolerance compared with commercial Pt/C to ORR. - Highlights: • A novel type of hybrid Fe/Co/WC@NC catalysts have been successfully synthesized. • The hybrid catalyst also exhibited better durability and methanol tolerance. • Multiple effective active sites of Fe{sub 3}C, Co{sub 3}C, WC, and NC help to improve catalytic performance. - Abstract: This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe{sub 3}C and Co{sub 3}C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe{sub 3}C, and Co{sub 3}C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.

  17. Reduced-graphene-oxide supported tantalum-based electrocatalysts: Controlled nitrogen doping and oxygen reduction reaction

    Science.gov (United States)

    Yang, Xiaoyun; Mo, Qijie; Guo, Yulin; Chen, Nana; Gao, Qingsheng

    2018-03-01

    Controlled N-doping is feasible to engineer the surface stoichiometry and the electronic configuration of metal-oxide electrocatalysts toward efficient oxygen reduction reactions (ORR). Taking reduced graphene oxide supported tantalum-oxides (TaOx/RGO) for example, this work illustrated the controlled N-doping in both metal-oxides and carbon supports, and the contribution to the improved ORR activity. The active N-doped TaOx/RGO electrocatalysts were fabricated via SiO2-assisted pyrolysis, in which the amount and kind of N-doping were tailored toward efficient electrocatalysis. The optimal nanocomposites showed a quite positive half-wave potential (0.80 V vs. RHE), the excellent long-term stability, and the outstanding tolerance to methanol crossing. The improvement in ORR was reasonably attributed to the synergy between N-doped TaOx and N-doped RGO. Elucidating the importance of controlled N-doping for electrocatalysis, this work will open up new opportunities to explore noble-metal-free materials for renewable energy applications.

  18. Ordered hierarchically porous carbon codoped with iron and nitrogen as electrocatalyst for the oxygen reduction reaction.

    Science.gov (United States)

    Deng, Chengwei; Zhong, Hexiang; Yao, Lan; Liu, Sisi; Xu, Zhuang; Zhang, Huamin

    2014-12-01

    N-doped carbon catalysts have attracted great attention as potential alternatives to expensive Pt-based catalysts used in fuel cells. Herein, an ordered hierarchically porous carbon codoped with N and Fe (Fe-NOHPC) is prepared by an evaporation-induced self-assembly process followed by carbonization under ammonia. The soft template and Fe species promote the formation of the porous structure and facilitate the oxygen reduction reaction (ORR).The catalyst possesses an ordered hierarchically porous structure with a large surface area (1172.5 m(2) g(-1) ) and pore volume of 1.03 cm(3) g(-1) . Compared to commercial 20% Pt/C, it exhibits better ORR catalytic activity and higher stability as well as higher methanol tolerance in an alkaline electrolyte, which demonstrates its potential use in fuel cells as a nonprecious cathode catalyst. The N configuration, Fe species, and pore structure of the catalysts are believed to correlate with its high catalytic activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species.

    Science.gov (United States)

    Morikawa, Yoshifumi; Shibata, Akinobu; Okumura, Naoko; Ikari, Akira; Sasajima, Yasuhide; Suenami, Koichi; Sato, Kiyohito; Takekoshi, Yuji; El-Kabbani, Ossama; Matsunaga, Toshiyuki

    2017-01-01

    Overdose administration of sibutramine, a serotonin-noradrenalin reuptake inhibitor, is considered to elicit severe side effects including hypertension, whose pathogenic mechanism remains unclear. Here, we found that 48-h incubation with >10μM sibutramine provokes apoptosis of human aortic endothelial (HAE) cells. Treatment with the lethal concentration of sibutramine facilitated production of reactive oxygen species (ROS), altered expression of endoplasmic reticulum stress response genes (heat shock protein 70 and C/EBP homologous protein), and inactivated 26S proteasome-based proteolysis. The treatment also decreased cellular level of nitric oxide (NO) through lowering of expression and activity of endothelial NO synthase. These results suggest that ROS production and depletion of NO are crucial events in the apoptotic mechanism and may be linked to the pathogenesis of vasoconstriction elicited by the drug. Compared to sibutramine, its metabolites (N-desmethylsibutramine and N-didesmethylsibutramine) were much less cytotoxic to HAE cells, which hardly metabolized sibutramine. In contrast, both the drug and metabolites showed low cytotoxicity to hepatic HepG2 cells with high metabolic potency and expression of cytochrome P450 (CYP) 3A4. The cytotoxicity of sibutramine to HepG2 and Chang Liver cells was remarkably augmented by inhibition and knockdown of CYP3A4. This study also suggests an inverse relationship between sibutramine cytotoxicity and CYP3A4-mediated metabolism into the N-desmethyl metabolites. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone

    Science.gov (United States)

    Nelson, Bruce K.; Deniro, Michael J.; Schoeninger, Margaret J.; De Paolo, Donald J.; Hare, P. E.

    1986-09-01

    Paleodietary analysis based on variations in the trace element and stable isotopic composition of inorganic and organic phases in fossil bone depends on the assumption that measured values reflect in vivo values. To test for postmortem alteration, we measured 87Sr /86Sr , 13C /12C , 18O /16O and 15N /14N ratios and Sr concentrations in modern and prehistoric (610 to 5470 yr old) bones of animals with marine or terrestrial diets from Greenland. Bones from modern terrestrial feeders have substantially lower Sr concentrations and more radiogenic 87Sr /86Sr ratios than those from modern marine feeders. This contrast was not preserved in the prehistoric samples, which showed almost complete overlap for both Sr concentration and isotopic composition in bones from the two types of animals. Leaching experiments, X-ray diffraction analysis and infrared spectroscopy indicate that alteration of the Sr concentration and isotopic composition in prehistoric bone probably results from nearly complete exchange with groundwater. Oxygen isotope ratios in fossil apatite carbonate also failed to preserve the original discrimination between modern terrestrial and marine feeders. The C isotope ratio of apatite carbonate did not discriminate between animals with marine or terrestrial diets in the modern samples. Even so, the ranges of apatite δ 13C values in prehistoric bone are more scattered than in modern samples for both groups, suggesting alteration had occurred. δ 13C and δ 15N values of collagen in modern bone are distinctly different for the two feeding types, and this distinction is preserved in most of the prehistoric samples. Our results suggest that postmortem alteration of dietary tracers in the inorganic phases of bone may be a problem at all archaeological sites and must be evaluated in each case. While collagen analyzed in this study was resistant to alteration, evaluation of the possibility of diagenetic alteration of its isotopic composition in bones from other

  1. Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Yoshifumi [Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501 (Japan); Shibata, Akinobu; Okumura, Naoko; Ikari, Akira [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Sasajima, Yasuhide; Suenami, Koichi; Sato, Kiyohito; Takekoshi, Yuji [Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501 (Japan); El-Kabbani, Ossama [Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Matsunaga, Toshiyuki, E-mail: matsunagat@gifu-pu.ac.jp [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan)

    2017-01-01

    Overdose administration of sibutramine, a serotonin-noradrenalin reuptake inhibitor, is considered to elicit severe side effects including hypertension, whose pathogenic mechanism remains unclear. Here, we found that 48-h incubation with > 10 μM sibutramine provokes apoptosis of human aortic endothelial (HAE) cells. Treatment with the lethal concentration of sibutramine facilitated production of reactive oxygen species (ROS), altered expression of endoplasmic reticulum stress response genes (heat shock protein 70 and C/EBP homologous protein), and inactivated 26S proteasome-based proteolysis. The treatment also decreased cellular level of nitric oxide (NO) through lowering of expression and activity of endothelial NO synthase. These results suggest that ROS production and depletion of NO are crucial events in the apoptotic mechanism and may be linked to the pathogenesis of vasoconstriction elicited by the drug. Compared to sibutramine, its metabolites (N-desmethylsibutramine and N-didesmethylsibutramine) were much less cytotoxic to HAE cells, which hardly metabolized sibutramine. In contrast, both the drug and metabolites showed low cytotoxicity to hepatic HepG2 cells with high metabolic potency and expression of cytochrome P450 (CYP) 3A4. The cytotoxicity of sibutramine to HepG2 and Chang Liver cells was remarkably augmented by inhibition and knockdown of CYP3A4. This study also suggests an inverse relationship between sibutramine cytotoxicity and CYP3A4-mediated metabolism into the N-desmethyl metabolites. - Highlights: • Treatment with sibutramine, an anorexiant, induces endothelial cell apoptosis. • The apoptotic mechanism includes induction of ROS and NO depletion. • There is an inverse relationship between sibutramine cytotoxicity and its metabolism.

  2. Generation of radicals in hard biological tissues under the action of laser radiation

    Science.gov (United States)

    Sviridov, Alexander P.; Bagratashvili, Victor N.; Sobol, Emil N.; Omelchenko, Alexander I.; Lunina, Elena V.; Zhitnev, Yurii N.; Markaryan, Galina L.; Lunin, Valerii V.

    2002-07-01

    The formation of radicals upon UV and IR laser irradiation of some biological tissues and their components was studied by the EPR technique. The radical decay kinetics in body tissue specimens after their irradiation with UV light were described by various models. By the spin trapping technique, it was shown that radicals were not produced during IR laser irradiation of cartilaginous tissue. A change in optical absorption spectra and the dynamics of optical density of cartilaginous tissue, fish scale, and a collagen film under exposure to laser radiation in an air, oxygen, and nitrogen atmosphere was studied.

  3. Numerical simulation for production of O and N radicals in an atmospheric-pressure streamer discharge

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Ono, Ryo; Oda, Tetsuji

    2012-01-01

    A streamer discharge model is developed to analyse the characteristics of a pulsed positive streamer discharge in point-to-plane electrodes filled with oxygen-nitrogen mixed gas at room temperature and atmospheric pressure. In this paper we study the mechanisms of O and N radical production in an atmospheric-pressure streamer discharge. To confirm the validity of the simulation model, the discharge emission of light and the discharge current are compared with experimental data at several voltages in gas mixtures with 2-20% oxygen concentrations. The calculated streak picture and the axial distribution of streamer luminous intensity are in good agreement with our previous experimental results. After demonstrating the reliability of the model, we performed a numerical study on radical production by the streamer discharge. The experimentally obtained axial distributions of oxygen radical production in O 2 (20%)/N 2 and nitrogen radical production in O 2 (2%)/N 2 are successfully reproduced in our simulation. For the production of nitrogen radicals, two-step dissociation through the vibrationally excited states is predominant. (paper)

  4. Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings.

    Science.gov (United States)

    Airaki, Morad; Leterrier, Marina; Valderrama, Raquel; Chaki, Mounira; Begara-Morales, Juan C; Barroso, Juan B; del Río, Luis A; Palma, José M; Corpas, Francisco J

    2015-09-01

    The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate-glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide ((·)NO), superoxide radical (O2 (·-)) and peroxynitrite (ONOO(-)) was investigated using confocal laser scanning microscopy. The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes

  5. THE PROTECTIVE ROLE OF VITAMIN E AGAINST OXYGEN FREE RADICAL AND DNA DAMAGE IN CHILDREN WITH β-THALASSEMIA MAJOR

    International Nuclear Information System (INIS)

    NASSAR, E.M.

    2008-01-01

    The present study aimed to determine the benefits of vitamin E as antioxidant supplement in β thalassemia children who are at risk of iron overload due to multiple blood transfusion and oxidative stress. Antioxidant markers, oxidative products, hematological parameters and biomarkers of cell damage were studied in 24 transfusion-dependent β -thalassemia children before and after treatment with vitamin E at a dose of 10 mg/kg /day for a period of four weeks. Plasma thiobarbituric acid reactive species (TBARS) and urinary 8-hydroxy-2 ' -deoxyguanosine (8-OHdG) were analyzed as oxidative markers, whereas the plasma vitamin E and the activities of the antioxidant enzymes glutathione peroxidase (GSH-Px), superoxide dismutase(SOD) and catalase were measured to show the antioxidant status of thalassemic children. All these parameters were also studied in 15 non-anemic healthy controls .The results showed that all the patients had increased signs of iron overload and cell damage that were obvious from the increase in serum iron, ferritin, alanine transaminases (ALT), aspartate transaminases (AST) and both total and direct bilirubin .The level of plasma vitamin E in the thalassemia patients were found to be significantly lower as compared to normal subjects (1.3 ± 0.7 and 3.14 ± 1.5 mg % , respectively). The activities of antioxidants enzymes, glutathione peroxidase and catalase in untreated β-thalassemic patients were found to be significantly (P<0.001) less than that of the normal subjects. However, SOD level was significantly increased. Markers of free radical injury such as TBARS , urinary 8-OHdG levels in thalassemic children were significantly higher than control levels . All these changes in the antioxidant status as well as the hematological parameters, iron overload and cell damage markers in β-thalassemia patients showed significant improvement after vitamin E supplementation. Vitamin E levels showed significant positive correlations with each of Hb, GSH

  6. The role of vibrationally excited oxygen and nitrogen in the D and E regions of the ionosphere

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    1994-08-01

    Full Text Available In this paper we present the results of a study of the effect of vibrationally excited oxygen, O*2, and nitrogen, N*2, on the electron density, Ne, and the electron temperature, Te, in the D and E regions. The sources of O*2 are O-atom recombination, the photodissociation of O3, and the reaction of O3 with O at D region altitudes. The first calculations of O*2( j number densities, Nj, are obtained by solving continuity equations for the models of harmonic and anharmonic oscillator energy levels, j=1-22. It is found that day time values of Nj are less than nighttime values. We also show that the photoionization of O*2 ( j ≥ 11 by Lα-radiation has no influence on the D region Ne. In the nighttime D region the photoionization O*2 ( j ≥ 11 by scattered Lα-radiation can be a new source of O+2. We show that the N*2 and O*2 de-excitation effect on the electron temperature is small in the E region of the ionosphere and cannot explain experimentally observed higher electron temperatures.

  7. Improving biomass-derived carbon by activation with nitrogen and cobalt for supercapacitors and oxygen reduction reaction

    Science.gov (United States)

    Zhang, Man; Jin, Xin; Wang, Linan; Sun, Mengjia; Tang, Yang; Chen, Yongmei; Sun, Yanzhi; Yang, Xiaojin; Wan, Pingyu

    2017-07-01

    Biomass-derived carbon by activation with nitrogen and cobalt (denoted as NPACCo) was prepared by one-pot pyrolysis of pomelo peel with melamine, cobalt nitrate and potassium hydroxide, followed by acid leaching. NPACCo possesses high content of quaternary-N (2.5%) and pyridinic-N (1.7%), co-existences of amorphous and short-range ordered carbon, high specific surface area and pore structure with majority of micropores and small mesopores. As electrode material of supercapacitors, NPACCo exhibits high specific capacitance and good rate capability. At ultrahigh rate of 50 A g-1 (135 mA cm-2), the capacitance of NPACCo remains 246 F g-1, which is 6.3, 1.9 and 3.2 times as high as that of other three materials (PC, PAC and NPAC). The as-assembled symmetric supercapacitor of NPACCo delivers high energy density, high power density and excellent cycling stability. With respect to oxygen reduction reaction (ORR), NPACCo exhibits high onset potential (0.87 V), high half-wave potential (0.78 V), excellent methanol tolerance and low yield of H2O2. The ORR properties of NPACCo are comparable or superior to those of commercial Pt/C. This investigation of pomelo peel-based NPACCo would be valuable for development of both supercapacitor and ORR.

  8. Novel Co3O4 Nanoparticles/Nitrogen-Doped Carbon Composites with Extraordinary Catalytic Activity for Oxygen Evolution Reaction (OER)

    Science.gov (United States)

    Yang, Xiaobing; Chen, Juan; Chen, Yuqing; Feng, Pingjing; Lai, Huixian; Li, Jintang; Luo, Xuetao

    2018-03-01

    Herein, Co3O4 nanoparticles/nitrogen-doped carbon (Co3O4/NPC) composites with different structures were prepared via a facile method. Structure control was achieved by the rational morphology design of ZIF-67 precursors, which were then pyrolyzed in air to obtain Co3O4/NPC composites. When applied as catalysts for the oxygen evolution reaction (OER), the M-Co3O4/NPC composites derived from the flower-like ZIF-67 showed superior catalytic activities than those derived from the rhombic dodecahedron and hollow spherical ZIF-67. The former M-Co3O4/NPC composite displayed a small over-potential of 0.3 V, low onset potential of 1.41 V, small Tafel slope of 83 mV dec-1, and a desirable stability. (94.7% OER activity was retained after 10 h.) The excellent performance of the flower-like M-Co3O4/NPC composite in the OER was attributed to its favorable structure. [Figure not available: see fulltext.

  9. Memristive behaviour of Si-Al oxynitride thin films: the role of oxygen and nitrogen vacancies in the electroforming process

    Science.gov (United States)

    Blázquez, O.; Martín, G.; Camps, I.; Mariscal, A.; López-Vidrier, J.; Ramírez, J. M.; Hernández, S.; Estradé, S.; Peiró, F.; Serna, R.; Garrido, B.

    2018-06-01

    The resistive switching properties of silicon-aluminium oxynitride (SiAlON) based devices have been studied. Electrical transport mechanisms in both resistance states were determined, exhibiting an ohmic behaviour at low resistance and a defect-related Poole‑Frenkel mechanism at high resistance. Nevertheless, some features of the Al top-electrode are generated during the initial electroforming, suggesting some material modifications. An in-depth microscopic study at the nanoscale has been performed after the electroforming process, by acquiring scanning electron microscopy and transmission electron microscopy images. The direct observation of the devices confirmed features on the top electrode with bubble-like appearance, as well as some precipitates within the SiAlON. Chemical analysis by electron energy loss spectroscopy has demonstrated that there is an out-diffusion of oxygen and nitrogen ions from the SiAlON layer towards the electrode, thus forming silicon-rich paths within the dielectric layer and indicating vacancy change to be the main mechanism in the resistive switching.

  10. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry

    Science.gov (United States)

    Jha, Nayansi; Ryu, Jae Jun

    2017-01-01

    The generation of reactive oxygen and nitrogen species (RONS) has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found—in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases. PMID:29204250

  11. Facile Synthesis of Nitrogen and Oxygen Co-Doped Clews of Carbon Nanobelts for Supercapacitors with Excellent Rate Performance

    Directory of Open Access Journals (Sweden)

    Liang Yu

    2018-04-01

    Full Text Available Facile synthesis of carbon materials with high heteroatom content, large specific surface area (SSA and hierarchical porous structure is critical for energy storage applications. In this study, nitrogen and oxygen co-doped clews of carbon nanobelts (NCNBs with hierarchical porous structures are successfully prepared by a carbonization and subsequent activation by using ladder polymer of hydroquinone and formaldehyde (LPHF as the precursor and ammonia as the activating agent. The hierarchical porous structures and ultra-high SSA (up to 2994 m2 g−1 can effectively facilitate the exchange and transportation of electrons and ions. Moreover, suitable heteroatom content is believed to modify the wettability of the carbon material. The as-prepared activated NCNBs-60 (the NCNBs activated by ammonia at 950 °C for 60 min possess a high capacitance of 282 F g−1 at the current density of 0.25 A g−1, NCNBs-45 (the NCNBs are activated by ammonia at 950 °C for 45 min and show an excellent capacity retention of 50.2% when the current density increase from 0.25 to 150 A g−1. Moreover, the NCNBs-45 electrode exhibits superior electrochemical stability with 96.2% capacity retention after 10,000 cycles at 5.0 A g−1. The newly prepared NCNBs thus show great potential in the field of energy storage.

  12. Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow

    Science.gov (United States)

    Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie

    2012-01-01

    An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX

  13. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D.C.

    1986-10-08

    Measurements are reported for the electrical conductivity of liquid nitrogen (N/sub 2/), oxygen (O/sub 2/) and benzene (C/sub 6/H/sub 6/), and Hugoniot equation of state of liquid 1-butene (C/sub 4/H/sub 8/) under shock compressed conditions. The conductivity data span 7 x 10/sup -4/ to 7 x 10/sup 1/ ..cap omega../sup -1/cm/sup -1/ over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs.

  14. Oxygen-Poor Microzones as Potential Sites of Microbial N2 Fixation in Nitrogen-Depleted Aerobic Marine Waters

    Science.gov (United States)

    Paerl, Hans W.; Prufert, Leslie E.

    1987-01-01

    The nitrogen-deficient coastal waters of North Carolina contain suspended bacteria potentially able to fix N2. Bioassays aimed at identifying environmental factors controlling the development and proliferation of N2 fixation showed that dissolved organic carbon (as simple sugars and sugar alcohols) and particulate organic carbon (derived from Spartina alterniflora) additions elicited and enhanced N2 fixation (nitrogenase activity) in these waters. Nitrogenase activity occurred in samples containing flocculent, mucilage-covered bacterial aggregates. Cyanobacterium-bacterium aggregates also revealed N2 fixation. In all cases bacterial N2 fixation occurred in association with surficial microenvironments or microzones. Since nitrogenase is oxygen labile, we hypothesized that the aggregates themselves protected their constituent microbes from O2. Microelectrode O2 profiles revealed that aggregates had lower internal O2 tensions than surrounding waters. Tetrazolium salt (2,3,5-triphenyl-3-tetrazolium chloride) reduction revealed that patchy zones existed both within microbes and extracellularly in the mucilage surrounding microbes where free O2 was excluded. Triphenyltetrazolium chloride reduction also strongly inhibited nitrogenase activity. These findings suggest that N2 fixation is mediated by the availability of the appropriate types of reduced microzones. Organic carbon enrichment appears to serve as an energy and structural source for aggregate formation, both of which were required for eliciting N2 fixation responses of these waters. Images PMID:16347337

  15. Radiobiological investigations of soft X-rays near carbon, nitrogen, oxygen K-shell edges on Aspergillus oryzae spores

    International Nuclear Information System (INIS)

    Chen, L.; Jiang, S. P.; Wan, L. B.; Ma, X. D.; Li, M. F.

    2008-01-01

    Soft X-rays at carbon, nitrogen, oxygen K-shell edges have special radiobiological effects. Using Aspergillus oryzae spores as sample, the radiation effects of soft X-rays near the K-shell edges of C, N and O elements from synchrotron radiation were investigated. Also the dose depositions of different X-ray energies in spore were discussed. At the same time, the spores were irradiated by gamma rays from 60 Co and relative biological effects were compared with those produced by soft X-rays. The results showed that soft X-rays near K-shell edges of O element had higher ability of radiation damage than that of X-rays near K-shell edges of C and N elements as compared with one another. But they all had higher killing abilities per unit dose than that of gamma rays from 60 Co. The relative biological effects (RBEs), the comparison of dose to gamma rays at 10% survival level, of the three soft X-rays were 1.65, 1.73 and 1.91, respectively. (authors)

  16. Oxygen and nitrogen plasma etching of three-dimensional hydroxyapatite/chitosan scaffolds fabricated by additive manufacturing

    Science.gov (United States)

    Myung, Sung-Woon; Kim, Byung-Hoon

    2016-01-01

    Three-dimensional (3D) chitosan and hydroxyapatite (HAp)/chitosan (CH) scaffolds were fabricated by additive manufacturing, then their surfaces were etched with oxygen (O2) and nitrogen (N2) plasma. O2 and N2 plasma etching was performed to increase surface properties such as hydrophilicity, roughness, and surface chemistry on the scaffolds. After etching, hydroxyapatite was exposed on the surface of 3D HAp/CH scaffolds. The surface morphology and chemical properties were characterized by contact angle measurement, scanning electron microscopy, X-ray diffraction, and attenuated total reflection Fourier infrared spectroscopy. The cell viability of 3D chitosan scaffolds was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation of preosteoblast cells was evaluated by alkaline phosphatase assay. The cell viability was improved by O2 and N2 plasma etching of 3D chitosan scaffolds. The present fabrication process for 3D scaffolds might be applied to a potential tool for preparing biocompatible scaffolds.

  17. Hydroxyl radical-PLIF measurements and accuracy investigation in high pressure gaseous hydrogen/gaseous oxygen combustion

    Science.gov (United States)

    Vaidyanathan, Aravind

    In-flow species concentration measurements in reacting flows at high pressures are needed both to improve the current understanding of the physical processes taking place and to validate predictive tools that are under development, for application to the design and optimization of a range of power plants from diesel to rocket engines. To date, non intrusive measurements have been based on calibrations determined from assumptions that were not sufficiently quantified to provide a clear understanding of the range of uncertainty associated with these measurements. The purpose of this work is to quantify the uncertainties associated with OH measurement in a oxygen-hydrogen system produced by a shear, coaxial injector typical of those used in rocket engines. Planar OH distributions are obtained providing instantaneous and averaged distribution that are required for both LES and RANS codes currently under development. This study has evaluated the uncertainties associated with OH measurement at 10, 27, 37 and 53 bar respectively. The total rms error for OH-PLIF measurements from eighteen different parameters was quantified and found as 21.9, 22.8, 22.5, and 22.9% at 10, 27, 37 and 53 bar respectively. These results are used by collaborators at Georgia Institute of Technology (LES), Pennsylvania State University (LES), University of Michigan (RANS) and NASA Marshall (RANS).

  18. Ruthenium supported on nitrogen-doped carbon nanotubes for the oxygen reduction reaction in alkaline electrolyte; Poster

    CSIR Research Space (South Africa)

    Mabena, LF

    2012-07-01

    Full Text Available . Recently, several researchers have shown that nitrogen modified carbon nanotubes (CNTs) are good electrocatalyst supports and that they enhance the electrocatalytic activity for the ORR. Nitrogen-doped carbon nanotubes (N-CNTs) prepared via thermal chemical...

  19. Nature of oxygen containing radicals in radiation chemistry and photochemistry of aqueous solutions. Annual progress report, September 1979-July 1980

    International Nuclear Information System (INIS)

    Czapski, G.

    1980-01-01

    During this year, emphasis will be given on the properties of HO 2 and O 2 - and OH, mainly in their role in biological systems. We will continue to study and elucidate how O 2 - reacts in biological systems. The toxicity of O 2 - is quite well established but the mechanism is still obscure. One way O 2 - is toxic is that OH is formed from O 2 - through reduction of Fe 3+ , and subsequently the reaction of Fe 2+ with H 2 O 2 (Fenton reaction). This mechanism is sometimes called the Haber Weiss Reaction. We will study if reduction of Fe 3+ complexes by O 2 - in biological systems does catalyze the Haber Weiss reaction and if OH is formed in this mechanism. The role of oxygen, radiosensitizers in radiation damage of bacteriophages and cells will be further studied, as well as on E. coli and enzymes. Use of different mutants, such as ones with repair deficiencies, or others which are deficient in glutathione will help to elucidate the role of O 2 - and O 2 toxicity. We will try to elucidate the formation and role of OH, O 2 - and O 2 in these systems as well as the relative contribution of endogenous and exogenous damage, and the role of direct and indirect radiation damage to cells. As there is some doubt how and if SOD protects cells from irradiation as literature results show lots of conflict, we will try to clear this point, in studies with E. coli mutants, and adding SOD endogenously and exogenously. We also intend to study if SOD (super oxide dismutase) does react only with O 2 - or also with biological peroxides (RO 2 ) and hydroperoxides (RO 2 H). Further studies of O 2 - and O 2 with various cytochromes, and hemoglobins is planned

  20. Study on the preparation and stability of uranium carbide samples for the determination of oxygen, hydrogen and nitrogen by fusion under high vacuum

    International Nuclear Information System (INIS)

    Perez Garcia, M.

    1966-01-01

    In view of the high reactivity of uranium carbide, the method employed for the preparation of the sample for the analysis of its gas content: oxygen, hydrogen and nitrogen, has a decisive influence on the analytical results. The variation in the O 2 , H 2 and N 2 content of the uranium carbide has been studied in this paper with the methods utilized for the sample preparation (grinding and cutting). (Author) 9 refs

  1. Oxygen reduction reaction properties of nitrogen-incorporated nanographenes synthesized using in-liquid plasma from mixture of ethanol and iron phthalocyanine

    Science.gov (United States)

    Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2018-04-01

    Nanographenes were synthesized using in-liquid plasma from a mixture of iron phthalocyanine and ethanol. In a previous study, micrometer-scale flakes with nitrogen incorporation were obtained. A nonprecious metal catalytic activity was observed with 3.13 electrons in an oxygen reduction reaction under an acidic solute condition. Large-surface-area, high-graphene-crystallinity, and iron-carbon-bonding sites were found owing to a high catalytic activity in Fe-N/nanographene.

  2. Improving the capacity of lithium-sulfur batteries by tailoring the polysulfide adsorption efficiency of hierarchical oxygen/nitrogen-functionalized carbon host materials.

    Science.gov (United States)

    Schneider, Artur; Janek, Jürgen; Brezesinski, Torsten

    2017-03-22

    The use of monolithic carbons with structural hierarchy and varying amounts of nitrogen and oxygen functionalities as sulfur host materials in high-loading lithium-sulfur cells is reported. The primary focus is on the strength of the polysulfide/carbon interaction with the goal of assessing the effect of (surface) dopant concentration on cathode performance. The adsorption capacity - which is a measure of the interaction strength between the intermediate lithium polysulfide species and the carbon - was found to scale almost linearly with the nitrogen level. Likewise, the discharge capacity of lithium-sulfur cells increased linearly. This positive correlation can be explained by the favorable effect of nitrogen on both the chemical and electronic properties of the carbon host. The incorporation of additional oxygen-containing surface groups into highly nitrogen-functionalized carbon helped to further enhance the polysulfide adsorption efficiency, and therefore the reversible cell capacity. Overall, the areal capacity could be increased by almost 70% to around 3 mA h cm -2 . We believe that the design parameters described here provide a blueprint for future carbon-based nanocomposites for high-performance lithium-sulfur cells.

  3. Physiology of free radicals

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals imply that every atom, molecule, ion, group of atoms, or molecules with one or several non-paired electrons in outer orbital. Among these are: nitrogenoxide (NO•, superoxide-anion-radical (O2•-, hydroxyl radical (OH•, peroxyl radical (ROO•, alcoxyl radical (RO• and hydroperoxyl radical (HO2•. However, reactive oxygen species also include components without non-paired electrons in outer orbital (so-called reactive non-radical agents, such as: singlet oxygen (1O2, peroxynitrite (ONOO-, hydrogen-peroxide (H2O2, hypochloric acid (eg. HOCl and ozone (O3. High concentrations of free radicals lead to the development of oxidative stress which is a precondition for numerous pathological effects. However, low and moderate concentrations of these matter, which occur quite normally during cell metabolic activity, play multiple significant roles in many reactions. Some of these are: regulation of signal pathways within the cell and between cells, the role of chemoattractors and leukocyte activators, the role in phagocytosis, participation in maintaining, changes in the position and shape of the cell, assisting the cell during adaption and recovery from damage (e.g.caused by physical effort, the role in normal cell growth, programmed cell death (apoptosis and cell ageing, in the synthesis of essential biological compounds and energy production, as well as the contribution to the regulation of the vascular tone, actually, tissue vascularization.

  4. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products.

    Science.gov (United States)

    Hardy, Micael; Zielonka, Jacek; Karoui, Hakim; Sikora, Adam; Michalski, Radosław; Podsiadły, Radosław; Lopez, Marcos; Vasquez-Vivar, Jeannette; Kalyanaraman, Balaraman; Ouari, Olivier

    2018-05-20

    Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.

  5. Lipoteichoic acid from Staphylococcus aureus induces lung endothelial cell barrier dysfunction: role of reactive oxygen and nitrogen species.

    Directory of Open Access Journals (Sweden)

    Amy Barton Pai

    Full Text Available Tunneled central venous catheters (TCVCs are used for dialysis access in 82% of new hemodialysis patients and are rapidly colonized with Gram-positive organism (e.g. Staphylococcus aureus biofilm, a source of recurrent infections and chronic inflammation. Lipoteichoic acid (LTA, a cell wall ribitol polymer from Gram-positive organisms, mediates inflammation through the Toll-like receptor 2 (TLR2. The effect of LTA on lung endothelial permeability is not known. We tested the hypothesis that LTA from Staphylococcus aureus induces alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM that result from activation of TLR2 and are mediated by reactive oxygen/nitrogen species (RONS. The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin, the activation of the TLR2 pathway was assessed by Western blot, and the generation of RONS was measured by the fluorescence of oxidized dihydroethidium and a dichlorofluorescein derivative. Treatment with LTA or the TLR2 agonist Pam((3CSK((4 induced significant increases in albumin permeability, IκBα phosphorylation, IRAK1 degradation, RONS generation, and endothelial nitric oxide synthase (eNOS activation (as measured by the p-eNOS(ser1177:p-eNOS(thr495 ratio. The effects on permeability and RONS were effectively prevented by co-administration of the superoxide scavenger Tiron, the peroxynitrite scavenger Urate, or the eNOS inhibitor L-NAME and these effects as well as eNOS activation were reduced or prevented by pretreatment with an IRAK1/4 inhibitor. The results indicate that the activation of TLR2 and the generation of ROS/RNS mediates LTA-induced barrier dysfunction in PMEM.

  6. Stable carbon, oxygen, and nitrogen, isotope analysis of plants from a South Asian tropical forest: Implications for primatology.

    Science.gov (United States)

    Roberts, Patrick; Blumenthal, Scott A; Dittus, Wolfgang; Wedage, Oshan; Lee-Thorp, Julia A

    2017-06-01

    Stable isotope analysis of primate tissues in tropical forest contexts is an increasingly popular means of obtaining information about niche distinctions among sympatric species, including preferences in feeding height, forest canopy density, plant parts, and trophism. However, issues of equifinality mean that feeding height, canopy density, as well as the plant parts and plant species consumed, may produce similar or confounding effects. With a few exceptions, researchers have so far relied largely on general principles and/or limited plant data from the study area as references for deducing the predominant drivers of primate isotope variation. Here, we explore variation in the stable carbon (δ 13 C), nitrogen (δ 15 N), and oxygen (δ 18 O) isotope ratios of 288 plant samples identified as important to the three primate species from the Polonnaruwa Nature Sanctuary, Sri Lanka, relative to plant part, season, and canopy height. Our results show that plant part and height have the greatest effect on the δ 13 C and δ 18 O measurements of plants of immediate relevance to the primates, Macaca sinica, Semnopithecus priam thersites, and Trachypithecus vetulus, living in this monsoonal tropical forest. We find no influence of plant part, height or season on the δ 15 N of measured plants. While the plant part effect is particularly pronounced in δ 13 C between fruits and leaves, differential feeding height, and plant taxonomy influence plant δ 13 C and δ 18 O differences in addition to plant organ. Given that species composition in different regions and forest types will differ, the results urge caution in extrapolating general isotopic trends without substantial local baselines studies. © 2017 Wiley Periodicals, Inc.

  7. Screening nitrogen-rich bases and oxygen-rich acids by theoretical calculations for forming highly stable salts.

    Science.gov (United States)

    Zhang, Xueli; Gong, Xuedong

    2014-08-04

    Nitrogen-rich heterocyclic bases and oxygen-rich acids react to produce energetic salts with potential application in the field of composite explosives and propellants. In this study, 12 salts formed by the reaction of the bases 4-amino-1,2,4-trizole (A), 1-amino-1,2,4-trizole (B), and 5-aminotetrazole (C), upon reaction with the acids HNO3 (I), HN(NO2 )2 (II), HClO4 (III), and HC(NO2 )3 (IV), are studied using DFT calculations at the B97-D/6-311++G** level of theory. For the reactions with the same base, those of HClO4 are the most exothermic and spontaneous, and the most negative Δr Gm in the formation reaction also corresponds to the highest decomposition temperature of the resulting salt. The ability of anions and cations to form hydrogen bonds decreases in the order NO3 (-) >N(NO2 )2 (-) >ClO4 (-) >C(NO2 )3 (-) , and C(+) >B(+) >A(+) . In particular, those different cation abilities are mainly due to their different conformations and charge distributions. For the salts with the same anion, the larger total hydrogen-bond energy (EH,tot ) leads to a higher melting point. The order of cations and anions on charge transfer (q), second-order perturbation energy (E2 ), and binding energy (Eb ) are the same to that of EH,tot , so larger q leads to larger E2 , Eb , and EH,tot . All salts have similar frontier orbitals distributions, and their HOMO and LUMO are derived from the anion and the cation, respectively. The molecular orbital shapes are kept as the ions form a salt. To produce energetic salts, 5-aminotetrazole and HClO4 are the preferred base and acid, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions.

    Science.gov (United States)

    Orellana, Marcelo; Aceituno, Felipe F; Slater, Alex W; Almonacid, Leonardo I; Melo, Francisco; Agosin, Eduardo

    2014-05-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump-over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump-over operation. With this aim, an impulse of dissolved oxygen was added to carbon-sufficient, nitrogen-limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in 'making or breaking wines'. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Radical scavenging potentials of single and combinatorial herbal formulations in vitro

    Directory of Open Access Journals (Sweden)

    Okey A. Ojiako

    2016-04-01

    Full Text Available Reactive oxygen and nitrogen species (RONS are involved in deleterious/beneficial biological processes. The present study sought to investigate the capacity of single and combinatorial herbal formulations of Acanthus montanus, Emilia coccinea, Hibiscus rosasinensis, and Asystasia gangetica to act as superoxide radicals (SOR, hydrogen peroxide (HP, nitric oxide radical (NOR, hydroxyl radical (HR, and 2,2-diphenyl-1-picrylhydrazyl (DPPH radical antagonists using in vitro models. The herbal extracts were single herbal formulations (SHfs, double herbal formulations (DHfs, triple herbal formulations (THfs, and a quadruple herbal formulation (QHf. The phytochemical composition and radical scavenging capacity index (SCI of the herbal formulations were measured using standard methods. The flavonoids were the most abundant phytochemicals present in the herbal extracts. The SCI50 defined the concentration (μg/mL of herbal formulation required to scavenge 50% of the investigated radicals. The SHfs, DHfs, THfs, and QHf SCI50 against the radicals followed the order HR > SOR > DPPH radical > HP > NOR. Although the various herbal formulations exhibited ambivalent antioxidant activities in terms of their radical scavenging capabilities, a broad survey of the results of the present study showed that combinatorial herbal formulations (DHfs, THfs, and QHf appeared to exhibit lower radical scavenging capacities than those of the SHfs in vitro.

  10. A highly efficient electrocatalyst for oxygen reduction reaction: phosphorus and nitrogen co-doped hierarchically ordered porous carbon derived from an iron-functionalized polymer

    Science.gov (United States)

    Deng, Chengwei; Zhong, Hexiang; Li, Xianfeng; Yao, Lan; Zhang, Huamin

    2016-01-01

    Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic electrolytes, thus making the catalyst promising for fuel cells. The correlations between the unique pore structure and the nitrogen and phosphorus configuration of the catalysts with high catalytic activity are thoroughly investigated.Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic

  11. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source

    Science.gov (United States)

    Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian

    2015-07-01

    Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.

  12. [Effects of seawater immersion on the inflammatory response and oxygen free radical injury of rats with superficial partial-thickness scald at early stage].

    Science.gov (United States)

    Yang, Y X; Wang, J H; Liu, L; Zou, Q; Zhang, Y; Bai, Z

    2017-06-20

    Objective: To study the effects of seawater immersion on the inflammatory response and oxygen free radical injury of rats with superficial-thickness scald at early stage. Methods: Seventy Wistar rats were divided into healthy control group (HC, n =7), pure scald group (PS, n =21), scald+ fresh water immersion group (SF, n =21), and scald+ seawater immersion group (SS, n =21) according to the random number table. Rats in group HC did not receive any treatment, while 5% total body surface area superficial partial-thickness scald was made on the back of rats in the latter three groups. Rats in group PS lived freely immediately post burn, while wounds on the back of rats in groups SF and SS were immersed into fresh water and seawater, respectively. Serum and full-thickness skin tissue in the center of wounds on the back of 7 rats in groups PS, SF, and SS at post immersion (injury) hour (PIH) 2, 4, and 6 were collected, respectively, while serum and full-thickness skin tissue at the same position of the 7 rats in group HC were collected at PIH 6 of rats in other groups. Morphology of skin tissue was observed with HE staining; tumor necrosis factor-alpha (TNF-α) content in serum and skin tissue was determined by enzyme-linked immunosorbent assay; superoxide dismutase (SOD) content in serum and skin tissue was determined by hydroxylamine method; malondialdehyde content in serum and skin tissue was determined by thiobarbituric acid method. Data were processed with analysis of variance of factorial design, one-way analysis of variance, Welch test, LSD test, and Tamhane test. Results: (1) Epidermal cells of skin tissue of rats in group HC arranged in order and continuously, and the dermis tissue and accessory structures were clear and complete. The skin layer and epidermis of wounds of rats in group PS had no significant change, but the edema of epidermis and dermis and infiltration of inflammatory cells enhanced over time at PIH 2, 4, and 6. The horny layer of epidermis of

  13. Bayesian Nitrate Source Apportionment to Individual Groundwater Wells in the Central Valley by use of Nitrogen, Oxygen, and Boron Isotopic Tracers

    Science.gov (United States)

    Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several

  14. Oxygen vacancy rich Cu2O based composite material with nitrogen doped carbon as matrix for photocatalytic H2 production and organic pollutant removal.

    Science.gov (United States)

    Lu, Lele; Xu, Xinxin; Yan, Jiaming; Shi, Fa-Nian; Huo, Yuqiu

    2018-02-06

    A nitrogen doped carbon matrix supported Cu 2 O composite material (Cu/Cu2O@NC) was fabricated successfully with a coordination polymer as precursor through calcination. In this composite material, Cu 2 O particles with a size of about 6-10 nm were dispersed evenly in the nitrogen doped carbon matrix. After calcination, some coordinated nitrogen atoms were doped in the lattice of Cu 2 O and replace oxygen atoms, thus generating a large number of oxygen vacancies. In Cu/Cu2O@NC, the existence of oxygen vacancies has been confirmed by electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS). Under visible light irradiation, Cu/Cu2O@NC exhibits excellent H 2 production with the rate of 379.6 μmol h -1 g -1 . Its photocatalytic activity affects organic dyes, such as Rhodamine B (RhB) and methyl orange (MO). In addition to photocatalysis, Cu/Cu2O@NC also exhibits striking catalytic activity in reductive conversion of 4-nitrophenol to 4-aminophenol with in presence of sodium borohydride (NaBH 4 ). The conversion efficiency reaches almost 100% in 250 s with the quantity of Cu/Cu2O@NC as low as 5 mg. The outstanding H 2 production and organic pollutants removal are attributed to the oxygen vacancy. We expect that Cu/Cu2O@NC will find its way as a new resource for hydrogen energy as well as a promising material in water purification.

  15. Effect of hydromorphone hydrochloride combined with ropivacaine for PCEA after orthopedic surgery on the synthesis of pain mediators, inflammatory mediator and oxygen free radicals

    Directory of Open Access Journals (Sweden)

    Liang-Ying Luo

    2017-08-01

    Full Text Available Objective: To explore the effect of hydromorphone hydrochloride combined with ropivacaine for PCEA after orthopedic surgery on the synthesis of pain mediators, inflammatory mediator and oxygen free radicals. Methods: A total of 120 patients with fracture who underwent operation in the hospital between July 2014 and December 2016 were collected and divided into control group and observation group according to the random number table method, 60 cases in each group. Control group received morphine hydrochloride combined with ropivacaine for analgesia, observation group received hydromorphone hydrochloride combined with ropivacaine for analgesia, and the postoperative analgesia lasted for 48 h. The differences in serum levels of pain mediators, inflammatory mediators and oxidative stress indexes were compared between the two groups. Results: Immediately after operation, the differences in serum levels of pain mediators, inflammatory mediators and oxidative stress indexes were not statistically significant between the two groups. 48 h after operation, serum PGE2, SP, β-EP, IL-6, MCP-1, HMGB-1 and MDA levels of both groups of patients were significantly lower than those immediately after operation while Cu-Zn SOD and GSH-Px levels were significantly higher than those immediately after operation, and serum PGE2, SP, β-EP, IL-6, MCP-1, HMGB-1 and MDA levels of observation group were significantly lower than those of control group while Cu-Zn SOD and GSH-Px levels were significantly higher than those of control group. Conclusion: Hydromorphone hydrochloride combined with ropivacaine for PCEA after orthopedic surgery is effective in alleviating pain and inhibiting systemic inflammatory response.

  16. [Effects of Electroacupuncture Intervention on Oxygen Free Radicals and Expression of Apoptosis-related Proteins in Rats with Ischemic Learning and Memory Disorder].

    Science.gov (United States)

    Hou, Zhi-tao; Sun, Zhong-ren; Liu, Song-tao; Xiong, Sheng-biao; Liu, Yi-tian; Han, Xiao-xia; Sun, Hong-fang; Han, Yu-sheng; Yin, Hong-na; Xu, Jin-qiao; Li, Dong-dong

    2015-12-01

    To observe the effect of electroacupuncture (EA) therapy on levels of oxygen free radicals (OFR) and hippocampal apoptosis-related protein expression in ischemic learning-memory disorder rats so as to investigate its mechanisms underlying improvement of ischemic learning-memory impairment. A total of 60 SD rats were randomly divided into sham operation (sham), model, medication, and EA groups, with 15 rats in each group. The learning-memory disorder model was made by occlusion of bilateral carotid arteries. EA (2- 3 Hz, 2 mA) was applied to "Zhi San Zhen" ["Shenting" (GV 24) and bilateral "Benshen" (GB 13)] for 30 min, once a day for 3 weeks. The rats of the medication group were treated by lavage of Aricept (0.03 mg . kg(-1) . d(-1)), once daily for 3 weeks. The rats' learning-memory ability was detected by Morris water maze tests and the state of hippocampal apoptosis cells was observed by light microscope after TUNEL staining and the expression of hippocampal Bcl-2, Bax and Caspase-3 proteins was detected by immunohistochemistry. Serum and hippocampal superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity and malondialdehyde (MDA) contents were detected by chemical colorimetric analysis. Compared with the sham group, the escape latencies (place-navigation) after modeling were evidently prolonged, and the times of target-platform crossing in 90 sec (spatial probe test) considerably reduced in the model group (Plearning-memory ability. After the treatment for 21 d, the increased escape latency and the reduced target-platform crossing time in both EA and medication groups were reversed in comparison with the model group (Pmemory ability, and the effect of the EA group was significantly superior to that of the medication group (Plearning-memory ability in ischemic learning-memory disorder rats which may be associated with its effects in reducing blood and hippocampal OFR contents and hippocampal cellular apoptosis.

  17. Radical chemistry of artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2011-12-29

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  18. Radical chemistry of artemisinin

    Science.gov (United States)

    Denisov, Evgenii T.; Solodova, S. L.; Denisova, Taisa G.

    2010-12-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  19. Radical chemistry of artemisinin

    International Nuclear Information System (INIS)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G

    2010-01-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  20. Radical chemistry of artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2010-12-29

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  1. Flavonoids as scavengers of nitric oxide radical.

    NARCIS (Netherlands)

    van Acker, S.A.B.E.; Tromp, M.N.J.L.; Haenen, G.R.M.M.; van der Vijgh, W.J.F.; Bast, A.

    1995-01-01

    Flavonoids are a group of naturally occurring compounds used, e.g., in the treatment of vascular endothelial damage. They are known to be excellent scavengers of oxygen free radicals. Since the nitric oxide radical (

  2. CoM(M=Fe,Cu,Ni)-embedded nitrogen-enriched porous carbon framework for efficient oxygen and hydrogen evolution reactions

    Science.gov (United States)

    Feng, Xiaogeng; Bo, Xiangjie; Guo, Liping

    2018-06-01

    Rational synthesis and development of earth-abundant materials with efficient electrocatalytic activity and stability for water splitting is a critical but challenging step for sustainable energy application. Herein, a family of bimetal (CoFe, CoCu, CoNi) embedded nitrogen-doped carbon frameworks is developed through a facile and simple thermal conversion strategy of metal-doped zeolitic imidazolate frameworks. Thanks to collaborative superiorities of abundant M-N-C species, modulation action of secondary metal, cobalt-based electroactive phases, template effect of MOFs and unique porous structure, bimetal embedded nitrogen-doped carbon frameworks materials manifest good oxygen and hydrogen evolution catalytic activity. Especially, after modulating the species and molar ratio of metal sources, optimal Co0.75Fe0.25 nitrogen-doped carbon framework catalyst just requires a low overpotential of 303 mV to achieve 10 mA cm-2 with a low Tafel slope (39.49 mV dec-1) for oxygen evolution reaction, which even surpasses that of commercial RuO2. In addition, the optimal catalyst can function as an efficient bifunctional electrocatalyst for overall water splitting with satisfying activity and stability. This development offers an attractive direction for the rational design and fabrication of porous carbon materials for electrochemical energy applications.

  3. Automated system measuring triple oxygen and nitrogen isotope ratios in nitrate using the bacterial method and N2 O decomposition by microwave discharge.

    Science.gov (United States)

    Hattori, Shohei; Savarino, Joel; Kamezaki, Kazuki; Ishino, Sakiko; Dyckmans, Jens; Fujinawa, Tamaki; Caillon, Nicolas; Barbero, Albane; Mukotaka, Arata; Toyoda, Sakae; Well, Reinhard; Yoshida, Naohiro

    2016-12-30

    Triple oxygen and nitrogen isotope ratios in nitrate are powerful tools for assessing atmospheric nitrate formation pathways and their contribution to ecosystems. N 2 O decomposition using microwave-induced plasma (MIP) has been used only for measurements of oxygen isotopes to date, but it is also possible to measure nitrogen isotopes during the same analytical run. The main improvements to a previous system are (i) an automated distribution system of nitrate to the bacterial medium, (ii) N 2 O separation by gas chromatography before N 2 O decomposition using the MIP, (iii) use of a corundum tube for microwave discharge, and (iv) development of an automated system for isotopic measurements. Three nitrate standards with sample sizes of 60, 80, 100, and 120 nmol were measured to investigate the sample size dependence of the isotope measurements. The δ 17 O, δ 18 O, and Δ 17 O values increased with increasing sample size, although the δ 15 N value showed no significant size dependency. Different calibration slopes and intercepts were obtained with different sample amounts. The slopes and intercepts for the regression lines in different sample amounts were dependent on sample size, indicating that the extent of oxygen exchange is also dependent on sample size. The sample-size-dependent slopes and intercepts were fitted using natural log (ln) regression curves, and the slopes and intercepts can be estimated to apply to any sample size corrections. When using 100 nmol samples, the standard deviations of residuals from the regression lines for this system were 0.5‰, 0.3‰, and 0.1‰, respectively, for the δ 18 O, Δ 17 O, and δ 15 N values, results that are not inferior to those from other systems using gold tube or gold wire. An automated system was developed to measure triple oxygen and nitrogen isotopes in nitrate using N 2 O decomposition by MIP. This system enables us to measure both triple oxygen and nitrogen isotopes in nitrate with comparable precision

  4. Synergistic interaction and controllable active sites of nitrogen and sulfur co-doping into mesoporous carbon sphere for high performance oxygen reduction electrocatalysts

    Science.gov (United States)

    Oh, Taeseob; Kim, Myeongjin; Park, Dabin; Kim, Jooheon

    2018-05-01

    Nitrogen and sulfur co-doped mesoporous carbon sphere (NSMCS) was prepared as a metal-free catalyst by an economical and facile pyrolysis process. The mesoporous carbon spheres were derived from sodium carboxymethyl cellulose as the carbon source and the nitrogen and sulfur dopants were derived from urea and p-benzenedithiol, respectively. The doping level and chemical states of nitrogen and sulfur in the prepared NSMCS can be easily adjusted by controlling the pyrolysis temperature. The NSMCS pyrolyzed at 900 °C (NSMCS-900) exhibited higher oxygen reduction reaction activity than the mesoporous carbon sphere doped solely with nitrogen or sulfur, due to the synergistic effect of co-doping. Among all the NSMCS samples, NSMCS-900 exhibited excellent ORR catalytic activity owing to the presence of a highly active site, consisting of pyridinic N, graphitic N, and thiophene S. Remarkably, the NSMCS-900 catalyst was comparable with commercial Pt/C, in terms of the onset and the half-wave potentials and showed better durability than Pt/C for ORR in an alkaline electrolyte. The approach demonstrated in this work could be used to prepare promising metal-free electrocatalysts for application in energy conversion and storage.

  5. A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass

    Science.gov (United States)

    Guo, Chaozhong; Li, Zhongbin; Niu, Lidan; Liao, Wenli; Sun, Lingtao; Wen, Bixia; Nie, Yunqing; Cheng, Jing; Chen, Changguo

    2016-05-01

    So far, the development of highly active and stable carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace commercial Pt/C catalyst is a hot topic. In this study, a new nanoporous nitrogen-doped carbon material was facilely designed by two-step pyrolysis of the renewable Lemna minor enriched in crude protein under a nitrogen atmosphere. Electrochemical measurements show that the onset potential for ORR on this carbon material is around 0.93 V (versus reversible hydrogen electrode), slightly lower than that on the Pt/C catalyst, but its cycling stability is higher compared to the Pt/C catalyst in an alkaline medium. Besides, the ORR at this catalyst approaches to a four-electron transfer pathway. The obtained ORR performance can be basically attributed to the formation of high contents of pyridinic and graphitic nitrogen atoms inside this catalyst. Thus, this work opens up the path in the ORR catalysis for the design of nitrogen-doped carbon materials utilizing aquatic plants as starting precursors.

  6. Scavenging of free-radical metabolites of aniline xenobiotics and drugs by amino acid derivatives: toxicological implications of radical-transfer reactions.

    Science.gov (United States)

    Michail, Karim; Baghdasarian, Argishti; Narwaley, Malyaj; Aljuhani, Naif; Siraki, Arno G

    2013-12-16

    We investigated a novel scavenging mechanism of arylamine free radicals by poly- and monoaminocarboxylates. Free radicals of arylamine xenobiotics and drugs did not react with oxygen in peroxidase-catalyzed reactions; however, they showed marked oxygen uptake in the presence of an aminocarboxylate. These free-radical intermediates were identified using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and electron paramagnetic resonance (EPR) spectrometry. Diethylenetriaminepentaacetic acid (DTPA), a polyaminocarboxylate, caused a concentration-dependent attenuation of N-centered radicals produced by the peroxidative metabolism of arylamines with the subsequent formation of secondary aliphatic carbon-centered radicals stemming from the cosubstrate molecule. Analogously, N,N-dimethylglycine (DMG) and N-methyliminodiacetate (MIDA), but not iminodiacetic acid (IDA), demonstrated a similar scavenging effect of arylamine-derived free radicals in a horseradish peroxidase/H2O2 system. Using human promyelocytic leukemia (HL-60) cell lysate as a model of human neutrophils, DTPA, MIDA, and DMG readily reduced anilinium cation radicals derived from the arylamines and gave rise to the corresponding carbon radicals. The rate of peroxidase-triggered polymerization of aniline was studied as a measure of nitrogen-radical scavenging. Although, IDA had no effect on the rate of aniline polymerization, this was almost nullified in the presence of DTPA and MIDA at half of the molar concentration of the aniline substrate, whereas a 20 molar excess of DMPO caused only a partial inhibition. Furthermore, the yield of formaldehyde, a specific reaction endproduct of the oxidation of aminocarboxylates by aniline free-radical metabolites, was quantitatively determined. Azobenzene, a specific reaction product of peroxidase-catalyzed free-radical dimerization of aniline, was fully abrogated in the presence of DTPA, as confirmed by GC/MS. Under aerobic conditions, a radical-transfer reaction

  7. Regulation of respiration and the oxygen diffusion barrier in soybean protect symbiotic nitrogen fixation from chilling-induced inhibition and shoots from premature senescence.

    Science.gov (United States)

    van Heerden, Philippus D R; Kiddle, Guy; Pellny, Till K; Mokwala, Phatlane W; Jordaan, Anine; Strauss, Abram J; de Beer, Misha; Schlüter, Urte; Kunert, Karl J; Foyer, Christine H

    2008-09-01

    Symbiotic nitrogen fixation is sensitive to dark chilling (7 degrees C-15 degrees C)-induced inhibition in soybean (Glycine max). To characterize the mechanisms that cause the stress-induced loss of nodule function, we examined nodule structure, carbon-nitrogen interactions, and respiration in two soybean genotypes that differ in chilling sensitivity: PAN809 (PAN), which is chilling sensitive, and Highveld Top (HT), which is more chilling resistant. Nodule numbers were unaffected by dark chilling, as was the abundance of the nitrogenase and leghemoglobin proteins. However, dark chilling decreased nodule respiration rates, nitrogenase activities, and NifH and NifK mRNAs and increased nodule starch, sucrose, and glucose in both genotypes. Ureide and fructose contents decreased only in PAN nodules. While the chilling-induced decreases in nodule respiration persisted in PAN even after return to optimal temperatures, respiration started to recover in HT by the end of the chilling period. The area of the intercellular spaces in the nodule cortex and infected zone was greatly decreased in HT after three nights of chilling, an acclimatory response that was absent from PAN. These data show that HT nodules are able to regulate both respiration and the area of the intercellular spaces during chilling and in this way control the oxygen diffusion barrier, which is a key component of the nodule stress response. We conclude that chilling-induced loss of symbiotic nitrogen fixation in PAN is caused by the inhibition of respiration coupled to the failure to regulate the oxygen diffusion barrier effectively. The resultant limitations on nitrogen availability contribute to the greater chilling-induced inhibition of photosynthesis in PAN than in HT.

  8. Assembling nitrogen and oxygen co-doped graphene quantum dots onto hierarchical carbon networks for all-solid-state flexible supercapacitors

    International Nuclear Information System (INIS)

    Li, Zhen; Li, Yanfeng; Wang, Liang; Cao, Ling; Liu, Xiang; Chen, Zhiwen; Pan, Dengyu; Wu, Minghong

    2017-01-01

    Highlights: • The all-carbon ternary flexible electrodes have been fabricated by the electrode deposition of nitrogen and oxygen co-doped single-crystalline GQDs. • The flexible electrodes deliver ultrahigh specific capacitance (461 mF cm"−"2) by inducing a high concentration of active nitrogen and oxygen at edge. • Symmetrical N-O-GQD/CNT/CC all-solid-state flexible supercapacitors offer energy density up to 32 μWh cm"−"2 and demonstrate the good stability, high flexibility, and folding ability under different deformations. • Nitrogen and oxygen co-doped GQDs can function as a highly active, solution-processable pseudocapacitive materials applicable to high-performance supercapacitors. - Abstract: We present a novel approach for hierarchical fabrication of high-performance, all-solid-state, flexible supercapacitors from environmentally friendly all-carbon materials. Three-dimensional carbon nanotube/carbon cloth network (CNT/CC) is used as a conductive, flexible and free-standing scaffold for the electro-deposition of highly N/O co-doped graphene quantum dots to form the high-activity, all-carbon electrodes. The hierarchical structure of the CNT/CC network with high electrical conductivity and high surface area provides improved conductive pathways for the efficient activation of GQDs with high pseudocapacitance and electrical double layer capacitance. The obtained N-O-GQD/CNT/CC electrodes for all-solid-state flexible supercapacitors exhibit an ultrahigh areal capacitance of up to 461 mF cm"−"2 at a current density of 0.5 mA cm"−"2, while keeping high rate and cyclic performances. This work highlights the great potential of highly active GQDs in the construction of high-performance flexible energy-storage devices.

  9. Neuroprotection by Radical Avoidance: Search for Suitable Agents

    Directory of Open Access Journals (Sweden)

    Rüdiger Hardeland

    2009-12-01

    Full Text Available Neurodegeneration is frequently associated with damage by free radicals. However, increases in reactive oxygen and nitrogen species, which may ultimately lead to neuronal cell death, do not necessarily reflect its primary cause, but can be a consequence of otherwise induced cellular dysfunction. Detrimental processes which promote free radical formation are initiated, e.g., by disturbances in calcium homeostasis, mitochondrial malfunction, and an age-related decline in the circadian oscillator system. Free radicals generated at high rates under pathophysiological conditions are insufficiently detoxified by scavengers. Interventions at the primary causes of dysfunction, which avoid secondary rises in radical formation, may be more efficient. The aim of such approaches should be to prevent calcium overload, to reduce mitochondrial electron dissipation, to support electron transport capacity, and to avoid circadian perturbations. l-Theanine and several amphiphilic nitrones are capable of counteracting excitotoxicity and/or mitochondrial radical formation. Resveratrol seems to promote mitochondrial biogenesis. Mitochondrial effects of leptin include attenuation of electron leakage. Melatonin combines all the requirements mentioned, additionally regulates anti- and pro-oxidant enzymes and is, with few exceptions, very well tolerated. In this review, the perspectives, problems and limits of drugs are compared which may be suitable for reducing the formation of free radicals.

  10. Providing Pressurized Gasses to the International Space Station (ISS): Developing a Composite Overwrapped Pressure Vessel (COPV) for the Safe Transport of Oxygen and Nitrogen

    Science.gov (United States)

    Kezirian, Michael; Cook, Anthony; Dick, Brandon; Phoenix, S. Leigh

    2012-01-01

    To supply oxygen and nitrogen to the International Space Station, a COPV tank is being developed to meet requirements beyond that which have been flown. In order to "Ship Full' and support compatibility with a range of launch site operations, the vessel was designed for certification to International Standards (ISO) that have a different approach than current NASA certification approaches. These requirements were in addition to existing NASA certification standards had to be met. Initial risk-reduction development tests have been successful. Qualification is in progress.

  11. Resistance to the ionizing radiation in cells of human melanoma. Role of the antioxidant enzymes and of the free radicals of the oxygen

    International Nuclear Information System (INIS)

    Medina, V.; Cricco, G.; Massari, N.; Nunez, M.; Martin, G.; Mohanad, N.; Gutierrez, A.; Bergoc, R.; Rivera, E.; Crescenti, E.; Croci, M.

    2006-01-01

    The malignant melanoma is a highly aggressive and potentially lethal type of skin cancer. Previously we have reported that the cellular human lines of melanoma WM35 and M15 are resistant to the ionizing radiation (IR). The histamine (HA) although it has a regulator effect of the cellular proliferation in these lines, it is not capable of to modify the response to the IR like it makes with other malignant cellular lines. To investigate the bases of the radioresistance of the melanoma lines we have studied in the WM35 the production of free radicals of oxygen (ROS), the activity of the antioxidant enzymes and their modifications by action of the IR and of the HA. In studies in vitro the cells were treated with HA 10 μM from 20 hs before being irradiated with a dose of 2 Gy (source 137 Cs, dose rate 7.7 Gy/min). The ROS levels, superoxide anion (O 2 - ) and hydrogen peroxide (H 2 O 2 ) its were measured by flow cytometry using fluorescent coloring and the activity of dismutase superoxide (SOD), Catalase (CAT) and Glutathion Peroxidase (GPx) its were determined by spectrophotometric techniques and the protein levels by Western blot. The results indicate that in the cells WM35 the HA increases the production of H 2 O 2 in 96% and it diminishes lightly (17%) the levels of O 2 - . On the contrary, the IR diminishes the levels of H 2 O-2 in 47% and it increases in 46% those of O 2 - . In the irradiated cells the HA power the decrease of H 2 O 2 produced by the IR. The variation of the enzymes activity is coincident with these changes in the levels of ROS: the treatment with HA increases the activity of SOD and it diminishes that of CAT in cells without irradiating; on the other hand, in the irradiated cells the HA it diminishes the SOD significantly. On the base of these results we can conclude that the levels of H 2 O 2 are directly related with the sensitivity of the cells WM35 to the IR. The HA is able to modulate the activity of the antioxidant enzymes and the levels

  12. Influence of oxygen, nitrogen and carbon on the lattice parameter of uranium mono-carbide; Influence de l'oxygene, de l'azote et du carbone sur le parametre reticulaire du monocarbure d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Magnier, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-04-15

    The author studies the influence of oxygen and nitrogen contents on the lattice parameter of U(C,O,N) solid solutions around UC composition. The whole data conducts to a determination of the solubility of oxygen in UC: a U(C(1-x)O(x)) solid solution exist if x if smaller than 0.37. The author studies also the influence of carbon content on the lattice parameter of U-UC solid solutions around UC. This study conducts to the determination of the solubility of U in UC at the different temperatures. Consequences upon uranium-carbon diagram are envisaged. (author) [French] L'auteur etudie quantitativement l'influence de l'oxygene et de l'azote sur le parametre reticulaire des solutions solides U(C,O,N) proches de UC. Cette etude permet la determination de la solubilite de l'oxygene dans UC: on montre l'existence d'une solution solide U(C(1-x)O(x)) lorsque x est compris entre 0 et 0,37. Par ailleurs l'auteur etudie l'influence de la teneur en carbone sur le parametre des solutions solides U-UC proches de UC. Cette etude permet la determination de la solubilite de l'uranium dans UC aux differentes temperatures. On envisage enfin les modifications apportees par cette etude au diagramme uranium-carbone. (auteur)

  13. Penile rehabilitation after radical prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Ohl, Dana A; Ralph, David

    2013-01-01

    The pathophysiology of erectile dysfunction after radical prostatectomy (RP) is believed to include neuropraxia, which leads to temporarily reduced oxygenation and subsequent structural changes in penile tissue. This results in veno-occlusive dysfunction, therefore, penile rehabilitation programmes...

  14. Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids

    Science.gov (United States)

    Zhang, Peng; Yuan, Songhu

    2017-12-01

    Besides acidic environments, pyrite oxidation also occurs in circumneutral environments, such as well-buffered marine and estuarine sediments and salt marshes where low-molecular-weight organic acids (LMWOAs) (e.g., citrate and oxalate) prevail. However, the production of hydroxyl radicals (radOH) from pyrite oxidation by oxygen (O2) in these circumneutral environments is poorly understood. In this study, radOH production was measured during the abiotic oxidation of pyrite by O2 under circumneutral conditions. A pyrite suspension (50 g/L pyrite) that was buffered at pH 6-8 was exposed to air for oxygenation in the dark. Benzoate (20 mM) was added into the suspension to trap radOH. At pH 7, the cumulative radOH reached 7.5 μM within 420 min in the absence of LMWOAs, whereas it increased to 14.8, 12 and 11.2 μM in the presence of 1 mM ethylenediaminotetraacetate, citrate and oxalate, respectively. When the citrate concentration, which serves as a LMWOAs model, was increased from 0.5 to 5 mM, the cumulative radOH increased from 10.3 to 27.3 μM within 420 min at pH 7. With the decrease in pH from 8 to 6, the cumulative radOH increased from 2.1 to 23.3 μM in the absence of LMWOAs, but it increased from 8.8 to 134.9 μM in the presence of 3 mM citrate. The presence of LMWOAs enhanced the radOH production from pyrite oxidation under circumneutral conditions. In the absence of LMOWAs, radOH is produced mostly from the oxidation of adsorbed Fe(II) by O2. In the presence of citrate, radOH production is attributed mainly to the oxidation of Fe(II)-citrate- by O2 and secondarily to the oxidation of H2O on surface-sulfur defects. The acceleration of pyrite oxidation by Fe(III)-citrate increases radOH production. Fe(II)-citrate- is generated mainly from the complexation of adsorbed Fe(II) by citrate and the reduction of Fe(III)-citrate, and the generation is suppressed by the oxidation of adsorbed Fe(II). Fe(III)-citrate is generated predominantly from Fe

  15. One electron transfer redox potentials of free radicals. I. The oxygen-superoxide system. Progress report, September 1, 1975--July 1, 1976

    International Nuclear Information System (INIS)

    Ilan, Y.A.; Czapski, G.; Meisel, D.

    1976-01-01

    The method of determination of Redox potentials of radicals, using the pulse radiolysis technique, is outlined. The method is based on the determination of equilibria constants of electron transfer reactions between the radicals and appropriate acceptors. The limitations of this technique are discussed. The redox potentials of several quinones--semi-quinones are calculated, as well as the standard redox potential of the peroxy radical. E 0 /sub O 2 /O 2 /sup -/ = -0.33 V and the redox oxidation properties of the peroxy radical in various systems and pH are discussed. The value determined for the redox potentials of O 2 /O 2 - is higher by more than 0.2 volts than earlier estimates, which has important implications on the possible role of O 2 - in biological processes of O 2 fixation

  16. Pulsed radiation studies of carotenoid radicals and excited states

    International Nuclear Information System (INIS)

    Burke, M.

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of β-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar (∼1 x 10 7 M -1 s -1 ) for β-carotene and zeaxanthin and somewhat lower (∼0.5 x 10 7 M -1 s -1 ) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for β-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number of conjugated double bonds, the longer chain systems having

  17. Demonstrating Paramagnetism Using Liquid Nitrogen.

    Science.gov (United States)

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  18. Facile preparation of three-dimensional Co1-xS/sulfur and nitrogen-codoped graphene/carbon foam for highly efficient oxygen reduction reaction

    Science.gov (United States)

    Liang, Hui; Li, Chenwei; Chen, Tao; Cui, Liang; Han, Jingrui; Peng, Zhi; Liu, Jingquan

    2018-02-01

    Because of the urgent need for renewable resources, oxygen reduction reaction (ORR) has been widely studied. Finding efficient and low cost non-precious metal catalyst is increasingly critical. In this study, melamine foam is used as template to obtain porous sulfur and nitrogen-codoped graphene/carbon foam with uniformly distributed cobalt sulfide nanoparticles (Co1-xS/SNG/CF) which is prepared by a simple infiltration-drying-sulfuration method. It is noteworthy that melamine foam not only works as a three-dimensional support skeleton, but also provides a nitrogen source without any environmental pollution. Such Co1-xS/SNG/CF catalyst shows excellent oxygen reduction catalytic performance with an onset potential of only 0.99 V, which is the same as that of Pt/C catalyst (Eonset = 0.99 V). Furthermore, the stability and methanol tolerance of Co1-xS/SNG/CF are more outstanding than those of Pt/C catalyst. Our work manifests a facile method to prepare S and N-codoped 3D graphene network decorated with Co1-xS nanoparticles, which may be utilized as potential alternative to the expensive Pt/C catalysts toward ORR.

  19. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Poon, Ray W.Y.; Ho, Joan P.Y.; Liu Xuanyong; Chung, C.Y.; Chu, Paul K.; Yeung, Kelvin W.K.; Lu, William W.; Cheung, Kenneth M.C.

    2005-01-01

    Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C 2 H 2 PIII is composed of mainly TiC x with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti 4+ , Ti 3+ and Ti 2+

  20. Molten salt synthesis of nitrogen and oxygen enriched hierarchically porous carbons derived from biomass via rapid microwave carbonization for high voltage supercapacitors

    Science.gov (United States)

    Cheng, Yinfeng; Li, Baoqiang; Huang, Yanjuan; Wang, Yaming; Chen, Junchen; Wei, Daqing; Feng, Yujie; Jia, Dechang; Zhou, Yu

    2018-05-01

    Nitrogen and oxygen enriched hierarchically porous carbons (NOHPCs) derived from biomass have been successfully prepared by rapid microwave carbonization coupled with molten salt synthesis method in only 4 min. ZnCl2 plays important roles as microwave absorber, chemical activation agent and porogen in this process. NOHPC-1:10 sample possesses the maximum specific surface area of 1899 m2 g-1 with a pore volume of 1.16 cm3 g-1 and mesopore ratio of 70%, as well as nitrogen content of 5.30 wt% and oxygen content of 14.12 wt%. When evaluated as an electrode in a three-electrode system with 6 M KOH electrolyte, the material exhibits a high specific capacitance of 276 F g-1 at 0.2 A g-1, with a good rate capability of 90.9% retention at 10 A g-1. More importantly, the symmetric supercapacitor based on NOHPC-1:10 in 1 M Na2SO4 electrolyte exhibits a high energy density of 13.9 Wh kg-1 at a power density of 120 W kg-1 in a wide voltage window of 0-1.6 V, an excellent cycling stability with 95% of capacitance retention after 10,000 cycles. Our strategy provides a facile and rapid way for the preparation of advanced carbon materials derived from biomass towards energy storage applications.

  1. Dissolved oxygen removal on radiolysis: studies in context of use of nitrogen atmosphere above PHT storage bag in Indian PHWRs

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Venkateswaran, G.; Kishore, K.; Kumar, Sangeeta D.; Naik, D.B.

    2008-01-01

    Dissolved oxygen content of the water (N 2 in gas phase) sample on radiolysis was measured and it was observed that up to 2 M Rad dose, oxygen content decreases linearly and at higher doses remains constant. Results are compared with nitrate ion yield in water-N 2 systems determined earlier. In aerated solutions also, nitrate ion yield was measured as function of dose. (author)

  2. Estimates of Nitrogen, Phosphorus, Biochemical Oxygen Demand, and Fecal Coliforms Entering the Environment Due to Inadequate Sanitation Treatment Technologies in 108 Low and Middle Income Countries.

    Science.gov (United States)

    Fuhrmeister, Erica R; Schwab, Kellogg J; Julian, Timothy R

    2015-10-06

    Understanding the excretion and treatment of human waste (feces and urine) in low and middle income countries (LMICs) is necessary to design appropriate waste management strategies. However, excretion and treatment are often difficult to quantify due to decentralization of excreta management. We address this gap by developing a mechanistic, stochastic model to characterize phosphorus, nitrogen, biochemical oxygen demand (BOD), and fecal coliform pollution from human excreta for 108 LMICs. The model estimates excretion and treatment given three scenarios: (1) use of existing sanitation systems, (2) use of World Health Organization-defined "improved sanitation", and (3) use of best available technologies. Our model estimates that more than 10(9) kg/yr each of phosphorus, nitrogen and BOD are produced. Of this, 22(19-27)%, 11(7-15)%, 17(10-23)%, and 35 (23-47)% (mean and 95% range) BOD, nitrogen, phosphorus, and fecal coliforms, respectively, are removed by existing sanitation systems. Our model estimates that upgrading to "improved sanitation" increases mean removal slightly to between 17 and 53%. Under the best available technology scenario, only approximately 60-80% of pollutants are treated. To reduce impact of nutrient and microbial pollution on human and environmental health, improvements in both access to adequate sanitation and sanitation treatment efficiency are needed.

  3. Biogeochemical controls on the oxygen, nitrogen and sulfur distributions in the water column of Golfo Dulce: an anoxic basin on the Pacific coast of Costa Rica revisited

    International Nuclear Information System (INIS)

    Ferdelman, Timothy G.; Thamdrup, Bo; Canfield, Donald E.; Noehr Glud, Ronnie; Kuever, Jan; Lillebaek, Rolf; Birger Ramsing, Niels; Wawer, Cathrin

    2006-01-01

    Chemical distributions, respiration rates, and bacterial distributions were measured in 1994 in the water column and sediments of a small, tropical, anoxic basin (Golfo Dulce, Pacific coast of Costa Rica) to examine the biogeochemical controls on anoxia, sulfide, dissolved inorganic nitrogen, and organic carbon consumption. As reported previously, the deepest 100 m of the water column were anoxic, and sulfide concentrations in the bottom waters were less than 7 μM and then only transiently. Both free-swimming sulfide-oxidizing bacteria and Beggiatoa sp. (containing large vacuoles) were observed in the anoxic bottom waters or at the sediment-water interface. Aerobic respiration dominated the decomposition of organic matter in the surface waters and pycnocline, whereas sulfate reduction was principally restricted to the sediments. Bacteria were distributed in discrete zones and exhibited the highest densities where oxygen decreased below 1 μM around 100 m depth, and near the sediment-water interface. The sub-oxic, sub-pycnocline water column was characterized by a dissolved inorganic nitrogen (DIN) deficit of 2.9 mole m -2 . With a water residence time of 35 - 57 d, estimated from a salt balance, this deficit corresponded to a DIN loss of 51 - 85 mmol m -2 d -1 , comparable to the sub-pycnocline oxygen consumption. Sulfide in the water column was maintained at low concentrations by frequent inputs of oxygenated water from the Pacific Ocean. Sulfide production in the sediments due to bacterial sulfate reduction was scavenged by frequent deposition of iron-rich turbidites. Based on 210 Pb distributions, the most recent emplacement of a turbidite in the basin sediments was determined to have occurred between 1989 and 1992. (author) [es

  4. Reactions of carbon radicals generated by 1,5-transposition of reactive centers

    Directory of Open Access Journals (Sweden)

    ZIVORAD CEKOVIC

    2005-03-01

    Full Text Available Radical intermediates can undergo specific reactions, such as intramolecular rearrangements, i.e., the transpositions of radical centers, which are not known in classical ionic organic reactions. 1,5-Transposition of a radical center to a non-activated carbon atom are of great synthetic importance. It can be successfully applied for the introduction of different functional groups (oxygen, nitrogen, sulfur, halogens onto a carbon atom remote from the present functional group. In addition to functionalization of a remote non-activated carbon atom, the formation of new C-C bonds on the d-carbon atom have also been achieved. 1,5-Transposition of the radical centers takes place from alkoxyl, aminyl and carbon radicals to a remote carbon atom. Relocation of the radical centers preferentially involves 1,5-transfer of a hydrogen atom, although migrations of some other groups are known. The reactions of the carbon radical generated by 1,5-relocation of the radical center are presented and their synthetic applications are reviewed.

  5. Synergistic effect of oxygen vacancy and nitrogen doping on enhancing the photocatalytic activity of Bi{sub 2}O{sub 2}CO{sub 3} nanosheets with exposed {0 0 1} facets for the degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yafei [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Zhu, Gangqiang, E-mail: zgq2006@snnu.edu.cn [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Hojamberdiev, Mirabbos [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Department of Natural and Mathematic Sciences, Turin Polytechnic University in Tashkent, Kichik Halqa Yo’li 17, Tashkent 100095 (Uzbekistan); Gao, Jianzhi [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Hao, Jing [Xi' an Rejee Industry Development Co., Ltd., Xi’an 710016 (China); Zhou, Jianping; Liu, Peng [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China)

    2016-05-15

    Highlights: • Nitrogen-doped Bi{sub 2}O{sub 2}CO{sub 3} flower-like microstructures were synthesized by hydrothermal method. • Surface oxygen vacancy were obtained by irradiating the nitrogen-doped Bi{sub 2}O{sub 2}CO{sub 3} with UV light. • Photocatalytic activity was studied by degrading Rhodamine B. • A synergistic effect between oxygen vacancy and nitrogen doping in Bi{sub 2}O{sub 2}CO{sub 3}. - Abstract: Single-crystalline bare Bi{sub 2}O{sub 2}CO{sub 3} (BOC) nanosheets with exposed {0 0 1} facets and nitrogen-doped Bi{sub 2}O{sub 2}CO{sub 3} (NBOC) flower-like microstructures were synthesized by a simple hydrothermal method. The nitrogen-doped Bi{sub 2}O{sub 2}CO{sub 3} flower-like microstructures with oxygen vacancy (UV-NBOC) were obtained by irradiating the NBOC microstructures with UV light for 2 h in ethanol. The UV–vis diffuse reflectance spectra showed that the NBOC and UV-NBOC nanosheets exhibit an obvious red shift in light absorption band compared with the pure BOC nanosheets. Rhodamine B (RhB) was chosen as a model organic pollutant to verify the influence of oxygen vacancy and nitrogen doping on the photocatalytic activity of Bi{sub 2}O{sub 2}CO{sub 3} under simulated solar light irradiation. Judging from the kinetics of RhB photodegradation over the synthesized samples, a synergistic effect between oxygen vacancy and nitrogen doping was found with a remarkable increase (more than 10 and 2 times) in the photocatalytic activity of UV-NBOC compared with BOC and NBOC, respectively. Moreover, the UV-NBOC also exhibited an excellent cyclability and superior photocatalytic activity toward degradation of other organic pollutants (methylene blue, Congo red, Bisphenol A) under simulated solar light irradiation.

  6. cis-Stilbene and (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)benzene as mechanistic probes in the Mn(III)(salen)-catalyzed epoxidation: influence of the oxygen source and the counterion on the diastereoselectivity of the competitive concerted and radical-type oxygen transfer.

    Science.gov (United States)

    Adam, Waldemar; Roschmann, Konrad J; Saha-Möller, Chantu R; Seebach, Dieter

    2002-05-08

    cis-Stilbene (1) has been epoxidized by a set of diverse oxygen donors [OxD], catalyzed by the Mn(III)(salen)X complexes 3 (X = Cl, PF(6)), to afford a mixture of cis- and trans-epoxides 2. The cis/trans ratios range from 29:71 (extensive isomerization) to 92:8, which depends both on the oxygen source [OxD] and on the counterion X of the catalyst. When (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)-benzene (4) is used as substrate, a mechanistic probe which differentiates between radical and cationic intermediates, no cationic ring-opening products are found in this epoxidation reaction; thus, isomerized epoxide product arises from intermediary radicals. The dependence of the diastereoselectivity on the oxygen source is rationalized in terms of a bifurcation step in the catalytic cycle, in which concerted Lewis-acid-activated oxygen transfer competes with stepwise epoxidation by the established Mn(V)(oxo) species. The experimental counterion effect is attributed to the computationally assessed ligand-dependent reaction profiles and stereoselectivities of the singlet, triplet, and quintet spin states available to the manganese species.

  7. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    International Nuclear Information System (INIS)

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-01-01

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N 2 /O 2 (4:1) admixtures. A maximum in the O-atom concentration of (9.1 ± 0.7)×10 20 m −3 was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 ± 0.4)×10 19 m −3 at 0.1 vol. %

  8. Spectroscopic studies of ozone in cryosolutions: FT-IR spectra of 16O3 in liquid nitrogen, oxygen, argon and krypton

    Science.gov (United States)

    Bulanin, Kirill M.; Bulanin, Michael O.; Rudakova, Aida V.; Kolomijtsova, Tatiana D.; Shchepkin, Dmitrij N.

    2018-03-01

    We have measured and interpreted the IR spectra of ozone dissolved in liquid nitrogen, oxygen, argon, and krypton in the 650-4700 cm-1 spectral region at 79-117 K. Frequency shifts, band intensities and bandshapes of 22 spectral features of soluted ozone were analyzed. The bands of the A1 symmetry have a complex contour and possess an excess intensity with respect to the value of the purely vibrational transition moment. It was found that this effect is related to the manifestation of the Coriolis interaction. The bandshape distortion manifests itself as an additional intensity from the side of the B1 symmetry band being an intensity source in the case of the Coriolis interaction.

  9. Formation of short-lived positron emitters in reactions of protons of energies up to 200 MeV with the target elements carbon, nitrogen and oxygen

    CERN Document Server

    Kettern, K; Qaim, S M; Shubin, Yu N; Steyn, G F; Van der Walt, T N; 10.1016/j.apradiso.2004.02.007

    2004-01-01

    Excitation functions were measured by the stacked-foil technique for proton induced reactions on carbon, nitrogen and oxygen leading to the formation of the short-lived positron emitters /sup 11/C (T/sub 1 /2/=20.38 min) and /sup 13/N (T/sub 1/2/=9.96 min). The energy region covered extended up to 200 MeV. The product activity was measured non-destructively via gamma -ray spectrometry. A careful decay curve analysis of the positron annihilation radiation was invariably performed. The experimental results were compared with theoretical data obtained using the modified hybrid nuclear model code ALICE-IPPE for intermediate energies. The agreement was found to be generally satisfactory. The data are of importance in proton therapy.

  10. Stress corrosion cracking of an uranium-6 weight per cent niobium in gaseous oxygen, nitrogen and hydrogen

    International Nuclear Information System (INIS)

    Brunet, H.

    1989-01-01

    Stress corrosion cracking (SCC) of uranium-6 weight per cent niobium alloy is studied in gaseous oxygen at room temperature (for pressures between 4.10 -7 and 0.15MPa) and 100 0 C (pressure of 0.15 MPa) and in gaseous hydrogen (for pressures between 10 -6 and 0.15 MPa). SCC map and cracking kinetics are determined as fonctions of stress-intensity factor, pressure and temperature. For oxygen, temperature seems to have no effect on the alloy embrittlement within the range of this study but the pressure influence is more complex. At room temperature, hydrogen pressure less than 0.15 MPa has no influence on the cracking kinetics. For a pressure of 0.15 MPa, fracture occurs by hydriding reaction. Complementary analyses on fracture surfaces lead to propose different mechanics responsible for cracking kinetics in these environments [fr

  11. Stable silver nanoclusters electrochemically deposited on nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Jin, Shi; Chen, Man; Dong, Haifeng; He, Bingyu; Lu, Huiting; Su, Lei; Dai, Wenhao; Zhang, Qiaochu; Zhang, Xueji

    2015-01-01

    Metal nanoclusters exhibit unusually high catalytic activity toward oxygen reduction reaction (ORR) due to their small size and unique electronic structures. However, controllable synthesis of stable metal nanoclusters is a challenge, and the durability of metal clusters suffers from the deficiency of dissolution, aggregation, and sintering during catalysis reactions. Herein, silver nanoclusters (AgNCs) (diameter , which is vital in high performance fuel cells, batteries and nanodevices.

  12. Polymerization of Phenylacetylene-Based Monodendrons with Alkoxy Peripheral Groups and Oxygen/Nitrogen Permeation Behavior of Their Membranes

    Directory of Open Access Journals (Sweden)

    Takashi Kaneko

    2012-01-01

    Full Text Available Monodendron monomers with alkoxy peripheral groups were synthesized, and the focal point of monodendrons, terminal acetylene, was polymerized with rhodium catalyst to yield corresponding polydendrons with a high molecular weight. The polydendrons were soluble in common organic solvents and readily formed membranes. Oxygen permselectivity was improved in the polydendrons with a space-persistent dendritic crowd. It was found that the well-defined dendritic and rod-like structure of the polydendrons was useful for permselective membrane.

  13. Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries

    International Nuclear Information System (INIS)

    Lu, Mingjie; Yu, Wenhua; Shi, Jing; Liu, Wei; Chen, Shougang; Wang, Xin; Wang, Huanlei

    2017-01-01

    Highlights: •Self-doped carbon architectures with nitrogen, oxygen, and sulfur are derived from Carrageen. •The obtained carbon materials exhibit excellent electrochemical property. •The strategy provides a one-step synthesis route to design advanced anodes for batteries. -- Abstract: Nitrogen, oxygen and sulfur tridoped porous carbons have been successfully synthesized from natural biomass algae-Carrageen by using a simultaneous carbonization and activation procedure. The doped carbons with sponge-like interconnected architecture, partially ordered graphitic structure, and abundant heteroatom doping perform outstanding features for electrochemical energy storage. When tested as lithium-ion battery anodes, a high reversible capacity of 839 mAh g −1 can be obtained at the current density of 0.1 A g −1 after 100 cycles, while a high capacity of 228 mAh g −1 can be maintained at 10 A g −1 . Tested against sodium, a high specific capacity of 227 can be delivered at 0.1 A g −1 after 100 cycles, while a high capacity of 109 mAh g −1 can be achieved at 10 A g −1 . These results turn out that the doped carbons would be potential anode materials for lithium- and sodium-ion batteries, which can be achieved by a one-step and large-scale synthesis route. Our observation indicates that heteroatom doping (especially sulfur) can significantly promote ion storage and reduce irreversible ion trapping to some extent. This work gives a general route for designing carbon nanostructures with heteroatom doping for efficient energy storage.

  14. Nitrogen-Doped Hollow Carbon Spheres with Embedded Co Nanoparticles as Active Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Ruohao Xing

    2018-02-01

    Full Text Available Transition metal (Fe, Co, Ni complexes on carbon nanomaterials are promising candidates as electrocatalysts towards the oxygen reduction reaction (ORR. In this paper, nitrogen-doped hollow carbon spheres with embedded Co nanoparticles were successfully prepared via a controllable synthesis strategy. The morphology characterization shows that the hollow carbon spheres possess an average diameter of ~150 nm with a narrow size distribution and a shell thickness of ~14.5 nm. The content of N doping ranges from 2.1 to 6.6 at.% depending on the calcination temperature from 900 to 1050 °C. Compared with commercial Pt/C, the Co-containing nitrogen-doped hollow carbon spheres prepared at 900 °C (CoNHCS-900 as an ORR electrocatalyst shows a half-wave potential shift of only ∆E1/2 = 55 mV, but a superior stability of about 90.2% maintenance after 20,000 s in the O2-saturated 0.1 M KOH at a rotating speed of 1600 rpm. This could be ascribed to the synergistic effects of N-containing moieties, Co-Nx species, and Co nanoparticles, which significantly increase the density of active sites and promote the charge transfer during the ORR process.

  15. Nitrogen-doped graphene aerogel-supported spinel CoMn2O4 nanoparticles as an efficient catalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Yisi; Li, Jie; Li, Wenzhang; Li, Yaomin; Chen, Qiyuan; Zhan, Faqi

    2015-12-01

    Spinel CoMn2O4 (CMO) nanoparticles grown on three-dimensional (3D) nitrogen-doped graphene areogel (NGA) is prepared by a facile two-step hydrothermal method. The NGA not only possesses the intrinsic property of graphene, but also has abundant pore conformations for supporting spinel metal oxide nanoparticles, thus would be suitable as a good electrocatalysts' support for oxygen reduction reaction (ORR). The structure, morphology, porous properties, and chemical composition of CMO/NGA are investigated by X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, nitrogen adsorption-desorption measurements, and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of catalysts is discussed by cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), and rotating disk electrode (RDE) measurements in O2-saturated 0.1 M KOH electrolyte. The CMO/NGA hybrid exhibits more positive onset potential and half-wave potential, faster charge transfer than that of CMO and NGA, and its electrocatalytic performance is comparable with the commercial 20 wt.% Pt/C. Furthermore, it mainly favors a direct 4e- reaction pathway, and has excellent ethanol tolerance and high durability, which is attributed to the unique 3D crumpled porous nanostructure of NGA with large specific area and fast electron transport, and the synergic covalent coupling between the CoMn2O4 nanoparticles and NGA.

  16. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    Science.gov (United States)

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-11-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities.

  17. Nitrogen-doped hierarchical lamellar porous carbon synthesized from the fish scale as support material for platinum nanoparticle electrocatalyst toward the oxygen reduction reaction.

    Science.gov (United States)

    Liu, Haijing; Cao, Yinliang; Wang, Feng; Huang, Yaqin

    2014-01-22

    Novel hierarchical lamellar porous carbon (HLPC) with high BET specific surface area of 2730 m(2) g(-1) and doped by nitrogen atoms has been synthesized from the fish scale without any post-synthesis treatment, and applied to support the platinum (Pt) nanoparticle (NP) catalysts (Pt/HLPC). The Pt NPs could be highly dispersed on the porous surface of HLPC with a narrow size distribution centered at ca. 2.0 nm. The results of the electrochemical analysis reveal that the electrochemical active surface area (ECSA) of Pt/HLPC is larger than the Pt NP electrocatalyst supported on the carbon black (Pt/Vulcan XC-72). Compared with the Pt/Vulcan XC-72, the Pt/HLPC exhibits larger current density, lower overpotential, and enhanced catalytic activity toward the oxygen reduction reaction (ORR) through the direct four-electron pathway. The improved catalytic activity is mainly attributed to the high BET specific surface area, hierarchical porous structures and the nitrogen-doped surface property of HLPC, indicating the superiority of HLPC as a promising support material for the ORR electrocatalysts.

  18. High content of pyridinic- and pyrrolic-nitrogen-modified carbon nanotubes derived from blood biomass for the electrocatalysis of oxygen reduction reaction in alkaline medium

    International Nuclear Information System (INIS)

    Zheng, Jie; Guo, Chaozhong; Chen, Chunyan; Fan, Mingzhi; Gong, Jianping; Zhang, Yanfang; Zhao, Tianxin; Sun, Yuelin; Xu, Xiaofan; Li, Mengmeng; Wang, Ran; Luo, Zhongli; Chen, Changguo

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •An ORR electrocatalyst was fabricated from blood biomass and carbon nanotube. •The N-CNT catalyst exhibits good ORR activity, methanol resistance and stability. •The pyrolysis process produces high contents of pyridinic and pyrrolic N species. •The pyridinic-N group may play more important role in the active sites for ORR. -- Abstract: Here we present a facile synthetic route to design nitrogen-doped nanostructured carbon-based electrocatalyst for oxygen reduction reaction (ORR) by the copyrolysis of blood biomass from pig and carbon nanotubes (CNTs) at high temperatures. The nitrogen-doped CNTs obtained at 800 °C not only results in excellent ORR activity with four-electron transfer selectivity in alkaline medium, but also exhibits superior methanol-tolerant property and long-term stability. It is confirmed that high-temperature pyrolysis processes can facilitate to produce higher contents of pyridinic- and pyrrolic-N binding groups in electrocatalysts, contributing to the enhancement of ORR performance in terms of onset potential, half-wave potential, and limited current density. We also propose that the planar-N configuration may be the active site that is responsible for the improved ORR electrocatalytic performance. The straight-forward and cheap synthesis of the active and stable electrocatalyst makes it a promising candidate for electrochemical power sources such as fuel cells or metal-air batteries

  19. Surface Modification of Multi-Walled Carbon Nanotubes via Hemoglobin-Derived Iron and Nitrogen-Rich Carbon Nanolayers for the Electrocatalysis of Oxygen Reduction

    Directory of Open Access Journals (Sweden)

    Wensheng Li

    2017-05-01

    Full Text Available The great challenge of boosting the oxygen reduction reaction (ORR activity of non-noble-metal electrocatalysts is how to achieve effective exposure and full utilization of nitrogen-rich active sites. To realize the goals of high utilization of active sites and fast electron transport, here we report a new strategy for synthesis of an iron and nitrogen co-doped carbon nanolayers-wrapped multi-walled carbon nanotubes as ORR electrocatalyst (N-C@CNT-Fe via using partially carbonized hemoglobin as a single-source precursor. The onset and half-wave potentials for ORR of N-C@CNT-Fe are only 45 and 54 mV lower than those on a commercial Pt/C (20 wt.% Pt catalyst, respectively. Besides, this catalyst prepared in this work has been confirmed to follow a four-electron reaction mechanism in ORR process, and also displays ultra-high electrochemical cycling stability in both acidic and alkaline electrolytes. The enhancement of ORR activity can be not only attributed to full exposure and utilization of active site structures, but also can be resulted from the improvement of electrical conductivity owing to the introduction of CNT support. The analysis of X-ray photoelectric spectroscopy shows that both Fe–N and graphitic-N species may be the ORR active site structures of the prepared catalyst. Our study can provide a valuable idea for effective improvement of the electrocatalytic activity of non-noble-metal ORR catalysts.

  20. Nitrogen and sulfur co-doped porous carbon – is an efficient electrocatalyst as platinum or a hoax for oxygen reduction reaction in acidic environment PEM fuel cell?

    International Nuclear Information System (INIS)

    Sahoo, Madhumita; Ramaprabhu, S.

    2017-01-01

    Non-precious, heteroatom doped carbon is reported to replace commercial Pt/C in both alkaline and acidic half-cell rotating disc electrode study; however the real world full cell measurements with the metal-free electrocatalysts overcoming the practical troubles in acidic environment proton exchange membrane fuel cell (PEMFC) are almost negligible to confirm the claim. Nitrogen and sulfur co-doped porous carbon (DPC) was synthesized in a one step, high yield process from single source ionic liquid precursor using eutectic salt as porogens to achieve porosity. Structural characterization confirms 7.03% nitrogen and 1.68% sulfur doping into the high surface area, porous carbon structure. As the cathode oxygen reduction reaction (ORR) catalyst, metal-free DPC and Pt nanoparticles decorated DPC (Pt/DPC) shows stable and high exchange current density by four electron transfer pathway in acidic half–cell liquid environment due to the synergistic effect of nitrogen and sulfur doping and porous nature of DPC. In an actual solid state full cell measurement, Pt/DPC shows higher performance comparable to commercial Pt/C; however DPC failed to reciprocate the half-cell performance due to blockage of active sites in the membrane electrode assembly fabrication process. - Highlights: • Synthesis of N and S co-doped porous carbon (DPC) in simple one-pot technique. • High surface area DPC shows comparable activity for ORR in half-cell acidic PEMFC study. • Real-world performance of DPC gives 20 mW/cm 2 peak power density at 60 °C. • Homogeneous Pt nanoparticles decorated DPC (Pt/DPC) outperforms commercial Pt/C. • Pt/DPC shows maximum power density of 718 mW/cm 2 with lower 0.3 mg/cm 2 total Pt loading.

  1. Modification of Ultra-High Vacuum Surfaces Using Free Radicals

    CERN Document Server

    Vorlaufer, G

    2002-01-01

    In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption of surface adsorbates are usually the factors which determine pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchrotron radiation and bombardment by energetic ions and electrons, surface properties like the molecular desorption yield or secondary electron yield can strongly influence the performance of the accelerator. Well-established treatment methods like vacuum bake-out or glow-discharge cleaning have been successfully applied in the past to condition ultra-high vacuum surfaces, but these methods are sometimes difficult to carry out, for example if the vacuum chambers are not accessible. In this work, an alternative treatment method is investigated. This method is based on the strong chemical reactivity of free radicals, electrically neutral fragments of molecules. Free radicals (in the case of this work, nitrogen and oxygen radi...

  2. Homogeneously Dispersed Co9S8 Anchored on Nitrogen and Sulfur Co-Doped Carbon Derived from Soybean as Bifunctional Oxygen Electrocatalysts and Supercapacitors.

    Science.gov (United States)

    Xiao, Zhen; Xiao, Guozheng; Shi, Minhao; Zhu, Ying

    2018-05-16

    Developing low-cost and highly active multifunctional electrocatalysts to replace noble metal catalysts is crucial for the commercialization of future clean energy technology. Herein, homogeneous Co 9 S 8 nanoparticles anchored on nitrogen and sulfur co-doped porous carbon nanomaterials (CoS@NSCs) are fabricated by pyrolysis of natural soybean treated with cobalt nitrate. The unique porous structures of the soybean are utilized to provide space for the oxidation and complexation reactions for cobalt compounds, thus leading to in situ generation of homogenously dispersed cobalt sulfide nanoparticles that anchored on the N,S co-doped carbon framework. Because of the coupling effect of cobalt sulfide and doping heteroatoms, CoS@NSC-800 not only displays excellent electrocatalytic performances with low overpotential and high current density toward both oxygen reduction reaction and oxygen evolution reaction comparable to the commercial Pt/C catalyst and IrO 2 catalyst, but also might be a promising candidate for high-performance supercapacitors. The method for the preparation of the multifunctional hybrids is simple but effective for the formation of uniformly distributed metal sulfide nanoparticles anchored on carbon materials, therefore providing a new perspective for the design and synthesis of multifunctional electrocatalysts for electrochemical energy conversion and storage at a large scale.

  3. Forms of adsorption and transition states of oxidation of carbon monoxide by molecular oxygen and dissociation of nitrogen monooxide, catalyzed by monovalent copper

    Science.gov (United States)

    Ermakov, A. I.; Mashutin, V. Y.; Vishnjakov, A. V.

    With the help of the results of semiempirical (parametric method 3) and ab initio (second-order Møller-Plesset [MP2] unrestricted Hartree-Fock [UHF] 6-31G**, unrestricted density functional theory [UDFT] 6-31G** Becke's three-parameter exchange functional and the gradient-corrected functional of Lee, Yang, and Paar [B3LYP] and UDFT LANL2DZ B3LYP) quantum-chemical calculations has been studied the complexation CO and NO with molecular hydroxide of copper(I). The influence of charge defects has been simulated by the calculations of anionic, neutral, and cationic systems. It is shown that CO and NO are mainly coordinated by nonoxygen atom on an atom of copper(I) hydroxide as one- and two-center forms. These forms are suitable for appearance of prereactionary complexes of catalytic oxidation CO by molecular oxygen and decomposition NO into atoms of nitrogen and oxygen. The corresponding prereactionary complexes for systems with participation of copper(II) hydroxide and copper(III) hydroxide are not revealed. The calculations predict inhibiting impact of copper(II) and copper(III) of the observed reactions. Computed stability of complexes CO and NO with copper(I) hydroxide and activation energy of catalytic conversion of monooxides essentially depend on an excessive charge of the system. Introduction of electron-donating additives into copper(I) hydroxide promotes rise of catalytic activity of copper(I) compound.

  4. Three-dimensional iron, nitrogen-doped carbon foams as efficient electrocatalysts for oxygen reduction reaction in alkaline solution

    International Nuclear Information System (INIS)

    Ma, Yanjiao; Wang, Hui; Feng, Hanqing; Ji, Shan; Mao, Xuefeng; Wang, Rongfang

    2014-01-01

    Graphical abstract: Three-dimentional Fe, N-doped carbon foams prepared by two steps exhibited comparable catalytic activity for oxygen reduction reaction to commercial Pt/C due to the unique structure and the synergistic effect of Fe and N atoms. - Highlights: • Three-dimensional Fe, N-doped carbon foam (3D-CF) were prepared. • 3D-CF exhibits comparable catalytic activity to Pt/C for oxygen reduction reaction. • The enhanced activity of 3D-CF results of its unique structure. - Abstract: Three-dimensional (3D) Fe, N-doped carbon foams (3D-CF) as efficient cathode catalysts for the oxygen reduction reaction (ORR) in alkaline solution are reported. The 3D-CF exhibit interconnected hierarchical pore structure. In addition, Fe, N-doped carbon without porous strucuture (Fe-N-C) and 3D N-doped carbon without Fe (3D-CF’) are prepared to verify the electrocatalytic activity of 3D-CF. The electrocatalytic performance of as-prepared 3D-CF for ORR shows that the onset potential on 3D-CF electrode positively shifts about 41 mV than those of 3D-CF’ and Fe-N-C respectively. In addition, the onset potential on 3D-CF electrode for ORR is about 27 mV more negative than that on commercial Pt/C electrode. 3D-CF also show better methanol tolerance and durability than commercial Pt/C catalyst. These results show that to synthesize 3D hierarchical pores with high specific surface area is an efficient way to improve the ORR performance

  5. Regulation of Cys-based protein tyrosine phosphatases via reactive oxygen and nitrogen species in mast cells and basophils

    Czech Academy of Sciences Publication Activity Database

    Heneberg, Petr; Dráber, Petr

    2005-01-01

    Roč. 12, č. 16 (2005), s. 1859-1871 ISSN 0929-8673 R&D Projects: GA ČR(CZ) GA204/03/0594; GA ČR(CZ) GA301/03/0596; GA AV ČR(CZ) IAA5052310; GA MZd(CZ) NR8079; GA MŠk(CZ) 1M0506; GA MŠk(CZ) 1P04OE158 Institutional research plan: CEZ:AV0Z50520514 Keywords : mast cell * tyrosine phosphatase * reactive oxygen species Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.904, year: 2005

  6. Characterization of carbon, nitrogen, oxygen and refractory metals in binary and ternary silicon-based films using ion beam methods

    International Nuclear Information System (INIS)

    Somatri-Bouamrane, R.

    1996-01-01

    Ion beam methods (non Rutherford backscattering, nuclear reactions) have been carried out in order to characterize silicon-based films. The cross sections for the reactions 12 C(α,α), 14 N(α,α), 16 O(α,α), 28 Si(α,α) and 14 N(α,p) have been measured within 2 and 7 MeV. CVD beta SiC films could be analyzed and the interface between silicon carbide and the (100) silicon substrate was studied. The epitaxial growth of the beta SiC film could be modelled by comparing the results obtained with ion beam analysis, infrared spectroscopy and electron microscopy. Moreover, the stoichiometry of low pressure CVD Me-Si-N (Me=Re, W, Ti, Ta) ternary systems was studied. The evolution of the nitrogen content in W-Si-N systems allowed to study their stability with respect to the annealing conditions. (N.T.)

  7. Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets.

    Science.gov (United States)

    Li, Hao; Shang, Jian; Ai, Zhihui; Zhang, Lizhi

    2015-05-20

    Even though the well-established Haber-Bosch process has been the major artificial way to "fertilize" the earth, its energy-intensive nature has been motivating people to learn from nitrogenase, which can fix atmospheric N2 to NH3 in vivo under mild conditions with its precisely arranged proteins. Here we demonstrate that efficient fixation of N2 to NH3 can proceed under room temperature and atmospheric pressure in water using visible light illuminated BiOBr nanosheets of oxygen vacancies in the absence of any organic scavengers and precious-metal cocatalysts. The designed catalytic oxygen vacancies of BiOBr nanosheets on the exposed {001} facets, with the availability of localized electrons for π-back-donation, have the ability to activate the adsorbed N2, which can thus be efficiently reduced to NH3 by the interfacial electrons transferred from the excited BiOBr nanosheets. This study might open up a new vista to fix atmospheric N2 to NH3 through the less energy-demanding photochemical process.

  8. Electron transfer number control of the oxygen reduction reaction on nitrogen-doped reduced graphene oxides for the air electrodes of zinc-air batteries and organic degradation

    International Nuclear Information System (INIS)

    Wu, Sheng-Hui; Li, Po-Chieh; Hu, Chi-Chang

    2016-01-01

    The mean electron transfer number (n) of the oxygen reduction reaction (ORR) on reduced graphene oxide (rGO) is controlled by nitrogen doping for the air electrodes of Zn-air batteries and electrochemical organic degradation. Melamine and pyrrole are employed as the nitrogen sources for fabricating N-doped rGO (N-rGO) by microwave-assisted hydrothermal synthesis (MAHS). The n value of the ORR is determined by the rotating ring-disk electrode (RRDE) voltammetry and is successfully controlled from 2.34 to 3.93 by preparation variables. The N-doped structures are examined by the x-ray photoelectron spectroscopic (XPS) analysis. The morphology and the defect degree of N-rGOs are characterized by high resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. N-rGOs with high and low n values are employed as the air electrode catalysts of zinc-air batteries and in-situ hydrogen peroxide (H_2O_2) generation, respectively. The highest discharge cell voltage of 1.235 V for a Zn-air battery is obtained at 2 mA cm"−"2 meanwhile the current efficiency of H_2O_2 generation in 1-h electrolysis at 0 V (vs. RHE) reaches 43%. The electrocatalytic degradation of orange G (OG), analyzed by UV-VIS absorption spectra, reveals a high decoloration degree from the relative absorbance of 0.38 for the azo π-conjugation structure of OG. - Highlights: • The mean electron transfer number (n) is controlled by nitrogen doping. • Melamine and pyrrole are used as the nitrogen sources for fabricating N-rGO. • The n value is successfully controlled from 2.34 to 3.93 by preparation variables. • The highest discharge cell voltage of 1.235 V for a Zn-air battery. • The current efficiency of H_2O_2 generation 1-h electrolysis reaches 43%.

  9. Electron transfer number control of the oxygen reduction reaction on nitrogen-doped reduced graphene oxides for the air electrodes of zinc-air batteries and organic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sheng-Hui; Li, Po-Chieh; Hu, Chi-Chang, E-mail: cchu@che.nthu.edu.tw

    2016-11-01

    The mean electron transfer number (n) of the oxygen reduction reaction (ORR) on reduced graphene oxide (rGO) is controlled by nitrogen doping for the air electrodes of Zn-air batteries and electrochemical organic degradation. Melamine and pyrrole are employed as the nitrogen sources for fabricating N-doped rGO (N-rGO) by microwave-assisted hydrothermal synthesis (MAHS). The n value of the ORR is determined by the rotating ring-disk electrode (RRDE) voltammetry and is successfully controlled from 2.34 to 3.93 by preparation variables. The N-doped structures are examined by the x-ray photoelectron spectroscopic (XPS) analysis. The morphology and the defect degree of N-rGOs are characterized by high resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. N-rGOs with high and low n values are employed as the air electrode catalysts of zinc-air batteries and in-situ hydrogen peroxide (H{sub 2}O{sub 2}) generation, respectively. The highest discharge cell voltage of 1.235 V for a Zn-air battery is obtained at 2 mA cm{sup −2} meanwhile the current efficiency of H{sub 2}O{sub 2} generation in 1-h electrolysis at 0 V (vs. RHE) reaches 43%. The electrocatalytic degradation of orange G (OG), analyzed by UV-VIS absorption spectra, reveals a high decoloration degree from the relative absorbance of 0.38 for the azo π-conjugation structure of OG. - Highlights: • The mean electron transfer number (n) is controlled by nitrogen doping. • Melamine and pyrrole are used as the nitrogen sources for fabricating N-rGO. • The n value is successfully controlled from 2.34 to 3.93 by preparation variables. • The highest discharge cell voltage of 1.235 V for a Zn-air battery. • The current efficiency of H{sub 2}O{sub 2} generation 1-h electrolysis reaches 43%.

  10. Silylative Pinacol Coupling Catalyzed by Nitrogen-Doped Carbon-Encapsulated Nickel/Cobalt Nanoparticles: Evidence for a Silyl Radical Pathway

    DEFF Research Database (Denmark)

    Kramer, Søren; Hejjo, Fatima; Rasmussen, Kristoffer Hauberg

    2018-01-01

    The silylative pinacol coupling of arylaldehydes catalyzed by aneasily accessible, heterogeneous base-metal catalyst is demonstrated. Instead of using the classical combination of catalyst, stoichiometric metal reductants, and chlorosilanes, the developed reaction only requires the use of a catal......The silylative pinacol coupling of arylaldehydes catalyzed by aneasily accessible, heterogeneous base-metal catalyst is demonstrated. Instead of using the classical combination of catalyst, stoichiometric metal reductants, and chlorosilanes, the developed reaction only requires the use....... The obtained results provided evidence for a reaction mechanism which is different from the classical pinacol coupling pathway. We propose that the heterogeneous catalyst facilitates easy access to silyl radicals, thereby circumventing the usual need for explosive initiators to access these species....... In addition, leaching tests and recycling of the catalyst were performed, clearly supporting the heterogeneous nature of the catalyst....

  11. Metabolomic Analyses of Brain Tissue in Sepsis Induced by Cecal Ligation Reveal Specific Redox Alterations-Protective Effects of the Oxygen Radical Scavenger Edaravone

    DEFF Research Database (Denmark)

    Hara, Naomi; Chijiiwa, Miyuki; Yara, Miki

    2015-01-01

    at analyzing the preventive effect of the free radical scavenger edaravone on sepsis-induced brain alterations. Sepsis was induced by cecal ligation and puncture (CLP) and the mice were divided into three groups-CLP vehicle (CLPV), CLP and edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one) (CLPE......), and sham-operated (Sham). Mice in CLPV and CLPE were injected with saline or edaravone intraperitoneally at a dose of 10 mg/kg twice daily. The treatments were initiated 4 days prior to the surgical procedure. Mortality, histological changes, electron microscopy (EM), and expression of Bcl-2 family genes...

  12. Amyloid-β and α-Synuclein Decrease the Level of Metal-Catalyzed Reactive Oxygen Species by Radical Scavenging and Redox Silencing

    DEFF Research Database (Denmark)

    Pedersen, Jeppe T; Chen, Serene W; Borg, Christian B

    2016-01-01

    formation of ROS in vitro in the presence of a biological reductant. We find that the levels of ROS, and the rate by which ROS is generated, are significantly reduced when Cu(2+) is bound to Aβ or αS, particularly when they are in their oligomeric or fibrillar forms. This effect is attributed...... to a combination of radical scavenging and redox silencing mechanisms. Our findings suggest that the increase in ROS associated with the accumulation of aggregated Aβ or αS does not result from a particularly ROS-active form of these peptides, but rather from either a local increase of Cu(2+) and other ROS...

  13. Interstellar Deuterium, Nitrogen and Oxygen Towards HZ43A: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission

    Science.gov (United States)

    Kruk, J. W.; Howk, J. C.; Andre, M.; Moos, H. W.; Oegerle, William R.; Oliveira, C.; Sembach, K. R.; Chayer, P.; Linsky, J. L.; Wood, B. E.

    2002-01-01

    We present an analysis of interstellar absorption along the line of sight to the nearby white dwarf star HZ43A. The distance to this star is 68+/-13 pc, and the line of sight extends toward the north Galactic pole. Column densities of O(I), N(I), and N(II) were derived from spectra obtained by the Far Ultraviolet Spectroscopic Explorer (FUSE), the column density of D(I) was derived from a combination of our FUSE spectra and an archival HST GARDENS spectrum, and the column density of H(I) was derived from a combination of the GARDENS spectrum and values derived from EUVE data obtained from the literature. We find the following abundance ratios (with 2 sigma uncertainties): D(I)/H(I)=(1.66+/-0.28)x10(exp -5), O(I)/H(I)=(3.63+/-0.84)x10(exp -4), and N(I)/H(I)=(3.80+/-0.74)x10(exp -5). The N(II) column density was slightly greater than that of N(I), indicating that ionization corrections are important when deriving nitrogen abundances. Other interstellar species detected along the line of sight were C(II), C(III), O(VI), Si(II), Ar(I), Mg(II) and Fe(II); an upper limit was determined for N(III). No elements other than H(I) were detected in the stellar photosphere.

  14. The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions

    NARCIS (Netherlands)

    Gremmels, Hendrik; De Jong, Olivier G.; Hazenbrink, Diënty H.; Fledderus, Joost O.; Verhaar, Marianne C.

    2017-01-01

    Background. Endothelial colony forming cells (ECFCs) have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS). The transcription factor Nrf2

  15. Vertical segregation among pathways mediating nitrogen loss (N2 and N2O production) across the oxygen gradient in a coastal upwelling ecosystem

    Science.gov (United States)

    Galán, Alexander; Thamdrup, Bo; Saldías, Gonzalo S.; Farías, Laura

    2017-10-01

    The upwelling system off central Chile (36.5° S) is seasonally subjected to oxygen (O2)-deficient waters, with a strong vertical gradient in O2 (from oxic to anoxic conditions) that spans a few metres (30-50 m interval) over the shelf. This condition inhibits and/or stimulates processes involved in nitrogen (N) removal (e.g. anammox, denitrification, and nitrification). During austral spring (September 2013) and summer (January 2014), the main pathways involved in N loss and its speciation, in the form of N2 and/or N2O, were studied using 15N-tracer incubations, inhibitor assays, and the natural abundance of nitrate isotopes along with hydrographic information. Incubations were developed using water retrieved from the oxycline (25 m depth) and bottom waters (85 m depth) over the continental shelf off Concepción, Chile. Results of 15N-labelled incubations revealed higher N removal activity during the austral summer, with denitrification as the dominant N2-producing pathway, which occurred together with anammox at all times. Interestingly, in both spring and summer maximum potential N removal rates were observed in the oxycline, where a greater availability of oxygen was observed (maximum O2 fluctuation between 270 and 40 µmol L-1) relative to the hypoxic bottom waters ( multiple N-cycling processes are modulating the isotopic nitrate composition over the shelf off central Chile during spring and summer. N removal processes in this coastal system appear to be related to the availability and distribution of oxygen and particles, which are a source of organic matter and the fuel for the production of other electron donors (i.e. ammonium) and acceptors (i.e. nitrate and nitrite) after its remineralization. These results highlight the links between several pathways involved in N loss. They also establish that different mechanisms supported by alternative N substrates are responsible for substantial accumulation of N2O, which are frequently observed as hotspots in the

  16. Bran data of total flavonoid and total phenolic contents, oxygen radical absorbance capacity, and profiles of proanthocyanidins and whole grain physical traits of 32 red and purple rice varieties

    Directory of Open Access Journals (Sweden)

    Ming-Hsuan Chen

    2016-09-01

    Full Text Available Phytochemicals in red and purple bran rice have potential health benefit to humans. We determined the phytochemicals in brans of 32 red and purple global rice varieties. The description of the origin and physical traits of the whole grain (color, length, width, thickness and 100-kernel weight of this germplasm collection are provided along with data of total flavonoid and total phenolic contents, oxygen radical absorbance capacity and total proanthocyanidin contents. The contents and proportions of individual oligomers, from degree of polymerization of monomers to 14-mers, and polymers in bran of these 32 rice varieties are presented (DOI: http://dx.doi.org/10.1016/j.foodchem.2016.04.004 [1]. Keywords: Purple rice, Red rice, Black rice, Proanthocyanidins, Tannins, Flavonoids, Rice bran

  17. Dysbaric osteonecrosis (caisson disease of bone): are active oxygen species and the endocrine system responsible, and can control of the production of free radicals and their reaction products confer protection?

    Science.gov (United States)

    Jones, G R

    1987-01-01

    The development of osteonecrosis after exposure to altered air pressures is consistent with cellular injury brought about by active oxygen species. The syndrome is considered to arise as a result of an unusual combination of circumstances in which hyperoxia itself, together with the additive responses of the endocrine system to hyperoxia, hypothermia and exertion, each appear to play a part; the net result is thought to increase the mitochondrial generation of superoxide. It is suggested that effective prophylaxis may be possible primarily by establishing a nutritional status that is adequate to ensure that the functional activities of radical-scavenging systems are not hampered by deficiencies either of essential trace elements or of vitamin E. Pharmacological pretreatments designed both to decrease excessive levels of superoxide through increased catalysis of anionic dismutation and to attenuate enzyme-dependent peroxidation may provide an additional line of defence.

  18. Deviation from normal Boltzmann distribution of high-lying energy levels of iron atom excited by Okamoto-cavity microwave-induced plasmas using pure nitrogen and nitrogen–oxygen gases

    International Nuclear Information System (INIS)

    Wagatsuma, Kazuaki

    2015-01-01

    This paper describes several interesting excitation phenomena occurring in a microwave-induced plasma (MIP) excited with Okamoto-cavity, especially when a small amount of oxygen was mixed with nitrogen matrix in the composition of the plasma gas. An ion-to-atom ratio of iron, which was estimated from the intensity ratio of ion to atomic lines having almost the same excitation energy, was reduced by adding oxygen gas to the nitrogen MIP, eventually contributing to an enhancement in the emission intensities of the atomic lines. Furthermore, Boltzmann plots for iron atomic lines were observed in a wide range of the excitation energy from 3.4 to 6.9 eV, indicating that plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from the linear relationship. This overpopulation would result from any other excitation process in addition to the thermal excitation that principally determines the Boltzmann distribution. A Penning-type collision with excited species of nitrogen molecules probably explains this additional excitation mechanism, in which the resulting iron ions recombine with captured electrons, followed by cascade de-excitations between closely-spaced excited levels just below the ionization limit. As a result, these high-lying levels might be more populated than the low-lying levels of iron atom. The ionization of iron would be caused less actively in the nitrogen–oxygen plasma than in a pure nitrogen plasma, because excited species of nitrogen molecule, which can provide the ionization energy in a collision with iron atom, are consumed through collisions with oxygen molecules to cause their dissociation. It was also observed that the overpopulation occurred to a lesser extent when oxygen gas was added to the nitrogen plasma. The reason for this was also attributed to decreased number density of the excited nitrogen species due to collisions with oxygen

  19. Reactive template synthesis of nitrogen-doped graphene-like carbon nanosheets derived from hydroxypropyl methylcellulose and dicyandiamide as efficient oxygen reduction electrocatalysts

    Science.gov (United States)

    Hu, Chun; Zhou, Yao; Ma, Ruguang; Liu, Qian; Wang, Jiacheng

    2017-03-01

    Oxygen reduction reaction (ORR) plays a dominant role in proton exchange membrane fuel cells (PEMFCs). Thus, the design and preparation of efficient ORR electrocatalysts is of high importance. In this work, we successfully prepared a series of nitrogen-doped graphene-like carbon nanosheets (NCNSs) with large pore volumes of up to 1.244 cm3 g-1 and high level of N dopants (5.3-6.8 at%) via a one-step, in-situ reactive template strategy by co-pyrolysis of hydroxypropyl methylcellulose (HPMC) and dicyandiamide (DICY) as the precursors at 1000 °C. The DICY-derived graphitic carbon nitride (g-C3N4) nanosheets could act as the hard template for the confined growth of 2D carbon nanosheets, and the further increase in the pyrolysis temperature could directly remove off the g-C3N4 template by complete decomposition and simultaneously dope N atoms within the carbon nanosheets. The pyridinic and graphitic nitrogen groups are dominant among various N functional groups in the NCNSs. The NCNS_1:10 prepared with the HPMC/DICY mass ratio of 1/10 can be used as the metal-free ORR electrocatalysts with optimal activity (onset potential: -0.1 V vs. SCE; limiting current density: 4.8 mA cm-2) in O2-saturated 0.1 M KOH electrolyte among the NCNSs. Moreover, the NCNS_1:10 demonstrates a dominant four-electron reduction process, as well as excellent long-term operation stability and outstanding methanol crossover resistance. The excellent ORR activity of the NCNS_1:10 should be mainly owing to high contents of pyridinic and graphitic N dopants, large pore volume, hierarchical structures, and microstructural defects.

  20. Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO2 Photoelectrodes.

    Science.gov (United States)

    Li, Chengcheng; Wang, Tuo; Zhao, Zhi-Jian; Yang, Weimin; Li, Jian-Feng; Li, Ang; Yang, Zhilin; Ozin, Geoffrey A; Gong, Jinlong

    2018-02-19

    A hundred years on, the energy-intensive Haber-Bosch process continues to turn the N 2 in air into fertilizer, nourishing billions of people while causing pollution and greenhouse gas emissions. The urgency of mitigating climate change motivates society to progress toward a more sustainable method for fixing N 2 that is based on clean energy. Surface oxygen vacancies (surface O vac ) hold great potential for N 2 adsorption and activation, but introducing O vac on the very surface without affecting bulk properties remains a great challenge. Fine tuning of the surface O vac by atomic layer deposition is described, forming a thin amorphous TiO 2 layer on plasmon-enhanced rutile TiO 2 /Au nanorods. Surface O vac in the outer amorphous TiO 2 thin layer promote the adsorption and activation of N 2 , which facilitates N 2 reduction to ammonia by excited electrons from ultraviolet-light-driven TiO 2 and visible-light-driven Au surface plasmons. The findings offer a new approach to N 2 photofixation under ambient conditions (that is, room temperature and atmospheric pressure). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Identification of combustion intermediates in low-pressure premixed pyridine/oxygen/argon flames.

    Science.gov (United States)

    Tian, Zhenyu; Li, Yuyang; Zhang, Taichang; Zhu, Aiguo; Qi, Fei

    2008-12-25

    Combustion intermediates of two low-pressure premixed pyridine/oxygen flames with respective equivalence ratios of 0.56 (C/O/N = 1:4.83:0.20) and 2.10 (C/O/N = 1:1.29:0.20) have been identified with tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry techniques. About 80 intermediates in the rich flame and 60 intermediates in the lean flame, including nitrogenous, oxygenated, and hydrocarbon intermediates, have been identified by measurements of photoionization mass spectra and photoionization efficiency spectra. Some radicals and new nitrogenous intermediates are identified in the present work. The experimental results are useful for studying the conversion of volatile nitrogen compounds and understanding the formation mechanism of NO(x) in flames of nitrogenous fuels.

  2. Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells

    International Nuclear Information System (INIS)

    Ding, M.; Kisin, E.R.; Zhao, J.; Bowman, L.; Lu, Y.; Jiang, B.; Leonard, S.; Vallyathan, V.; Castranova, V.; Murray, A.R.; Fadeel, B.; Shvedova, A.A.

    2009-01-01

    Hard metal or cemented carbide consists of a mixture of tungsten carbide (WC) (85%) and metallic cobalt (Co) (5-15%). WC-Co is considered to be potentially carcinogenic to humans. However, no comparison of the adverse effects of nano-sized WC-Co particles is available to date. In the present study, we compared the ability of nano- and fine-sized WC-Co particles to form free radicals and propensity to activate the transcription factors, AP-1 and NF-κB, along with stimulation of mitogen-activated protein kinase (MAPK) signaling pathways in a mouse epidermal cell line (JB6 P + ). Our results demonstrated that nano-WC-Co generated a higher level of hydroxyl radicals, induced greater oxidative stress, as evidenced by a decrease of GSH levels, and caused faster JB6 P + cell growth/proliferation than observed after exposure of cells to fine WC-Co. In addition, nano-WC-Co activated AP-1 and NF-κB more efficiently in JB6 +/+ cells as compared to fine WC-Co. Experiments using AP-1-luciferase reporter transgenic mice confirmed the activation of AP-1 by nano-WC-Co. Nano- and fine-sized WC-Co particles also stimulated MAPKs, including ERKs, p38, and JNKs with significantly higher potency of nano-WC-Co. Finally, co-incubation of the JB6 +/+ cells with N-acetyl-cysteine decreased AP-1 activation and phosphorylation of ERKs, p38 kinase, and JNKs, thus suggesting that oxidative stress is involved in WC-Co-induced toxicity and AP-1 activation.

  3. Intramolecular transformation of thiyl radicals to α-aminoalkyl radicals: 'ab initio' calculations on homocystein

    International Nuclear Information System (INIS)

    Chhun, S.; Berges, J.; Bleton, V.; Abedinzadeh, Z.

    2000-01-01

    One-electron oxidation of thiols by oxidizing radicals leads to the formation of thiyl radical and carbon-centered radicals. It has been shown experimentally that in the absence of oxygen, the thiyl radicals derived from certain thiols of biological interest such as glutathion, cysteine and homocysteine decay rapidly by intramolecular rearrangement reactions into the carbon-centered radical. In the present work we have investigated theoretically the structure and the stability of thiyl and carbon-centered radicals of homocysteine in order to check the possibility of this rearrangement. (author)

  4. Formation of nitrous oxide in a gradient of oxygenation and nitrogen loading rate during denitrification of nitrite and nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Gong, You-Kui; Peng, Yong-Zhen [School of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China); Yang, Qing, E-mail: gykren@163.com [School of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China); Wu, Wei-Min [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 (China); Wang, Shu-Ying [School of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The correlation of DO to N{sub 2}O emission under denitrification via nitrite was confirmed. Black-Right-Pointing-Pointer The higher nitrite ratio in NO{sub x} (nitrite and nitrate) caused the more N{sub 2}O emission. Black-Right-Pointing-Pointer Reactor feed mode and nitrite loading rate had significant impact on N{sub 2}O emission which was related to nitrite level. - Abstract: Nitrous oxide (N{sub 2}O) emission has been observed during denitrification of nitrate via nitrite as intermediate. With a laboratory-scale reactor (2.4 L), the N{sub 2}O emission was characterized under a gradient of DO concentration from 0 to 0.7 mg/L, different ratio of nitrite versus nitrate and different nitrite feed mode. The N{sub 2}O emission was influenced by the level of dissolved oxygen (DO) and nitrite accumulation. The higher DO level and the higher ratio of nitrite versus nitrate resulted in the higher N{sub 2}O emission. Using nitrite as sole electron acceptor at the same loading rate, the sequence of N{sub 2}O emission with three different feed modes was: pulse > step-wise > continuous feed. The N{sub 2}O emitted in pulse feed reactors was 3.1-4.2 and 8.2-11.7 folds of that in the step-wise feed and continuous feed reactors, respectively. With continuous feed mode, the impact of DO concentration on the mass of N{sub 2}O emitted was limited while the higher N{sub 2}O emission occurred at the higher nitrite loading rate.

  5. Regional gradients in surface sediment nitrogen isotopes as a reflection of nutrient cycling and oxygen deficiency in upwelling areas off Peru and Namibia (Invited)

    Science.gov (United States)

    Schneider, R. R.; Mollier-Vogel, E.; Martinez, P.

    2010-12-01

    The sedimentary d15N signal is commonly considered as a reflection of the marine nutrient cycling and related biochemical processes in the overlying water masses. In the modern ocean all processes together result in a mean d15N value of about 5 to 6 per mill for dissolved nitrate. Deviations from this value are considered as a product mainly of nitrogen fixation and nitrate supply causing lower values, while nitrate utilization and denitrification, as well as organic matter degradation tend to shift the signal to higher values. As denitrification is only occurring under conditions of strong oxygen limitation in the water column outstandingly high d15N values in sediment records are commonly taken as indirect evidence for strong oxygen minimum conditions in the past. By comparing surface sediment values from coastal upwelling areas off Namibia and Peru, we test whether such an approach is applicable. Only the Peruvian system is characterized by a pronounced oxygen minimum zone (OMZ) that extends across the shelf and slope far into the Eastern Equatorial Pacific. For comparison we present new results for the Peruvian margin between 2°N and 20°S within and below the Peruvian OMZ in combination with a similar data set from the Namibian margin with an OMZ restricted to the inner shelf. The Peruvian sediment data is furthermore compared to d15N of dissolved nitrate in the overlying water column to better understand how regional oceanography effects the water column d15N and thus the sediment surface signal. Productivity and nitrate uptake is maximal at the position of local and perennial upwelling cells in both systems. However, due to continuous nutrient supply into the upwelling systems sedimentary d15N values on the outer shelves and slopes reveal an increase of only about 2 to 3 per mill over the mean ocean value. Only where extreme oxygen deficiency occurs, as off Peru between 10 and 20 S, the sedimentary d15N signal reaches very high values above 10 per mill

  6. Radical Evil

    Directory of Open Access Journals (Sweden)

    Carlos Manrique

    2007-12-01

    Full Text Available There is an aporia in Kant’s analysis of evil: he defines radical evilas an invisible disposition of the will, but he also demands an inferential connection between visible evil actions and this invisible disposition. This inference,however, undermines the radical invisibility of radical evil according to Kant’s own definition of the latter. Noting how this invisibility of moral worth is a distinctive feature of Kant’s approach to the moral problem, the paper then asks why, in the Groundwork, he nonetheless forecloses a question about evil that seems to be consistent with this approach. It is argued that to account for this aporia and this foreclosure, one has to interrogate the way in which the category of religion orients Kant’s incipient philosophy of history in Die Religion.

  7. Allowed energetic pathways for the three-body recombination reaction of nitrogen monoxide with the hydroxyl radical and their potential atmospheric implications

    Directory of Open Access Journals (Sweden)

    Luca D´Ottone

    2010-12-01

    Full Text Available The OH initiated oxidation of nitric oxide (NO is an important atmospheric reaction being, during the day time, the main channel that leads to the formation of HONO a reservoir species for both OH and odd nitrogen. This work reports ab initio study of the Potential Energy Surface (PES of NO + OH using density functional theory calculations conducted at the B3LYP level of theory with a 6-311g (d,p basis set. We confirmed experimental observations pointing out that the main channel for this reaction is the formation the HONO. From the addition of OH to NO both cis and trans isomers of HONO were found to be the formed as stable intermediate, both having a negative enthalpy of formation relative to the reactants, the cis isomer being more stable than the trans one. The ab initio calculations were extended to include the hydrogen extraction mechanism with its respective transition state to investigate the potential existence of a reaction channel leading to the formation of NO2 + H, that was found not to be of significant interest.

  8. Pathology of oxygen

    National Research Council Canada - National Science Library

    Autor, Anne Pomeroy

    1982-01-01

    .... The book is divided into three general sections. The first and smallest section of the book explains the molecular and biochemical basis of our current understanding of oxygen radical toxicity as well as the means by which normal aerobic cells...

  9. Dual (oxygen and nitrogen) isotopic characterization of the museum archived nitrates from the United States of America, South Africa and Australia.

    Science.gov (United States)

    Mizota, Chitoshi; Hosono, Takahiro; Matsunaga, Midori; Okumura, Azusa

    2018-06-01

    Dual (oxygen and nitrogen) isotopic composition of the museum archived nitrates from the United States of America, South Africa and Australia was studied. The analyzed specimens were collected in middle 19th to early 20th centuries, and represent world-wide acquisition of the Smithsonian Institution Natural Museum of Natural History (Washington, D. C., USA) and the Natural History Museum (London, UK). The samples consist of transparent to semi-transparent aggregates of minute nitrate, euhedral crystallites which imply precipitation from percolating fluids under ample space and dry regimes. The major nitrate chemistry is saltpetre (KNO 3 ) with minor nitratine (NaNO 3 ). A binary plot of δ 15 N vs. δ 18 O of almost all nitrates indicates a trend, reflecting microbial origin through nitrification of ammonium. The diagram excludes the contribution of meteoric origin formed by mass-independent, photochemical reaction of NO with ozone in stratosphere. Calculated paleo-ambient fluid compositions responsible for microbial nitrification imply extreme evaporative concentration of relevant fluids under dry climatic regimes in the Northern Cape Province (South Africa) and in the Northern Territory (central Australia), and even throughout the United States of America. The dual isotopic characterization provides direct evidence to the origin of the museum archived nitrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Unexploded Ordnance identification—A gamma-ray spectral analysis method for Carbon, Nitrogen and Oxygen signals following tagged neutron interrogation

    International Nuclear Information System (INIS)

    Mitra, S.; Dioszegi, I.

    2012-01-01

    A novel gamma-ray spectral analysis method has been demonstrated to optimally extract the signals of the signature elements of explosives, carbon (C), nitrogen (N) and oxygen (O) from 57–155 mm projectiles following tagged neutron interrogation with 14 MeV neutrons. The method was implemented on Monte Carlo simulated, synthetic spectra of Unexploded Ordnance (UXO) that contained high explosive fillers (Composition B, TNT or Explosive D) within steel casings of appropriate thicknesses. The analysis technique defined three broad regions-of-interest (ROI) between 4–7.5 MeV of a spectrum and from a system of three equations for the three unknowns namely C, N and O, the maximum counts from each of these elements were extracted. Unlike conventional spectral analysis techniques, the present method included the Compton continuum under a spectrum. For a neutron output of ∼2×10 7 ns −1 and using four 12.7 cm diameter×12.7 cm NaI(Tl) detectors, the C/N and C/O gamma-ray counts ratios of the explosive fillers were vastly different from that of an inert substance like sand. Conversion of the counts ratios to elemental ratios could further discriminate the different types of explosive fillers. The interrogation time was kept at ten minutes for each projectile.

  11. Enhanced removal of chemical oxygen demand, nitrogen and phosphorus using the ameliorative anoxic/anaerobic/oxic process and micro-electrolysis.

    Science.gov (United States)

    Bao, K Q; Gao, J Q; Wang, Z B; Zhang, R Q; Zhang, Z Y; Sugiura, N

    2012-01-01

    Synthetic wastewater was treated using a novel system integrating the reversed anoxic/anaerobic/oxic (RAAO) process, a micro-electrolysis (ME) bed and complex biological media. The system showed superior chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal rates. Performance of the system was optimised by considering the influences of three major controlling factors, namely, hydraulic retention time (HRT), organic loading rate (OLR) and mixed liquor recirculation (MLR). TP removal efficiencies were 69, 87, 87 and 83% under the HRTs of 4, 8, 12 and 16 h. In contrast, HRT had negligible effects on the COD and TN removal efficiencies. COD, TN and TP removal efficiencies from synthetic wastewater were 95, 63 and 87%, respectively, at an OLR of 1.9 g/(L·d). The concentrations of COD, TN and TP in the effluent were less than 50, 15 and 1 mg/L, respectively, at the controlled MLR range of 75-100%. In this system, organics, TN and TP were primarily removed from anoxic tank regardless of the operational conditions.

  12. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β

    Energy Technology Data Exchange (ETDEWEB)

    Rastad, Jessica L. [Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Green, William R., E-mail: William.R.Green@dartmouth.edu [Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States)

    2016-12-15

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.

  13. Nitrogen and oxygen co-doped carbon nanofibers with rich sub-nanoscale pores as self-supported electrode material of high-performance supercapacitors

    International Nuclear Information System (INIS)

    Li, Qun; Xie, Wenhe; Liu, Dequan; Wang, Qi; He, Deyan

    2016-01-01

    Self-supported porous carbon nanofibers (CNFs) network has been prepared by electrospinning technology assisted with template method. The as-prepared material is rich in sub-nanoscale pores and nitrogen and oxygen functional groups, which can serve as a fast conductive network with abundant electrochemical active sites and greatly facilitates the transport of electrons and ions. When the porous CNFs network is used as an electrode for supercapacitor in a three electrode system, it displays a high capacitance of 233.1 F/g at 0.2 A/g, and a capacitance of 130.2 F/g even at 14 A/g. It maintains a capacitance of 154.0 F/g with 90.17% retention after 4000 cycles at 2 A/g. Moreover, the assembled symmetric supercapacitor not only exhibits excellent rate capability and cycle performance, but also delivers an energy density of 4.17 Wh/kg and a power density of 2500 W/kg. The experimental results demonstrate that the prepared N, O co-doped carbon nanofibers with rich sub-nanoscale pores are a promising electrode material for high-performance supercapacitors.

  14. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part B--Nitrogen-, Sulfur-, and Oxygen-Containing Heterocyclic Aromatic Compounds.

    Science.gov (United States)

    Oberoi, Akashdeep Singh; Philip, Ligy; Bhallamudi, S Murty

    2015-07-01

    Present study focused on the biodegradation of various heterocyclic nitrogen, sulfur, and oxygen (NSO) compounds using naphthalene-enriched culture. Target compounds in the study were pyridine, quinoline, benzothiophene, and benzofuran. Screening studies were carried out using different microbial consortia enriched with specific polycyclic aromatic hydrocarbon (PAH) and NSO compounds. Among different microbial consortia, naphthalene-enriched culture was the most efficient consortium based on high substrate degradation rate. Substrate degradation rate with naphthalene-enriched culture followed the order pyridine > quinoline > benzofuran > benzothiophene. Benzothiophene and benzofuran were found to be highly recalcitrant pollutants. Benzothiophene could not be biodegraded when concentration was above 50 mg/l. It was observed that 2-(1H)-quinolinone, benzothiophene-2-one, and benzofuran-2,3-dione were formed as metabolic intermediates during biodegradation of quinoline, benzothiophene, and benzofuran, respectively. Quinoline-N and pyridine-N were transformed into free ammonium ions during the biodegradation process. Biodegradation pathways for various NSO compounds are proposed. Monod inhibition model was able to simulate single substrate biodegradation kinetics satisfactorily. Benzothiophene and benzofuran biodegradation kinetics, in presence of acetone, was simulated using a generalized multi-substrate model.

  15. GALAXY DOWNSIZING AND THE REDSHIFT EVOLUTION OF OXYGEN AND NITROGEN ABUNDANCES: ORIGIN OF THE SCATTER IN THE N/H-O/H DIAGRAM

    International Nuclear Information System (INIS)

    Pilyugin, Leonid S.; Thuan, Trinh X.

    2011-01-01

    The oxygen and nitrogen abundance evolutions with redshift of emission-line galaxies in the Sloan Digital Sky Survey are considered for four intervals of galaxy stellar masses, ranging from 10 11.3 M sun to 10 10.2 M sun . We have measured their line fluxes and derived the O and N abundances using recent calibrations. The evolution of O and N abundances with redshift clearly shows the galaxy downsizing effect, where enrichment (and hence star formation) ceases in high-mass galaxies at earlier times and shifts to lower-mass galaxies at later epochs. The origin of the scatter in the N/H-O/H diagram has been examined. The most massive galaxies, where O and N enrichment and star formation have already stopped, occupy a narrow band in the N/H-O/H diagram, defining an upper envelope. The less massive galaxies which are still undergoing star formation at the current epoch are shifted downward, toward lower N/H values in the N/H-O/H diagram. This downward shift is caused by the time delay between N and O enrichment. This time delay together with the different star formation histories in galaxies is responsible for the large scatter in the N/H-O/H diagram.

  16. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance

    Science.gov (United States)

    Yang, Liming; Fountain, Jake C.; Wang, Hui; Ni, Xinzhi; Ji, Pingsheng; Lee, Robert D.; Kemerait, Robert C.; Scully, Brian T.; Guo, Baozhu

    2015-01-01

    Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS) and reactive nitrogen species (RNS) than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding. PMID:26492235

  17. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Liming Yang

    2015-10-01

    Full Text Available Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS and reactive nitrogen species (RNS than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding.

  18. Effects of organic additives with oxygen- and nitrogen-containing functional groups on the negative electrolyte of vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu, Jianlei; Liu, Suqin; He, Zhangxing; Han, Huiguo; Chen, Yong

    2014-01-01

    DL-malic acid and L-aspartic acid are investigated as additives for the negative electrolyte of vanadium redox flow battery (VFRB) to improve its stability and electrochemical performance. The stability experiments indicate that the addition of L-aspartic acid into the 2 M V(III) electrolyte can stabilize the electrolyte by delaying its precipitation. The results of cyclic voltammetry and electrochemical impedance spectroscopy show that the V(III) electrolyte with both additives demonstrates enhanced electrochemical activity and reversibility. The introduction of DL-malic acid and L-aspartic acid can increase the diffusion coefficient of V(III) species and facilitate the charge transfer of V(III)/V(II) redox reaction. Between the two additives, the effect of L-aspartic acid is more remarkable. Moreover, the VFRB cell employing negative electrolyte with L-aspartic acid exhibits excellent cycling stability and achieves higher average energy efficiency (76.4%) compared to the pristine cell (73.8%). The comparison results with the cell employing L-aspartic acid pre-treated electrode confirm that L-aspartic acid in the electrolyte can modify the electrode by constantly providing oxygen- and nitrogen-containing groups, leading to the enhancement of electrochemical performance

  19. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β

    International Nuclear Information System (INIS)

    Rastad, Jessica L.; Green, William R.

    2016-01-01

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.

  20. Zinc Bioavailability from Phytate-Rich Foods and Zinc Supplements. Modeling the Effects of Food Components with Oxygen, Nitrogen, and Sulfur Donor Ligands.

    Science.gov (United States)

    Tang, Ning; Skibsted, Leif H

    2017-10-04

    Aqueous solubility of zinc phytate (K sp = (2.6 ± 0.2) × 10 -47 mol 7 /L 7 ), essential for zinc bioavailability from plant foods, was found to decrease with increasing temperature corresponding to ΔH dis of -301 ± 22 kJ/mol and ΔS dis of -1901 ± 72 J/(mol K). Binding of zinc to phytate was found to be exothermic for the stronger binding site and endothermic for the weaker binding site. The solubility of the slightly soluble zinc citrate and insoluble zinc phytate was found to be considerably enhanced by the food components with oxygen donor, nitrogen donor, and sulfur donor ligands. The driving force for the enhanced solubility is mainly due to the complex formation between zinc and the investigated food components rather than ligand exchange and ternary complex formation as revealed by quantum mechanical calculations and isothermal titration calorimetry. Histidine and citrate are promising ligands for improving zinc absorption from phytate-rich foods.

  1. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals

    OpenAIRE

    Ramana, Chilakamarti V.; Boldogh, Istvan; Izumi, Tadahide; Mitra, Sankar

    1998-01-01

    Apurinic/apyrimidinic (AP) endonuclease (APE; EC 4.2.99.18) plays a central role in repair of DNA damage due to reactive oxygen species (ROS) because its DNA 3′-phosphoesterase activity removes 3′ blocking groups in DNA that are generated by DNA glycosylase/AP-lyases during removal of oxidized bases and by direct ROS reaction with DNA. The major human APE (APE-1) gene is activated selectively by sublethal levels of a variety of ROS and ROS generators, including ionizing radiation, but not by ...

  2. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.

    Science.gov (United States)

    Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun

    2016-12-01

    Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.

  3. Calcification rate and the stable carbon, oxygen, and nitrogen isotopes in the skeleton, host tissue, and zooxanthellae of bleached and recovering Hawaiian corals

    Science.gov (United States)

    Rodrigues, Lisa J.; Grottoli, Andréa G.

    2006-06-01

    We tested the effectiveness of stable isotopes as recorders of physiological changes that occur during coral bleaching and recovery. Montipora capitata and Porites compressa fragments were bleached in outdoor tanks with seawater temperature raised to 30 °C (treatment corals) for one month. Additional fragments were maintained at 27 °C in separate tanks (control corals). After one month, (0 months recovery), buoyant weight was measured and a subset of fragments was frozen. Remaining fragments were returned to the reef for recovery. After 1.5, 4, and 8 months, fragments were collected, measured for buoyant weight, and frozen. Fragments were analyzed for stable carbon and oxygen isotopic compositions of the skeleton (δ 13C s; δ 18O s) and nitrogen and carbon isotopic compositions of the host tissue (δ 15N h; δ 13C h) and zooxanthellae (δ 15N z; δ 13C z). δ 13C s decreased immediately after bleaching in M. capitata, but not in P. compressa. δ 18O s of both species failed to record the warming event. During the remaining months of recovery, δ 13C s and δ 18O s were more enriched in treatment than control corals due to decreases in calcification and metabolic fractionation during that time. Increased δ 15N h of treatment P. compressa may be due to expelled zooxanthellae during bleaching and recovery. Increased δ 15N z at 1.5 months in treatment fragments of both species reflects the increased incorporation of dissolved inorganic nitrogen to facilitate mitotic cell division and/or chl a/cell recovery. Changes in δ 13C h and δ 13C z at 1.5 months in treatment M. capitata indicated a large increase in heterotrophically acquired carbon relative to photosynthetically fixed carbon. We experimentally show that isotopes in coral skeleton, host tissue and zooxanthellae can be used to verify physiological changes during bleaching and recovery, but their use as a proxy for past bleaching events in the skeletal record is limited.

  4. Development of a new free radical absorption capacity assay method for antioxidants: aroxyl radical absorption capacity (ARAC).

    Science.gov (United States)

    Nagaoka, Shin-ichi; Nagai, Kanae; Fujii, Yuko; Ouchi, Aya; Mukai, Kazuo

    2013-10-23

    A new free radical absorption capacity assay method is proposed with use of an aroxyl radical (2,6-di-tert-butyl-4-(4'-methoxyphenyl)phenoxyl radical) and stopped-flow spectroscopy and is named the aroxyl radical absorption capacity (ARAC) assay method. The free radical absorption capacity (ARAC value) of each tocopherol was determined through measurement of the radical-scavenging rate constant in ethanol. The ARAC value could also be evaluated through measurement of the half-life of the aroxyl radical during the scavenging reaction. For the estimation of the free radical absorption capacity, the aroxyl radical was more suitable than the DPPH radical, galvinoxyl, and p-nitrophenyl nitronyl nitroxide. The ARAC value in tocopherols showed the same tendency as the free radical absorption capacities reported previously, and the tendency was independent of an oxygen radical participating in the scavenging reaction and of a medium surrounding the tocopherol and oxygen radical. The ARAC value can be directly connected to the free radical-scavenging rate constant, and the ARAC method has the advantage of treating a stable and isolable radical (aroxyl radical) in a user-friendly organic solvent (ethanol). The ARAC method was also successfully applied to a palm oil extract. Accordingly, the ARAC method would be useful in free radical absorption capacity assay of antioxidative reagents and foods.

  5. Study on combustion characteristics of dimethyl ether under the moderate or intense low-oxygen dilution condition

    International Nuclear Information System (INIS)

    Kang, Yinhu; Lu, Tianfeng; Lu, Xiaofeng; Wang, Quanhai; Huang, Xiaomei; Peng, Shini; Yang, Dong; Ji, Xuanyu; Song, Yangfan

    2016-01-01

    Highlights: • Oxygen content in the flame base increased due to the prolonged ignition delay time. • Flow field in the furnace affected thermal/chemical structure of the flame partially. • Preheating and dilution facilitated moderate or intense low-oxygen dilution regime. • Dominant pollutant formation ways of dimethyl ether in hot dilution were clarified. • Preheating and dilution reduced nitrogen oxide emission of dimethyl ether. - Abstract: Experiments and numerical simulations were conducted in this paper to study the combustion behavior of dimethyl ether in the moderate or intense low-oxygen dilution regime, in terms of thermal/chemical structure and chemical kinetics associated with nitrogen oxide and carbon monoxide emissions. Several co-flow temperatures and oxygen concentrations were involved in the experiments to investigate their impacts on the flame behavior systematically. The results show that in the moderate or intense low-oxygen dilution regime, oxygen concentrations in the flame base slightly increased because of the prolonged ignition delay time of the reactant mixture due to oxidizer dilution, which changed the local combustion process and composition considerably. The oxidation rates of hydrocarbons were significantly depressed in the moderate or intense low-oxygen dilution regime, such that a fraction of unburned hydrocarbons at the furnace outlet were recirculated into the outer annulus of the furnace, which changed the local radial profiles of carbon monoxide, methane, and hydrogen partially. Moreover, with the increment in co-flow temperature or oxygen mole fraction, flame temperature, and hydroxyl radical, carbon monoxide, and hydrogen mole fractions across the reaction zone increased gradually. For the dimethyl ether-moderate or intense low-oxygen dilution flame, temperature homogeneity was improved at higher co-flow temperature or lower oxygen mole fraction. The carbon monoxide emission depended on the levels of temperature and

  6. The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions

    Directory of Open Access Journals (Sweden)

    Hendrik Gremmels

    2017-01-01

    Full Text Available Background. Endothelial colony forming cells (ECFCs have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS. The transcription factor Nrf2 regulates the expression of antioxidant enzymes in response to ROS. Methods. Stable knockdown of Nrf2 and Keap1 was achieved by transduction with lentiviral shRNAs; activation of Nrf2 was induced by incubation with sulforaphane (SFN. Expression of Nrf2 target genes was assessed by qPCR, oxidative stress was assessed using CM-DCFDA, and angiogenesis was quantified by scratch-wound and tubule-formation assays. Results. Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. Conclusion. The results of this study indicate that Nrf2 plays an important role in the angiogenic capacity of ECFCs, particularly under conditions of increased oxidative stress. Pretreatment of ECFCs with SFN prior to implantation may be a protective strategy for tissue-engineered constructs or cell therapies.

  7. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals

    Science.gov (United States)

    Ramana, Chilakamarti V.; Boldogh, Istvan; Izumi, Tadahide; Mitra, Sankar

    1998-01-01

    Apurinic/apyrimidinic (AP) endonuclease (APE; EC 4.2.99.18) plays a central role in repair of DNA damage due to reactive oxygen species (ROS) because its DNA 3′-phosphoesterase activity removes 3′ blocking groups in DNA that are generated by DNA glycosylase/AP-lyases during removal of oxidized bases and by direct ROS reaction with DNA. The major human APE (APE-1) gene is activated selectively by sublethal levels of a variety of ROS and ROS generators, including ionizing radiation, but not by other genotoxicants—e.g., UV light and alkylating agents. Increased expression of APE mRNA and protein was observed both in the HeLa S3 tumor line and in WI 38 primary fibroblasts, and it was accompanied by translocation of the endonuclease to the nucleus. ROS-treated cells showed a significant increase in resistance to the cytotoxicity of such ROS generators as H2O2 and bleomycin, but not to UV light. This “adaptive response” appears to result from enhanced repair of cytotoxic DNA lesions due to an increased activity of APE-1, which may be limiting in the base excision repair process for ROS-induced toxic lesions. PMID:9560228

  8. Removal of oxygen free-radical-induced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells

    Science.gov (United States)

    Kuraoka, Isao; Bender, Christina; Romieu, Anthony; Cadet, Jean; Wood, Richard D.; Lindahl, Tomas

    2000-01-01

    Exposure of cellular DNA to reactive oxygen species generates several classes of base lesions, many of which are removed by the base excision-repair pathway. However, the lesions include purine cyclodeoxynucleoside formation by intramolecular crosslinking between the C-8 position of adenine or guanine and the 5′ position of 2-deoxyribose. This distorting form of DNA damage, in which the purine is attached by two covalent bonds to the sugar-phosphate backbone, occurs as distinct diastereoisomers. It was observed here that both diastereoisomers block primer extension by mammalian and microbial replicative DNA polymerases, using DNA with a site-specific purine cyclodeoxynucleoside residue as template, and consequently appear to be cytotoxic lesions. Plasmid DNA containing either the 5′R or 5′S form of 5′,8-cyclo-2-deoxyadenosine was a substrate for the human nucleotide excision-repair enzyme complex. The R diastereoisomer was more efficiently repaired than the S isomer. No correction of the lesion by direct damage reversal or base excision repair was detected. Dual incision around the lesion depended on the core nucleotide excision-repair protein XPA. In contrast to several other types of oxidative DNA damage, purine cyclodeoxynucleosides are chemically stable and would be expected to accumulate at a slow rate over many years in the DNA of nonregenerating cells from xeroderma pigmentosum patients. High levels of this form of DNA damage might explain the progressive neurodegeneration seen in XPA individuals. PMID:10759556

  9. Chemical repair of trypsin-histidinyl radical

    International Nuclear Information System (INIS)

    Jovanovic, S.V.; Ruvarac, I.; Jankovic, I.; Josimovic, L.

    1991-01-01

    Oxyl radicals, such as hydroxyl, alkoxyl and peroxyl, react with biomolecules to produce bioradicals. Unless chemically repaired by suitable antioxidants, these bioradicals form stable products. This leads to loss of biological function of parent biomolecules with deleterious biological results, such as mutagenesis and cancer. Consequently, the understanding of the mechanisms of oxyl radical damage to biomolecules and chemical repair of such damage is crucial for the development of strategies for anticarcinogenesis and radioprotection. In this study the chemical repair of the histidinyl radical generated upon the trichloromethylperoxyl radical reaction with trypsin vas investigated by gamma radiolysis. The trypsin histidinyl radical is a resonance-stabilized heterocyclic free radical which was found to be unreactive with oxygen. The efficacy of the chemical repair of the trypsin-histidinyl radical by endogenous antioxidants which are electron donors (e.g. 5-hydroxytryptophan, uric acid) is compared to that of antioxidants which are H-atom donors (e. g. glutathione). 9 refs., 2 figs., 1 tab

  10. Chemical properties and reactive oxygen and nitrogen species quenching activities of dry sugar-amino acid maillard reaction mixtures exposed to baking temperatures.

    Science.gov (United States)

    Chen, Xiu-Min; Liang, Ningjian; Kitts, David D

    2015-10-01

    Maillard reaction products (MRPs) derived from 10 different, dry sugar-amino acid reaction model systems were examined for changes in color index (E), sugar loss, and formation of α-dicarbonyl compounds; the changes were correlated with relative activities to quench both reactive oxygen (ROS) and reactive nitrogen (RNS) species. Reducing sugars, xylose, ribose, fructose, glucose, and non-reducing sucrose were reacted with glycine (Xyl-Gly, Rib-Gly, Fru-Gly, Glc-Gly, and Suc-Gly), or lysine (Xyl-Lys, Rib-Lys, Fru-Lys, Glc-Lys, and Suc-Lys), respectively, at temperatures of 150°C and 180°C for time periods ranging from 5 to 60min. ROS quenching capacity was negatively correlated with color index (E) (r=-0.604, P<0.001), and positively correlated with sugar loss (r=0.567, P<0.001). MRPs also exhibited activity to quench RNS as assessed by nitric oxide (NO) inhibition in differentiated Caco-2 cells that were induced with interferon-γ (IFN-γ) and phorbol ester (PMA) cocktail. We also showed a correlation between RNS and color index, sugar loss, and ROS quenching activities for MR mixtures that were heated for a short time (e.g. 10min) at 150°C. MRP quenching of ROS was largely influenced by sugar type, whereas, RNS quenching was dependent more so on the interaction between reactants and reaction conditions used to generate MRPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The effect of nitrogen and oxygen plasma on the wear properties and adhesion strength of the diamond-like carbon film coated on PTFE

    International Nuclear Information System (INIS)

    Ozeki, K.; Hirakuri, K.K.

    2008-01-01

    Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using a radiofrequency plasma chemical vapour deposition method. Prior to DLC coating, the PTFE substrates were modified with O 2 and N 2 plasma to enhance the adhesion strength of the DLC film to the substrate. The effect of the plasma pre-treatment on the chemical composition and the surface energy of the plasma pre-treated PTFE surface was investigated by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurement, respectively. A pull-out test and a ball-on-disc test were carried out to evaluate the adhesion strength and the wear properties of the DLC-coated PTFE. In the N 2 plasma pre-treatment, the XPS result indicated that defluorination and the nitrogen grafting occurred on the plasma pre-treated PTFE surface, and the water contact angle decreased with increasing the plasma pre-treatment time. In the O 2 plasma pre-treatment, no grafting of the oxygen occurred, and the water contact angle slightly increased with the treatment time. In the pull-out test, the adhesion strength of the DLC film to the PTFE substrate was improved with the plasma pre-treatment to the PTFE substrate, and N 2 plasma pre-treatment was more effective than the O 2 plasma pre-treatment. In the ball-on-disc test, the DLC film with the N 2 plasma pre-treatment showed good wear resistance, compared with that with O 2 plasma pre-treatment

  12. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

    International Nuclear Information System (INIS)

    Graves, David B

    2012-01-01

    Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well. (topical review)

  13. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

    Science.gov (United States)

    Graves, David B.

    2012-07-01

    Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well.

  14. Synthesis, Properties, Calculations and Applications of Small Molecular Host Materials Containing Oxadiazole Units with Different Nitrogen and Oxygen Atom Orientations for Solution-Processable Blue Phosphorescent OLEDs

    Science.gov (United States)

    Ye, Hua; Wu, Hongyu; Chen, Liangyuan; Ma, Songhua; Zhou, Kaifeng; Yan, Guobing; Shen, Jiazhong; Chen, Dongcheng; Su, Shi-Jian

    2018-03-01

    A series of new small molecules based on symmetric electron-acceptor of 1,3,4-oxadiazole moiety or its asymmetric isomer of 1,2,4-oxadiazole unit were successfully synthesized and applied to solution-processable blue phosphorescent organic light-emitting diodes for the first time, and their thermal, photophysical, electrochemical properties and density functional theory calculations were studied thoroughly. Due to the high triplet energy levels ( E T, 2.82-2.85 eV), the energy from phosphorescent emitter of iridium(III) bis[(4,6-difluorophenyl)-pyridinate- N,C2']picolinate (FIrpic) transfer to the host molecules could be effectively suppressed and thus assuring the emission of devices was all from FIrpic. In comparison with the para-mode conjugation in substitution of five-membered 1,3,4-oxadiazole in 134OXD, the meta-linkages of 1,2,4-isomer appending with two phenyl rings cause the worse conjugation degree and the electron delocalization as well as the lower electron-withdrawing ability for the other 1,2,4-oxadiazole-based materials. Noting that the solution-processed device based on 134OXD containing 1,3,4-oxadiazole units without extra vacuum thermal-deposited hole/exciton-blocking layer and electron-transporting layer showed the highest maximum current efficiency (CEmax) of 8.75 cd/A due to the excellent charge transporting ability of 134OXD, which far surpassed the similar devices based on other host materials containing 1,2,4-oxadiazole units. Moreover, the device based on 134OXD presented small efficiency roll-off with current efficiency (CE) of 6.26 cd/A at high brightness up to 100 cd/m2. This work demonstrates different nitrogen and oxygen atom orientations of the oxadiazole-based host materials produce major impact on the optoelectronic characteristics of the solution-processable devices.

  15. Comparative analysis of QSAR models for predicting pK(a) of organic oxygen acids and nitrogen bases from molecular structure.

    Science.gov (United States)

    Yu, Haiying; Kühne, Ralph; Ebert, Ralf-Uwe; Schüürmann, Gerrit

    2010-11-22

    For 1143 organic compounds comprising 580 oxygen acids and 563 nitrogen bases that cover more than 17 orders of experimental pK(a) (from -5.00 to 12.23), the pK(a) prediction performances of ACD, SPARC, and two calibrations of a semiempirical quantum chemical (QC) AM1 approach have been analyzed. The overall root-mean-square errors (rms) for the acids are 0.41, 0.58 (0.42 without ortho-substituted phenols with intramolecular H-bonding), and 0.55 and for the bases are 0.65, 0.70, 1.17, and 1.27 for ACD, SPARC, and both QC methods, respectively. Method-specific performances are discussed in detail for six acid subsets (phenols and aromatic and aliphatic carboxylic acids with different substitution patterns) and nine base subsets (anilines, primary, secondary and tertiary amines, meta/para-substituted and ortho-substituted pyridines, pyrimidines, imidazoles, and quinolines). The results demonstrate an overall better performance for acids than for bases but also a substantial variation across subsets. For the overall best-performing ACD, rms ranges from 0.12 to 1.11 and 0.40 to 1.21 pK(a) units for the acid and base subsets, respectively. With regard to the squared correlation coefficient r², the results are 0.86 to 0.96 (acids) and 0.79 to 0.95 (bases) for ACD, 0.77 to 0.95 (acids) and 0.85 to 0.97 (bases) for SPARC, and 0.64 to 0.87 (acids) and 0.43 to 0.83 (bases) for the QC methods, respectively. Attention is paid to structural and method-specific causes for observed pitfalls. The significant subset dependence of the prediction performances suggests a consensus modeling approach.

  16. Stability and Application of Reactive Nitrogen and Oxygen Species-Induced Hemoglobin Modifications in Dry Blood Spots As Analyzed by Liquid Chromatography Tandem Mass Spectrometry.

    Science.gov (United States)

    Chen, Hauh-Jyun Candy; Fan, Chih-Huang; Yang, Ya-Fen

    2016-12-19

    Dried blood spot (DBS) is an emerging microsampling technique for the bioanalysis of small molecules, including fatty acids, metabolites, drugs, and toxicants. DBS offers many advantages as a sample format including easy sample collection and cheap sample shipment. Hemoglobin adducts have been recognized as a suitable biomarker for monitoring chemical exposure. We previously reported that certain modified peptides in hemoglobin derived from reactive chlorine, nitrogen, and oxygen species are associated with factors including smoking, diabetes mellitus, and aging. However, the stability of these oxidation-induced modifications of hemoglobin remains unknown and whether they can be formed artifactually during storage of DBS. To answer these questions, globin extracted from the DBS cards was analyzed, and the stability of the modifications was evaluated. After storage of the DBS cards at 4 °C or room temperature up to 7 weeks, we isolated globin from a quarter of the spot every week. The extents of 11 sites and types of post-translational modifications (PTMs), including nitration and nitrosylation of tyrosine and oxidation of cysteine and methionine residues, in human hemoglobin were measured in the trypsin digest by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) using selected reaction monitoring. The extents of all these PTMs are stable within 14 days when stored on DBS at room temperature and at 4 °C, while those from direct extraction of fresh blood are stable for at least 8 weeks when stored as an aqueous solution at -20 °C. Extraction of globin from a DBS card is of particular importance for hemolytic blood samples. To our knowledge, this is the first report on the stability of oxidative modifications of hemoglobin on DBSs, which are stable for 14 days under ambient conditions (room temperature, in air). Therefore, it is feasible and convenient to analyze these hemoglobin modifications from DBSs in studies

  17. Pulsed radiation studies of carotenoid radicals and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of {beta}-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar ({approx}1 x 10{sup 7} M{sup -1}s{sup -1}) for {beta}-carotene and zeaxanthin and somewhat lower ({approx}0.5 x 10{sup 7} M{sup -1}s{sup -1}) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for {beta}-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number

  18. Sensitization of microorganisms and enzymes by radiation-induced selective inorganic radical anions

    International Nuclear Information System (INIS)

    Schubert, J.; Stegeman, H.

    1981-01-01

    Bacterial survival and enzymatic inactivation were examined following exposure to radiolytically-generated radical anions, X - 2 , where X=Cl, Br, I or CNS - . Depending on pH, radical anions react selectively or specifically with cysteine, tryptophan, tyrosine and histidine. Consequently, when one or more of these amino acids is crucial for enzymatic activity or bacterial survival and is attacked by a radical anion, a high degree or radiosensitization may be realized. Halide radical anions can form free chlorine, bromine or iodine. However, these bactericidal halogens are destroyed by reaction with the hydrated electron, e - sub(aq), or at pHs>9, as occurs, for example, when a medium saturated with nitrous oxide, N 2 O, and e - sub(aq) scavenger, is replaced by nitrogen or oxygen. Increasing concentration of other e - sub(aq) scavengers, such as phosphate buffer, promotes formation of halogen from halides. The conditions producing formation and elimination of halogens in irradiated media must be appreciated to avoid confusing radiosensitization by X 2 to X - 2 . Radiosensitization by radical anions of several microorganisms: S. faecalis, S. typhimurium, E. coli, and M. radiodurens is described. A crucial amino acid for survival of S. faecalis appears to be tyrosine, while both tyrosine and tryptophan seem essential for recovery of S. typhimurium from effects of ionizing radiation. It is postulated that the radiosensitizing action of radical anions involves inhibition of DNA repair of strand-breaks by depriving the cells of energy. In view of the high OH scavenging power of foods, it is concluded that the radiosensitization of bacteria and enzymes in foods by radical anions, except for special cases, is not practical. Rather, radical anions serve to identify crucial amino acids to radiosensitization mechanisms in model systems, and possibly in radiotherapy. (author)

  19. Radical fashion and radical fashion innovation

    NARCIS (Netherlands)

    Zhang, D.; Benedetto, Di A.C.

    2010-01-01

    This is a study of the related concepts of radical fashion and radical fashion innovation. Radical fashions are defined here as those that may never enter the market at all, and exist primarily on runway shows, in exhibitions and in publicity; by contrast, radical fashion innovations may be very

  20. Linking Seasonal Variations in the Spectral Slope of Chromophoric Dissolved Organic Matter (CDOM) with Apparent Oxygen Utilization and Excess Nitrogen (DINxs) in the North Atlantic Subtropical Gyre

    Science.gov (United States)

    McDonald, N.; Barnes, R.; Nelson, N. B.

    2016-02-01

    The optically active or chromophoric fraction of dissolved organic matter (CDOM) is a topic of much interest to researchers due to its role in many biogeochemical processes in the global oceans. As CDOM effectively regulates the underwater light field, its influences on photosynthesis and primary productivity are significant. Despite recognition of its importance in biogeochemical cycles in natural waters, its chemical composition remains nebulous, due to photochemical processes, as well as spatial and temporal variations in composition. Understanding of CDOM composition and links to ocean processes is especially complex in pelagic, oligotrophic waters such as the North Atlantic Subtropical Gyre. In this region, minimum CDOM concentrations have been observed and it is decoupled from both dissolved organic carbon (DOC) and from net primary production (NPP). As CDOM absorbance has been shown to influence estimates of NPP from remote sensing models in the subtropical gyres, and as it has the potential to serve as an invaluable tracer of ocean DOM cycling, a better understanding of links between the optical properties of CDOM and biogeochemical processes in the subtropical gyres is crucial. In this study, monthly depth profiles of CDOM absorbance (between 1m and 3000m) were measured for a period of five years at the Bermuda Atlantic Timeseries Site (BATS) in the North Atlantic Subtropical Gyre to investigate seasonal variations and periodicity in CDOM optical properties. From this data, the spectral slope ratio (Sr) was calculated according to Helms et. al, 2008. Sr can be a useful tool in eliciting information about molecular weight, diagenetic state and microbial processes affecting CDOM composition, especially when coupled with other diagnostic parameters. In this study multivariate analysis techniques were utilized to examine links between Sr and ancillary parameters including apparent oxygen utilization (AOU) and excess nitrogen (DINxs) both of which can be a

  1. Experiments and theory on pentacene in the thin film phase: structural, electronic, transport properties, and gas response to oxygen, nitrogen, and ambient air

    International Nuclear Information System (INIS)

    Parisse, P.; Picozzi, S.; Passacantando, M.; Ottaviano, L.

    2007-01-01

    We investigated the morphological, structural, electronic, and transport properties of pentacene thin films grown by vacuum thermal evaporation on different inert substrates at room temperature. The results of our atomic force microscopy (AFM), X-ray diffraction and scanning tunnelling microscopy (STM) analysis show a structure in the so called 'thin film phase' with 1-2 μm sized grains. Atomic terraces are clearly evidenced with AFM and give an inter-planar spacing of 1.54 nm corresponding to the (001) distance. The Scanning Tunneling Spectroscopy measurements show an HOMO-LUMO gap of 2.2 eV. After vacuum thermal evaporation on patterned substrates with different inter-electrodes distances, we have performed in situ measurements of the electrical response of such thin films. We found for these films a resistivity of ρ = 4.7 ± 0.2 . 10 4 Ω m, that is an order of magnitude lower than the value reported to date in literature for single crystals of pentacene. This value is not affected by the presence of grain boundaries. The resistivity is further reduced by a factor 8.9 ± 0.7, 14 ± 1, 2.3 ± 0.3 upon exposure to oxygen, nitrogen and ambient air, respectively. In addition density functional theory calculations have been performed to investigate the electronic structure of pentacene in this specific phase, focusing on the effects on the relevant electronic properties of the relative orientation of the molecules within the crystalline unit cell, so far experimentally unknown. Our results show that the energy bandwidth and band-gap are crucially affected by the molecular stacking. Furthermore, by comparing our theoretical spectra with the scanning tunneling spectroscopy (STS) measurements, we propose a molecular arrangement that gives a good agreement with experiments as far as the relevant orbitals are concerned. For this polymorph, we find a HOMO and LUMO bandwidth of ∼ 0.7 eV and ∼ 0.8 eV, respectively, which are significantly larger than those obtained for

  2. Nitrogen and sulfur co-doped graphene/carbon nanotube as metal-free electrocatalyst for oxygen evolution reaction: the enhanced performance by sulfur doping

    International Nuclear Information System (INIS)

    Zhao, Jujiao; Liu, Yanming; Quan, Xie; Chen, Shuo; Zhao, Huimin; Yu, Hongtao

    2016-01-01

    Highlights: • Metal-free 3D architecture N,S co-doped GR/CNT is prepared by a one-step method. • N,S co-doped GR/CNT exhibits good activity and stability for OER. • S doping is indicated beneficial for OER performance of metal-free catalysts. • The catalytic kinetics is highly correlated with the content of C-S-C structure. • 3D architecture composed of GR and CNT also contributes to the OER activity. - Abstract: Highly active metal-free electrocatalysts consisting of earth-abundant elements for oxygen evolution reaction (OER) are extremely desired for renewable energy technologies. Here we prepare the nitrogen and sulfur co-doped graphene/carbon nanotube (NS-GR/CNT) with 3D architecture by one-step hydrothermal method, which presents good performance for OER. The as-prepared NS-GR/CNT exhibits more negative onset potential and lower Tafel slope (0.56 V, 103 mV decade"−"1 vs. S.C.E. in 0.1 M KOH) compared to single N doped graphene/carbon nanotube (0.65 V, 285 mV decade"−"1), which indicates S doping can significantly enhance the OER performance. The X-ray photoelectron spectroscopy reveals that the thiophene-like S (C-S-C) is the dominant S species in all the S doped samples. NS-GR/CNT with C-S-C content of 0.26% has the Tafel slope of 151 mV decade"−"1 while the value for NS-GR/CNT with C-S-C content of 1.09% is 103 mV decade"−"1. The decreased Tafel slope demonstrates the catalytic kinetics are highly correlated with the content of C-S-C. Density functional theory calculations suggest that C-S-C may improve the catalytic kinetics by facilitating the adsorption of the OH"− intermediate. Besides, the 3D architecture composed of graphene and CNTs also contributes to the good performance and chronoamperometric measurement demonstrates the good durability of NS-GR/CNTs.

  3. Developments in nitrogen generators

    International Nuclear Information System (INIS)

    Ayres, C.L.; Abrardo, J.M.; Himmelberger, L.M.

    1984-01-01

    Three process cycles for the production of nitrogen by the cryogenic separation of air are described in detail. These cycles are: (1) a waste expander cycle; (2) an air expander cycle; and (3) a cycle for producing large quantities of gaseous nitrogen. Each cycle has distinct advantages for various production ranges and delivery pressures. A dicussion of key parameters that must be considered when selecting a cycle to meet specific product requirements is presented. The importance of high plant reliability and a dependable liquid nitrogen back up system is also presented. Lastly, a discussion of plant safety dealing with the hazards of nitrogen, enriched oxygen, and hydrocarbons present in the air is reviewed

  4. Photochemical characterization of water samples from Minnesota and Vermont sites with malformed frogs: potential influence of photosensitization by singlet molecular oxygen (1O2) and free radicals on aquatic toxicity

    International Nuclear Information System (INIS)

    Bilski, P.; Burkhart, J.G.; Chignell, C.F.

    2003-01-01

    Environmental pollutants activated by UV sunlight may have contributed to the recent decline in frog populations and the concomitant increase in malformations in the USA and abroad. UV radiation is able to mutate DNA and to initiate photosensitization processes that generate mutagenic and biologically disruptive oxygen transients. We have examined water from selected sites in Minnesota and Vermont using singlet molecular oxygen ( 1 O 2 ), detected by its phosphorescence and free radicals detected by spin trapping, as markers for photosensitization. Water from a pond in Minnesota with malformed frogs, which also causes malformations in the laboratory, photosensitized more 1 O 2 , even though it absorbed less UV light compared to water from a site that did not cause malformations. This suggested that unknown natural or pollutant agents were present, and that photosensitization may be involved. Although UV irradiation of the two Minnesota water samples in the presence of the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) revealed the presence of the DMPO/·OH, DMPO/·H(e aq - ) and DMPO/·C(unknown) adducts there were no qualitative or quantitative differences between them. We also examined water samples from several sites in Vermont, and compared them by measuring the quantum yield of 1 O 2 photosensitization. While all the Vermont samples produced a small amount of 1 O 2 , there was no clear correlation with the incidence of frog malformations. However, the samples differed strongly in absorption spectra and the ability to quench 1 O 2 . These factors may determine how much UV light is absorbed and converted into chemical reactions. Our results show that photochemical characterization of 1 O 2 photosensitization is possible in untreated natural water samples. Photosensitization falls into the category of global factors that may be closely associated with the effects of UV irradiation of the Earth's environments. Thus, photosensitization might be an important

  5. Photochemical characterization of water samples from Minnesota and Vermont sites with malformed frogs: potential influence of photosensitization by singlet molecular oxygen ({sup 1}O{sub 2}) and free radicals on aquatic toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bilski, P.; Burkhart, J.G.; Chignell, C.F

    2003-11-19

    Environmental pollutants activated by UV sunlight may have contributed to the recent decline in frog populations and the concomitant increase in malformations in the USA and abroad. UV radiation is able to mutate DNA and to initiate photosensitization processes that generate mutagenic and biologically disruptive oxygen transients. We have examined water from selected sites in Minnesota and Vermont using singlet molecular oxygen ({sup 1}O{sub 2}), detected by its phosphorescence and free radicals detected by spin trapping, as markers for photosensitization. Water from a pond in Minnesota with malformed frogs, which also causes malformations in the laboratory, photosensitized more {sup 1}O{sub 2}, even though it absorbed less UV light compared to water from a site that did not cause malformations. This suggested that unknown natural or pollutant agents were present, and that photosensitization may be involved. Although UV irradiation of the two Minnesota water samples in the presence of the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) revealed the presence of the DMPO/{center_dot}OH, DMPO/{center_dot}H(e{sub aq}{sup -}) and DMPO/{center_dot}C(unknown) adducts there were no qualitative or quantitative differences between them. We also examined water samples from several sites in Vermont, and compared them by measuring the quantum yield of {sup 1}O{sub 2} photosensitization. While all the Vermont samples produced a small amount of {sup 1}O{sub 2}, there was no clear correlation with the incidence of frog malformations. However, the samples differed strongly in absorption spectra and the ability to quench {sup 1}O{sub 2}. These factors may determine how much UV light is absorbed and converted into chemical reactions. Our results show that photochemical characterization of {sup 1}O{sub 2} photosensitization is possible in untreated natural water samples. Photosensitization falls into the category of global factors that may be closely associated with the effects of

  6. Interfacial oxygen and nitrogen induced dipole formation and vacancy passivation for increased effective work functions in TiN/HfO[sub 2] gate stacks

    KAUST Repository

    Hinkle, C. L.; Galatage, R. V.; Chapman, R. A.; Vogel, E. M.; Alshareef, Husam N.; Freeman, C.; Wimmer, E.; Niimi, H.; Li-Fatou, A.; Shaw, J. B.; Chambers, J. J.

    2010-01-01

    V are achieved with anneals that incorporate oxygen throughout the TiN with [O]=2.8×1021 cm−3 near the TiN/HfO2interface. However, further increasing the oxygen concentration via more aggressive anneals results in a relative decrease of the EWF and increase

  7. Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology

    International Nuclear Information System (INIS)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Stamate, Eugen

    2017-01-01

    The present study investigated the electrical characteristics and radical production efficiency of a coplanar barrier discharge (CBD) device manufactured by Kyocera by multilayer ceramic technology. The device consisted of a number of linear electrodes with electrode and gap widths of 0.75 mm, immersed into a ceramic dielectric barrier. A closed flow-through system necessary for the measurements was prepared by placing a quartz plate at a height of 3 mm from the ceramic barrier. The production of nitrogen radicals was determined from the removal of a trace amount of NO in pure N 2 gas, while the production of oxygen radicals was determined by ozone production in pure O 2 or synthetic air. The production efficiency of N and O radicals and NO oxidation in synthetic air was comparable with the efficiency of a volume barrier discharge device. The power density per unit of surface area of the CBD device was more than two times larger than that of a similar volume barrier discharge setup, which makes the CBD device a compact alternative for gas treatment. The production of ozone and different nitrogen oxides was also evaluated for the open system of the CBD which is usable for surface treatment. The ozone concentration of this system was nearly independent from the input power, while the concentration of nitrogen oxides increased with input power. The open system of the CBD was additionally tested for the treatment of a silicon surface. An increase of applied power decreased the time required to reduce the water contact angle below 10 degrees but also started to have an impact on the surface roughness. (paper)

  8. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  9. Radiation chemical studies on nucleic acids and its constituents: Part I - base damage of thymine derivatives in air and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, G U; Bhandari, N S; Kumar, K G; Krishnan, D [Bhabha Atomic Research Centre, Bombay (India). Div. of Radiological Protection

    1980-04-01

    The radiolysis of thymine, thymidine and thymidine monophosphate in air and nitrogen has been reported. The destruction of the chromophoric group of these compounds absorbing in the ultraviolet region was measured spectrophotometrically. The G values for thymine, thymidine and thymidine monophosphate in the air equilibrated solutions were 2.5, 2.2 and 2.1 and those in nitrogen-saturated solutions were 1.6, 3.0 and 2.8 respectively. The destruction of the base is greater than that of nucleoside and nucleotide in the air-equilibrated solutions whereas in the absence of oxygen the sugar-attached molecules have a higher G value than the base. Oxygen enhancement ratio (OER) decreases when the sugar molecule is attached to the pyrimidine. The results are discussed in terms of restitution reaction mediated by reducing water radicals in the absence of oxygen.

  10. GASP: A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. [enthalpy, entropy, thermal conductivity, and specific heat

    Science.gov (United States)

    Hendricks, R. C.; Baron, A. K.; Peller, I. C.

    1975-01-01

    A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.

  11. Vibronic Spectroscopy of the Phenylcyanomethyl Radical

    Science.gov (United States)

    Mehta, Deepali N.; Kidwell, Nathanael M.; Zwier, Timothy S.

    2011-06-01

    Resonance stabilized radicals (RSRs) are thought to be key intermediates in the formation of larger molecules in planetary atmospheres. Given the nitrogen-rich atmosphere of Titan, and the prevalence of nitriles there, it is likely that nitrile and isonitrile RSRs could be especially important in pathways leading to the formation of more complex nitrogen-containing compounds and the aerosols ("tholins") that are ultimately produced. In this talk, the results of a gas phase, jet-cooled vibronic spectroscopy study of the phenylcyanomethyl radical (C_6H_5.{C}HCN), the nitrogen-containing analog of the 1-phenylpropargyl radical, will be presented. A resonant two color photon ionization spectrum over the range 21,350-22,200 Cm-1 (450.0-468.0 nm) has been recorded, and the D_0-D_1 origin band has been tentatively identified at 21,400 Cm-1. Studies identifying the ionization threshold, and characterizing the vibronic structure will also be presented. An analogous study of the phenylisocyanomethyl radical, C_6H_5.{C}HNC, is currently being pursued for comparison with that of phenylcyanomethyl radical.

  12. Letter: OCCO*+, NNCO*+ and NNNN*+ radical cations.

    Science.gov (United States)

    Flammang, R; Srinivas, R; Nguyen, M T; Gerbaux, P

    2007-01-01

    Chemical ionization of a mixture of nitrogen and carbon monoxide produces three stable isobaric species at m/z 56: OCCO, OCNN and NNNN radical cations. Separated at increased resolution, these ions are readily identified by collisional activation. Neutralization-reionization experiments performed on two different mass spectrometers have not allowed the detection of any recovery signals for the corresponding neutrals.

  13. The free radical species in polyacrylonitrile fibers induced by γ-radiation and their decay behaviors

    International Nuclear Information System (INIS)

    Liu Weihua; Wang Mouhua; Xing Zhe; Wu Guozhong

    2012-01-01

    Free radicals in vacuum, air and oxygen atmospheres were studied using electron spin resonance (ESR). Mainly two types of radicals, namely alkyl radicals and polyimine radicals, are formed in polyacrylonitrile (PAN) fibers after γ-ray irradiation. The G value of the radical formation was calculated to be 2.1 (number of radicals per 100 eV absorbed) in air at room temperature based on the ESR measurements. The radical stability and decay behaviors at room temperature and elevated temperatures were also investigated under different atmospheres. The alkyl radicals were found to be rather stable when stored in vacuum at room temperature, but they decayed via reaction with oxygen when stored in air. The alkyl radicals disappeared completely after a thermal treatment at 110 °C in vacuum, but only 15% of the polyimine radicals decayed; this indicates that polyimine radicals are more stable compared to the alkyl radicals due to their lower mobility. - Highlights: ► Radicals formed by radiation were assigned to polyimine and alkyl radicals. ► G-value of radicals was measured to be 2.1 per 100 eV. ► The radicals were found to be extremely stable in vacuum at room temperature. ► Effect of oxygen on radical decay under various conditions was studied.

  14. Effect of pre-pyrolysis mode on simultaneous introduction of nitrogen/oxygen-containing functional groups into the structure of bagasse-based mesoporous carbon and its influence on Cu(II) adsorption.

    Science.gov (United States)

    Wan, Zeqing; Li, Kunquan

    2018-03-01

    A convenient effective microwave pre-pyrolysis treatment to synthesize biomass-based mesoporous carbon with higher nitrogen/oxygen-chelating adsorption for Cu(II) is reported here, in which phosphoric acid impregnated bagasse was used as a microwave absorber and porogen. For comparison, conventional electric-heating pyrolyzed carbon was prepared and doped with nitrogen/oxygen groups. Nitrogen adsorption, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy (XPS) and batch adsorption were employed to investigate the effects of the two pre-pyrolysis modes on the sample physicochemical and Cu(II) adsorptive properties. The 22-min-microwave-pyrolyzed bagasse mesoporous activated carbon (MBAC, 85.32% mesoporosity) contained 10.52% O, which is 3.94% more than electric-heating pyrolyzed mesoporous activated carbon (89.52% mesoporosity). After electrophilic aromatic substitutions of N/O doping, the former possessed more N (5.83%) and more O (21.40%), confirming that time-saving energy-efficient microwave pyrolysis favors the formation of defective C/O atoms in or at the edges of the graphite layer of MBAC, which are highly active and tend to act as preferred reactive positions for the doping of N/O-containing groups simultaneously compared with conventional electric-heating pyrolysis. These N and O species existed mainly as COOH, OH, NH and NH 2 functional groups, and were confirmed by XPS to be active sites for metal binding via electrostatic attraction, hydrogen bonding, a chelate effect and complexation, resulting in the great enhancement of Cu(II) adsorption. Langmuir isotherm and pseudo-second-order kinetic fitting further proved that Cu(II) adsorption by N/O-doped MBAC is ascribed mainly to chemisorption. Therefore, rapid microwave pre-pyrolysis provides a promising route to prepare excellent-performance N/O-doped carbon adsorbents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Polyphenol contents and radical scavenging capacities of red maple (Acer rubrum L.) extracts.

    Science.gov (United States)

    Royer, Mariana; Diouf, Papa Niokhor; Stevanovic, Tatjana

    2011-09-01

    The crude ethanol and water extracts of different red maple (Acer rubrum L.) tissues: whole branches (WB), wood of branches (BW), bark of branches (BB), stem bark (SB) and whole twigs (T), were examined in order to determine their phenolic contents as well as their radical scavenging capacities. The total phenols (TP), total extractable tanins (TET) and non-precipitable phenols (NPP), were determined by combination of spectrophotometric and precipitation methods, while total flavonoids, hydroxy cinanmic acids and proanthocyanidins were determined spectrophotometrically. The radical scavenging activities of the extracts were determined against five reactive oxygen species (ROS): superoxide anion (O(2)(·-)), hydroxyl radical (HO(·)), peroxyl radical (ROO(·)), hypochlorite ion (ClO(-)), and hydrogen peroxide (H(2)O(2)) and one reactive nitrogen species (RNS): nitric oxide (NO). The extracts of stem bark were significantly more efficient (exhibiting the highest antioxidant efficiencies, AE) than the other studied extracts against all ROS (at p<0.05, Duncan statistical tests), except against NO. The correlation coefficients determined between total phenolic (TP) content and antiradical efficiencies were R(2)=0.12 for O(2)(·-); R(2)=0.29 for HO(·); R(2)=0.40 for H(2)O(2); R(2)=0.86 for ROO(·); R(2)=0.03 for NO(·) and R(2)=0.73 for ClO(-). Our results indicate potential utilisation of extracts as natural antioxidants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Multiple free-radical scavenging capacity in serum

    Science.gov (United States)

    Oowada, Shigeru; Endo, Nobuyuki; Kameya, Hiromi; Shimmei, Masashi; Kotake, Yashige

    2012-01-01

    We have developed a method to determine serum scavenging-capacity profile against multiple free radical species, namely hydroxyl radical, superoxide radical, alkoxyl radical, alkylperoxyl radical, alkyl radical, and singlet oxygen. This method was applied to a cohort of chronic kidney disease patients. Each free radical species was produced with a common experimental procedure; i.e., uv/visible-light photolysis of free-radical precursor/sensitizer. The decrease in free-radical concentration by the presence of serum was quantified with electron spin resonance spin trapping method, from which the scavenging capacity was calculated. There was a significant capacity change in the disease group (n = 45) as compared with the healthy control group (n = 30). The percent values of disease’s scavenging capacity with respect to control group indicated statistically significant differences in all free-radical species except alkylperoxyl radical, i.e., hydroxyl radical, 73 ± 12% (p = 0.001); superoxide radical, 158 ± 50% (p = 0.001); alkoxyl radical, 121 ± 30% (p = 0.005); alkylperoxyl radical, 123 ± 32% (p>0.1); alkyl radical, 26 ± 14% (p = 0.001); and singlet oxygen, 57 ± 18% (p = 0.001). The scavenging capacity profile was illustrated using a radar chart, clearly demonstrating the characteristic change in the disease group. Although the cause of the scavenging capacity change by the disease state is not completely understood, the profile of multiple radical scavenging capacities may become a useful diagnostic tool. PMID:22962529

  17. Radical Change by Entrepreneurial Design

    National Research Council Canada - National Science Library

    Roberts, Nancy C

    1998-01-01

    .... How radical change in public policy has occurred in the past is then documented. We find examples of radical change by chance, radical change by consensus, radical change by learning, and radical change by entrepreneurial design...

  18. Activity of type i methanotrophs dominates under high methane concentration: Methanotrophic activity in slurry surface crusts as influenced by methane, oxygen, and inorganic nitrogen

    DEFF Research Database (Denmark)

    Duan, Yun Feng; Reinsch, Sabine; Ambus, Per

    2017-01-01

    Livestock slurry is a major source of atmospheric methane (CH4), but surface crusts harboring methane-oxidizing bacteria (MOB) could mediate against CH4 emissions. This study examined conditions for CH4 oxidation by in situ measurements of oxygen (O2) and nitrous oxide (N2O), as a proxy for inorg......Livestock slurry is a major source of atmospheric methane (CH4), but surface crusts harboring methane-oxidizing bacteria (MOB) could mediate against CH4 emissions. This study examined conditions for CH4 oxidation by in situ measurements of oxygen (O2) and nitrous oxide (N2O), as a proxy...... for inorganic N transformations, in intact crusts using microsensors. This was combined with laboratory incubations of crust material to investigate the effects of O2, CH4, and inorganic N on CH4 oxidation, using 13CH4 to trace C incorporation into lipids of MOB. Oxygen penetration into the crust was 2 to 14 mm...

  19. Interfacial oxygen and nitrogen induced dipole formation and vacancy passivation for increased effective work functions in TiN/HfO[sub 2] gate stacks

    KAUST Repository

    Hinkle, C. L.

    2010-03-09

    Effective work function (EWF) changes of TiN/HfO2annealed at low temperatures in different ambient environments are correlated with the atomic concentration of oxygen in the TiN near the metal/dielectric interface. EWF increases of 550 meV are achieved with anneals that incorporate oxygen throughout the TiN with [O]=2.8×1021 cm−3 near the TiN/HfO2interface. However, further increasing the oxygen concentration via more aggressive anneals results in a relative decrease of the EWF and increase in electrical thickness. First-principles calculations indicate the exchange of O and N atoms near the TiN/HfO2interface cause the formation of dipoles that increase the EWF.

  20. E. P. R. spectroscopic study of nitroxide mono- and bi-radicals

    International Nuclear Information System (INIS)

    Lemaire, H.

    1966-09-01

    A nitroxide is a molecule containing the group N-O where the oxygen atom made only one bond instead of the usual two. The main advantage of these radicals is their exceptional stability; this allows the study of well defined chemical structures while varying at will the experimental conditions. Studies by electron paramagnetic resonance of nitroxide mono-radicals have given the principal directions and the principal values of the electron-nitrogen nucleus hyperfine tensor and of the anisotropic g-factor tensor. The results were then related to the electronic structure of radicals. An understanding was obtained of the influence of the solvent on the principal values of the tensors, and the marked differences observed in the broadening of hyperfine lines when the medium become viscous. In the nitroxide biradicals, the hyperfine spectra depends not only on the magnetic interactions relative to each monomer, but also on the magnitude of the exchange interaction between the singlet and the triplet states of the dimer; the biradicals studied here are the first organic compounds which show clearly the influence of this exchange on the hyperfine structure. The two unpaired electrons also interact by a magnetic dipolar interaction: in the intermediate case, this can be used to derive the sign of the exchange interaction if the bi-radical is studied in a liquid crystal. Just as for mono-radicals, the hyperfine spectra of bi-radicals show selective broadening in viscous media, which is caused by an overall motional modulation of the anisotropic tensors. This gives another way to determine the sign of the exchange interaction. (author) [fr

  1. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin.

    Science.gov (United States)

    Dose, Janina; Matsugo, Seiichi; Yokokawa, Haruka; Koshida, Yutaro; Okazaki, Shigetoshi; Seidel, Ulrike; Eggersdorfer, Manfred; Rimbach, Gerald; Esatbeyoglu, Tuba

    2016-01-14

    Astaxanthin is a coloring agent which is used as a feed additive in aquaculture nutrition. Recently, potential health benefits of astaxanthin have been discussed which may be partly related to its free radical scavenging and antioxidant properties. Our electron spin resonance (ESR) and spin trapping data suggest that synthetic astaxanthin is a potent free radical scavenger in terms of diphenylpicryl-hydrazyl (DPPH) and galvinoxyl free radicals. Furthermore, astaxanthin dose-dependently quenched singlet oxygen as determined by photon counting. In addition to free radical scavenging and singlet oxygen quenching properties, astaxanthin induced the antioxidant enzyme paroxoanase-1, enhanced glutathione concentrations and prevented lipid peroxidation in cultured hepatocytes. Present results suggest that, beyond its coloring properties, synthetic astaxanthin exhibits free radical scavenging, singlet oxygen quenching, and antioxidant activities which could probably positively affect animal and human health.

  3. Influence of oxygen at high pressure on the induction of damage in barley seeds by gamma radiation

    International Nuclear Information System (INIS)

    Donaldson, E.; Nilan, R.A.; Konzak, C.F.

    1978-01-01

    The influence of oxygen pressure prior to, during, and after irradiation on the induction of radiation damage was investigated using Himalaya (C.I. 620) barley seeds. Seeds were adjusted to water contents of 2 to 14% and then irradiated with 60 Co gamma rays in vacuo or under various oxygen tensions. After irradiation, the seeds were rehydrated at approximately 0 0 C in water continuously bubbled with oxygen or nitrogen. Biological effects of the treatments were recorded as M 1 seedling injury. Seeds irradiated in oxygen pressure sustained two or three times more damage than those irradiated in vacuo followed by rehydrating in oxygena