WorldWideScience

Sample records for oxygen hydrogen nitrogen

  1. Glove box adaptation of oxygen, nitrogen and hydrogen determinator

    International Nuclear Information System (INIS)

    Ramanjaneyulu, P.S.; Phanindra Kumar, M.; Kulkarni, A.S.; Revathi, R.; Saxena, M.K.; Tomar, B.S.

    2017-01-01

    Radioanalytical Chemistry Division (RACD) is involved in chemical quality assurance (CQA) of various nuclear fuels and materials related to various DAE projects including FBTR and PFBR. Determination of oxygen, nitrogen and hydrogen in these fuels is one of the important steps in the CQA of material. For this purpose, O, N and H determinator was indigenously designed, fabricated and commissioned with the help of M/s Chromatography and Instruments Company Ltd., Vadodara, India. The present article describes about glove box adaptation of this instrument and various safety features incorporated in the glove box and instrument at Lab. C-25, RACD, as per the recommendations of the plant level safety committee

  2. ANALYTICAL EMPLOYMENT OF STABLE ISOTOPES OF CARBON, NITROGEN, OXYGEN AND HYDROGEN FOR FOOD AUTHENTICATION

    Directory of Open Access Journals (Sweden)

    E. Novelli

    2011-04-01

    Full Text Available Stable isotopes of carbon, nitrogen, oxygen and hydrogen were used for analytical purposes for the discrimination of the type of production (farming vs. fishing in the case of sea bass and for geographical origin in the case of milk. These results corroborate similar experimental evidences and confirm the potential of this analytical tool to support of food traceability.

  3. Sputtering of solid nitrogen and oxygen by keV hydrogen ions

    DEFF Research Database (Denmark)

    Ellegaard, O.; Schou, Jørgen; Stenum, B.

    1994-01-01

    Electronic sputtering of solid nitrogen and oxygen by keV hydrogen ions has been studied at two low-temperature setups. The yield of the sputtered particles has been determined in the energy regime 4-10 keV for H+, H-2+ and H-3+ ions. The yield for oxygen is more than a factor of two larger than...... that for nitrogen. The energy distributions of the sputtered N2 and O2 molecules were measured for hydrogen ions in this energy regime as well. The yields from both solids turn out to depend on the sum of the stopping power of all atoms in the ion. The yield increases as a quadratic function of the stopping power...

  4. Stable isotope ratio measurements in hydrogen, nitrogen, and oxygen using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.; Milanovich, F.P.

    1975-01-01

    A method for measuring stable isotope ratios using laser Raman scattering was developed which may prove of significant utility and benefit in stable isotope tracer studies. Crude isotope ratio measurements obtained with a low-power laser indicate that with current technology it should be possible to construct an isotope ratio measurement system using laser Raman scattering that is capable of performing 0.1 percent accuracy isotope ratio measurements of 16 O/ 18 O in natural abundance oxygen gas or 14 N/ 15 N in natural abundance nitrogen gas in times less than two minutes per sample. Theory pertinent to the technique, designs of specific isotope ratio spectrometer systems, and data relating to isotope ratio measurements in hydrogen, nitrogen, and oxygen are presented. In addition, the current status of several studies utilizing this technique is discussed. (auth)

  5. Nitrogen diffusion in hafnia and the impact of nitridation on oxygen and hydrogen diffusion: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyanarayanan, Rajesh, E-mail: rajessat@in.ibm.com, E-mail: rajesh.sathiyanarayanan@gmail.com; Pandey, R. K.; Murali, K. V. R. M. [IBM Semiconductor Research and Development Center, Bangalore 560045 (India)

    2015-01-21

    Using first-principles simulations, we have computed incorporation energies and diffusion barriers of ammonia, the nitrogen molecule and atomic nitrogen in monoclinic hafnia (m-HfO{sub 2}). Our calculations show that ammonia is likely to dissociate into an NH{sub 2} molecular unit, whereas the nitrogen molecule remains as a molecule either in the interstitial space or at an oxygen lattice site. The lowest energy pathway for the diffusion of atomic nitrogen interstitials consists of the hopping of the nitrogen interstitial between neighboring three-coordinated lattice oxygen atoms that share a single Hf atom, and the barrier for such hops is determined by a switching mechanism. The substitutional nitrogen atom shows a preference for diffusion through the doubly positive oxygen vacancy-mediated mechanism. Furthermore, we have investigated the impact of nitrogen atoms on the diffusion barriers of oxygen and hydrogen interstitials in m-HfO{sub 2}. Our results show that nitrogen incorporation has a significant impact on the barriers for oxygen and hydrogen diffusion: nitrogen atoms attract oxygen and hydrogen interstitials diffusing in the vicinity, thereby slowing down (reducing) their diffusion (diffusion length)

  6. Characterization of hydrogen, nitrogen, oxygen, carbon and sulfur in nuclear fuel (UO2) and cladding nuclear rod materials

    International Nuclear Information System (INIS)

    Crewe, Maria Teresa I.; Lopes, Paula Corain; Moura, Sergio C.; Sampaio, Jessica A.G.; Bustillos, Oscar V.

    2011-01-01

    The importance of Hydrogen, Nitrogen, Oxygen, Carbon and Sulfur gases analysis in nuclear fuels such as UO 2 , U 3 O 8 , U 3 Si 2 and in the fuel cladding such as Zircaloy, is a well known as a quality control in nuclear industry. In UO 2 pellets, the Hydrogen molecule fragilizes the metal lattice causing the material cracking. In Zircaloy material the H2 molecules cause the boiling of the cladding. Other gases like Nitrogen, Oxygen, Carbon and Sulfur affect in the lattice structure change. In this way these chemical compounds have to be measure within specify parameters, these measurement are part of the quality control of the nuclear industry. The analytical procedure has to be well established by a convention of the quality assurance. Therefore, the Oxygen, Carbon, Sulfur and Hydrogen are measured by infrared absorption (IR) and the nitrogen will be measured by thermal conductivity (TC). The gas/metal analyzer made by LECO Co. model TCHEN-600 is Hydrogen, Oxygen and Nitrogen analyzer in a variety of metals, refractory and other inorganic materials, using the principle of fusion by inert gas, infrared and thermo-coupled detector. The Carbon and Sulfur compounds are measure by LECO Co. model CS-400. A sample is first weighed and placed in a high purity graphite crucible and is casted on a stream of helium gas, enough to release the oxygen, nitrogen and hydrogen. During the fusion, the oxygen present in the sample combines with the carbon crucible to form carbon monoxide. Then, the nitrogen present in the sample is analyzed and released as molecular nitrogen and the hydrogen is released as gas. The hydrogen gas is measured by infrared absorption, and the sample gases pass through a trap of copper oxide which converts CO to CO 2 and hydrogen into water. The gases enter the cell where infrared water content is then converted making the measurement of total hydrogen present in the sample. The Hydrogen detection limits for the nuclear fuel is 1 μg/g for the Nitrogen

  7. Isotopic-spectral determination of hydrogen, nitrogen, oxygen and carbon in semiconductor materials

    International Nuclear Information System (INIS)

    Dudich, G.K.; Eremeev, V.A.; Li, V.N.; Nemets, V.M.

    1981-01-01

    Techniques of low-temperature isotopic-spectral determination of impurities of hydrogen, nitrogen, oxygen and carbon in semiconductor materials Bi, Ge, Pb tellurides are developed. The techniques include selection into special vessel with the known volume (exchanger) of sample analyzed, dosed introduction into exchanger of rare isotope of the element determined ( 2 H, 15 N, 18 O, 13 C) in the form of isotope-containing gas, balancing of the determined element isotopes in the system sample-isotope, containing gas, spectroscopic, determination of its isotope composition in gaseous phase of the system and calculation of the amount of the element determined in the sample. The lower boundaries of the amounts determined constitute 10 -7 , 10 -7 , 10 -6 and 10 -5 mass % respectively when sample of 20 g are used [ru

  8. Effect of hydrogen oxygen and nitrogen, on the tendency of welded joints of titanium alloys to moderate failure

    International Nuclear Information System (INIS)

    Gorshkov, A.I.; Matyushin, B.A.

    1976-01-01

    The admissible limits have been defined of gaseous impurities content in the metal of welded joints of titanium alloys, with due accout for the phase composition and alloying system. The proposed procedure of testing disk specimens most adequately simulates the behavior of welded joints in full-scale strures. The tests lasting 2.5 to 3 years permit to consider the effect of temporal processes (hydrogen diffusion, relaxation of stresses, phase transformations, etc.) on the durability of a weld. The hydrogen content in the metal of welded joints of OT4 alloy should not exceed 0.008%, that of VT14 alloy should not exceed 0.008%, and that of VT20 alloy should not exceed 0.015% (at an oxygen content of no more than 0.15% and a nitrogen content of no more than 0.03%), the oxygen content being 0.25%, 0.2% and 0.2%, respectxvely (at a hydrogen content of no more than 0.008% and a nitrogen of no more than 0.03%), ;nd the nitrogen content being 0.1%, 0.06% and 0.08%, respectively (at hydrogen content of no more than 0.008% and an oxygen content of no more than 0.15%

  9. Determination of occluded oxygen, nitrogen and hydrogen in zircalloy-4 by vacuum extraction coupled to gas chromatography

    International Nuclear Information System (INIS)

    Vega, O.; Imakuma, K.

    1983-01-01

    The technique of vacuum extraction at high temperatures was used for the liberation of gases from zircalloy-4 samples; oxygen, nitrogen and hydrogen were quantitatively analysed by gas chromatography. Two different sets of zircalloy-4 samples were examined. The results for O 2 , N 2 and H 2 quantitative analyses satisfy the requirements for the characterization of the zircalloy-4 quality. (C.L.B.) [pt

  10. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    Science.gov (United States)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

  11. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    Science.gov (United States)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  12. The Relative Hydrogen Bonding Strength of Oxygen and Nitrogen Atoms as a Proton Acceptor

    International Nuclear Information System (INIS)

    Hyun, Jong Cheol; Lee, Ho Jin; Kim, Nak Kyoon; Choi, Young Sang; Park, Jeung Hee; Yoon, Chang Ju

    1999-01-01

    The thermodynamic parameters for the formation of the hydrogen bonding were widely used to understand the protein- ligand interaction. We have been interested in the hydrogen bonding strength of various proton acceptors toward the amide in a nonpolar solvent, This work is in the line of our interest. In drug design, the functional group is often replaced in order to enhance or reduce the binding affinity, which is usually determined by hydrogen bonding strength. Therefore, to understand this biochemical process the knowledge of relative hydrogen bonding strength is of importance.

  13. ASRDI oxygen technology survey. Volume 5: Density and liquid level measurement instrumentation for the cryogenic fluids oxygen, hydrogen, and nitrogen

    Science.gov (United States)

    Roder, H. M.

    1974-01-01

    Information is presented on instrumentation for density measurement, liquid level measurement, quantity gauging, and phase measurement. Coverage of existing information directly concerned with oxygen was given primary emphasis. A description of the physical principle of measurement for each instrumentation type is included. The basic materials of construction are listed if available from the source document for each instrument discussed. Cleaning requirements, procedures, and verification techniques are included.

  14. Study on the preparation and stability of uranium carbide samples for the determination of oxygen, hydrogen and nitrogen by fusion under high vacuum

    International Nuclear Information System (INIS)

    Perez Garcia, M.

    1966-01-01

    In view of the high reactivity of uranium carbide, the method employed for the preparation of the sample for the analysis of its gas content: oxygen, hydrogen and nitrogen, has a decisive influence on the analytical results. The variation in the O 2 , H 2 and N 2 content of the uranium carbide has been studied in this paper with the methods utilized for the sample preparation (grinding and cutting). (Author) 9 refs

  15. Stress corrosion cracking of an uranium-6 weight per cent niobium in gaseous oxygen, nitrogen and hydrogen

    International Nuclear Information System (INIS)

    Brunet, H.

    1989-01-01

    Stress corrosion cracking (SCC) of uranium-6 weight per cent niobium alloy is studied in gaseous oxygen at room temperature (for pressures between 4.10 -7 and 0.15MPa) and 100 0 C (pressure of 0.15 MPa) and in gaseous hydrogen (for pressures between 10 -6 and 0.15 MPa). SCC map and cracking kinetics are determined as fonctions of stress-intensity factor, pressure and temperature. For oxygen, temperature seems to have no effect on the alloy embrittlement within the range of this study but the pressure influence is more complex. At room temperature, hydrogen pressure less than 0.15 MPa has no influence on the cracking kinetics. For a pressure of 0.15 MPa, fracture occurs by hydriding reaction. Complementary analyses on fracture surfaces lead to propose different mechanics responsible for cracking kinetics in these environments [fr

  16. CoM(M=Fe,Cu,Ni)-embedded nitrogen-enriched porous carbon framework for efficient oxygen and hydrogen evolution reactions

    Science.gov (United States)

    Feng, Xiaogeng; Bo, Xiangjie; Guo, Liping

    2018-06-01

    Rational synthesis and development of earth-abundant materials with efficient electrocatalytic activity and stability for water splitting is a critical but challenging step for sustainable energy application. Herein, a family of bimetal (CoFe, CoCu, CoNi) embedded nitrogen-doped carbon frameworks is developed through a facile and simple thermal conversion strategy of metal-doped zeolitic imidazolate frameworks. Thanks to collaborative superiorities of abundant M-N-C species, modulation action of secondary metal, cobalt-based electroactive phases, template effect of MOFs and unique porous structure, bimetal embedded nitrogen-doped carbon frameworks materials manifest good oxygen and hydrogen evolution catalytic activity. Especially, after modulating the species and molar ratio of metal sources, optimal Co0.75Fe0.25 nitrogen-doped carbon framework catalyst just requires a low overpotential of 303 mV to achieve 10 mA cm-2 with a low Tafel slope (39.49 mV dec-1) for oxygen evolution reaction, which even surpasses that of commercial RuO2. In addition, the optimal catalyst can function as an efficient bifunctional electrocatalyst for overall water splitting with satisfying activity and stability. This development offers an attractive direction for the rational design and fabrication of porous carbon materials for electrochemical energy applications.

  17. Recombinator of hydrogen and oxygen

    International Nuclear Information System (INIS)

    Stejskal, J.; Klein, O.; Scholtz, G.; Schmidt, P.; Olaussson, A.

    1976-01-01

    Improvements are proposed for the well known reactors for the catalytic recombination of hydrogen and oxygen, which should permit this being used in contiuous operation in nuclear reactors (BWRs). The improvements concern the geometric arrangement of gas-inlet and -outlet pipes, the inclination of the axis of the catalyst container and the introduction of remote operation. (UWI) [de

  18. Oxygen-hydrogen recombination system

    International Nuclear Information System (INIS)

    Sato, Shuichiro; Takejima, Masaki.

    1981-01-01

    Purpose: To avoid reduction in the performance of catalyst used for an oxygen-hydrogen recombiner in the off gas processing system of a nuclear reactor. Constitution: A thermometer is provided for the detection of temperature in an oxygen-hydrogen recombiner. A cooling pipe is provided in the recombiner and cooling medium is introduced externally. The cooling medium may be water or air. In accordance with the detection value from the thermometer, ON-OFF control is carried out for a valve to control the flow rate of the cooling medium thereby rendering the temperature in the recombiner to a predetermined value. This can prevent the catalyst from being exposed to high temperature and avoid the reduction in the performance of the catalyst. (Ikeda, J.)

  19. Effect of nitrogen and oxygen on radiolysis of iodide solution

    Energy Technology Data Exchange (ETDEWEB)

    Karasawa, H; Endo, M [Hitachi Ltd., Power and Industrial System R+D Divisions, Ibaraki (Japan)

    1996-12-01

    The effect of nitrogen and oxygen on radiolysis of iodide solution was examined. Direct decomposition of nitrogen by {gamma}-radiation produced nitric acid to decrease a water pH. This resulted in the iodine formation in the radiolysis of iodide solution. Hydrogen peroxide was produced by the radiolysis of water containing oxygen. This worked a reducing agent to suppress the formation of iodine in the radiolysis of iodide solution. In the analytical model, fourteen iodine species were considered and reaction scheme consisted in 124 reactions. The analytical model could estimate the oxidation state of iodide ions. (author) 4 figs., 4 refs.

  20. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    Science.gov (United States)

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  1. Adaptation of a radiofrequency glow discharge optical emission spectrometer (RF-GD-OES) to the analysis of light elements (carbon, nitrogen, oxygen and hydrogen) in solids: glove box integration for the analysis of nuclear samples

    International Nuclear Information System (INIS)

    Hubinois, J.-C.

    2001-01-01

    The purpose of this work is to use the radiofrequency glow discharge optical emission spectrometry in order to quantitatively determine carbon, nitrogen, oxygen and hydrogen at low concentration (in the ppm range) in nuclear materials. In this study, and before the definitive contamination of the system, works are carried out on non radioactive materials (steel, pure iron, copper and titanium). As the initial apparatus could not deliver a RF power inducing a reproducible discharge and was not adapted to the analysis of light elements: 1- The radiofrequency system had to be changed, 2- The systems controlling gaseous atmospheres had to be improved in order to obtain analytical signals stemming strictly from the sample, 3- Three discharge lamps had to be tested and compared in terms of performances, 4- The system of collection of light had to be optimized. The modifications that were brought to the initial system improved intensities and stabilities of signals which allowed lower detection limits (1000 times lower for carbon). These latter are in the ppm range for carbon and about a few tens of ppm for nitrogen and oxygen in pure irons. Calibration curves were plotted in materials presenting very different sputtering rates in order to check the existence of a 'function of analytical transfer' with the purpose of palliating the lack of reference materials certified in light elements at low concentration. Transposition of this type of function to other matrices remains to be checked. Concerning hydrogen, since no usable reference material with our technique is available, certified materials in deuterium (chosen as a surrogate for hydrogen) were studied in order to exhibit the feasibility the analysis of hydrogen. Parallel to these works, results obtained by modeling a RF discharge show that the performances of the lamp can be improved and that the optical system must be strictly adapted to the glow discharge. (author) [fr

  2. Hydrogen-oxygen powered internal combustion engine

    Science.gov (United States)

    Cameron, H.; Morgan, N.

    1970-01-01

    Hydrogen at 300 psi and oxygen at 800 psi are injected sequentially into the combustion chamber to form hydrogen-rich mixture. This mode of injection eliminates difficulties of preignition, detonation, etc., encountered with carburated, spark-ignited, hydrogen-air mixtures. Ignition at startup is by means of a palladium catalyst.

  3. Hydrogen and Nitrogen Control in Ladle and Casting Operations

    Energy Technology Data Exchange (ETDEWEB)

    Richard J. Fruehan; Siddhartha Misra

    2005-01-15

    In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly. Several steelmaking additions have been investigated in this research for their effect on the hydrogen and nitrogen content of steels. It has been established that calcium hydroxide (hydrated lime) acts as a source of hydrogen. Carburizers, such as metallurgical coke, were found to result in no hydrogen pickup when added to liquid steel. Addition of petroleum coke, on the other hand, increased the hydrogen content of liquid steel. Ferroalloy such as medium carbon ferromanganese when added to the liquid iron was found to increase its nitrogen content, the increase being proportional to the amount of ferroalloy added. Similarly, addition of pitch coke, which had a significant nitrogen impurity, increased the nitrogen content of liquid iron. A mathematical model was developed to quantify the absorption of nitrogen and hydrogen from the air bubbles entrained during tapping of liquid steel. During the bottom stirring of liquid metal in a ladle, the inert gas escaping from the top displaces the slag layer and often forms an open eye. The absorption of atmospheric nitrogen through the spout eye was estimated for different slag thickness and gas flow rate. The ultimate goal of this research was to develop a comprehensive set of equations which could predict the nitrogen and hydrogen pickup from their various sources. Estimates of hydrogen and nitrogen pickup during the steel transfer operations such as tapping and ladle stirring and the predicted pickup from steelmaking additions were integrated into empirical equations. The comprehensive model is designed to predict the gas pickup under varying operating conditions such as the metal oxygen and sulfur content, the total tapping or stirring time, the stirring gas flow rate and the

  4. Hydrogenation of stainless steels implanted with nitrogen

    International Nuclear Information System (INIS)

    Silva Ramos, L.E. da.

    1989-01-01

    In the present work the effects of both ion implantation and hydrogenation on the fatigue behaviour of an AISI-304 type unstable stainless steel was studied. The material was tested under the following microstructural conditions: annealed; annealed plus hydrogenated; annealed plus ion-implanted; annealed, ion-implanted and hydrogeneted. The hydrogen induced phase transformations were also studied during the outgassing of the samples. The ion implanted was observed to retard the kinetics of the hydrogen induced phase transformations. It was also observed that the nitrogen ion implantation followed by both natural (for about 4 months) and artificial (100 0 C for 6 hours) aging treatments was beneficial to the fatigue life of both non hydrogenated and severely hydrogenated samples. (author) [pt

  5. Hydrogen-oxygen fuel cells

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jiří; Klápště, Břetislav; Velická, Jana; Sedlaříková, M.; Černý, R.

    2003-01-01

    Roč. 8, č. 1 (2003), s. 44-47 ISSN 1432-8488 R&D Projects: GA ČR GA203/02/0983; GA AV ČR IAA4032002 Institutional research plan: CEZ:AV0Z4032918 Keywords : electrocatalysis * hydrogen electrode Ionex membrane * membrane fuel cell Subject RIV: CA - Inorganic Chemistry Impact factor: 1.195, year: 2003

  6. Apparatus for combining oxygen and hydrogen

    International Nuclear Information System (INIS)

    Betz, E.C.

    1977-01-01

    An apparatus is described for catalytically combining hydrogen and oxygen which includes two concentric catalyst chambers arranged so that the outer chamber surrounds the inner chamber and the gas stream passes radially through the outer catalyst chamber. 10 claims, 2 figures

  7. An electrochemical sensor for monitoring oxygen or hydrogen in water

    International Nuclear Information System (INIS)

    Leitai Yang; Morris, D.R.; Lister, D.H.

    1997-01-01

    Preliminary studies have been done on a simple electrochemical sensor which shows promise as a cheap, robust instrument for measuring dissolved oxygen or hydrogen in water. The sensor is based upon the solid-state electrolyte ''Nafion'' (trade name of perfluorinated sulphonic acid, manufactured by DuPont Inc.). The Nafion was dissolved in a mixture of aliphatic alcohols, made into a slurry with platinum black, and applied to a ∼1 cm-square electrode made of stainless steel gauze. The potential of the electrode was measured relative to a standard calomel electrode (SCE) in acid solutions at room temperature through which mixtures of oxygen and nitrogen or hydrogen and nitrogen were bubbled. The sensor was responsive to the equilibrating gas with good reproducibility. A similar sensor without the Nafion was not at all sensitive to changes in oxygen concentration. The voltage response of the sensor showed non-Nernstian behaviour, which suggests that the electrochemical reactions at the electrode surface are complex. Further testing of the sensor is required to verify its sensitivity and responsiveness in typical reactor coolant chemistries and to demonstrate its durability over a range of temperatures. (author). 4 refs, 4 figs, 1 tab

  8. An electrochemical sensor for monitoring oxygen or hydrogen in water

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Leitai; Morris, D R; Lister, D H [University of New Brunswick, Fredericton (Canada). Dept. of Chemical Engineering

    1997-02-01

    Preliminary studies have been done on a simple electrochemical sensor which shows promise as a cheap, robust instrument for measuring dissolved oxygen or hydrogen in water. The sensor is based upon the solid-state electrolyte ``Nafion`` (trade name of perfluorinated sulphonic acid, manufactured by DuPont Inc.). The Nafion was dissolved in a mixture of aliphatic alcohols, made into a slurry with platinum black, and applied to a {approx}1 cm-square electrode made of stainless steel gauze. The potential of the electrode was measured relative to a standard calomel electrode (SCE) in acid solutions at room temperature through which mixtures of oxygen and nitrogen or hydrogen and nitrogen were bubbled. The sensor was responsive to the equilibrating gas with good reproducibility. A similar sensor without the Nafion was not at all sensitive to changes in oxygen concentration. The voltage response of the sensor showed non-Nernstian behaviour, which suggests that the electrochemical reactions at the electrode surface are complex. Further testing of the sensor is required to verify its sensitivity and responsiveness in typical reactor coolant chemistries and to demonstrate its durability over a range of temperatures. (author). 4 refs, 4 figs, 1 tab.

  9. Comparison of Langmuir probe and multipole resonance probe measurements in argon, hydrogen, nitrogen, and oxygen mixtures in a double ICP discharge

    Science.gov (United States)

    Fiebrandt, Marcel; Oberberg, Moritz; Awakowicz, Peter

    2017-07-01

    The results of a Multipole Resonance Probe (MRP) are compared to a Langmuir probe in measuring the electron density in Ar, H2, N2, and O2 mixtures. The MRP was designed for measurements in industry processes, i.e., coating or etching. To evaluate a possible influence on the MRP measurement due to molecular gases, different plasmas with increasing molecular gas content in a double inductively coupled plasma at 5 Pa and 10 Pa at 500 W are used. The determined electron densities from the MRP and the Langmuir probe slightly differ in H2 and N2 diluted argon plasmas, but diverge significantly with oxygen. In pure molecular gas plasmas, electron densities measured with the MRP are always higher than those measured with the Langmuir Probe, in particular, in oxygen containing mixtures. The differences can be attributed to etching of the tungsten wire in the Ar:O2 mixtures and rf distortion in the pure molecular discharges. The influence of a non-Maxwellian electron energy distribution function, negative ions or secondary electron emission seems to be of no or only minor importance.

  10. Normalization of oxygen and hydrogen isotope data

    Science.gov (United States)

    Coplen, T.B.

    1988-01-01

    To resolve confusion due to expression of isotopic data from different laboratories on non-corresponding scales, oxygen isotope analyses of all substances can be expressed relative to VSMOW or VPDB (Vienna Peedee belemnite) on scales normalized such that the ??18O of SLAP is -55.5% relative to VSMOW. H3+ contribution in hydrogen isotope ratio analysis can be easily determined using two gaseous reference samples that differ greatly in deuterium content. ?? 1988.

  11. Study on the preparation and stability of uranium carbide samples for the determination of oxygen, hydrogen and nitrogen by fusion under high vacuum; Estudio sobre la preparacion y estabilidad de las muestras de carburo de uranio para la determinacion de oxigeno, hidrogeno y nitrogeno por fusion en alto vacio

    Energy Technology Data Exchange (ETDEWEB)

    Perez Garcia, M

    1966-07-01

    In view of the high reactivity of uranium carbide, the method employed for the preparation of the sample for the analysis of its gas content: oxygen, hydrogen and nitrogen, has a decisive influence on the analytical results. The variation in the O{sub 2}, H{sub 2} and N{sub 2} content of the uranium carbide has been studied in this paper with the methods utilized for the sample preparation (grinding and cutting). (Author) 9 refs.

  12. Method for the production of nitrogen and hydrogen in a fuel cell

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The invention relates to a method for the production of nitrogen and hydrogen in a fuel cell with an anode and a cathode, comprising the steps of inducing a combustion in a fuel cell, wherein a fuel is supplied to the anode, and air is supplied to the cathode, and with oxygen in the air being

  13. Hydrogen and oxygen production with nuclear heat

    International Nuclear Information System (INIS)

    Barnert, H.

    1979-09-01

    After some remarks on the necessity of producing secondary energy sources for the heat market, the thermodynamic fundamentals of the processes for producing hydrogen and oxygen from water on the basis of nuclear thermal energy are briefly explained. These processes are summarized as one class of the 'thermochemical cycle process' for the conversion of thermal into chemical energy. A number of thermochemical cycle processes are described. The results of the design work so far are illustrated by the example of the 'sulphuric acid hybrid process'. The nuclear heat source of the thermochemical cycle process is the high-temperature reactor. Statements concerning rentability are briefly commented upon, and the research and development efforts and expenditure required are sketched. (orig.) 891 GG/orig. 892 MB [de

  14. Hydrogen/oxygen injection stopping method for nuclear power plant and emergent hydrogen/oxygen injection device

    International Nuclear Information System (INIS)

    Ishida, Ryoichi; Ota, Masamoto; Takagi, Jun-ichi; Hirose, Yuki

    1998-01-01

    The present invention provides a device for suppressing increase of electroconductivity of reactor water during operation of a BWR type reactor, upon occurrence of reactor scram of the plant or upon stopping of hydrogen/oxygen injection due to emergent stoppage of an injection device so as not to deteriorate the integrity of a gas waste processing system upon occurrence of scram. Namely, when injection of hydrogen/oxygen is stopped during plant operation, the injection amount of hydrogen is reduced gradually. Subsequently, injection of hydrogen is stopped. With such procedures, the increase of electroconductivity of reactor water can be suppressed upon stoppage of hydrogen injection. When injection of hydrogen/oxygen is stopped upon shut down of the plant, the amount of hydrogen injection is changed depending on the change of the feedwater flow rate, and then the plant is shut down while keeping hydrogen concentration of feedwater to a predetermined value. With such procedures, increase of the reactor water electroconductivity can be suppressed upon stoppage of hydrogen injection. Upon emergent stoppage of the hydrogen/oxygen injection device, an emergent hydrogen/oxygen injection device is actuated to continue the injection of hydrogen/oxygen. With such procedures, elevation of reactor water electroconductivity can be suppressed. (I.S.)

  15. Hydrogen and nitrogen control in ladle and casting operations

    Energy Technology Data Exchange (ETDEWEB)

    Fruehan, R. J. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Misra, Siddhartha [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2005-01-15

    In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly.

  16. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    OpenAIRE

    K. C. CHONG; S. O. LAI; H. S. THIAM; H. C. TEOH; S. L. HENG

    2016-01-01

    The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA). Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology...

  17. Oxygen, nitrogen and air broadening of HCN spectral lines at terahertz frequencies

    International Nuclear Information System (INIS)

    Yang Chun; Buldyreva, Jeanna; Gordon, Iouli E.; Rohart, Francois; Cuisset, Arnaud; Mouret, Gael; Bocquet, Robin; Hindle, Francis

    2008-01-01

    The room-temperature nitrogen- and oxygen-broadening coefficients of hydrogen cyanide spectral lines have been measured in the 0.5-3 THz (17-100 cm -1 ) frequency range (purely rotational transitions with 5≤J≤36) by a continuous-wave terahertz spectrometer based on a photomixing source. An improved version of the Robert and Bonamy semiclassical formalism has been used to calculate the oxygen-broadening coefficients and resulted in a good agreement with these measurements. The nitrogen and oxygen data are combined to provide the air-broadening coefficients as used by the HITRAN database. A significant difference is observed between the measured and tabulated values for transitions with high values of the rotational quantum number. A new polynomial representation is suggested for inclusion in HITRAN. A similar polynomial expression has been derived for the nitrogen broadening to aid the studies of Titan's atmosphere

  18. Oxygen, nitrogen and air broadening of HCN spectral lines at terahertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Yang Chun [Laboratoire de Physico-Chimie de l' Atmosphere, UMR CNRS 8101, Universite du Littoral Cote d' Opale, 189A Av. Maurice Schumann, 59140 Dunkerque (France); Buldyreva, Jeanna [Institut UTINAM, UMR CNRS 6213, Universite de Franche-Comte, 16, Route de Gray, 25030 Besancon Cedex (France); Gordon, Iouli E. [Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, 60 Garden Street, Cambridge, MA 02138-1516 (United States); Rohart, Francois [Laboratoire de Physique des Lasers, Atomes et Molecules, UMR CNRS 8523, Batiment P5-135, Universite de Lille 1, 59655 Villeneuve d' Ascq Cedex (France); Cuisset, Arnaud; Mouret, Gael; Bocquet, Robin [Laboratoire de Physico-Chimie de l' Atmosphere, UMR CNRS 8101, Universite du Littoral Cote d' Opale, 189A Av. Maurice Schumann, 59140 Dunkerque (France); Hindle, Francis [Laboratoire de Physico-Chimie de l' Atmosphere, UMR CNRS 8101, Universite du Littoral Cote d' Opale, 189A Av. Maurice Schumann, 59140 Dunkerque (France)], E-mail: francis.hindle@univ-littoral.fr

    2008-11-15

    The room-temperature nitrogen- and oxygen-broadening coefficients of hydrogen cyanide spectral lines have been measured in the 0.5-3 THz (17-100 cm{sup -1}) frequency range (purely rotational transitions with 5{<=}J{<=}36) by a continuous-wave terahertz spectrometer based on a photomixing source. An improved version of the Robert and Bonamy semiclassical formalism has been used to calculate the oxygen-broadening coefficients and resulted in a good agreement with these measurements. The nitrogen and oxygen data are combined to provide the air-broadening coefficients as used by the HITRAN database. A significant difference is observed between the measured and tabulated values for transitions with high values of the rotational quantum number. A new polynomial representation is suggested for inclusion in HITRAN. A similar polynomial expression has been derived for the nitrogen broadening to aid the studies of Titan's atmosphere.

  19. Photoelectrochemical water splitting in separate oxygen and hydrogen cells

    Science.gov (United States)

    Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner

    2017-06-01

    Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.

  20. Hydrogen, nitrogen and syngas enriched diesel combustion

    OpenAIRE

    Christodoulou, Fanos

    2014-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University On-board hydrogen and syngas production is considered as a transition solution from fossil fuel to hydrogen powered vehicles until problems associated with hydrogen infrastructure, distribution and storage are resolved. A hydrogen- or syngas-rich stream, which substitutes part of the main hydrocarbon fuel, can be produced by supplying diesel fuel in a fuel-reforming reactor, integrated within ...

  1. Evaluation of containment hydrogen and oxygen analyzers

    International Nuclear Information System (INIS)

    Booth, H.R.; Stanley, L.

    1993-02-01

    This report contains information concerning operation and calibration of detectors utilized at US nuclear power plants for determining concentration of hydrogen and oxygen within the containment structure.A study was prompted by reports that several plants had experienced problems in operating, calibrating, and maintaining the detectors supplied by various vendors. A survey of all nuclear power plants was conducted to identify the specific problems. Discussions were held with key vendors concerning these problems. The major area of interest was centered around problems associated with calibration of the detectors. Many variations from plant-to-plant concerning calibration accuracies, calibration time periods, and frequencies were identified. Another area of prime consideration involved variations as to maintenance of the equipment. Some plants devoted considerable effort to in-house maintenance of equipment while others relied heavily on the vendor for such maintenance. A workshop was conducted with key utility and vendor personnel in attendance to discuss findings of the survey. It was resolved that a much improved coordinated effort between the vendors and utilities would be initiated as a means to resolve existing problems

  2. Reactivity of amino acid anions with nitrogen and oxygen atoms.

    Science.gov (United States)

    Wang, Zhe-Chen; Li, Ya-Ke; He, Sheng-Gui; Bierbaum, Veronica M

    2018-02-14

    For many decades, astronomers have searched for biological molecules, including amino acids, in the interstellar medium; this endeavor is important for investigating the hypothesis of the origin of life from space. The space environment is complex and atomic species, such as nitrogen and oxygen atoms, are widely distributed. In this work, the reactions of eight typical deprotonated amino acids (glycine, alanine, cysteine, proline, aspartic acid, histidine, tyrosine, and tryptophan) with ground state nitrogen and oxygen atoms are studied by experiment and theory. These amino acid anions do not react with nitrogen atoms. However, the reactions of these ions with oxygen atoms show an intriguing variety of ionic products and the reaction rate constants are of the order of 10 -10 cm 3 s -1 . Density functional calculations provide detailed mechanisms of the reactions, and demonstrate that spin conversion is essential for some processes. Our study provides important data and insights for understanding the kinetic and dynamic behavior of amino acids in space environments.

  3. The equilibrium hydrogen pressure-temperature diagram for the liquid sodium-hydrogen-oxygen system

    International Nuclear Information System (INIS)

    Knights, C.F.; Whittingham, A.C.

    1982-01-01

    The underlying equilibria in the sodium-hydrogen-oxygen system are presented in the form of a completmentary hydrogen equilibrium pressure-temperature diagram, constructed by using published data and supplemented by experimental measurements of hydrogen equilibrium pressures over condensed phases in the system. Possible applications of the equilibrium pressure-temperature phase diagram limitations regarding its use are outlined

  4. Range measurements of keV hydrogen ions in solid oxygen and carbon monoxide

    International Nuclear Information System (INIS)

    Schou, J.; Soerensen, H.; Andersen, H.H.; Nielsen, M.; Rune, J.

    1984-01-01

    Ranges of 1.3-3.5 keV/atom hydrogen and deuterium molecular ions have been measured by a thin-film reflection method. The technique, used here for range measurements in solid oxygen and carbon monoxide targets, is identical to the one used previously for range measurements in hydrogen and nitrogen. The main aim was to look for phase-effects, i.e. gas-solid differences in the stopping processes. While measured ranges in solid oxygen were in agreement with known gas data, the ranges in solid carbon monoxide were up to 50% larger than those calculated from gas-stopping data. The latter result agrees with that previously found for solid nitrogen. (orig.)

  5. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    OpenAIRE

    Hannah B Vander Zanden; David X Soto; Gabriel J Bowen; Keith A Hobson; Keith A Hobson

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicat...

  6. Expanding the Isotopic Toolbox: Applications of Hydrogen and Oxygen Stable Isotope Ratios to Food Web Studies

    OpenAIRE

    Vander Zanden, Hannah B.; Soto, David X.; Bowen, Gabriel J.; Hobson, Keith A.

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicatio...

  7. Kinetics of liquid lithium reaction with oxygen-nitrogen mixtures

    International Nuclear Information System (INIS)

    Gil, T.K.; Kazimi, M.S.

    1986-01-01

    A series of experiments have been conducted in order to characterize the kinetics of lithium chemical reaction with a mixture of oxygen and nitrogen. Three mixed gas compositions were used; 80% N 2 and 20% O 2 , 90% N 2 and 10% O 2 , and 95% N 2 and 5% O 2 . The reaction rate was obtained as a function of lithium temperature and the oxygen fraction. Liquid lithium temperature varied from 400 to 1100 0 C. By varying the composition, the degree of inhibition of the lithium-nitrogen reaction rate due to the presence of oxygen was observed. The results indicate that the lithium-nitrogen reaction rate depended on both the fraction of oxygen present and lithium temperature. The lithium nitride layer formed from the reaction also had a significant inhibition effect on the lithium-nitrogen reaction rate while the lithium-oxygen reaction rate was not as greatly hindered. LITFIRE, a computer code which simulates temperature and pressure history in a containment building following lithium spills, was modified by including (1) an improved model for the lithium-nitrogen reaction rate and (2) a model for the lithium-CO 2 reaction. LITFIRE was used to simulate HEDL's LC-2 and LA-5 experiments, and the predicted temperatures and pressures were in a reasonable agreement. Furthermore, LITFIRE was applied to a prototypical fusion reactor containment in order to simulate the consequences of a lithium spill accident. The result indicated that if nitrogen was used as containment building gas during the accident, the consequences of the accident would be less severe than those with air. The pressure rise in the building was found to be reduced by 50% and the maximum temperature of the combustion zone was limited to 900 0 C instead of 1200 0 C in the case of air

  8. Thermotransport of nitrogen and oxygen in β-zirconium

    NARCIS (Netherlands)

    Vogel, D.L.; Rieck, G.D.

    1971-01-01

    An investigation of thermotransport of nitrogen in ß-zirconium is reported. Using a method previously described, the heat of transport turned out to be 25.1 kcal/mole with a standard deviation of 2.5 kcal/mole. The formerly published value of the heat of transport of oxygen in ß-zirconium, viz. 20

  9. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors

    Science.gov (United States)

    Liu, Haiyan; Song, Huaihe; Chen, Xiaohong; Zhang, Su; Zhou, Jisheng; Ma, Zhaokun

    2015-07-01

    A kind of nitrogen- and oxygen-containing activated carbon nanotubes (ACNTs) has been prepared by carbonization and activation of polyaniline nanotubes obtained by rapidly mixed reaction. The ACNTs show oxygen content of 15.7% and nitrogen content of 2.97% (atomic ratio). The ACNTs perform high capacitance and good rate capability (327 F g-1 at the current density of 10 A g-1) when used as the electrode materials for supercapacitors. Hydrogen reduction has been further used to investigate the effects of surface functional groups on the electrochemical performance. The changes for both structural component and electrochemical performance reveal that the quinone oxygen, pyridinic nitrogen, and pyrrolic nitrogen of carbon have the most obvious influence on the capacitive property because of their pseudocapacitive contributions.

  10. Oxygen etching mechanism in carbon-nitrogen (CNx) domelike nanostructures

    International Nuclear Information System (INIS)

    Acuna, J. J. S.; Figueroa, C. A.; Kleinke, M. U.; Alvarez, F.; Biggemann, D.

    2008-01-01

    We report a comprehensive study involving the ion beam oxygen etching purification mechanism of domelike carbon nanostructures containing nitrogen. The CN x nanodomes were prepared on Si substrate containing nanometric nickel islands catalyzed by ion beam sputtering of a carbon target and assisting the deposition by a second nitrogen ion gun. After preparation, the samples were irradiated in situ by a low energy ion beam oxygen source and its effects on the nanostructures were studied by x-ray photoelectron spectroscopy in an attached ultrahigh vacuum chamber, i.e., without atmospheric contamination. The influence of the etching process on the morphology of the samples and structures was studied by atomic force microscopy and field emission gun-secondary electron microscopy, respectively. Also, the nanodomes were observed by high resolution transmission electron microscopy. The oxygen atoms preferentially bond to carbon atoms by forming terminal carbonyl groups in the most reactive parts of the nanostructures. After the irradiation, the remaining nanostructures are grouped around two well-defined size distributions. Subsequent annealing eliminates volatile oxygen compounds retained at the surface. The oxygen ions mainly react with nitrogen atoms located in pyridinelike structures

  11. Hydrogen-Oxygen PEM Regenerative Fuel Cell at NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.

    2004-01-01

    The NASA Glenn Research Center has constructed a closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) to explore its potential use as an energy storage device for a high altitude solar electric aircraft. Built up over the last 2 years from specialized hardware and off the shelf components the Glenn RFC is a complete "brassboard" energy storage system which includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for re-use during the next cycle. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It specific developmental functions include: (1) Test fuel cells and fuel cell components under repeated closed-cycle operation (nothing escapes; everything is used over and over again). (2) Simulate diurnal charge-discharge cycles (3) Observe long-term system performance and identify degradation and loss mechanisms. (4) Develop safe and convenient operation and control strategies leading to the successful development of mission-capable, flight-weight RFC's.

  12. Hydrogenation of the ``new oxygen donor'' traps in silicon

    Science.gov (United States)

    Hölzlein, K.; Pensl, G.; Schulz, M.; Johnson, N. M.

    1986-04-01

    Hydrogenation was performed at moderate temperatures (≤300 °C) on Czochralski-grown Si samples that contained high concentrations of the oxygen-related ``new donor'' (ND) traps. From deep level transient spectroscopy, a comparison of spectra from untreated reference and hydrogenated material reveals that two different types of defect states contribute to the continuous energy distribution of the ND traps. The experimental and theoretical results further establish the ``SiOx interface'' model for the ND defects.

  13. Influence of hydrogen on the oxygen solubility in Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Guilbert-Banti, Séverine, E-mail: severine.guilbert@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, SEREX/LE2M, Bâtiment 327, BP3, 13115 Saint Paul lez Durance (France); Lacote, Pauline; Taraud, Gaëlle [Institut de Radioprotection et de Sûreté Nucléaire, SEREX/LE2M, Bâtiment 327, BP3, 13115 Saint Paul lez Durance (France); Berger, Pascal [NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette (France); Desquines, Jean; Duriez, Christian [Institut de Radioprotection et de Sûreté Nucléaire, SEREX/LE2M, Bâtiment 327, BP3, 13115 Saint Paul lez Durance (France)

    2016-02-15

    Despite the influence of hydrogen on the behavior of zirconium fuel cladding in many nuclear safety issues, the pseudo-binary Zircaloy-4 – oxygen phase diagram still lacks of data, especially above 1000 °C. The aim of this study was to provide experimental data to better assess the influence of hydrogen on the oxygen solubility in Zircaloy-4. Homogenized two-phase Zircaloy-4 samples were elaborated from 300 to 1000 wppm pre-hydrided samples. Local distributions were characterized thoroughly using Electron Probe Micro-Analysis (EPMA) for oxygen and Elastic Recoil Detection Analysis (ERDA) for hydrogen. The data obtained in this work were included in the pseudo-binary Zircaloy-4 – oxygen phase diagram and have shown that hydrogen has limited influence on the α + β → β transus. Regarding the α → α + β transus, no influence of hydrogen concentration in the α phase below 400 wppm was evidenced.

  14. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane

    International Nuclear Information System (INIS)

    Engelmann Pirez, M.

    2004-12-01

    This work deals with the selective catalytic reduction of nitrogen oxides (NO x ), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N 2 , in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO 3 , on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  15. 40 CFR 415.490 - Applicability; description of the oxygen and nitrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... oxygen and nitrogen production subcategory. 415.490 Section 415.490 Protection of Environment... POINT SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.490 Applicability; description of the oxygen and nitrogen production subcategory. The provisions of this subpart are applicable to...

  16. The G-factor in molecular nitrogen, oxygen and air

    International Nuclear Information System (INIS)

    Mentzoni, M.

    1987-06-01

    The electron energy relaxation in molecular nitrogen and oxygen is found experimentally using the methods of microwave cross-modulation, transport coeffisients, and flowing afterglows. On the basis of these results the excess electron energy loss factor, the G-factor, has been computed for nitrogen, oxygen and air as a function of electron temperature for various published effective electron collision frequencies. It is shown that the lack of a definitive theory for rotational excitation of O 2 , and very conflicting experimental results for this gas, yield a G-factor in air with a large degree of uncertainty. In spite of this uncertanty it is shown that the formula G = 18.9xT -1.5 , with T being the electron temperature in deg. K, agrees within 15% of the results obtained from swarm data and microwave cross-modulation

  17. Oxygen and nitrogen diffusion in coal-molecular sieve

    International Nuclear Information System (INIS)

    Stefanescu, Doina Maria

    1996-01-01

    Recently, the air separation process based on selective adsorption of carbon-molecular sieves has been developed strongly. The separation is based on the system kinematics and depends on the oxygen diffusion in adsorber micropores. The oxygen is preferentially adsorbed and in given conditions it is possible to obtain nitrogen of high purity. Recent theoretical and experimental studies concerning the production of nitrogen by PSA process have shown that the obtained performances can not be described by a constant diffusion model. The paper present the 'dual' model assumed for O 2 and N 2 diffusion through molecular sieve as well as the experimental data obtained in the adsorption study on carbon material produced at ICIS to determine the diffusivity values in micropores

  18. Nitrogen Oxygen Recharge System for the International Space Station

    Science.gov (United States)

    Williams, David E.; Dick, Brandon; Cook, Tony; Leonard, Dan

    2009-01-01

    The International Space Station (ISS) requires stores of Oxygen (O2) and Nitrogen (N2) to provide for atmosphere replenishment, direct crew member usage, and payload operations. Currently, supplies of N2/O2 are maintained by transfer from the Space Shuttle. Following Space Shuttle is retirement in 2010, an alternate means of resupplying N2/O2 to the ISS is needed. The National Aeronautics and Space Administration (NASA) has determined that the optimal method of supplying the ISS with O2/N2 is using tanks of high pressure N2/O2 carried to the station by a cargo vehicle capable of docking with the ISS. This paper will outline the architecture of the system selected by NASA and will discuss some of the design challenges associated with this use of high pressure oxygen and nitrogen in the human spaceflight environment.

  19. Flow-Control Unit For Nitrogen And Hydrogen Gases

    Science.gov (United States)

    Chang, B. J.; Novak, D. W.

    1990-01-01

    Gas-flow-control unit installed and removed as one piece replaces system that included nine separately serviced components. Unit controls and monitors flows of nitrogen and hydrogen gases. Designed for connection via fluid-interface manifold plate, reducing number of mechanical fluid-interface connections from 18 to 1. Unit provides increasing reliability, safety, and ease of maintenance, and for reducing weight, volume, and power consumption.

  20. Foil bearing performance in liquid nitrogen and liquid oxygen

    Science.gov (United States)

    Genge, Gary G.; Saville, Marshall; Gu, Alston

    1993-01-01

    Space transfer vehicles and other power and propulsion systems require long-life turbopumps. Rolling-element bearings used in current turbopumps do not have sufficient life for these applications. Process fluid foil bearings have established long life, with exceptional reliability, over a wide range of temperatures and fluids in many high-speed turbomachinery applications. However, actual data on bearing performance in cryogenic fluids has been minimal. The National Aeronautics and Space Administration (NASA) and AlliedSignal Aerospace Systems and Equipment (ASE) have attempted to characterize the leaf-type compliant foil bearing in oxygen and nitrogen. The work performed under a joint internal research and development program between Marshall Space Flight Center (MSFC) and ASE demonstrated that the foil bearing has load capacities of at least 266 psi in liquid oxygen and 352 psi in liquid nitrogen. In addition, the bearing demonstrated a direct damping coefficient of 40 to 50 lb-sec/in. with a damping ratio of .7 to 1.4 in. liquid nitrogen using a bearing sized for upper-stage turbopumps. With the results from this testing and the years of successful use in air cycle machines and other applications, leaf-type compliant foil bearings are ready for testing in liquid oxygen turbopumps.

  1. Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mir, Showkat H. [Centre for Nano Science, Central University of Gujarat, Gandhinagar 382030 (India); Chakraborty, Sudip, E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in; Wärnå, John [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Uppsala 75120 (Sweden); Jha, Prakash C., E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in [School of Applied Material Sciences, Central University of Gujarat, Gandhinagar 382030 (India); Soni, Himadri [Lehrstuhl für Theoretische Chemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen (Germany); Jha, Prafulla K. [Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002 (India); Ahuja, Rajeev [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Uppsala 75120 (Sweden); Department of Materials and Engineering, Royal Institute of Technology (KTH), 10044 Stockholm (Sweden)

    2016-08-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of the boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.

  2. Kinetics of irreversible thermal decomposition of dissociating nitrogen dioxide with nitrogen oxide or oxygen additions

    International Nuclear Information System (INIS)

    Gvozdev, A.A.

    1987-01-01

    The effect of NO or O 2 admixtures on kinetics of the irreversible thermal decomposition of nitrogen dioxide at temperatures 460-520 deg C and pressures 4-7 MPa has been studied. It follows from experimental data that the rate of N 2 O 4 formation reduces with the increase of partial pressure of oxygen or decrease of partial pressure of nitrogen oxide. The same regularity is seen for the rate of nitrogen formation. The rate constants of N 2 O formation in dissociating nitrogen tetroxide with oxygen or nitrogen oxide additions agree satisfactorily with previously published results, obtained in stoichiometric mixtures. The appreciable discrepancy at 520 deg C is bind with considerable degree of nitrogen oxide transformation which constitutes approximately 14%. It is determined that the kinetics of formation of the products of irreversible N 2 O and N 2 decomposition in stoichiometric and non-stoichiometric 2NO 2 ↔ 2NO+O 2 mixtures is described by identical 3NO → N 2 O+NO 2 and N 2 O+NO → N 2 +NO 2 reactions

  3. Review of literature on catalytic recombination of hydrogen--oxygen

    International Nuclear Information System (INIS)

    Homsy, R.V.; Glatron, C.A.

    1968-01-01

    The results are reported of a literature search for information concerning the heterogeneous, gas phase, catalytic hydrogen-oxygen recombination. Laboratory scale experiments to test the performance of specific metal oxide catalysts under conditions simulating the atmosphere within a nuclear reactor containment vessel following a loss-of-coolant blowdown accident are suggested

  4. Hydrogen ion (Ph), ammonia, dissolved oxygen and nitrite ...

    African Journals Online (AJOL)

    Hydrogen ion (pH), dissolved oxygen, ammonia and nitrite concentrations were studied monthly in two systems (re-circulatory and semi-intensive of 3 m2 sizes) each for six months. The systems were each stocked with 200 g of Clarias gariepinus fingerlings. Results showed that all parameters were within acceptable limits ...

  5. New electrocatalysts for hydrogen-oxygen fuel cells

    Science.gov (United States)

    Cattabriga, R. A.; Giner, J.; Parry, J.; Swette, L. L.

    1970-01-01

    Platinum-silver, palladium-gold, and platinum-gold alloys serve as oxygen reduction catalysts in high-current-density cells. Catalysts were tested on polytetrafluoroethylene-bonded cathodes and a hydrogen anode at an operating cell temperature of 80 degrees C.

  6. The reactions of oxygen and hydrogen with liquid sodium

    International Nuclear Information System (INIS)

    Ullmann, H.

    1981-01-01

    Results so far available as to the reactions and chemical equilibrium of oxygen and hydrogen with liquid sodium have been analyzed critically. The enthalpy values of the reactions have been discussed and supplemented on the basis of corresponding BORN-HABER cycles. The concentration and temperature functions of the hydrogen equilibrium pressure were deduced from experimental results. In relation to the solubility data the solid phases coexisting with liquid sodium in the ternary system Na-O-H have been discussed. The reaction of oxygen with hydrogen in diluted solution in liquid sodium has been investigated in more detail. Interaction coefficients, and the temperature functions of the free energy of formation and the equilibrium constant have been determined. (orig.)

  7. High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ruquan; Liu, Yuanyue; Peng, Zhiwei; Wang, Tuo; Jalilov, Almaz S.; Yakobson, Boris I.; Wei, Su-Huai; Tour, James M.

    2017-01-18

    The development of catalytic materials for the hydrogen oxidation, hydrogen evolution, oxygen reduction or oxygen evolution reactions with high reaction rates and low overpotentials are key goals for the development of renewable energy. We report here Ru(0) nanoclusters supported on nitrogen-doped graphene as high-performance multifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), showing activities similar to that of commercial Pt/C in alkaline solution. For HER performance in alkaline media, sample Ru/NG-750 reaches 10 mA cm-2 at an overpotential of 8 mV with a Tafel slope of 30 mV dec-1. The high HER performance in alkaline solution is advantageous because most catalysts for ORR and oxygen evolution reaction (OER) also prefer alkaline solution environment whereas degrade in acidic electrolytes. For ORR performance, Ru/NG effectively catalyzes the conversion of O2 into OH- via a 4e process at a current density comparable to that of Pt/C. The unusual catalytic activities of Ru(0) nanoclusters reported here are important discoveries for the advancement of renewable energy conversion reactions.

  8. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Xu, Jingjing; Lu, Shiyao; Chen, Xu; Wang, Jianan; Zhang, Bo; Zhang, Xinyu; Xiao, Chunhui; Ding, Shujiang

    2017-12-01

    Investigating low-cost and highly active electrocatalysts for oxygen reduction reactions (ORR) is of crucial importance for energy conversion and storage devices. Herein, we design and prepare mesoporous carbon supported nitrogen-doped carbon by pyrolysis of polyaniline coated on CMK-3. This electrocatalyst exhibits excellent performance towards ORR in alkaline media. The optimized nitrogen-doped mesoporous electrocatalyst show an onset potential (E onset) of 0.95 V (versus reversible hydrogen electrode (RHE)) and half-wave potential (E 1/2) of 0.83 V (versus RHE) in 0.1 M KOH. Furthermore, the as-prepared catalyst presents superior durability and methanol tolerance compared to commercial Pt/C indicating its potential applications in fuel cells and metal-air batteries.

  9. Hydrogen, carbon and oxygen determination in proxy material samples using a LaBr3:Ce detector

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Al-Matouq, Faris A.; Khiari, F.Z.; Isab, A.A.; Raashid, M.; Khateeb-ur-Rehman

    2013-01-01

    Hydrogen, carbon and oxygen concentrations were measured in caffeine, urea, ammonium acetate and melamine bulk samples via 14 MeV neutron inelastic scattering using a LaBr 3 :Ce detector. The samples tested herein represent drugs, explosives and benign materials, respectively. Despite its intrinsic activity, the LaBr 3 :Ce detector performed well in detecting the hydrogen, carbon and oxygen elements. Because 5.1 MeV nitrogen gamma rays interfere with silicon and calcium prompt gamma rays from the room background, the nitrogen peak was not detected in the samples. An excellent agreement was observed between the experimental and theoretical yields of 2.22, 4.43 and 6.13 MeV gamma rays from the analyzed samples as a function of H, C and O concentrations, respectively. Within statistical errors, the minimum detectable concentration (MDC) of hydrogen, carbon and oxygen elements in the tested materials were consistent with previously reported MDC values for these elements measured in hydrocarbon samples. - Highlights: • Hydrogen, carbon and oxygen concentration measurement in bulk samples using 14 MeV neutrons induced prompt gamma rays. • Prompt gamma analysis of narcotics and explosive proxy materials e.g. ammonium acetate, caffeine, urea and melamine Bulk samples. • Prompt gamma detection using large cylindrical 76×76 mm 2 (diameter x height ) LaBr 3 :Ce detector. • Carbon/oxygen elemental ratio measurement from explosive and narcotics proxy material samples

  10. Hydrogen and oxygen concentrations in IXCs: A compilation

    International Nuclear Information System (INIS)

    Liljegren, L.M.; Terrones, G.T.; Melethil, P.K.

    1996-06-01

    This paper contains four reports and two internal letters that address the estimation of hydrogen and oxygen concentrations in ion exchange columns that treat the water of the K-East and K-West Basins at Hanford. The concern is the flammability of this mixture of gases and planning for safe transport during decommissioning. A transient will occur when the hydrogen filter is temporarily blocked by a sandbag. Analyses are provided for steady-state, transients, and for both wet and dry resins

  11. Preparation and use of nitrogen (2) oxide of special purity for production of oxygen and nitrogen isotopes

    International Nuclear Information System (INIS)

    Polevoj, A.S.

    1989-01-01

    Problems related with production of oxygen and nitrogen isotopes by means of low-temperature rectification of nitrogen (2) oxide are analyzed. Special attention, in particular, is payed to the techniques of synthesis and high purification of initial NO, utilization of waste flows formed during isotope separation. Ways to affect the initial isotope composition of nitrogen oxide and the rate of its homogeneous-isotope exchange, which provide for possibility of simultaneous production of oxygen and nitrogen isotopes by means of NO rectification, are considered. Description of a new technique for high purification of nitrogen oxide, prepared at decomposition of nitric acid by sulfurous anhydride, suggested by the author is presented

  12. Nitrogen-Doped Graphene for Photocatalytic Hydrogen Generation.

    Science.gov (United States)

    Chang, Dong Wook; Baek, Jong-Beom

    2016-04-20

    Photocatalytic hydrogen (H2 ) generation in a water splitting process has recently attracted tremendous interest because it allows the direct conversion of clean and unlimited solar energy into the ideal energy resource of H2 . For efficient photocatalytic H2 generation, the role of the photocatalyst is critical. With increasing demand for more efficient, sustainable, and cost-effective photocatalysts, various types of semiconductor photocatalysts have been intensively developed. In particular, on the basis of its superior catalytic and tunable electronic properties, nitrogen-doped graphene is a potential candidate for a high-performance photocatalyst. Nitrogen-doped graphene also offers additional advantages originating from its unique two-dimensional sp(2) -hybridized carbon network including a large specific surface area and exceptional charge transport properties. It has been reported that nitrogen-doped graphene can play diverse but positive functions including photo-induced charge acceptor/meditator, light absorber from UV to visible light, n-type semiconductor, and giant molecular photocatalyst. Herein, we summarize the recent progress and general aspects of nitrogen-doped graphene as a photocatalyst for photocatalytic H2 generation. In addition, challenges and future perspectives in this field are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. SPE (tm) regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications

    Science.gov (United States)

    Mcelroy, J. F.

    1990-01-01

    Viewgraphs on SPE regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications are presented. Topics covered include: hydrogen-oxygen regenerative fuel cell energy storage system; electrochemical cell reactions; SPE cell voltage stability; passive water removal SPE fuel cell; fuel cell performance; SPE water electrolyzers; hydrophobic oxygen phase separator; hydrophilic/electrochemical hydrogen phase separator; and unitized regenerative fuel cell.

  14. The formation of nitrogeneous compounds in the γ-radiolyses of liquid nitrogen solutions of hydrogen, methane, and ethane

    International Nuclear Information System (INIS)

    Horigome, Keiichi; Hirokami, Shun-ichi; Sato, Shin

    1978-01-01

    The γ-radiolyses of liquid nitrogen solutions of hydrogen, methane, and ethane have been reinvestigated. A complete survey of nitrogen-containing products has been attempted. The nitrogeneous compounds observed were ammonia (0.7) and hydrogen azide (0.02) in the case of hydrogen, ammonia (0.3), hydrogen cyanide (0.1), methyl azide (0.01), and a polymer in the case of methane, and ammonia (0.3), hydrogen cyanide (0.05), acetonitrile (0.04), ethyl azide (0.01), and a polymer in the case of ethane. The values in parentheses are the G-values obtained at optimum conditions. The hydrolysis of the polymer obtained with methane gave formaldehyde in amounts which correspond to the fact that the G-value of the nitrogen atoms which were converted into the polymer is about 1.0. In order to explain these results, possible reaction mechanisms are discussed. (auth.)

  15. Conversion rate of para-hydrogen to ortho-hydrogen by oxygen: implications for PHIP gas storage and utilization.

    Science.gov (United States)

    Wagner, Shawn

    2014-06-01

    To determine the storability of para-hydrogen before reestablishment of the room temperature thermal equilibrium mixture. Para-hydrogen was produced at near 100% purity and mixed with different oxygen quantities to determine the rate of conversion to the thermal equilibrium mixture of 75: 25% (ortho: para) by detecting the ortho-hydrogen (1)H nuclear magnetic resonance using a 9.4 T imager. The para-hydrogen to ortho-hydrogen velocity constant, k, near room temperature (292 K) was determined to be 8.27 ± 1.30 L/mol · min(-1). This value was calculated utilizing four different oxygen fractions. Para-hydrogen conversion to ortho-hydrogen by oxygen can be minimized for long term storage with judicious removal of oxygen contamination. Prior calculated velocity rates were confirmed demonstrating a dependence on only the oxygen concentration.

  16. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    K. C. CHONG

    2016-07-01

    Full Text Available The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA. Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology in gas separation as it requires low energy consumption and relatively moderate production volume, if compared to the conventional gas production techniques. These advantages have spurred much interest from industries and academics to speed up the commercial viability of the O2/N2 separation via membrane technology. In this review, the conventional and membrane technologies in O2/N2 separation, as well as recent development of membrane fabrication techniques and materials are reviewed. The latest membrane performance in O2/N2 separation is also tabulated and discussed.

  17. Performance optimization of a PEM hydrogen-oxygen fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate t...

  18. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  19. Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet Flames

    Science.gov (United States)

    2016-05-15

    Conference Paper 3. DATES COVERED (From - To) 18 Mar 2016 – 15 May 2016 4. TITLE AND SUBTITLE Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet...perform, display, or disclose the work. 13. SUPPLEMENTARY NOTES For presentation at 28th Annual Conference on Liquid Atomization and Spray Systems...serious problems in the development of liquid rocket engines. In order to understand and predict them, it is necessary to understand how representative

  20. Dissolved hydrogen and oxygen sensors using semiconductor devices

    International Nuclear Information System (INIS)

    Hara, Nobuyoshi; Sugimoto, Katsuhisa

    1995-01-01

    The concentrations of DH and DO in aqueous solution are the factors that determine the equilibrium potential of hydrogen and oxygen electrode reactions, respectively, and are the quantities which directly related to the rates of hydrogen generation type and oxygen consumption type corrosion reactions, therefore, they have the important meaning in the electrochemistry of corrosion. In the hydrogen injection into BWR cooling water, the concentration of hydrogen must be controlled strictly, accordingly DH and DO sensors and electrochemical potential sensors are required. For the chemical sensors used in reactor cooling water, the perfectly solid state sensors made of high corrosion resistance materials, which are small size and withstand high temperature and high pressure, must be developed. The structure and the characteristics of the semiconductor devices used as gas sensors, and the principles of DH and DO sensors are described. If the idea of porous or discontinuous membrane gate is developed, the ion sensor of solid structure with one-body reference electrode may be made. (K.I.)

  1. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species

    International Nuclear Information System (INIS)

    Roberts, Ruth A.; Smith, Robert A.; Safe, Stephen; Szabo, Csaba; Tjalkens, Ronald B.; Robertson, Fredika M.

    2010-01-01

    'Oxidative and Nitrative Stress in Toxicology and Disease' was the subject of a symposium held at the EUROTOX meeting in Dresden 15th September 2009. Reactive oxygen (ROS) and reactive nitrogen species (RNS) produced during tissue pathogenesis and in response to viral or chemical toxicants, induce a complex series of downstream adaptive and reparative events driven by the associated oxidative and nitrative stress. As highlighted by all the speakers, ROS and RNS can promote diverse biological responses associated with a spectrum of disorders including neurodegenerative/neuropsychiatric and cardiovascular diseases. Similar pathways are implicated during the process of liver and skin carcinogenesis. Mechanistically, reactive oxygen and nitrogen species drive sustained cell proliferation, cell death including both apoptosis and necrosis, formation of nuclear and mitochondrial DNA mutations, and in some cases stimulation of a pro-angiogenic environment. Here we illustrate the pivotal role played by oxidative and nitrative stress in cell death, inflammation and pain and its consequences for toxicology and disease pathogenesis. Examples are presented from five different perspectives ranging from in vitro model systems through to in vivo animal model systems and clinical outcomes.

  2. Enhanced safety margins during wet transport of irradiated fuel by catalytic recombination of radiolysis hydrogen and oxygen

    International Nuclear Information System (INIS)

    Spencer, J.T.; Bankhead, M.; Hodge, N.A.

    2004-01-01

    BNFL has developed and tested a new method for use in wet transport of irradiated fuel. The method uses a catalyst to recombine the hydrogen and oxygen produced from radiolysis. The catalyst is installed in the nitrogen ullage gas region. It has twin benefits as it eliminates a gas mixture that could, in principle, exceed the safe target levels set to ensure safety during Transport, and it also reduces overall gas pressure. Pure water radiolysis predictions, from experiment and theory, indicate very low levels of hydrogen and oxygen generation. BNFL's historic experience is that in some transport packages it is possible to produce higher levels of hydrogen and oxygen. This drives the need to improve on our existing ullage gas remediation technology. Our studies of the radiolysis science and our flask data suggest it is the interaction of the liquors and material surfaces that is giving rise to the enhanced levels of hydrogen and/or oxygen. This technical paper demonstrates the performance of the recombiner catalyst under normal and extreme conditions of transport. The paper will present experimental data that shows the recombiner catalyst working to manage the hydrogen and oxygen levels

  3. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    Science.gov (United States)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  4. Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, James E.; Lam, Chun Ho; Saffron, Christopher M.; Miller, Dennis J.

    2018-04-24

    A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of organic substrates such as biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic reactants. Biomass fast pyrolysis-derived bio-oil is a liquid mixture containing hundreds of organic compounds with chemical functionalities that are corrosive to container materials and are prone to polymerization. A high surface area skeletal metal catalyst material such as Raney Nickel can be used as the cathode. Electrocatalytic hydrogenation and/or hydrodeoxygenation convert the organic substrates under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.

  5. Oxygen, nitrogen and sulphide fluxes in the Black Sea

    Directory of Open Access Journals (Sweden)

    S.K. KONOVALOV

    2000-12-01

    Full Text Available The fluxes and production/consumption rates of oxygen, nitrate, ammonium and sulphide are estimated in the paper utilising results of the 1.5-dimensional stationary model of vertical exchange in the Black Sea (Samodurov & Ivanov, 1998. The profiles of the vertical flux and rate of production/consumption of these substances have revealed a number of intriguing features in the biogeochemical nature of the Black Sea. An approximate redox balance of the counter-fluxes of nitrate and ammonium into the sub-oxic zone has been revealed confirming that intensive denitrification may be the primary loss of nitrogen in the Black Sea. A low ratio of the nitrate stock to the flux of nitrate from the oxycline confirms the possibility of prominent changes in the distribution of nitrate on the time scale of a year. The ratio of the nitrate to oxygen vertical flux has revealed a lack of nitrate in the oxycline above the nitrate maximum. The lateral (related to the "Bosporus plume" flux of oxygen in the layer of the main pycnocline appears to be very important for the existing biogeochemical structure of the Black sea water column being the reason of sulphide consumption inside the anoxic zone and changes in the ammonium-sulphide stoichiometry of the anoxic zone, the primary reason of the existence of the sub-oxic layer and the basic reason of relative stability of the sulphide onset.

  6. Nickel-hydrogen battery with oxygen and electrolyte management features

    Science.gov (United States)

    Sindorf, John F.

    1991-10-22

    A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.

  7. Inhibition of nitrogenase by oxygen in marine cyanobacteria controls the global nitrogen and oxygen cycles

    Science.gov (United States)

    Berman-Frank, I.; Chen, Y.-B.; Gerchman, Y.; Dismukes, G. C.; Falkowski, P. G.

    2005-03-01

    Cyanobacterial N2-fixation supplies the vast majority of biologically accessible inorganic nitrogen to nutrient-poor aquatic ecosystems. The process, catalyzed by the heterodimeric protein complex, nitrogenase, is thought to predate that of oxygenic photosynthesis. Remarkably, while the enzyme plays such a critical role in Earth's biogeochemical cycles, the activity of nitrogenase in cyanobacteria is markedly inhibited in vivo at a post-translational level by the concentration of O2 in the contemporary atmosphere leading to metabolic and biogeochemical inefficiency in N2 fixation. We illustrate this crippling effect with data from Trichodesmium spp. an important contributor of "new nitrogen" to the world's subtropical and tropical oceans. The enzymatic inefficiency of nitrogenase imposes a major elemental taxation on diazotrophic cyanobacteria both in the costs of protein synthesis and for scarce trace elements, such as iron. This restriction has, in turn, led to a global limitation of fixed nitrogen in the contemporary oceans and provides a strong biological control on the upper bound of oxygen concentration in Earth's atmosphere.

  8. Anaerobic nitrogen turnover by sinking diatom aggregates at varying ambient oxygen levels

    DEFF Research Database (Denmark)

    Stief, Peter; Kamp, Anja; Thamdrup, Bo

    2016-01-01

    nitrate supply. Sinking diatom aggregates can contribute directly to fixed-nitrogen loss in low-oxygen environments in the ocean and vastly expand the ocean volume in which anaerobic nitrogen turnover is possible, despite relatively high ambient oxygen levels. Depending on the extent of intracellular......In the world’s oceans, even relatively low oxygen levels inhibit anaerobic nitrogen cycling by free-living microbes. Sinking organic aggregates, however, might provide oxygen-depleted microbial hotspots in otherwise oxygenated surface waters. Here, we show that sinking diatom aggregates can host...

  9. Liquid Nitrogen (Oxygen Simulant) Thermodynamic Vent System Test Data Analysis

    Science.gov (United States)

    Hedayat, A.; Nelson, S. L.; Hastings, L. J.; Flachbart, R. H.; Tucker, S. P.

    2005-01-01

    In designing systems for the long-term storage of cryogens in low-gravity (space) environments, one must consider the effects of thermal stratification on tank pressure that will occur due to environmental heat leaks. During low-gravity operations, a Thermodynamic Vent System (TVS) concept is expected to maintain tank pressure without propellant resettling. A series of TVS tests was conducted at NASA Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as a liquid oxygen (LO2) simulant. The tests were performed at tank til1 levels of 90%, 50%, and 25%, and with a specified tank pressure control band. A transient one-dimensional TVS performance program is used to analyze and correlate the test data for all three fill levels. Predictions and comparisons of ullage pressure and temperature and bulk liquid saturation pressure and temperature with test data are presented.

  10. Contamination of liquid oxygen by pressurized gaseous nitrogen

    Science.gov (United States)

    Zuckerwar, Allan J.; King, Tracy K.; Ngo, Kim Chi

    1989-01-01

    The penetration of pressurized gaseous nitrogen (GN2) into liquid oxygen (LOX) was investigated experimentally in the 7-inch High Temperature Tunnel, the pilot tunnel for the 8-foot High Temperature Tunnel (8'HTT) at Langley Research Center. A preliminary test using a nuclear monitor revealed the extent of the liquid nitrogen (LN2) build-up at the LOX interface as a function of GN2 pressure. Then an adaptation of the differential flash vaporization technique was used to determine the binary diffusivity of the LOX-LN2 system at a temperature of 90.2 K. The measured value D equals 0.000086 sq cm/s + or - 25 percent together with two prior measurements at lower temperatures revealed an excellent fit to the Arrhenius equation, yielding a pre-exponential factor D sub 0 equals 0.0452 sq cm/s and an activation enthalpy H equals 1.08 kcal/mol. At a pressure of 1700 psi and holding time of 15 min, the penetration of LN2 into LOX (to a 1 percent contamination level) was found to be 0.9 cm, indicating but minimal impact upon 8'HTT operations.

  11. Liquid Nitrogen (Oxygen Simulent) Thermodynamic Venting System Test Data Analysis

    Science.gov (United States)

    Hedayat, A.; Nelson, S. L.; Hastings, L. J.; Flachbart, R. H.; Tucker, S. P.

    2005-01-01

    In designing systems for the long-term storage of cryogens in low gravity space environments, one must consider the effects of thermal stratification on excessive tank pressure that will occur due to environmental heat leakage. During low gravity operations, a Thermodynamic Venting System (TVS) concept is expected to maintain tank pressure without propellant resettling. The TVS consists of a recirculation pump, Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. Using a small amount of liquid extracted by the pump and passing it though the J-T valve, then through the heat exchanger, the bulk liquid and ullage are cooled, resulting in lower tank pressure. A series of TVS tests were conducted at the Marshall Space Flight Center using liquid nitrogen as a liquid oxygen simulant. The tests were performed at fill levels of 90%, 50%, and 25% with gaseous nitrogen and helium pressurants, and with a tank pressure control band of 7 kPa. A transient one-dimensional model of the TVS is used to analyze the data. The code is comprised of four models for the heat exchanger, the spray manifold and injector tubes, the recirculation pump, and the tank. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature are compared with data. Details of predictions and comparisons with test data regarding pressure rise and collapse rates will be presented in the final paper.

  12. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction.

    Science.gov (United States)

    Zitolo, Andrea; Ranjbar-Sahraie, Nastaran; Mineva, Tzonka; Li, Jingkun; Jia, Qingying; Stamatin, Serban; Harrington, George F; Lyth, Stephen Mathew; Krtil, Petr; Mukerjee, Sanjeev; Fonda, Emiliano; Jaouen, Frédéric

    2017-10-16

    Single-atom catalysts with full utilization of metal centers can bridge the gap between molecular and solid-state catalysis. Metal-nitrogen-carbon materials prepared via pyrolysis are promising single-atom catalysts but often also comprise metallic particles. Here, we pyrolytically synthesize a Co-N-C material only comprising atomically dispersed cobalt ions and identify with X-ray absorption spectroscopy, magnetic susceptibility measurements and density functional theory the structure and electronic state of three porphyrinic moieties, CoN 4 C 12 , CoN 3 C 10,porp and CoN 2 C 5 . The O 2 electro-reduction and operando X-ray absorption response are measured in acidic medium on Co-N-C and compared to those of a Fe-N-C catalyst prepared similarly. We show that cobalt moieties are unmodified from 0.0 to 1.0 V versus a reversible hydrogen electrode, while Fe-based moieties experience structural and electronic-state changes. On the basis of density functional theory analysis and established relationships between redox potential and O 2 -adsorption strength, we conclude that cobalt-based moieties bind O 2 too weakly for efficient O 2 reduction.Nitrogen-doped carbon materials with atomically dispersed iron or cobalt are promising for catalytic use. Here, the authors show that cobalt moieties have a higher redox potential, bind oxygen more weakly and are less active toward oxygen reduction than their iron counterpart, despite similar coordination.

  13. Numerical investigation on pulsating heat pipes with nitrogen or hydrogen

    Science.gov (United States)

    Y Han, D.; Sun, X.; Gan, Z. H.; Y Luo, R.; Pfotenhauer, J. M.; Jiao, B.

    2017-12-01

    With flexible structure and excellent performance, pulsating heat pipes (PHP) are regarded as a great solution to distribute cooling power for cryocoolers. The experiments on PHPs with cryogenic fluids have been carried out, indicating their efficient performances in cryogenics. There are large differences in physical properties between the fluids at room and cryogenic temperature, resulting in their different heat transfer and oscillation characteristics. Up to now, the numerical investigations on cryogenic fluids have rarely been carried out. In this paper, the model of the closed-loop PHP with multiple liquid slugs and vapor plugs is performed with nitrogen and hydrogen as working fluids, respectively. The effects of heating wall temperature on the performance of close-looped PHPs are investigated and compared with that of water PHP.

  14. Thermal relaxation of molecular oxygen in collisions with nitrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Andrienko, Daniil A., E-mail: daniila@umich.edu; Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, 1320 Beal Ave., Ann Arbor, Michigan 48108 (United States)

    2016-07-07

    Investigation of O{sub 2}–N collisions is performed by means of the quasi-classical trajectory method on the two lowest ab initio potential energy surfaces at temperatures relevant to hypersonic flows. A complete set of bound–bound and bound–free transition rates is obtained for each precollisional rovibrational state. Special attention is paid to the vibrational and rotational relaxations of oxygen as a result of chemically non-reactive interaction with nitrogen atoms. The vibrational relaxation of oxygen partially occurs via the formation of an intermediate NO{sub 2} complex. The efficient energy randomization results in rapid vibrational relaxation at low temperatures, compared to other molecular systems with a purely repulsive potential. The vibrational relaxation time, computed by means of master equation studies, is nearly an order of magnitude lower than the relaxation time in N{sub 2}–O collisions. The rotational nonequilibrium starts to play a significant effect at translational temperatures above 8000 K. The present work provides convenient relations for the vibrational and rotational relaxation times as well as for the quasi-steady dissociation rate coefficient and thus fills a gap in data due to a lack of experimental measurements for this system.

  15. Nitrogen and hydrogen related infrared absorption in CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Titus, E. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal)]. E-mail: elby@mec.ua.pt; Ali, N. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Cabral, G. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Madaleno, J.C. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Neto, V.F. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Gracio, J. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Ramesh Babu, P [Materials Ireland, Polymer research Centre, School of Physics, Dublin (Ireland); Sikder, A.K. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India); Okpalugo, T.I. [Northern Ireland Bio-Engineering Centre, NIBEC, University of Ulster (United Kingdom); Misra, D.S. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India)

    2006-09-25

    In this paper, we investigate on the presence of hydrogen and nitrogen related infrared absorptions in chemical vapour deposited (CVD) diamond films. Investigations were carried out in cross sections of diamond windows, deposited using hot filament CVD (HFCVD). The results of Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) and Raman spectroscopy carried out in a cross section of self-standing diamond sheets are presented. The FTIR spectra showed several features that have not been reported before. In order to confirm the frequency of nitrogen related vibrations, ab-initio calculations were carried out using GAMESS program. The investigations showed the presence of several C-N related peaks in one-phonon (1000-1333 cm{sup -1}). The deconvolution of the spectra in the three-phonon region (2700-3150 cm{sup -1}) also showed a number of vibration modes corresponding to sp {sup m}CH {sub n} phase of carbon. Elastic recoil detection analysis (ERDA) was employed to compare the H content measured using FTIR technique. Using these measurements we point out that the oscillator strength of the different IR modes varies depending upon the structure and H content of CVD diamond sheets.

  16. Development of sulfur- and nitrogen- free hydrogen odorants - An important step toward a safe hydrogen society -

    International Nuclear Information System (INIS)

    Nakamura, N.; Oshikawa, K.; Hasegawa, H.; Le Lay, M.; Iwase, M.; Braun, N.A.; Eilers, J.; Walz, A.; Vogt, M.; Herr, M.

    2006-01-01

    We have developed four sulfur-free and nitrogen-free odorants, which can be effectively used to odorize hydrogen. The odors were described through an olfactory test as alarming, strange, and chemical, giving sense of danger to the person who smells the odor. The safety of the material has been assessed and has been shown to be safe for usage. Testing the stability of odorized hydrogen in 80 MPa pressurized state, it was shown for a period of 13 weeks that the odorant retained its warning odor. Using the odorized hydrogen, FC duration test at 0.2 A/cm 2 was carried out for over 900 h without significant decrease in performance or the detectable degradation of MEA. The outlet of the fuel cell had no warning odor, suggesting deodorization on the catalyst. Use of activated charcoal as an adsorbent showed that the deodorization could be effectively carried out, ensuring that normal operation conditions are not perceived as a hydrogen leakage. (authors)

  17. An Experimental Study of Unconfined Hydrogen/Oxygen and Hydrogen/Air Explosions

    Science.gov (United States)

    Richardson, Erin; Skinner, Troy; Blackwood, James; Hays, Michael; Bangham, Mike; Jackson, Austin

    2014-01-01

    Development tests are being conducted to characterize unconfined Hydrogen/air and Hydrogen/Oxygen blast characteristics. Most of the existing experiments for these types of explosions address contained explosions, like shock tubes. Therefore, the Hydrogen Unconfined Combustion Test Apparatus (HUCTA) has been developed as a gaseous combustion test device for determining the relationship between overpressure, impulse, and flame speed at various mixture ratios for unconfined reactions of hydrogen/oxygen and hydrogen/air. The system consists of a central platform plumbed to inject and mix component gasses into an attached translucent bag or balloon while monitoring hydrogen concentration. All tests are ignited with a spark with plans to introduce higher energy ignition sources in the future. Surrounding the platform are 9 blast pressure "Pencil" probes. Two high-speed cameras are used to observe flame speed within the combustion zone. The entire system is raised approx. 6 feet off the ground to remove any ground reflection from the measurements. As of this writing greater than 175 tests have been performed and include Design of Experiments test sets. Many of these early tests have used bags or balloons between approx. 340L and approx. 1850L to quantify the effect of gaseous mixture ratio on the properties of interest. All data acquisition is synchronized between the high-speed cameras, the probes, and the ignition system to observe flame and shock propagation. Successful attempts have been made to couple the pressure profile with the progress of the flame front within the combustion zone by placing a probe within the bag. Overpressure and impulse data obtained from these tests are used to anchor engineering analysis tools, CFD models and in the development of blast and fragment acceleration models.

  18. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  19. Nitrogen narcosis induced by repetitive hyperbaric nitrogen oxygen mixture exposure impairs long-term cognitive function in newborn mice.

    Directory of Open Access Journals (Sweden)

    Bin Peng

    Full Text Available Human beings are exposed to compressed air or a nitrogen-oxygen mixture, they will produce signs and symptoms of nitrogen narcosis such as amnesia or even loss of memory, which may be disappeared once back to the normobaric environment. This study was designed to investigate the effect of nitrogen narcosis induced by repetitive hyperbaric nitrogen-oxygen mixture exposure on long-term cognitive function in newborn mice and the underlying mechanisms. The electroencephalogram frequency was decreased while the amplitude was increased in a pressure-dependent manner during 0.6, 1.2, 1.8 MPa (million pascal nitrogen-oxygen mixture exposures in adult mice. Nitrogen narcosis in postnatal days 7-9 mice but not in adult mice induced by repetitive hyperbaric exposure prolonged the latency to find the platform and decreased the number of platform-site crossovers during Morris water maze tests, and reduced the time in the center during the open field tests. An increase in the expression of cleaved caspase-3 in the hippocampus and cortex were observed immediately on the first day after hyperbaric exposure, and this lasted for seven days. Additionally, nitrogen narcosis induced loss of the dendritic spines but not of the neurons, which may mainly account for the cognitive dysfunction. Nitrogen narcosis induced long-term cognitive and emotional dysfunction in the postnatal mice but not in the adult mice, which may result from neuronal apoptosis and especially reduction of dendritic spines of neurons.

  20. The monitoring of oxygen, hydrogen and carbon in the sodium circuits of the PFR

    International Nuclear Information System (INIS)

    Mason, L.; Morrison, N.S.; Robertson, C.M.; Trevillion, E.A.

    1984-01-01

    The paper reviews the instrumentation available for monitoring oxygen, hydrogen, tritium and carbon impurity levels on the primary and secondary circuits of PFR. Circuit oxygen levels measured using electrochemical oxygen meters are compared to estimates from circuit plugging meters. The data are interpreted in the light of information from cold trap temperatures. Measurements of secondary circuit hydrogen levels using both the sodium and gas phase hydrogen detection equipment are compared to estimates of circuit hydrogen levels from plugging meters and variations in sodium phase hydrogen levels during power operation are discussed. (author)

  1. Coal pyrolysis under synthesis gas, hydrogen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ariunaa, A.; Li Bao-Qing; Li Wen; Purevsuren, B. (and others) [Chinese Academy of Sciences, Taiyuan (China)

    2007-02-15

    Chinese Xundian, Mongolian Shiveeovoo lignites and Khoot oil shale are pyrolyzed under synthesis gas (SG) at temperature range from 400 to 800{sup o}C for lignite and from 300 to 600{sup o}C for oil shale with heating rate of 10{sup o}C/min in a fixed bed reactor. The results were compared with those obtained by pyrolysis under hydrogen and nitrogen. The results showed that unlike pyrolysis at high pressure, there are only slight different in the yields of char and tar among pyrolyses under various gases at room pressure for lignite, while higher liquid yield with lower yields of char and gas was obtained in pyrolysis of oil shale under SG and H{sub 2} than under N{sub 2}. It is found that the pyrite S can be easily removed to partially convert to organic S under various gaseous atmosphere and the total sulfur removal for oil shale is much less than lignite, which might be related to its high ash content. The higher total sulfur removal and less organic S content in the presence of SG in comparison with those under N{sub 2} and even under H{sub 2} in pyrolysis of Xundian lignite might result from the action of CO in SG. However, CO does not show its function in pyrolysis of Khoot oil shale, which might also be related to the high ash content. The results reported show the possibility of using synthesis gas instead of pure hydrogen as the reactive gas for coal hydropyrolysis. 11 refs., 4 figs., 6 tabs.

  2. To the problem of structural materials serviceability in nitrogen-hydrogen-containing environments

    International Nuclear Information System (INIS)

    Bichuya, A.L.

    1982-01-01

    The analysis of the factors which affect high-temperature serviceability of structural materials in nitrogen-hydrogen-containing environments, in particular in ammonia, has been carried out on the basis of the published and own experimental data. It is shown that the observed reduction of serviceability of structural materials, under the effect of high temperatures and nitrogen-hydrogen-containing environments, can occur as a result of corrosion failure connected with nitriding, and also hydrogen embrittlement appearing as a result of the penetration of hydrogen formed during adsorbed gaseous phase dissociation on the metal being deformed. The suggested scheme of high-temperature metal fracture under the effect of nitrogen-hydrogen-containing environments, that in contrast to the previous ones includes the factor of hydrogen ebrittlement, allows to give a real estimation of structional materials serviceability under product service conditions

  3. Hydrogen, carbon and oxygen determination in proxy material samples using a LaBr3:Ce detector.

    Science.gov (United States)

    Naqvi, A A; Al-Matouq, Faris A; Khiari, F Z; Isab, A A; Raashid, M; Khateeb-ur-Rehman

    2013-08-01

    Hydrogen, carbon and oxygen concentrations were measured in caffeine, urea, ammonium acetate and melamine bulk samples via 14 MeV neutron inelastic scattering using a LaBr3:Ce detector. The samples tested herein represent drugs, explosives and benign materials, respectively. Despite its intrinsic activity, the LaBr3:Ce detector performed well in detecting the hydrogen, carbon and oxygen elements. Because 5.1 MeV nitrogen gamma rays interfere with silicon and calcium prompt gamma rays from the room background, the nitrogen peak was not detected in the samples. An excellent agreement was observed between the experimental and theoretical yields of 2.22, 4.43 and 6.13 MeV gamma rays from the analyzed samples as a function of H, C and O concentrations, respectively. Within statistical errors, the minimum detectable concentration (MDC) of hydrogen, carbon and oxygen elements in the tested materials were consistent with previously reported MDC values for these elements measured in hydrocarbon samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Renewable energy carriers: Hydrogen or liquid air/nitrogen?

    International Nuclear Information System (INIS)

    Li Yongliang; Chen Haisheng; Zhang Xinjing; Tan Chunqing; Ding Yulong

    2010-01-01

    The world's energy demand is met mainly by the fossil fuels today. The use of such fuels, however, causes serious environmental issues, including global warming, ozone layer depletion and acid rains. A sustainable solution to the issues is to replace the fossil fuels with renewable ones. Implementing such a solution, however, requires overcoming a number of technological barriers including low energy density, intermittent supply and mobility of the renewable energy sources. A potential approach to overcoming these barriers is to use an appropriate energy carrier, which can store, transport and distribute energy. The work to be reported in this paper aims to assess and compare a chemical energy carrier, hydrogen, with a physical energy carrier, liquid air/nitrogen, and discuss potential applications of the physical carrier. The ocean energy is used as an example of the renewable energy sources in the work. The assessment and comparison are carried out in terms of the overall efficiency, including production, storage/transportation and energy extraction. The environmental impact, waste heat recovery and safety issues are also considered. It is found that the physical energy carrier may be a better alternative to the chemical energy carrier under some circumstances, particularly when there are waste heat sources.

  5. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M J; Wielunski, L S; Netterfield, R P; Martin, P J; Leistner, A [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1997-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  6. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M.J.; Wielunski, L.S.; Netterfield, R.P.; Martin, P.J.; Leistner, A. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  7. Kalahari groundwaters: Their hydrogen, carbon and oxygen isotopes

    International Nuclear Information System (INIS)

    Mazor, E.; Verhagen, B.T.; Sellschop, J.P.F.; Robins, N.S.; Hutton, L.G.

    1974-01-01

    Tritium and 14 C measurements have revealed several cases of post-nuclear bomb-test rain recharge of local groundwaters, along with values indicating recharge over larger, yet hydrologically active, time scales. In general, recharge seems to follow rain distribution in being more intense in the northern rather than in the southern Kalahari. Initial δ 13 C values vary over a wide range and reveal some correlation to pH and chemical composition of the water. They cannot be used to correct for fossil carbon dilution in 14 C-age calculations. Radiocarbon-deduced ages range from recent to 30,000 years. Stable hydrogen and oxygen isotopes indicate recharge from direct rain infiltration. (author)

  8. Promoting effect of oxygen for hydrogenation of butadiene over Ni/sub 2/P catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, F.; Kitoh, T.; Sodesawa, T.

    1980-04-01

    When 0-10 mm Hg of oxygen were added to the reaction of 75 mm Hg butadiene and 225 mm Hg hydrogen over dinickel phosphide in a closed circulation system at 40/sup 0/C, increasing amounts of oxygen caused increasing lengths of induction periods followed by hydrogenation at reaction rates which had a maximum at 3 mm Hg oxygen. This maximum rate was about six times higher than the rate without oxygen addition. Adsorption, temperature-programed desorption, IR spectroscopy, and the product distribution of butadiene deuteration showed that two types of oxygen adsorbed on the dinickel phosphide catalyst; molecular oxygen on nickel, which desorbed on evacuation below 50/sup 0/C and which could be displaced by butadiene, was responsible for the induction period; molecular oxygen on phosphorus atoms, which promoted hydrogen adsorption, was responsible for the increased hydrogenation rate.

  9. Sterilization by pure oxygen plasma and by oxygen-hydrogen peroxide plasma: an efficacy study.

    Science.gov (United States)

    Boscariol, M R; Moreira, A J; Mansano, R D; Kikuchi, I S; Pinto, T J A

    2008-04-02

    Plasma is an innovative sterilization method characterized by a low toxicity to operators and patients, and also by its operation at temperatures close to room temperatures. The use of different parameters for this method of sterilization and the corresponding results were analyzed in this study. A low-pressure inductive discharge was used to study the plasma sterilization processes. Oxygen and a mixture of oxygen and hydrogen peroxide were used as plasma source gases. The efficacy of the processes using different combinations of parameters such as plasma-generation method, type of gas, pressure, gas flow rate, temperature, power, and exposure time was evaluated. Two phases were developed for the processes, one using pure oxygen and the other a mixture of gases. Bacillus subtilis var. niger ATCC 9372 (Bacillus atrophaeus) spores inoculated on glass coverslips were used as biological indicators to evaluate the efficacy of the processes. All cycles were carried out in triplicate for different sublethal exposure times to calculate the D value by the enumeration method. The pour-plate technique was used to quantify the spores. D values of between 8 and 3 min were obtained. Best results were achieved at high power levels (350 and 400 W) using pure oxygen, showing that plasma sterilization is a promising alternative to other sterilization methods.

  10. The effect of ammonia upon the electrocatalysis of hydrogen oxidation and oxygen reduction on polycrystalline platinum

    DEFF Research Database (Denmark)

    Verdaguer Casadevall, Arnau; Hernandez-Fernandez, Patricia; Stephens, Ifan E.L.

    2012-01-01

    The influence of ammonium ions on the catalysis of hydrogen oxidation and oxygen reduction is studied by means of rotating ring-disk electrode experiments on polycrystalline platinum in perchloric acid. While ammonium does not affect the hydrogen oxidation reaction, the oxygen reduction reaction...

  11. Investigation of Hydrogen and Nitrogen Content in Compacted Graphite Iron Production

    OpenAIRE

    Siafakas, Dimitrios

    2013-01-01

    The aim of this research, part of a wider program called SPOFIC, is to investigate how the casting procedure affects the concentration of hydrogen and nitrogen gases in Compacted Graphite Iron used for the production of truck cylinder blocks. Hydris equipment was used for the Hydrogen measurements and the Optical Emission Spectroscopy and combustion analysis methods were used for the nitrogen measurements. The experiment was performed in one of the cooperating foundries. It was found that Hyd...

  12. Solubility of Hydrogen and Nitrogen in liquid cast iron during melting and mold filling

    OpenAIRE

    Diószegi, Attila; Elfsberg, Jessica; Diószegi, Zoltán

    2016-01-01

    Defect formation like gas- and shrinkage porosity at cast iron component production is related to the content of gaseous elements in the liquid metal. The present work investigate the solubility of hydrogen and nitrogen in liquid iron aimed for production of lamellar and compacted graphite cast iron. The used methods and instruments are a combination of commercial measuring devices and novel experimental assemblies for measuring solubility of hydrogen and nitrogen during melting and mold fill...

  13. Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations

    Science.gov (United States)

    Cosnier, Serge; J. Gross, Andrew; Le Goff, Alan; Holzinger, Michael

    2016-09-01

    The possibility of producing electrical power from chemical energy with biological catalysts has induced the development of biofuel cells as viable energy sources for powering portable and implanted electronic devices. These power sources employ biocatalysts, called enzymes, which are highly specific and catalytic towards the oxidation of a biofuel and the reduction of oxygen or hydrogen peroxide. Enzymes, on one hand, are promising candidates to replace expensive noble metal-based catalysts in fuel cell research. On the other hand, they offer the exciting prospect of a new generation of fuel cells which harvest energy from body fluids. Biofuel cells which use glucose as a fuel are particularly interesting for generating electricity to power electronic devices inside a living body. Hydrogen consuming biofuel cells represent an emerging alternative to platinum catalysts due to comparable efficiencies and the capability to operate at lower temperatures. Currently, these technologies are not competitive with existing commercialised fuel cell devices due to limitations including insufficient power outputs and lifetimes. The advantages and challenges facing glucose biofuel cells for implantation and hydrogen biofuel cells will be summarised along with recent promising advances and the future prospects of these exotic energy-harvesting devices.

  14. Hydrogen effects in nitrogen-alloyed austenitic steels; Wirkung von Wasserstoff in stickstofflegierten austenitischen Staehlen

    Energy Technology Data Exchange (ETDEWEB)

    Uhlemann, M.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Shehata, M.F. [National Research Centre, Cairo (Egypt)

    1998-12-31

    Hydrogen increases the yield strength of nitrogen-alloyed steels, but on the other hand adversely affects properties such as tensile strength and elongation to fracture. The effect is enhanced with increasing nitrogen and hydrogen contents. Under the effect of hydrogen addition, the discontinuous stress-strain characteristic and the distinct elongation limit of hydrogen-free, nitrogen containing steels is no longer observed in the material. This change of mechanical properties is attributed to an interatomic interaction of nitrogen and hydrogen in the lattice, which is shown for instance by such effects as reduction of hydrogen velocity, high solubility, and a particularly strong lattice expansion. The nature of this interaction of nitrogen and hydrogen in the fcc lattice remains to be identified. (orig./CB) [Deutsch] Wasserstoff fuehrt in stickstofflegierten Staehlen zu einer Erhoehung der Streckgrenze, aber gleichzeitig zu einer Abnahme der Zugfestigkeit und Bruchdehnung. Dieser Effekt verstaerkt sich mit zunehmenden Stickstoff- und Wasserstoffgehalten. Ein diskontinuierlicher Spannungs-Dehnungsverlauf mit einer ausgepraegten Streckgrenze in wasserstofffreien hochstickstoffhaltigen Staehlen wird nach Wasserstoffeinfluss nicht mehr beobachtet. Die Aenderung der mechanischen Eigenschaften, wird auf eine interatomare Wechselwirkung von Stickstoff und Wasserstoff im Gitter zurueckgefuehrt, die sich u.a. in geringer Wasserstoffdiffusionsgeschwindigkeit, hoher Loeslichkeit und vor allem in extremer Gitteraufweitung aeussert. Insgesamt ist die Natur der Wechselwirkung zwischen Stickstoff und Wasserstoff im kfz Gitter noch nicht aufgeklaert. (orig.)

  15. RAMAN SCATTERING BY MOLECULAR HYDROGEN AND NITROGEN IN EXOPLANETARY ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Oklopčić, Antonija [California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, California 91125 (United States); Hirata, Christopher M. [Center for Cosmology and Astroparticle Physics, Ohio State University, 191 West Woodruff Avenue, Columbus, Ohio 43210 (United States); Heng, Kevin, E-mail: oklopcic@astro.caltech.edu [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012, Bern (Switzerland)

    2016-11-20

    An important source of opacity in exoplanet atmospheres at short visible and near-UV wavelengths is Rayleigh scattering of light on molecules. It is accompanied by a related, albeit weaker process—Raman scattering. We analyze the signatures of Raman scattering imprinted in the reflected light and the geometric albedo of exoplanets, which could provide information about atmospheric properties. Raman scattering affects the geometric albedo spectra of planets in the following ways. First, it causes filling-in of strong absorption lines in the incident radiation, thus producing sharp peaks in the albedo. Second, it shifts the wavelengths of spectral features in the reflected light causing the so-called Raman ghost lines. Raman scattering can also cause a broadband reduction of the albedo due to wavelength shifting of a stellar spectrum with red spectral index. Observing the Raman peaks in the albedo could be used to measure the column density of gas, thus providing constraints on the presence of clouds in the atmosphere. Observing the Raman ghost lines could be used to spectroscopically identify the main scatterer in the atmosphere, even molecules like H{sub 2} or N{sub 2}, which do not have prominent spectral signatures in the optical wavelength range. If detected, ghost lines could also provide information about the temperature of the atmosphere. In this paper, we investigate the effects of Raman scattering in hydrogen- and nitrogen-dominated atmospheres. We analyze the feasibility of detecting the signatures of Raman scattering with the existing and future observational facilities, and of using these signatures as probes of exoplanetary atmospheres.

  16. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest canopy...

  17. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest...

  18. MICROBIAL DEGRADATION OF NITROGEN, OXYGEN AND SULFUR HETEROCYCLIC COMPOUNDS UNDER ANAEROBIC CONDITIONS: STUDIES WITH AQUIFER SAMPLES

    Science.gov (United States)

    The potential for anaerobic biodegradation of 12 heterocyclic model compounds was studied. Nine of the model compounds were biotransformed in aquifer slurries under sulfate-reducing or methanogenic conditions. The nitrogen and oxygen heterocyclic compounds were more susceptible t...

  19. Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals

    Science.gov (United States)

    2015-10-13

    412TW-PA-15560 Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals...TITLE AND SUBTITLE Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals...density storage of gases remains a major technological hurdle for many fields. The U.S. Department of Energy (DOE), for example, reduced their hydrogen

  20. Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen-oxygen mixtures

    International Nuclear Information System (INIS)

    Wang, Shuofeng; Ji, Changwei; Zhang, Jian; Zhang, Bo

    2011-01-01

    This paper compared the effects of hydrogen and hydrogen-oxygen blends (hydroxygen) additions on the performance of a gasoline engine at 1400 rpm and a manifolds absolute pressure of 61.5 kPa. The tests were carried out on a 1.6 L gasoline engine equipped with a hydrogen and oxygen injection system. A hybrid electronic control unit was applied to adjust the hydrogen and hydroxygen volume fractions in the intake increasing from 0% to about 3% and keep the hydrogen-to-oxygen mole ratio at 2:1 in hydroxygen tests. For each testing condition, the gasoline flow rate was adjusted to maintain the mixture global excess air ratio at 1.00. The test results confirmed that engine fuel energy flow rate was decreased after hydrogen addition but increased with hydroxygen blending. When hydrogen or hydroxygen volume fraction in the intake was lower than 2%, the hydroxygen-blended gasoline engine produced a higher thermal efficiency than the hydrogen-blended gasoline engine. Both the additions of hydrogen and hydroxygen help reduce flame development and propagation periods of the gasoline engine. HC emissions were reduced whereas NOx emissions were raised with the increase of hydrogen and hydroxygen addition levels. CO was slightly increased after hydrogen blending, but reduced with hydroxygen addition. -- Highlights: → We compared the effects of hydrogen and hydroxygen additions on the gasoline engine performance. → The hydroxygen should be added into the engine only at low blending levels. → CO is decreased with hydroxygen addition whereas increased with hydrogen blending.

  1. Determination of oxygen and nitrogen in coal by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Hamrin, C.E. Jr.; Johannes, A.H.; James, W.D. Jr.; Sun, G.H.; Ehmann, W.D.

    1979-01-01

    The purpose of this study was to measure oxygen and nitrogen in coals using instrumental neutron activation analysis. For six U.S. coals total oxygen ranged from 9.4 to 28.7% and total nitrogen varied from 0.72 to 1.61%. To obtain values of organic oxygen and nitrogen either a low-temperature-ashing (LTA) method or an acid-treatment (AT) method was suitable for bituminous coals. The mean difference of the experimentally determined values (Osub(dmmf))sub(LTA) - (Osub(dmmf))sub(AT) = -0.82, s = 0.51, [dmmf = dry, mineral-matter-free basis], was found to be statistically significant at the 95% confidence level, but the comparable difference for nitrogen was not. By the LTA method oxygen and nitrogen on the dmmf basis for bituminous coals showed no statistically significant difference with calculated dmmf values. Nitrogen was detected in all the LTAs varying from 0.38 to 1.67%. Formation of insoluble CaF 2 in the acid-treatment method caused an interference in the nitrogen determination due to the 19 F (n, 2n) 18 F reaction but was correctable. In addition, recoil proton reactions on C and O leading to the formation of 13 N must be accounted for in all nitrogen determinations in the coal matrix. (author)

  2. Boron-nitrogen based hydrides and reactive composites for hydrogen storage

    DEFF Research Database (Denmark)

    Jepsen, Lars H.; Ley, Morten B.; Lee, Young-Su

    2014-01-01

    Hydrogen forms chemical compounds with most other elements and forms a variety of different chemical bonds. This fascinating chemistry of hydrogen has continuously provided new materials and composites with new prospects for rational design and the tailoring of properties. This review highlights...... a range of new boron and nitrogen based hydrides and illustrates how hydrogen release and uptake properties can be improved. © 2014 Elsevier Ltd....

  3. The self limiting effect of hydrogen cluster in gas jet under liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Han Jifeng; Yang Chaowen; Miao Jingwei; Fu Pengtao; Luo Xiaobing; Shi Miangong

    2010-01-01

    The generation of hydrogen clusters in gas jet is tested using the Rayleigh scattering method under liquid nitrogen temperature of 79 K. The self limiting effect of hydrogen cluster is studied and it is found that the cluster formation is greatly affected by the number of expanded molecules. The well designed liquid nitrogen cold trap ensured that the hydrogen cluster would keep maximum size for maximum 15 ms during one gas jet. The scattered light intensity exhibits a power scaling on the backing pressure ranging from 5 to 48 bar with the power value of 4.1.

  4. Separation of isotopes of nitrogen and oxygen by low temperature distillation of nitrogen oxide

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Shohei; Tonooka, Yasuhiko; Kaetsu, Hayato

    1987-02-01

    In general, the distillation parameters, such as the number of theoretical plate (NTP) and the height equivalent to a theoretical plate (HETP), can be obtained from the operation at the steady state. However, it is time-consuming to achieve the steady state especially in the case of isotope separation. In this paper, with the purpose of simultaneous separation of isotopes of nitrogen and oxygen by NO distillation, we tried to determine the distillation parameters by an analytical method through the transient-state operation. It was confirmed that the results from the analysis were in good agreement with those observed for the operation at the steady state. Enrichment of the isotopes was carried out using a distillation column with a height of 1 m and inside diameter of 12 mm. The dependence of HETP on liquid flow rate was measured by the proposed method. The obtained HETP values were from 2 to 4 cm. The operation time of about 5 h was found to be long enough to determine the distillation parameters.

  5. Separation of isotopes of nitrogen and oxygen by low temperature distillation of nitrogen oxide

    International Nuclear Information System (INIS)

    Isomura, Shohei; Tonooka, Yasuhiko; Kaetsu, Hayato

    1987-01-01

    In general, the distillation parameters, such as the number of theoretical plate (NTP) and the height equivalent to a theoretical plate (HETP), can be obtained from the operation at the steady state. However, it is time-consuming to achieve the steady state especially in the case of isotope separation. In this paper, with the purpose of simultaneous separation of isotopes of nitrogen and oxygen by NO distillation, we tried to determine the distillation parameters by an analytical method through the transient-state operation. It was confirmed that the results from the analysis were in good agreement with those observed for the operation at the steady state. Enrichment of the isotopes was carried out using a distillation column with a height of 1 m and inside diameter of 12 mm. The dependence of HETP on liquid flow rate was measured by the proposed method. The obtained HETP values were from 2 to 4 cm. The operation time of about 5 h was found to be long enough to determine the distillation parameters. (author)

  6. Influence of nitrogen ion implantation on hydrogen permeation in an extra mild steel

    International Nuclear Information System (INIS)

    Brass, A.M.; Chene, J.; Pivin, J.C.

    1989-01-01

    This paper presents the first results on the effect of nitrogen implantation on hydrogen permeation in steels. Nitrogen can modify superficially the steel's chemistry and/or microstructure depending on the fluence and thereby affect the processes of hydrogen diffusion and trapping. The implantations were performed on low carbon steel specimens with different nominal doses (1% to 10% and 33% nitrogen in a superficial layer of approximately 100 to 120 nm). The corresponding microstructures were characterized and permeation tests were conducted at room temperature in a double electrolytic cell. The nitrogen implanted layers on iron affects the electrochemical behaviour of the surface and the permeation in the material. This effect depends on the nitrogen concentration in the layer and on the corresponding microstructure. A continuous Fe 2 N layer acts as an efficient barrier to hydrogen entry and permeation when the layer is located on the entry face of the permeation membrane. This effect is stronger when the implanted layer is on the downstream face of the membrane. The low permeability values are mainly attributed to a lower hydrogen solubility in the implanted layer, whereas hydrogen trapping on defects and nitride precipitates delay hydrogen penetration. (author)

  7. Hydrogen generation monitoring and mass gain analysis during the steam oxidation for Zircaloy using hydrogen and oxygen sensors

    International Nuclear Information System (INIS)

    Fukumoto, Michihisa; Hara, Motoi; Kaneko, Hiroyuki; Sakuraba, Takuya

    2015-01-01

    The oxidation behavior of Zircaloy-4 at high temperatures in a flowing Ar-H_2O (saturated at 323 K) mixed gas was investigated using hydrogen and oxygen sensors installed at a gas outlet, and the utility of the gas sensing methods by using both sensors was examined. The generated amount of hydrogen was determined from the hydrogen partial pressure continuously measured by the hydrogen sensor, and the resultant calculated oxygen amount that reacted with the specimen was in close agreement with the mass gain gravimetrically measured after the experiment. This result demonstrated that the hydrogen partial pressure measurement using a hydrogen sensor is an effective method for examining the steam oxidation of this metal as well as monitoring the hydrogen evolution. The advantage of this method is that the oxidation rate of the metal at any time as a differential quantity is able to be obtained, compared to the oxygen amount gravimetrically measured as an integral quantity. When the temperature was periodically changed in the range of 1173 K to 1523 K, highly accurate measurements could be carried out using this gas monitoring method, although reasonable measurements were not gravimetrically performed due to the fluctuating thermo-buoyancy during the experiment. A change of the oxidation rate was clearly detected at a monoclinic tetragonal transition temperature of ZrO_2. From the calculation of the water vapor partial pressure during the thermal equilibrium condition using the hydrogen and oxygen partial pressures, it became clear that a thermal equilibrium state is maintained when the isothermal condition is maintained, but is not when the temperature increases or decreases with time. Based on these results, it was demonstrated that the gas monitoring system using hydrogen and oxygen sensors is very useful for investigating the oxidation process of the Zircaloy in steam. (author)

  8. Performance optimization of a PEM hydrogen-oxygen fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate the influence of process variables for design optimization of fuel cells, stacks, and complete fuel cell power system. The possible mechanisms of the parameter effects and their interrelationships are discussed. In order to assess the validity of the developed model a real PEM fuel cell system has been used to generate experimental data. The comparison shows good agreements between the modelling results and the experimental data. The model is shown a very useful for estimating the performance of PEM fuel cell stacks and optimization of fuel cell system integration and operation.

  9. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-06-01

    Full Text Available Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of nitrogen and oxygen amount in WMD (weld metal deposit.

  10. The Synergetic Effects of Hydrogen and Oxygen on the Strength and Ductility of Vanadium Alloys

    Institute of Scientific and Technical Information of China (English)

    Chen Jiming(谌继明); Xu Ying(徐颖); Deng Ying(邓颖); Yang Ling(杨霖); Qiu Shaoyu(邱绍宇)

    2003-01-01

    A V4Ti alloy and several V4Cr4Ti alloys with different oxygen contents were studied on their tensile properties with the effect of hydrogen concentrations. The ductility of the alloys showed a successive decrease in a varied rate with an increased hydrogen concentration, while the ultimate tensile strength remained unchanged or even decreased for the high oxygen content alloy in spite of the occurrence of hardening in the low oxygen content alloy. Oxygen in the alloy causes grain boundary weakening, increasing the possibility of intergranular fractures and thus enhancing the hydrogen embrittlement. V4Ti showed a higher resistance to the hydrogen embrittlement as compared to the V4Cr4Ti alloys on a similar oxygen content level.

  11. Effect of nitrogen doping of graphene oxide on hydrogen and hydroxyl adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byeong June; Jeong, Hae Kyung [Daegu University, Kyungsan (Korea, Republic of)

    2014-05-15

    We investigate how nitrogen-doping affects the hydrogen (H) and the hydroxyl (OH) adsorption on graphene oxide (GO) and on nitrogen-doped GO (NGO) via pseudopotential plane wave density functional calculations within the local spin density approximation. We find that the nitrogen doping brings about drastic changes in the hydrogen and the hydroxyl adsorption energetics, but its effects depend sensitively on the nitrogen configuration in NGO. The H and the OH adsorption energies are comparable only for pyrrolic NGO. In GO and quarternary NGO, the H adsorption energy is greater than the OH adsorption energy while the trend is reversed in pyridinic NGO. Also, the OH adsorption process is less affected by nitrogen-doping than the H adsorption is.

  12. Oxygen nitrogen and ozone: application in wastewater treatment and environment protection

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Julio A.G. [Oxigenio do Brasil, Sao Paulo, SP (Brazil)

    1993-12-31

    Oxygen`s versatility as an oxidant and as a combustion atmosphere provides clean solutions to different industries. Oxygen also finds excellent application for the regeneration of eutrophic surface waters where high biochemical oxygen demand loading demands extra available oxygen for life support. When even stronger oxidizing properties are needed, ozone may act as a supplement. Nitrogen, on the other hand, has excellent cooling capacity, resulting in practical application in solvent recapture, enabling processes to meet emission standards while allowing solvent recycle for reuse. 7 figs., 1 tab.

  13. Oxygen nitrogen and ozone: application in wastewater treatment and environment protection

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Julio A.G. [Oxigenio do Brasil, Sao Paulo, SP (Brazil)

    1994-12-31

    Oxygen`s versatility as an oxidant and as a combustion atmosphere provides clean solutions to different industries. Oxygen also finds excellent application for the regeneration of eutrophic surface waters where high biochemical oxygen demand loading demands extra available oxygen for life support. When even stronger oxidizing properties are needed, ozone may act as a supplement. Nitrogen, on the other hand, has excellent cooling capacity, resulting in practical application in solvent recapture, enabling processes to meet emission standards while allowing solvent recycle for reuse. 7 figs., 1 tab.

  14. Mesoporous nitrogen-doped carbon microfibers derived from Mg-biquinoline-dicarboxy compound for efficient oxygen electroreduction

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Aiguo, E-mail: agkong@chem.ecnu.edu.cn [School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Fan, Xiaohong; Chen, Aoling [School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Zhang, Hengiang [School of Chemistry and Chemical Engineering, Hebei Normal University for Nationalities, Chengde 067000 (China); Shan, Yongkui, E-mail: agkong@chem.ecnu.edu.cn [School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China)

    2017-02-15

    An in-situ MgO-templating synthesis route was introduced to obtain the mesoporous nitrogen-doped carbon microfibers by thermal conversion of new Mg-2,2′-biquinoline 4,4-dicarboxy acid coordination compound (Mg-DCA) microfibers. The investigated crystal structure of Mg-DCA testified that the assembling of Mg{sup 2+} and DCA through Mg-O coordination bond and hydrogen bond contributed to the formation of one-dimensional (1D) crystalline Mg-DCA microfibers. The nitrogen-doped carbons derived from the pyrolysis of Mg-DCA showed the well-defined microfiber morphology with high mesopore-surface area. Such mesoporous microfibers exhibited the efficient catalytic activity for oxygen reduction reaction (ORR) in alkaline solutions with better stability and methanol-tolerance performance. - Graphical abstract: Mesoporous nitrogen-doped carbon microfibers with efficient oxygen electroreduction activity were prepared by thermal conversion of new Mg-biquinoline-based coordination compound microfibers.

  15. Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion.

    Science.gov (United States)

    Díaz, I; Lopes, A C; Pérez, S I; Fdz-Polanco, M

    2010-10-01

    The removal performance of hydrogen sulphide in severely polluted biogas produced during the anaerobic digestion of sludge was studied by employing pure oxygen, air and nitrate as oxidant reactives supplied to the biodigester. Research was performed in a 200-L digester with an hydraulic retention time (HRT) of ∼20 days under mesophilic conditions. The oxygen supply (0.25 N m³/m³ feed) to the bioreactor successfully reduced the hydrogen sulphide content from 15,811 mg/N m³ to less than 400 mg/N m³. The introduction of air (1.27 N m³/m³ feed) removed more than 99% of the hydrogen sulphide content, with a final concentration of ∼55 mg/N m³. COD removal, VS reduction and methane yield were not affected under microaerobic conditions; however, methane concentration in the biogas decreased when air was employed as a result of nitrogen dilution. The nitrate addition was not effective for hydrogen sulphide removal in the biogas. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study. Phase I

    Science.gov (United States)

    Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.

    2012-01-01

    The key objectives of this study are to investigate, both computationally and experimentally, which forms, compositions, and layerings of hydrogen, boron, and nitrogen containing materials will offer the greatest shielding in the most structurally robust combination against galactic cosmic radiation (GCR), secondary neutrons, and solar energetic particles (SEP). The objectives and expected significance of this research are to develop a space radiation shielding materials system that has high efficacy for shielding radiation and that also has high strength for load bearing primary structures. Such a materials system does not yet exist. The boron nitride nanotube (BNNT) can theoretically be processed into structural BNNT and used for load bearing structures. Furthermore, the BNNT can be incorporated into high hydrogen polymers and the combination used as matrix reinforcement for structural composites. BNNT's molecular structure is attractive for hydrogen storage and hydrogenation. There are two methods or techniques for introducing hydrogen into BNNT: (1) hydrogen storage in BNNT, and (2) hydrogenation of BNNT (hydrogenated BNNT). In the hydrogen storage method, nanotubes are favored to store hydrogen over particles and sheets because they have much larger surface areas and higher hydrogen binding energy. The carbon nanotube (CNT) and BNNT have been studied as potentially outstanding hydrogen storage materials since 1997. Our study of hydrogen storage in BNNT - as a function of temperature, pressure, and hydrogen gas concentration - will be performed with a hydrogen storage chamber equipped with a hydrogen generator. The second method of introducing hydrogen into BNNT is hydrogenation of BNNT, where hydrogen is covalently bonded onto boron, nitrogen, or both. Hydrogenation of BN and BNNT has been studied theoretically. Hyper-hydrogenated BNNT has been theoretically predicted with hydrogen coverage up to 100% of the individual atoms. This is a higher hydrogen content

  17. The role of nitrogen in the formation of oxygen-related thermal donors in silicon

    International Nuclear Information System (INIS)

    Griffin, J.A.; Hartung, J.; Weber, J.

    1989-01-01

    Nitrogen doped silicon is investigated by Photothermal Ionisation Spectroscopy (PTIS) and Infrared Absorption (IR). The Shallow Thermal Donors (STD) are observed in this nitrogen doped Cz-silicon as well as the deeper Thermal Donors (TD). The Thermal Donor Growth in nitrogen doped material is reduced in comparison to nominally undoped oxygen-rich silicon. The half-widths of the spectral lines arising from the STD-transitions are observed to be dependent on the nitrogen concentration. The results suggest only a catalytic role of N in the STD-growth. (author) 13 refs., 3 figs., 1 tab

  18. Hydrogen in oxygen-free, phosphorus-doped copper - Charging techniques, hydrogen contents and modelling of hydrogen diffusion and depth profile

    Energy Technology Data Exchange (ETDEWEB)

    Martinsson, Aasa [Swerea KIMAB, Kista (Sweden); Sandstroem, Rolf [Swerea KIMAB, Kista (Sweden); Div. of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden); Lilja, Christina [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2013-01-15

    In Sweden spent nuclear fuel is planned to be disposed of by encapsulating in cast iron inserts protected by a copper shell. The copper can be exposed to hydrogen released during corrosion processes in the inserts. If the hydrogen is taken up by the copper, it could lead to hydrogen embrittlement. Specimens from oxygen-free copper have been hydrogen charged using two different methods. The purpose was to investigate how hydrogen could be introduced into copper in a controlled way. The thermal charging method resulted in a reduction of the initial hydrogen content. After electrochemical charging of cylindrical specimens, the measured hydrogen content was 2.6 wt. ppm which should compared with 0.6 wt. ppm before charging. The retained hydrogen after two weeks was reduced by nearly 40%. Recently the paper 'Hydrogen depth profile in phosphorus-doped, oxygen-free copper after cathodic charging' (Martinsson and Sandstrom, 2012) has been published. The paper describes experimental results for bulk specimens as well as presenting a model. Almost all the hydrogen is found to be located less than 100 {mu}m from the surface. This model is used to interpret the experimental results on foils in the present report. Since the model is fully based on fundamental equations, it can be used to analyse what happens in new situations. In this report the effect of the charging intensity, the grain size, the critical nucleus size for hydrogen bubble formation as well as the charging time are analysed.

  19. Hydrogen in oxygen-free, phosphorus-doped copper-Charging techniques, hydrogen contents and modelling of hydrogen diffusion and depth profile

    International Nuclear Information System (INIS)

    Martinsson, Aasa; Sandstroem, Rolf; Lilja, Christina

    2013-01-01

    In Sweden spent nuclear fuel is planned to be disposed of by encapsulating in cast iron inserts protected by a copper shell. The copper can be exposed to hydrogen released during corrosion processes in the inserts. If the hydrogen is taken up by the copper, it could lead to hydrogen embrittlement. Specimens from oxygen-free copper have been hydrogen charged using two different methods. The purpose was to investigate how hydrogen could be introduced into copper in a controlled way. The thermal charging method resulted in a reduction of the initial hydrogen content. After electrochemical charging of cylindrical specimens, the measured hydrogen content was 2.6 wt. ppm which should compared with 0.6 wt. ppm before charging. The retained hydrogen after two weeks was reduced by nearly 40%. Recently the paper 'Hydrogen depth profile in phosphorus-doped, oxygen-free copper after cathodic charging' (Martinsson and Sandstrom, 2012) has been published. The paper describes experimental results for bulk specimens as well as presenting a model. Almost all the hydrogen is found to be located less than 100 μm from the surface. This model is used to interpret the experimental results on foils in the present report. Since the model is fully based on fundamental equations, it can be used to analyse what happens in new situations. In this report the effect of the charging intensity, the grain size, the critical nucleus size for hydrogen bubble formation as well as the charging time are analysed

  20. Adsorption Energies of Carbon, Nitrogen, and Oxygen Atoms on the Low-temperature Amorphous Water Ice: A Systematic Estimation from Quantum Chemistry Calculations

    Science.gov (United States)

    Shimonishi, Takashi; Nakatani, Naoki; Furuya, Kenji; Hama, Tetsuya

    2018-03-01

    We propose a new simple computational model to estimate the adsorption energies of atoms and molecules to low-temperature amorphous water ice, and we present the adsorption energies of carbon (3 P), nitrogen (4 S), and oxygen (3 P) atoms based on quantum chemistry calculations. The adsorption energies were estimated to be 14,100 ± 420 K for carbon, 400 ± 30 K for nitrogen, and 1440 ± 160 K for oxygen. The adsorption energy of oxygen is consistent with experimentally reported values. We found that the binding of a nitrogen atom is purely physisorption, while that of a carbon atom is chemisorption, in which a chemical bond to an O atom of a water molecule is formed. That of an oxygen atom has a dual character, with both physisorption and chemisorption. The chemisorption of atomic carbon also implies the possibility of further chemical reactions to produce molecules bearing a C–O bond, though this may hinder the formation of methane on water ice via sequential hydrogenation of carbon atoms. These properties would have a large impact on the chemical evolution of carbon species in interstellar environments. We also investigated the effects of newly calculated adsorption energies on the chemical compositions of cold dense molecular clouds with the aid of gas-ice astrochemical simulations. We found that abundances of major nitrogen-bearing molecules, such as N2 and NH3, are significantly altered by applying the calculated adsorption energy, because nitrogen atoms can thermally diffuse on surfaces, even at 10 K.

  1. Degradation mechanisms of 4-chlorophenol in a novel gas-liquid hybrid discharge reactor by pulsed high voltage system with oxygen or nitrogen bubbling.

    Science.gov (United States)

    Zhang, Yi; Zhou, Minghua; Hao, Xiaolong; Lei, Lecheng

    2007-03-01

    The effect of gas bubbling on the removal efficiency of 4-chlorophenol (4-CP) in aqueous solution has been investigated using a novel pulsed high voltage gas-liquid hybrid discharge reactor, which generates gas-phase discharge above the water surface simultaneously with the spark discharge directly in the liquid. The time for 100% of 4-CP degradation in the case of oxygen bubbling (7 min) was much shorter than that in the case of nitrogen bubbling (25 min) as plenty of hydrogen peroxide and ozone formed in oxygen atmosphere enhanced the removal efficiency of 4-CP. Except for the main similar intermediates (4-chlorocatechol, hydroquinone and 1,4-benzoquinone) produced in the both cases of oxygen and nitrogen bubbling, special intermediates (5-chloro-3-nitropyrocatechol, 4-chloro-2-nitrophenol, nitrate and nitrite ions) were produced in nitrogen atmosphere. The reaction pathway of 4-CP in the case of oxygen bubbling was oxygen/ozone attack on the radical hydroxylated derivatives of 4-CP. However, in the case of nitrogen bubbling, hydroxylation was the main reaction pathway with effect of N atom on degradation of 4-CP.

  2. Reference Concepts for a Space-Based Hydrogen-Oxygen Combustion, Turboalternator, Burst Power System

    National Research Council Canada - National Science Library

    Edenburn, Michael

    1990-01-01

    This report describes reference concepts for a hydrogen-oxygen combustion, turboalternator power system that supplies power during battle engagement to a space-based, ballistic missile defense platform...

  3. Optical Sensors for Hydrogen and Oxygen for Unambiguous Detection in Their Mutual Presence, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase I SBIR project is to develop sensors that can discriminate the presence of combustible gases like oxygen (O2) in hydrogen (H2) or H2 in O2...

  4. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    Science.gov (United States)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  5. Potential hydrogen and oxygen partial pressures in legacy plutonium oxide packages at Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-07

    An approach to estimate the maximum hydrogen and oxygen partial pressures within sealed containers is described and applied to a set of packages containing high-purity plutonium dioxide. The approach uses experimentally determined maximum hydrogen and oxygen partial pressures and scales the experimentally determined pressures to the relevant packaged material properties. The important material properties are the specific wattage and specific surface area (SSA). Important results from the experimental determination of maximum partial pressures are (1) the ratio of hydrogen to oxygen is stoichiometric, and (2) the maximum pressures increase with increasing initial rates of production. The material properties that influence the rates are the material specific wattage and the SSA. The unusual properties of these materials, high specific wattage and high SSA, result in higher predicted maximum pressures than typical plutonium dioxide in storage. The pressures are well within the deflagration range for mixtures of hydrogen and oxygen.

  6. Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy.

    Directory of Open Access Journals (Sweden)

    Harald Schunck

    Full Text Available In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ. OMZs can sporadically accumulate hydrogen sulfide (H2S, which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2, which contained ∼2.2×10(4 tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3 the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that

  7. Study and development of a hydrogen/oxygen fuel cell in solid polymer electrolyte technology

    Energy Technology Data Exchange (ETDEWEB)

    Mosdale, R

    1992-10-29

    The hydrogen/oxygen fuel cell appears today as the best candidate to the replacing of the internal combustion engine for automobile traction. This system uses the non explosive electrochemical recombination of hydrogen and oxygen. It is a clean generator whom only reactive product is water. This thesis shows a theoretical study of this system, the synthesis of different kinds of used electrodes and finally an analysis of water movements in polymer electrolyte by different original technologies. 70 refs., 73 figs., 15 tabs.

  8. Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture.

    Science.gov (United States)

    Maddalena, Lucas A; Selim, Shehab M; Fonseca, Joao; Messner, Holt; McGowan, Shannon; Stuart, Jeffrey A

    2017-11-04

    Although oxygen levels in the extracellular space of most mammalian tissues are just a few percent, under standard cell culture conditions they are not regulated and are often substantially higher. Some cellular sources of reactive oxygen species, like NADPH oxidase 4, are sensitive to oxygen levels in the range between 'normal' physiological (typically 1-5%) and standard cell culture (up to 18%). Hydrogen peroxide in particular participates in signal transduction pathways via protein redox modifications, so the potential increase in its production under standard cell culture conditions is important to understand. We measured the rates of cellular hydrogen peroxide production in some common cell lines, including C2C12, PC-3, HeLa, SH-SY5Y, MCF-7, and mouse embryonic fibroblasts (MEFs) maintained at 18% or 5% oxygen. In all instances the rate of hydrogen peroxide production by these cells was significantly greater at 18% oxygen than at 5%. The increase in hydrogen peroxide production at higher oxygen levels was either abolished or substantially reduced by treatment with GKT 137831, a selective inhibitor of NADPH oxidase subunits 1 and 4. These data indicate that oxygen levels experienced by cells in culture influence hydrogen peroxide production via NADPH oxidase 1/4, highlighting the importance of regulating oxygen levels in culture near physiological values. However, we measured pericellular oxygen levels adjacent to cell monolayers under a variety of conditions and with different cell lines and found that, particularly when growing at 5% incubator oxygen levels, pericellular oxygen was often lower and variable. Together, these observations indicate the importance, and difficulty, of regulating oxygen levels experienced by cells in culture. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effect of nitrogen precursors on the electrochemical performance of nitrogen-doped reduced graphene oxide towards oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Li Ting, E-mail: nicolesoo90@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Loh, Kee Shyuan, E-mail: ksloh@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Mohamad, Abu Bakar, E-mail: drab@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Daud, Wan Ramli Wan, E-mail: wramli@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Wong, Wai Yin, E-mail: waiyin.wwy@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); School of Engineering, Taylor' s University' s Lakeside Campus, No. 1, Jalan Taylor' s, 46500 Subang Jaya, Selangor (Malaysia)

    2016-08-25

    A series of nitrogen-doped reduced graphene oxides (NGs) with different ratios are synthesized by thermal annealing of graphene oxide with melamine or urea. The total nitrogen content in NG is high, with values of up to 5.88 at.%. The NG samples prepared by melamine exhibited thin transparent graphene sheets structure, with consist of higher nitrogen doping level and quaternary N content compared to those NG samples prepared from urea. Electrochemical characterizations show that NG is a promising metal-free electrocatalyst for an oxygen reduction reaction (ORR). Incorporation of nitrogen atoms into graphene basal plane can enhances its electrocatalytic activity toward ORR in alkaline media. The onset potential and mean number of electron transfers on NG 1 are −0.10 V and 3.80 respectively, which is higher than that of reduced graphene oxide (−0.15 V, 3.52). This study suggests that quaternary-N of the NG samples is the active site which determines the ORR activity Moreover, the NG samples with the transparent layer of graphene-like structure have better ORR performances than that of bulk graphite-like NG samples. - Highlights: • Synthesis of nitrogen-doped graphene (NG) via thermal annealing. • The effects of the nitrogen precursors on the synthesized NG are discussed. • Electrochemical performances of the NG are correlated to N doping and EASA. • Graphitic-N is proposed to be the active site for ORR.

  10. Effect of nitrogen precursors on the electrochemical performance of nitrogen-doped reduced graphene oxide towards oxygen reduction reaction

    International Nuclear Information System (INIS)

    Soo, Li Ting; Loh, Kee Shyuan; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Wong, Wai Yin

    2016-01-01

    A series of nitrogen-doped reduced graphene oxides (NGs) with different ratios are synthesized by thermal annealing of graphene oxide with melamine or urea. The total nitrogen content in NG is high, with values of up to 5.88 at.%. The NG samples prepared by melamine exhibited thin transparent graphene sheets structure, with consist of higher nitrogen doping level and quaternary N content compared to those NG samples prepared from urea. Electrochemical characterizations show that NG is a promising metal-free electrocatalyst for an oxygen reduction reaction (ORR). Incorporation of nitrogen atoms into graphene basal plane can enhances its electrocatalytic activity toward ORR in alkaline media. The onset potential and mean number of electron transfers on NG 1 are −0.10 V and 3.80 respectively, which is higher than that of reduced graphene oxide (−0.15 V, 3.52). This study suggests that quaternary-N of the NG samples is the active site which determines the ORR activity Moreover, the NG samples with the transparent layer of graphene-like structure have better ORR performances than that of bulk graphite-like NG samples. - Highlights: • Synthesis of nitrogen-doped graphene (NG) via thermal annealing. • The effects of the nitrogen precursors on the synthesized NG are discussed. • Electrochemical performances of the NG are correlated to N doping and EASA. • Graphitic-N is proposed to be the active site for ORR.

  11. Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.

    Science.gov (United States)

    Bedenbaugh, John H.; And Others

    1988-01-01

    Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…

  12. Reactions of oxygen and hydrogen with liquid sodium - a critical survey

    International Nuclear Information System (INIS)

    Ullmann, H.

    1982-01-01

    The fundamentals of solvation chemistry are presented with appropriate components formulated. Methods of investigation and kinetics of the reactions are described. The hydrogen equilibrium pressure and saturation solubilities are described. The chemical equilibrium between O and H in solution is presented with detailed tabulation of the saturation solutions of oxygen, hydrogen and hydroxide in liquid sodium. Agreements and differences with the literature are presented

  13. Hydrate dissociation conditions for gas mixtures containing carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons using SAFT

    International Nuclear Information System (INIS)

    Li Xiaosen; Wu Huijie; Li Yigui; Feng Ziping; Tang Liangguang; Fan Shuanshi

    2007-01-01

    A new method, a molecular thermodynamic model based on statistical mechanics, is employed to predict the hydrate dissociation conditions for binary gas mixtures with carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons in the presence of aqueous solutions. The statistical associating fluid theory (SAFT) equation of state is employed to characterize the vapor and liquid phases and the statistical model of van der Waals and Platteeuw for the hydrate phase. The predictions of the proposed model were found to be in satisfactory to excellent agreement with the experimental data

  14. Biological Hydrogen Production: Simultaneous Saccharification and Fermentation with Nitrogen and Phosphorus Removal from Wastewater Effluent

    Science.gov (United States)

    2012-03-01

    process.7 The reaction is of great economic importance given that the world’s industrial production of nitrogenous fertilizer increased 27-fold between... Enzymatic Saccharification and Fermentation of Paper and Pulp Industry Effluent for Biohydrogen Production . Int. J. Hydrogen Energy 2010, 35, pp...Reactor Setup and Operation 11 4.2 Operational Comparison: SBR and CBR 12 4.3 Effect of pH and Loading on Hydrogen Production 13 4.4 Enzymatic Source

  15. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    Science.gov (United States)

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  16. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor.

    Science.gov (United States)

    Varas, Rodrigo; Guzmán-Fierro, Víctor; Giustinianovich, Elisa; Behar, Jack; Fernández, Katherina; Roeckel, Marlene

    2015-08-01

    The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Protection of a PWR nuclear power stations against corrosion using hydrogen molecules to capture oxygen molecules

    International Nuclear Information System (INIS)

    Nahili, M.

    2004-01-01

    A protection method for the primary loops metals of nuclear power plants from corrosion was investigated. Hydrogen molecules were added to the primary circuit to eliminate oxygen molecules produced by radiolysis of coolant at the reactor core. The hydrogen molecules were produced by electrolyses of water and then added when the coolant water was passing through the primary coolant circuit. Thermodynamical process and the protection methods from corrosion were discussed, the discussion emphasized on the removal of oxygen molecules as one of the protection methods, and compared with other methods. The amount of hydrogen molecules needed for complete removal of oxygen was estimated in two cases: in the case without passing the water through the oxygen removal system, and in the case of passing water through the system. A pressurized water reactor VVER was chosen to be investigated in this study. The amount of hydrogen molecules was estimated so as to eliminate completely the oxygen molecules from coolant water. The estimated value was found to be less than the permissible range for coolant water for such type of reactors. A simulation study for interaction mechanism between hydrogen and oxygen molecules as water flowing in a tube similar to that of coolant water was performed with different water flow velocities. The interaction between the molecules of hydrogen and oxygen was described. The gas diffusion at the surface of the tube was found to play a major role in the interaction. A mathematical model was found to give full description of the change of oxygen concentration through the tube, as well as, to calculate the length of the tube where the concentration of oxygen reduced to few order of magnitude. (Author)

  18. Diesel autothermal reforming with hydrogen peroxide for low-oxygen environments

    International Nuclear Information System (INIS)

    Han, Gwangwoo; Lee, Sangho; Bae, Joongmyeon

    2015-01-01

    Highlights: • The concept of diesel reforming using hydrogen peroxide was newly proposed. • Characteristics of hydrogen peroxide was experimentally investigated. • Thermodynamically possible operating conditions were analyzed. • Catalytic performance of Ni–Ru/CGO for various diesel compounds was evaluated. • Long-term testing was successfully conducted using Korean commercial diesel. - Abstract: To operate fuel cells effectively in low-oxygen environments, such as in submarines and unmanned underwater vehicles, a hydrogen source with high hydrogen storage density is required. In this paper, diesel autothermal reforming (ATR) with hydrogen peroxide as an alternative oxidant is proposed as a hydrogen production method. Diesel fuel has higher hydrogen density than metal hydrides or other hydrocarbons. In addition, hydrogen peroxide can decompose into steam and oxygen, which are required for diesel ATR. Moreover, both diesel fuel and hydrogen peroxide are liquid states, enabling easy storage for submarine applications. Hydrogen peroxide exhibited the same characteristics as steam and oxygen when used as an oxidant in diesel reforming when pre-decomposition method was used. The thermodynamically calculated operating conditions were a steam-to-carbon ratio (SCR) of 3.0, an oxygen-to-carbon ratio (OCR) of 0.5, and temperatures below 700 °C to account for safety issues associated with hydrogen peroxide use and exothermic reactions. Catalytic activity and stability tests over Ni–Ru (19.5–0.5 wt.%)/Ce 0.9 Gd 0.1 O 2−x were conducted using various diesel compounds. Furthermore, long-term diesel ATR tests were conducted for 200 h using Korean commercial diesel. The degradation rate was 3.67%/100 h without the production of ethylene

  19. Influence of nitrogen oxides NO and NO2 on singlet delta oxygen production in pulsed discharge

    International Nuclear Information System (INIS)

    Ionin, A A; Klimachev, Yu M; Kozlov, A Yu; Kotkov, A A; Rulev, O A; Seleznev, L V; Sinitsyn, D V; Vagin, N P; Yuryshev, N N; Kochetov, I V; Napartovich, A P

    2009-01-01

    The influence of nitrogen oxides NO and NO 2 on the specific input energy (SIE) and the time behaviour of singlet delta oxygen (SDO) luminescence excited by a pulsed e-beam sustained discharge in oxygen were experimentally and theoretically studied. NO and NO 2 addition into oxygen results in a small increase and decrease in the SIE, respectively, the latter being connected with a large energy of electron affinity to NO 2 . The addition of 0.1-0.3% nitrogen oxides was experimentally and theoretically demonstrated to result in a notable enhancement of the SDO lifetime, which is related to a decrease in the atomic oxygen concentration in afterglow. It was experimentally demonstrated that to get a high SDO concentration at the gas pressure 30-60 Torr for a time interval of less than ∼0.5 s one needs to add not less than 0.2% nitrogen oxides into oxygen. The temperature dependence of the relaxation constant for SDO quenching by unexcited oxygen was estimated by using experimental data on the time behaviour of SDO luminescence.

  20. Effectiveness of anode in a solid oxide fuel cell with hydrogen/oxygen mixed gases

    Energy Technology Data Exchange (ETDEWEB)

    Kellogg, Isaiah D. [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Koylu, Umit O. [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Petrovsky, Vladimir; Dogan, Fatih [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO (United States)

    2009-06-15

    A porous Ni/YSZ cermet in mixed hydrogen and oxygen was investigated for its ability to decrease oxygen activity as the anode of a single chamber SOFC. A cell with a dense 300 {mu}m YSZ electrolyte was operated in a double chamber configuration. The Ni-YSZ anode was exposed to a mixture of hydrogen and oxygen of varying compositions while the cathode was exposed to oxygen. Double chamber tests with mixed gas on the anode revealed voltage oscillations linked to lowered power generation and increased resistance. Resistance measurements of the anode during operation revealed a Ni/NiO redox cycle causing the voltage oscillations. The results of these tests, and future tests of similar format, could be useful in the development of single chamber SOFC using hydrogen as fuel. (author)

  1. Hydrogen Purification and Recycling for an Integrated Oxygen Recovery System Architecture

    Science.gov (United States)

    Abney, Morgan B.; Greenwood, Zachary; Wall, Terry; Miller, Lee; Wheeler, Ray

    2016-01-01

    The United States Atmosphere Revitalization life support system on the International Space Station (ISS) performs several services for the crew including oxygen generation, trace contaminant control, carbon dioxide (CO2) removal, and oxygen recovery. Oxygen recovery is performed using a Sabatier reactor developed by Hamilton Sundstrand, wherein CO2 is reduced with hydrogen in a catalytic reactor to produce methane and water. The water product is purified in the Water Purification Assembly and recycled to the Oxygen Generation Assembly (OGA) to provide O2 to the crew. This architecture results in a theoretical maximum oxygen recovery from CO2 of approximately 54% due to the loss of reactant hydrogen in Sabatier-produced methane that is currently vented outside of ISS. Plasma Methane Pyrolysis technology (PPA), developed by Umpqua Research Company, provides the capability to further close the Atmosphere Revitalization oxygen loop by recovering hydrogen from Sabatier-produced methane. A key aspect of this technology approach is to purify the hydrogen from the PPA product stream which includes acetylene, unreacted methane and byproduct water and carbon monoxide. In 2015, four sub-scale hydrogen separation systems were delivered to NASA for evaluation. These included two electrolysis single-cell hydrogen purification cell stacks developed by Sustainable Innovations, LLC, a sorbent-based hydrogen purification unit using microwave power for sorbent regeneration developed by Umpqua Research Company, and a LaNi4.6Sn0.4 metal hydride produced by Hydrogen Consultants, Inc. Here we report the results of these evaluations, discuss potential architecture options, and propose future work.

  2. Effect of hydrogen and oxygen content on the embrittlement of Zr alloys

    International Nuclear Information System (INIS)

    Griger, A.; Hozer, Z.; Matus, L.; Vasaros, L.; Horvath, M.

    2001-01-01

    An experimental study is carried out in the KFKI Atomic Energy Research Institute in order to clear up the role of oxidation and hydrogen uptake in the embrittlement process. Russian E110 type Zr1%Nb and Zircaloy-4 claddings are used as test materials. The differences between the properties of two alloys are examined. The sample preparation covered the following cases: oxidation in Ar+O 2 atmosphere; hydrogen uptake of as received and pre-oxidised samples (in Ar+O 2 atmosphere); oxidation in steam. The oxidation in Ar+O 2 and the subsequent hydrogen uptake procedure make possible the production of samples with well-characterized hydrogen and oxygen content. Corrosion treated ring samples of 8 mm height are examined in ring compression tests. The force-deformation curves are recorded and the crushing force and deformation are determined. The relative deformation is used for the characterisation of embrittlement level. The results of experiments provide detailed information about the effect of hydrogen and oxygen content on the embrittlement of zirconium alloys. The conclusions are: 1) hydrogen seems to play a more important role in the embrittlement of zirconium alloys than oxygen; 2) the Zircaloy-4 alloy becomes brittle at lower hydrogen content than the Zr1%Nb; 3) under steam oxidation conditions the Zr1%Nb alloy takes up much more hydrogen and becomes more brittle than the Zircaloy-4

  3. Hydrogen sulfide oxidation without oxygen - oxidation products and pathways

    International Nuclear Information System (INIS)

    Fossing, H.

    1992-01-01

    Hydrogen sulfide oxidation was studied in anoxic marine sediments-both in undisturbed sediment cores and in sediment slurries. The turn over of hydrogen sulfide was followed using 35 S-radiolabeled hydrogen sulfide which was injected into the sediment. However, isotope exchange reactions between the reduced sulfur compounds, in particular between elemental sulfur and hydrogen sulfide, influenced on the specific radioactivity of these pools. It was, therefore, not possible to measure the turn over rates of the reduced sulfur pools by the radiotracer technique but merely to use the radioisotope to demonstrate some of the oxidation products. Thiosulfate was one important intermediate in the anoxic oxidation of hydrogen sulfide and was continuously turned over by reduction, oxidation and disproportionation. The author discusses the importance of isotope exchange and also presents the results from experiments in which both 35 S-radiolabeled elemental sulfur, radiolabeled hydrogen sulfide and radiolabeled thiosulfate were used to study the intermediates in the oxidative pathways of the sulfur cycle

  4. Industrial applications of plasma, microwave and ultrasound techniques : nitrogen-fixation and hydrogenation reactions

    NARCIS (Netherlands)

    Hessel, V.; Cravotto, G.; Fitzpatrick, P.; Patil, B.S.; Lang, J.; Bonrath, W.

    2013-01-01

    The MAPSYN project (Microwave, Acoustic and Plasma assisted SYNtheses) aims at nitrogen-fixation reactions intensified by plasma catalysis and selective hydrogenations intensified by microwaves, possibly assisted by ultrasound. Energy efficiency is the key motif of the project and the call of the

  5. Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data

    Science.gov (United States)

    Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen

    1990-01-01

    The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.

  6. Nitrogen fixation in the activated sludge treatment of thermomechanical pulping wastewater: effect of dissolved oxygen.

    Science.gov (United States)

    Slade, A H; Anderson, S M; Evans, B G

    2003-01-01

    N-ViroTech, a novel technology which selects for nitrogen-fixing bacteria as the bacteria primarily responsible for carbon removal, has been developed to treat nutrient limited wastewaters to a high quality without the addition of nitrogen, and only minimal addition of phosphorus. Selection of the operating dissolved oxygen level to maximise nitrogen fixation forms a key component of the technology. Pilot scale activated sludge treatment of a thermomechanical pulping wastewater was carried out in nitrogen-fixing mode over a 15 month period. The effect of dissolved oxygen was studied at three levels: 14% (Phase 1), 5% (Phase 2) and 30% (Phase 3). The plant was operated at an organic loading of 0.7-1.1 kg BOD5/m3/d, a solids retention time of approximately 10 d, a hydraulic retention time of 1.4 d and a F:M ratio of 0.17-0.23 mg BOD5/mg VSS/d. Treatment performance was very stable over the three dissolved oxygen operating levels. The plant achieved 94-96% BOD removal, 82-87% total COD removal, 79-87% soluble COD removal, and >99% total extractives removal. The lowest organic carbon removals were observed during operation at 30% DO but were more likely to be due to phosphorus limitation than operation at high dissolved oxygen, as there was a significant decrease in phosphorus entering the plant during Phase 3. Discharge of dissolved nitrogen, ammonium and oxidised nitrogen were consistently low (1.1-1.6 mg/L DKN, 0.1-0.2 mg/L NH4+-N and 0.0 mg/L oxidised nitrogen). Discharge of dissolved phosphorus was 2.8 mg/L, 0.1 mg/L and 0.6 mg/L DRP in Phases 1, 2 and 3 respectively. It was postulated that a population of polyphosphate accumulating bacteria developed during Phase 1. Operation at low dissolved oxygen during Phase 2 appeared to promote biological phosphorus uptake which may have been affected by raising the dissolved oxygen to 30% in Phase 3. Total nitrogen and phosphorus discharge was dependent on efficient secondary clarification, and improved over the course of

  7. Non Intrrusive, On-line, Simultaneous Multi-Species Impurity Monitor in Hydrogen, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purity of hydrogen fuel is important in engine testing at SSC. The hydrogen may become contaminated with nitrogen, argon, or oxygen. The hydrogen from the fuel...

  8. Non Intrrusive, On-line, Simultaneous Multi-Species Impurity Monitor in Hydrogen, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The purity of hydrogen fuel is important in engine testing at SSC. The hydrogen may become contaminated with nitrogen, argon, helium or oxygen. The hydrogen from the...

  9. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    International Nuclear Information System (INIS)

    Hamilton, D.C.

    1986-01-01

    Measurements are reported for the electrical conductivity of liquid nitrogen (N 2 ), oxygen (O 2 ) and benzene (C 6 H 6 ), and Hugoniot equation of state of liquid 1-butene (C 4 H 8 ) under shock compressed conditions. The conductivity data span 7 x 10 -4 to 7 x 10 1 Ω -1 cm -1 over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs

  10. Effect of oxygen breathing on micro oxygen bubbles in nitrogen-depleted rat adipose tissue at sea level and 25 kPa altitude exposures

    DEFF Research Database (Denmark)

    Randsoe, Thomas; Hyldegaard, Ole

    2012-01-01

    The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing...... at 101.3 kPa (sea level) or at 25 kPa altitude exposures during continued oxygen breathing. In keeping with previous observations and bubble kinetic models, we hypothesize that oxygen breathing may contribute to oxygen bubble growth at altitude. Anesthetized rats were exposed to 3 h of oxygen...... prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently...

  11. EQUILIBRIUM AND KINETIC NITROGEN AND OXYGEN-ISOTOPE FRACTIONATIONS BETWEEN DISSOLVED AND GASEOUS N2O

    NARCIS (Netherlands)

    INOUE, HY; MOOK, WG

    1994-01-01

    Experiments were performed to determine the equilibrium as well as kinetic stable nitrogen and oxygen isotope fractionations between aqueous dissolved and gaseous N2O. The equilibrium fractionations, defined as the ratio of the isotopic abundance ratios (15R and 18R, respectively) of gaseous and

  12. Nitrogen fixation and molecular oxygen: comparative genomic reconstruction of transcription regulation in Alphaproteobacteria

    Directory of Open Access Journals (Sweden)

    Olga V Tsoy

    2016-08-01

    Full Text Available Biological nitrogen fixation plays a crucial role in the nitrogen cycle. An ability to fix atmospheric nitrogen, reducing it to ammonium, was described for multiple species of Bacteria and Archaea. Being a complex and sensitive process, nitrogen fixation requires a complicated regulatory system, also, on the level of transcription. The transcriptional regulatory network for nitrogen fixation was extensively studied in several representatives of the class Alphaproteobacteria. This regulatory network includes the activator of nitrogen fixation NifA, working in tandem with the alternative sigma-factor RpoN as well as oxygen-responsive regulatory systems, one-component regulators FnrN/FixK and two-component system FixLJ. Here we used a comparative genomics analysis for in silico study of the transcriptional regulatory network in 50 genomes of Alphaproteobacteria. We extended the known regulons and proposed the scenario for the evolution of the nitrogen fixation transcriptional network. The reconstructed network substantially expands the existing knowledge of transcriptional regulation in nitrogen-fixing microorganisms and can be used for genetic experiments, metabolic reconstruction, and evolutionary analysis.

  13. THE REDSHIFT EVOLUTION OF OXYGEN AND NITROGEN ABUNDANCES IN EMISSION-LINE SDSS GALAXIES

    International Nuclear Information System (INIS)

    Thuan, Trinh X.; Pilyugin, Leonid S.; Zinchenko, Igor A.

    2010-01-01

    The oxygen and nitrogen abundance evolutions with redshift and galaxy stellar mass in emission-line galaxies from the Sloan Digital Sky Survey (SDSS) are investigated. This is the first such study for nitrogen abundances, and it provides an additional constraint for the study of the chemical evolution of galaxies. We have devised a criterion to recognize and exclude from consideration active galactic nuclei and star-forming galaxies with large errors in the line flux measurements. To select star-forming galaxies with accurate line fluxes measurements, we require that, for each galaxy, the nitrogen abundances derived with various calibrations based on different emission lines agree. Using this selection criterion, subsamples of star-forming SDSS galaxies have been extracted from catalogs of the Max-Planck-Institute for Astrophysics/Johns Hopkins University group. We found that the galaxies of highest masses, those with masses ∼>10 11.2 M sun , have not been enriched in both oxygen and nitrogen over the last ∼3 Gyr: they have formed their stars in the so distant past that these have returned their nucleosynthesis products to the interstellar medium before z = 0.25. The galaxies in the mass range from ∼10 11.0 M sun to ∼10 11.2 M sun do not show an appreciable enrichment in oxygen, but do show some enrichment in nitrogen: they also formed their stars before z = 0.25 but later in comparison to the galaxies of highest masses; these stars have not returned nitrogen to the interstellar medium before z = 0.25 because they have not had enough time to evolve. This suggests that stars with lifetimes of 2-3 Gyr, in the 1.5-2 M sun mass range, contribute to the nitrogen production. Finally, galaxies with masses ∼ 11 M sun show enrichment in both oxygen and nitrogen during the last 3 Gyr: they have undergone appreciable star formation and have converted up to ∼20% of their mass into stars over this period. Both oxygen and nitrogen enrichments increase with decreasing

  14. Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba L

    International Nuclear Information System (INIS)

    Yakir, D.; DeNiro, M.J.

    1990-01-01

    Lemna gibba L. B3 was grown under heterotrophic, photoheterotrophic, and autotrophic conditions in water having a variety of hydrogen and oxygen isotopic compositions. The slopes of the linear regression lines between the isotopic composition of water and leaf cellulose indicated that under the three growth conditions about 40, 70, and 100% of oxygens and carbon-bound hydrogens of cellulose exchanged with those of water prior to cellulose formation. Using the equations of the linear relationships, we estimated the overall fractionation factors between water and the exchanged oxygen and carbon bound-hydrogen of cellulose. At least two very different isotope effects must determine the hydrogen isotopic composition of Lemna cellulose. One reflects the photosynthetic reduction of NADP, while the second reflects exchange reactions that occur subsequent to NADP reduction. Oxygen isotopic composition of cellulose apparently is determined by a single type of exchange reaction with water. Under different growth conditions, variations in metabolic fluxes affect the hydrogen isotopic composition of cellulose by influencing the extent to which the two isotope effects mentioned above are recorded. The oxygen isotopic composition of cellulose is not affected by such changes in growth conditions

  15. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    Science.gov (United States)

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH− oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  16. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    Science.gov (United States)

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  17. Remote Sensing of Dissolved Oxygen and Nitrogen in Water Using Raman Spectroscopy

    Science.gov (United States)

    Ganoe, Rene; DeYoung, Russell J.

    2013-01-01

    The health of an estuarine ecosystem is largely driven by the abundance of dissolved oxygen and nitrogen available for maintenance of plant and animal life. An investigation was conducted to quantify the concentration of dissolved molecular oxygen and nitrogen in water by means of Raman spectroscopy. This technique is proposed for the remote sensing of dissolved oxygen in the Chesapeake Bay, which will be utilized by aircraft in order to survey large areas in real-time. A proof of principle system has been developed and the specifications are being honed to maximize efficiency for the final application. The theoretical criteria of the research, components of the experimental system, and key findings are presented in this report

  18. Effect of oxygen on the hydrogenation properties of magnesium films

    DEFF Research Database (Denmark)

    Ostenfeld, Christopher Worsøe; Chorkendorff, Ib

    2006-01-01

    The effect of magnesium oxide on the magnesium and hydrogen desorption properties of magnesium films have been investigated. We find that by capping metallic magnesium films with oxide overlayers the apparent desorption energy of magnesium is increased from 146 kJ/mol to 314 kJ/mol. The results...... are discussed in light of previous investigations of ball-milled magnesium powders....

  19. Effects of basic nitrogen poisoning on adsorption of hydrogen on a hydrotreatment catalyst

    International Nuclear Information System (INIS)

    Entz, R.W.; Seapan, M.

    1985-01-01

    Activity of a hydrotreatment catalyst depends on the hydrogen adsorption characteristics of the catalyst. In this work, the adsorption of hydrogen on a Ni-Mo/Al/sub 2/O/sub 3/ catalyst (shell 324) has been studied using a TGA at 1 atm pressure and 200-400 0 C temperature. Hydrogen adsorption on a calcined catalyst was shown to be of activated type with a sudden increase in hydrogen adsorption around 350 0 C. When the catalyst is extracted with Tetrahydrofuran (THF), the hydrogen adsorption increases gradually as the temperature is increased, approaching a monolayer coverage of the catalyst surface. It is shown that solvent extraction of catalyst changes its hydrogen adsorption characteristics significantly. Indeed, at 400 0 C, an extracted catalyst adsorbs about four times more hydrogen than an unextracted catalyst. Adsorption of basic nitrogen compounds on the catalyst interferes with the hydrogen adsorption. The adsorption of pyridine, piperidine, n-pentylamine, and ammonia were studied at 400 0 C. It is shown that the strength of adsorption of piperidine and n-pentylamine are relatively similar, however their adsorption strength is higher than pyridine. Ammonia is the weakest adsorbing compound studied. These observations are in agreement with other studies

  20. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels

    Directory of Open Access Journals (Sweden)

    Shaohui Sun

    2018-04-01

    Full Text Available An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C5–C20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.

  1. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels.

    Science.gov (United States)

    Sun, Shaohui; Yang, Ruishu; Wang, Xin; Yan, Shaokang

    2018-04-01

    An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C 5 -C 20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA) can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.

  2. Relations between oxygen and hydrogen generated by radiolysis in the systems of a CANDU 600

    International Nuclear Information System (INIS)

    Romano, Christian; Chocron, Mauricio; Urrutia, Guillermo

    1999-01-01

    The water that constitutes the coolant of the primary heat transport system, the moderator and the liquid control zones, decomposed under radiation producing as stable products oxygen, hydrogen and hydrogen peroxide throughout a complex mechanisms of radiolysis that involves ions and free radicals. These compound formed in different proportions alters the chemical control established for each system which purpose is to minimize the corrosion of the structural materials. In the present paper have been presented results of the modelling of the mentioned processes and it has been found that in the absence of a vapor phase, a relatively low concentration of hydrogen added to the water would be sufficient to control the formation of oxygen and hydrogen peroxide. The last species however, would remain in relatively high values inside a coolant fuel channel in the reactor core. (author)

  3. Adsorption of hydrogen in Scandium/Titanium decorated nitrogen doped carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Mananghaya, Michael, E-mail: mikemananghaya@gmail.com [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines); DOST-ASTHRDP, PCIEERD, Gen. Santos Ave., Bicutan, Taguig City 1631 (Philippines); Belo, Lawrence Phoa; Beltran, Arnel [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines)

    2016-09-01

    Nitrogen doped Carbon Nanotube with divacancy (4ND-CN{sub x}NT) that is decorated with Scandium and Titanium as potential hydrogen storage medium using the pseudo potential density functional method was investigated. Highly localized states near the Fermi level, which are derived from the nitrogen defects, contribute to strong Sc and Ti bindings, which prevent metal aggregation and improve the material stability. A detailed Comparison of the Hydrogen adsorption capability with promising system-weight efficiency of Sc over Ti was elucidated when functionalized with 4ND-CN{sub x}NT. Finally, the (Sc/4ND){sub 10}-CN{sub x}CNT composite material has a thermodynamically favorable adsorption and consecutive adsorption energy for ideal reversible adsorption and desorption of hydrogen at room temperature such that it can hold at least 5.8 wt% hydrogen molecules at the LDA and GGA level. - Highlights: • Carbon Nanotube with divacancy (4ND-CN{sub x}NT) decorated with Sc and Ti. • Nitrogen defects, contribute to strong Sc and Ti bindings. • H{sub 2} and (Sc/4ND){sub 10}-CN{sub x}CNT has a favorable adsorption. • 5.8 wt% adsorption at the LDA and GGA level.

  4. Energy transfers between N_2(A"3Σ) nitrogen metastable molecules and oxygen atoms and molecules

    International Nuclear Information System (INIS)

    De Souza, Antonio Rogerio

    1985-01-01

    This research thesis aims at determining reaction coefficients for energy transfers between nitrogen in its metastable status and oxygen atoms and molecules, the variation of these coefficients with respect to temperature (mainly in the 200-400 K range), products formed and more particularly branching rates of O("1S) oxygen and of NO_2. Reaction coefficients are experimentally determined by using the technique of post-discharge in flow. The experimental set-up is described and the study of the best operating conditions is reported. In the next part, the author reports the study of the energy transfer between nitrogen in its metastable status N_2(A) and oxygen molecules. Reaction coefficients are determined for the first three vibrational levels. The author then reports the study of the transfer of N_2(A) molecules on oxygen atoms in their fundamental status. Reactions coefficients and their variations are determined for the three first vibrational levels. The author describes the dissociation method and the method of detection of atomic oxygen. A kinetic model is proposed for the analysis of formed products during a post-discharge in flow, and the branching rate for the formation of O("1S) oxygen between 190 and 365 K is determined. The author finally discusses publications on the role of these reactions in the interpretation of some atmospheric phenomena

  5. Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application

    Science.gov (United States)

    Mo, Zaiyong; Zheng, Ruiping; Peng, Hongliang; Liang, Huagen; Liao, Shijun

    2014-01-01

    Well defined nitrogen-doped graphene (NG) is prepared by a transfer doping approach, in which the graphene oxide (GO) is deoxidized and nitrogen doped by the vaporized polyaniline, and the GO is prepared by a thermal expansion method from graphite oxide. The content of doped nitrogen in the doped graphene is high up to 6.25 at% by the results of elements analysis, and oxygen content is lowered to 5.17 at%. As a non-precious metal cathode electrocatalyst, the NG catalyst exhibits excellent activity toward the oxygen reduction reaction, as well as excellent tolerance toward methanol. In 0.1 M KOH solution, its onset potential, half-wave potential and limiting current density for the oxygen reduction reaction reach 0.98 V (vs. RHE), 0.87 V (vs. RHE) and 5.38 mA cm-2, respectively, which are comparable to those of commercial 20 wt% Pt/C catalyst. The well defined graphene structure of the catalyst is revealed clearly by HRTEM and Raman spectra. It is suggested that the nitrogen-doping and large surface area of the NG sheets give the main contribution to the high ORR catalytic activity.

  6. Thermodynamic Calculations of Hydrogen-Oxygen Detonation Parameters for Various Initial Pressures

    Science.gov (United States)

    Bollinger, Loren E.; Edse, Rudolph

    1961-01-01

    Composition, temperature, pressure and density behind a stable detonation wave and its propagation rate have been calculated for seven hydrogen-oxygen mixture at 1, 5, 25 and 100 atm initial pressure, and at an initial temperature of 40C. For stoichiometric mixtures that calculations also include an initial temperature of 200C. According to these calculations the detonation velocities of hydrogen-oxygen mixtures increase with increasing initial pressure, but decrease slightly when the initial temperature is raised from 40 to 200 C. The calculated detonation velocities agree satisfactorily with values determined experimentally. These values will be published in the near future.

  7. Enhancement of oxygen transfer and nitrogen removal in a membrane separation bioreactor for domestic wastewater treatment.

    Science.gov (United States)

    Chiemchaisri, C; Yamamoto, K

    2005-01-01

    Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid-liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 degrees C. As the temperature was stepwise decreased from 25 to 5 degrees C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 degrees C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2-3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.

  8. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.; Piwnik J.

    2015-01-01

    Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was pr...

  9. Nitrogen Adsorption and Hydrogenation on a MoFe6S9 Complex

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Hammer, Bjørk; Nørskov, Jens Kehlet

    1999-01-01

    The enzyme nitrogenase catalyzes the biological nitrogen fixation where N-2 is reduced to NH3. Density functional calculations are presented of the bonding and hydrogenation of N-2 on a MoFe6S9 complex constructed to model aspects of the active site of nitrogenase. N-2 is found to bind end on to ...... on to one of the Fe atoms. A complete energy diagram for the addition of hydrogen to the MoFe6S9 complex with and without N-2 is given, and a mechanism for ammonia synthesis is proposed on this basis....

  10. Dark hydrogen production in nitrogen atmosphere - An approach for sustainability by marine cyanobacterium Leptolyngbya valderiana BDU 20041

    Energy Technology Data Exchange (ETDEWEB)

    Prabaharan, D.; Arun Kumar, D.; Uma, L.; Subramanian, G. [National Facility for Marine Cyanobacteria (Sponsored by DBT, Govt. of India), Department of Marine Biotechnology, Bharathidasan University, Tiruchirapalli 620 024 (India)

    2010-10-15

    Biological hydrogen production is an ideal system for three main reasons i) forms a renewable energy source, ii) gives clean fuel and iii) serves as a good supplement to oil reserves. The major challenges faced in biological hydrogen production are the presence of uptake hydrogenase and lack of sustainability in the cyanobacterial hydrogen production system. Three different marine cyanobacterial species viz. Leptolyngbya valderiana BDU 20041, Dichothrix baueriana BDU 40481 and Nostoc calcicola BDU 40302 were studied for their potential use in hydrogen production. Among these, L. valderiana BDU 20041, was found to produce hydrogen even in 100% nitrogen atmosphere which was 85% of the hydrogen produced in argon atmosphere. This is the first report of such a high rate of production of hydrogen in a nitrogen atmosphere by a cyanobacterium, which makes it possible to develop sustained hydrogen production systems. L. valderiana BDU 20041, a dark hydrogen producer uses the reductant essentially supplied by the respiratory pathway for hydrogen production. Using inhibitors, this organism was found to produce hydrogen due to the activities of both nitrogenase and bidirectional hydrogenase, while it had no 'uptake' hydrogenase activity. The other two organisms though had low levels of bidirectional hydrogenase, possessed considerable 'uptake' hydrogenase activity and hence could not release much hydrogen either in argon or nitrogen atmosphere. (author)

  11. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane; Reduction catalytique selective des oxydes d'azote (NO{sub x}) provenant d'effluents gazeux industriels par l'hydrogene ou le methane

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann Pirez, M

    2004-12-15

    This work deals with the selective catalytic reduction of nitrogen oxides (NO{sub x}), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N{sub 2}, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO{sub 3}, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  12. Measurement and modeling of ozone and nitrogen oxides produced by laser breakdown in oxygen-nitrogen atmospheres.

    Science.gov (United States)

    Gornushkin, Igor B; Stevenson, Chris L; Galbács, Gábor; Smith, Ben W; Winefordner, James D

    2003-11-01

    The production of ozone nad nitrogen oxides was studied during multiple laser breakdown in oxygen-nitrogen mixtures at atmospheric pressure. About 2000 laser shots at 10(10) W cm-2 were delivered into a sealed reaction chamber. The chamber with a long capillary was designed to measure absorption of O3, NO, and NO2 as a function of the number of laser shots. The light source for absorption measurements was the continuum radiation emitted by the plasma during the first 0.2 microsecond of its evolution. A kinetic model was developed that encompassed the principal chemical reactions between the major atmospheric components and the products of laser breakdown. In the model, the laser plasma was treated as a source of nitric oxide and atomic oxygen, whose rates of production were calculated using measured absorption by NO, NO2, and O3. The calculated concentration profiles for NO, NO2, and O3 were in good agreement with measured profiles over a time scale of 0-200 s. The steady-state concentration of ozone was measured in a flow cell in air. For a single breakdown in air, the estimated steady-state yield of ozone was 2 x 10(12) molecules, which agreed with the model prediction. This study can be of importance for general understanding of laser plasma chemistry and for elucidating the nature of spectral interferences and matrix effects that may take place in applied spectrochemical analysis.

  13. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

    2012-06-20

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  14. Interaction of hydrogen and oxygen with bulk defects and surfaces of metals

    International Nuclear Information System (INIS)

    Besenbacher, F.

    1994-05-01

    The thesis deals with the interaction of hydrogen with defects in metals and the interaction of hydrogen and oxygen with metal surfaces studied by ion-beam techniques and scanning tunneling microscopy (STM), respectively. The first part of the thesis discusses the interaction of hydrogen with simple defects in transition metals. The trap-binding enthalpies and the lattice location of hydrogen trapped to vacancies have been determined, and an extremely simple and versatile picture of the hydrogen-metal interaction has evolved, in which the trap strength is mainly determined by the local electron density. Any dilution of the lattice will lead to a trap, vacancies and voids being the strongest trap. It is found that hydrogen trapped to vacancies in fcc metals is quantum-mechanically delocalized, and the excitation energies for the hydrogen in the vacancy potential are a few MeV only. The interaction of hydrogen with metal surfaces is studied by the transmission channeling (TC) technique. It is found that hydrogen chemisorbs in the highest-coordinated sites on the surfaces, and that there is a direct relationship between the hydrogen-metal bond length and the coordination number for the hydrogen. In the final part of the thesis the dynamics of the chemisorption process for oxygen and hydrogen on metal surfaces is studied by STM, a fascinating and powerful technique for exploring the atomic-scale realm of surfaces. It is found that there is a strong coupling between the chemisorption process and the distortion of the metal surface. The adsorbates induce a surface reconstruction, i.e. metal-metal bond breaks and metal-adsorbate bounds form. Whereas hydrogen interacts weakly with the metals and induces reconstructions where only nnn metals bonds are broken, oxygen interacts strongly with the metal, and the driving force for the O-induced reconstructions appears to be the formation of low-coordinated metal-O rows, formed by breaking of nn metal bonds. Finally it is shown

  15. Detonation limits of clouds of coal dust in mixtures of oxygen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.H.; Fearnley, P.J.; Nettleton, M.A.

    1987-09-01

    Ignition and the subsequent acceleration of flame in clouds of coal dust dispersed in mixtures of oxygen and nitrogen have been studied. Two coal sizes, 24 and 54 ..mu..m, in concentrations ranging from 0.05 to 0.22 kg/m/sup 3/ were employed. Flame acceleration and the approach to transition to a stable detonation were monitored by a combination of microwave interferometry and pressure measurements. Flame and shock velocities up to 1.85 km/sec were observed. Ignition distances were found to be independent of the concentrations of dust and oxygen and particle size.

  16. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    Directory of Open Access Journals (Sweden)

    Hannah B Vander Zanden

    2016-03-01

    Full Text Available The measurement of stable carbon (δ13C and nitrogen (δ15N isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H and oxygen (δ18O isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applications using δ2H and, to a lesser extent, δ18O values have demonstrated potential for these elements to provide novel insights in modern food web studies. We explore the advantages and challenges associated with three applications of δ2H and δ18O values in food web studies. First, large δ2H differences between aquatic and terrestrial ecosystem end members can permit the quantification of energy inputs and nutrient fluxes between these two sources, with potential applications for determining allochthonous vs. autochthonous nutrient sources in freshwater systems and relative aquatic habitat utilization by terrestrial organisms. Next, some studies have identified a relationship between δ2H values and trophic position, which suggests that this marker may serve as a trophic indicator, in addition to the more commonly used δ15N values. Finally, coupled measurements of δ2H and δ18O values are increasing as a result of reduced analytical challenges to measure both simultaneously and may provide additional ecological information over single element measurements. In some organisms, the isotopic ratios of these two elements are tightly coupled, whereas the isotopic disequilibrium in other organisms may offer insight into the diet and physiology of individuals. Although a coherent framework for interpreting δ2H and δ18O data in the context of food web studies is emerging, many fundamental uncertainties remain. We highlight directions for targeted research that

  17. In vivo measurements of nitrogen, hydrogen, carbon and potassium in genetically obese and lean pigs

    International Nuclear Information System (INIS)

    Ellis, K.J.; Shypailo, R.J.; Sheng, H.P.; Mersmann, H.J.; Pond, W.G.

    1991-01-01

    Characteristic gamma rays are emitted promptly by elements during exposure to neutrons. Gamma ray emissions enable a radioanalytical analysis of the body's composition of protein (nitrogen), water (hydrogen), fat (carbon), and muscle (natural 40 K). The authors have used this method in vivo to detect changes in the body composition of obese and lean pigs (10-20 kg body wt) in response to an altered cholesterol diet

  18. In vivo measurements of nitrogen, hydrogen, and carbon in genetically obese and lean pigs

    International Nuclear Information System (INIS)

    Ellis, K.J.; Shypailo, R.J.; Sheng, H.-P.; Pond, W.G.

    1992-01-01

    Characteristic gamma-rays are emitted promptly by elements during exposure to neutrons. These emissions enable a radioanalytical analysis of the body's composition of protein (nitrogen), water (hydrogen), and fat (carbon). We have used this method in vivo to determine the body composition of obese and lean pigs (10 to 20 kg body wt) fed an altered cholesterol diet. (author) 10 refs.; 5 figs.; 1 tab

  19. Investigations into detonations of coal dust suspensions in oxygen-nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.; Fearnley, P.; Nettleton, M.

    1987-03-01

    The effect of particle size (practically monodispersed), volatile content and composition of gaseous oxygen-nitrogen mixtures on initiating flame acceleration rates in coal dust suspensions is investigated experimentally. Description is given of apparatus, material used and experiments carried out. The authors discusses: microwave interferograms, pressure oscillograms for various oxygen-nitrogen mixtures; development of ionization front speed in relation to distance from diaphragm; effect of composition on shock wave advance rates. It is concluded that: microwave interferometry can successfully be used in recording initiation of coal dust suspension detonations; ignition of confined coal dust suspensions by shock waves originated by detonation front in stoichiometric oxyacetylene mixtures can be explained by heating of coal particles in shock compression stream to ignition temperature (1000 K) by combined convection and radiation heat transfer. 16 refs.

  20. Influences of Air, Oxygen, Nitrogen, and Carbon Dioxide Nanobubbles on Seed Germination and Plant Growth.

    Science.gov (United States)

    Ahmed, Ahmed Khaled Abdella; Shi, Xiaonan; Hua, Likun; Manzueta, Leidy; Qing, Weihua; Marhaba, Taha; Zhang, Wen

    2018-05-23

    Nanobubbles (NBs) hold promise in green and sustainable engineering applications in diverse fields (e.g., water/wastewater treatment, food processing, medical applications, and agriculture). This study investigated the effects of four types of NBs on seed germination and plant growth. Air, oxygen, nitrogen, and carbon dioxide NBs were generated and dispersed in tap water. Different plants, including lettuce, carrot, fava bean, and tomato, were used in germination and growth tests. The seeds in water-containing NBs exhibited 6-25% higher germination rates. Especially, nitrogen NBs exhibited considerable effects in the seed germination, whereas air and carbon dioxide NBs did not significantly promote germination. The growth of stem length and diameter, leave number, and leave width were promoted by NBs (except air). Furthermore, the promotion effect was primarily ascribed to the generation of exogenous reactive oxygen species by NBs and higher efficiency of nutrient fixation or utilization.

  1. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure

    Science.gov (United States)

    Spaulding, Dylan K.; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-12-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis.

  2. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.

    2010-04-01

    Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.

  3. Graphene Composites with Cobalt Sulfide: Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte.

    Science.gov (United States)

    Wang, Nan; Li, Ligui; Zhao, Dengke; Kang, Xiongwu; Tang, Zhenghua; Chen, Shaowei

    2017-09-01

    Nitrogen and sulfur-codoped graphene composites with Co 9 S 8 (NS/rGO-Co) are synthesized by facile thermal annealing of graphene oxides with cobalt nitrate and thiourea in an ammonium atmosphere. Significantly, in 0.1 m KOH aqueous solution the best sample exhibits an oxygen evolution reaction (OER) activity that is superior to that of benchmark RuO 2 catalysts, an oxygen reduction reaction (ORR) activity that is comparable to that of commercial Pt/C, and an overpotential of only -0.193 V to reach 10 mA cm -2 for hydrogen evolution reaction (HER). With this single catalyst for oxygen reversible electrocatalysis, a potential difference of only 0.700 V is observed in 0.1 m KOH solution between the half-wave potential in ORR and the potential to reach 10 mA cm -2 in OER; in addition, an overpotential of only 450 mV is needed to reach 10 mA cm -2 for full water splitting in the same electrolyte. The present trifunctional catalytic activities are markedly better than leading results reported in recent literature, where the remarkable trifunctional activity is attributed to the synergetic effects between N,S-codoped rGO, and Co 9 S 8 nanoparticles. These results highlight the significance of deliberate structural engineering in the preparation of multifunctional electrocatalysts for versatile electrochemical reactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nitrogen oxidative activation in the radiolysis process of dioxide hydrocarbon composition, oxygen-nitrogen over 3-d transition metals

    International Nuclear Information System (INIS)

    Rustamov, V.R.; Garibov, A.A.; Kerimov, V.K.; Aliyev, S.M.; Nasirova, Kh.Y.

    2004-01-01

    The radiochemical process of nitrogen fixation in carbon dioxide, oxygen-nitrogen composition in 3-d metal (iron, nickel) was studied. Bifunctional character of surface's role in the generation of radiolysis products was postulated: a) Chemisorption's of molecular ions (N 2 + , CO 2 + , O 2 + ) on the surface of metal and their dissociative neutralization. b) Coordination of nitrogen and carbon oxide being generated in nitrosyl and carbonyl-nitrosyl complex of iron and nickel. Total yield of the products is over the rang 6,4†7,5, to explain radiolysis' what contribution of only neutral products is impossible. Evidently in the generation of final products, defined contribution brings in molecular ions N 2 + (N + ) and CO 2 + . Interaction character of these ions with nickel proposes the formation of the relation between unpaired electrons N 2 + and CO 2 + with unfilled d-sub level of this metals with the nickel nitride generation [N i -N=N + ] and binding energy in ion diazotate decreases to twice. The yield of nitrogen dioxide on radiolysis of the air gave G NO2 =0,8±0,2 molecule/100eV which is proper to the date in the literature. Kinetic curve appears rapidly in the saturation. Air radiolysis over iron gave the following results: G NO 2 = 2,75 ± 0,25, G N 2 O = 9,0 ± 1,0 molecule/100eV. Thus total yield of radiolysis products is Σ G = 10,5 ± 12,0 molecule/100eV. (author)

  5. Nitrogen oxidative activation in the radiolysis process of dioxide hydrocarbon composition, oxygen-nitrogen over 3-D transition metals

    International Nuclear Information System (INIS)

    Rustamov, V.R.; Garibov, A.A.; Kerimov, V.K.; Aliyev, S.M.; Nasirova, Kh.Y.

    2004-01-01

    Full text: The radiochemical process of nitrogen fixation in carbon dioxide, oxygen-nitrogen composition in 3-d metal (iron, nickel) was studied. Bifunctional character of surface's role in the generation of radiolysis products was postulated: a) Chemisorption's of molecular ions (N 2 + , CO 2 + , O 2 + ) on the surface of metal and their dissociative neutralization. b) Coordination of nitrogen and carbon oxide being generated in nitrosyl and carbonyl-nitrosyl complex of iron and nickel. Total yield of the products is over the rang 6,4†7,5, to explain radiolysis' what contribution of only neutral products is impossible. Evidently in the generation of final products, defined contribution brings in molecular ions N 2 + (N + ) and CO 2 + . Interaction character of these ions with nickel proposes the formation of the relation between unpaired electrons N 2 + and CO 2 + with unfilled d-sub level of this metals with the nickel nitride generation [N i -N=N + ] and binding energy in ion diazotate decreases to twice. The yield of nitrogen dioxide on radiolysis of the air gave G NO2 =0,8±0,2 molecule/100eV which is proper to the date in the literature. Kinetic curve appears rapidly in the saturation. Air radiolysis over iron gave the following results: G NO 2 = 2,75 ± 0,25, G N 2 O = 9,0 ± 1,0 molecule/100eV. Thus total yield of radiolysis products is Σ G = 10,5 ± 12,0 molecule/100eV

  6. Anaerobic Nitrogen Turnover by Sinking Diatom Aggregates at Varying Ambient Oxygen Levels

    Directory of Open Access Journals (Sweden)

    Peter eStief

    2016-02-01

    Full Text Available In the world’s oceans, even relatively low oxygen (O2 levels inhibit anaerobic nitrogen cycling by free-living microbes. Sinking organic aggregates, however, might provide oxygen-depleted microbial hotspots in otherwise oxygenated surface waters. Here we show that sinking diatom aggregates can host anaerobic nitrogen cycling at ambient O2 levels well above the hypoxic threshold. Aggregates were produced from the ubiquitous diatom Skeletonema marinoi and the natural microbial community of seawater. Microsensor profiling through the center of sinking aggregates revealed internal anoxia at ambient 40% air saturation (~100 µmol O2 L-1 and below. Accordingly, anaerobic nitrate turnover inside the aggregates was evident within this range of ambient O2 levels. In incubations with 15N-labeled nitrate, individual Skeletonema aggregates produced NO2- (up to 10.7 nmol N h-1 per aggregate, N2 (up to 7.1 nmol N h-1, NH4+ (up to 2.0 nmol N h-1, and N2O (up to 0.2 nmol N h-1. Intriguingly, nitrate stored inside the diatom cells served as an additional, internal nitrate source for N2 production, which may partially uncouple anaerobic nitrate turnover by diatom aggregates from direct ambient nitrate supply. Sinking diatom aggregates can contribute directly to fixed-nitrogen loss in low-oxygen environments in the ocean and vastly expand the ocean volume in which anaerobic nitrogen turnover is possible, despite relatively high ambient O2 levels. Depending on the extent of intracellular nitrate consumption during the sinking process, diatom aggregates may also be involved in the long-distance export of nitrate to the deep ocean.

  7. Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Qiliang Wei

    2015-09-01

    Full Text Available Nitrogen-doped carbon materials, including nitrogen-doped carbon nanotubes (NCNTs and nitrogen-doped graphene (NG, have attracted increasing attention for oxygen reduction reaction (ORR in metal-air batteries and fuel cell applications, due to their optimal properties including excellent electronic conductivity, 4e− transfer and superb mechanical properties. Here, the recent progress of NCNTs- and NG-based catalysts for ORR is reviewed. Firstly, the general preparation routes of these two N-doped carbon-allotropes are introduced briefly, and then a special emphasis is placed on the developments of both NCNTs and NG as promising metal-free catalysts and/or catalyst support materials for ORR. All these efficient ORR electrocatalysts feature a low cost, high durability and excellent performance, and are thus the key factors in accelerating the widespread commercialization of metal-air battery and fuel cell technologies.

  8. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs

    NARCIS (Netherlands)

    Klatt, Judith M.; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2S: (i) H2S accelerated the recovery of

  9. Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values?

    CSIR Research Space (South Africa)

    Waterhouse, JS

    2002-07-30

    Full Text Available . Cosmo- chim. Acta 46 (1982) 955^965. [35] W.M. Buhay, T.W.D. Edwards, Climate in southwestern Ontario, Canada, between AD 1610 and 1885 inferred from oxygen and hydrogen isotopic measurements of wood cellulose from trees in di?erent hydrological set...

  10. Sustainable hydrogen from bio-oil - Catalytic steam reforming of acetic acid as a model oxygenate

    NARCIS (Netherlands)

    Takanabe, Kazuhiro; Seshan, K.; Lefferts, Leon; Aika, Ken-ichi

    2004-01-01

    Steam reforming of acetic acid as a model oxygenate present in bio-oil over Pt/ZrO2 catalysts has been studied. Pt/ZrO2 catalysts are very active, completely converting acetic acid and give hydrogen yield close to thermodynamic equilibrium. The catalyst deactivated by formation of oligomers, which

  11. Porous layered double hydroxides synthesized using oxygen generated by decomposition of hydrogen peroxide

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; de Ruiter, M.P.; Wijnands, Tom; ten Elshof, Johan E.

    2017-01-01

    Porous magnesium-aluminium layered double hydroxides (LDH) were prepared through intercalation and decomposition of hydrogen peroxide (H2O2). This process generates oxygen gas nano-bubbles that pierce holes in the layered structure of the material by local pressure build-up. The decomposition of the

  12. Electrochemical catalytic reforming of oxygenated-organic compounds: a highly efficient method for production of hydrogen from bio-oil.

    Science.gov (United States)

    Yuan, Lixia; Chen, Yaqiong; Song, Chongfu; Ye, Tongqi; Guo, Qingxiang; Zhu, Qingshi; Torimoto, Youshifumi; Li, Quanxin

    2008-11-07

    A novel approach to produce hydrogen from bio-oil was obtained with high carbon conversion (>90%) and hydrogen yield (>90%) at Tcatalytic reforming of oxygenated-organic compounds over 18%NiO/Al(2)O(3) reforming catalyst; thermal electrons play important promoting roles in the decomposition and reforming of the oxygenated-organic compounds in the bio-oil.

  13. Nitrogen-Rich Polyacrylonitrile-Based Graphitic Carbons for Hydrogen Peroxide Sensing

    Directory of Open Access Journals (Sweden)

    Brandon Pollack

    2017-10-01

    Full Text Available Catalytic substrate, which is devoid of expensive noble metals and enzymes for hydrogen peroxide (H2O2, reduction reactions can be obtained via nitrogen doping of graphite. Here, we report a facile fabrication method for obtaining such nitrogen doped graphitized carbon using polyacrylonitrile (PAN mats and its use in H2O2 sensing. A high degree of graphitization was obtained with a mechanical treatment of the PAN fibers embedded with carbon nanotubes (CNT prior to the pyrolysis step. The electrochemical testing showed a limit of detection (LOD 0.609 µM and sensitivity of 2.54 µA cm−2 mM−1. The promising sensing performance of the developed carbon electrodes can be attributed to the presence of high content of pyridinic and graphitic nitrogens in the pyrolytic carbons, as confirmed by X-ray photoelectron spectroscopy. The reported results suggest that, despite their simple fabrication, the hydrogen peroxide sensors developed from pyrolytic carbon nanofibers are comparable with their sophisticated nitrogen-doped graphene counterparts.

  14. Preparation of nitrogen-doped graphitic carboncages as electrocatalyst for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Yan, Jing; Meng, Hui; Yu, Wendan; Yuan, Xiaoli; Lin, Worong; Ouyang, Wenpeng; Yuan, Dingsheng

    2014-01-01

    Nitrogen-doped carbon nanomaterials have been attracted increasing research interests in lithium-O 2 and Zinc-O 2 batteries, ultracapacitors and fuel cells. Herein, nitrogen-doped graphitic carboncages (N-GCs) have been prepared by mesoporous Fe 2 O 3 as a catalyst and lysine as a nitrogen doped carbon source. Due to the catalysis of Fe 2 O 3 , the N-GCs have a high graphitization degree at a low temperature, which is detected by X-ray diffraction and Raman spectrometer. Simultaneously, the heteroatom nitrogen is in-situ doped into carbon network. Therefore, the excellent electrocatalysis performance for oxygen reduction reaction is expected. The electrochemical measurement indicates that The N-GCs for oxygen reduction reaction in O 2 -saturated 0.1 mol L −1 KOH show a four-electron transfer process and exhibit excellent electrocatalytic activity (E ORR = -0.05 V vs. Ag/AgCl) and good stability (i/i 0 = 90% at -0.35 V after 4000 s with a rotation rate of 1600 rpm)

  15. Forensic applications of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments

    Science.gov (United States)

    Silva, S.R.; Ging, P.B.; Lee, R.W.; Ebbert, J.C.; Tesoriero, A.J.; Inkpen, E.L.

    2002-01-01

    Ground and surface waters in urban areas are susceptible to nitrate contamination from septic systems, leaking sewer lines, and fertilizer applications. Source identification is a primary step toward a successful remediation plan in affected areas. In this respect, nitrogen and oxygen isotope ratios of nitrate, in conjunction with hydrologic data and water chemistry, have proven valuable in urban studies from Austin, Texas, and Tacoma, Washington. In Austin, stream water was sampled during stremflow and baseflow conditions to assess surface and subsurface sources of nitrate, respectively. In Tacoma, well waters were sampled in adjacent sewered and un-sewered areas to determine if locally high nitrate concentrations were caused by septic systems in the un-sewered areas. In both studies, sewage was identified as a nitrate source and mixing between sewage and other sources of nitrate was apparent. In addition to source identification, combined nitrogen and oxygen isotopes were important in determining the significance of denitrification, which can complicate source assessment by reducing nitrate concentrations and increasing ??15N values. The two studies illustrate the value of nitrogen and oxygen isotopes of nitrate for forensic applications in urban areas. ?? Published by Elsevier Science Ltd. on behalf of AEHS.

  16. Hydrogen and oxygen isotope exchange reactions over illuminated and nonilluminated TiO2

    International Nuclear Information System (INIS)

    Sato, S.

    1987-01-01

    Hydrogen isotope exchange between H 2 , gaseous H 2 O, and the surface hydroxyls of TiO 2 , and oxygen isotope exchange between O 2 , CO 2 , CO, H 2 O vapor, and the hydroxyls over TiO 3 were studied at room temperature in the dark and under illumination. Hydrogen isotope exchange between H 2 O and the hydroxyls occurred rapidly in the dark, but the exchange involving H 2 did not occur at all even under illumination. Oxygen isotope exchange among H 2 O vapor, CO 2 , and the hydroxyls easily took place in the dark, but the exchange involving O 2 required band-gap illumination. Dioxygen isotope equilibration was much faster than the other photoexchange reactions. Although the oxygen exchange between O 2 and illuminated TiO 2 has been considered to involve lattice-oxygen exchange, the present experiments revealed that the hydroxyls of TiO 2 mainly participate in the exchange reaction. The oxygen exchange between O 2 and H 2 O vapor was strongly inhibited by H 2 O vapor itself probably because oxygen adsorption was retarded by adsorbed water. Oxygen in CO was not exchanged with the other substrates under any conditions tested

  17. Laser diagnostics of atomic hydrogen and oxygen production in rf and microwave plasma discharges

    International Nuclear Information System (INIS)

    Preppernau, B.L.

    1993-01-01

    The research for this thesis involved the application of two-photon allowed laser-induced fluorescence (TALIF) to the study of atomic hydrogen and oxygen production in industrial scale radio-frequency and microwave plasma discharge apparatus. Absolute atomic hydrogen concentration profiles were measured in a Gaseous Electronics Conference Reference Cell installed at Wright-Patterson AFB, Ohio operating with a simple H 2 discharge. Two-dimensional atomic hydrogen concentration profiles were also measured in an ASTEX HPMM microwave plasma diamond deposition reactor during actual diamond growth. In addition absolute atomic oxygen concentrations were measured in the ASTEX system. Particular attention as paid to refining the concentration calibration technique and in determining a correction to account for the collisional quenching of excited state fluorescence in high pressure gases

  18. Control of oxygen impurity and hydrogen recycling in the compact helical system (CHS)

    International Nuclear Information System (INIS)

    Noda, N.; Okamura, S.; Aoki, T.; Yamada, H.; Tsuzuki, K.; Matsuoka, K.; Iguchi, H.; Hosokawa, M.; Kaneko, O.; Kubo, S.; Morita, S.; Nishimura, K.; Sagara, A.; Shoji, T.; Takahashi, C.; Takeiri, Y.; Takita, Y.; Amemiya, H.; Okazaki, K.; Oyama, Y.; Shimizu, K.; Yano, K.

    1990-01-01

    In order to reduce oxygen impurity and hydrogen recycling, ECR discharge cleaning with hydrogen, glow discharge with helium, and titanium gettering have been applied. The ECR discharge cleaning was found to be effective in reducing oxygen impurities in ECRH discharges. However, it was not sufficiently effective to give a wide operational density range in NBI heated discharges. Titanium gettering is essential for this purpose, and controllable discharges have been achieved in the density range 1-10x10 19 m -3 , with discharge length more than 850 ms with the aid of titanium gettering. Both helium-glow discharge and Ti gettering are useful to control hydrogen recycling even with a stainless steel wall. (orig.)

  19. Corrosion of copper in distilled water without molecular oxygen and the detection of produced hydrogen

    International Nuclear Information System (INIS)

    Hultquist, G.; Graham, M.J.; Kodra, O.; Moisa, S.; Liu, R.; Bexell, U.; Smialek, J.L.

    2013-01-01

    This paper reports on hydrogen pressures measured during the longterm immersion (∼19 000 hours) of copper in oxygen-free distilled water. Hydrogen gas evolution is from copper corrosion and similar pressures (in the mbar range) are measured for copper contained in either a 316 stainless steel or titanium system. Copper corrosion products have been examined ex-situ by SEM and characterized by Xray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). XPS strongly indicates a corrosion product containing both hydroxide and oxide. SIMS shows that oxygen is mainly present in the outer 0.3 μm surface region and that hydrogen penetrates to depths in the substrate well below the corrosion product

  20. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production

    Science.gov (United States)

    Schastlivtsev, A. I.; Borzenko, V. I.

    2017-11-01

    The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.

  1. Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes

    KAUST Repository

    Wu, Xiao-Yu

    2015-01-01

    © the Owner Societies. Hydrogen production from water thermolysis can be enhanced by the use of perovskite-type mixed ionic and electronic conducting (MIEC) membranes, through which oxygen permeation is driven by a chemical potential gradient. In this work, water thermolysis experiments were performed using 0.9 mm thick La0.9Ca0.1FeO3-δ (LCF-91) perovskite membranes at 990 °C in a lab-scale button-cell reactor. We examined the effects of the operating conditions such as the gas species concentrations and flow rates on the feed and sweep sides on the water thermolysis rate and oxygen flux. A single step reaction mechanism is proposed for surface reactions, and three-resistance permeation models are derived. Results show that water thermolysis is facilitated by the LCF-91 membrane especially when a fuel is added to the sweep gas. Increasing the gas flow rate and water concentration on the feed side or the hydrogen concentration on the sweep side enhances the hydrogen production rate. In this work, hydrogen is used as the fuel by construction, so that a single-step surface reaction mechanism can be developed and water thermolysis rate parameters can be derived. Both surface reaction rate parameters for oxygen incorporation/dissociation and hydrogen-oxygen reactions are fitted at 990 °C. We compare the oxygen fluxes in water thermolysis and air separation experiments, and identify different limiting steps in the processes involving various oxygen sources and sweep gases for this 0.9 mm thick LCF-91 membrane. In the air feed-inert sweep case, the bulk diffusion and sweep side surface reaction are the two limiting steps. In the water feed-inert sweep case, surface reaction on the feed side dominates the oxygen permeation process. Yet in the water feed-fuel sweep case, surface reactions on both the feed and sweep sides are rate determining when hydrogen concentration in the sweep side is in the range of 1-5 vol%. Furthermore, long term studies show that the surface

  2. First-Principles Petascale Simulations for Predicting Deflagration to Detonation Transition in Hydrogen-Oxygen Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Khokhlov, Alexei [Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics. Enrico Fermi Inst.; Austin, Joanna [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility; Bacon, C. [Univ. of Illinois, Urbana, IL (United States). Dept. of Aerospace Engineering

    2015-03-02

    Hydrogen has emerged as an important fuel across a range of industries as a means of achieving energy independence and to reduce emissions. DDT and the resulting detonation waves in hydrogen-oxygen can have especially catastrophic consequences in a variety of industrial and energy producing settings related to hydrogen. First-principles numerical simulations of flame acceleration and DDT are required for an in-depth understanding of the phenomena and facilitating design of safe hydrogen systems. The goals of this project were (1) to develop first-principles petascale reactive flow Navier-Stokes simulation code for predicting gaseous high-speed combustion and detonation (HSCD) phenomena and (2) demonstrate feasibility of first-principles simulations of rapid flame acceleration and deflagration-to-detonation transition (DDT) in stoichiometric hydrogen-oxygen mixture (2H2 + O2). The goals of the project have been accomplished. We have developed a novel numerical simulation code, named HSCD, for performing first-principles direct numerical simulations of high-speed hydrogen combustion. We carried out a series of validating numerical simulations of inert and reactive shock reflection experiments in shock tubes. We then performed a pilot numerical simulation of flame acceleration in a long pipe. The simulation showed the transition of the rapidly accelerating flame into a detonation. The DDT simulations were performed using BG/Q Mira at the Argonne National Laboratory, currently the fourth fastest super-computer in the world.

  3. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-01

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load

  4. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-15

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load.

  5. High speed diagnostics for characterization of oxygen / hydrogen rocket injector flowfields

    Science.gov (United States)

    Locke, Justin M.

    location. The time-averaged results are consistent with previous spatially-resolved Raman spectroscopy measurements made in a similar rocket combustor under similar flow conditions. The primary atomization and combustion characteristics of a liquid oxygen (LOX) / gaseous hydrogen (GH2) shear coaxial injector element were also experimentally investigated. High speed movies using a shadowgraph imaging technique to visualize the LOX core were recorded for both hot-fire (LOX/GH 2) and cold-flow (LOX/gaseous oxygen (GO2)) conditions with the same injector and chamber. Flow conditions were set to approximate realistic rocket conditions. For the hot-fire tests (LOX/GH2), chamber pressures were 600, 730, and 920 psia, with momentum flux ratios (annulus flow/post flow) of 2.7, 2.0 and 1.6 respectively. The rocket assembly utilized a preburner to provide a background flow (M≈0.1) of hot gaseous nitrogen (GN2 )/GH2/water (H2O) gas with 25% volumetric concentration of hydrogen. For the cold-flow tests (LOX/GO2 with GO2 background flow), chamber pressures were 650 and 830 psia, thus above and below the critical pressure of oxygen (731.6 psia), with momentum flux ratios (annulus flow/post flow) of 2.2 and 1.8 respectively. The high speed visualizations under hot-fire conditions show a long sinuous LOX core region that breaks into large dense-oxygen structures, which are then quickly consumed. These results do not agree with the classical phenomenological breakup model that suggests a liquid core that is rapidly sheared into a drop cloud. Rather, a large-scale fragmentation model may be better suited to describe the primary atomization behavior in combusting flow from a LOX/GH2 shear coaxial injector element at realistic rocket conditions. Unlike the hot-fire case, cold-flow LOX visualization movies show a clear difference between the two chamber pressures, with the higher pressure (supercritical) case resembling behavior indicative of gaseous mixing compared to the typically two phase

  6. Hydrogen cyanide formation in selective catalytic reduction of nitrogen oxides over Cu/ZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, F; Koeppel, R; Baiker, A [Department of Chemical Engineering and Industrial Chemistry, Swiss Federal Institute of Technology, Zurich, (Switzerland)

    1994-01-06

    Hydrogen cyanide is formed over Cu/ZSM-5 during the selective catalytic reduction of NO[sub x] by either propylene or ethylene in the temperature range 450-600 K. Under the reaction conditions used (reactant feed: 973 ppm NO, 907 ppm propene or 1448 ppm ethylene, 2% oxygen, W/F=0.1 g s cm[sup -3]), the concentration of hydrogen cyanide reaches 20, respectively, 30 ppm, depending on whether ethylene or propene are used as hydrocarbons. In addition, significant N[sub 2]O formation is observed at temperatures lower than 700 K, independent of the hydrocarbon used

  7. Atomic hydrogen and oxygen adsorptions in single-walled zigzag silicon nanotubes

    International Nuclear Information System (INIS)

    Chen, Haoliang; Ray, Asok K.

    2013-01-01

    Ab initio calculations have been performed to study the electronic and geometric structure properties of zigzag silicon nanotubes. Full geometry and spin optimizations have been performed without any symmetry constraints with an all electron 3-21G* basis set and the B3LYP hybrid functional. The largest zigzag SiNT studied here, (12, 0), has a binding energy per atom of 3.584 eV. Atomic hydrogen and oxygen adsorptions on (9, 0) and (10, 0) nanotubes have also been studied by optimizing the distances of the adatoms from both inside and outside the tube. The adatom is initially placed in four adsorption sites-parallel bridge (PB), zigzag bridge (ZB), hollow, and on-top site. The on-top site is the most preferred site for hydrogen atom adsorbed on (9, 0), with an adsorption energy of 3.0 eV and an optimized distance of 1.49 Å from the adatom to the nearest silicon atom. For oxygen adsorption on (9, 0), the most preferred site is the ZB site, with an adsorption energy of 5.987 eV and an optimized distance of 1.72 Å. For atomic hydrogen adsorption on (10, 0), the most preferred site is also the on-top site with an adsorption energy of 3.174 eV and an optimized distance of 1.49 Å. For adsorption of atomic oxygen on (10, 0), the most preferred site is PB site, with an adsorption energy of 6.306 eV and an optimized distance of 1.71 Å. The HOMO–LUMO gaps of (9, 0) after adsorptions of hydrogen and oxygen atoms decrease while the HOMO–LUMO gaps of (10, 0) increase after adsorption of hydrogen and oxygen

  8. Effect of hydrogen peroxide and camellia sinensis extract on reduction of oxygen level in graphene oxide

    Science.gov (United States)

    Celina Selvakumari, J.; Dhanalakshmi, J.; Pathinettam Padiyan, D.

    2016-10-01

    The intention of this work is to reduce the oxygen level in graphene oxide. The reduction process was initiated while preparing graphene oxide using modified Hummer’s method. In this new method, increase in hydrogen peroxide concentration during the preparation process results in the oxygen content reduction. Adding green tea (camellia sinensis) extract with increased hydrogen peroxide results in further reduction of oxygen content and changed the graphene oxide to reduced graphene oxide. The structural and optical properties of the new found reduced graphene oxide was analysed using XRD, FTIR, TEM, Raman and UV-vis spectra. The overall observation reflects that the sp3 carbon network of graphene oxide changed into sp2 carbon lattice of graphene which is very handful in supercapacitor and biosensor fields.

  9. Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue

    Science.gov (United States)

    Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.

    2015-09-01

    The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH•) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH• are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.

  10. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream.

    Science.gov (United States)

    Nishizawa, Manabu; Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-08-01

    Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ(15)NNO2- and δ(18)ONO2-, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of "Candidatus Nitrosocaldus." The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ(18)O value of nitrite produced from ammonia oxidation varied with the δ(18)O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ(18)ONO2- in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of

  11. Hydrogen-Enhanced Lunar Oxygen Extraction and Storage Using Only Solar Power

    Science.gov (United States)

    Burton, rodney; King, Darren

    2013-01-01

    The innovation consists of a thermodynamic system for extracting in situ oxygen vapor from lunar regolith using a solar photovoltaic power source in a reactor, a method for thermally insulating the reactor, a method for protecting the reactor internal components from oxidation by the extracted oxygen, a method for removing unwanted chemical species produced in the reactor from the oxygen vapor, a method for passively storing the oxygen, and a method for releasing high-purity oxygen from storage for lunar use. Lunar oxygen exists in various types of minerals, mostly silicates. The energy required to extract the oxygen from the minerals is 30 to 60 MJ/kg O. Using simple heating, the extraction rate depends on temperature. The minimum temperature is approximately 2,500 K, which is at the upper end of available oven temperatures. The oxygen is released from storage in a purified state, as needed, especially if for human consumption. This method extracts oxygen from regolith by treating the problem as a closed batch cycle system. The innovation works equally well in Earth or Lunar gravity fields, at low partial pressure of oxygen, and makes use of in situ regolith for system insulation. The innovation extracts oxygen from lunar regolith using a method similar to vacuum pyrolysis, but with hydrogen cover gas added stoichiometrically to react with the oxygen as it is produced by radiatively heating regolith to 2,500 K. The hydrogen flows over and through the heating element (HE), protecting it from released oxygen. The H2 O2 heat of reaction is regeneratively recovered to assist the heating process. Lunar regolith is loaded into a large-diameter, low-height pancake reactor powered by photovoltaic cells. The reactor lid contains a 2,500 K HE that radiates downward onto the regolith to heat it and extract oxygen, and is shielded above by a multi-layer tungsten radiation shield. Hydrogen cover gas percolates through the perforated tungsten shielding and HE, preventing

  12. Hydrogen uptake in alumina thin films synthesized from an aluminum plasma stream in an oxygen ambient

    International Nuclear Information System (INIS)

    Schneider, J.M.; Anders, A.; Hjoervarsson, B.; Petrov, I.; Macak, K.; Helmersson, U.; Sundgren, J.

    1999-01-01

    We describe the hydrogen uptake during the synthesis of alumina films from H 2 O present in the high vacuum gas background. The hydrogen concentration in the films was determined by the 1 H( 15 N,αγ) 12 C nuclear resonance reaction. Furthermore, we show the presence of hydrogen ions in the plasma stream by time-of-flight mass spectrometry. The hydrogen content increased in both the film and the plasma stream, as the oxygen partial pressure was increased. On the basis of these measurements and thermodynamic considerations, we suggest that an aluminum oxide hydroxide compound is formed, both on the cathode surface as well as in the film. The large scatter in the data reported in the literature for refractive index and chemical stability of alumina thin films can be explained on the basis of the suggested aluminum oxide hydroxide formation. copyright 1999 American Institute of Physics

  13. Nitrogen transformation of reclaimed wastewater in a pipeline by oxygen injection.

    Science.gov (United States)

    Rodríguez-Gómez, L E; Alvarez, M; Rodríguez-Sevilla, J; Marrero, M C; Hernández, A

    2009-06-01

    A study of oxygen injection was performed in a completely filled gravity pipe, which is part of the South Tenerife reclaimed wastewater reuse scheme (Spain), in order to inhibit the appearance of anaerobic conditions by a nitrification-denitrification process. The pipe was 0.6 m in diameter and 62 km long and made of cast iron with a concrete inner coating, A high-pressure oxygen injection system was installed at 16 km from the pipe inlet, where severe anaerobic conditions appear. Experiments on oxygen injection were carried out with three different concentrations (7, 15 and 30 mg l(-1) O2). In all experiments, oxygen dissolved properly after injection, and no gas escapes were detected during water transportation. Most oxygen was consumed in the nitrification process, due to the low COD/NH4-N ratio, leading to a maximum production of oxidized nitrogen compounds of 7.5 mg l(-1) NO(x)-N with the 30 mg l(-1) O2 dose. Nitrification occured with nitrite accumulation, attributed to the presence of free ammonia within the range 1.2-1.4 mg l(-). Once the oxygen had been consumed, an apparent half-order denitrification took place, with limitation of biodegradable organic matter. The anoxic conditions led to a complete inhibition of sulphide generation.

  14. One step synthesis of chlorine-free Pt/Nitrogen-doped graphene composite for oxygen reduction reaction

    KAUST Repository

    Varga, Tamá s; Varga, Á gnes Tí mea; Ballai, Gergő; Haspel, Henrik; Kukovecz, Á kos; Kó nya, Z.

    2018-01-01

    Chlorine-free Platinum/nitrogen-doped graphene oxygen reduction reaction catalysts were synthesized by a one step method of annealing a mixture of platinum acetylacetonate and graphene oxide under ammonia atmosphere. Nanoparticles with close

  15. Microbial Nitrogen Transformations in the Oxygen Minimum Zone off Peru, 01 February 1985 to 05 March 1985 (NODC Accession 9200026)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NITROP - 85 was the major field of experiment of an N.S.F. funded program entitled "Microbial Nitrogen Transformations in the Oxygen Minimum Zone off Peru". this...

  16. Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis

    Directory of Open Access Journals (Sweden)

    Rachel McCormick

    2016-08-01

    Data demonstrate that satellite cell proliferation increased when cells were grown in 6% O2 compared with 20% O2. Myoblasts grown in 20% O2 showed an increase in DCF fluorescence and DHE oxidation compared with myoblasts grown at 6% O2. Myotubes grown in 20% O2 also showed an increase in DCF and DAF-FM fluorescence and DHE oxidation compared with myotubes grown in 6% O2. The catalase and MnSOD contents were also increased in myoblasts and myotubes that were maintained in 20% O2 compared with myoblasts and myotubes grown in 6% O2. These data indicate that intracellular RONS activities in myoblasts and myotubes at rest are influenced by changes in environmental oxygen concentration and that the increased ROS may influence myogenesis in a negative manner.

  17. Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tahtouh, T.; Halter, F.; Mounaim-Rousselle, C. [Institut PRISME, Universite d' Orleans, 8 rue Leonard de Vinci-45072, Orleans Cedex 2 (France); Samson, E. [PSA Peugeot Citroen (France)

    2009-10-15

    The effect of hydrogen addition and nitrogen dilution on laminar flame characteristics was investigated. The spherical expanding flame technique, in a constant volume bomb, was employed to extract laminar flame characteristics. The mole fraction of hydrogen in the methane-hydrogen mixture was varied from 0 to 1 and the mole fraction of nitrogen in the total mixture (methane-hydrogen-air-diluent) from 0 to 0.35. Measurements were performed at an initial pressure of 0.1 MPa and an initial temperature of 300 K. The mixtures investigated were under stoichiometric conditions. Based on experimental measurements, a new correlation for calculating the laminar burning velocity of methane-hydrogen-air-nitrogen mixtures is proposed. The laminar burning velocity was found to increase linearly with hydrogen mass fraction for all dilution ratios while the burned gas Markstein length decreases with the increase in hydrogen amount in the mixture except for high hydrogen mole fractions (>0.6). Nitrogen dilution has a nonlinear reducing effect on the laminar burning velocity and an increasing effect on the burned gas Markstein length. The experimental results and the proposed correlation obtained are in good agreement with literature values. (author)

  18. Modeling of recovery mechanism of ozone zero phenomenaby adding small amount of nitrogen in atmospheric pressure oxygen dielectric barrier discharges

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2013-09-01

    Ozone zero phenomena in an atmospheric pressure oxygen dielectric barrier discharges have been one of the major problems during a long time operation of ozone generators. But it is also known that the adding a small amount of nitrogen makes the recover from the ozone zero phenomena. To make clear the mechanism of recovery, authors have been simulated the discharges with using the results of Ref. 3. As a result, the recovery process can be seen and ozone density increased. It is found that the most important species would be nitrogen atoms. The reaction of nitrogen atoms and oxygen molecules makes oxygen atoms which is main precursor species of ozone. This generation of oxygen atoms is effective to increase ozone. The dependence of oxygen atom density (nO) and nitrogen atom density (nN) ratio was examined in this paper. In the condition of low nN/nO ratio case, generation of nitrogen oxide is low, and the quenching of ozone by the nitrogen oxide would be low. But in the high ratio condition, the quenching of ozone by nitrogen oxide would significant. This work was supported by KAKENHI(23560352).

  19. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  20. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Junchao Yu

    Full Text Available Hyperbaric oxygen (HBO therapy through breathing oxygen at the pressure of above 1 atmosphere absolute (ATA is useful for varieties of clinical conditions, especially hypoxic-ischemic diseases. Because of generation of reactive oxygen species (ROS, breathing oxygen gas at high pressures can cause oxygen toxicity in the central nervous system, leading to multiple neurological dysfunction, which limits the use of HBO therapy. Studies have shown that Hydrogen gas (H2 can diminish oxidative stress and effectively reduce active ROS associated with diseases. However, the effect of H2 on ROS generated from HBO therapy remains unclear. In this study, we investigated the effect of H2 on ROS during HBO therapy using PC12 cells. PC12 cells cultured in medium were exposed to oxygen gas or mixed oxygen gas and H2 at 1 ATA or 5 ATA. Cells viability and oxidation products and ROS were determined. The data showed that H2 promoted the cell viability and inhibited the damage in the cell and mitochondria membrane, reduced the levels of lipid peroxidation and DNA oxidation, and selectively decreased the levels of •OH but not disturbing the levels of O2•-, H2O2, or NO• in PC12 cells during HBO therapy. These results indicated that H2 effectively reduced •OH, protected cells against oxygen toxicity resulting from HBO therapy, and had no effect on other ROS. Our data supported that H2 could be potentially used as an antioxidant during HBO therapy.

  1. Sensing performances of ZnO nanostructures grown under different oxygen pressures to hydrogen

    International Nuclear Information System (INIS)

    Chu, Jin; Peng, Xiaoyan; Wang, Zhenbo; Feng, Peter

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Surface morphology depends on the oxygen pressure. ► Structural degradation was observed for the ZnO samples when oxygen pressure was overhigh. ► The sensitivity of the ZnO-based sensors increase with grown oxygen pressure. -- Abstract: For extensive use in an industrialized process of individual ZnO nanostructures applied in gas sensors, a simple, inexpensive, and safe synthesis process is required. Here, nanostructured ZnO films were grown by a pulsed laser deposition technique under different oxygen pressures. Scanning electron microscopy images show nanopores, nanotips, and nanoparticles are obtained and energy dispersive X-ray spectroscopy data indicate oxygen concentration of the synthesized samples increases monotonously with oxygen pressure. The sensor based on ZnO with high oxygen concentration has high sensitivity, rapid response (9 s) and recovery (80 s) behavior to 500 ppm hydrogen below 150 °C. Experimental data indicate that high oxygen concentration effectively improves the sensing properties of nanostructured ZnO.

  2. Modelling of zircaloy-4 degradation in oxygen and nitrogen mixtures at high temperature

    International Nuclear Information System (INIS)

    Lasserre-Gagnaire, Marina

    2013-01-01

    Zircaloy-4 claddings provide the first containment of UO 2 fuel in Pressurised Water Reactors. It has been demonstrated that the fuel assemblies cladding could be exposed to air at high temperature in several accidental situations such as a loss of cooling accident in a spent fuel storage When mixed to oxygen at high temperature, the nitrogen, usually used as an inert gas, causes the accelerated corrosion of the cladding. The kinetic curves obtained by thermogravimetry reveal two stages: a pre-transition and a post-transition one. The pre-transition stage corresponds to the growth of a protective dense oxide layer: the kinetic rate decreases with time and is controlled by oxygen vacancy diffusion in the oxide layer. In the post-transition stage, the oxide layer is no longer protective and the kinetic rate increases with time. Images obtained by optical microscopy of a sample in the post-transition stage reveal the presence of corroded zones characterized by a porous scale with zirconium nitride precipitates at metal - oxide interface. Corrosion of Zy4 plates at 850 deg. C under mixed oxygen - nitrogen atmospheres has been studied during the post-transition stage. A sequence of three reactions is proposed to explain the mechanism of nitrogen-enhanced corrosion and the porosity of the corroded regions. The accelerating effect of nitrogen in the corrosion scale can therefore be described on the basis of an autocatalytic effect of the zirconium nitride precipitates. Then, it is demonstrated that the steady-state approximation as well as the existence of an elementary step controlling the growth process are valid during the post-transition stage. Thanks to the study of the variations of the surface rate of growth with the oxygen and nitrogen partial pressure, the rate-determining step is identified as the external interface reaction step of the oxidation of the zirconium nitride precipitates. Finally, a nucleation and growth model used for thermal reactions in powders

  3. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    Science.gov (United States)

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-08

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water

    International Nuclear Information System (INIS)

    Chen Bingyan; Wen Wen; Zhu Changping; Wang Yuan; Gao Ying; Fei Juntao; He Xiang; Yin Cheng; Jiang Yongfeng; Chen Longwei

    2016-01-01

    Discharge plasma in and in contact with water can be accompanied with ultraviolet radiation and electron impact, thus can generate hydroxyl radicals, ozone, nitrite nitrogen and hydrogen peroxide. In this paper, a non-equilibrium plasma processing system was established by means of an atmospheric pressure plasma jet immersed in water. The hydroxyl intensities and discharge energy waveforms were tested. The results show that the positive and negative discharge energy peaks were asymmetric, where the positive discharge energy peak was greater than the negative one. Meanwhile, the yield of ozone and nitrite nitrogen was enhanced with the increase of both the treatment time and the discharge energy. Moreover, the pH value of treated water was reduced rapidly and maintained at a lower level. The residual concentration of hydrogen peroxide in APPJ treated water was kept at a low level. Additionally, both the efficiency energy ratio of the yield of ozone and nitrite nitrogen and that of the removal of p-nitrophenol increased as a function of discharge energy and discharge voltage. The experimental results were fully analyzed and the chemical reaction equations and the physical processes of discharges in water were given. (paper)

  5. Influence of nitrogen doping in sumanene framework toward hydrogen storage: A computational study.

    Science.gov (United States)

    Reisi-Vanani, Adel; Shamsali, Fatemeh

    2017-09-01

    Two conditions are important to obtain appropriate substances for hydrogen storage; high surface area and fitting binding energy (BE). Doping is a key strategy that improves BE. We investigated hydrogen adsorption onto twenty six nitrogen disubstituted isomers of sumanene (C 19 N 2 H 12 ) by MP2/6-311++G(d,p)//B3LYP/6-31+G(d) and M06-2X/6-31+G(d) levels of theory. Effect of nitrogen doping in different positions of sumanene was checked. To obtain better BE, basis set superposition error (BSSE) and zero point energy (ZPE) corrections were used. Anticipating of adsorption sites and extra details about adsorption process was done by molecular electrostatic potential (MEP) surfaces. Various types of density of state (DOS) diagrams such as total DOS (TDOS), projected DOS (PDOS) and overlap population DOS (OPDOS) and natural bond orbital (NBO) analysis were used to find better insight on the adsorption properties. In addition of temperature depending of the BE, HOMO-LUMO gap (HLG), dipole moment, reactivity and stability, bowl depth and natural population analysis (NPA) of the isomers were studied. A physisorption mechanism for adsorption was proposed and a trivial change was seen. Place of nitrogen atoms in sumanene frame causes to binding energy increases or decreases compared with pristine sumanene. The best and the worst isomers and category of isomers were suggested. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction

    Science.gov (United States)

    Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo

    2017-11-01

    With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.

  7. Depletion of oxygen, nitrate and nitrite in the Peruvian oxygen minimum zone cause an imbalance of benthic nitrogen fluxes

    Science.gov (United States)

    Sommer, S.; Gier, J.; Treude, T.; Lomnitz, U.; Dengler, M.; Cardich, J.; Dale, A. W.

    2016-06-01

    Oxygen minimum zones (OMZ) are key regions for fixed nitrogen loss in both the sediments and the water column. During this study, the benthic contribution to N cycling was investigated at ten sites along a depth transect (74-989 m) across the Peruvian OMZ at 12°S. O2 levels were below detection limit down to ~500 m. Benthic fluxes of N2, NO3-, NO2-, NH4+, H2S and O2 were measured using benthic landers. Flux measurements on the shelf were made under extreme geochemical conditions consisting of a lack of O2, NO3- and NO2- in the bottom water and elevated seafloor sulphide release. These particular conditions were associated with a large imbalance in the benthic nitrogen cycle. The sediments on the shelf were densely covered by filamentous sulphur bacteria Thioploca, and were identified as major recycling sites for DIN releasing high amounts of NH4+up to 21.2 mmol m-2 d-1 that were far in excess of NH4+ release by ammonification. This difference was attributed to dissimilatory nitrate (or nitrite) reduction to ammonium (DNRA) that was partly being sustained by NO3- stored within the sulphur oxidizing bacteria. Sediments within the core of the OMZ (ca. 200-400 m) also displayed an excess flux of N of 3.5 mmol m-2 d-1 mainly as N2. Benthic nitrogen and sulphur cycling in the Peruvian OMZ appears to be particularly susceptible to bottom water fluctuations in O2, NO3- and NO2-, and may accelerate the onset of pelagic euxinia when NO3- and NO2- become depleted.

  8. A Generalizable Top-Down Nanostructuring Method of Bulk Oxides: Sequential Oxygen-Nitrogen Exchange Reaction.

    Science.gov (United States)

    Lee, Lanlee; Kang, Byungwuk; Han, Suyoung; Kim, Hee-Eun; Lee, Moo Dong; Bang, Jin Ho

    2018-05-27

    A thermal reaction route that induces grain fracture instead of grain growth is devised and developed as a top-down approach to prepare nanostructured oxides from bulk solids. This novel synthesis approach, referred to as the sequential oxygen-nitrogen exchange (SONE) reaction, exploits the reversible anion exchange between oxygen and nitrogen in oxides that is driven by a simple two-step thermal treatment in ammonia and air. Internal stress developed by significant structural rearrangement via the formation of (oxy)nitride and the creation of oxygen vacancies and their subsequent combination into nanopores transforms bulk solid oxides into nanostructured oxides. The SONE reaction can be applicable to most transition metal oxides, and when utilized in a lithium-ion battery, the produced nanostructured materials are superior to their bulk counterparts and even comparable to those produced by conventional bottom-up approaches. Given its simplicity and scalability, this synthesis method could open a new avenue to the development of high-performance nanostructured electrode materials that can meet the industrial demand of cost-effectiveness for mass production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis of 2D Nitrogen-Doped Mesoporous Carbon Catalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Zhipeng Yu

    2017-02-01

    Full Text Available 2D nitrogen-doped mesoporous carbon (NMC is synthesized by using a mesoporous silica film as hard template, which is then investigated as a non-precious metal catalyst for the oxygen reduction reaction (ORR. The effect of the synthesis conditions on the silica template and carbon is extensively investigated. In this work, we employ dual templates—viz. graphene oxide and triblock copolymer F127—to control the textural features of a 2D silica film. The silica is then used as a template to direct the synthesis of a 2D nitrogen-doped mesoporous carbon. The resultant nitrogen-doped mesoporous carbon is characterized by transmission electron microscopy (TEM, nitrogen ad/desorption isotherms, X-ray photoelectron spectroscopy (XPS, cyclic voltammetry (CV, and rotating disk electrode measurements (RDE. The electrochemical test reveals that the obtained 2D-film carbon catalyst yields a highly electrochemically active surface area and superior electrocatalytic activity for the ORR compared to the 3D-particle. The superior activity can be firstly attributed to the difference in the specific surface area of the two catalysts. More importantly, the 2D-film morphology makes more active sites accessible to the reactive species, resulting in a much higher utilization efficiency and consequently better activity. Finally, it is noted that all the carbon catalysts exhibit a higher ORR activity than a commercial Pt catalyst, and are promising for use in fuel cells.

  10. Hydrogen and oxygen isotope ratios of geothermal waters in the southern hachimantai area

    International Nuclear Information System (INIS)

    Matsubaya, Osamu; Etchu, Hiroshi; Takenaka, Teruo; Yoshida, Yutaka.

    1985-01-01

    Geothermal waters from the Matsukawa and Kakkonda Geothermal Plants, wells at Amihari-Motoyu, and Nyuto and Tazawako areas were isotopically studied. The geothermal waters from Mutsukawa, Kakkonda and Amihari-Motoyu have hydrogen isotope ratios similar to the local meteoric waters, while have higher oxygen isotope ratios than the local meteoric waters. This relationship of hydrogen and oxygen isotope ratios, that is called ''oxygen shift'', means that these geothermal waters are meteoric waters undergone the oxygen isotope exchange with rocks at high temperature of underground. The exygen shifts are 2 -- 3 per mil in Matsukawa and Kakkonda, and 7 per mil in Amihari-Motoyu. This difference may be important to understand the processe of water-rock interaction in this area. The geothermal waters at Nyuto and Tazawako areas also show 2 -- 3 per mil oxygen shift. The steam from the Tazawako-cho well and the hot spring water form the Tsurunoyu are estimated to be vapor and liquid phases separated form a single geothermal water of NaCl type, though the hot water from the Tsurunoyu is diluted with shallow meteoric water. (author)

  11. Assessment of nitrogen and oxygen isotopic fractionation during nitrification and its expression in the marine environment.

    Science.gov (United States)

    Casciotti, Karen L; Buchwald, Carolyn; Santoro, Alyson E; Frame, Caitlin

    2011-01-01

    Nitrification is a microbially-catalyzed process whereby ammonia (NH(3)) is oxidized to nitrite (NO(2)(-)) and subsequently to nitrate (NO(3)(-)). It is also responsible for production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Because the microbes responsible for nitrification are primarily autotrophic, nitrification provides a unique link between the carbon and nitrogen cycles. Nitrogen and oxygen stable isotope ratios have provided insights into where nitrification contributes to the availability of NO(2)(-) and NO(3)(-), and where it constitutes a significant source of N(2)O. This chapter describes methods for determining kinetic isotope effects involved with ammonia oxidation and nitrite oxidation, the two independent steps in the nitrification process, and their expression in the marine environment. It also outlines some remaining questions and issues related to isotopic fractionation during nitrification. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Ionization of one-electron oxygen and fluorine projectiles by molecular hydrogen

    International Nuclear Information System (INIS)

    Tipping, T.N.; Sanders, J.M.; Hall, J.; Shinpaugh, J.L.; Lee, D.H.; McGuire, J.H.; Richard, P.

    1988-01-01

    Cross sections for projectile ionization have been measured for hydrogenlike oxygen and fluorine ions incident on a molecular-hydrogen target over a projectile energy range of 0.5--2.5 MeV/amu. The experimental cross sections are compared to the plane-wave Born approximation (PWBA) and to the Glauber-approximation cross sections all of which were calculated for atomic hydrogen and multiplied by 2. The PWBA calculations have a projectile energy dependence similar to the measured cross sections but slightly underestimate them. The Glauber approximation also underestimates the measured projectile-ionization cross sections when the hydrogen target electrons are neglected, while it overestimates the measured cross sections when the effects of the hydrogen target electrons are included. The measured projectile-ionization cross sections for hydrogenlike ions incident on molecular hydrogen are approximately a factor of 2 smaller than previously reported projectile-ionization cross sections for hydrogenlike ions incident on helium. No cross sections are available for atomic hydrogen in this velocity and ion-charge regime

  13. Analysis of oxygen and hydrogen adsorption on Nb(100) surface by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    An, Bai; Wen, Mao; Fukuyama, Seiji; Yokogawa, Kiyoshi; Ichimura, Shingo; Yoshimura, Masamichi

    2006-01-01

    The surface structure of Nb(100) under the condition of cleaning, oxidation and hydrogen adsorption is observed by STM (scanning tunneling microscopy). The results obtained are followings; (1) (3 x 1)-O→(4 x 1)-O→c(2 x 2)-O→clean(1 x 1)structure was observed by atom level, and these atomic models of structures and STM images were verified by the first-principles calculations, (2) when the clean(1 x 1) structure exposed to hydrogen, dissociative adsorption of hydrogen was observed and Nb hydride cluster formed on the surface at room temperature. It was heated at about 450 - 670 K in UHV, the cluster decomposed into hydrogen and (1 x 1) structure with linear defect was formed. The c(2 x 2)-O structure by oxygen adsorption transformed into (1 x 1)-H structure with OH and Nb hydride cluster under hydrogen gas at room temperature. When it was heated in UHV at 640 K, OH desorbed from the surface and (1 x 1) structure with linear defect was generated. The surface of (3 x 1)-O structure was not changed by hydrogen. (S.Y.)

  14. Hydrogen and oxygen behaviors on Porous-Si surfaces observed using a scanning ESD ion microscope

    International Nuclear Information System (INIS)

    Itoh, Yuki; Ueda, Kazuyuki

    2004-01-01

    A scanning electron-stimulated desorption (ESD) ion microscope (SESDIM) measured the 2-D images of hydrogen and oxygen distribution on solid surfaces. A primary electron beam at 600 eV, with a pulse width of 220 ns, resulted in ion yields of H + and O + . This SESDIM is applied to the surface analysis of Porous-Si (Po-Si) partially covered with SiN films. During the heating of a specimen of the Po-Si at 800 deg. C under ultra-high-vacuum (UHV) conditions, the components of the surface materials were moved or diffused by thermal decomposition accompanied by a redistribution of hydrogen and oxygen. After cyclic heating of above 800 deg. C, the dynamic behaviors of H + and O + accompanied by the movements of the SiN layers were observed as images of H + and O + . This was because the H + and O + ions have been identified as composite materials by their kinetic energies

  15. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.

    Science.gov (United States)

    Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose

    2008-10-30

    A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.

  16. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  17. Formation of mixed ligand complexes of UO22+ involving some nitrogen and oxygen donor ligands

    International Nuclear Information System (INIS)

    Singh, Mamta; Ram Nayan

    1996-01-01

    The complexation reactions of UO 2 2+ ion with nitrogen and oxygen donor ligands, 1-amino-2-naphthol-4-sulphonic acid, o-aminophenol (ap), 2-hydroxybenzoic acid (sa), 3-carboxy-4-hydroxybenzenesulphonic acid (ss) and 1,2-dihydroxybenzene (ca) have been investigated in aqueous solution employing the pH-titration technique. Analysis of the experimental data recorded at 25 degC and at an ionic strength of 0.10 M KNO 3 indicates formation of binary, hydroxo and ternary complexes of uranium. Formation constant values of the existing species have been evaluated and the results have been discussed. (author). 21 refs., 2 figs., 2 tabs

  18. Microbial removal of fixed nitrogen in an oceanic oxygen minimum zone

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Thamdrup, Bo; Revsbech, Niels Peter

    We quantified the removal of fixed nitrogen as N2 production by anammox and N2 and N2O production by denitrification over a distance of 1900 km along the coast of Chile and Peru, using short-term incubations with 15N-labeled substrates. The eastern tropical South Pacific (ETSP) holds an oxygen...... and that denitrification is needed for the mineralization of organic matter and production of NH4+ for anammox. Our data from frequent sampling along a 1900 km cruise track parallel to the coast of Chile and Peru show that denitrification does indeed occur, but less frequent and at higher rates than anammox...

  19. From nitrogen enrichment to oxygen depletion: a mechanistic model of coastal marine ecosystems response

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Nitrogen (N) emissions from anthropogenic sources may enrich coastal waters and lead to marine eutrophication impacts. Processes describing N-limited primary production (PP), zooplankton grazing, and bacterial respiration of sinking organic carbon, were modelled to quantify the potential dissolved...... oxygen (DO) consumption as a function of N input. Such indicator is the basis for an eXposure Factor (XF) applied in Life Cycle Impact Assessment (LCIA) to estimate impacts from N enrichment. The Large Marine Ecosystems (LME) biogeographical classification system was adopted to address the spatial...

  20. Microstructure and tribology of carbon, nitrogen, and oxygen implanted ferrous materials

    International Nuclear Information System (INIS)

    Williamson, D.L.

    1993-01-01

    Nitrogen, carbon, and oxygen ions have been implanted into ferrous materials under unusual conditions of elevated temperatures and very high dose rates. The tribological durabilities of the resulting surfaces are examined with a special type of pin-on-disc wear test apparatus and found in most cases to be dramatically improved compared to surfaces prepared with conventional implantation conditions. Near-surface microstructures and compositions are characterized after implantation and after wear testing by backscatter Moessbauer spectroscopy, X-ray diffraction, scanning electron microscopy, and Auger electron spectroscopy. These data provide evidence for the predominant mechanisms responsible for the observed sliding wear behavior induced by each of the three species. (orig.)

  1. Locations of oxygen, nitrogen and carbon atoms in vanadium determined by neutron diffraction

    International Nuclear Information System (INIS)

    Hiraga, K.; Onozuka, T.; Hirabayashi, M.

    1977-01-01

    The occupation sites of oxygen, nitrogen, and carbon atoms dissolved interstitially in vanadium have been determined by means of neutron diffraction with use of single crystals of VOsub(0.032), VNsub(0.013) and VCsub(0.006). It is revealed that the interstitial atoms occupy, randomly, the octahedral sites in the b.c.c. host lattice of the three crystals. Neutron diffraction is advantageous for the present purpose, since the coherent scattering amplitudes of the solute atoms are much larger than that of the vanadium atom. (Auth.)

  2. Measurement of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen

    International Nuclear Information System (INIS)

    Wiedenbeck, M.E.; Greiner, D.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    The results of an investigation of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen (E approx. 80 to 230 MeV/amu) made using the U.C. Berkeley HKH instrument aboard the ISEE-3 spacecraft are reported. The combination of high mass resolution and a large statistical sample makes possible a precise determination of the relative isotopic abundances for these elements. In local interplanetary space we find: 13 C/C = 0.067 +- 0.008, 15 N/N = 0.54 +- 0.03, 17 O/O 18 O/O = 0.019 +- 0.003

  3. Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air

    Science.gov (United States)

    Porter, H. S.; Jackman, C. H.; Green, A. E. S.

    1976-01-01

    Relativistic electron and proton impact cross sections are obtained and represented by analytic forms which span the energy range from threshold to 1 GeV. For ionization processes, the Massey-Mohr continuum generalized oscillator strength surface is parameterized. Parameters are determined by simultaneous fitting to (1) empirical data, (2) the Bethe sum rule, and (3) doubly differential cross sections for ionization. Branching ratios for dissociation and predissociation from important states of N2 and O2 are determined. The efficiency for the production of atomic nitrogen and oxygen by protons with kinetic energy less than 1 GeV is determined using these branching ratio and cross section assignments.

  4. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Czech Academy of Sciences Publication Activity Database

    Vesel, A.; Drenik, A.; Elersic, K.; Mozetič, M.; Kovač, J.; Gyergyek, T.; Stöckel, Jan; Varju, Jozef; Pánek, Radomír; Balat-Pichelin, M.

    2014-01-01

    Roč. 305, June (2014), s. 674-682 ISSN 0169-4332 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : Inconel * Oxidation * High temperature * Oxygen plasma * Hydrogen plasma Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.711, year: 2014 https://www.sciencedirect.com/science/article/pii/S0169433214007119

  5. Heat exchanges in nitrogen and hydrogen boiling under pressure; Echanges thermiques dans l'azote et l'hydrogene bouillant sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Roubeau, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    The heat transfer between a horizontal wall and boiling nitrogen or hydrogen has been studied from atmospheric pressure to 2/3 of the critical pressure. The q = f(T) curves are rather well defined for nitrogen but more uncertain for hydrogen. In general, the measured {delta}T are inferior to those given by various authors using the wire method. The q{sub max} = f(P) more reproducible curves show for both fluids a maximum at about 0.4 P{sub cr} say 45 watt cm{sup -2} for 12.5 atm in nitrogen and 16 watt cm{sup -2} for 5.5 atm in hydrogen. Beyond, calefaction appears with a reduced dissipated power, rough reduction (90 per cent in few degrees) for nitrogen, smoother for hydrogen. (author) [French] On a etudie l'echange de chaleur entre une paroi horizontale et l'azote ou l'hydrogene bouillant depuis la pression atmospherique jusqu'au 2/3 de la pression critique. Les courbes q = f(T) sont assez bien definies pour l'azote mais accusent une marge d'incertitude pour l'hydrogene. En generale, les {delta}T mesurees sont inferieures a celles obtenues par divers auteurs utilisant la methode du fil. Les courbes plus reproductibles de q{sub max} f(P) passent par un maximum pour les deux liquides a environ 0,4 P{sub cr}, c'est-a-dire 45 watt cm{sup -2} pour 12,5 atm dans l'azote et 16 watt cm{sup -2} pour 5,5 atm dans l'hydrogene. Au-dela, la calefaction se produit avec un pouvoir dissipatif reduit, une reduction brusque pour l'azote (90 p. 100 en quelques degres) et plus reguliere pour l'hydrogene. (auteur)

  6. High-performance a -Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution

    KAUST Repository

    Wang, Hsin Ping

    2015-05-13

    Amorphous Si (a-Si)/crystalline Si (c-Si) heterojunction (SiHJ) can serve as highly efficient and robust photoelectrodes for solar fuel generation. Low carrier recombination in the photoelectrodes leads to high photocurrents and photovoltages. The SiHJ was designed and fabricated into both photoanode and photocathode with high oxygen and hydrogen evolution efficiency, respectively, by simply coating of a thin layer of catalytic materials. The SiHJ photoanode with sol-gel NiOx as the catalyst shows a current density of 21.48 mA/cm2 at the equilibrium water oxidation potential. The SiHJ photocathode with 2 nm sputter-coated Pt catalyst displays excellent hydrogen evolution performance with an onset potential of 0.640 V and a solar to hydrogen conversion efficiency of 13.26%, which is the highest ever reported for Si-based photocathodes. © 2015 American Chemical Society.

  7. Instrumented impact properties of zircaloy-oxygen and zircaloy-hydrogen alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garde, A.M.; Kassner, T.F.

    1980-04-01

    Instrumented-impact tests were performed on subsize Charpy speciments of Zircaloy-2 and -4 with up to approx. 1.3 wt % oxygen and approx. 2500 wt ppM hydrogen at temperatures between 373 and 823/sup 0/K. Self-consistent criteria for the ductile-to-brittle transition, based upon a total absorbed energy of approx. 1.3 x 10/sup 4/ J/m/sup 2/, a dynamic fracture toughness of approx. 10 MPa.m/sup 1/2/, and a ductility index of approx. 0, were established relative to the temperature and oxygen concentration of the transformed BETA-phase material. The effect of hydrogen concentration and hydride morphology, produced by cooling Zircaloy-2 specimens through the temperature range of the BETA ..-->.. ..cap alpha..' = hydride phase transformation at approx. 0.3 and 3 K/s, on the impact properties was determined at temperatures between 373 and 673 K. On an atom fraction basis, oxygen has a greater effect than hydrogen on the impact properties of Zircaloy at temperatures between approx. 400 and 600 K. 34 figures.

  8. Oxygen Limited Bioreactors System For Nitrogen Removal Using Immobilized Mix Culture

    Science.gov (United States)

    Pathak, B. K.; Sumino, T.; Saiki, Y.; Kazama, F.

    2005-12-01

    Recently nutrients concentrations especially nitrogen in natural water is alarming in the world wide. Most of the effort is being done on the removal of high concentration of nitrogen especially from the wastewater treatment plants. The removal efficiency is targeted in all considering the effluent discharge standard set by the national environment agency. In many cases, it does not meet the required standard and receiving water is being polluted. Eutrophication in natural water bodies has been reported even if the nitrogen concentration is low and self purification of natural systems itself is not sufficient to remove the nitrogen due to complex phenomenon. In order to recover the pristine water environment, it is very essential to explore bioreactor systems for natural water systems using immobilized mix culture. Microorganism were entrapped in Polyethylene glycol (PEG) prepolymer gel and cut into 3mm cubic immobilized pellets. Four laboratory scale micro bio-reactors having 0.1 L volumes were packed with immobilized pellets with 50% compact ratio. RUN1, RUN2, RUN3 and RUN4 were packed with immobilized pellets from reservoirs sediments, activated sludge (AS), mixed of AS, AG and biodegradable plastic and anaerobic granules (AG) respectively. Water from Shiokawa Reservoirs was feed to all reactors with supplemental ammonia and nitrite nitrogen as specified in the results and discussions. The reactors were operated dark incubated room in continuous flow mode with hydraulic retention time of 12 hours under oxygen limiting condition. Ammonium, nitrate nitrite nitrogen and total organic carbon (TOC) concentrations were measured as described in APWA and AWWA (1998). Laboratory scale four bioreactors containing different combination of immobilized cell were monitored for 218 days. Influent NH4+-N and NO2--N concentration were 2.27±0.43 and 2.05±0.41 mg/l respectively. Average dissolved oxygen concentration and pH in the reactors were 0.40-2.5 mg/l and pH 6

  9. Reaction of hydrogen sulfide with oxygen in the presence of sulfite

    Energy Technology Data Exchange (ETDEWEB)

    Weres, O.; Tsao, L.

    1983-01-14

    Commonly, abatement of hydrogen sulfide emission from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. We studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDTA are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use. 33 figures, 9 tables.

  10. Reaction of Hydrogen Sulfide with Oxygen in the Presence ofSulfite

    Energy Technology Data Exchange (ETDEWEB)

    Weres, Oleh; Tsao, Leon

    1983-01-01

    Commonly, abatement of hydrogen sulfide emissions from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One Mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. The authors studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDT are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use.

  11. Development of a non-cryogenic nitrogen/oxygen supply system. [for spacecraft environments

    Science.gov (United States)

    1977-01-01

    Modular components were refined or replaced to improve the performance of the electrolysis module in a system which generates both oxygen and hydrogen from hydrazine hydrate. Significant mechanical and electrical performance improvements were achieved in the cathode. Improvements were also made in the phase separation area but at considerable cost in time and money and to the detriment of other investigative areas. Only the pump/bubble separator failed in a manner necessitating redesign. Its failure was, however, due to its being operated above the temperature range for which it was designed. The basic electrolysis cell design was not changed.

  12. Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica

    Directory of Open Access Journals (Sweden)

    J. Savarino

    2007-01-01

    Full Text Available Throughout the year 2001, aerosol samples were collected continuously for 10 to 15 days at the French Antarctic Station Dumont d'Urville (DDU (66°40' S, l40°0' E, 40 m above mean sea level. The nitrogen and oxygen isotopic ratios of particulate nitrate at DDU exhibit seasonal variations that are among the most extreme observed for nitrate on Earth. In association with concentration measurements, the isotope ratios delineate four distinct periods, broadly consistent with previous studies on Antarctic coastal areas. During austral autumn and early winter (March to mid-July, nitrate concentrations attain a minimum between 10 and 30 ng m−3 (referred to as Period 2. Two local maxima in August (55 ng m−3 and November/December (165 ng m−3 are used to assign Period 3 (mid-July to September and Period 4 (October to December. Period 1 (January to March is a transition period between the maximum concentration of Period 4 and the background concentration of Period 2. These seasonal changes are reflected in changes of the nitrogen and oxygen isotope ratios. During Period 2, which is characterized by background concentrations, the isotope ratios are in the range of previous measurements at mid-latitudes: δ18Ovsmow=(77.2±8.6‰; Δ17O=(29.8±4.4‰; δ15Nair=(−4.4±5.4‰ (mean ± one standard deviation. Period 3 is accompanied by a significant increase of the oxygen isotope ratios and a small increase of the nitrogen isotope ratio to δ18Ovsmow=(98.8±13.9‰; Δ17O=(38.8±4.7‰ and δ15Nair=(4.3±8.20‰. Period 4 is characterized by a minimum 15N/14N ratio, only matched by one prior study of Antarctic aerosols, and oxygen isotope ratios similar to Period 2: δ18Ovsmow=(77.2±7.7‰; Δ17O=(31.1±3.2‰; δ15Nair=(−32.7±8.4‰. Finally, during Period 1, isotope ratios reach minimum values for oxygen and intermediate values for nitrogen: δ18Ovsmow=63.2±2.5‰; Δ17O=24.0±1.1‰; δ15Nair=−17.9±4.0‰. Based on the measured

  13. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific ocean.

    Science.gov (United States)

    Jayakumar, Amal; Chang, Bonnie X; Widner, Brittany; Bernhardt, Peter; Mulholland, Margaret R; Ward, Bess B

    2017-10-01

    Biological nitrogen fixation (BNF) was investigated above and within the oxygen-depleted waters of the oxygen-minimum zone of the Eastern Tropical North Pacific Ocean. BNF rates were estimated using an isotope tracer method that overcame the uncertainty of the conventional bubble method by directly measuring the tracer enrichment during the incubations. Highest rates of BNF (~4 nM day -1 ) occurred in coastal surface waters and lowest detectable rates (~0.2 nM day -1 ) were found in the anoxic region of offshore stations. BNF was not detectable in most samples from oxygen-depleted waters. The composition of the N 2 -fixing assemblage was investigated by sequencing of nifH genes. The diazotrophic assemblage in surface waters contained mainly Proteobacterial sequences (Cluster I nifH), while both Proteobacterial sequences and sequences with high identities to those of anaerobic microbes characterized as Clusters III and IV type nifH sequences were found in the anoxic waters. Our results indicate modest input of N through BNF in oxygen-depleted zones mainly due to the activity of proteobacterial diazotrophs.

  14. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, nitrogen, and ammonia in contact with tank 241-SY-101 simulated waste

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.

    1996-02-01

    Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. Described in this report are the results of tests to evaluate the rates of thermal and combined thermal and radiolytic reactions involving flammable gases in the presence of Tank 241-SY-101 simulated waste. Flammable gases generated by the radiolysis of water and by the thermal and radiolytic decomposition of organic waste constituents may themselves participate in further reactions. Examples include the decomposition of nitrous oxide to yield nitrogen and oxygen, the reaction of nitrous oxide and hydrogen to produce nitrogen and water, and the reaction of nitrogen and hydrogen to produce ammonia. The composition of the gases trapped in bubbles in the wastes might therefore change continuously as a function of the time that the gas bubbles are retained

  15. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D.C.

    1986-10-08

    Measurements are reported for the electrical conductivity of liquid nitrogen (N/sub 2/), oxygen (O/sub 2/) and benzene (C/sub 6/H/sub 6/), and Hugoniot equation of state of liquid 1-butene (C/sub 4/H/sub 8/) under shock compressed conditions. The conductivity data span 7 x 10/sup -4/ to 7 x 10/sup 1/ ..cap omega../sup -1/cm/sup -1/ over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs.

  16. Screening nitrogen-rich bases and oxygen-rich acids by theoretical calculations for forming highly stable salts.

    Science.gov (United States)

    Zhang, Xueli; Gong, Xuedong

    2014-08-04

    Nitrogen-rich heterocyclic bases and oxygen-rich acids react to produce energetic salts with potential application in the field of composite explosives and propellants. In this study, 12 salts formed by the reaction of the bases 4-amino-1,2,4-trizole (A), 1-amino-1,2,4-trizole (B), and 5-aminotetrazole (C), upon reaction with the acids HNO3 (I), HN(NO2 )2 (II), HClO4 (III), and HC(NO2 )3 (IV), are studied using DFT calculations at the B97-D/6-311++G** level of theory. For the reactions with the same base, those of HClO4 are the most exothermic and spontaneous, and the most negative Δr Gm in the formation reaction also corresponds to the highest decomposition temperature of the resulting salt. The ability of anions and cations to form hydrogen bonds decreases in the order NO3 (-) >N(NO2 )2 (-) >ClO4 (-) >C(NO2 )3 (-) , and C(+) >B(+) >A(+) . In particular, those different cation abilities are mainly due to their different conformations and charge distributions. For the salts with the same anion, the larger total hydrogen-bond energy (EH,tot ) leads to a higher melting point. The order of cations and anions on charge transfer (q), second-order perturbation energy (E2 ), and binding energy (Eb ) are the same to that of EH,tot , so larger q leads to larger E2 , Eb , and EH,tot . All salts have similar frontier orbitals distributions, and their HOMO and LUMO are derived from the anion and the cation, respectively. The molecular orbital shapes are kept as the ions form a salt. To produce energetic salts, 5-aminotetrazole and HClO4 are the preferred base and acid, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Oxygen Response of the Wine Yeast Saccharomyces cerevisiae EC1118 Grown under Carbon-Sufficient, Nitrogen-Limited Enological Conditions

    Science.gov (United States)

    Aceituno, Felipe F.; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W.; Melo, Francisco

    2012-01-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations. PMID:23001663

  18. Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions.

    Science.gov (United States)

    Aceituno, Felipe F; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W; Melo, Francisco; Agosin, Eduardo

    2012-12-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.

  19. Oxygen vacancy rich Cu2O based composite material with nitrogen doped carbon as matrix for photocatalytic H2 production and organic pollutant removal.

    Science.gov (United States)

    Lu, Lele; Xu, Xinxin; Yan, Jiaming; Shi, Fa-Nian; Huo, Yuqiu

    2018-02-06

    A nitrogen doped carbon matrix supported Cu 2 O composite material (Cu/Cu2O@NC) was fabricated successfully with a coordination polymer as precursor through calcination. In this composite material, Cu 2 O particles with a size of about 6-10 nm were dispersed evenly in the nitrogen doped carbon matrix. After calcination, some coordinated nitrogen atoms were doped in the lattice of Cu 2 O and replace oxygen atoms, thus generating a large number of oxygen vacancies. In Cu/Cu2O@NC, the existence of oxygen vacancies has been confirmed by electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS). Under visible light irradiation, Cu/Cu2O@NC exhibits excellent H 2 production with the rate of 379.6 μmol h -1 g -1 . Its photocatalytic activity affects organic dyes, such as Rhodamine B (RhB) and methyl orange (MO). In addition to photocatalysis, Cu/Cu2O@NC also exhibits striking catalytic activity in reductive conversion of 4-nitrophenol to 4-aminophenol with in presence of sodium borohydride (NaBH 4 ). The conversion efficiency reaches almost 100% in 250 s with the quantity of Cu/Cu2O@NC as low as 5 mg. The outstanding H 2 production and organic pollutants removal are attributed to the oxygen vacancy. We expect that Cu/Cu2O@NC will find its way as a new resource for hydrogen energy as well as a promising material in water purification.

  20. Comparison of Iron and Tungsten Based Oxygen Carriers for Hydrogen Production Using Chemical Looping Reforming

    Science.gov (United States)

    Khan, M. N.; Shamim, T.

    2017-08-01

    Hydrogen production by using a three reactor chemical looping reforming (TRCLR) technology is an innovative and attractive process. Fossil fuels such as methane are the feedstocks used. This process is similar to a conventional steam-methane reforming but occurs in three steps utilizing an oxygen carrier. As the oxygen carrier plays an important role, its selection should be done carefully. In this study, two oxygen carrier materials of base metal iron (Fe) and tungsten (W) are analysed using a thermodynamic model of a three reactor chemical looping reforming plant in Aspen plus. The results indicate that iron oxide has moderate oxygen carrying capacity and is cheaper since it is abundantly available. In terms of hydrogen production efficiency, tungsten oxide gives 4% better efficiency than iron oxide. While in terms of electrical power efficiency, iron oxide gives 4.6% better results than tungsten oxide. Overall, a TRCLR system with iron oxide is 2.6% more efficient and is cost effective than the TRCLR system with tungsten oxide.

  1. Adsorption/oxidation of hydrogen sulfide on nitrogen-containing activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Adib, F.; Bagreev, A.; Bandosz, T.J.

    2000-02-22

    Wood-based activated carbon was modified by impregnation with urea and heat treatment at 450 and 950 C. The chemical and physical properties of materials were determined using acid/base titration, FTIR, thermal analysis, IGC, and sorption of nitrogen. The surface features were compared to those of a commercial urea-modified carbon. Then, the H{sub 2}S breakthrough capacity tests were carried out, and the sorption capacity was evaluated. The results showed that urea-modified sorbents have a capacity similar to that of the received material; however, the conversion of hydrogen sulfide to a water-soluble species is significantly higher. It happens due to a high dispersion of basic nitrogen compounds in the small pores of carbons, where oxidation of hydrogen sulfide ions to sulfur radicals followed by the creation of sulfur oxides and sulfuric acid occurs. It is proposed that the process proceeds gradually, from small pores to larger, and that the degree of microporosity is an important factor.

  2. Effectiveness of oxygen enriched hydrogen-HHO gas addition on DI diesel engine performance, emission and combustion characteristics

    Directory of Open Access Journals (Sweden)

    Premkartikkumar S.R.

    2014-01-01

    Full Text Available Nowadays, more researches focus on protecting the environment. Present investigation concern with the effectiveness of Oxygen Enriched hydrogen- HHO gas addition on performance, emission and combustion characteristics of a DI diesel engine. Here the Oxygen Enriched hydrogen-HHO gas was produced by the process of water electrolysis. When potential difference is applied across the anode and cathode electrodes of the electrolyzer, water is transmuted into Oxygen Enriched hydrogen-HHO gas. The produced gas was aspirated into the cylinder along with intake air at the flow rates of 1 lpm and 3.3 lpm. The results show that when Oxygen Enriched hydrogen-HHO gas was inducted, the brake thermal efficiency of the engine increased by 11.06%, Carbon monoxide decreased by 15.38%, Unburned hydrocarbon decreased by 18.18%, Carbon dioxide increased by 6.06%, however, the NOX emission increased by 11.19%.

  3. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei; Hengne, Amol Mahalingappa; Bhatte, Kushal Deepak; Ould-Chikh, Samy; Saih, Youssef; Basset, Jean-Marie

    2017-01-01

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction

  4. A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass

    Science.gov (United States)

    Guo, Chaozhong; Li, Zhongbin; Niu, Lidan; Liao, Wenli; Sun, Lingtao; Wen, Bixia; Nie, Yunqing; Cheng, Jing; Chen, Changguo

    2016-05-01

    So far, the development of highly active and stable carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace commercial Pt/C catalyst is a hot topic. In this study, a new nanoporous nitrogen-doped carbon material was facilely designed by two-step pyrolysis of the renewable Lemna minor enriched in crude protein under a nitrogen atmosphere. Electrochemical measurements show that the onset potential for ORR on this carbon material is around 0.93 V (versus reversible hydrogen electrode), slightly lower than that on the Pt/C catalyst, but its cycling stability is higher compared to the Pt/C catalyst in an alkaline medium. Besides, the ORR at this catalyst approaches to a four-electron transfer pathway. The obtained ORR performance can be basically attributed to the formation of high contents of pyridinic and graphitic nitrogen atoms inside this catalyst. Thus, this work opens up the path in the ORR catalysis for the design of nitrogen-doped carbon materials utilizing aquatic plants as starting precursors.

  5. Cement Pastes and Mortars Containing Nitrogen-Doped and Oxygen-Functionalized Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mauricio Martínez-Alanis

    2016-01-01

    Full Text Available Cement pastes and mortars based on ordinary Portland cement containing nitrogen-doped multiwalled carbon nanotubes (MWCNT-Nx or oxygen-functionalized multiwalled carbon nanotubes (MWCNT-Ox are investigated. To incorporate MWCNTs into the cementitious matrix, the as-produced carpets are dispersed over periods of 1 and 2 hours in distilled water at pH levels of 1 and 7. The cement pastes are prepared by adding 0.1 wt% of MWCNTs to cement powder, followed by characterization with SEM and X-ray diffraction (XRD at an early age (first hours of hydration. The mortars are mechanically characterized during the hydration process for a period of 28 days. SEM characterization of cement pastes revealed that the carbon nanotubes are well incorporated in the cementitious matrix, with the hydrated cement grains interconnected by long carbon nanotubes. XRD characterizations demonstrated that, during the hydration of cement pastes, different peaks emerged that were associated with ettringite, hydrated calcium silicate, and calcium hydroxide, among other structures. Results of the compressive strength measurements for mortars simultaneously mixed with MWCNT-Nx and MWCNT-Ox reached an increment of approximately 30% in compressive strength. In addition, density functional theory calculations were performed in nitrogen-doped and oxygen-functionalized carbon nanotubes interacting with a cement grain.

  6. Fractionation of Nitrogen and Oxygen Isotopes and Roles of Bacteria during Denitrification

    Science.gov (United States)

    Kang, J.; Buyanjargal, A.; Jeen, S. W.

    2017-12-01

    Nitrate in groundwater can cause health and environmental problems when not properly treated. The purpose of this study was to develop a treatment method for nitrate in groundwater using organic carbon-based reactive mixtures (i.e., wood chips and gravel) through column experiments and to evaluate reaction mechanisms responsible for the treatment. The column experiments were operated for a total of 19 months. The results from the geochemical analyses for the experiments suggest that cultures of denitrifying bacteria used organic carbon while utilizing nitrate as their electron acceptor via denitrification process. Proteobacteria was the most abundant phylum in all samples, accounting for 45.7% of the bacterial reads, followed by Firmicutes (22.6%) and Chlorobi (10.6%). Bacilli, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria_c consisted of 32, 30, 23, 11, and 2% of denitrifying bacteria class. The denitrification process caused fractionation of nitrogen and oxygen isotopes of nitrate while nitrate concentration decreased. When fitted to the Rayleigh's fractionation model, enrichment factors (ɛ) were 11.5‰ and 5.6‰ for 15N and 18O isotopes, respectively. Previous studies suggested that nitrogen isotope enrichment factors of denitrification are within the range of 4.7 to 40‰ and oxygen isotopic enrichment factors are between 8 and 18.3‰. This study shows that nitrate in groundwater can be effectively treated using passive treatment systems, such as permeable reactive barriers (PRBs), and denitrificaton is the dominant process reponsible for the removal of nitrate.

  7. Promotion of hydrogen entry into iron from NaOH solution by iron-oxygen species

    International Nuclear Information System (INIS)

    Flis-Kabulska, I.; Flis, J.; Zakroczymski, T.

    2007-01-01

    This study was carried out to explain reasons of the enhanced hydrogen entry into iron at low polarisations. Hydrogen permeation rate (HPR) through a 35-μm thick iron membrane was studied with the electrochemical technique in 0.1 M NaOH at 25 o C. A rotating split-ring disk electrode was used to detect soluble Fe(II) species. Enhanced hydrogen entry (HPR peaks) was observed at low cathodic and low anodic polarisations during voltammetric cycling, and also during galvanostatic anodic polarisation applied after cathodic charging. HPR peaks occurred at potentials from about -1.2 to -0.9 V (NHE) which were more cathodic than the potentials of thermodynamic stability of Fe(OH) 2 or Fe 3 O 4 , and of the formation of soluble Fe(II) species. It has been suggested that the enhanced hydrogen entry is associated with the presence of FeOH ad . In this species oxygen is bound with hydrogen (oxo-hydride), hence it can be supposed that the mechanism of its promoting effect can be similar to that of hydrides of other elements of the VIb group

  8. Measurement of total-body oxygen, nitrogen, and carbon in vivo by photon activation analysis

    International Nuclear Information System (INIS)

    Ulin, K.

    1984-01-01

    With the aim of assessing nutritional status, the feasibility of measuring the total body quantities of the major body elements, i.e. oxygen, nitrogen, and carbon, using the photon beam of a 45 MV betatron and a whole-body counter, has been evaluated in detail. Following photon activation a single energy γ-radiation (.511 MeV) is observed from all three elements to be measured. The half-lives of 15 O, 13 N, and 11 C, however, are sufficiently different (20.5 min, 10.0 min, and 20.4 min. respectively) to permit their measurement from an analysis of the measured decay curve. Following corrections for interfering reactions, a computer curve-fitting algorithm is used to resolve the data into 15 O, 13 N, and 11 C components. Measurements of O, N, and C have been made both in phantoms and in live and dead rats. A comparison of the body composition results from this technique with results from chemical analysis indicates that measured carbon can quite accurately predict total body fat. The comparison of the total body nitrogen measurement by photon activation with total body protein by chemical analysis was inconclusive and suggests that further work be done to verify the estimated accuracy of the nitrogen measurement

  9. Sniffer used as portable hydrogen leak detector

    Science.gov (United States)

    Dayan, V. H.; Rommel, M. A.

    1966-01-01

    Sniffer type portable monitor detects hydrogen in air, oxygen, nitrogen, or helium. It indicates the presence of hydrogen in contact with activated palladium black by a change in color of a thermochromic paint, and indicates the quantity of hydrogen by a sensor probe and continuous readout.

  10. Ultrasonic cavitation erosion of Ti in 0.35% NaCl solution with bubbling oxygen and nitrogen.

    Science.gov (United States)

    Li, D G; Wang, J D; Chen, D R; Liang, P

    2015-09-01

    The influences of oxygen and nitrogen on the ultrasonic cavitation erosion of Ti in 0.35%NaCl solution at room temperature, were investigated using a magnetostrictive-induced ultrasonic cavitation erosion (CE) facility and scanning electron microscopy (SEM). The roles of oxygen and nitrogen in the composition and the electronic property of the passive film on Ti, were studied by Mott-Schottky plot and X-ray photoelectron spectroscopy (XPS). The results showed that the mass loss of Ti in 0.35%NaCl solution increased with increasing cavitation time. Bubbling oxygen can evidently increase the resistance of ultrasonic cavitation erosion comparing with bubbling nitrogen. XPS results showed that the thickness of the passive film on Ti in 0.35%NaCl solution in the case of bubbling oxygen for 3 weeks, was about 7 nm, and the passive film was mainly composed of TiO2 with an anatase structure. While TiO2 with a rutile structure was found to be the major component of the passive film on Ti in 0.35%NaCl solution in the case of bubbling nitrogen for 3 weeks, and the film thickness was 5 nm. The results extracted from Mott-Schottky plot showed that the passive film on Ti in the case of bubbling oxygen had more donor density than the passive film on Ti in the case of bubbling nitrogen. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Embrittlement of the alloy U 7.5 Nb 2.5 Zr by gaseous oxygen and hydrogen

    International Nuclear Information System (INIS)

    Lepoutre, D.; Nomine, A.M.; Miannay, D.

    1981-04-01

    Embrittlement of the alloy uranium 7.5 niobium 2.5 zirconium in gaseous oxygen and hydrogen versus stress intensity, temperature and pressure is studied using rupture mechanics. Cracking speed is determined. In oxygen, only cracks are produced and embrittlement is due to oxidation. In hydrogen at high pressure an hydride is formed and at low pressure cracks are produced but the mechanism is not identified [fr

  12. Formation of Hydrogen Peroxide by Electrochemical Reduction of Molecular Oxygen using Luminol Chemiluminescence

    International Nuclear Information System (INIS)

    Rana, Sohail

    2005-01-01

    Formation of hydrogen peroxide by electrochemical reduction of molecular oxygen was examined by measuring luminol chemiluminescence and absorption spectrum using flow-injection method. Ferryl porphyrin is widely accepted as responsible species to stimulate the emission in hydrogen peroxide/ iron porphyrin/ luminol system. Emission was observed under cathodic potentials (0.05V at pH2.0 and -0.3V at pH11.0) by the electrochemical reduction of aerated electrolytes solution but emission was observed at anodic potentials. Iron porphyrin solution was added at down stream of the working electrode and was essential for the emission. Removal of the dissolved molecular oxygen resulted in the decrease of emission intensity by more than 70%. In order to examine the life time of reduced active species, delay tubes were introduced between working electrode Fe TMPyP inlet. Experimental results suggested the active species were stable for quite a long period. The emission was quenched considerably (>90%) when hydroperoxy was added at the down stream of working electrode whereas the Superoxide dismutase (SOD) had little effect and mannitol had no effect. The spectra at reduction potential under aerated condition were shifted to the longer wavelength (>430nm) compared to the original spectrum of Fe TMPyP (422nm), indicating that the ferryl species were mixed to some extent. These observations lead to the conclusion that hydrogen peroxide was produced first by electrochemical reduction of molecular oxygen which then converted Fe TMPyP into O=FeTMPyP to activate luminol. Comparing emission intensities with the reference experiments, the current efficiencies for the formation of hydrogen peroxide were estimated as about 30-65% in all over the pH range used. (author)

  13. Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones

    Directory of Open Access Journals (Sweden)

    Jennifer B. Glass

    2015-09-01

    Full Text Available Iron (Fe and copper (Cu are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO3-, NO2-, Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8 occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu.

  14. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.

    Science.gov (United States)

    Alaal, Naresh; Medhekar, Nikhil; Shukla, Alok

    2018-04-18

    We employ a first-principles calculations based density-functional-theory (DFT) approach to study the electronic properties of partially and fully edge-hydrogenated armchair boron-nitrogen-carbon (BNC) nanoribbons (ABNCNRs), with widths between 0.85 nm to 2.3 nm. Due to the partial passivation of edges, the electrons, which do not participate in the bonding, form new energy states located near the Fermi-level. Because of these additional bands, some ABNCNRs exhibit metallic behavior, which is quite uncommon in armchair nanoribbons. Our calculations reveal that metallic behavior is observed for the following passivation patterns: (i) when the B atom from one edge and the N atom from another edge are unpassivated. (ii) when the N atoms from both the edges are unpassivated. (iii) when the C atom from one edge and the N atom from another edge are unpassivated. Furthermore, spin-polarization is also observed for certain passivation schemes, which is also quite uncommon for armchair nanoribbons. Thus, our results suggest that the ABNCNRs exhibit a wide range of electronic and magnetic properties in that the fully edge-hydrogenated ABNCNRs are direct band gap semiconductors, while the partially edge-hydrogenated ones are either semiconducting, or metallic, while simultaneously exhibiting spin polarization, based on the nature of passivation. We also find that the ribbons with larger widths are more stable as compared to the narrower ones.

  15. Nitrogen transformation under different dissolved oxygen levels by the anoxygenic phototrophic bacterium Marichromatium gracile.

    Science.gov (United States)

    Hong, Xuan; Chen, Zhongwei; Zhao, Chungui; Yang, Suping

    2017-06-01

    Marichromatium gracile: YL28 (M. gracile YL28) is an anoxygenic phototrophic bacterial strain that utilizes ammonia, nitrate, or nitrite as its sole nitrogen source during growth. In this study, we investigated the removal and transformation of ammonium, nitrate, and nitrite by M. gracile YL28 grown in a combinatorial culture system of sodium acetate-ammonium, sodium acetate-nitrate and sodium acetate-nitrite in response to different initial dissolved oxygen (DO) levels. In the sodium acetate-ammonium system under aerobic conditions (initial DO = 7.20-7.25 mg/L), we detected a continuous accumulation of nitrate and nitrite. However, under semi-anaerobic conditions (initial DO = 4.08-4.26 mg/L), we observed a temporary accumulation of nitrate and nitrite. Interestingly, under anaerobic conditions (initial DO = 0.36-0.67 mg/L), there was little accumulation of nitrate and nitrite, but an increase in nitrous oxide production. In the sodium acetate-nitrite system, nitrite levels declined slightly under aerobic conditions, and nitrite was completely removed under semi-anaerobic and anaerobic conditions. In addition, M. gracile YL28 was able to grow using nitrite as the sole nitrogen source in situations when nitrogen gas produced by denitrification was eliminated. Taken together, the data indicate that M. gracile YL28 performs simultaneous heterotrophic nitrification and denitrification at low-DO levels and uses nitrite as the sole nitrogen source for growth. Our study is the first to demonstrate that anoxygenic phototrophic bacteria perform heterotrophic ammonia-oxidization and denitrification under anaerobic conditions.

  16. Contribution to the study of hydrogenated and oxygenated impurities in liquid sodium

    International Nuclear Information System (INIS)

    Naud, G.

    1964-07-01

    This study is made up essentially of two parts. The first is devoted to the development of dosage methods for selectively determining the oxygenated and hydrogenated impurities present in sodium, that is the oxide, the hydride and the hydroxide. The second makes use of these methods for a study of the Na-H 2 -O 2 system, as well as of the related problem of the attack of pyrex glass by molten sodium. The conventional method for dosing oxygen by amalgamation was first adapted to the simultaneous measurement of the hydride. We then developed a method for dosing the total hydrogen by measuring successively the concentrations of gas present in the hydride and hydroxide form. This method is based on the thermal decomposition of the hydride and the reaction between sodium and the hydroxide. Our contribution to the study of the Na-H 2 -O 2 System consists first of all in the study of the reaction between hydrogen and sodium in the temperature range from 150 to 250 deg C and at a pressure of about 150 mm of mercury. The study of the thermal decomposition of the hydride in sodium was then studied. It was possible to make some qualitative observations concerning the reaction between sodium and sodium hydroxide. Finally some complementary tests made it possible to define the nature of the phenomena occurring during the attack of pyrex glass by sodium. (author) [fr

  17. Process for the liquefaction of solid carbonaceous materials wherein nitrogen is separated from hydrogen via ammonia synthesis

    Science.gov (United States)

    Stetka, Steven S.; Nazario, Francisco N.

    1982-01-01

    In a process for the liquefaction of solid carbonaceous materials wherein bottoms residues are upgraded with a process wherein air is employed, the improvement wherein nitrogen buildup in the system is avoided by ammonia synthesis. In a preferred embodiment hydrogen from other portions of the liquefaction process will be combined with hydrogen produced as a result of the bottoms upgrading to increase the H.sub.2 :N.sub.2 ratio in the ammonia reactor.

  18. Study of the metastable singlet of molecular nitrogen and of oxygen atoms in discharges and post-discharges

    International Nuclear Information System (INIS)

    Magne, Lionel

    1991-01-01

    Whereas discharges in nitrogen, in oxygen and in their mixtures are used in many different industrial processes (surface treatment, nitridation, oxidation, and so on), in order to get a better knowledge on nitrogen electronic states, this research thesis reports the study of the metastable singlet state of molecular nitrogen, and of oxygen atoms in their fundamental state. The molecular metastable has been observed by far-UV optical emission spectroscopy, in the positive column of a continuous discharge and in time post-discharge. As far as continuous discharge is concerned, the author measured the vibrational distribution of this state. A kinetic model has been developed, and calculated vibrational distributions are in good agreement with measurements. The density of oxygen atoms in fundamental state in time post-discharge has been measured by far-UV absorption optical spectroscopy. The probability of atom re-association of glass walls is deduced from the obtained results [fr

  19. Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China

    Science.gov (United States)

    Fang, Y. T.; Koba, K.; Wang, X. M.; Wen, D. Z.; Li, J.; Takebayashi, Y.; Liu, X. Y.; Yoh, M.

    2011-02-01

    Nitric acid (HNO3) or nitrate (NO3-) is the dominant sink for reactive nitrogen oxides (NOx = NO + NO2) in the atmosphere. In many Chinese cities, HNO3 is becoming a significant contributor to acid deposition. In the present study, we measured nitrogen (N) and oxygen (O) isotopic composition of NO3- in 113 precipitation samples collected from Guangzhou City in southern China over a two-year period (2008 and 2009). We attempted to better understand the spatial and seasonal variability of atmospheric NOx sources and the NO3- formation pathways in this N-polluted city in the Pearl River Delta region. The δ15N values of NO3- (versus air N2) ranged from -4.9 to +10.1‰, and averaged +3.9‰ in 2008 and +3.3‰ in 2009. Positive δ15N values were observed throughout the year, indicating the anthropogenic contribution of NOx emissions, particularly from coal combustion. Different seasonal patterns of δ15N-NO3- were observed between 2008 and 2009, which might reflect different human activities associated with the global financial crisis and the intensive preparations for the 16th Asian Games. Nitrate δ18O values (versus Vienna Standard Mean Ocean Water) varied from +33.4 to +86.5‰ (average +65.0‰ and +67.0‰ in 2008 and 2009, respectively), a range being lower than those reported for high latitude and polar areas. Sixteen percent of δ18O values was observed lower than the expected minimum of +55‰ at our study site. This was likely caused by the reaction of NO with peroxy radicals; peroxy radicals can compete with O3 to convert NO to NO2, thereby donate O atoms with much lower δ18O value than that of O3 to atmospheric NO3-. Our results highlight that the influence of human activities on atmospheric chemistry can be recorded by the N and O isotopic composition of atmospheric NO3- in a N-polluted city.

  20. Carbon-hydrogen defects with a neighboring oxygen atom in n-type Si

    Science.gov (United States)

    Gwozdz, K.; Stübner, R.; Kolkovsky, Vl.; Weber, J.

    2017-07-01

    We report on the electrical activation of neutral carbon-oxygen complexes in Si by wet-chemical etching at room temperature. Two deep levels, E65 and E75, are observed by deep level transient spectroscopy in n-type Czochralski Si. The activation enthalpies of E65 and E75 are obtained as EC-0.11 eV (E65) and EC-0.13 eV (E75). The electric field dependence of their emission rates relates both levels to single acceptor states. From the analysis of the depth profiles, we conclude that the levels belong to two different defects, which contain only one hydrogen atom. A configuration is proposed, where the CH1BC defect, with hydrogen in the bond-centered position between neighboring C and Si atoms, is disturbed by interstitial oxygen in the second nearest neighbor position to substitutional carbon. The significant reduction of the CH1BC concentration in samples with high oxygen concentrations limits the use of this defect for the determination of low concentrations of substitutional carbon in Si samples.

  1. Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Vikkisk, Merilin; Kruusenberg, Ivar; Joost, Urmas; Shulga, Eugene; Tammeveski, Kaido

    2013-01-01

    Highlights: ► Pyrolysis in the presence of urea was used for nitrogen doping of carbon nanotubes. ► N-doped carbon nanotubes were used as catalysts for the oxygen reduction reaction. ► N-doped carbon material showed a high catalytic activity for ORR in alkaline media. ► N-containing CNT material is an attractive cathode catalyst for alkaline membrane fuel cells. - Abstract: The electrochemical reduction of oxygen was studied on nitrogen-doped multi-walled carbon nanotube (NCNT) modified glassy carbon (GC) electrodes employing the rotating disk electrode (RDE) method. Nitrogen doping was achieved by simple pyrolysis of the carbon nanotube material in the presence of urea. The surface morphology and composition of the NCNT samples were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed a rather uniform distribution of NCNTs on the GC electrode substrate. The XPS analysis showed a successful doping of carbon nanotubes with nitrogen species. The RDE results revealed that in alkaline solution the N-doped nanotube materials showed a remarkable electrocatalytic activity towards oxygen reduction. At low overpotentials the reduction of oxygen followed a two-electron pathway on undoped carbon nanotube modified GC electrodes, whereas on NCNT/GC electrodes a four-electron pathway of O 2 reduction predominated. The results obtained are significant for the development of nitrogen-doped carbon-based cathodes for alkaline membrane fuel cells.

  2. Hydrogen/Oxygen Reactions at High Pressures and Intermediate Temperatures: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    A series of experimental and numerical investigations into hydrogen oxidation at high pressures and intermediate temperatures has been conducted. The experiments were carried out in a high pressure laminar flow reactor at 50 bar pressure and a temperature range of 600–900 K. The equivalence ratio......, the mechanism is used to simulate published data on ignition delay time and laminar burning velocity of hydrogen. The flow reactor results show that at reducing, stoichiometric, and oxidizing conditions, conversion starts at temperatures of 750–775 K, 800–825 K, and 800–825 K, respectively. In oxygen atmosphere......, ignition occurs at the temperature of 775–800 K. In general, the present model provides a good agreement with the measurements in the flow reactor and with recent data on laminar burning velocity and ignition delay time....

  3. Atomic scale study of the chemistry of oxygen, hydrogen and water at SiC surfaces

    International Nuclear Information System (INIS)

    Amy, Fabrice

    2007-01-01

    Understanding the achievable degree of homogeneity and the effect of surface structure on semiconductor surface chemistry is both academically challenging and of great practical interest to enable fabrication of future generations of devices. In that respect, silicon terminated SiC surfaces such as the cubic 3C-SiC(1 0 0) 3 x 2 and the hexagonal 6H-SiC(0 0 0 1) 3 x 3 are of special interest since they give a unique opportunity to investigate the role of surface morphology on oxygen or hydrogen incorporation into the surface. In contrast to silicon, the subsurface structure plays a major role in the reactivity, leading to unexpected consequences such as the initial oxidation starting several atomic planes below the top surface or the surface metallization by atomic hydrogen. (review article)

  4. Influence of hydrogen effusion from hydrogenated silicon nitride layers on the regeneration of boron-oxygen related defects in crystalline silicon

    International Nuclear Information System (INIS)

    Wilking, S.; Ebert, S.; Herguth, A.; Hahn, G.

    2013-01-01

    The degradation effect boron doped and oxygen-rich crystalline silicon materials suffer from under illumination can be neutralized in hydrogenated silicon by the application of a regeneration process consisting of a combination of slightly elevated temperature and carrier injection. In this paper, the influence of variations in short high temperature steps on the kinetics of the regeneration process is investigated. It is found that hotter and longer firing steps allowing an effective hydrogenation from a hydrogen-rich silicon nitride passivation layer result in an acceleration of the regeneration process. Additionally, a fast cool down from high temperature to around 550 °C seems to be crucial for a fast regeneration process. It is suggested that high cooling rates suppress hydrogen effusion from the silicon bulk in a temperature range where the hydrogenated passivation layer cannot release hydrogen in considerable amounts. Thus, the hydrogen content of the silicon bulk after the complete high temperature step can be increased resulting in a faster regeneration process. Hence, the data presented here back up the theory that the regeneration process might be a hydrogen passivation of boron-oxygen related defects

  5. Laser Spectroscopic Analysis of Liquid Water Samples for Stable Hydrogen and Oxygen Isotopes

    International Nuclear Information System (INIS)

    2009-01-01

    Stable isotope ratios of hydrogen and oxygen are tracers of choice for water cycle processes in hydrological, atmospheric and ecological studies. The use of isotopes has been limited to some extent because of the relatively high cost of isotope ratio mass spectrometers and the need for specialized operational skills. Here, the results of performance testing of a recently developed laser spectroscopic instrument for measuring stable hydrogen and oxygen isotope ratios of water samples are described, along with a procedure for instrument installation and operation. Over the last four years, the IAEA Water Resources Programme conducted prototype and production model testing of these instruments and this publication is the outcome of those efforts. One of the main missions of the IAEA is to promote the use of peaceful applications of isotope and nuclear methods in Member States and this publication is intended to facilitate the use of laser absorption based instruments for hydrogen and oxygen stable isotope analyses of liquid water samples for hydrological and other studies. The instrument uses off-axis integrated cavity output spectroscopy to measure absolute abundances of 2 HHO, HH 18 O, and HHO via laser absorption. Test results using a number of natural and synthetic water standards and samples with a large range of isotope values demonstrate adequate precision and accuracy (e.g. precisions of 1 per mille for δ 2 H and 0.2 per mille for δ 18 O). The laser instrument has much lower initial and maintenance costs than mass spectrometers and is substantially easier to operate. Thus, these instruments have the potential to bring about a paradigm shift in isotope applications by enabling researchers in all fields to measure isotope ratios by themselves. The appendix contains a detailed procedure for the installation and operation of the instrument. Using the procedure, new users should be able to install the instrument in less than two hours. It also provides step

  6. Hydrogen Oxidation on Gas Diffusion Electrodes for Phosphoric Acid Fuel Cells in the Presence of Carbon Monoxide and Oxygen

    DEFF Research Database (Denmark)

    Gang, Xiao; Li, Qingfeng; Hjuler, Hans Aage

    1995-01-01

    Hydrogen oxidation has been studied on a carbon-supported platinum gas diffusion electrode in a phosphoric acidelectrolyte in the presence of carbon monoxide and oxygen in the feed gas. The poisoning effect of carbon monoxide presentin the feed gas was measured in the temperature range from 80...... to 150°C. It was found that throughout the temperaturerange, the potential loss due to the CO poisoning can be reduced to a great extent by the injection of small amounts ofgaseous oxygen into the hydrogen gas containing carbon monoxide. By adding 5 volume percent (v/o) oxygen, an almost...

  7. Multiple bandgap combination of thin film photovoltaic cells and a photoanode for efficient hydrogen and oxygen generation by water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Avachat, Upendra S.; Jahagirdar, Anant H.; Dhere, Neelkanth G. [Florida Solar Energy Center (FSEC), University of Central Florida 1679 Clearlake Road, Cocoa, FL, 32922-5703 (United States)

    2006-09-22

    The objective of this research is to develop cheaper and more efficient photoelectrochemical (PEC) cells for the production of highly pure hydrogen and oxygen by water splitting. FSEC PV Materials Lab has developed PEC set up consisting of two thin film photovoltaic (PV) cells, a RuS{sub 2} photoanode for efficient oxygen evolution and a platinum cathode for hydrogen evolution. A p-type transparent-conducting layer is prepared at the back of PV cell to transmit unabsorbed infrared photons onto the photoanode for efficient oxygen evolution. This paper presents the preparation and characterization of p- type ZnTe:Cu transparent conducting back layer and PEC cell. (author)

  8. A scenario analysis of effects of reduced nitrogen input on oxygen conditions in the Kattegat and the Belt Sea

    DEFF Research Database (Denmark)

    Hansen, I.S.; Ærtebjerg, G.; Richardson, K.

    1995-01-01

    A numerical tool has been developed for analyzing the potential effects of reduced nitrogen loading to the Kattegat and the Belt Sea. The analyzed effects relate to general trends in the occurrence of hypoxia and anoxia in the water below the pycnocline during the summer and autumn. Nitrogen...... is assumed to be the nutrient controlling production in these waters. The tool is a dynamic numerical model which includes the dominant hydrodynamic processes of the study area as well as the nitrogen cycle and is linked to oxygen conditions. The model has been calibrated based on the average intraannual...

  9. Nitrogen and Triple Oxygen Isotopic Analyses of Atmospheric Particulate Nitrate over the Pacific Ocean

    Science.gov (United States)

    Kamezaki, Kazuki; Hattori, Shohei; Iwamoto, Yoko; Ishino, Sakiko; Furutani, Hiroshi; Miki, Yusuke; Miura, Kazuhiko; Uematsu, Mitsuo; Yoshida, Naohiro

    2017-04-01

    Nitrate plays a significant role in the biogeochemical cycle. Atmospheric nitrate (NO3- and HNO3) are produced by reaction precursor as NOx (NO and NO2) emitted by combustion, biomass burning, lightning, and soil emission, with atmospheric oxidants like ozone (O3), hydroxyl radical (OH), peroxy radical and halogen oxides. Recently, industrial activity lead to increases in the concentrations of nitrogen species (NOx and NHy) throughout the environment. Because of the increase of the amount of atmospheric nitrogen deposition, the oceanic biogeochemical cycle are changed (Galloway et al., 2004; Kim et al., 2011). However, the sources and formation pathways of atmospheric nitrate are still uncertain over the Pacific Ocean because the long-term observation is limited. Stable isotope analysis is useful tool to gain information of sources, sinks and formation pathways. The nitrogen stable isotopic composition (δ15N) of atmospheric particulate NO3- can be used to posses information of its nitrogen sources (Elliott et al., 2007). Triple oxygen isotopic compositions (Δ17O = δ17O - 0.52 ×δ18O) of atmospheric particulate NO3- can be used as tracer of the relative importance of mass-independent oxygen bearing species (e.g. O3, BrO; Δ17O ≠ 0 ‰) and mass-dependent oxygen bearing species (e.g. OH radical; Δ17O ≈ 0 ‰) through the formation processes from NOx to NO3- in the atmosphere (Michalski et al., 2003; Thiemens, 2006). Here, we present the isotopic compositions of atmospheric particulate NO3- samples collected over the Pacific Ocean from 40˚ S to 68˚ N. We observed significantly low δ15N values for atmospheric particulate NO3- on equatorial Pacific Ocean during both cruises. Although the data is limited, combination analysis of δ15N and Δ17O values for atmospheric particulate NO3- showed the possibility of the main nitrogen source of atmospheric particulate NO3- on equatorial Pacific Ocean is ammonia oxidation in troposphere. Furthermore, the Δ17O values

  10. Simultaneous determination of stable carbon, oxygen, and hydrogen isotopes in cellulose.

    Science.gov (United States)

    Loader, N J; Street-Perrott, F A; Daley, T J; Hughes, P D M; Kimak, A; Levanič, T; Mallon, G; Mauquoy, D; Robertson, I; Roland, T P; van Bellen, S; Ziehmer, M M; Leuenberger, M

    2015-01-06

    A technological development is described through which the stable carbon-, oxygen-, and nonexchangeable hydrogen-isotopic ratios (δ(13)C, δ(18)O, δ(2)H) are determined on a single carbohydrate (cellulose) sample with precision equivalent to conventional techniques (δ(13)C 0.15‰, δ(18)O 0.30‰, δ(2)H 3.0‰). This triple-isotope approach offers significant new research opportunities, most notably in physiology and medicine, isotope biogeochemistry, forensic science, and palaeoclimatology, when isotopic analysis of a common sample is desirable or when sample material is limited.

  11. Total hydrogen and oxygen fluxes in the edge plasma of tokamaks

    International Nuclear Information System (INIS)

    Kastelewicz, H.

    1988-01-01

    A relativistic model of the edge plasma of tokamaks is described considering the primary neutral fluxes emitted from limiter and wall. The primary neutrals, which determine essentially the particle flux balance in the plasma edge, the scrape-off layer plasma and the particles adsorbed at limiter and wall are treated as separate subsystems which are iteratively coupled through the mutual particle sinks and sources. The model is used for the calculation of total hydrogen and oxygen fluxes in edge plasma of tokamaks. The results for different fractions of and contributions to the total fluxes are illustrated and discussed

  12. Properties of solid polymer electrolyte fluorocarbon film. [used in hydrogen/oxygen fuel cells

    Science.gov (United States)

    Alston, W. B.

    1973-01-01

    The ionic fluorocarbon film used as the solid polymer electrolyte in hydrogen/oxygen fuel cells was found to exhibit delamination failures. Polarized light microscopy of as-received film showed a lined region at the center of the film thickness. It is shown that these lines were not caused by incomplete saponification but probably resulted from the film extrusion process. The film lines could be removed by an annealing process. Chemical, physical, and tensile tests showed that annealing improved or sustained the water contents, spectral properties, thermo-oxidative stability, and tensile properties of the film. The resistivity of the film was significantly decreased by the annealing process.

  13. Reactive Oxygen and Nitrogen Species in the Development of Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    David J.R. Fulton

    2017-07-01

    Full Text Available Pulmonary arterial hypertension (PAH is a progressive disease of the lung vasculature that involves the loss of endothelial function together with inappropriate smooth muscle cell growth, inflammation, and fibrosis. These changes underlie a progressive remodeling of blood vessels that alters flow and increases pulmonary blood pressure. Elevated pressures in the pulmonary artery imparts a chronic stress on the right ventricle which undergoes compensatory hypertrophy but eventually fails. How PAH develops remains incompletely understood and evidence for the altered production of reactive oxygen and nitrogen species (ROS, RNS respectively in the pulmonary circulation has been well documented. There are many different types of ROS and RNS, multiple sources, and collective actions and interactions. This review summarizes past and current knowledge of the sources of ROS and RNS and how they may contribute to the loss of endothelial function and changes in smooth muscle proliferation in the pulmonary circulation.

  14. Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction.

    Science.gov (United States)

    Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun

    2018-01-31

    The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.

  15. Towards a Measurement of the n=2 Lamb Shift in Hydrogen-like Nitrogen Using an Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Hosaka, K.; Crosby, D. N.; Gaarde-Widdowson, K.; Smith, C. J.; Silver, J. D.; Myers, E. G.; Kinugawa, T.; Ohtani, S.

    2003-01-01

    Using a 14 C 16 O 2 laser the 2s 1/2 -2p 3/2 (fine structure - Lamb shift) transition has been induced in 14 N 6+ ions trapped in an electron beam ion trap. Prospects for a measurement of the Lamb shift in hydrogen-like nitrogen are discussed.

  16. Effects of Nitrogen and Hydrogen Codoping on the Electrical Performance and Reliability of InGaZnO Thin-Film Transistors.

    Science.gov (United States)

    Abliz, Ablat; Gao, Qingguo; Wan, Da; Liu, Xingqiang; Xu, Lei; Liu, Chuansheng; Jiang, Changzhong; Li, Xuefei; Chen, Huipeng; Guo, Tailiang; Li, Jinchai; Liao, Lei

    2017-03-29

    Despite intensive research on improvement in electrical performances of ZnO-based thin-film transistors (TFTs), the instability issues have limited their applications for complementary electronics. Herein, we have investigated the effect of nitrogen and hydrogen (N/H) codoping on the electrical performance and reliability of amorphous InGaZnO (α-IGZO) TFTs. The performance and bias stress stability of α-IGZO device were simultaneously improved by N/H plasma treatment with a high field-effect mobility of 45.3 cm 2 /(V s) and small shifts of threshold voltage (V th ). On the basis of X-ray photoelectron spectroscopy analysis, the improved electrical performances of α-IGZO TFT should be attributed to the appropriate amount of N/H codoping, which could not only control the V th and carrier concentration efficiently, but also passivate the defects such as oxygen vacancy due to the formation of stable Zn-N and N-H bonds. Meanwhile, low-frequency noise analysis indicates that the average trap density near the α-IGZO/SiO 2 interface is reduced by the nitrogen and hydrogen plasma treatment. This method could provide a step toward the development of α-IGZO TFTs for potential applications in next-generation high-definition optoelectronic displays.

  17. Interaction of the Helium, Hydrogen, Air, Argon, and Nitrogen Bubbles with Graphite Surface in Water.

    Science.gov (United States)

    Bartali, Ruben; Otyepka, Michal; Pykal, Martin; Lazar, Petr; Micheli, Victor; Gottardi, Gloria; Laidani, Nadhira

    2017-05-24

    The interaction of the confined gas with solid surface immersed in water is a common theme of many important fields such as self-cleaning surface, gas storage, and sensing. For that reason, we investigated the gas-graphite interaction in the water medium. The graphite surface was prepared by mechanical exfoliation of highly oriented pyrolytic graphite (HOPG). The surface chemistry and morphology were studied by X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy. The surface energy of HOPG was estimated by contact angle measurements using the Owens-Wendt method. The interaction of gases (Ar, He, H 2 , N 2 , and air) with graphite was studied by a captive bubble method, in which the gas bubble was in contact with the exfoliated graphite surface in water media. The experimental data were corroborated by molecular dynamics simulations and density functional theory calculations. The surface energy of HOPG equaled to 52.8 mJ/m 2 and more of 95% of the surface energy was attributed to dispersion interactions. The results on gas-surface interaction indicated that HOPG surface had gasphilic behavior for helium and hydrogen, while gasphobic behavior for argon and nitrogen. The results showed that the variation of the gas contact angle was related to the balance between the gas-surface and gas-gas interaction potentials. For helium and hydrogen the gas-surface interaction was particularly high compared to gas-gas interaction and this promoted the favorable interaction with graphite surface.

  18. Nitrogen-doped fullerene as a potential catalyst for hydrogen fuel cells.

    Science.gov (United States)

    Gao, Feng; Zhao, Guang-Lin; Yang, Shizhong; Spivey, James J

    2013-03-06

    We examine the possibility of nitrogen-doped C60 fullerene (N-C60) as a cathode catalyst for hydrogen fuel cells. We use first-principles spin-polarized density functional theory calculations to simulate the electrocatalytic reactions on N-C60. The first-principles results show that an O2 molecule can be adsorbed and partially reduced on the N-C complex sites (Pauling sites) of N-C60 without any activation barrier. Through a direct pathway, the partially reduced O2 can further react with H(+) and additional electrons and complete the water formation reaction (WFR) with no activation energy barrier. In the indirect pathway, reduced O2 reacts with H(+) and additional electrons to form H2O molecules through a transition state (TS) with a small activation barrier (0.22-0.37 eV). From an intermediate state to a TS, H(+) can obtain a kinetic energy of ∼0.95-3.68 eV, due to the Coulomb electric interaction, and easily overcome the activation energy barrier during the WFR. The full catalytic reaction cycles can be completed energetically, and N-C60 fullerene recovers to its original structure for the next catalytic reaction cycle. N-C60 fullerene is a potential cathode catalyst for hydrogen fuel cells.

  19. A novel endo-hydrogenase activity recycles hydrogen produced by nitrogen fixation.

    Science.gov (United States)

    Ng, Gordon; Tom, Curtis G S; Park, Angela S; Zenad, Lounis; Ludwig, Robert A

    2009-01-01

    Nitrogen (N(2)) fixation also yields hydrogen (H(2)) at 1:1 stoichiometric amounts. In aerobic diazotrophic (able to grow on N(2) as sole N-source) bacteria, orthodox respiratory hupSL-encoded hydrogenase activity, associated with the cell membrane but facing the periplasm (exo-hydrogenase), has nevertheless been presumed responsible for recycling such endogenous hydrogen. As shown here, for Azorhizobium caulinodans diazotrophic cultures open to the atmosphere, exo-hydrogenase activity is of no consequence to hydrogen recycling. In a bioinformatic analysis, a novel seven-gene A. caulinodans hyq cluster encoding an integral-membrane, group-4, Ni,Fe-hydrogenase with homology to respiratory complex I (NADH: quinone dehydrogenase) was identified. By analogy, Hyq hydrogenase is also integral to the cell membrane, but its active site faces the cytoplasm (endo-hydrogenase). An A. caulinodans in-frame hyq operon deletion mutant, constructed by "crossover PCR", showed markedly decreased growth rates in diazotrophic cultures; normal growth was restored with added ammonium--as expected of an H(2)-recycling mutant phenotype. Using A. caulinodans hyq merodiploid strains expressing beta-glucuronidase as promoter-reporter, the hyq operon proved strongly and specifically induced in diazotrophic culture; as well, hyq operon induction required the NIFA transcriptional activator. Therefore, the hyq operon is constituent of the nif regulon. Representative of aerobic N(2)-fixing and H(2)-recycling alpha-proteobacteria, A. caulinodans possesses two respiratory Ni,Fe-hydrogenases: HupSL exo-hydrogenase activity drives exogenous H(2) respiration, and Hyq endo-hydrogenase activity recycles endogenous H(2), specifically that produced by N(2) fixation. To benefit human civilization, H(2) has generated considerable interest as potential renewable energy source as its makings are ubiquitous and its combustion yields no greenhouse gases. As such, the reversible, group-4 Ni,Fe-hydrogenases, such

  20. Gaseous oxygen and hydrogen embrittlements of the uranium-10 weight % molybdenum alloy

    International Nuclear Information System (INIS)

    Corcos, Jean.

    1979-07-01

    The stress corrosion of an Uranium-10 weight % Molybdenum alloy in high purity gaseous oxygen and hydrogen was studied. Tests were performed with fracture-mechanic specimens, fatigue precracked and carried out in tension with a constant sustained load. The experimental procedure enabled to determine the S.C. morphology during the test, and its kinetics. Tests in gaseous oxygen were performed with p02=0.15 MPa from 0 0 C to 100 0 C, and at 20 0 C for p02=0.15, 0.15.10 -2 and 0.15.10 -4 MPa. Two kinetic laws are proposed. Cracking is transgranular with a quasi-clivage type, and occurs on the (1 1 1) planes of the matrix. Tests in gaseous hydrogen were performed with pH2=0.15 MPa from - 50 0 C to + 135 0 C; for all the tests, even those under no exterior load, there is a failure by S.C. and macroscopic hydruration occurs. We propose a kinetic law, which may display that the hydruration phenomenon rules the S.C. propagation. We have performed the identification of the hydride, as well as the study of the precipitation. These phenomena don't occur with pH2=0.15.10 -2 MPa. The embrittlement is thought to be due to a formation-failure cycle of an hydride precipitate at the crack tip [fr

  1. Fractionation of hydrogen and oxygen isotopes between hydrated and free water molecules in aqueous urea solution

    International Nuclear Information System (INIS)

    Kakiuchi, M.; Matsuo, S.

    1985-01-01

    Ratios of D/H and 18 O/ 16 O in the vapor phase in equilibrium with aqueous urea solution with different urea molalities were measured at 15 and 25 0 C. Under the assumption that urea solutions consist of two species, i.e., the urea-water cluster and free water, the results are interpreted to give the average hydration number, i.e., the number of water molecules per urea molecule in the urea-water cluster. Good agreement was obtained for the hydration number estimated independently from hydrogen and oxygen isotopic fractions. On the basis of hydrogen isotopic data at 25 0 C, the average hydration number of urea in the cluster is 6.3 +/- 0.8 at 2.1 m and 2.75 +/- 0.08 at saturation (20.15 m). The corresponding average hydration numbers based on oxygen isotopic data were calculated to be 6.7 +/- 2.4 at 2.1 m and 2.75 +/- 0.25 at urea saturation. HD 16 O is enriched in the urea-water cluster and H 2 18 O is enriched in free water. Isotopic partitioning between the cluster and free water is markedly different from those between hydration spheres and free water in aqueous electrolyte solutions. 29 references, 6 figures, 5 tables

  2. Covariance of oxygen and hydrogen isotopic composition in plant water: Species effects

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, L.W.; DeNiro, M.J. (Univ. of California, Los Angeles (United States))

    1989-12-01

    Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species-specific factors on leaf water enrichment of D and {sup 18}O have not been studied for different plants growing together. To learn whether leaf water enrichment patterns and processes for D and {sup 18}O are different for individual species growing under the same environmental conditions the authors tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show high sloped (m in the leaf water equation {delta}D = m {delta}{sup 18}O + b) than in C{sub 3} plants. They determined the relationships between the stable hydrogen ({delta}D) and oxygen ({delta}{sup 18}O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes.

  3. Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus.

    Science.gov (United States)

    Ceja-Navarro, Javier A; Nguyen, Nhu H; Karaoz, Ulas; Gross, Stephanie R; Herman, Donald J; Andersen, Gary L; Bruns, Thomas D; Pett-Ridge, Jennifer; Blackwell, Meredith; Brodie, Eoin L

    2014-01-01

    Coarse woody debris is an important biomass pool in forest ecosystems that numerous groups of insects have evolved to take advantage of. These insects are ecologically important and represent useful natural analogs for biomass to biofuel conversion. Using a range of molecular approaches combined with microelectrode measurements of oxygen, we have characterized the gut microbiome and physiology of Odontotaenius disjunctus, a wood-feeding beetle native to the eastern United States. We hypothesized that morphological and physiological differences among gut regions would correspond to distinct microbial populations and activities. In fact, significantly different communities were found in the foregut (FG), midgut (MG)/posterior hindgut (PHG) and anterior hindgut (AHG), with Actinobacteria and Rhizobiales being more abundant toward the FG and PHG. Conversely, fermentative bacteria such as Bacteroidetes and Clostridia were more abundant in the AHG, and also the sole region where methanogenic Archaea were detected. Although each gut region possessed an anaerobic core, micron-scale profiling identified radial gradients in oxygen concentration in all regions. Nitrogen fixation was confirmed by (15)N2 incorporation, and nitrogenase gene (nifH) expression was greatest in the AHG. Phylogenetic analysis of nifH identified the most abundant transcript as related to Ni-Fe nitrogenase of a Bacteroidetes species, Paludibacter propionicigenes. Overall, we demonstrate not only a compartmentalized microbiome in this beetle digestive tract but also sharp oxygen gradients that may permit aerobic and anaerobic metabolism to occur within the same regions in close proximity. We provide evidence for the microbial fixation of N2 that is important for this beetle to subsist on woody biomass.

  4. Unlocking the Electrocatalytic Activity of Chemically Inert Amorphous Carbon-Nitrogen for Oxygen Reduction: Discerning and Refactoring Chaotic Bonds

    DEFF Research Database (Denmark)

    Zhang, Caihong; Zhang, Wei; Wang, Dong

    2017-01-01

    Mild annealing enables inactive nitrogen (N)-doped amorphous carbon (a-C) films abundant with chaotic bonds prepared by magnetron sputtering to become effective for the oxygen reduction reaction (ORR) by virtue of generating pyridinic N. The rhythmic variation of ORR activity elaborates well...... on the subtle evolution of the amorphous C−N bonds conferred by spectroscopic analysis....

  5. Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Gabriela; Pekarová, Michaela; Lojek, Antonín

    2010-01-01

    Roč. 49, č. 3 (2010), s. 133-139 ISSN 1436-6207 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : polyunsaturated fatty acids * reactive oxygen species * reactive nitrogen species Subject RIV: BO - Biophysics Impact factor: 3.343, year: 2010

  6. The compositional study of nitrogen and oxygen compounds in products of heavy oil primary and secondary upgrading processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chmielowiec, J.

    1986-02-01

    The primary objective was to characterize nitrogen and oxygen compound types in the upgraded products derived from Athabasca bitumen. Nitrogen compounds, depending on their nature and concentrations, in charge stocks to catalytic processess (hydro-processes and reforming) can severely limit or poison the catalyst activity. Oxygen compounds are corrosive (especially naphthenic acids) and can promote gum formation as part of the deterioration of the hydrocarbons in the petroleum product. A secondary objective was to evaluate the advantages and limitations of in-house mass spectrometry and infrared spectroscopy methods for analyzing specific classes of polar compounds in naphthas, middle distillates, and gas oils. An analytical procedure that was based on the discrimination of polar compound classes using liquid chromatography followed by mass spectrometric analysis was tested. The chemical intelligence on the fractions obtained from Athabasca bitumen and its upgrading products has been advanced by determining structural characteristics of the nitrogen and oxygen components. This report describes the determination of the distributions of nitrogen and oxygen compounds in samples from various process streams. This procedure is capable of providing information useful for evaluating hydrodenitrogenation and hydrodeoxygenation reactions.

  7. Mitochondrial Signaling in Plants Under Hypoxia: Use of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS)

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Møller, Ian Max

    2015-01-01

    Hypoxia commonly occurs in roots in water-saturated soil and in maturing and germinating seeds. We here review the role of the mitochondria in the cellular response to hypoxia with an emphasis on the turnover of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) and their potential...

  8. DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b

    International Nuclear Information System (INIS)

    Moses, Julianne I.; Visscher, C.; Fortney, J. J.; Showman, A. P.; Lewis, N. K.; Griffith, C. A.; Klippenstein, S. J.; Shabram, M.; Friedson, A. J.; Marley, M. S.; Freedman, R. S.

    2011-01-01

    We have developed a one-dimensional photochemical and thermochemical kinetics and diffusion model to study the effects of disequilibrium chemistry on the atmospheric composition of 'hot-Jupiter' exoplanets. Here we investigate the coupled chemistry of neutral carbon, hydrogen, oxygen, and nitrogen species on HD 189733b and HD 209458b and we compare the model results with existing transit and eclipse observations. We find that the vertical profiles of molecular constituents are significantly affected by transport-induced quenching and photochemistry, particularly on the cooler HD 189733b; however, the warmer stratospheric temperatures on HD 209458b help maintain thermochemical equilibrium and reduce the effects of disequilibrium chemistry. For both planets, the methane and ammonia mole fractions are found to be enhanced over their equilibrium values at pressures of a few bar to less than an mbar due to transport-induced quenching, but CH 4 and NH 3 are photochemically removed at higher altitudes. Disequilibrium chemistry also enhances atomic species, unsaturated hydrocarbons (particularly C 2 H 2 ), some nitriles (particularly HCN), and radicals like OH, CH 3 , and NH 2 . In contrast, CO, H 2 O, N 2 , and CO 2 more closely follow their equilibrium profiles, except at pressures ∼ 2 O, and N 2 are photochemically destroyed and CO 2 is produced before its eventual high-altitude destruction. The enhanced abundances of CH 4 , NH 3 , and HCN are expected to affect the spectral signatures and thermal profiles of HD 189733b and other relatively cool, transiting exoplanets. We examine the sensitivity of our results to the assumed temperature structure and eddy diffusion coefficients and discuss further observational consequences of these models.

  9. Estimating the uncertainty in thermochemical calculations for oxygen-hydrogen combustors

    Science.gov (United States)

    Sims, Joseph David

    The thermochemistry program CEA2 was combined with the statistical thermodynamics program PAC99 in a Monte Carlo simulation to determine the uncertainty in several CEA2 output variables due to uncertainty in thermodynamic reference values for the reactant and combustion species. In all, six typical performance parameters were examined, along with the required intermediate calculations (five gas properties and eight stoichiometric coefficients), for three hydrogen-oxygen combustors: a main combustor, an oxidizer preburner and a fuel preburner. The three combustors were analyzed in two different modes: design mode, where, for the first time, the uncertainty in thermodynamic reference values---taken from the literature---was considered (inputs to CEA2 were specified and so had no uncertainty); and data reduction mode, where inputs to CEA2 did have uncertainty. The inputs to CEA2 were contrived experimental measurements that were intended to represent the typical combustor testing facility. In design mode, uncertainties in the performance parameters were on the order of 0.1% for the main combustor, on the order of 0.05% for the oxidizer preburner and on the order of 0.01% for the fuel preburner. Thermodynamic reference values for H2O were the dominant sources of uncertainty, as was the assigned enthalpy for liquid oxygen. In data reduction mode, uncertainties in performance parameters increased significantly as a result of the uncertainties in experimental measurements compared to uncertainties in thermodynamic reference values. Main combustor and fuel preburner theoretical performance values had uncertainties of about 0.5%, while the oxidizer preburner had nearly 2%. Associated experimentally-determined performance values for all three combustors were 3% to 4%. The dominant sources of uncertainty in this mode were the propellant flowrates. These results only apply to hydrogen-oxygen combustors and should not be generalized to every propellant combination. Species for

  10. Stable hydrogen, oxygen and sulfur isotopes composition in different tissues of cattle

    International Nuclear Information System (INIS)

    Sun Fengmei; Shi Guangyu; Wang Huiwen; Yang Shuming

    2012-01-01

    In order to research on stable hydrogen, oxygen, sulfur isotopes composition in different tissues of cattle, as well as the breed, δ 2 H and δ 34 S values of different defatted muscle, cattle tail hair, blood, liver, also δ 2h and δ 18 O values of water from muscle were determined by isotope ratio mass spectrometry. The stable sulfur isotope composition was not affected by cattle variety, meanwhile the hydrogen was uncertain; the δ 2 H and δ 34 S values between different defatted muscle, blood, liver, cattle hair were significantly different, at the same time the δ 34 S and δ 2 H values between each tissue were not significantly correlated; the δ 2 H values were strongly correlated with the δ 18 O values of muscle water. The above results indicated that stable sulfur and hydrogen isotopes fractionation in the various tissues were discrepant, thus the proper tissue should be selected according to the purpose and object in the beef traceability. (authors)

  11. Effects of nitrogen and hydrogen in argon shielding gas on bead profile, delta-ferrite and nitrogen contents of the pulsed GTAW welds of AISI 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Viyanit, Ekkarut [National Metal and Materials Technology Center (MTEC), Pathaumthani (Thailand). Failure Analysis and Surface Technology Lab; Hartung, Fritz; Lothongkum, Gobboon [Chulalongkom University, Bangkok (Thailand). Dept. of Metallurgical Engineering,; Phakpeetinan, Panyasak; Chianpairot, Amnuysak

    2016-08-01

    The general effects of 1, 2, 3 and 4 vol.-% nitrogen and 1, 5 and 10 vol.-% hydrogen in argon shielding gas on weld bead profile (depth/width ratio: D/W) and the δ-ferrite content of AISI 316L pulsed GTAW welds were investigated. The limits for imperfections for the quality levels of welds were based on ISO 5817 B. The plates with a thickness of 6 mm were welded at the flat position and the bead on plate. Increasing hydrogen content in argon shielding gas increases the D/W ratio. Excessive hydrogen addition to argon shielding gas will result in incompletely filled groove and excessive penetration of weld. Increasing welding speed decreases the weld-metal volume and the D/W ratios. Nitrogen addition to argon shielding gas has no effect on the D/W ratio. The addition of a mixture of nitrogen and hydrogen to argon shielding gas on the D/W ratio does not show any interaction between them. An effect on the D/W ratio can be exclusively observed as a function of hydrogen content. Increasing hydrogen content in argon shielding gas increases the δ-ferrite content of weld metal. Increasing either nitrogen content in shielding gas or welding speed decreases the δ-ferrite content of weld metal. The nitrogen addition increases the weld metal nitrogen content, however, the hydrogen addition leads to a decrease of weld metal nitrogen content.

  12. Advances in interactive supported electro-catalysis for hydrogen and oxygen electrode reactions

    Energy Technology Data Exchange (ETDEWEB)

    Nedeljko V Krstajic; Ljiljana M Vracar; Jelena M Jaksic; Milan M Jaksic [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia and Montenegro (Yugoslavia); Stelios G Neophytides; Miranda Labou; Jelena M Jaksic; Milan M Jaksic [Institute of Chemical Engineering and High Temperature Chemical Processes FORTH, and Department of Chemistry, University of Patras, 26500 Patras, (Greece); Reidar Tunold [University of Trondheim, NTNU, Institute of Industrial Electrochemistry, Trondheim, (Norway); Polycarpos Falaras [Institute of Physical Chemistry, NCSR Demokritos, Attikis, Athens, (Greece)

    2006-07-01

    Magneli phases have been introduced as an unique electron conductive and interactive support for electro-catalysis both in hydrogen (HELR) and oxygen (OELR) electrode reactions in water electrolysis and Low Temperature PEM Fuel Cells (LT PEM FC). The Strong Metal-Support Interaction (SMSI) that imposes the former implies: (i) the hypo-hyper-d inter-bonding effect and its catalytic consequences, and (ii) the interactive primary oxide (M-OH) spillover from the hypo-d-oxide support as a dynamic electrocatalytic contribution. The stronger the bonding, the more strained appear d-orbitals, thereby the less strong the intermediate adsorptive strength in the rate determining step (RDS), and consequently, the faster the facilitated catalytic electrode reaction arises. At the same time the primary oxide spillover transferred from the hypo-d-oxide support directly interferes and reacts either individually and directly to contribute to finish the oxygen reduction, or with other interactive species, like CO to contribute to the CO tolerance. In such a respect, the conditions to provide Au to act as the reversible hydrogen electrode have been proved either by its potentiodynamic surface reconstruction in a heavy water solution, or by the nano-structured SMSI Au on anatase titania with characteristic strained d-orbitals in such a hypo-hyper-d-interactive bonding (Au/TiO{sub 2}). In the same context, the monoatomic network dispersion of Pt upon Magneli phases makes it possible to produce an advanced interactive supported electro-catalyst for cathodic oxygen reduction (ORR). The strained hypo-hyper-d-inter-electronic and inter-d-orbital metal/hypo-d-oxide support bonding relative to the strength of the latter, has been inferred to be the basis of the synergistic electrocatalytic effect both in the HELR and ORR. (authors)

  13. The influence of riverine nitrogen on the dynamics of the North Sea oxygen minimum zone

    Science.gov (United States)

    Große, Fabian; Kreus, Markus; Lenhart, Hermann; Pätsch, Johannes

    2016-04-01

    The mitigation of eutrophication and its concomitants, like oxygen deficiency in bottom waters, is one of the major aspects of the ecological management of coastal marine ecosystems. In the past, biogeochemical models helped to significantly improve the understanding of the interaction of the physical and biological processes driving eutrophication. Anthropogenic river input of nitrogen (N) and phosphorus (P) is the main driver for eutrophication. Nevertheless, the quantification of their influence in a specific region remains an important issue, since it is as crucial for an efficient management as it is difficult to obtain. During the past decade, a quantitative method applicable to biogeochemical models - often referred to as `trans-boundary nutrient transports' (TBNT) - became more and more popular in the context of marine ecosystem management. This method allows for the tracing of elements from various sources, e.g., nitrogen (N) from different rivers, throughout the whole process chain of the applied model. By this, it provides valuable information about the contributions from different sources to the overall amount and turnover of an element in different areas of the model domain. This information constitutes the basis for the quantification, evaluation and optimisation of river input reduction targets for the tributaries, which are defined in relation to their ecological consequences in the marine environment. In existing studies, the TBNT method has been applied to a variety of biogeochemical models, e.g. to quantify the atmospheric contribution to total N in the North Sea (Troost et al., 2013). This study presents a novel approach to link the TBNT method applied to N to the biological processes driving the oxygen dynamics in the bottom layer of the North Sea. For this purpose, simulations from the biogeochemical model ECOHAM (ECOlogical model HAMburg) are analysed for the years 2002 and 2010, with the focus on the southern central North Sea, the region of

  14. Treatment of portal venous gas embolism with hyperbaric oxygen after accidental ingestion of hydrogen peroxide: a case report and review of the literature.

    Science.gov (United States)

    Papafragkou, Sotirios; Gasparyan, Anna; Batista, Richard; Scott, Paul

    2012-07-01

    It is well known that hydrogen peroxide ingestion can cause gas embolism. To report a case illustrating that the definitive, most effective treatment for gas embolism is hyperbaric oxygen therapy. We present a case of a woman who presented to the Emergency Department with acute abdominal pain after an accidental ingestion of concentrated hydrogen peroxide. Complete recovery from her symptoms occurred quickly with hyperbaric oxygen therapy. This is a case report of the successful use of hyperbaric oxygen therapy to treat portal venous gas embolism caused by hydrogen peroxide ingestion. Hyperbaric oxygen therapy can be considered for the treatment of symptomatic hydrogen peroxide ingestion. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Influence of oxygen on hydrogen storage and electrode properties for micro-designed V-based battery alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, M.; Takahashi, K.; Isomura, A. [Mater. R and D Co., Ltd., Aichi (Japan). IMRA; Sakai, T. [Osaka National Research Institute, Midorigaoka, Ikeda-shi, Osaka, 563 (Japan)

    1998-01-30

    The influence of oxygen on micro-structure, hydrogen storage and electrode properties were investigated for the alloy V{sub 3}TiNi{sub 0.56}Co{sub 0.14}Nb{sub 0.047}Ta{sub 0.047}. Since titanium in the alloy worked as a deoxidizer to form the oxide phase, the alloy preserved a large hydrogen capacity in the oxygen concentration range below 5000 mass ppm. More oxygen than 6000 mass ppm caused a remarkable contraction of the unit cell of the vanadium-based main phase and then a decrease in the hydrogen storage capacity. The contraction was accompanied by the precipitation of the Ti-based oxide phase. (orig.) 15 refs.

  16. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  17. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    Science.gov (United States)

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important

  18. Effect of hydrogen on the behavior of metals II - Hydrogen embrittlement of titanium alloy TV13CA - effect of oxygen - comparison with non-alloyed titanium

    International Nuclear Information System (INIS)

    Arditty, Jean-Pierre

    1973-01-01

    The effect of oxygen on the hydrogen embrittlement of non-alloyed titanium and the metastable β titanium alloy, TV13 CA, was studied during dynamic mechanical tests, the concentrations considered varying from 1000 to 5000 ppm (oxygen) and from 0 to 5000 ppm (hydrogen) respectively. TV13 CA alloy has a very high solubility for hydrogen. The establishment of a temperature range and a rate of deformation region in which the embrittlement of the alloy is maximum leads to the conclusion that an embrittlement mechanism occurs involving the dragging and accumulation of hydrogen by dislocations. This is the case for all annealings effected in the medium temperature range, which, by favoring the re-establishment of the stable two-phase α + β state of the alloy, produce hardening. The same is true for oxygen which, in addition to hardening the alloy by the solid solution effect, tends to increase its instability and, in consequence, favors the decomposition of the β phase. Nevertheless oxygen concentrations of up to 1500 ppm contribute to increasing the mechanical resistance without catastrophically reducing the deformation capacity. In the case of non-alloyed titanium, the hardening effect also leads to an increase in E 0.2p c and R, and to a reduction in the deformation capacity. Nevertheless, hydrogen is only very slightly soluble at room temperature and a distribution of the hydride phase linked to the thermal history of the sample predominates. Thus a fine acicular structure obtained from the β phase by quenching, enables an alloy having a good mechanical resistance to be conserved even when large quantities of hydrogen are present; the deformation capacity remains small. On the other hand, when the hydride phase separates the metallic phase into large grains, a very small elongation leads to a breakdown in mechanical resistance. (author) [fr

  19. Thermodynamics of the hydrogen-carbon-oxygen-tungsten system, as applied to the manufacture of tungsten and tungsten carbide

    International Nuclear Information System (INIS)

    Schwenke, G.K.

    2001-01-01

    The thermodynamics of the quaternary hydrogen-carbon oxygen-tungsten system and its binary and ternary sub-systems are reviewed. Published thermodynamic data are evaluated, and expression for free energies of formation are chosen. These expressions are integrated with and equilibrium-calculating algorithm, producing a powerful tool for understanding and improving the manufacture of tungsten and tungsten carbide. Three examples are presented: reduction/carburization of tungstic oxide with hydrogen, carbon, and methane. (author)

  20. Spectroscopic properties of nitrogen doped hydrogenated amorphous carbon films grown by radio frequency plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Hayashi, Y.; Yu, G.; Rahman, M. M.; Krishna, K. M.; Soga, T.; Jimbo, T.; Umeno, M.

    2001-01-01

    Nitrogen doped hydrogenated amorphous carbon thin films have been deposited by rf plasma-enhanced chemical vapor deposition using CH 4 as the source of carbon and with different nitrogen flow rates (N 2 /CH 4 gas ratios between 0 and 3), at 300 K. The dependence modifications of the optical and the structural properties on nitrogen incorporation were investigated using different spectroscopic techniques, such as, Raman spectroscopy, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, electron spin resonance (ESR), photoluminescence (PL) and spectroscopic ellipsometry (SE). Raman spectroscopy and IR absorption reveal an increase in sp 2 -bonded carbon or a change in sp 2 domain size with increasing nitrogen flow rate. It is found that the configuration of nitrogen atoms incorporated into an amorphous carbon network gradually changes from nitrogen atoms surrounded by three (σ bonded) to two (π bonded) neighboring carbons with increasing nitrogen flow rate. Tauc optical gap is reduced from 2.6 to 2.0 eV, and the ESR spin density and the peak-to-peak linewidth increase sharply with increasing nitrogen flow rate. Excellent agreement has been found between the measured SE data and modeled spectra, in which an empirical dielectric function of amorphous materials and a linear void distribution along the thickness have been assumed. The influence of nitrogen on the electronic density of states is explained based on the optical properties measured by UV-VIS and PL including nitrogen lone pair band. [copyright] 2001 American Institute of Physics

  1. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes

    Science.gov (United States)

    Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen

    2017-06-01

    Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ~3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries.

  2. Optimisation and design of nitrogen-sparged fermentative hydrogen production bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, Jeremy T. [CH2M HILL, 255 Consumers Road, Suite 300, Toronto, Ontario, M2J 5B6 (Canada); Bagley, David M. [Department of Civil and Architectural Engineering, University of Wyoming, 1000 E. University Avenue, Department 3295, Laramie, Wyoming 82071 (United States)

    2008-11-15

    The optimisation of nitrogen sparging during fermentative hydrogen production was investigated. A N{sub 2} sparging rate of 12 mL/min/L-liquid was observed to maximise the H{sub 2} yield at approximately 2 mol H{sub 2}/mol glucose converted, compared to an H{sub 2} yield of approximately 1 mol H{sub 2}/mol glucose converted without any sparging. There was no significant increase in H{sub 2} yield at sparging rates of 12-80 mL/min/L-liquid. The optimum sparging rate was lower than N{sub 2} sparging rates examined in the past (>20 mL/min/L-liquid). To facilitate improved scale-up, the overall volumetric mass-transfer coefficients (K{sub L}a) for H{sub 2} and CO{sub 2} were measured and the relationship between the dimensionless Sherwood and Froude numbers was determined. The optimal sparging rate occurred at a K{sub L}a value of 5.0 h{sup -1} for H{sub 2}, corresponding to a Sherwood number of 4800. By holding the Sherwood number constant upon scale-up, the full-scale K{sub L}a can be determined and the appropriate sparging rate can be determined from the corresponding Froude number. The benefits of operating at the optimum sparging rate, including minimising product hydrogen gas dilution and energy use, can thus be achieved in larger-scale systems. (author)

  3. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    International Nuclear Information System (INIS)

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe 3 ) 4 Ru(X)(Y) and (DMPM) 2 Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe 3 ) 4 Ru(Ph)(Me) or (PMe 3 ) 4 Ru(Ph) 2 leads to the ruthenium benzyne complex (PMe 3 ) 4 Ru(η 2 -C 6 H 4 ) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO 2 and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe 3 ) 4 Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs

  4. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{sub 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

  5. Nitrogen and chemical oxygen demand removal from septic tank wastewater in subsurface flow constructed wetlands: substrate (cation exchange capacity) effects.

    Science.gov (United States)

    Collison, Robert S; Grismer, Mark E

    2014-04-01

    The current article focuses on chemical oxygen demand (COD) and nitrogen (ammonium and nitrate) removal performance from synthetic human wastewater as affected by different substrate rocks having a range of porosities and cation exchange capacities (CECs). The aggregates included lava rock, lightweight expanded shale, meta-basalt (control), and zeolite. The first three had CECs of 1 to 4 mequiv/100 gm, whereas the zeolite CEC was much greater (-80 mequiv/100 gm). Synthetic wastewater was gravity fed to each constructed wetland system, resulting in a 4-day retention time. Effluent samples were collected, and COD and nitrogen species concentrations measured regularly during four time periods from November 2008 through June 2009. Chemical oxygen demand and nitrogen removal fractions were not significantly different between the field and laboratory constructed wetland systems when corrected for temperature. Similarly, overall COD and nitrogen removal fractions were practically the same for the aggregate substrates. The important difference between aggregate effects was the zeolite's ammonia removal process, which was primarily by adsorption. The resulting single-stage nitrogen removal process may be an alternative to nitrification and denitrification that may realize significant cost savings in practice.

  6. Process for the separation of deuterium and tritium from water using ammonia and a hydrogen-nitrogen-mixture

    International Nuclear Information System (INIS)

    Mandrin, Ch.

    1986-01-01

    A multistage process for separation of deuterium and tritium from water using ammonia and a hydrogen-nitrogen mixture. In a first stage isotopic exchange takes place between water containing deuterium and tritium, and ammonia depleted in deuterium and tritium. The molar ammonia throughput is chosen to be greater than two third of the molar throughput of water. The advantage of the process consists in the fact that the main product is water almost entirely free from deuterium and tritium. The byproducts are compounds enriched in deuterium and tritium, and nitrogen enriched in N-15

  7. Application of oxygen and hydrogen isotopes of waters in Tengchong hydrothermal systems of China

    International Nuclear Information System (INIS)

    Shen Minzi; Hou Fagao; Lin Ruifen; Ni Baoling

    1988-01-01

    This paper summarizes the results obtained for hydrothermal systems in Tengchong by using deuterium, oxygen-18 and tritium as natural tracers. On the basis of deuterium and oxygen-18 analyses of 69 thermal springs and some other meteoric, surface and underground water samples it has been confirmed that all geothermal waters are originally meteoric, but the δD of hot spring waters is often lighter than that of local surface and underground waters. It seems that the recharging water is from higher elevations and far from the thermal areas. The differences in oxygen-18 and deuterium contents between thermal springs and deep thermal waters have been calculated for single-stage steam separation from 276 deg. C to 96 deg. C. The oxygen isotope shift of deep thermal water produced by water-rock reactions is of 1.57 per mille and part of the observed oxygen isotope shift of thermal springs seems to have occurred due to subsurface boiling. The tritium content ( 18 O three subsurface processes would have been distinguished, they are subsurface boiling, mixing-subsurface boiling and subsurface boiling-mixing. The springs formed by subsurface boiling have tritium content of less than 5 TU. The tritium content of 5-10 TU is for springs formed by mixing-subsurface boiling and 10-20 TU is for subsurface boiling-mixing. The tritium content of geothermal water in Hot Sea, geothermal field seems higher than that of the Geysers U.S.A. and Wairakei N.Z. It would show that the circulation time of the thermal water in Hot Sea geothermal system is not so long, the reservoir is quite good with percolation and the recharging water is sufficiently enough. The most important applications of oxygen and hydrogen isotopes of water in geothermal study are in two ways, as tracers of water origins and as tracers of reservoir processes. This paper discussed these two aspects of Tengchong hydrothermal systems. 6 refs, 6 figs, 5 tabs

  8. The hydrogen and oxygen content of self-supporting carbon foils prepared by dc glow discharge in ethylene

    International Nuclear Information System (INIS)

    Tait, N.R.S.; Tolfree, D.W.L.; John, P.; Odeh, I.M.; Thomas, M.J.K.; Tricker, M.J.; Wilson, J.J.B.; England, J.B.A.; Newton, D.

    1980-01-01

    The hydrogen and oxygen content of self-supporting carbon films produced by dc glow discharge have been determined using a precise method involving the elastic scattering of 25 MeV α-particles. The number of carbon-hydrogen bonds has been determined for similar samples using infrared spectroscopy. The results are compared with those for samples made by the carbon arc process. Assuming that the glow discharge carbon contains graphitic regions surrounded by amorphous tetrahedrally bonded material to which hydrogen can attach, a simple estimate is made of the relative numbers of carbon atoms in the two forms. (orig.)

  9. Rational design of competitive electrocatalysts for the oxygen reduction reaction in hydrogen fuel cells

    Science.gov (United States)

    Stolbov, Sergey; Alcántara Ortigoza, Marisol

    2012-02-01

    The large-scale application of one of the most promising clean and renewable sources of energy, hydrogen fuel cells, still awaits efficient and cost-effective electrocatalysts for the oxygen reduction reaction (ORR) occurring on the cathode. We demonstrate that truly rational design renders electrocatalysts possessing both qualities. By unifying the knowledge on surface morphology, composition, electronic structure and reactivity, we solve that sandwich-like structures are an excellent choice for optimization. Their constituting species couple synergistically yielding reaction-environment stability, cost-effectiveness and tunable reactivity. This cooperative-action concept enabled us to predict two advantageous ORR electrocatalysts. Density functional theory calculations of the reaction free-energy diagrams confirm that these materials are more active toward ORR than the so far best Pt-based catalysts. Our designing concept advances also a general approach for engineering materials in heterogeneous catalysis.

  10. Fractionation of oxygen and hydrogen isotopes at the hydrate gas forming in the sea sediments

    International Nuclear Information System (INIS)

    Pashkina, V.I.; Esikov, A.D.

    1990-01-01

    The paper gives data on isotope composition of interstitial and near-bottom waters sampled in a region of gas-hydrate formation in the Sea of Okhotsk. The studies show that heavy isotopes of oxygen and hydrogen is used in gas-hydrate formation, with the result that isotope composition of its constitution water constitutes δ 18 O=+1.99per mille, δD=+23per mille relatively to SMOW. Formation of autogenic carbonates leads to isotope exchange with interstitial water wich, in turn, changes its primary isotope composition in the direction of increasing of O-18 content. The near-bottom waters are isotope-light relatively to the SMOW standard and to the mean isotope composition of interstitial water in the studied region of gas-hydrate spreading. (orig.) [de

  11. Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at the NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christoher P.; Jakupca, Ian J.

    2005-01-01

    The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at the NASA Glenn Research Center has successfully demonstrated closed cycle operation at rated power for multiple charge-discharge cycles. During charge cycle the RFC has absorbed input electrical power simulating a solar day cycle ranging from zero to 15 kWe peak, and delivered steady 5 kWe output power for periods exceeding 8 hr. Orderly transitions from charge to discharge mode, and return to charging after full discharge, have been accomplished without incident. Continuing test operations focus on: (1) Increasing the number of contiguous uninterrupted charge discharge cycles; (2) Increasing the performance envelope boundaries; (3) Operating the RFC as an energy storage device on a regular basis; (4) Gaining operational experience leading to development of fully automated operation; and (5) Developing instrumentation and in situ fluid sampling strategies to monitor health and anticipate breakdowns.

  12. Functionalised Oximes: Emergent Precursors for Carbon-, Nitrogen- and Oxygen-Centred Radicals

    Directory of Open Access Journals (Sweden)

    John C. Walton

    2016-01-01

    Full Text Available Oxime derivatives are easily made, are non-hazardous and have long shelf lives. They contain weak N–O bonds that undergo homolytic scission, on appropriate thermal or photochemical stimulus, to initially release a pair of N- and O-centred radicals. This article reviews the use of these precursors for studying the structures, reactions and kinetics of the released radicals. Two classes have been exploited for radical generation; one comprises carbonyl oximes, principally oxime esters and amides, and the second comprises oxime ethers. Both classes release an iminyl radical together with an equal amount of a second oxygen-centred radical. The O-centred radicals derived from carbonyl oximes decarboxylate giving access to a variety of carbon-centred and nitrogen-centred species. Methods developed for homolytically dissociating the oxime derivatives include UV irradiation, conventional thermal and microwave heating. Photoredox catalytic methods succeed well with specially functionalised oximes and this aspect is also reviewed. Attention is also drawn to the key contributions made by EPR spectroscopy, aided by DFT computations, in elucidating the structures and dynamics of the transient intermediates.

  13. Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity.

    Science.gov (United States)

    Li, Jia; Liu, Kang; Gao, Xiang; Yao, Bin; Huo, Kaifu; Cheng, Yongliang; Cheng, Xiaofeng; Chen, Dongchang; Wang, Bo; Sun, Wanmei; Ding, Dong; Liu, Meilin; Huang, Liang

    2015-11-11

    Efficient utilization and broader commercialization of alternative energies (e.g., solar, wind, and geothermal) hinges on the performance and cost of energy storage and conversion systems. For now and in the foreseeable future, the combination of rechargeable batteries and electrochemical capacitors remains the most promising option for many energy storage applications. Porous carbonaceous materials have been widely used as an electrode for batteries and supercapacitors. To date, however, the highest specific capacitance of an electrochemical double layer capacitor is only ∼200 F/g, although a wide variety of synthetic approaches have been explored in creating optimized porous structures. Here, we report our findings in the synthesis of porous carbon through a simple, one-step process: direct carbonization of kelp in an NH3 atmosphere at 700 °C. The resulting oxygen- and nitrogen-enriched carbon has a three-dimensional structure with specific surface area greater than 1000 m(2)/g. When evaluated as an electrode for electrochemical double layer capacitors, the porous carbon structure demonstrated excellent volumetric capacitance (>360 F/cm(3)) with excellent cycling stability. This simple approach to low-cost carbonaceous materials with unique architecture and functionality could be a promising alternative to fabrication of porous carbon structures for many practical applications, including batteries and fuel cells.

  14. Oxygen- and nitrogen-chemisorbed carbon nanostructures for Z-scheme photocatalysis applications

    International Nuclear Information System (INIS)

    Qian Zhao; Pathak, Biswarup; Nisar, Jawad; Ahuja, Rajeev

    2012-01-01

    Here focusing on the very new experimental finding on carbon nanomaterials for solid-state electron mediator applications in Z-scheme photocatalysis, we have investigated different graphene-based nanostructures chemisorbed by various types and amounts of species such as oxygen (O), nitrogen (N) and hydroxyl (OH) and their electronic structures using density functional theory. The work functions of different nanostructures have also been investigated by us to evaluate their potential applications in Z-scheme photocatalysis for water splitting. The N-, O–N-, and N–N-chemisorbed graphene-based nanostructures (32 carbon atoms supercell, corresponding to lattice parameter of about 1 nm) are found promising to be utilized as electron mediators between reduction level and oxidation level of water splitting. The O- or OH-chemisorbed nanostructures have potential to be used as electron conductors between H 2 -evolving photocatalysts and the reduction level (H + /H 2 ). This systematic study is proposed to understand the properties of graphene-based carbon nanostructures in Z-scheme photocatalysis and guide experimentalists to develop better carbon-based nanomaterials for more efficient Z-scheme photocatalysis applications in the future.

  15. A system for removing both oxygen and nitrogen from a rare gas-hydrocarbon mixture

    International Nuclear Information System (INIS)

    Dijkman, W.H.

    1989-01-01

    A study has been made how to remove nitrogen from a mixture of a rare gas and a hydrocarbon in addition to the removal of oxygen, H 2 O and gaseous oxides. The purpose was to find a simple method for the purification of drift-chamber gases in a recirculation system. Such a method would reduce the operating costs of the large detectors presently constructed for LEP. A promising technique has been developed. First results of a chemical reactor using the novel technique are presented. The N 2 content of Ar/air mixtures containing up to 28% air could be reduced to a level of 20 ppm at a flow rate of 0.11 m 3 /h (200 ppm at 1.0 m 3 /h); and the O 2 content to 30 and 300 ppm respectively. Water and gaseous oxides concentrations were always below 5 ppm. Some of the practical problems still to be solved are discussed and suggestions are given for further development and applications. The method can in principle be of more general use. (orig.)

  16. A novel endo-hydrogenase activity recycles hydrogen produced by nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Gordon Ng

    Full Text Available BACKGROUND: Nitrogen (N(2 fixation also yields hydrogen (H(2 at 1:1 stoichiometric amounts. In aerobic diazotrophic (able to grow on N(2 as sole N-source bacteria, orthodox respiratory hupSL-encoded hydrogenase activity, associated with the cell membrane but facing the periplasm (exo-hydrogenase, has nevertheless been presumed responsible for recycling such endogenous hydrogen. METHODS AND FINDINGS: As shown here, for Azorhizobium caulinodans diazotrophic cultures open to the atmosphere, exo-hydrogenase activity is of no consequence to hydrogen recycling. In a bioinformatic analysis, a novel seven-gene A. caulinodans hyq cluster encoding an integral-membrane, group-4, Ni,Fe-hydrogenase with homology to respiratory complex I (NADH: quinone dehydrogenase was identified. By analogy, Hyq hydrogenase is also integral to the cell membrane, but its active site faces the cytoplasm (endo-hydrogenase. An A. caulinodans in-frame hyq operon deletion mutant, constructed by "crossover PCR", showed markedly decreased growth rates in diazotrophic cultures; normal growth was restored with added ammonium--as expected of an H(2-recycling mutant phenotype. Using A. caulinodans hyq merodiploid strains expressing beta-glucuronidase as promoter-reporter, the hyq operon proved strongly and specifically induced in diazotrophic culture; as well, hyq operon induction required the NIFA transcriptional activator. Therefore, the hyq operon is constituent of the nif regulon. CONCLUSIONS: Representative of aerobic N(2-fixing and H(2-recycling alpha-proteobacteria, A. caulinodans possesses two respiratory Ni,Fe-hydrogenases: HupSL exo-hydrogenase activity drives exogenous H(2 respiration, and Hyq endo-hydrogenase activity recycles endogenous H(2, specifically that produced by N(2 fixation. To benefit human civilization, H(2 has generated considerable interest as potential renewable energy source as its makings are ubiquitous and its combustion yields no greenhouse gases. As

  17. The influence of oxygen and nitrogen doping on GeSbTe phase-change optical recording media properties

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrov, D.; Shieh, H.-P.D

    2004-03-15

    Nitrogen and oxygen doped and co-doped GeSbTe (GST) films for phase-change optical recording are investigated. It is found that the crystallization temperature increased as well as the crystalline microstructure refined by doping. The carrier-to-noise ratio (CNR) and erasability of phase-change optical disks are improved being up to 52 and 35 dB, respectively, by using an appropriate nitrogen doping or co-doping concentration in the recording layer. Optical disks with co-doped recording layer are found to be superior in the recording characteristics then the single doped recording layer disks.

  18. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, Alenka; Drenik, Aleksander; Elersic, Kristina; Mozetic, Miran; Kovac, Janez [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Gyergyek, Tomaz [University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana (Slovenia); Stockel, Jan; Varju, Jozef; Panek, Radomir [Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Ze Slovankou 3, Praha 8 (Czech Republic); Balat-Pichelin, Marianne, E-mail: marianne.balat@promes.cnrs.fr [PROMES-CNRS Laboratory, 7 rue du four solaire, 66120 Font Romeu Odeillo (France)

    2014-06-01

    Initial stages of Inconel 625 superalloy (Ni{sub 60}Cr{sub 30}Mo{sub 10}Ni{sub 4}Nb{sub 1}) oxidation upon short treatment with gaseous plasma at different temperatures up to about 1600 K were studied. Samples were treated for different periods up to a minute by oxygen or hydrogen plasma created with a microwave discharge in the standing-wave mode at a pressure of 40 Pa and a power 500 W. Simultaneous heating of the samples was realized by focusing concentrated solar radiation from a 5 kW solar furnace directly onto the samples. The morphological changes upon treatment were monitored using scanning electron microscopy, compositional depth profiling was performed using Auger electron spectroscopy, while structural changes were determined by X-ray diffraction. The treatment in oxygen plasma caused formation of metal oxide clusters of three dimensional crystallites initially rich in nickel oxide with the increasing chromium oxide content as the temperature was increasing. At about 1100 K iron and niobium oxides prevailed on the surface causing a drop of the material emissivity at 5 μm. Simultaneously the NiCr{sub 2}O{sub 4} compound started growing at the interface between the oxide film and bulk alloy and the compound persisted up to temperatures close to the Inconel melting point. Intensive migration of minority alloying elements such as Fe and Ti was observed at 1600 K forming mixed surface oxides of sub-micrometer dimensions. The treatment in hydrogen plasma with small admixture of water vapor did not cause much modification unless the temperature was close to the melting point. At such conditions aluminum segregated on the surface and formed well-defined Al{sub 2}O{sub 3} crystals.

  19. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Science.gov (United States)

    Vesel, Alenka; Drenik, Aleksander; Elersic, Kristina; Mozetic, Miran; Kovac, Janez; Gyergyek, Tomaz; Stockel, Jan; Varju, Jozef; Panek, Radomir; Balat-Pichelin, Marianne

    2014-06-01

    Initial stages of Inconel 625 superalloy (Ni60Cr30Mo10Ni4Nb1) oxidation upon short treatment with gaseous plasma at different temperatures up to about 1600 K were studied. Samples were treated for different periods up to a minute by oxygen or hydrogen plasma created with a microwave discharge in the standing-wave mode at a pressure of 40 Pa and a power 500 W. Simultaneous heating of the samples was realized by focusing concentrated solar radiation from a 5 kW solar furnace directly onto the samples. The morphological changes upon treatment were monitored using scanning electron microscopy, compositional depth profiling was performed using Auger electron spectroscopy, while structural changes were determined by X-ray diffraction. The treatment in oxygen plasma caused formation of metal oxide clusters of three dimensional crystallites initially rich in nickel oxide with the increasing chromium oxide content as the temperature was increasing. At about 1100 K iron and niobium oxides prevailed on the surface causing a drop of the material emissivity at 5 μm. Simultaneously the NiCr2O4 compound started growing at the interface between the oxide film and bulk alloy and the compound persisted up to temperatures close to the Inconel melting point. Intensive migration of minority alloying elements such as Fe and Ti was observed at 1600 K forming mixed surface oxides of sub-micrometer dimensions. The treatment in hydrogen plasma with small admixture of water vapor did not cause much modification unless the temperature was close to the melting point. At such conditions aluminum segregated on the surface and formed well-defined Al2O3 crystals.

  20. Covariance of oxygen and hydrogen isotopic compositions in plant water: species effects

    International Nuclear Information System (INIS)

    Cooper, L.W.; DeNiro, M.J.

    1989-01-01

    Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species—specific factors on leaf water enrichment of D and 18 O have not been studied for different plants growing together. Accordingly, to learn whether leaf water enrichment patterns and processes for D and 18 O are different for individual species growing under the same environmental conditions we tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show higher slopes (m in the leaf water equation °D = m ° 18 O + b) than in C 3 plants. We determined the relationships between the stable hydrogen (°D) and oxygen (° 18 O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. Slopes (m in the above leaf water equation) ranged from 1.50 to 3.21, compared to °8 for meteoric water, but differences in slope could not be attributed to carboxylation pathway (CAM vs. C 3 ) nor climate (coastal California vs. Sonoran Desert). Higher slopes were correlated with greater overall ranges of leaf water enrichment of D and 18 O. Water in plants with higher slopes also differed most from unaltered meteoric water. Leaf water isotope ratios in plants with lower slopes were better correlated with temperature and humidity. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes

  1. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen

    Science.gov (United States)

    Barklem, P. S.

    2018-02-01

    Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data

  2. Ignitability of hydrogen/oxygen/diluent mixtures in the presence of hot surfaces

    International Nuclear Information System (INIS)

    Kumar, R.K.; Koroll, G.W.

    1995-01-01

    In the licensing process for CANDU nuclear power stations it is necessary to demonstrate tolerance to a wide range of low-probability accidents. These include loss of moderator accidents that may lead to the formation of flammable mixtures of deuterium, oxygen, helium, and steam in the reactor calandria vessel. Uncovered adjuster or control rods are considered as possible sources of ignition when a flammable mixture is present. A knowledge of the minimum hot-surface temperature required for ignition is important in assessing the reactor safety. These hot surface temperatures were measured using electrically heated adjuster rod simulators in a large spherical vessel (2.3-m internal diameter). Whereas the effects of geometry on ignition temperature were studied in the large-scale apparatus, some of the effects, such as those produced by a strong radiation field, were studied using a small-scale apparatus. Investigations carried our over a range of hydrogen and diluent concentrations indicated that, although the ignition temperatures were fairly insensitive to the hydrogen concentration, they were strongly affected by the presence of steam The addition of 30% steam to a dry combustible mixture increased the minimum surface temperature required for ignition by approximates 100 degrees C of the diluents investigated, steam had the most effect on ignition. The effect of initial temperature of the mixture on the ignition temperature was small, whereas the effect of initial pressure was significant. The effect of substituting deuterium for hydrogen on ignition temperature was small. The effect of a high-intensity gamma-radiation field on the minimum hot-surface temperature required for ignition was investigated using a 2-dm 3 ignition vessel placed in a linear accelerator. Radiation had no measurable effect on ignition temperature

  3. High-performance Platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Chandran, Priji; Ghosh, Arpita; Ramaprabhu, Sundara

    2018-02-26

    The integration of polymer electrolyte membrane fuel cell (PEMFC) stack into vehicles necessitates the replacement of high-priced platinum (Pt)-based electrocatalyst, which contributes to about 45% of the cost of the stack. The implementation of high-performance and durable Pt metal-free catalyst for both oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) could significantly enable large-scale commercialization of fuel cell-powered vehicles. Towards this goal, a simple, scalable, single-step synthesis method was adopted to develop palladium-cobalt alloy supported on nitrogen-doped reduced graphene oxide (Pd 3 Co/NG) nanocomposite. Rotating ring-disk electrode (RRDE) studies for the electrochemical activity towards ORR indicates that ORR proceeds via nearly four-electron mechanism. Besides, the mass activity of Pd 3 Co/NG shows an enhancement of 1.6 times compared to that of Pd/NG. The full fuel cell measurements were carried out using Pd 3 Co/NG at the anode, cathode in conjunction with Pt/C and simultaneously at both anode and cathode. A maximum power density of 68 mW/cm 2 is accomplished from the simultaneous use of Pd 3 Co/NG as both anode and cathode electrocatalyst with individual loading of 0.5 mg/cm 2 at 60 °C without any backpressure. To the best of our knowledge, the present study is the first of its kind of a fully non-Pt based PEM full cell.

  4. Method of controlling injection of oxygen into hydrogen-rich fuel cell feed stream

    Science.gov (United States)

    Meltser, Mark Alexander; Gutowski, Stanley; Weisbrod, Kirk

    2001-01-01

    A method of operating a H.sub.2 --O.sub.2 fuel cell fueled by hydrogen-rich fuel stream containing CO. The CO content is reduced to acceptable levels by injecting oxygen into the fuel gas stream. The amount of oxygen injected is controlled in relation to the CO content of the fuel gas, by a control strategy that involves (a) determining the CO content of the fuel stream at a first injection rate, (b) increasing the O.sub.2 injection rate, (c) determining the CO content of the stream at the higher injection rate, (d) further increasing the O.sub.2 injection rate if the second measured CO content is lower than the first measured CO content or reducing the O.sub.2 injection rate if the second measured CO content is greater than the first measured CO content, and (e) repeating steps a-d as needed to optimize CO consumption and minimize H.sub.2 consumption.

  5. Oxygen, hydrogen, ethylene and CO 2 development in lithium-ion batteries

    Science.gov (United States)

    Holzapfel, M.; Würsig, A.; Scheifele, W.; Vetter, J.; Novák, P.

    Gas evolution has been examined for different types of battery-related electrode materials via in situ differential electrochemical mass spectrometry (DEMS). Besides standard graphite also a novel silicon-based negative electrode was examined and it was shown that the evolution of hydrogen and ethylene is considerably reduced on this material compared to graphite. Oxygen evolution was proven to happen on the oxidative reaction of a Li 2O 2 electrode, besides a certain oxidation of the electrolyte. The 4.5 V plateau upon the oxidation of Li[Ni 0.2Li 0.2Mn 0.6]O 2 was likewise proven to be linked to oxygen evolution. Also in this case electrolyte oxidation was shown to be a side reaction. Layered positive electrode materials Li(Ni,Co,Al)O 2 and Li(Ni,Mn,Co)O 2 were also examined. The influence of different parameters on the CO 2 evolution in lithium-ion batteries was shown up. The amount of CO 2 formation is increased by high temperatures and cell voltages, while the addition of vinylene carbonate (VC) decreases it. Li(Ni,Mn,Co)O 2 shows much less CO 2 evolution than Li(Ni,Co,Al)O 2.

  6. Final Report: Cathode Catalysis in Hydrogen/Oxygen Fuel Cells: New Catalysts, Mechanism, and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gewirth, Andrew A. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Kenis, Paul J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemical and Biomolecular Engineering; Nuzzo, Ralph G. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Rauchfuss, Thomas B. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry

    2016-01-18

    In this research, we prosecuted a comprehensive plan of research directed at developing new catalysts and new understandings relevant to the operation of low temperature hydrogen-oxygen fuel cells. The focal point of this work was one centered on the Oxygen Reduction Reaction (ORR), the electrochemical process that most fundamentally limits the technological utility of these environmentally benign energy conversion devices. Over the period of grant support, we developed new ORR catalysts, based on Cu dimers and multimers. In this area, we developed substantial new insight into design rules required to establish better ORR materials, inspired by the three-Cu active site in laccase which has the highest ORR onset potential of any material known. We also developed new methods of characterization for the ORR on conventional (metal-based) catalysts. Finally, we developed a new platform to study the rate of proton transfer relevant to proton coupled electron transfer (PCET) reactions, of which the ORR is an exemplar. Other aspects of work involved theory and prototype catalyst testing.

  7. Methanol Droplet Extinction in Oxygen/Carbon-dioxide/Nitrogen Mixtures in Microgravity: Results from the International Space Station Experiments

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Ferkul, Paul V.; Hicks, Michael C.; Williams, Forman A.

    2012-01-01

    Motivated by the need to understand the flammability limits of condensed-phase fuels in microgravity, isolated single droplet combustion experiments were carried out in the Combustion Integrated Rack Facility onboard the International Space Station. Experimental observations of methanol droplet combustion and extinction in oxygen/carbon-dioxide/nitrogen mixtures at 0.7 and 1 atmospheric pressure in quiescent microgravity environment are reported for initial droplet diameters varying between 2 mm to 4 mm in this study.The ambient oxygen concentration was systematically lowered from test to test so as to approach the limiting oxygen index (LOI) at fixed ambient pressure. At one atmosphere pressure, ignition and some burning were observed for an oxygen concentration of 13% with the rest being nitrogen. In addition, measured droplet burning rates, flame stand-off ratios, and extinction diameters are presented for varying concentrations of oxygen and diluents. Simplified theoretical models are presented to explain the observed variations in extinction diameter and flame stand-off ratios.

  8. Towards a Measurement of the n=2 Lamb Shift in Hydrogen-like Nitrogen Using an Electron Beam Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Hosaka, K.; Crosby, D. N.; Gaarde-Widdowson, K.; Smith, C. J.; Silver, J. D. [University of Oxford, Department of Physics (United Kingdom); Myers, E. G. [Florida State University (United States); Kinugawa, T.; Ohtani, S. [University of Electro-Communications, Cold Trapped Ions Project, JST (Japan)

    2003-03-15

    Using a {sup 14}C{sup 16}O{sub 2} laser the 2s{sub 1/2}-2p{sub 3/2} (fine structure - Lamb shift) transition has been induced in {sup 14}N{sup 6+} ions trapped in an electron beam ion trap. Prospects for a measurement of the Lamb shift in hydrogen-like nitrogen are discussed.

  9. The development of a non-cryogenic nitrogen/oxygen supply system. [using hydrazine/water electrolysis

    Science.gov (United States)

    Greenough, B. M.; Mahan, R. E.

    1974-01-01

    A hydrazine/water electrolysis process system module design was fabricated and tested to demonstrate component and module performance. This module is capable of providing both the metabolic oxygen for crew needs and the oxygen and nitrogen for spacecraft leak makeup. The component designs evolved through previous R and D efforts, and were fabricated and tested individually and then were assembled into a complete module which was successfully tested for 1000 hours to demonstrate integration of the individual components. A survey was made of hydrazine sensor technology and a cell math model was derived.

  10. Release time of residual oxygen after dental bleaching with 35% hydrogen peroxide: effect of a catalase-based neutralizing agent.

    Science.gov (United States)

    Guasso, Bárbara; Salomone, Paloma; Nascimento, Paulo Cícero; Pozzobon, Roselaine Terezinha

    2016-01-01

    This article assessed the effect of a catalase-based agent on residual oxygen (O2) release from teeth exposed to 35% hydrogen peroxide (H2O2). The use of the catalase-based neutralizer agent for 2-3 minutes was able to release residual O2 5 days after exposure to a 35% H2O2-based bleaching gel.

  11. On the influence of hydronium and hydroxide ion diffusion on the hydrogen and oxygen evolution reactions in aqueous media

    DEFF Research Database (Denmark)

    Wiberg, Gustav Karl Henrik; Arenz, Matthias

    2015-01-01

    We present a study concerning the influence of the diffusion of H+ and OH- ions on the hydrogen and oxygen evolution reactions (HER and OER) in aqueous electrolyte solutions. Using a rotating disk electrode (RDE), it is shown that at certain conditions the observed current, i.e., the reaction rate...

  12. Influence of oxygen, nitrogen and carbonic gas during gamma irradiation of 'Sitophilus zeamais' Mots. and 'Zabrotes subfasciatus' (Boh.)

    International Nuclear Information System (INIS)

    Wiendl, F.M.; Tornisielo, V.L.; Walder, J.M.N.; Sgrillo, R.B.

    1976-01-01

    Zero to twenty-four hour old adults of the corn-weevil (S. zeamais) and of the bean weevil (Z. subfasciatus) with their food were irradiated with 5 krad of gamma rays from a Co-60 source (dose rate of 96.25 krad/h). The foodstuffs for the corn weevil were maize and rice as well as common beans for the bean weevil. Before irradiation, the insects of each treatment were exposed to 30 minutes gas fluxes of air, oxygen, nitrogen or carbonic gas, respectively. After irradiation, insects were kept in a temperature controlled chamber at 28 0 C. Losses in weight of the foodstuffs were recorded for 51 weeks. The greatest weight loss was found in the treatment with air flux. Weight losses decreased with the nitrogen, carbonic gas and oxygen treatments, respectively [pt

  13. Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages.

    Science.gov (United States)

    Gong, Yunqian; Yu, Bin; Yang, Wen; Zhang, Xiaoling

    2016-05-15

    Phosphorus and nitrogen doped carbon dots (PN-CDs) were conveniently prepared by carbonization of adenosine-5'-triphosphate using a hydrothermal treatment. The PN-CDs with P/C atomic ratio of ca. 9.2/100 emit blue luminescence with high quantum yields of up to 23.5%. The PN-CDs were used as a novel sensing platform for live cell imaging of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including ClO(-), ONOO(-), and NO in macrophages. The nanosensor design is based on our new finding that the strong fluorescence of the PN-CDs can be sensitively and selectively quenched by ROS and RNS both in vitro and in vivo. These results reveal that the PN-CDs can serve as a sensitive sensor for rapid imaging of ROS and RNS signaling with high selectivity and contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Defect-induced Catalysis toward the Oxygen Reduction Reaction in Single-walled Carbon Nanotube: Nitrogen doped and Non-nitrogen doped

    International Nuclear Information System (INIS)

    Lu, Di; Wu, Dan; Jin, Jian; Chen, Liwei

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) are post-treated by argon (Ar) or ammonia (NH 3 ) plasma irradiation to introduce defects that are potentially related to catalysis towards the oxygen reduction reaction (ORR). Electrochemical characterization in alkali medium suggests that the plasma irradiated SWNTs demonstrate enhanced catalytic activity toward the ORR with a positively shifted threshold potential. Moreover the enhanced desired four-electron pathway catalytic activity, which exhibited as the positive shifted threshold potential, is independent of the nitrogen dopant. The nature of the defects is probed with Raman and X-ray photoelectron spectroscopy. The results indicate that the non-nitrogen doped defects of SWNTs contribute to the actual active site for the ORR.

  15. Nitrogen effect on the tendency of Cr-Ni-MN steels to delayed fracture under stress and hydrogen effects

    International Nuclear Information System (INIS)

    Suvorova, S.O.; Fillipov, G.A.

    1996-01-01

    Austenitic steels types 03Kh17N16G10AM5, 03Kh6N12G10AM5 and 07Kh13AG20 with various nitrogen contents were studied for their tendency to delayed fracture using mechanical tests, fractography and X ray diffraction analysis. The steel type 07Kh13G20 exhibited the highest strength in the initial state but showed an increase tendency to delayed fracture after hydrogenation. It is underlined that nitrogen additions essentially intensify the tendency of cold worked steels to delayed fracture. This fact should be taken into account when using nitrogen-containing Cr-Ni-Mn steels under severe operational conditions. 4 refs., 2 tabs

  16. Diffusion of oxygen in nitrogen in the pores of graphite. Preliminary results on the effect of oxidation on diffusivity

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, G. F.; Sharratt, E. W.

    1962-10-15

    Preliminary results are reported from an experimental study of the effect of burnoff on the diffusivity of oxygen in nitrogen within the pores of graphite. It is found that the ratio of effective diffusivity to ''free gas'' diffusivity changes about four-fold in the range 0-9% total oxidation. The viscous permeability, B0, increases in almost the same proportion over the same range.

  17. Nature of infrared-active phonon sidebands to internal vibrations: Spectroscopic studies of solid oxygen and nitrogen

    Science.gov (United States)

    Brodyanski, A. P.; Medvedev, S. A.; Vetter, M.; Kreutz, J.; Jodl, H. J.

    2002-09-01

    The ir-active phonon sidebands to internal vibrations of oxygen and nitrogen were precisely investigated by Fourier transform infrared spectroscopy in the fundamental and first overtone spectral regions from 10 K to the boiling points at ambient pressure. We showed that an analysis of ir-active phonon sidebands yields important information on the internal vibrations of molecules in a condensed medium (solid or liquid), being complementary to Raman data on vibron frequencies. Analyzing the complete profile of these bands, we determined the band origin frequencies and explored their temperature behavior in all phases of both substances. We present unambiguous direct experimental proofs that this quality corresponds to the frequency of internal vibrations of single molecules. Considering solid oxygen and nitrogen as two limiting cases for simple molecular solids, we interpret this result as a strong evidence for a general fact that an ir-active phonon sideband possesses the same physical origin in pure molecular solids and in impurity centers. The key characteristics of the fundamental vibron energy zone (environmental and resonance frequency shifts) were deduced from the combined analysis of ir and Raman experimental data and their temperature behavior was explored in solid and liquid phases of oxygen and nitrogen at ambient pressure. The character of the short-range orientational order was established in the β-nitrogen based on our theoretical analysis consistent with the present experimental results. We also present the explanation of the origin of pressure-caused changes in the frequency of the Raman vibron mode of solid oxygen at low temperatures.

  18. Heavily Graphitic-Nitrogen Self-doped High-porosity Carbon for the Electrocatalysis of Oxygen Reduction Reaction

    Science.gov (United States)

    Feng, Tong; Liao, Wenli; Li, Zhongbin; Sun, Lingtao; Shi, Dongping; Guo, Chaozhong; Huang, Yu; Wang, Yi; Cheng, Jing; Li, Yanrong; Diao, Qizhi

    2017-11-01

    Large-scale production of active and stable porous carbon catalysts for oxygen reduction reaction (ORR) from protein-rich biomass became a hot topic in fuel cell technology. Here, we report a facile strategy for synthesis of nitrogen-doped porous nanocarbons by means of a simple two-step pyrolysis process combined with the activation of zinc chloride and acid-treatment process, in which kidney bean via low-temperature carbonization was preferentially adopted as the only carbon-nitrogen sources. The results show that this carbon material exhibits excellent ORR electrocatalytic activity, and higher durability and methanol-tolerant property compared to the state-of-the-art Pt/C catalyst for the ORR, which can be mainly attributed to high graphitic-nitrogen content, high specific surface area, and porous characteristics. Our results can encourage the synthesis of high-performance carbon-based ORR electrocatalysts derived from widely-existed natural biomass.

  19. Field effect-gas sensor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Plihal, M [Siemens A.G., Muenchen (Germany, F.R.). Forschungslaboratorium

    1977-01-01

    MIS diodes with palladium gate can be used to detect and to measure quantitatively the hydrogen concentration in gas mixtures. The dependence of the differential capacitance of these diodes on the partial pressure of hydrogen in nitrogen, oxygen and air is investigated. A theoretical model is developed which gives satisfactory agreement with most of the experimental results.

  20. Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction.

    Science.gov (United States)

    Zhou, Huang; Zhang, Jian; Amiinu, Ibrahim Saana; Zhang, Chenyu; Liu, Xiaobo; Tu, Wenmao; Pan, Mu; Mu, Shichun

    2016-04-21

    Porous nitrogen-doped graphene with a very high surface area (1152 m(2) g(-1)) is synthesized by a novel strategy using intrinsically porous biomass (soybean shells) as a carbon and nitrogen source via calcination and KOH activation. To redouble the oxygen reduction reaction (ORR) activity by tuning the doped-nitrogen content and type, ammonia (NH3) is injected during thermal treatment. Interestingly, this biomass-derived graphene catalyst exhibits the unique properties of mesoporosity and high pyridine-nitrogen content, which contribute to the excellent oxygen reduction performance. As a result, the onset and half-wave potentials of the new metal-free non-platinum catalyst reach -0.009 V and -0.202 V (vs. SCE), respectively, which is very close to the catalytic activity of the commercial Pt/C catalyst in alkaline media. Moreover, our catalyst has a higher ORR stability and stronger CO and CH3OH tolerance than Pt/C in alkaline media. Importantly, in acidic media, the catalyst also exhibits good ORR performance and higher ORR stability compared to Pt/C.

  1. Oxygen- and nitrogen-co-doped activated carbon from waste particleboard for potential application in high-performance capacitance

    International Nuclear Information System (INIS)

    Shang, Tong-Xin; Ren, Ru-Quan; Zhu, Yue-Mei; Jin, Xiao-Juan

    2015-01-01

    Graphical abstract: All electrodes showed excellent capacitance and retention versus discharge current density from 0.05 to 5 A/g. - Abstract: Oxygen- and nitrogen-co-doped activated carbons were obtained from phosphoric acid treated nitrogen-doped activated carbons which were prepared from waste particleboard bonded with urea-formaldehyde resin adhesives. The activated carbon samples obtained were tested as supercapacitors in two-electrode cell and extensive wetting 7 M KOH electrolytes. Their structural properties and surface chemistry, before the electrical testing, were investigated using elemental analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, Raman spectra, and adsorption of nitrogen. Activated carbon treated by 4 M phosphoric acid of the highest capacitance (235 F/g) was measured in spite of a relatively lower surface (1360 m 2 /g) than that of the activated carbon treated by 2 M phosphoric acid (1433 m 2 /g). The surface chemistry, and especially oxygen- and nitrogen-containing functional groups, was found of paramount importance for the capacitive behavior and for the effective pore space utilization by the electrolyte ions

  2. Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Yeol [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Kim, Na Young [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of); Shin, Dong Yun [Chungbuk National University, Department of Environmental Engineering (Korea, Republic of); Park, Hee-Young [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of); Lee, Sang-Soo [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Joon Kwon, S. [Korea Institute of Science and Technology, Nanophotonics Research Center (Korea, Republic of); Lim, Dong-Hee [Chungbuk National University, Department of Environmental Engineering (Korea, Republic of); Bong, Ki Wan [Korea University, Department of Chemical and Biological Engineering (Korea, Republic of); Son, Jeong Gon, E-mail: jgson@kist.re.kr [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Kim, Jin Young, E-mail: jinykim@kist.re.kr [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of)

    2017-03-15

    Transition metals, such as iron (Fe)- or cobalt (Co)-based nanomaterials, are promising electrocatalysts for oxygen reduction reactions (ORR) in fuel cells due to their high theoretical activity and low cost. However, a major challenge to using these metals in place of precious metal catalysts for ORR is their low efficiency and poor stability, thus new concepts and strategies should be needed to address this issue. Here, we report a hybrid aciniform nanostructures of Fe nanofragments embedded in thin nitrogen (N)-doped graphene (Fe@N-G) layers via a heat treatment of graphene oxide-wrapped iron oxide (Fe{sub 2}O{sub 3}) microparticles with melamine. The heat treatment leads to transformation of Fe{sub 2}O{sub 3} microparticles to nanosized zero-valent Fe fragments and formation of core-shell structures of Fe nanofragments and N-doped graphene layers. Thin N-doped graphene layers massively promote electron transfer from the encapsulated metals to the graphene surface, which efficiently optimizes the electronic structure of the graphene surface and thereby triggers ORR activity at the graphene surface. With the synergistic effect arising from the N-doped graphene and Fe nanoparticles with porous aciniform nanostructures, the Fe@N-G hybrid catalyst exhibits high catalytic activity, which was evidenced by high E{sub 1/2} of 0.82 V, onset potential of 0.93 V, and limiting current density of 4.8 mA cm{sup −2} indicating 4-electron ORR, and even exceeds the catalytic stability of the commercial Pt catalyst.

  3. AMPK signaling in skeletal muscle during exercise: Role of reactive oxygen and nitrogen species.

    Science.gov (United States)

    Morales-Alamo, David; Calbet, Jose A L

    2016-09-01

    Reactive oxygen and nitrogen species (RONS) are generated during exercise depending on intensity, duration and training status. A greater amount of RONS is released during repeated high-intensity sprint exercise and when the exercise is performed in hypoxia. By activating adenosine monophosphate-activated kinase (AMPK), RONS play a critical role in the regulation of muscle metabolism but also in the adaptive responses to exercise training. RONS may activate AMPK by direct an indirect mechanisms. Directly, RONS may activate or deactivate AMPK by modifying RONS-sensitive residues of the AMPK-α subunit. Indirectly, RONS may activate AMPK by reducing mitochondrial ATP synthesis, leading to an increased AMP:ATP ratio and subsequent Thr(172)-AMPK phosphorylation by the two main AMPK kinases: LKB1 and CaMKKβ. In presence of RONS the rate of Thr(172)-AMPK dephosphorylation is reduced. RONS may activate LKB1 through Sestrin2 and SIRT1 (NAD(+)/NADH.H(+)-dependent deacetylase). RONS may also activate CaMKKβ by direct modification of RONS sensitive motifs and, indirectly, by activating the ryanodine receptor (Ryr) to release Ca(2+). Both too high (hypoxia) and too low (ingestion of antioxidants) RONS levels may lead to Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation causing inhibition of Thr(172)-AMPKα phosphorylation. Exercise training increases muscle antioxidant capacity. When the same high-intensity training is applied to arm and leg muscles, arm muscles show signs of increased oxidative stress and reduced mitochondrial biogenesis, which may be explained by differences in RONS-sensing mechanisms and basal antioxidant capacities between arm and leg muscles. Efficient adaptation to exercise training requires optimal exposure to pulses of RONS. Inappropriate training stimulus may lead to excessive RONS formation, oxidative inactivation of AMPK and reduced adaptation or even maladaptation. Theoretically, exercise programs should be designed taking into account the

  4. Anhydrous thallium hydrogen L-glutamate: polymer networks formed by sandwich layers of oxygen-coordinated thallium ions cores shielded by hydrogen L-glutamate counterions.

    Science.gov (United States)

    Bodner, Thomas; Wirnsberger, Bianca; Albering, Jörg; Wiesbrock, Frank

    2011-11-07

    Anhydrous thallium hydrogen L-glutamate [Tl(L-GluH)] crystallizes from water (space group P2(1)) with a layer structure in which the thallium ions are penta- and hexacoordinated exclusively by the oxygen atoms of the γ-carboxylate group of the hydrogen L-glutamate anions to form a two-dimensional coordination polymer. The thallium-oxygen layer is composed of Tl(2)O(2) and TlCO(2) quadrangles and is only 3 Å high. Only one hemisphere of the thallium ions participates in coordination, indicative of the presence of the 6s(2) lone pair of electrons. The thallium-oxygen assemblies are shielded by the hydrogen l-glutamate anions. Only the carbon atom of the α-carboxylate group deviates from the plane spanned by the thallium ions, the γ-carboxylate groups and the proton bearing carbon atoms, which are in trans conformation. Given the abundance of L-glutamic and L-aspartic acid in biological systems on the one hand and the high toxicity of thallium on the other hand, it is worth mentioning that the dominant structural motifs in the crystal structure of [Tl(L-GluH)] strongly resemble their corresponding analogues in the crystalline phase of [K(L-AspH)(H(2)O)(2)].

  5. Exploring the possibility to store the mixed oxygen-hydrogen cluster in clathrate hydrate in molar ratio 1:2 (O2+2H2).

    Science.gov (United States)

    Qin, Yan; Du, Qi-Shi; Xie, Neng-Zhong; Li, Jian-Xiu; Huang, Ri-Bo

    2017-05-01

    An interesting possibility is explored: storing the mixture of oxygen and hydrogen in clathrate hydrate in molar ratio 1:2. The interaction energies between oxygen, hydrogen, and clathrate hydrate are calculated using high level quantum chemical methods. The useful conclusion points from this study are summarized as follows. (1) The interaction energies of oxygen-hydrogen mixed cluster are larger than the energies of pure hydrogen molecular cluster. (2) The affinity of oxygen molecules with water molecules is larger than that of the hydrogen molecules with water molecules. (3) The dimension of O 2 -2H 2 interaction structure is smaller than the dimension of CO 2 -2H 2 interaction structure. (4) The escaping energy of oxygen molecules from the hydrate cell is larger than that of the hydrogen molecules. (5) The high affinity of the oxygen molecules with both the water molecules and the hydrogen molecules may promote the stability of oxygen-hydrogen mixture in the clathrate hydrate. Therefore it is possible to store the mixed (O 2 +2H 2 ) cluster in clathrate hydrate. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Determination of oxygen, nitrogen, and silicon in Nigerian fossil fuels by 14 MeV neutron activation analysis

    International Nuclear Information System (INIS)

    Hannan, M.A.; Oluwole, A.F.; Kehinde, L.O.; Borisade, A.B.

    2003-01-01

    Classification, assessment, and utilization of coal and crude oil extracts are enhanced by analysis of their oxygen content. Values of oxygen obtained 'by difference' from chemical analysis have proved inaccurate. The oxygen, nitrogen, and silicon content of Nigerian coal samples, crude oils, bitumen extracts, and tar sand samples were measured directly using instrumental fast neutron activation analysis (FNAA). The total oxygen in the coal ranges from 5.20% to 23.3%, in the oil and extracts from 0.14% to 1.08%, and in the tar sands from 38% to 47%. The nitrogen content in the coal ranges from 0.54% to 1.35%, in the crude oil and bitumen extracts from ≤ 0.014% to 0.490%, and in the tar sands from 0.082% to 0.611%. The silicon content in the coal ranges from 1.50% to 8.86%; in the oil and the bitumen extracts it is <1%, and in the tar sands between 25.1% and 37.5%. The results show that Nigerian coals are mostly sub-bituminous. However, one of the samples showed bituminous properties as evidenced by the dry ash-free (daf) percent of carbon obtained. This same sample indicated a higher ash content resulting in a comparatively high percentage of silicon. In oils and tar sands from various locations, a comparison of elements is made. (author)

  7. Recombination rates of hydrogen and oxygen over pure and impure plutonium oxides

    International Nuclear Information System (INIS)

    Morales, L.

    1999-01-01

    Long-term, safe storage of excess plutonium-bearing materials is required until stabilization and disposal methods are implemented or defined. The US Department of Energy (DOE) has established a plan to address the stabilization, packing, and storage of plutonium-bearing materials from around the complex. The DOE's standard method, DOE-STD-3013-96 and its proposed revision, for stabilizing pure and impure actinide materials is by calcination in air followed by sealing the material in welded stainless steel containers. The 3013 standard contains and equation that predicts the total pressure buildup in the can over the anticipated storage time of 50 yr. This equation was meant to model a worst-case scenario to ensure that pressures would not exceed the strength of the container at the end of 50 yr. As a result, concerns about pressure generation in the storage cans, both absolute values and rates, have been raised with regard to rupture and dispersal of nuclear materials. Similar issues have been raised about the transportation of these materials around the complex. The purpose of this work is to provide a stronger technical basis for the 3013 standard by measuring the recombination rates of hydrogen/oxygen mixtures in contact with pure and impure plutonium oxides. The goal of these experiments was to determine whether the rate of recombination is faster than the rate of water radiolysis under controlled conditions. This was accomplished by using a calibrated pressure-volume-temperature apparatus to measure the recombination rates in a fixed volume as the gas mixture was brought into contact with oxide powders whose temperatures ranged from 50 to 300 C. These conditions were selected in order to bracket the temperature conditions expected in a typical storage can. In addition, a 2% H 2 /air mixture encompasses scenarios in which the cans are sealed in air, and over time various amounts of hydrogen are formed

  8. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane; Reduction catalytique selective des oxydes d'azote (NO{sub x}) provenant d'effluents gazeux industriels par l'hydrogene ou le methane

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann Pirez, M

    2004-12-15

    This work deals with the selective catalytic reduction of nitrogen oxides (NO{sub x}), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N{sub 2}, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO{sub 3}, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  9. Experimental reduction of simulated lunar glass by carbon and hydrogen and implications for lunar base oxygen production

    International Nuclear Information System (INIS)

    Mckay, D.S.; Morris, R.V.; Jurewicz, A.J.

    1991-01-01

    The most abundant element in lunar rocks and soils is oxygen which makes up approximately 45 percent by weight of the typical lunar samples returned during the Apollo missions. This oxygen is not present as a gas but is tightly bound to other elements in mineral or glass. When people return to the Moon to explore and live, the extraction of this oxygen at a lunar outpost may be a major goal during the early years of operation. Among the most studied processes for oxygen extraction is the reduction of ilmenite by hydrogen gas to form metallic iron, titanium oxide, and oxygen. A related process is proposed which overcomes some of the disadvantages of ilmenite reduction. It is proposed that oxygen can be extracted by direct reduction of native lunar pyroclactic glass using either carbon, carbon monoxide, or hydrogen. In order to evaluate the feasibility of this proposed process a series of experiments on synthetic lunar glass are presented. The results and a discussion of the experiments are presented

  10. Ultrafine Iridium Oxide Nanorods Synthesized by Molten Salt Method toward Electrocatalytic Oxygen and Hydrogen Evolution Reactions

    International Nuclear Information System (INIS)

    Ahmed, Jahangeer; Mao, Yuanbing

    2016-01-01

    Highlights: • Ultrafine iridium oxide nanorods were synthesized by a molten salt method at 650 °C. • They show enhanced electrocatalytic activity to oxygen and hydrogen evolution reactions. • These results are comparable with, and in most cases, higher than reported data in the literature. • This study reports a novel synthetic process for IrO_2 but also a high efficient IrO_2 nanostructure. • These IrO_2 NRs are expected to serve as a benchmark to develop active electrocatalysts. - Abstract: Ultrafine iridium oxide nanorods (IrO_2 NRs) were successfully synthesized using a molten salt method at 650 °C. The structural and morphological characterizations of these IrO_2 NRs were carried out by powder X-ray diffraction, Raman spectroscopy and electron microscopic techniques. Compared to commercial IrO_2 nanoparticles (IrO_2 NPs) and previous reports, these IrO_2 NRs show enhanced electrocatalytic activity to oxygen and hydrogen evolution reactions by passing either N_2 or O_2 gas in a 0.5 M KOH electrolyte before electrochemical measurements, including cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Specifically, the current densities from the as-synthesized IrO_2 NRs and commercial IrO_2 NPs were measured in 0.5 M KOH electrolyte to be 70 and 58 (OER, deaerated, at 0.6 V versus Ag/AgCl), 71 and 61 (OER, O_2, from −0.10 to 1.0 V versus Ag/AgCl at 50 mV/s), and 25 and 14 (HER, deaerated, at −1.4 V versus Ag/AgCl) mA/cm"2, respectively. These results are comparable with, and in most cases, higher than reported data in the literature. Therefore, the current study reports not only a novel synthetic process for IrO_2 but also a high efficient IrO_2 nanostructure, and it is expected that these IrO_2 NRs can serve as a benchmark in the development of active OER and HER (photo)electrocatalysts for various applications.

  11. Phenomena and significance of intermediate spillover in electrocatalysis of oxygen and hydrogen electrode reactions

    Directory of Open Access Journals (Sweden)

    Jakšić Jelena M.

    2012-01-01

    Full Text Available Altervalent hypo-d-oxides of transition metal series impose spontaneous dissociative adsorption of water molecules and pronounced membrane spillover transferring properties instantaneously resulting with corresponding bronze type (Pt/HxWO3 under cathodic, and/or its hydrated state (Pt/W(OH6 responsible for the primary oxide (Pt-OH effusion, under anodic polarization, this way establishing instantaneous reversibly revertible alterpolar bronze features (Pt/H0.35WO3 Pt/W(OH6, and substantially advanced electrocatalytic properties of these composite interactive electrocatalysts. As the consequence, the new striking and unpredictable prospects both in law and medium temperature proton exchange membrane fuell cell (L&MT PEMFC and water electrolysis (WE have been opened by the interactive supported individual (Pt, Pd, Ni or prevailing hyper-d-electronic nanostructured intermetallic phase clusters (WPt3, NbPt3, HfPd3, ZrNi3, grafted upon and within high altervalent capacity hypo-d-oxides (WO3, Nb2O5, Ta2O5, TiO2 and their proper mixed valence compounds, to create a novel type of alterpolar interchangeable composite electrocatalysts for hydrogen and oxygen electrode reactions. Whereas in aqueous media Pt (Pt/C features either chemisorbed catalytic surface properties of H-adatoms (Pt-H, or surface oxide (Pt=O, missing any effusion of other interacting species, new generation and selection of composite and interactive strong metal-support interaction (SMSI electrocatalysts in condensed wet state primarily characterizes interchangeable extremely fast reversible spillover of either H-adatoms, or the primary oxides (Pt-OH, Au-OH, or the invertible bronze type behavior of these significant interactive electrocatalytic ingredients. Such nanostructured type electrocatalysts, even of mixed hypo-d-oxide structure (Pt/H0.35WO3/TiO2/C, Pt/HxNbO3/TiO2/C, have for the first time been synthesized by the sol-gel methods and shown rather high stability, electron

  12. New nitrogen-containing materials for hydrogen storage and their characterization by high-pressure microbalance

    DEFF Research Database (Denmark)

    Vestbø, Andreas Peter

    Hydrogen storage for practical applications is under intense scrutiny worldwide since hopes are prevalent of being able to use hydrogen as energy vector in a continually difficult time in terms of having access to clean and affordable energy in the world. Hydrogen can be stored in compressed or l...

  13. Hydrogen-induced strain localisation in oxygen-free copper in the initial stage of plastic deformation

    Science.gov (United States)

    Yagodzinskyy, Yuriy; Malitckii, Evgenii; Tuomisto, Filip; Hänninen, Hannu

    2018-03-01

    Single crystals of oxygen-free copper oriented to easy glide of dislocations were tensile tested in order to study the hydrogen effects on the strain localisation in the form of slip bands appearing on the polished specimen surface under tensile straining. It was found that hydrogen increases the plastic flow stress in Stage I of deformation. The dislocation slip localisation in the form of slip bands was observed and analysed using an online optical monitoring system and atomic force microscopy. The fine structure of the slip bands observed with AFM shows that they consist of a number of dislocation slip offsets which spacing in the presence of hydrogen is markedly reduced as compared to that in the hydrogen-free specimens. The tensile tests and AFM observations were accompanied with positron annihilation lifetime measurements showing that straining of pure copper in the presence of hydrogen results in free volume generation in the form of vacancy complexes. Hydrogen-enhanced free-volume generation is discussed in terms of hydrogen interactions with edge dislocation dipoles forming in double cross-slip of screw dislocations in the initial stage of plastic deformation of pure copper.

  14. Application of cylinder symmetry to iron and titanium oxidation by oxygen or hydrogen-water vapour mixes

    International Nuclear Information System (INIS)

    Raynaud, Pierre

    1980-01-01

    This research thesis addresses the study of the oxidation reaction in the case of corrosion of iron by oxygen, hydrogen sulphide or hydrogen-water vapour mixes, and in the case of oxidation of titanium and of titanium nitride by hydrogen-water vapour mixes. It first addresses the corrosion of iron by oxygen with an experiment performed in cylinder symmetry: description of operational conditions, discussion of kinetic curves, development of a law of generation of multiple layers in cylinder symmetry, analytical exploitation of experimental results. The second part addresses the oxidation of iron by hydrogen-water vapour mixes: experimental conditions, influence of temperature on kinetics, micrographic study (oxide morphology, coating morphology, interpretation of differences with the case of plane symmetry), discussion of the influence of cylinder symmetry on oxidation kinetics. The third part addresses the oxidation of titanium by hydrogen-water vapour mixes: global kinetic evolution, reaction products and micrographic examination, morphology and texture studies, discussion of the oxidation mechanism and of cylinder symmetry [fr

  15. Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates: Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and Homogeneous Catalysis.

    Science.gov (United States)

    Prieto, Gonzalo

    2017-03-22

    Under specific scenarios, the catalytic hydrogenation of CO 2 with renewable hydrogen is considered a suitable route for the chemical recycling of this environmentally harmful and chemically refractory molecule into added-value energy carriers and chemicals. The hydrogenation of CO 2 into C 1 products, such as methane and methanol, can be achieved with high selectivities towards the corresponding hydrogenation product. More challenging, however, is the selective production of high (C 2+ ) hydrocarbons and oxygenates. These products are desired as energy vectors, owing to their higher volumetric energy density and compatibility with the current fuel infrastructure than C 1 compounds, and as entry platform chemicals for existing value chains. The major challenge is the optimal integration of catalytic functionalities for both reductive and chain-growth steps. This Minireview summarizes the progress achieved towards the hydrogenation of CO 2 to C 2+ hydrocarbons and oxygenates, covering both solid and molecular catalysts and processes in the gas and liquid phases. Mechanistic aspects are discussed with emphasis on intrinsic kinetic limitations, in some cases inevitably linked to thermodynamic bounds through the concomitant reverse water-gas-shift reaction, which should be considered in the development of advanced catalysts and processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of oxygen and hydrogen on the optical and electrical characteristics of porous silicon. Towards sensor applications

    International Nuclear Information System (INIS)

    Green, S.

    2000-02-01

    The effect of adsorbed oxygen and hydrogen gas on porous silicon has been investigated using two different techniques, viz. optical and electrical. The photoluminescence quenching by oxygen and hydrogen was found to be reversible with a response time of the order of 3000 s. Unlike any reported porous silicon gas quenching systems, both the extent and rate of quenching were found to be a function of photoluminescence wavelength. The quenching is attributed to charge transfer from the conduction band of porous silicon to the lowest unoccupied molecular orbital of oxygen and hydrogen, respectively. Surface conductance measurements (aluminium contacts) show that the principal charge transfer process is via tunnelling, with some conduction through the underlying bulk p-type silicon layer. Symmetrical current-voltage plots were obtained for this system which were attributed to pinning of the aluminium-porous silicon Fermi level at mid-gap by the high surface trap density. An approximate doubling of the aluminium electrode separation was found to reduce approximately fourfold the initial rate of increase in surface conductance on adsorption of oxygen at a pressure of 10 torr. To the best of the author's knowledge this is the first time that such an effect has been reported in a room temperature solid state gas sensor. Gas sensitivity measurements using surface contacts show a logarithmic response to the concentration of oxygen up to a pressure of 100 torr with a rapid response, of 300 s. A 39% increase in surface conductance occurs on exposure of the device to 100 torr of oxygen. The surface conductance of the device decreases by 34% on exposure to one atmosphere of hydrogen with a response time of the order 2000 s. Transverse conductance (DC) measurements show that Au/PS/p-Si/Al..Ag devices behave like a field-dependent diode. An admittance spectroscopy technique has been applied to porous silicon for the first time to calculate g 0 , the trap density at the Fermi level

  17. Hydrogen and oxygen isotope constraints on hydrothermal alteration of the Trinity peridotite, Klamath Mountains, California

    Science.gov (United States)

    Liakhovitch, V.; Quick, J.E.; Gregory, R.T.

    2005-01-01

    The Trinity peridotite represents a rare opportunity to examine a relatively fertile plagioclase peridotite that was exhumed and later subjected to intrusive events in a seafloor environment, followed by its emplacement and incorporation into a continent. Over 250 stable isotopic determinations on whole rocks and minerals elucidate the hydrothermal evolution of the Trinity complex. All three serpentine polymorphs are present in the Trinity peridotite; these separate on the basis of their ??D values: antigorite, -46 serpentinization, or overprinting of earlier low-temperature seafloor serpentinization. Regionally, contours of ??D values exhibit bull's-eye patterns associated with the gabbroic plutons, with ??D maxima coinciding with the blackwall alteration at the margins on the plutons. In contrast to the hydrogen isotope behavior, oxygen isotope values of the three polymorphs are indistinguishable, spanning the range 5.3 history: (1) lithospheric emplacement and cooling of the peridotite in an oceanic environment ??? 472 Ma; (2) intrusion of gabbroic plutons into cold peridotite in an arc environment between 435 and 404 Ma; and finally (3) intrusion of felsic plutons between 171 and 127 Ma, long after the peridotite was incorporated into the continental crust. Copyright ?? 2005 by V. H. Winston & Son, Inc. All rights reserved.

  18. Carbon, hydrogen oxygen isotope studies on imbedded old tree ring and paleoclimate reconstruction

    International Nuclear Information System (INIS)

    Sun Yanrong; Mu Zhiguo; Cui Haiting

    2002-01-01

    Tree ring is a kind of natural archives, on which the isotopic analysis is important to study global climate and environmental change. The authors mainly provide a comprehensive introduction to the fractionation models of carbon, hydrogen and oxygen isotope in plants, their research technique and the extract methods from cellulose. That results show isotopic tracer can record the message of climatic variation and has become a powerful tool for paleoclimate reconstruction and for the modern environment changing research. Especially studying on PAGES. the cellulose isotopic analyses of imbedded old tree ring have become the mainly quantitative means of environmental evolvement. In addition, China is a typical monsoon country, research in tree ring stable isotope seasonal variation can give a lot of important information on that. Up to now, the research techniques and works on tree ring in China are still in its earlier stage, and remain many limitations. It needs further accumulate basic research materials, intensity regional contrast and intercross studies on relative subjects

  19. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes

    International Nuclear Information System (INIS)

    Tan, Hongbing; Zhang, Yanfei; Zhang, Wenjie; Kong, Na; Zhang, Qing; Huang, Jingzhong

    2014-01-01

    Highlights: • Unique geothermal resources in Tibetan Plateau were discussed. • Isotopes were used to trace circulation of geothermal water. • Magmatic water mixing dominates geothermal water evolution. - Abstract: With the uplift of the Tibetan Plateau, many of the world’s rarest and most unique geothermal fields have been developed. This study aims to systematically analyze the characteristics of the hydrogen and oxygen isotopic data of geothermal, river, and lake waters to understand the circulation of groundwater and to uncover the mechanism of geothermal formation in the Tibetan Plateau. Field observations and isotopic data show that geothermal water has higher temperatures and hydraulic pressures, as well as more depleted D and 18 O isotopic compositions than river and lake waters. Thus, neither lakes nor those larger river waters are the recharge source of geothermal water. Snow-melt water in high mountains can vertically infiltrate and deeply circulate along some stretching tensile active tectonic belts or sutures and recharge geothermal water. After deep circulation, cold surface water evolves into high-temperature thermal water and is then discharged as springs at the surface again in a low area, under high water-head difference and cold–hot water density difference. Therefore, the large-scale, high-temperature, high-hydraulic-pressure geothermal systems in the Tibetan Plateau are developed and maintained by rapid groundwater circulation and the heat source of upwelled residual magmatic water. Inevitably, the amount of geothermal water will increase if global warming accelerates the melting of glaciers in high mountains

  20. Hydrogen and oxygen stable isotope ratios of milk in the United States.

    Science.gov (United States)

    Chesson, Lesley A; Valenzuela, Luciano O; O'Grady, Shannon P; Cerling, Thure E; Ehleringer, James R

    2010-02-24

    Models of hydrogen and oxygen incorporation in human tissues recognize the impact of geographic location on the isotopic composition of fluid intake, but inputs can include nonlocal beverages, such as milk. Milk and cow drinking water were collected from dairies, and commercially available milk was purchased from supermarkets and fast food restaurants. It was hypothesized that milk water delta(2)H and delta(18)O values record geographic location information. Correlations between milk water isotope ratios and purchase location tap water were significant. However, the amount of variation in milk delta(2)H and delta(18)O values explained by tap water was low, suggesting a single estimation of fluid input isotope ratios may not always be adequate in studies. The delta(2)H and delta(18)O values of paired milk and cow drinking water were related, suggesting potential for geographical origin assignment using stable isotope analysis. As an application example, milk water delta(18)O values were used to predict possible regions of origin for restaurant samples.

  1. Synthesis and characterization of boron-oxygen-hydrogen thin films at low temperatures

    International Nuclear Information System (INIS)

    Music, D.; Koelpin, H.; Atiser, A.; Kreissig, U.; Bobek, T.; Hadam, B.; Schneider, J.M.

    2005-01-01

    We have studied the influence of synthesis temperature on chemical composition and mechanical properties of X-ray amorphous boron-oxygen-hydrogen (B-O-H) films. These B-O-H films have been synthesized by RF sputtering of a B-target in an Ar atmosphere. Upon increasing the synthesis temperature from room temperature to 550 deg. C, the O/B and H/B ratios decrease from 0.73 to 0.15 and 0.28 to 0.07, respectively, as determined by elastic recoil detection analysis. It is reasonable to assume that potential sources of O and H are residual gas and laboratory atmosphere. The elastic modulus, as measured by nanoindentation, increases from 93 to 214 GPa, as the O/B and H/B ratios decreases within the range probed. Hence, we have shown that the effect of impurity incorporation on the elastic properties is extensive and that the magnitude of the incorporation is a strong function of the substrate temperature

  2. Thermodynamic properties of copper compounds with oxygen and hydrogen from first principles

    International Nuclear Information System (INIS)

    Korzhavyi, P.A.; Johansson, B.

    2010-02-01

    We employ quantum-mechanical calculations (based on density functional theory and linear response theory) in order to test the mechanical and chemical stability of several solid-state configurations of Cu 1+ , Cu 2+ , O 2- , H 1- , and H 1+ ions. We begin our analysis with cuprous oxide (Cu 2 O, cuprite structure), cupric oxide (CuO, tenorite structure), and cuprous hydride (CuH, wurtzite and sphalerite structures) whose thermodynamic properties have been studied experimentally. In our calculations, all these compounds are found to be mechanically stable configurations. Their formation energies calculated at T = 0 K (including the energy of zero-point and thermal motion of the ions) and at room temperature are in good agreement with existing thermodynamic data. A search for other possible solid-state conformations of copper, hydrogen, and oxygen ions is then performed. Several candidate structures for solid phases of cuprous oxy-hydride (Cu 4 H 2 O) and cupric hydride (CuH 2 ) have been considered but found to be dynamically unstable. Cuprous oxy-hydride is found to be energetically unstable with respect to decomposition onto cuprous oxide and cuprous hydride. Metastability of cuprous hydroxide (CuOH) is established in our calculations. The free energy of CuOH is calculated to be some 50 kJ/mol higher than the average of the free energies of Cu 2 O and water. Thus, cuprite Cu 2 O is the most stable of the examined Cu(I) compounds

  3. Test of Hydrogen-Oxygen PEM Fuel Cell Stack at NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2003-01-01

    This paper describes performance characterization tests of a 64 cell hydrogen oxygen PEM fuel cell stack at NASA Glenn Research Center in February 2003. The tests were part of NASA's ongoing effort to develop a regenerative fuel cell for aerospace energy storage applications. The purpose of the tests was to verify capability of this stack to operate within a regenerative fuel cell, and to compare performance with earlier test results recorded by the stack developer. Test results obtained include polarization performance of the stack at 50 and 100 psig system pressure, and a steady state endurance run at 100 psig. A maximum power output of 4.8 kWe was observed during polarization runs, and the stack sustained a steady power output of 4.0 kWe during the endurance run. The performance data obtained from these tests compare reasonably close to the stack developer's results although some additional spread between best to worst performing cell voltages was observed. Throughout the tests, the stack demonstrated the consistent performance and repeatable behavior required for regenerative fuel cell operation.

  4. Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, B. J.; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2006-01-01

    The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at NASA Glenn Research Center has demonstrated multiple back to back contiguous cycles at rated power, and round trip efficiencies up to 52 percent. It is the first fully closed cycle regenerative fuel cell ever demonstrated (entire system is sealed: nothing enters or escapes the system other than electrical power and heat). During FY2006 the system has undergone numerous modifications and internal improvements aimed at reducing parasitic power, heat loss and noise signature, increasing its functionality as an unattended automated energy storage device, and in-service reliability. It also serves as testbed towards development of a 600 W-hr/kg flight configuration, through the successful demonstration of lightweight fuel cell and electrolyser stacks and supporting components. The RFC has demonstrated its potential as an energy storage device for aerospace solar power systems such as solar electric aircraft, lunar and planetary surface installations; any airless environment where minimum system weight is critical. Its development process continues on a path of risk reduction for the flight system NASA will eventually need for the manned lunar outpost.

  5. New type of microengine using internal combustion of hydrogen and oxygen

    Science.gov (United States)

    Svetovoy, Vitaly B.; Sanders, Remco G. P.; Ma, Kechun; Elwenspoek, Miko C.

    2014-01-01

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5–4 bar for a time of 100–400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines. PMID:24599052

  6. New type of microengine using internal combustion of hydrogen and oxygen.

    Science.gov (United States)

    Svetovoy, Vitaly B; Sanders, Remco G P; Ma, Kechun; Elwenspoek, Miko C

    2014-03-06

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm(3) that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.

  7. DNB heat flux on inner side of a vertical pipe in forced flow of liquid hydrogen and liquid nitrogen

    Science.gov (United States)

    Shirai, Yasuyuki; Tatsumoto, Hideki; Shiotsu, Masahiro; Hata, Koichi; Kobayashi, Hiroaki; Naruo, Yoshihiro; Inatani, Yoshifumi

    2018-06-01

    Heat transfer from inner side of a heated vertical pipe to liquid hydrogen flowing upward was measured at the pressures of 0.4, 0.7 and 1.1 MPa for wide ranges of flow rate and liquid temperature. Nine test heaters with different inner diameters of 3, 4, 6 and 9 mm and the lengths of 50, 100, 150, 200, 250 and 300 mm were used. The DNB (departure from nucleate boiling) heat fluxes in forced flow of liquid hydrogen were measured for various subcoolings and flow velocities at pressures of 0.4, 0.7 and 1.1 MPa. Effect of L/d (ratio of heater length to diameter) was clarified for the range of L / d ⩽ 50 . A new correlation of DNB heat flux was presented based on a simple model and the experimental data. Similar experiments were performed for liquid nitrogen at pressures of 0.5 MPa and 1.0 MPa by using the same experimental system and some of the test heaters. It was confirmed that the new correlation can describe not only the hydrogen data, but also the data of liquid nitrogen.

  8. Periodic density functional theory study of ethylene hydrogenation over Co3O4 (1 1 1) surface: The critical role of oxygen vacancies

    International Nuclear Information System (INIS)

    Lu, Jinhui; Song, JiaJia; Niu, Hongling; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2016-01-01

    Highlights: • H 2 dissociates in heterolytic way following H atoms migration to form O−H bond. • H 2 dissociation occurs at low temperature on perfect and oxygen defective Co 3 O 4 . • Oxygen vacancy promotes hydrogenation thermodynamically and kinetically. • O−H bond is weakened on oxygen defective surface. • Hydrogenation requires compromise between H−H activation and O−H breakage. - Abstract: Recently, metal oxides are attracting increasing interests as hydrogenation catalyst. Herein we studied the hydrogenation of ethylene on perfect and oxygen defective Co 3 O 4 (1 1 1) using periodic density functional theory. The energetics and pathways of ethylene hydrogenation to ethane were determined. We have demonstrated that (i) H 2 dissociation on Co 3 O 4 is a complicated two-step process through a heterolytic cleavage, followed by the migration of H atom and finally yields the homolytic product on both perfect and oxygen defective Co 3 O 4 (1 1 1) surfaces easily. (ii) After introducing the surface oxygen vacancy, the stepwise hydrogenation of ethylene by atomic hydrogen is much easier than that on perfect surface due to the weaker bond strength of OH group. The strength of O−H bond is a crucial factor for the hydrogenation reaction which involves the breakage of O−H bond. The formation of oxygen vacancy increases the electronic charges at the adjacent surface O, which reduces its capability of further gaining electrons from adsorbed atomic hydrogen and then weakens the strength of O−H bond. These results emphasize the importance of the oxygen vacancies for hydrogenation on metal oxides.

  9. Effect of oxygen, nitrogen, and hydrogen on the mechanical properties of Nb-752

    International Nuclear Information System (INIS)

    Mahoney, W.M.; Paton, N.E.

    1974-01-01

    Uniaxial tensile properties of the Nb-base alloy Nb-752 were determined as a function of O, N and H content from -196 to 200 0 C. Each of these impurities increased the temperature at which a ductile-brittle transition occurs. Although ductility was severely reduced, strength parameters were relatively unchanged, making detection of embrittlement by hardness testing difficult. Impurity levels for embrittlement were sufficiently low and the affinity of Nb-752 for contamination sufficiently great that processing operations require strict control. Rhe mechanism of this impurity embrittlement is not well understood. However, observations of fracture surfaces of brittle failures reveal mixed intergranular cleavage with a uniform distribution of precipitates throughout grain boundaries. These observations are discussed in the light of current theories. (U.S.)

  10. 3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures

    Science.gov (United States)

    Teunissen, Jannis; Ebert, Ute

    2016-08-01

    We investigate how photoionization, electron avalanches and space charge affect the inception of nanosecond pulsed discharges. Simulations are performed with a 3D PIC-MCC (particle-in-cell, Monte Carlo collision) model with adaptive mesh refinement for the field solver. This model, whose source code is available online, is described in the first part of the paper. Then we present simulation results in a needle-to-plane geometry, using different nitrogen/oxygen mixtures at atmospheric pressure. In these mixtures non-local photoionization is important for the discharge growth. The typical length scale for this process depends on the oxygen concentration. With 0.2% oxygen the discharges grow quite irregularly, due to the limited supply of free electrons around them. With 2% or more oxygen the development is much smoother. An almost spherical ionized region can form around the electrode tip, which increases in size with the electrode voltage. Eventually this inception cloud destabilizes into streamer channels. In our simulations, discharge velocities are almost independent of the oxygen concentration. We discuss the physical mechanisms behind these phenomena and compare our simulations with experimental observations.

  11. Development of Nanofiller-Modulated Polymeric Oxygen Enrichment Membranes for Reduction of Nitrogen Oxides in Coal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jianzhong Lou; Shamsuddin Ilias

    2010-12-31

    North Carolina A&T State University in Greensboro, North Carolina, has undertaken this project to develop the knowledge and the material to improve the oxygen-enrichment polymer membrane, in order to provide high-grade oxygen-enriched streams for coal combustion and gasification applications. Both experimental and theoretical approaches were used in this project. The membranes evaluated thus far include single-walled carbon nano-tube, nano-fumed silica polydimethylsiloxane (PDMS), and zeolite-modulated polyimide membranes. To document the nanofiller-modulated polymer, molecular dynamics simulations have been conducted to calculate the theoretical oxygen molecular diffusion coefficient and nitrogen molecular coefficient inside single-walled carbon nano-tube PDMS membranes, in order to predict the effect of the nano-tubes on the gas-separation permeability. The team has performed permeation and diffusion experiments using polymers with nano-silica particles, nano-tubes, and zeolites as fillers; studied the influence of nano-fillers on the self diffusion, free volume, glass transition, oxygen diffusion and solubility, and perm-selectivity of oxygen in polymer membranes; developed molecular models of single-walled carbon nano-tube and nano-fumed silica PDMS membranes, and zeolites-modulated polyimide membranes. This project partially supported three graduate students (two finished degrees and one transferred to other institution). This project has resulted in two journal publications and additional publications will be prepared in the near future.

  12. Hexadecacarbonylhexarhodium as a novel electrocatalyst for oxygen reduction and hydrogen oxidation in the presence of fuel cell contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Uribe-Godinez, J.; Jimenez-Sandoval, O. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav), Unidad Queretaro. Apartado Postal 1-798, Queretaro, Qro. 76001 (Mexico); Hernandez-Castellanos, R. [Universidad Tecnologica de San Juan del Rio, Av. La Palma No. 125, Col. Vista Hermosa, San Juan del Rio, Qro. 76800 (Mexico)

    2010-11-01

    The electrocatalytic activity for oxygen reduction and hydrogen oxidation of a discrete metal carbonyl cluster with a well defined molecular and crystal structure, Rh{sub 6}(CO){sub 16}, is reported. The exchange current density of this compound for oxygen reduction is one order of magnitude higher than that of platinum, and its resistance degree to PEM fuel cell contaminants such as methanol and CO is as high as 2 mol L{sup -1} and 0.5%, respectively. These properties make the metal complex a potential alternative for use as electrode in polymer electrolyte membrane fuel cells. (author)

  13. One step synthesis of chlorine-free Pt/Nitrogen-doped graphene composite for oxygen reduction reaction

    KAUST Repository

    Varga, Tamás

    2018-03-14

    Chlorine-free Platinum/nitrogen-doped graphene oxygen reduction reaction catalysts were synthesized by a one step method of annealing a mixture of platinum acetylacetonate and graphene oxide under ammonia atmosphere. Nanoparticles with close to the ideal particle size for oxygen reduction reaction (ORR) were formed, i.e., with diameter of 3–4 nm (500 and 600 °C) and 6 nm (700 °C). X-ray photoelectron spectroscopy confirmed the successful introduction of both pyridinic and pyrrolic type nitrogen moieties into the graphene layers, which indicates a strong interaction between the nanoparticles and the graphene layers. The electrocatalytic activity of glassy carbon electrodes (GCE) modified with the synthesized Pt/NG samples for oxygen reduction was compared to that of a platinum/carbon black catalyst modified electrode in acidic and alkaline media. Based on the measured limiting current densities and calculated electron transfer number, the highest activity was measured in acidic and alkaline media on the samples annealed at 600 and 700 °C, respectively.

  14. GASP: A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. [enthalpy, entropy, thermal conductivity, and specific heat

    Science.gov (United States)

    Hendricks, R. C.; Baron, A. K.; Peller, I. C.

    1975-01-01

    A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.

  15. Simultaneous Measurement of Nitrogen and Oxygen Isotopes of Nitrate to Evaluate Nitrate Sources and Processes in Catchments

    Energy Technology Data Exchange (ETDEWEB)

    Ohte, Nobuhito [Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo (Japan); Nagata, Toshi; Tayasu, Ichiro [Center for Ecological Research, Kyoto University, Ohtsu (Japan); Kyozu, Ayato; Yoshimizu, Chikage [CREST, Japan Science and Technology Agency, Center for Ecological Research, Kyoto University, Ohtsu (Japan); Osaka, Ken' ichi [Carbon and Nutrient Cycles Division, National Institute for Agro-Environmental Sciences, Tsukuba, (Japan)

    2013-05-15

    We review studies on applied isotope analytical techniques for identifying sources and transformations of river nitrate (NO{sub 3}{sup -}) to examine the influences of water pollution, excess nutrient (nitrogen) loads and ecosystem disturbances in river systems. We also discuss the current status and future perspectives of the application of NO{sub 3}{sup -} isotope measurements to the assessment of river nutrients. Our review shows that in recent years simultaneous measurements of nitrogen and oxygen isotopes ({delta}{sup 15}N and {delta}{sup 18}O) of NO{sub 3}{sup -} have been increasingly used to identify the sources and pathways of nitrogen in river systems. The {delta}{sup 15}N value of NO{sub 3}{sup -} is a useful indicator to evaluate the contributions of sewage and/or animal waste to NO{sub 3}{sup -} load, and the {delta}{sup 18}O value can be used for estimation of the contribution of NO{sub 3}{sup -} derived through atmospheric deposition. The microbial denitrification method is currently a most useful tool to measure the {delta}{sup 15}N and {delta}{sup 18}O values of NO{sub 3}{sup -} simultaneously, because of its capability for high throughput of samples. This method allows us to conduct a comprehensive investigation of spatial and temporal variations and mechanisms of nitrogen transport and transformation in rivers and catchments in more precise and effective manner. (author)

  16. Feed-derived volatile basic nitrogen increases reactive oxygen species production of blood leukocytes in lactating dairy cows.

    Science.gov (United States)

    Tsunoda, Ei; Gross, Josef J; Kawashima, Chiho; Bruckmaier, Rupert M; Kida, Katsuya; Miyamoto, Akio

    2017-01-01

    The present study investigated over 9 months the changes of fermentative quality of total mixed rations (TMR) containing grass silage (GS) as a major component, associated with changes in the volatile basic nitrogen (VBN) levels in an experimental dairy farm. Effects of VBN levels in TMR on metabolic parameters, reactive oxygen species (ROS) production by blood polymorphonuclear leukocytes (PMNs) and conception rates for dairy cows were analyzed. According to VBN levels in TMR during survey periods, three distinct phases were identified; phase A with low VBN; phase B with high VBN; and phase C with mid-VBN. Metabolic parameters in blood were all within normal range. However, during phases B and C, nitrogen metabolic indices such as blood urea nitrogen and milk urea nitrogen showed higher levels compared to those in phase A, and a simultaneous increase in ROS production by blood PMNs and the load on hepatic function in metabolic parameters was observed in the cows with a lower conception rate. This suggests that feeding TMR with elevated VBN levels due to poor fermented GS results in stimulation of ROS production by PMNs by ammonia, and negatively affects metabolism and reproductive performance in lactating dairy cow. © 2016 Japanese Society of Animal Science.

  17. Effect of high substrate bias and hydrogen and nitrogen incorporation on filtered cathodic vacuum arc deposited tetrahedral amorphous carbon films

    International Nuclear Information System (INIS)

    Panwar, O.S.; Khan, Mohd. Alim; Kumar, Mahesh; Shivaprasad, S.M.; Satyanarayana, B.S.; Dixit, P.N.; Bhattacharyya, R.; Khan, M.Y.

    2008-01-01

    The application of a sufficiently high negative substrate bias, during the growth of tetrahedral amorphous carbon (ta-C), is usually associated with low sp 3 bonding configuration and stressed films. However, in an effort to understand and utilize the higher pseudo thermo dynamical conditions during the film growth, at high negative substrate bias (- 300 V), reported here is a study on ta-C films grown under different hydrogen and nitrogen concentration. As grown ta-C films were studied under different negative substrate bias conditions. The variation of the sp 3 content and sp 3 /sp 2 ratio in the ta-C films exhibits a trend similar to those reported in literature, with a subtle variation in this report being the substrate bias voltage, which was observed to be around - 200 V, for obtaining the highest sp 3 (80%) bonding and sp 3 /sp 2 (3.95) ratio. The hydrogen and nitrogen incorporated ta-C films studied, at a bias of - 300 V, show an increase in sp 3 (87-91%) bonding and sp 3 /sp 2 (7-10) ratio in the range of studies reported. The inference is drawn on the basis of the set of data obtained from measurements carried out using X-ray photoelectron spectroscopy, X-ray induced Auger electron spectroscopy and Raman spectroscopy of as grown and hydrogen and nitrogen incorporated ta-C films deposited using an S bend filtered cathodic vacuum arc system. The study indicates the possibility of further tailoring ta-C film properties and also extending capabilities of the cathodic arc system for developing carbon based films for electronics and tribological applications

  18. Effect of high substrate bias and hydrogen and nitrogen incorporation on filtered cathodic vacuum arc deposited tetrahedral amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India)], E-mail: ospanwar@mail.nplindia.ernet.in; Khan, Mohd. Alim [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Kumar, Mahesh; Shivaprasad, S.M. [Surface Physics and Nanostructures Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Satyanarayana, B.S. [MIT Innovation Centre and Electronics and Communication Department, Manipal Institute of Technology, Manipal-579104 (India); Dixit, P.N. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Bhattacharyya, R. [Emeritus Scientist, National Physical Laboratory, New Delhi-110012 (India); Khan, M.Y. [Department of Physics, Jamia Millia Islamia, Central University, New Delhi-110025 (India)

    2008-02-29

    The application of a sufficiently high negative substrate bias, during the growth of tetrahedral amorphous carbon (ta-C), is usually associated with low sp{sup 3} bonding configuration and stressed films. However, in an effort to understand and utilize the higher pseudo thermo dynamical conditions during the film growth, at high negative substrate bias (- 300 V), reported here is a study on ta-C films grown under different hydrogen and nitrogen concentration. As grown ta-C films were studied under different negative substrate bias conditions. The variation of the sp{sup 3} content and sp{sup 3}/sp{sup 2} ratio in the ta-C films exhibits a trend similar to those reported in literature, with a subtle variation in this report being the substrate bias voltage, which was observed to be around - 200 V, for obtaining the highest sp{sup 3} (80%) bonding and sp{sup 3}/sp{sup 2} (3.95) ratio. The hydrogen and nitrogen incorporated ta-C films studied, at a bias of - 300 V, show an increase in sp{sup 3} (87-91%) bonding and sp{sup 3}/sp{sup 2} (7-10) ratio in the range of studies reported. The inference is drawn on the basis of the set of data obtained from measurements carried out using X-ray photoelectron spectroscopy, X-ray induced Auger electron spectroscopy and Raman spectroscopy of as grown and hydrogen and nitrogen incorporated ta-C films deposited using an S bend filtered cathodic vacuum arc system. The study indicates the possibility of further tailoring ta-C film properties and also extending capabilities of the cathodic arc system for developing carbon based films for electronics and tribological applications.

  19. A continuous-flow system for measuring in vitro oxygen and nitrogen metabolism in separated stream communities

    DEFF Research Database (Denmark)

    Prahl, C.; Jeppesen, E.; Sand-Jensen, Kaj

    1991-01-01

    on the stream bank, consists of several macrophyte and sediment chambers equipped with a double-flow system that ensures an internal water velocity close to that in the stream and which, by continuously renewing the water, mimics diel fluctuation in stream temperature and water chemistry. Water temperature...... production and dark respiration occurred at similar rates (6-7g O2 m-2 day-1), net balance being about zero. Inorganic nitrogen was consumed both by the sediment and to a greater extent by the macrophytes, the diel average consumption being 1g N m-2 day-1. 3. The sum of the activity in the macrophyte...... and sediment chambers corresponded to the overall activity of the stream section as determined by upstream/downstream mass balance. This indicates that the results obtained with the continuous-flow chambers realistically describe the oxygen and the nitrogen metabolism of the stream....

  20. De-oxygenation of CO2 by using Hydrogen, Carbon and Methane over Alumina-Supported Catalysts

    Directory of Open Access Journals (Sweden)

    R.Y. Raskar

    2012-06-01

    Full Text Available The de-oxygenation of CO2 was explored by using hydrogen, methane, carbon etc., over alumina supported catalysts. The alumina-supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts were first reduced in hydrogen atmosphere and then used for the de-oxygenation of CO2. Furthermore, experimental variables for the de-oxygenation of CO2 were temperature (range 50 to 650 oC, H2/CO2 mole ratios (1.0 to 5, and catalyst loading (0.5 to 10 wt %. During the de-oxygenation of CO2 with H2 or CH4 or carbon, conversion of CO2, selectivity to CO and CH4 were estimated. Moreover, 25.4 % conversion of CO2 by hydrogen was observed over 1 wt% Pt/Al2O3 catalyst at 650 oC with 33.8 % selectivity to CH4. However, 8.1 to 13.9 % conversion of CO2 was observed over 1 wt% Pt/Al2O3 catalyst at 550 oC in the presence of both H2 and CH4. Moreover, 42.8 to 79.4 % CH4 was converted with 9 to 23.1 % selectivity to CO. It was observed that the de-oxygenation of CO2 by hydrogen, carbon and methane produced carbon, CO and CH4. © 2012 BCREC UNDIP. All rights reservedReceived: 6th February 2012; Revised: 23rd April 2012; Accepted: 24th April 2012[How to Cite: R. Y. Raskar, K. B. Kale, A. G. Gaikwad. (2011. De-oxygenation of CO2 by using Hydrogen, Carbon and Methane over Alumina-Supported Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 59-69.  doi:10.9767/bcrec.7.1.1631.59-69][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1631.59-69 ] | View in 

  1. Seasonal Variations in Stable Isotope Ratios of Oxygen and Hydrogen in Two Tundra Rivers in NE European Russia

    Energy Technology Data Exchange (ETDEWEB)

    Huitu, E.; Arvola, L. [Lammi Biological Station, University of Helsinki (Finland); Sonninen, E. [Radiocarbon Dating Laboratory, University of Helsinki (Finland)

    2013-07-15

    The variability in stable isotope ratios of oxygen and hydrogen ({delta} {sup 18}O and {delta}{sup 2}H values) in river waters in northeast European Russia was studied for the period from July 2007 to october 2008. Exceptional isotope composition in precipitation obtained during the sampling period was clearly traced in the composition of river waters. Water from permafrost thawing did not make a great contribution to river flow. (author)

  2. The analysis of irradiated nuclear fuel and cladding materials, determination of carbon, hydrogen and oxygen/metal ratio

    International Nuclear Information System (INIS)

    Jones, I.G.

    1976-02-01

    Equipment has been developed for the determination of carbon, hydrogen and oxygen/metal ratio on irradiated fuels, of carbon in stainless steel cladding materials and in graphite rich deposits, and of hydrogen in zircaloy. Carbon is determined by combustion to carbon dioxide which is collected and measured manometrically, hydrogen by vacuum extraction followed by diffusion through a palladium thimble, and oxygen/metal ratio by CO/CO 2 equilibration. A single set of equipment was devised in order to minimise the time and work involved in changing to a different set of equipment in a separate box, for each type of analysis. For each kind of analysis, alterations to the apparatus are involved but these can be carried out with the basic set in position in a shielded cell, although to do so it is necessary to obtain access via the gloves on the fibre-glass inner glove box. This requires a removal of samples emitting radiation, by transfer to an adjoining cell. A single vacuum system is employed. This is connected through a plug in the lead wall of the shielded cell, and couplings in the glove box wall to the appropriate furnaces. Carbon may be determined, in stainless steel containing 400 to 800 ppm C, with a coefficient of variation of +- 2%. On deposits containing carbon, the coefficient of variation is better than +- 1% for 2 to 30 mg of carbon. Hydrogen, at levels between 30 and 200 ppm in titanium can be determined with a coefficient of variation of better than +- 5%. Titanium has been used in lieu of zircaloy since standardised zircaloy specimens are not available. The precision for oxygen/metal ratio is estimated to be +- 0.001 Atoms oxygen. Sample weights of 200 mg are adequate for most analyses. (author)

  3. Removal method of fluorescent dyes as pretreatment for measurement of major ion concentrations and hydrogen and oxygen isotopic ratios

    International Nuclear Information System (INIS)

    Nakata, Kotaro; Hasegawa, Takuma; Kashiwaya, Koki; Kodama, Hiroki; Miyajima, Tohru

    2011-01-01

    The major ion concentration and isotope ratio of hydrogen and oxygen can provide important information for migration of groundwater. Sometimes, quantitative estimation of these chemical and isotopic characteristics of solution is necessary for groundwater containing fluorescent dyes, which are used in drilling borehole and tracer experiments. However, sometimes correct estimation is disturbed by dyes and they become a cause of troubles for measurement equipments. Thus development of method to remove dyes is required so that the characteristics of groundwater can be estimated without the negative effect of dyes on measurement or equipments. In this study, removal of four representative dyes (Uranin, Eosin, Naphthalenesulfonic acid sodium(NAP) and Amino G acid potassium salt (AG)) was investigated. Uranin and Eosin were found to be removed by non-ionic synthetic resin: HP2MG. 99.99% of the dyes were removed from initial solutions containing dyes with 10 mg/L after contact with resin, while the contact had little effect on ion concentrations and oxygen and hydrogen isotope ratios. Thus the chemical and isotopic characteristics of groundwater samples containing Uranin and Eosin can be obtained by using the HP2MG resin. On the other hand, the NAP and AG were found to be difficult to remove by the HP2MG resin but they were able to be removed by anion exchange resin (Dowex 1x8). Though contact of solution with Dowex 1x8 did not affect cation concentrations and hydrogen and oxygen isotope ratios, anion concentrations were changed by the contact. Therefore the Dowex 1x8 is only applicable to estimation of the cation concentrations and isotope ratio of hydrogen and oxygen. When both anion and cation concentrations from the samples were necessary, Uranin or Eosin were recommended as a tracer in drilling or tracer experiments. (author)

  4. About the 'enlightenment' of nonideal hydrogen-oxygen plasma at a electron concentration Ne19 cm-3

    International Nuclear Information System (INIS)

    Fedorovich, O.A.

    2013-01-01

    The results of experimental determination of the emissivity of the hydrogen-oxygen plasma pulsed discharge in water and their comparison with calculations. It is shown that when concentrations nonideal plasma N e >3 centre dot 10 18 cm -3 , is observed 'enlightenment' of plasma. The reduction of a emitting ability . can be more order in the N e =3 centre dot 10 19 cm -3 and increases with increasing electron concentration.

  5. Measurement of the variable track-etch rate of hydrogen, carbon and oxygen Ions in CR-39

    International Nuclear Information System (INIS)

    Lengar, I.; Skvarc, J.; Ilic, R.

    2003-01-01

    The ratio of the track-etch rate to the bulk-etch rate for hydrogen, carbon and oxygen ions was studied for the CR-39 detector with addition of dioctylphthalate. The response was reconstructed from etch-pit growth curves obtained by the multi-step etching technique. A theoretical analysis of the correctness of the method due to the 'missing track segment' is assessed and utilisation of the results obtained for the calibration of fast neutron dosimetry is discussed. (author)

  6. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions

    Science.gov (United States)

    Mun, Bong-Gyu; Khan, Abdul Latif; Waqas, Muhammad; Kim, Hyun-Ho; Shahzad, Raheem; Imran, Muhammad

    2018-01-01

    This study investigated the regulatory role of exogenous salicylic acid (SA) in rice and its effects on toxic reactive oxygen and nitrogen species during short-term salinity stress. SA application (0.5 and 1.0 mM) during salinity-induced stress (100 mM NaCl) resulted in significantly longer shoot length and higher chlorophyll and biomass accumulation than with salinity stress alone. NaCl-induced reactive oxygen species production led to increased levels of lipid peroxidation in rice plants, which were significantly reduced following SA application. A similar finding was observed for superoxide dismutase; however, catalase (CAT) and ascorbate peroxidase (APX) were significantly reduced in rice plants treated with SA and NaCl alone and in combination. The relative mRNA expression of OsCATA and OsAPX1 was lower in rice plants during SA stress. Regarding nitrogenous species, S-nitrosothiol (SNO) was significantly reduced initially (one day after treatment [DAT]) but then increased in plants subjected to single or combined stress conditions. Genes related to SNO biosynthesis, S-nitrosoglutathione reductase (GSNOR1), NO synthase-like activity (NOA), and nitrite reductase (NIR) were also assessed. The mRNA expression of GSNOR1 was increased relative to that of the control, whereas OsNOA was expressed at higher levels in plants treated with SA and NaCl alone relative to the control. The mRNA expression of OsNR was decreased in plants subjected to single or combination treatment, except at 2 DAT, compared to the control. In conclusion, the current findings suggest that SA can regulate the generation of NaCl-induced oxygen and nitrogen reactive species in rice plants. PMID:29558477

  7. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  8. High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin

    Science.gov (United States)

    Raj, C. Justin; Rajesh, Murugesan; Manikandan, Ramu; Yu, Kook Hyun; Anusha, J. R.; Ahn, Jun Hwan; Kim, Dong-Won; Park, Sang Yeup; Kim, Byung Chul

    2018-05-01

    Activated carbon containing nitrogen functionalities exhibits excellent electrochemical property which is more interesting for several renewable energy storage and catalytic applications. Here, we report the synthesis of microporous oxygen and nitrogen doped activated carbon utilizing chitin from the gladius of squid fish. The activated carbon has large surface area of 1129 m2 g-1 with microporous network and possess ∼4.04% of nitrogen content in the form of pyridinic/pyrrolic-N, graphitic-N and N-oxide groups along with oxygen and carbon species. The microporous oxygen/nitrogen doped activated carbon is utilize for the fabrication of aqueous and flexible supercapacitor electrodes, which presents excellent electrochemical performance with maximum specific capacitance of 204 Fg-1 in 1 M H2SO4 electrolyte and 197 Fg-1 as a flexible supercapacitor. Moreover, the device displays 100% of specific capacitance retention after 25,000 subsequent charge/discharge cycles in 1 M H2SO4 electrolyte.

  9. C-H functionalization directed by transformable nitrogen heterocycles: synthesis of ortho-oxygenated arylnaphthalenes from arylphthalazines.

    Science.gov (United States)

    Rastogi, Shiva K; Medellin, Derek C; Kornienko, Alexander

    2014-01-21

    Two protocols for oxygenation of aromatic C-H bonds ortho-positioned to the phthalazine ring were developed. The transannulation of the phthalazine ring to a naphthalene moiety by an Inverse Electron Demand Diels-Alder (IEDDA) reaction led to the synthesis of naphtho[2,1-c]chromenes, 1-(ortho-hydroxyaryl)naphthalenes and 6,7-dihydrobenzo[b]naphtho[1,2-d]oxepine. This new strategy based on the utilization of transformable nitrogen heterocycles in C-H functionalization chemistry can be potentially applicable to the synthesis of a broad range of biaryl compounds.

  10. Nitrogen and Fluorine-Codoped Carbon Nanowire Aerogels as Metal-Free Electrocatalysts for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Biwei [Energy and Environmental Directory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA

    2017-07-11

    The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.

  11. A survey of the reaction rate constants for the thermal dissociation and recombination of nitrogen and oxygen

    Science.gov (United States)

    Marraffa, Lionel; Dulikravich, George S.; Keeney, Timothy C.; Deiwert, George S.

    1988-01-01

    The objective of the present report is to survey the various values of forward and backward reaction rate constants used by investigators in the field of high-temperature (T greater than 2000 K) gas reactions involving nitrogen and oxygen only. The objective is to find those values that correlate well so that they can be used for the studies of hypersonic flow and supersonic combustion with reasonable confidence. Relatively good agreement among these various values is observed for temperatures lower than 10,000 K.

  12. Characterization of silicon oxynitride films prepared by the simultaneous implantation of oxygen and nitrogen ions into silicon

    International Nuclear Information System (INIS)

    Hezel, R.; Streb, W.

    1985-01-01

    Silicon oxynitride films about 5 nm in thickness were prepared by simultaneously implanting 5 keV oxygen and nitrogen ions into silicon at room temperature up to saturation. These films with concentrations ranging from pure silicon oxide to silicon nitride were characterized using Auger electron spectroscopy, electron energy loss spectroscopy and depth-concentration profiling. The different behaviour of the silicon oxynitride films compared with those of silicon oxide and silicon nitride with regard to thermal stability and hardness against electron and argon ion irradiation is pointed out. (Auth.)

  13. Periodic density functional theory study of ethylene hydrogenation over Co3O4 (1 1 1) surface: The critical role of oxygen vacancies

    Science.gov (United States)

    Lu, Jinhui; Song, JiaJia; Niu, Hongling; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2016-05-01

    Recently, metal oxides are attracting increasing interests as hydrogenation catalyst. Herein we studied the hydrogenation of ethylene on perfect and oxygen defective Co3O4 (1 1 1) using periodic density functional theory. The energetics and pathways of ethylene hydrogenation to ethane were determined. We have demonstrated that (i) H2 dissociation on Co3O4 is a complicated two-step process through a heterolytic cleavage, followed by the migration of H atom and finally yields the homolytic product on both perfect and oxygen defective Co3O4 (1 1 1) surfaces easily. (ii) After introducing the surface oxygen vacancy, the stepwise hydrogenation of ethylene by atomic hydrogen is much easier than that on perfect surface due to the weaker bond strength of OH group. The strength of Osbnd H bond is a crucial factor for the hydrogenation reaction which involves the breakage of Osbnd H bond. The formation of oxygen vacancy increases the electronic charges at the adjacent surface O, which reduces its capability of further gaining electrons from adsorbed atomic hydrogen and then weakens the strength of Osbnd H bond. These results emphasize the importance of the oxygen vacancies for hydrogenation on metal oxides.

  14. Electron transfer number control of the oxygen reduction reaction on nitrogen-doped reduced graphene oxides for the air electrodes of zinc-air batteries and organic degradation

    International Nuclear Information System (INIS)

    Wu, Sheng-Hui; Li, Po-Chieh; Hu, Chi-Chang

    2016-01-01

    The mean electron transfer number (n) of the oxygen reduction reaction (ORR) on reduced graphene oxide (rGO) is controlled by nitrogen doping for the air electrodes of Zn-air batteries and electrochemical organic degradation. Melamine and pyrrole are employed as the nitrogen sources for fabricating N-doped rGO (N-rGO) by microwave-assisted hydrothermal synthesis (MAHS). The n value of the ORR is determined by the rotating ring-disk electrode (RRDE) voltammetry and is successfully controlled from 2.34 to 3.93 by preparation variables. The N-doped structures are examined by the x-ray photoelectron spectroscopic (XPS) analysis. The morphology and the defect degree of N-rGOs are characterized by high resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. N-rGOs with high and low n values are employed as the air electrode catalysts of zinc-air batteries and in-situ hydrogen peroxide (H_2O_2) generation, respectively. The highest discharge cell voltage of 1.235 V for a Zn-air battery is obtained at 2 mA cm"−"2 meanwhile the current efficiency of H_2O_2 generation in 1-h electrolysis at 0 V (vs. RHE) reaches 43%. The electrocatalytic degradation of orange G (OG), analyzed by UV-VIS absorption spectra, reveals a high decoloration degree from the relative absorbance of 0.38 for the azo π-conjugation structure of OG. - Highlights: • The mean electron transfer number (n) is controlled by nitrogen doping. • Melamine and pyrrole are used as the nitrogen sources for fabricating N-rGO. • The n value is successfully controlled from 2.34 to 3.93 by preparation variables. • The highest discharge cell voltage of 1.235 V for a Zn-air battery. • The current efficiency of H_2O_2 generation 1-h electrolysis reaches 43%.

  15. Electron transfer number control of the oxygen reduction reaction on nitrogen-doped reduced graphene oxides for the air electrodes of zinc-air batteries and organic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sheng-Hui; Li, Po-Chieh; Hu, Chi-Chang, E-mail: cchu@che.nthu.edu.tw

    2016-11-01

    The mean electron transfer number (n) of the oxygen reduction reaction (ORR) on reduced graphene oxide (rGO) is controlled by nitrogen doping for the air electrodes of Zn-air batteries and electrochemical organic degradation. Melamine and pyrrole are employed as the nitrogen sources for fabricating N-doped rGO (N-rGO) by microwave-assisted hydrothermal synthesis (MAHS). The n value of the ORR is determined by the rotating ring-disk electrode (RRDE) voltammetry and is successfully controlled from 2.34 to 3.93 by preparation variables. The N-doped structures are examined by the x-ray photoelectron spectroscopic (XPS) analysis. The morphology and the defect degree of N-rGOs are characterized by high resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. N-rGOs with high and low n values are employed as the air electrode catalysts of zinc-air batteries and in-situ hydrogen peroxide (H{sub 2}O{sub 2}) generation, respectively. The highest discharge cell voltage of 1.235 V for a Zn-air battery is obtained at 2 mA cm{sup −2} meanwhile the current efficiency of H{sub 2}O{sub 2} generation in 1-h electrolysis at 0 V (vs. RHE) reaches 43%. The electrocatalytic degradation of orange G (OG), analyzed by UV-VIS absorption spectra, reveals a high decoloration degree from the relative absorbance of 0.38 for the azo π-conjugation structure of OG. - Highlights: • The mean electron transfer number (n) is controlled by nitrogen doping. • Melamine and pyrrole are used as the nitrogen sources for fabricating N-rGO. • The n value is successfully controlled from 2.34 to 3.93 by preparation variables. • The highest discharge cell voltage of 1.235 V for a Zn-air battery. • The current efficiency of H{sub 2}O{sub 2} generation 1-h electrolysis reaches 43%.

  16. Thermodynamic properties of copper compounds with oxygen and hydrogen from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Korzhavyi, P.A.; Johansson, B. (Applied Materials Physics, Dept. of Materials Science and Engineering, Royal Inst. of Technology, Stockholm (Sweden))

    2010-02-15

    We employ quantum-mechanical calculations (based on density functional theory and linear response theory) in order to test the mechanical and chemical stability of several solid-state configurations of Cu1+, Cu2+, O2-, H1-, and H1+ ions. We begin our analysis with cuprous oxide (Cu{sub 2}O, cuprite structure), cupric oxide (CuO, tenorite structure), and cuprous hydride (CuH, wurtzite and sphalerite structures) whose thermodynamic properties have been studied experimentally. In our calculations, all these compounds are found to be mechanically stable configurations. Their formation energies calculated at T = 0 K (including the energy of zero-point and thermal motion of the ions) and at room temperature are in good agreement with existing thermodynamic data. A search for other possible solid-state conformations of copper, hydrogen, and oxygen ions is then performed. Several candidate structures for solid phases of cuprous oxy-hydride (Cu{sub 4}H{sub 2}O) and cupric hydride (CuH{sub 2}) have been considered but found to be dynamically unstable. Cuprous oxy-hydride is found to be energetically unstable with respect to decomposition onto cuprous oxide and cuprous hydride. Metastability of cuprous hydroxide (CuOH) is established in our calculations. The free energy of CuOH is calculated to be some 50 kJ/mol higher than the average of the free energies of Cu{sub 2}O and water. Thus, cuprite Cu{sub 2}O is the most stable of the examined Cu(I) compounds

  17. Lanthanides-based graphene catalysts for high performance hydrogen evolution and oxygen reduction

    International Nuclear Information System (INIS)

    Shinde, S.S.; Sami, Abdul; Lee, Jung-Ho

    2016-01-01

    Highlights: • Facile, scalable in-situ synthesis of lanthanide (La, Eu, Yb) doped graphene frameworks. • Efficient electrocatalytic performance towards HER and ORR. • Eu-Gr hybrid shows HER performance; onset & overpotential (81 & 160 mV), & Tafel slope (52 mV dec −1 ). • Eu-Gr exhibits superior activity of ORR; onset potential (0.92 V), electron transfer number (4.03). • Excellent long-term stability in HER and ORR, comparable to those of commercial Pt/C catalysts. - Abstract: The design of efficient electrocatalysts for hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) has received enormous consideration due to their effectiveness in modern renewable energy technologies such as fuel cells, electrolyzers, and metal–air batteries. Herein, we present a facile method to fabricate lanthanides (L = La, Eu, Yb)-doped graphene materials as catalyst for the HER and ORR that show desirable electrocatalytic activities as well as long-term stability. The Eu-graphene hybrid has showed unbeatable HER performance such as small values of onset potential (81 mV), overpotential (160 mV), and Tafel slope (52 mV dec −1 ), along with a high exchange current density (7.55 × 10 −6 A cm −2 ). The L-graphenes also exhibit superior electrocatalytic activity for ORR, including small Tafel slopes (96, 66, and 105 mV dec −1 for La-Gr, Eu-Gr, and Yb-Gr, respectively), positive onset potential (∼0.83–0.92 V), high electron transfer numbers (∼3.84–4.03), and excellent enduring strength, analogous to those of viable Pt/C catalysts. The excellent electrocatalytic performance is attributed to the synergistic effect of abundant edges and doping sites, high electrical conductivity, large active surface areas and fast charge transfer; which renders lanthanide-based graphene hybrids as potentially great candidate for energy conversion systems.

  18. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river

    Science.gov (United States)

    Desmet, N. J. S.; Van Belleghem, S.; Seuntjens, P.; Bouma, T. J.; Buis, K.; Meire, P.

    When macrophytes are growing in the river, the vegetation induces substantial changes to the water quality. Some effects are the result of direct interactions, such as photosynthetic activity or nutrient uptake, whereas others may be attributed to indirect effects of the water plants on hydrodynamics and river processes. This research focused on the direct effect of macrophytes on oxygen dynamics and nutrient cycling. Discharge, macrophyte biomass density, basic water quality, dissolved oxygen and nutrient concentrations were in situ monitored throughout the year in a lowland river (Nete catchment, Belgium). In addition, various processes were investigated in more detail in multiple ex situ experiments. The field and aquaria measurement results clearly demonstrated that aquatic plants can exert considerable impact on dissolved oxygen dynamics in a lowland river. When the river was dominated by macrophytes, dissolved oxygen concentrations varied from 5 to 10 mg l -1. Considering nutrient retention, it was shown that the investigated in-stream macrophytes could take up dissolved inorganic nitrogen (DIN) from the water column at rates of 33-50 mg N kgdry matter-1 h. And DIN fluxes towards the vegetation were found to vary from 0.03 to 0.19 g N ha -1 h -1 in spring and summer. Compared to the measured changes in DIN load over the river stretch, it means that about 3-13% of the DIN retention could be attributed to direct nitrogen uptake from the water by macrophytes. Yet, the role of macrophytes in rivers should not be underrated as aquatic vegetation also exerts considerable indirect effects that may have a greater impact than the direct fixation of nutrients into the plant biomass.

  19. Nitrogen and triple oxygen isotopes in near-road air samples using chemical conversion and thermal decomposition.

    Science.gov (United States)

    Smirnoff, Anna; Savard, Martine M; Vet, Robert; Simard, Marie-Christine

    2012-12-15

    The determination of triple oxygen (δ(18)O and δ(17)O) and nitrogen isotopes (δ(15)N) is important when investigating the sources and atmospheric paths of nitrate and nitrite. To fully understand the atmospheric contribution into the terrestrial nitrogen cycle, it is crucial to determine the δ(15)N values of oxidised and reduced nitrogen species in precipitation and dry deposition. In an attempt to further develop non-biotic methods and avoid expensive modifications of the gas-equilibration system, we have combined and modified sample preparation procedures and analytical setups used by other researchers. We first chemically converted NO(3)(-) and NH(4)(+) into NO(2)(-) and then into N(2)O. Subsequently, the resulting gas was decomposed into N(2) and O(2) and analyzed by isotope ratio mass spectrometry (IRMS) using a pre-concentration system equipped with a gold reduction furnace. The δ(17)O, δ(18)O and δ(15)N values of nitrate and nitrite samples were acquired simultaneously in one run using a single analytical system. Most importantly, the entire spectrum of δ(17)O, δ(18)O and/or δ(15)N values was determined from atmospheric nitrate, nitric oxide, ammonia and ammonium. The obtained isotopic values for air and precipitation samples were in good agreement with those from previous studies. We have further advanced chemical approaches to sample preparation and isotope analyses of nitrogen-bearing compounds. The proposed methods are inexpensive and easily adaptable to a wide range of laboratory conditions. This will substantially contribute to further studies on sources and pathways of nitrate, nitrite and ammonium in terrestrial nitrogen cycling. Copyright © 2012 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.

  20. Hydrogen, oxygen and hydroxyl on porous silicon surface: A joint density-functional perturbation theory and infrared spectroscopy approach

    International Nuclear Information System (INIS)

    Alfaro, Pedro; Palavicini, Alessio; Wang, Chumin

    2014-01-01

    Based on the density functional perturbation theory (DFPT), infrared absorption spectra of porous silicon are calculated by using an ordered pore model, in which columns of silicon atoms are removed along the [001] direction and dangling bonds are initially saturated with hydrogen atoms. When these atoms on the pore surface are gradually replaced by oxygen ones, the ab-initio infrared absorption spectra reveal oxygen, hydroxyl, and coupled hydrogen–oxygen vibrational modes. In a parallel way, freestanding porous silicon samples were prepared by using electrochemical etching and they were further thermally oxidized in a dry oxygen ambient. Fourier transform infrared spectroscopy was used to investigate the surface modifications caused by oxygen adsorption. In particular, the predicted hydroxyl and oxygen bound to the silicon pore surface are confirmed. Finally, a global analysis of measured transmittance spectra has been performed by means of a combined DFPT and thin-film optics approach. - Highlights: • The density functional perturbation theory is used to study infrared absorption. • An ordered pore model is used to investigate the oxidation in porous silicon (PSi). • Infrared transmittance spectra of oxidized PSi freestanding samples are measured

  1. Calculation of hydrogen and oxygen uptake in fuel rod cladding during severe accidents using the integral diffusion method -- Preliminary design report

    International Nuclear Information System (INIS)

    Siefken, L.J.

    1999-01-01

    Preliminary designs are described for models of hydrogen and oxygen uptake in fuel rod cladding during severe accidents. Calculation of the uptake involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the cladding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental results are presented that show a rapid uptake of hydrogen in the event of dissolution of the oxide layer and a rapid release of hydrogen in the event of cracking of the oxide layer. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. The uptake of hydrogen is limited to the equilibrium solubility calculated by applying Sievert's law. The uptake of hydrogen is an exothermic reaction that accelerates the heatup of a fuel rod. An embrittlement criteria is described that accounts for hydrogen and oxygen concentration and the extent of oxidation. A design is described for implementing the models for hydrogen and oxygen uptake and cladding embrittlement into the programming framework of the SCDAP/RELAP5 code. A test matrix is described for assessing the impact of the proposed models on the calculated behavior of fuel rods in severe accident conditions. This report is a revision and reissue of the report entitled; ''Preliminary Design Report for Modeling of Hydrogen Uptake in Fuel Rod Cladding During Severe Accidents.''

  2. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β

    Energy Technology Data Exchange (ETDEWEB)

    Rastad, Jessica L. [Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Green, William R., E-mail: William.R.Green@dartmouth.edu [Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States)

    2016-12-15

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.

  3. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β

    International Nuclear Information System (INIS)

    Rastad, Jessica L.; Green, William R.

    2016-01-01

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.

  4. Nitrogen

    Science.gov (United States)

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  5. A comparison of nitrogen-doped sonoelectrochemical and chemical graphene nanosheets as hydrogen peroxide sensors.

    Science.gov (United States)

    Wu, Yi-Shan; Liu, Zhe-Ting; Wang, Tzu-Pei; Hsu, Su-Yang; Lee, Chien-Liang

    2018-04-01

    Nitrogen-doped graphene nanosheet (N-SEGN) with pyrrolic nitrogen and 5-9 vacancy defects has been successfully prepared from a hydrothermal reaction of tetra-2-pyridinylpyrazine and sonoelectrochemistry-exfoliated graphene nanosheet, with point defects. Additionally, based on the same reaction using chemically reduced graphene oxide, nitrogen-doped chemically reduced graphene oxide (N-rGO) with graphitic nitrogen was prepared. The N-SEGN and N-rGO were used as a non-enzymatic H 2 O 2 sensors. The sensitivity of the N-SEGN was 231.3 μA·mM -1 ·cm -2 , much greater than 57.3 μA·mM -1 ·cm -2 of N-rGO. The N-SEGN showed their potential for being a H 2 O 2 sensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Synthesis of diamonds in Fe–C systems using nitrogen and hydrogen co-doped impurities under HPHT

    International Nuclear Information System (INIS)

    Sun Shi-Shuai; Xu Zhi-Hui; Cui Wen; Jia Xiao-Peng; Ma Hong-An

    2017-01-01

    In this study, we investigate the effect of nitrogen and hydrogen impurities on colors, morphologies, impurity structures and synthesis conditions of diamond crystals in Fe–C systems with C 3 N 6 H 6 additives at pressures in the range 5.0–6.5 GPa and temperatures of 1400–1700 °C in detail. Our results reveal that the octahedron diamond nucleation in a Fe–C system is evidently inhibited by co-doped N–H elements, thereby resulting in the increase of minimum pressure and temperature of diamond synthesis by spontaneous nucleation. The octahedron diamond crystals synthesized from a pure Fe–C system are colorless, while they become green in the system with C 3 N 6 H 6 additive. The surface defects of diamond will deteriorate when the nitrogen and hydrogen atoms simultaneously incorporate in the diamond growth environment in the Fe–C system. We believe that this study will provide some important information and be beneficial for the deep understanding of the crystallization of diamonds from different component systems. (paper)

  7. Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution

    Science.gov (United States)

    Xu, You; Li, Yinghao; Yin, Shuli; Yu, Hongjie; Xue, Hairong; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-06-01

    Design of highly active and cost-effective electrocatalysts is very important for the generation of hydrogen by electrochemical water-splitting. Herein, we report the fabrication of ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles (CoRu@NCs) and demonstrate their promising feasibility for efficiently catalyzing the hydrogen evolution reaction (HER) over a wide pH range. The resultant CoRu@NC nanohybrids possess an alloy–carbon core–shell structure with encapsulated low-ruthenium-content CoRu bimetallic alloy nanoparticles (10–30 nm) as the core and ultrathin nitrogen-doped graphitized carbon layers (2–6 layers) as the shell. Remarkably, the optimized catalyst (CoRu@NC-2 sample) with a Ru content as low as 2.04 wt% shows superior catalytic activity and excellent durability for HER in acidic, neutral, and alkaline conditions. This work offers a new method for the design and synthesis of non-platium-based electrocatalysts for HER in all-pH.

  8. Unraveling the facet-dependent and oxygen vacancy role for ethylene hydrogenation on Co_3O_4 (110) surface: A DFT+U study

    International Nuclear Information System (INIS)

    Zhang, Yong-Chao; Pan, Lun; Lu, Jinhui; Song, Jiajia; Li, Zheng; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2017-01-01

    Highlights: • The mechanism of ethylene hydrogenation on perfect and oxygen defective Co_3O_4(110) is investigated by using DFT + U. • Oxygen vacancy promotes ethylene hydrogenation thermodynamically and kinetically. • The Co3O4 (110) facet is more active than the (111) one for ethylene hydrogenation. - Abstract: Crystal facet engineering and defect engineering are both critical strategies to improve the catalytic hydrogenation performance of catalyst. Herein, ethylene hydrogenation on the perfect and oxygen defective Co_3O_4(110) surfaces has been studied by using periodic density functional theory calculations. The results are compared with that on Co_3O_4(111) surface to clarify the problem of which facet for Co_3O_4 is more reactive, and to illuminate the role of oxygen vacancy. The low oxygen vacancy formation energy suggests that Co_3O_4(110) surface with defective site is easily formed. The whole mechanism of H_2 dissociation and stepwise hydrogenation of ethylene to ethane is examined, and the most favorable pathway is heterolytic dissociation of H_2 follows two stepwise hydrogenation of ethylene process. The results show that ethyl hydrogenation to ethane on perfect Co_3O_4(110) surface is the rate limiting step with an activation energy of 1.19 eV, and the presence of oxygen vacancy strongly reduces the activation energies of main elementary steps, and the activation energy of rate limiting step is only 0.47 eV. Compared with that on Co_3O_4(111), ethylene hydrogenation is preferred on Co_3O_4(110) surface. Therefore, Co_3O_4 with exposed (110) facet is predicted as an excellent catalyst for ethylene hydrogenation.

  9. Unraveling the facet-dependent and oxygen vacancy role for ethylene hydrogenation on Co{sub 3}O{sub 4} (110) surface: A DFT+U study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong-Chao; Pan, Lun; Lu, Jinhui; Song, Jiajia; Li, Zheng; Zhang, Xiangwen; Wang, Li [Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University (China); Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Zou, Ji-Jun, E-mail: jj_zou@tju.edu.cn [Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University (China); Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2017-04-15

    Highlights: • The mechanism of ethylene hydrogenation on perfect and oxygen defective Co{sub 3}O{sub 4}(110) is investigated by using DFT + U. • Oxygen vacancy promotes ethylene hydrogenation thermodynamically and kinetically. • The Co3O4 (110) facet is more active than the (111) one for ethylene hydrogenation. - Abstract: Crystal facet engineering and defect engineering are both critical strategies to improve the catalytic hydrogenation performance of catalyst. Herein, ethylene hydrogenation on the perfect and oxygen defective Co{sub 3}O{sub 4}(110) surfaces has been studied by using periodic density functional theory calculations. The results are compared with that on Co{sub 3}O{sub 4}(111) surface to clarify the problem of which facet for Co{sub 3}O{sub 4} is more reactive, and to illuminate the role of oxygen vacancy. The low oxygen vacancy formation energy suggests that Co{sub 3}O{sub 4}(110) surface with defective site is easily formed. The whole mechanism of H{sub 2} dissociation and stepwise hydrogenation of ethylene to ethane is examined, and the most favorable pathway is heterolytic dissociation of H{sub 2} follows two stepwise hydrogenation of ethylene process. The results show that ethyl hydrogenation to ethane on perfect Co{sub 3}O{sub 4}(110) surface is the rate limiting step with an activation energy of 1.19 eV, and the presence of oxygen vacancy strongly reduces the activation energies of main elementary steps, and the activation energy of rate limiting step is only 0.47 eV. Compared with that on Co{sub 3}O{sub 4}(111), ethylene hydrogenation is preferred on Co{sub 3}O{sub 4}(110) surface. Therefore, Co{sub 3}O{sub 4} with exposed (110) facet is predicted as an excellent catalyst for ethylene hydrogenation.

  10. Interaction of hydrogen and oxygen with continuous or granular films of palladium

    Energy Technology Data Exchange (ETDEWEB)

    Mikhalenko, I.I.; Prokopov, A.M.; Yagodovskii, V.D.

    1986-03-01

    The authors use desorption and conductometric methods in establishing the existence of three species of adsorbed hydrogen on continuous Pd films and two species on Pd films with a granular structure. Preoxidation of the surface of the continuous films does not affect the rate or kinetic order of hydrogen sorption; oxidation/reduction treatment changes these parameters, but the magnitude of Edes of hydrogen remains unchanged.

  11. Lanthanide ions (III) as sensitizers of melatonin oxidation in reaction mixtures providing reactive species of oxygen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Małgorzata, E-mail: mkaczmar@amu.edu.pl

    2015-06-15

    Chemiluminescence (CL) of the reactive systems providing strong oxidants (reactive species of oxygen and nitrogen) containing lanthanide ions (III) and melatonin, was studied. Kinetic curves of emission decay and spectral distributions of chemiluminescence were obtained. Analysis of differences in the intensity of chemiluminescence and CL spectra proved that excitation of Tb(III) and Dy(III) ions takes place with the energy transfer from the products of melatonin oxidation: N{sup 1}-acetyl-N{sup 2}-formyl-5-methoxykynuramine (AFMK) and N{sup 1}-acetyl-5-methoxykynuramine (AMK) to the lanthanide ions. In the system Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) a linear correlation was established between the integrated CL intensity and melatonin concent. - Highlights: • Chemiluminescence (CL) of melatonin (Mel) oxidation by reactive species of oxygen and nitrogen. • Tb(III) and Dy(III) ions as sensitizers of a melatonin oxidation process. • New CL method for determination of melatonin in pharmaceutical preparations based on CL of Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) system.

  12. Subtle differences in the hydrogen bonding of alcohol to divalent oxygen and sulfur

    DEFF Research Database (Denmark)

    Du, Lin; Tang, Shanshan; Hansen, Anne Schou

    2017-01-01

    complexes are more stable and form stronger hydrogen bonds compared to complexes with MeOH and EtOH, which are comparable, and only for the stronger hydrogen bond donor (TFE) are the small differences in acceptor molecules highlighted. The equilibrium constant for complex formation was determined from......The Osingle bondH⋯O and Osingle bondH⋯S hydrogen bonds were investigated by gas phase FTIR spectroscopy of alcohol–dimethylether and alcohol–dimethylsulfide complexes, with alcohols of increasing hydrogen bond donor strength; methanol (MeOH), ethanol (EtOH) and 2,2,2-trifluoroethanol (TFE). The TFE...

  13. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts.

    Science.gov (United States)

    Li, Jiang; Liu, Jun-Ling; Zhou, Hong-Jun; Fu, Yao

    2016-06-08

    Iron-based heterogeneous catalysts, which were generally prepared by pyrolysis of iron complexes on supports at elevated temperature, were found to be capable of catalyzing the transfer hydrogenation of furfural (FF) to furfuryl alcohol (FFA). The effects of metal precursor, nitrogen precursor, pyrolysis temperature, and support on catalytic performance were examined thoroughly, and a comprehensive study of the reaction parameters was also performed. The highest selectivity of FFA reached 83.0 % with a FF conversion of 91.6 % under the optimal reaction condition. Catalyst characterization suggested that iron cations coordinated by pyridinic nitrogen functionalities were responsible for the enhanced catalytic activity. The iron catalyst could be recycled without significant loss of catalytic activity for five runs, and the destruction of the nitrogen-iron species, the presence of crystallized Fe2 O3 phase, and the pore structure change were the main reasons for catalyst deactivation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Polyol synthesis in Aspergillus niger : influence of oxygen availability, carbon and nitrogen sources on the metabolism

    DEFF Research Database (Denmark)

    Diano, Audrey; Bekker-Jensen, S; Dynesen, Jens Østergaard

    2006-01-01

    Polyol production has been studied in Aspergillus niger under different conditions. Fermentations have been run using high concentration of glucose or xylose as carbon source and ammonium or nitrate as nitrogen source. The growth of biomass, as freely dispersed hyphae, led to an increase of medium...

  15. Thermochemical and mechanistic aspects of removal of sulphur, nitrogen and oxygen from petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1983-11-01

    The order of relative rates of hydrodesulphurization (HDS), hydrodenitrogenation (HDN) and hydrodeoxygenation (HDO) depends on hydrogen pressure and may be estimated on the basis of chemical bond strengths. At near atmospheric pressure the rate of HDS is highest, followed by HDO and HDN. Under high pressures, the rate of HDS is again the highest followed by HDN and HDO.

  16. A comparison of hydrogen-bonded and van der Waals isomers of phenolṡṡnitrogen and phenolṡṡcarbon monoxide: An ab initio study

    Science.gov (United States)

    Chapman, Darren M.; Müller-Dethlefs, Klaus; Peel, J. Barrie

    1999-08-01

    The hydrogen-bonded and van der Waals isomers of phenolṡṡnitrogen and phenolṡṡcarbon monoxide in their neutral electronic (S0) and cation ground state (D0) were studied using ab initio HF/6-31G*, MP2/6-31G*, and B3LYP/6-31G* methods. The hydrogen-bonded isomers have the ligand bound via the hydroxyl group of the phenol ring, while the van der Waals isomers studied have the ligand located above the aromatic ring. For both complexes, the hydrogen-bonded isomer was found to be the most stable form for both the S0 and the D0 states. For phenolṡṡcarbon monoxide, twice as many isomers as compared to phenolṡṡnitrogen were found. The hydrogen-bonded isomer with the carbon end bonded to the hydroxyl group was the most stable structure for both the S0 and the D0 states.

  17. Simulation of Oxygen Disintegration and Mixing With Hydrogen or Helium at Supercritical Pressure

    Science.gov (United States)

    Bellan, Josette; Taskinoglu, Ezgi

    2012-01-01

    -correction should be on reconstructing the primitive variable gradients rather than their coefficients, and proposes the approximate deconvolution model (ADM) as an effective means of flow field reconstruction for LES heat flux calculation. Further, results for a study conducted for temporal mixing layers initially containing oxygen in the lower stream, and hydrogen or helium in the upper stream, show that, for any LES, including SGS-flux models (constant-coefficient Gradient or Scale-Similarity models, dynamic-coefficient Smagorinsky/Yoshizawa or mixed Smagorinsky/Yoshizawa/Gradient models), the inclusion of the q-correction in the LES leads to the theoretical maximum reduction of the SGS heat-flux difference. The remaining error in modeling this new subgrid term is thus irreducible.

  18. Spillover Phenomena and Its Striking Impacts in Electrocatalysis for Hydrogen and Oxygen Electrode Reactions

    Directory of Open Access Journals (Sweden)

    Georgios D. Papakonstantinou

    2011-01-01

    striking target issue of the present paper, has been shown to be the superior for substantiation of the revertible cell assembly for spontaneous reversible alterpolar interchanges between PEMFC and WE. The main target of the present thorough review study has been to throw some specific insight light on the overall spillover phenomena and their effects in electrocatalysis of oxygen and hydrogen electrode reactions from diverse angles of view and broad contemporary experimental methods and approaches (XPS, FTIR, DRIFT, XRD, potentiodynamic spectra, UHRTEM.

  19. Communication: A novel method for generating molecular mixtures at extreme conditions: The case of hydrogen and oxygen

    International Nuclear Information System (INIS)

    Pravica, Michael; Sneed, Daniel; White, Melanie; Wang, Yonggang

    2014-01-01

    We have successfully created a segregated mixture of hydrogen and oxygen at high pressure in a diamond anvil cell using hard x-ray photochemistry. A keyhole (two holes connected by an opening) sample chamber was created in a metallic gasket to support two segregated powders of ammonia borane and potassium perchlorate, respectively, in each hole at a pressure of ∼5.0 GPa. Both holes were separately irradiated with synchrotron hard x-rays to release molecular oxygen and molecular hydrogen, respectively. Upon irradiation of the first KClO 4 -containing hole, solid reddish-orange O 2 appeared in the region of irradiation and molecular oxygen was found to diffuse throughout the entire sample region. The second ammonia borane-containing hole was then irradiated and H 2 was observed to form via Raman spectroscopy. Water also was observed in the ammonia borane-containing hole and possibly (in the form of ice VII) in the second hole. This unique experiment demonstrates the ability to easily create solid mixtures of simple molecular systems via x-ray irradiation and then react them via further irradiation which will aid the study of chemistry under extreme conditions

  20. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei

    2017-11-23

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction, transmission electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and H2 temperature programmed reduction. In comparison with Cu-SBA-15 based catalysts, Ga promoted catalysts prepared by the urea deposition method (CuGa/SBA-15-UDP) was found active and selective for CO2 hydrogenation to oxygenates. The use of Ga as the promoter showed increased acidic sites as confirmed by the NH3-TPD, Pyridine-IR and 2,6-lutidine-IR studies. The favorable effect of Ga on CO2 conversion and selectivity to oxygenate may come from the strong interaction of Ga with silica, which is responsible for the enhanced metal surface area, formation of nanocomposite and metal dispersion. Notably, incorporation of Ga to Cu/SiO2 showed a several-fold higher rate for methanol formation (13.12 mol/gCu·sec) with a reasonable rate for the DME formation (2.15 mol/gCu·sec) as compared to those of Cu/SiO2 catalysts.

  1. Development of Bi-phase sodium-oxygen-hydrogen chemical equilibrium calculation program (BISHOP) using Gibbs free energy minimization method

    International Nuclear Information System (INIS)

    Okano, Yasushi

    1999-08-01

    In order to analyze the reaction heat and compounds due to sodium combustion, the multiphase chemical equilibrium calculation program for chemical reaction among sodium, oxygen and hydrogen is developed in this study. The developed numerical program is named BISHOP; which denotes Bi-Phase, Sodium - Oxygen - Hydrogen, Chemical Equilibrium Calculation Program'. Gibbs free energy minimization method is used because of the special merits that easily add and change chemical species, and generally deal many thermochemical reaction systems in addition to constant temperature and pressure one. Three new methods are developed for solving multi-phase sodium reaction system in this study. One is to construct equation system by simplifying phase, and the other is to expand the Gibbs free energy minimization method into multi-phase system, and the last is to establish the effective searching method for the minimum value. Chemical compounds by the combustion of sodium in the air are calculated using BISHOP. The Calculated temperature and moisture conditions where sodium-oxide and hydroxide are formed qualitatively agree with the experiments. Deformation of sodium hydride is calculated by the program. The estimated result of the relationship between the deformation temperature and pressure closely agree with the well known experimental equation of Roy and Rodgers. It is concluded that BISHOP can be used for evaluated the combustion and deformation behaviors of sodium and its compounds. Hydrogen formation condition of the dump-tank room at the sodium leak event of FBR is quantitatively evaluated by BISHOP. It can be concluded that to keep the temperature of dump-tank room lower is effective method to suppress the formation of hydrogen. In case of choosing the lower inflammability limit of 4.1 mol% as the hydrogen concentration criterion, formation reaction of sodium hydride from sodium and hydrogen is facilitated below the room temperature of 800 K, and concentration of hydrogen

  2. Simulation of oxygen-steam gasification with CO{sub 2} adsorption for hydrogen production from empty fruit bunch

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M.M.; Inayat, A.; Yusup, S.; Sabil, K.M. [Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh (Malaysia). Center of Biofuel and Biochemical, Green Technology Mission Oriented Research

    2011-07-01

    The world is facing a critical situation in which fossil fuel reservoir is depleting while the demand for energy is increasing worldwide. Scientists globally have shifted their effort towards developing alternative sustainable fuels and quite a number of technologies have been discovered. One potential alternative solution is to produce energy from hydrogen as its energy content per kilogram is three times larger than that of gasoline. The combustion of hydrogen produces water instead of greenhouse gases, along with energy, making hydrogen even more attractive as a clean fuel. Current study focuses on the process development of hydrogen production via gasification of Empty Fruit Bunch (EFB) with in-situ adsorption of CO{sub 2} based on equilibrium modeling approach. The process flowsheet simulation is performed using iCON, PETRONAS process simulation software. This work investigates the influence of the temperature within the range of 600 to 1000 C and steam/biomass ratio between 0.1 and 1.0 on the hydrogen yield and product gas composition. The importance of different reactions involved in the system is also discussed. Using the simulation, the optimal operating conditions are predicted to be at 800 C and steam/biomass ratio of 0.6. Hydrogen yield of 149g kg{sup -1} of EFB can be obtained at 1000 C. The preliminary economic potential per annum of the oxygen-steam gasification system coupled with in situ CO{sub 2} adsorption is RM 6.64 x 10{sup 6} or approximately USD 2 x 10{sup 6}.

  3. Hydrogen-Mediated Nitrogen Clustering in Dilute III-V Nitrides

    Science.gov (United States)

    Du, Mao-Hua; Limpijumnong, Sukit; Zhang, S. B.

    2006-08-01

    First-principles calculation reveals multi-N clusters to be the ground states for hydrogenated N in dilute III-V nitrides. While hydrogenation of a single N, forming H2*(N), can relax the large strain induced by the size-mismatched N, formation of the clusters will relax the strain even more effectively. This suppresses the formation of H2*(N), the existence of which has recently been debated. More importantly, postgrowth dehydrogenation of the N-H clusters provides an explanation to the observed metastable bare N clusters in GaAsN grown by gas-source molecular beam epitaxy or metal-organic chemical vapor deposition.

  4. Oxidation and Destruction of Polyvinyl Alcohol under the Combined Action of Ozone-Oxygen Mixture and Hydrogen Peroxide

    Science.gov (United States)

    Zimin, Yu. S.; Kutlugil'dina, G. G.; Mustafin, A. G.

    2018-03-01

    The oxidative transformations of a polyvinyl alcohol in aqueous solutions are studied under the simultaneous action of the two oxidizing agents, an ozone-oxygen mixture and a hydrogen peroxide. Effective parameters a and b, which characterize the first and second channels of carboxyl group accumulation, respectively, grow linearly upon an increase in the initial concentration of H2O2. After the temperature dependence of a and b parameters (331-363 K) in a PVA + O3 + O2 + H2O2 + H2O reaction system is studied, the parameters of the activation of COOH group accumulation are found (where PVA is a polyvinyl alcohol). New data on the effect process conditions (length of oxidation, temperature, and hydrogen peroxide concentration) have on the degree of destructive transformations of polyvinyl alcohol in the investigated reaction system are obtained.

  5. Oxygen amendment on growth and nitrogen-use efficiency of flooded Italian Basil

    Science.gov (United States)

    Flooding is a frequent and often unavoidable cause of stress, in vegetable production in Florida. Flooding results in hypoxia i.e., oxygen deficiency. This study was conducted with traditional Italian basil (Ocimum basilicum L.), cv. Genovese OG, treated with either a fast- or slow-release solid oxy...

  6. Ruthenium supported on nitrogen-doped carbon nanotubes for the oxygen reduction reaction in alkaline

    CSIR Research Space (South Africa)

    Mabena, LF

    2012-10-01

    Full Text Available between 0 and 10 wt.%. The activity of the prepared nanocatalysts toward the oxygen reduction reaction (ORR) was characterized using the rotating disk electrode and voltammetry techniques. The ORR activity was higher at lower concentrations of Ru on N...

  7. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water.

    Directory of Open Access Journals (Sweden)

    Takeki Hamasaki

    Full Text Available Electrochemically reduced water (ERW is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles.

  8. Water-bearing explosive containing nitrogen-base salt

    Energy Technology Data Exchange (ETDEWEB)

    Dunglinson, C.; Lyerly, W.M.

    1968-10-21

    A water-bearing explosive composition consists of an oxidizing salt component, a fuel component, and water. A sensitizer is included having an oxygen balance more positive than -150%, and consisting of a salt of an inorganic oxidizing acid and of an acyclic nitrogen base having no more than 2 hydrogen atoms bonded to the basic nitrogen and up to 3 carbons per basic nitrogen, and/or of a phenyl amine. 41 claims.

  9. Characterization of narrow micropores in almond shell biochars by nitrogen, carbon dioxide, and hydrogen adsorption

    Science.gov (United States)

    Characterization of biochars usually includes surface area and pore volume determination by nitrogen adsorption. In this study, we show that there is a substantial pore volume in biochars created via slow pyrolysis from low- and high-ash almond shells that cannot be characterized in this fashion due...

  10. Nitrogen ligation to manganese in the photosynthetic oxygen-evolving complex: Continuous-wave and pulsed EPR studies of Photosystem II particles containing 14N or 15N

    International Nuclear Information System (INIS)

    DeRose, V.J.; Yachandra, V.K.; McDermott, A.E.; Britt, R.D.; Sauer, K.; Klein, M.P.

    1991-01-01

    The possibility of nitrogen ligation to the Mn in the oxygen-evolving complex from photosystem II was investigated with electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) spectroscopies using 14 N- and 15 N-labeled preparations. Oxygen-evolving preparations were isolated from a thermophilic cyanobacterium, Synechococcus sp., grown on a medium containing either 14 NO 3 - or 15 NO - 3 as the sole source of nitrogen. The substructure on the multiline EPR signal, which arises from Mn in the S 2 state of the enzyme, was measured with continuous-wave EPR. No changes were detected in the substructure peak positions upon substitution of 15 N for 14 N, indicating that this substructure is not due to superhyperfine coupling from nitrogen ligands. To detect potential nitrogen ligands with superhyperfine couplings of lesser magnitude than could be observed with conventional EPR methods, electron spin-echo envelope modulation experiments were also performed on the multiline EPR signal. The Fourier transform of the light-minus-dark time domain ESEEM data shows a peak at 4.8 MHz in 14 N samples which is absent upon substitution with 15 N. This gives unambiguous evidence for weak hyperfine coupling of nitrogen to the Mn of the oxygen-evolving complex. Possible origins of this nitrogen interaction are discussed

  11. Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions

    Science.gov (United States)

    Zhang, Rui; El-Refaei, Sayed M.; Russo, Patrícia A.; Pinna, Nicola

    2018-05-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) play key roles in the conversion of energy derived from renewable energy sources into chemical energy. Efficient, robust, and inexpensive electrocatalysts are necessary for driving these reactions at high rates at low overpotentials and minimize energetic losses. Recently, electrocatalysts derived from hybrid metal phosphonate compounds have shown high activity for the HER or OER. We review here the utilization of metal phosphonate coordination networks and metal-organic frameworks as precursors/templates for transition-metal phosphides, phosphates, or oxyhydroxides generated in situ in alkaline solutions, and their electrocatalytic performance in HER or OER.

  12. Reactions of plutonium dioxide with water and oxygen-hydrogen mixtures: Mechanisms for corrosion of uranium and plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, John M.; Allen, Thomas H.; Morales, Luis A.

    1999-06-18

    Investigation of the interactions of plutonium dioxide with water vapor and with an oxygen-hydrogen mixture show that the oxide is both chemically reactive and catalytically active. Correspondence of the chemical behavior with that for oxidation of uranium in moist air suggests that similar catalytic processes participate in the mechanism of moisture-enhanced corrosion of uranium and plutonium. Evaluation of chemical and kinetic data for corrosion of the metals leads to a comprehensive mechanism for corrosion in dry air, water vapor, and moist air. Results are applied in confirming that the corrosion rate of Pu in water vapor decreases sharply between 100 and 200 degrees C.

  13. Closed-Cycle Hydrogen-Oxygen Regenerative Fuel Cell at the NASA Glenn Research Center-An Update

    Science.gov (United States)

    Bents, David J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2008-01-01

    The closed cycle hydrogen-oxygen proton exchange membrane (PEM) regenerative fuel cell (RFC) at the NASA Glenn Research Center has demonstrated multiple back-to-back contiguous cycles at rated power and round-trip efficiencies up to 52 percent. It is the first fully closed cycle RFC ever demonstrated. (The entire system is sealed; nothing enters or escapes the system other than electrical power and heat.) During fiscal year fiscal year (FY) FY06 to FY07, the system s numerous modifications and internal improvements focused on reducing parasitic power, heat loss, and noise signature; increasing its functionality as an unattended automated energy storage device; and in-service reliability.

  14. A mathematical model of the maximum power density attainable in an alkaline hydrogen/oxygen fuel cell

    Science.gov (United States)

    Kimble, Michael C.; White, Ralph E.

    1991-01-01

    A mathematical model of a hydrogen/oxygen alkaline fuel cell is presented that can be used to predict the polarization behavior under various power loads. The major limitations to achieving high power densities are indicated and methods to increase the maximum attainable power density are suggested. The alkaline fuel cell model describes the phenomena occurring in the solid, liquid, and gaseous phases of the anode, separator, and cathode regions based on porous electrode theory applied to three phases. Fundamental equations of chemical engineering that describe conservation of mass and charge, species transport, and kinetic phenomena are used to develop the model by treating all phases as a homogeneous continuum.

  15. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    Science.gov (United States)

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  16. Hydrogen Radicals, Nitrogen Radicals, and the Production of Ozone in the Middle and Upper Troposphere

    Science.gov (United States)

    Bui, T. P.

    1997-01-01

    The concentrations of hydrogen radicals, OH and HO2, in the middle and upper troposphere were measured simultaneously with those of NO, O3,CO, H20, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field.

  17. Consumption and efficiency of a passenger car with a hydrogen/oxygen PEFC based hybrid electric drivetrain

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Dietrich, P.; Tsukada, A.; Koetz, R.; Freunberger, S.A. [Paul Scherrer Institut, Electrochemistry Laboratory, CH-5232 Villigen PSI (Switzerland); Paganelli, G.; Laurent, D.; Varenne, P.; Delfino, A.; Magne, P.A.; Walser, D.; Olsommer, D. [Conception et Developpement Michelin, Route Andre-Piller 30, CH-1762 Givisiez (Switzerland)

    2007-08-15

    The main factors for reducing the consumption of a vehicle are reduction of curb weight, air drag and increase in the drivetrain efficiency. Highly efficient drivetrains can be developed based on PEFC technology and curb weight may be limited by an innovative vehicle construction. In this paper, data on consumption and efficiency of a four-place passenger vehicle with a curb weight of 850 kg and an H{sub 2}/O{sub 2} fed PEFC/Supercap hybrid electric powertrain are presented. Hydrogen consumption in the New European Driving Cycle is 0.67 kg H{sub 2}/100 km, which corresponds to a gasoline equivalent consumption of 2.5 l/100 km. When including the energy needed to supply pure oxygen, the calculated consumption increases from 0.67 to 0.69-0.79 kg H{sub 2}/100 km, depending on the method of oxygen production. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  18. Electrocatalytic oxygen reduction and hydrogen evolution reactions on phthalocyanine modified electrodes: Electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif, E-mail: akoca@eng.marmara.edu.tr [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey); Kalkan, Ayfer; Bayir, Zehra Altuntas [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey)

    2011-06-30

    Highlights: > Electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines were performed. > The presence of O{sub 2} influences both oxygen reduction reaction and the electrochemical behaviors of the complexes. > Homogeneous catalytic ORR process occurs via an 'inner sphere' chemical catalysis process. > CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. - Abstract: This study describes electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring of the electrocatalytic reduction of molecular oxygen and hydronium ion on the phthalocyanine-modified electrodes. For this purpose, electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines (MPc) bearing tetrakis-[4-((4'-trifluoromethyl)phenoxy)phenoxy] groups were performed. While CoPc gives both metal-based and ring-based redox processes, H{sub 2}Pc, ZnPc and CuPc show only ring-based electron transfer processes. In situ electrocolorimetric method was applied to investigate the color of the electrogenerated anionic and cationic forms of the complexes. The presence of O{sub 2} in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes, which indicate electrocatalytic activity of the complexes for the oxygen reduction reaction. Perchloric acid titrations monitored by voltammetry represent possible electrocatalytic activities of the complexes for hydrogen evolution reaction. CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. The nature of the metal center changes the electrocatalytic activities for hydrogen evolution reaction in aqueous solution. Although CuPc has an inactive metal center, its electrocatalytic activity is recorded more than CoPc for H{sup +} reduction in aqueous

  19. Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production

    Science.gov (United States)

    Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu

    2014-12-01

    Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications.

  20. The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2

    Science.gov (United States)

    Salawitch, R. J.; Wofsy, S. C.; Wennberg, P. O.; Cohen, R. C.; Anderson, J. G.; Fahey, D. W.; Gao, R. S.; Keim, E. R.; Woodbridge, E. L.; Stimpfle, R. M.; hide

    1994-01-01

    In situ measurements of hydrogen, nitrogen, and chlorine radicals obtained through sunrise and sunset in the lower stratosphere during SPADE are compared to results from a photochemical model constrained by observed concentrations of radical precursors and environmental conditions. Models allowing for heterogeneous hydrolysis of N205 on sulfate aerosols agree with measured concentrations of NO, NO2, and ClO throughout the day, but fail to account for high concentrations of OH and H02 observed near sunrise and sunset. The morning burst of [OH] and [HO2] coincides with the rise of [NO] from photolysis of N02, suggesting a new source of HO, that photolyzes in the near UV (350 to 400 nm) spectral region. A model that allows for the heterogeneous production of HN02 results in an excellent simulation of the diurnal variations of [OH] and [HO2].

  1. Unravelling chemical priming machinery in plants: the role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement.

    Science.gov (United States)

    Antoniou, Chrystalla; Savvides, Andreas; Christou, Anastasis; Fotopoulos, Vasileios

    2016-10-01

    Abiotic stresses severely limit crop yield and their detrimental effects are aggravated by climate change. Chemical priming is an emerging field in crop stress management. The exogenous application of specific chemical agents before stress events results in tolerance enhancement and reduction of stress impacts on plant physiology and growth. However, the molecular mechanisms underlying the remarkable effects of chemical priming on plant physiology remain to be elucidated. Reactive oxygen, nitrogen and sulfur species (RONSS) are molecules playing a vital role in the stress acclimation of plants. When applied as priming agents, RONSS improve stress tolerance. This review summarizes the recent knowledge on the role of RONSS in cell signalling and gene regulation contributing to abiotic stress tolerance enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Fixed-nitrogen loss associated with sinking zooplankton carcasses in a coastal oxygen minimum zone (Golfo Dulce, Costa Rica)

    DEFF Research Database (Denmark)

    Stief, Peter; Lundgaard, Ann Sofie Birch; Morales Ramirez, Alvaro

    2017-01-01

    Oxygen minimum zones (OMZs) in the ocean are of key importance for pelagic fixed-nitrogen loss (N-loss) through microbial denitrification and anaerobic ammonium oxidation (anammox). Recent studies document that zooplankton is surprisingly abundant in and around OMZs and that the microbial community...... associated with carcasses of a large copepod species mediates denitrification. Here, we investigate the complex N-cycling associated with sinking zooplankton carcasses exposed to the steep O2 gradient in a coastal OMZ (Golfo Dulce, Costa Rica). 15N-stable-isotope enrichment experiments revealed...... that the carcasses of abundant copepods and ostracods provide anoxic microbial hotspots in the pelagic zone by hosting intense anaerobic N-cycle activities even in the presence of ambient O2. Carcass-associated anaerobic N-cycling was clearly dominated by dissimilatory nitrate reduction to ammonium (DNRA) at up...

  3. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    Science.gov (United States)

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs).

  4. Polycyclic aromatic hydrocarbons and molecular hydrogen in oxygen-rich planetary nebulae: the case of NGC 6720.

    Science.gov (United States)

    Cox, N L J; Pilleri, P; Berné, O; Cernicharo, J; Joblin, C

    2016-02-11

    Evolved stars are primary sources for the formation of polycyclic aromatic hydrocarbons (PAHs) and dust grains. Their circumstellar chemistry is usually designated as either oxygen-rich or carbon-rich, although dual-dust chemistry objects, whose infrared spectra reveal both silicate- and carbon-dust features, are also known. The exact origin and nature of this dual-dust chemistry is not yet understood. Spitzer -IRS mid-infrared spectroscopic imaging of the nearby, oxygen-rich planetary nebula NGC 6720 reveals the presence of the 11.3 μ m aromatic (PAH) emission band. It is attributed to emission from neutral PAHs, since no band is observed in the 7-8 μ m range. The spatial distribution of PAHs is found to closely follow that of the warm clumpy molecular hydrogen emission. Emission from both neutral PAHs and warm H 2 is likely to arise from photo-dissociation regions associated with dense knots that are located within the main ring. The presence of PAHs together with the previously derived high abundance of free carbon (relative to CO) suggest that the local conditions in an oxygen-rich environment can also become conducive to in-situ formation of large carbonaceous molecules, such as PAHs, via a bottom-up chemical pathway. In this scenario, the same stellar source can enrich the interstellar medium with both oxygen-rich dust and large carbonaceous molecules.

  5. Benefits of oxygen and nitrogen plasma treatment in Vero cell affinity to poly(lactide-co-glycolide acid

    Directory of Open Access Journals (Sweden)

    Andrea Rodrigues Esposito

    2013-01-01

    Full Text Available Cell adhesion on materials surface is critical because this phenomenon occurs before other events, as cell spreading, cell migration and cell differentiation. it is commonly accepted that the adhesion of cells on solid substrate is influenced by several substratum surface properties, such as wettability, surface charge, roughness and topography. plasma technique is a convenient method for modifying surface properties of materials without affecting physical properties. in this study, poly(lactide-co-glycolide, plga, membranes were modified by oxygen and nitrogen plasma to improve polymer hydrophilicity and verify their effect on vero cells culture. the plga membranes, which were characterized by sem and contact angle, showed increased surface rugosity and narrower contact angles. cell adhesion, cytotoxicity assay, sem and cytochemistry analysis showed that plasma treatment was beneficial to cell growth by improving cell-polymer interaction. Cell adhesion on materials surface is critical because this phenomenon occurs before other events, as cell spreading, cell migration and cell differentiation. It is commonly accepted that the adhesion of cells on solid substrate is influenced by several substratum surface properties, such as wettability, surface charge, roughness and topography. Plasma technique is a convenient method for modifying surface properties of materials without affecting physical properties. In this study, poly(lactide-co-glycolide, PLGA, membranes were modified by oxygen and nitrogen plasma to improve polymer hydrophilicity and verify their effect on Vero cells culture. The PLGA membranes, which were characterized by SEM and contact angle, showed increased surface rugosity and narrower contact angles. Cell adhesion, cytotoxicity assay, SEM and cytochemistry analysis showed that plasma treatment was beneficial to cell growth by improving cell-polymer interaction.

  6. The Oxygen and Nitrogen Abundance of Leo A and GR 8

    Science.gov (United States)

    van Zee, L.; Skillman, E. D.; Haynes, M. P.

    1999-05-01

    Gas phase abundances are one of the best measures of the intrinsic metallicity of low mass galaxies. We recently obtained low resolution long slit optical spectra of several HII regions in Leo A and GR 8 with the Palomar 5m telescope. Previous studies of the resolved stellar population of Leo A indicated that the stars have metallicities approximately 2% of solar (Tolstoy et al. 1998). Preliminary analysis of the HII region spectra, and that of a planetary nebula, indicates that the gas phase oxygen abundance of Leo A is approximately 3% of solar. This confirms the result of Skillman et al. (1989), who also derived an oxygen abundance for Leo A from a planetary nebula. Similarly, for GR 8 we find a mean oxygen abundance of 5% of solar. For all the HII regions, the derived log(N/O) is -1.5 +/- 0.1, as has been found for other low metallicity systems. These new observations of multiple HII regions in Leo A and GR 8 confirm that metals in low mass galaxies are well mixed.

  7. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    Science.gov (United States)

    Bates, Michael

    electrolyte. The HER kinetics of numerous binary & ternary Ni-alloys and composite Ni/metal-oxide/C samples were evaluated in aqueous 0.1 M KOH electrolyte. Furthermore a model of the double layer interface is proposed, which helps explain the observed ensemble effect in the presence of AEI. In Chapter 3, Ni-Fe and Ni-Fe-Co mixed-metal-oxide (MMO) films were investigated for oxygen evolution reaction (OER) activity in 0.1M KOH on high surface area Raney-Nickel supports. During investigations of MMO activity, aniline was identified as a useful "capping agent" for synthesis of high-surface area MMO-polyaniline (PANI) composite materials. A Ni-Fe-Co/PANI-Raney-Ni catalyst was developed which exhibits enhanced mass-activity compared to state-of-the-art Ni-Fe OER electrocatalysts reported to date. The morphology of the MMO catalyst film on PANI/Raney-Ni support provides excellent dispersion of active-sites and should maintain high active-site utilization for catalyst loading on gas-diffusion electrodes. In Chapter 4, the de-activation of reversible-hydrogen electrode catalysts was investigated and the development of a Pt-Ir-Nx/C catalyst is reported, which exhibits significantly increased stability in the HBr/Br 2 electrolyte. In contrast a Pt-Ir/C catalyst exhibited increased tolerance to high-voltage cycling and in particular showed recovery of electrocatalytic activity after reversible de-activation (presumably from bromide adsorption and subsequent oxidative bromide stripping). Under the harshest testing conditions of high-voltage cycling or exposure to Br2 the Pt-based catalyst showed a trend in stability: Pt < Pt-Ir < Pt-Ir-Nx. (Abstract shortened by UMI.).

  8. Investigation of hydrogen peroxide reduction reaction on graphene and nitrogen doped graphene nanoflakes in neutral solution

    Science.gov (United States)

    Amirfakhri, Seyed Javad; Binny, Dustin; Meunier, Jean-Luc; Berk, Dimitrios

    2014-07-01

    H2O2 reduction reaction (HPRR) is studied on both graphene (GNF) and nitrogen doped graphene nanoflakes in 0.1 M Na2SO4 solution by rotating disk electrode. The XPS results indicate that N-doped graphene nanoflakes with high nitrogen content, 32 at%N (N-GNF32), are synthesised successfully by an inductively-coupled thermal plasma (ICP) reactor. Pyridinic, pyrrolic and graphitic N species contribute up to 67% of the total nitrogen. Kinetic parameters such as Tafel slope and stoichiometric number suggest that HPRR occurs by the same mechanism on both GNF and N-GNF32. Although nitrogen does not change the mechanism of HPRR, the results indicate that the reaction rate of H2O2 reduction is enhanced on N-GNF32. The exchange current density of H2O2 reduction based on the active surface area of N-GNF32 is (8.3 ± 0.3) × 10-9 A cm-2, which is 6 times higher than the value determined for GNF. The apparent number of electrons involved in the process suggests that H2O2 decomposition competes with H2O2 reduction on both catalysts. Evaluation of the apparent heterogeneous reaction rate constant and the Tafel slope indicate that simultaneous reduction of O2 and H2O2 is negligible on the N-GNF32. On the other hand, the reduction of O2 and H2O2 occurs simultaneously on the GNF surface.

  9. Simultaneous reduction and nitrogen functionalization of graphene oxide using lemon for metal-free oxygen reduction reaction

    Science.gov (United States)

    Begum, Halima; Ahmed, Mohammad Shamsuddin; Cho, Sung; Jeon, Seungwon

    2017-12-01

    Inspire by the vision of finding a simple and green method for simultaneous reduction and nitrogen (N)-functionalization of graphene oxide (GO), a N-rich reduced graphene oxide (rGO) has been synthesized through a facile and ecofriendly hydrothermal strategy while most of the existing methods are involving with multiple steps and highly toxic reducing agents that are harmful to human health and environment. In this paper, the simultaneous reduction and N-functionalization of GO using as available lemon juice (denoted as Lem-rGO) for metal-free electrocatalysis towards oxygen reduction reaction (ORR) is described. The proposed method is based on the reduction of GO using of the reducing and the N-precursor capability of ascorbic acid and citric acid as well as the nitrogenous compounds, respectively, that containing in lemon juice. The resultant Lem-rGO has higher reduction degree, higher specific surface area and better crystalline nature with N-incorporation than that of well investigated ascorbic acid and citric acid treated rGO. As a result, it shows better ORR electrocatalytic activity in respect to the improved onset potential, electron transfer rate and kinetics than those typical rGO catalysts. Moreover, it shows a significant tolerance to the anodic fuels and durability than the Pt/C during ORR.

  10. Nitrogen, Sulfur, and Oxygen Isotope Ratios of Animal- and Plant-Based Organic Fertilizers Used in South Korea.

    Science.gov (United States)

    Shin, Woo-Jin; Ryu, Jong-Sik; Mayer, Bernhard; Lee, Kwang-Sik; Kim, Insu

    2017-05-01

    Organic fertilizers are increasingly used in agriculture in Asia and elsewhere. Tracer techniques are desirable to distinguish the fate of nutrients added to agroecosystems with organic fertilizers from those contained in synthetic fertilizers. Therefore, we determined the nitrogen, sulfur, and oxygen isotope ratios of nitrogen- and sulfur-bearing compounds in animal- and plant-based organic fertilizers (ABOF and PBOF, respectively) used in South Korea to evaluate whether they are isotopically distinct. The δN values of total and organic nitrogen for ABOF ranged from +7 to +19‰ and were higher than those of PBOF (generally fertilizer compounds in the plant-soil-water system, whereas PBOFs have similar δN values to synthetic fertilizers. However, δO values for nitrate (δO) from organic fertilizer samples (fertilizers. The δS values of total sulfur, organic sulfur compounds (e.g., carbon-bonded sulfur and hydriodic acid-reducible sulfur), and sulfate for ABOFs yielded wide and overlapping ranges of +0.3 to +6.3, +0.9 to +7.2, and -2.6 to +14.2‰, whereas those for PBOFs varied from -3.4 to +7.7, +1.4 to +9.4, and -4.1 to +12.5‰, respectively, making it challenging to distinguish the fate of sulfur compounds from ABOF and PBOF in the environment using sulfur isotopes. We conclude that the δN values of ABOFs and the O values of organic fertilizers are distinct from those of synthetic fertilizers and are a promising tool for tracing the fate of nutrients added by organic fertilizers to agroecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Hydrogen-mediated Nitrogen Clustering in Dilute III-V Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Du, M.-H.; Limpijumnong, S.; Zhang, S. B

    2006-01-01

    First-principles calculation reveals multi-N clusters to be the ground states for hydrogenated N in dilute III-V nitrides. While hydrogenation of a single N, forming H*{sub 2}(N), can relax the large strain induced by the size-mismatched N, formation of the clusters will relax the strain even more effectively. This suppresses the formation of H*{sub 2}(N), the existence of which has recently been debated. More importantly, postgrowth dehydrogenation of the N-H clusters provides an explanation to the observed metastable bare N clusters in GaAsN grown by gas-source molecular beam epitaxy or metal-organic chemical vapor deposition.

  12. The Range of 1-3 keV Electrons in Solid Oxygen and Carbon Monoxide

    DEFF Research Database (Denmark)

    Oehlenschlæger, M.; Andersen, H.H.; Schou, Jørgen

    1985-01-01

    The range of 1-3 keV electrons in films of solid oxygen and carbon monoxide has been measured by a mirror substrate method. The technique used here is identical to the one previously used for range measurements in solid hydrogen and nitrogen. The range in oxygen is slightly shorter than that in n......The range of 1-3 keV electrons in films of solid oxygen and carbon monoxide has been measured by a mirror substrate method. The technique used here is identical to the one previously used for range measurements in solid hydrogen and nitrogen. The range in oxygen is slightly shorter than...

  13. Effect of relative humidity on the tribological properties of hydrogenated diamond-like carbon films in a nitrogen environment

    International Nuclear Information System (INIS)

    Li Hongxuan; Xu Tao; Wang Chengbing; Chen Jianmin; Zhou Huidi; Liu Huiwen

    2005-01-01

    Hydrogenated diamond-like carbon (DLC) films were deposited on Si (100) wafers by a plasma enhanced chemical vapour deposition technique using CH 4 plus Ar as the feedstock. The friction and wear properties of the resulting films under different relative humidities, ranging from 5% to 100%, in a nitrogen environment, were measured using a ball-on-disc tribometer, with Si 3 N 4 balls as the counterparts. The friction surfaces of the films and Si 3 N 4 balls were observed on a scanning electron microscope, and investigated by x-ray photoelectron spectroscopy. The results showed that the friction coefficient increased continuously from 0.025 to 0.09 with increase in relative humidity from 5% to 100%, while the wear rate of the films sharply decreased and reached a minimum at a relative humidity of 40%, then it increased with further increase of the relative humidity. The interruption of the transferred carbon-rich layer on the Si 3 N 4 ball, and the friction-induced oxidation of the films at higher relative humidity were proposed as the main reasons for the increase in the friction coefficient. Moreover, the oxidation and hydrolysis of the Si 3 N 4 ball at higher relative humidity, leading to the formation of a tribochemical film, which mainly consists of silica gel, on the friction surface, are also thought to influence the friction and wear behaviour of the hydrogenated DLC films

  14. Influence of oxygen and hydrogen treated graphene on cell adhesion in the presence or absence of fetal bovine serum

    International Nuclear Information System (INIS)

    Verdanova, Martina; Broz, Antonin; Kalbac, Martin; Kalbacova, Marie

    2012-01-01

    The influence of differently treated graphene on human osteoblasts after 2 h of incubation with regard to the presence/absence of fetal bovine serum (FBS) was investigated. Cell adhesion plays an important role in further cell fate and it is influenced by cell surrounding. It was found that treatment of graphene (by hydrogen or oxygen) does not play role in number of cells which adhere to substrate after 2 h of incubation. However, it is important for cell size - cells are larger on the hydrogen treated graphene than on the oxygen treated graphene. The presence of FBS is crucial for a type of interaction between cells and their substrate - in the presence of FBS, interactions are mediated by specific proteins and thus formation of focal adhesions (FAs) can occur. However, in the absence of FBS, a contact is carried out by non-specific bonds without FAs formation. It was observed that cells on graphene samples without FBS have star-like shape and larger area in contrast to cells adhering with FBS which have round shape and are smaller. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Study of the secondary electron energy spectrum of clean aluminium modification during oxygen adsorption, hydrogen adsorption or carbon segregation

    International Nuclear Information System (INIS)

    Pellerin, Francois

    1981-01-01

    The first part of this work is a review of both theoretical and experimental aspects of the fine structure appearing in the Secondary Electron Spectrum (SES) and in the electron energy loss spectrum. In the second part, we report the results of a study of the SES and ELS spectra of clean and gas covered aluminium. The use of very low primary electron energies (E p ≤ 30 eV) enables the detection of previously unobserved peaks in the ELS spectra of clean and oxygen covered aluminium. They are attributed to single electron excitations. Furthermore, a very large peak appears in the SES spectrum during oxygen or carbon adsorption on aluminium. It is interpreted in terms of interaction of the background electrons with the valence electrons of the surface. Molecular hydrogen adsorption is observed on Ta, Pt, Al 2 O 3 , Si. It is responsible for an ELS peak located 13 eV below the elastic peak. Furthermore, on silicon, the chemisorbed hydrogen form can be distinguished from the molecular form with the help of ELS. Finally, some examples are given of the application of these results to surface imaging. (author) [fr

  16. Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes

    KAUST Repository

    Wu, Xiao-Yu; Chang, Le; Uddi, Mruthunjaya; Kirchen, Patrick; Ghoniem, Ahmed F.

    2015-01-01

    and flow rates on the feed and sweep sides on the water thermolysis rate and oxygen flux. A single step reaction mechanism is proposed for surface reactions, and three-resistance permeation models are derived. Results show that water thermolysis

  17. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    Science.gov (United States)

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  18. Carbon, nitrogen and oxygen isotope fractionation during food cooking: Implications for the interpretation of the fossil human record.

    Science.gov (United States)

    Royer, Aurélien; Daux, Valérie; Fourel, François; Lécuyer, Christophe

    2017-08-01

    Stable isotope data provide insight into the reconstruction of ancient human diet. However, cooking may alter the original stable isotope compositions of food due to losses and modifications of biochemical and water components. To address this issue, carbon, nitrogen and oxygen isotope ratios were measured on meat aliquots sampled from various animals such as pork, beef, duck and chicken, and also from the flesh of fishes such as salmon, European seabass, European pilchard, sole, gilt-head bream, and tuna. For each specimen, three pieces were cooked according to the three most commonly-known cooking practices: boiling, frying and roasting on a barbecue. Our data show that cooking produced isotopic shifts up to 1.8‰, 3.5‰, and 5.2‰ for δ 13 C, δ 15 N, and δ 18 O values, respectively. Such variations between raw and cooked food are much greater than previously estimated in the literature; they are more sensitive to the type of food rather than to the cooking process itself, except in the case of boiling. Reconstructions of paleodietary may thus suffer slight bias in cases of populations with undiversified diets that are restrained toward a specific raw or cooked product, or using a specific cooking mode. In cases of oxygen isotope compositions from skeletal remains (bones, teeth), they not only constitute a valuable proxy for reconstructing past climatic conditions, but they could also be used to improve our knowledge of past human diet. © 2017 Wiley Periodicals, Inc.

  19. Nitrogen-Doped Carbon Nanoparticles for Oxygen Reduction Prepared via a Crushing Method Involving a High Shear Mixer

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2017-09-01

    Full Text Available The disposal of agricultural wastes such as fresh banana peels (BPs is an environmental issue. In this work, fresh BPs were successfully transformed into nitrogen-doped carbon nanoparticles (N-CNPs by using a high shear mixer facilitated crushing method (HSM-FCM followed by carbonization under Ar atmosphere. Ammonia-activated N-CNPs (N-CNPs-NH3 were prepared via subsequent ammonia activation treatments at a high temperature. The as-prepared N-CNPs and N-CNPs-NH3 materials both exhibited high surface areas (above 700 m2/g and mean particle size of 50 nm. N-CNPs-NH3 showed a relatively higher content of pyridinic and graphitic N compared to N-CNPs. In alkaline media, N-CNPs-NH3 showed superior performances as an oxygen reduction reaction (ORR catalyst (E0 = −0.033 V, J = 2.4 mA/cm2 compared to N-CNPs (E0 = 0.07 V, J = 1.8 mA/cm2. In addition, N-CNPs-NH3 showed greater oxygen reduction stability and superior methanol crossover avoidance than a conventional Pt/C catalyst. This study provides a novel, simple, and scalable approach to valorize biomass wastes by synthesizing highly efficient electrochemical ORR catalysts.

  20. Control of population of excited nitrogen molecules by mixing hydrogen in low pressure discharge; Chisso jun`antei reiki bunshi mitsudo no quenching ni yoru seigyo no kento

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, K.; Yumoto, M.; Sakai, T. [Musashi Institute of Technology, Tokyo (Japan)

    1998-06-01

    The authors have studied on surface treatment of PTFE by a low pressure discharge. It is deduced that excited nitrogen molecules contribute to introduce polar components on the surface. To confirm the speculation, we tried to change population of metastable nitrogen N2 (A{sup 3}{Sigma}u{sup +}) by quenching precursor N2 (B{sup 3}{pi}g), with hydrogen molecule. The decrease of relaxation time which indicates a change of excited molecule and measured by emission spectroscopy using a time after glow method was obtained. As a result, the relaxation times of N2 (B{sup 3}{pi}g) and N2 (A{sup 3}{Sigma}u{sup +}) decreased to 55% and 20% respectively, when mixing ratio of hydrogen was 3%. It was also deduced that hydrogen atom may take a part in a quenching process of N2 (A{sup 3}{Sigma}u{sup +}). 14 refs., 11 figs., 1 tab.