WorldWideScience

Sample records for oxygen fluence monitor

  1. The vessel fluence; Fluence cuve

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This book presents the proceedings of the technical meeting on the reactors vessels fluence. They are grouped in eight sessions: the industrial context and the stakes of the vessels control; the organization and the methodology for the fluence computation; the concerned physical properties; the reference computation methods; the fluence monitoring in an industrial context; vessels monitoring under irradiation; others methods in the world; the research and development programs. (A.L.B.)

  2. On-Site Determination and Monitoring of Real-Time Fluence Delivery for an Operating UV Reactor Based on a True Fluence Rate Detector.

    Science.gov (United States)

    Li, Mengkai; Li, Wentao; Qiang, Zhimin; Blatchley, Ernest R

    2017-07-18

    At present, on-site fluence (distribution) determination and monitoring of an operating UV system represent a considerable challenge. The recently developed microfluorescent silica detector (MFSD) is able to measure the approximate true fluence rate (FR) at a fixed position in a UV reactor that can be compared with a FR model directly. Hence it has provided a connection between model calculation and real-time fluence determination. In this study, an on-site determination and monitoring method of fluence delivery for an operating UV reactor was developed. True FR detectors, a UV transmittance (UVT) meter, and a flow rate meter were used for fundamental measurements. The fluence distribution, as well as reduction equivalent fluence (REF), 10th percentile dose in the UV fluence distribution (F 10 ), minimum fluence (F min ), and mean fluence (F mean ) of a test reactor, was calculated in advance by the combined use of computational fluid dynamics and FR field modeling. A field test was carried out on the test reactor for disinfection of a secondary water supply. The estimated real-time REF, F 10 , F min , and F mean decreased 73.6%, 71.4%, 69.6%, and 72.9%, respectively, during a 6-month period, which was attributable to lamp output attenuation and sleeve fouling. The results were analyzed with synchronous data from a previously developed triparameter UV monitoring system and water temperature sensor. This study allowed demonstration of an accurate method for on-site, real-time fluence determination which could be used to enhance the security and public confidence of UV-based water treatment processes.

  3. Accuracy of helium accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    A helium (He) accumulation fluence monitor (HAFM) has been developed for fast reactor dosimetry. In order to evaluate the measurement accuracy of neutron fluence by the HAFM method, the HAFMs of enriched boron (B) and beryllium (Be) were irradiated in the Fast Neutron Source Reactor `YAYOI`. The number of He atoms produced in the HAFMs were measured and compared with the calculated values. As a result of this study, it was confirmed that the neutron fluence could be measured within 5 % by the HAFM method, and that met the required accuracy for fast reactor dosimetry. (author)

  4. Development and applications of energy-specific fluence monitor for field monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakumar, D.N., E-mail: nkkumar@igcar.gov.i [Radiological Safety Division, Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Somayaji, K.M.; Venkatesan, R.; Meenakshisundaram, V. [Radiological Safety Division, Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India)

    2011-07-15

    A portable energy-specific fluence monitor is developed for field monitoring as well as to serve as stand-alone data acquisition system to measure dose rate due to routine releases at various locations in and around Nuclear Power Reactors. The data from an array of such monitors deployed over a region of interest would help in evolving a methodology to arrive at the source term evaluation in the event of a postulated nuclear incident. The other method that exists for this purpose is by conducting tracer experiments using known release of a gas like SF{sub 6} into the atmosphere and monitoring their concentrations downwind. The above instrument enables one to use the routine release of {sup 41}Ar as a tracer gas. The Argon fluence monitor houses a CsI(Tl) detector and associated miniature electronics modules for conditioning the signal from the detector. Data logging and in-situ archival of the data are controlled by a powerful web enabled communication controller preloaded with Microsoft Windows Compact Edition (WIN CE). The application software is developed in Visual Basic.NET under Compact Framework and deployed in the module. The paper gives an outline of the design aspects of the instrument, associated electronics and calibration of the instrument, including the preliminary results obtained using the instrument. The utility of the system is established by carrying out field survey around Madras Atomic Power Station (MAPS), consisting of two Pressurized Heavy Water Reactors (PHWR), by mapping the {sup 41}Ar plume. Additional features such as enhancing the monitor capability with embedded GPS along with real-time linking using wireless networking techniques are also being incorporated.

  5. Novel results on fluence dependence and annealing behaviour of oxygenated and non-oxygenated silicon detectors

    CERN Document Server

    Martínez, C; Lozano, M; Campabadal, F; Santander, J; Fonseca, L; Ullán, M; Moreno, A

    2002-01-01

    This work presents the latest results on electrical properties degradation of silicon radiation detectors manufactured at IMB-CNM (Institut de Microelectronica de Barcelona) subjected to proton irradiation at CERN for high energy physics applications. The evolution of full depletion voltage and leakage current with fluence, as well as their annealing behaviour with time, were studied. The results obtained extend the previous understanding of the role played by technology and oxygenated material in hardening silicon radiation detectors. (15 refs).

  6. Novel results on fluence dependence and annealing behavior of oxygenated and non-oxygenated silicon detectors

    CERN Document Server

    Martínez, C; Lozano, M; Campabadal, F; Santander, J; Fonseca, L; Ullán, M; Moreno, A J D

    2002-01-01

    This work presents the latest results on electrical properties degradation of silicon radiation detectors manufactured at the Institut de Microelectronica de Barcelona (IMB-CNM) subjected to proton irradiation at CERN, Switzerland, for high-energy physics (HEP) applications. The evolution of full depletion voltage and leakage current with fluence as well as their annealing behavior with time were studied. The results obtained extend the previous understanding of the role played by technology and oxygenated material in hardening silicon radiation detectors. (15 refs).

  7. The development report of an intelligent neutron fluence integration monitor

    International Nuclear Information System (INIS)

    Jiang Zongbing; Wei Ying

    1996-10-01

    An intelligent neutron fluence integration monitor is introduced. It is used to measure the received neutron fluence of the monocrystalline silicon in reactor radiation channel. The significance of study and specifications of the instrument are briefly described. The emphasis is on the working principle, structure and characteristics of the instrument is intelligent due to use of monolithic microcomputer. It has many advantages proved in the actual practice, such as powerful function, high accuracy, diversity of application, high level automatization, easy to operate, high reliability, etc. After using this instrument the monocrystalline silicon radiation technology is improved and the efficiency of production is raised. (1 fig.)

  8. Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro

    Science.gov (United States)

    Kim, Myong-Seop; Park, Sang-Jun

    2009-08-01

    Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.

  9. Calibration of a He accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-03-01

    The helium accumulation fluence monitor (HAFM) has been developed for a fast reactor dosimetry. The HAFM measurement system was calibrated using He gas and He implanted samples and the measurement accuracy was confirmed to be less than 5%. Based on the preliminary irradiation test in JOYO, the measured He in the {sup 10}B type HAFM agreed well with the calculated values using the JENDL-3.2 library. (author)

  10. Effect of laser fluence on surface, structural and mechanical properties of Zr after irradiation in the ambient environment of oxygen

    International Nuclear Information System (INIS)

    Jelani, M.; Bashir, S.; Khaleeq-ur Rehman, M.; Ahamad, R.; Ul-Haq, F.; Yousaf, D.; Akram, M.; Afzal, N.; Umer Chaudhry, M.; Mahmood, K.; Hayat, A.; Ahmad, Sajjad

    2013-01-01

    The laser irradiation effects on surface, structural and mechanical properties of zirconium (Zr) have been investigated. For this purpose, Zr samples were irradiated with Excimer (KrF) laser (λ = 248 nm, τ = 18 ns, repetition rate ∼ 30 Hz). The irradiation was performed under the ambient environment of oxygen gas at filling pressure of 20 torr by varying laser fluences ranging from 3.8 to 5.1 cm -2 . The surface and structural modification of irradiated targets was investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD). In order to explore the mechanical properties of irradiated Zr, the tensile testing and Vickers micro hardness testing techniques were employed. SEM analysis reveals the grain growth on the irradiated Zr surfaces for all fluences. However, the largest sized grains are grown for the lowest fluence of 3.8 J/cm 2 . With increasing fluence from 4.3 to 5.1 J cm -2 , the compactness and density of grains increase whereas their size decreases. XRD analysis reveals the appearance of new phases of ZrO 2 and Zr 3 O. The variation in the peak intensity is observed to be anomalous whereas decreasing trend in the crystallite size and residual stresses has been observed with increasing fluence. Micro hardness analysis reveals the increasing trend in surface hardness with increasing fluence. The tensile testing exhibits the increasing trend of yield stress (YS), decreasing trend of percentage elongation and anomalous behaviour of ultimate tensile strength with increasing fluence. (authors)

  11. Fluence map segmentation

    International Nuclear Information System (INIS)

    Rosenwald, J.-C.

    2008-01-01

    The lecture addressed the following topics: 'Interpreting' the fluence map; The sequencer; Reasons for difference between desired and actual fluence map; Principle of 'Step and Shoot' segmentation; Large number of solutions for given fluence map; Optimizing 'step and shoot' segmentation; The interdigitation constraint; Main algorithms; Conclusions on segmentation algorithms (static mode); Optimizing intensity levels and monitor units; Sliding window sequencing; Synchronization to avoid the tongue-and-groove effect; Accounting for physical characteristics of MLC; Importance of corrections for leaf transmission and offset; Accounting for MLC mechanical constraints; The 'complexity' factor; Incorporating the sequencing into optimization algorithm; Data transfer to the treatment machine; Interface between R and V and accelerator; and Conclusions on fluence map segmentation (Segmentation is part of the overall inverse planning procedure; 'Step and Shoot' and 'Dynamic' options are available for most TPS (depending on accelerator model; The segmentation phase tends to come into the optimization loop; The physical characteristics of the MLC have a large influence on final dose distribution; The IMRT plans (MU and relative dose distribution) must be carefully validated). (P.A.)

  12. Fluence determination by scattering measurements

    CERN Document Server

    Albergo, S; Potenza, R; Tricomi, A; Pillon, M; Angarano, M M; Creanza, D; De Palma, M

    2000-01-01

    An alternative method to determine particle fluence is proposed, which is particularly suitable for irradiations with low-energy charged-particle beams. The fluence is obtained by measuring the elastic scattering produced by a composite thin target placed upstream of the sample. The absolute calibration is performed by comparison with the measured radioactivation of vanadium and copper samples. The composite thin target, made of aluminium, carbon and gold, allows not only the fluence to be measured, but also a continuous monitoring of the beam space distribution. Experimental results with a 27 MeV proton beam are reported and compared with Monte Carlo simulations. (7 refs).

  13. Angular distribution of atoms emitted from a SrZrO3 target by laser ablation under different laser fluences and oxygen pressures

    International Nuclear Information System (INIS)

    Konomi, I.; Motohiro, T.; Azuma, H.; Asaoka, T.; Nakazato, T.; Sato, E.; Shimizu, T.; Fujioka, S.; Sarukura, N.; Nishimura, H.

    2010-01-01

    Angular distributions of atoms emitted by laser ablation of perovskite-type oxide SrZrO 3 have been investigated using electron probe microanalysis with wavelength-dispersive spectroscopy and charge-coupled device photography with an interference filter. Each constituent element has been analyzed as a two-modal distribution composed of a broad cos m θ distribution and a narrow cos n θ distribution. The exponent n characterizes the component of laser ablation while the exponent m characterizes that of thermal evaporation, where a larger n or m means a narrower angular distribution. In vacuum, O (n=6) showed a broader distribution than those of Sr (n=16) and Zr (n=17), and Sr + exhibited a spatial distribution similar to that of Sr. As the laser fluence was increased from 1.1 to 4.4 J/cm 2 , the angular distribution of Sr became narrower. In the laser fluence range of 1.1-4.4 J/cm 2 , broadening of the angular distribution of Sr was observed only at the fluence of 1.1 J/cm 2 under the oxygen pressure of 10 Pa. Monte Carlo simulations were performed to estimate approximately the energy of emitted atoms, focusing on the broadening of the angular distribution under the oxygen pressure of 10 Pa. The energies of emitted atoms were estimated to be 1-20 eV for the laser fluence of 1.1 J/cm 2 , and more than 100 eV for 2.2 and 4.4 J/cm 2 .

  14. Application of low-cost Gallium Arsenide light-emitting-diodes as kerma dosemeter and fluence monitor for high-energy neutrons

    International Nuclear Information System (INIS)

    Mukherjee, B.; Simrock, S.; Khachan, J.; Rybka, D.; Romaniuk, R.

    2007-01-01

    Displacement damage (DD) caused by fast neutrons in unbiased Gallium Arsenide (GaAs) light emitting diodes (LED) resulted in a reduction of the light output. On the other hand, a similar type of LED irradiated with gamma rays from a 60 Co source up to a dose level in excess of 1.0 kGy (1.0 x 10 5 rad) was found to show no significant drop of the light emission. This phenomenon was used to develop a low cost passive fluence monitor and kinetic energy released per unit mass dosemeter for accelerator-produced neutrons. These LED-dosemeters were used to assess the integrated fluence of photoneutrons, which were contaminated with a strong Bremsstrahlung gamma-background generated by the 730 MeV superconducting electron linac driving the free electron laser in Hamburg (FLASH) at Deutsches Elektronen-Synchrotron. The applications of GaAs LED as a routine neutron fluence monitor and DD precursor for the electronic components located in high-energy accelerator environment are highlighted. (authors)

  15. Investigation of neutron fluence using fluence monitors for irradiation test at WWR-K

    International Nuclear Information System (INIS)

    Romanova, N.K.; Takemoto, N.

    2013-01-01

    Irradiation test of a Si ingot is planned using WWR-K in Institute of Nuclear Physics Republic of Kazakhstan (INP RK) to develop an irradiation technology for Si semiconductor production by Neutron Transmutation Doping (NTD) method in the framework of an international cooperation between INP RK and Japan Atomic Energy Agency (JAEA), Japan. It is possible to irradiate the Si ingot of 6 inch in diameter at the K-23 irradiation channel in the WWR-K. The preliminary irradiation test using 4 Al ingots was performed to evaluate the actual neutronic irradiation field at the K-23 channel in the WWR-K. Each Al ingot has the same dimension as the Si ingot, and 15 fluence monitors are equipped in it. Iron wire and aluminum-cobalt wire are inserted into them, and it is possible to evaluate both fast and thermal neutron fluxes by measurement of these radiation activities after irradiation. This report described the results of the preliminary irradiation test and the neutronic calculations by Monte Carlo method in order to evaluate the neutronic irradiation field in the irradiation position for the silicon ingot at the channel in the WWR-K. (authors)

  16. Alarm points for fixed oxygen monitors

    International Nuclear Information System (INIS)

    Miller, G.C.

    1987-05-01

    Oxygen concentration monitors were installed in a vault where numerous pipes carried inert cryogens and gases to the Mirror Fusion Test Facility (MFTF-B) experimental vessel at Lawrence Livermore National Laboratory (LLNL). The problems associated with oxygen-monitoring systems and the reasons why such monitors were installed were reviewed. As a result of this review, the MFTF-B monitors were set to sound an evacuation alarm when the oxygen concentration fell below 18%. We chose the 18% alarm criterion to minimize false alarms and to allow time for personnel to escape in an oxygen-deficient environment

  17. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration.

    Directory of Open Access Journals (Sweden)

    Andrew Mamalis

    Full Text Available Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease.The goal of our study was to investigate the how reactive oxygen species (ROS free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed.High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR. For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2 on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2.High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched

  18. Deduction of solar neutron fluences from large gamma-ray flares

    International Nuclear Information System (INIS)

    Yoshimori, Masato; Watanabe, Hiroyuki; Takahashi, Kazuyoshi.

    1986-01-01

    Solar neutron fluences from large gamma-ray flares are deduced from accelerated proton spectra and numbers derived from the gamma-ray observations. The deduced solar neutron fluences range from 1 to 200 neutrons cm -2 . The present result indicates a possibility that high sensitivity ground-based neutron monitors can detect solar neutron events, just as detected by the Jungfraujoch and Rome neutron monitors. (author)

  19. Standard Test Method for Application and Analysis of Helium Accumulation Fluence Monitors for Reactor Vessel Surveillance, E706 (IIIC)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method describes the concept and use of helium accumulation for neutron fluence dosimetry for reactor vessel surveillance. Although this test method is directed toward applications in vessel surveillance, the concepts and techniques are equally applicable to the general field of neutron dosimetry. The various applications of this test method for reactor vessel surveillance are as follows: 1.1.1 Helium accumulation fluence monitor (HAFM) capsules, 1.1.2 Unencapsulated, or cadmium or gadolinium covered, radiometric monitors (RM) and HAFM wires for helium analysis, 1.1.3 Charpy test block samples for helium accumulation, and 1.1.4 Reactor vessel (RV) wall samples for helium accumulation. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  20. Ultra High Fluence Radiation Monitoring Technology for the Future Circular Collider at CERN

    CERN Document Server

    Gorine, Georgi; Mandic, Igor; Jazbec, Anže; Snoj, Luka; Capeans, Mar; Moll, Michael; Bouvet, Didier; Ravotti, Federico; Sallese, Jean-Michel

    2018-01-01

    The Future Circular Collider (FCC) is foreseen as the next generation ~100 km long synchrotron to be built in the Geneva area starting 2050. This machine is expected to reach an energy level of 100 TeV generating unprecedented radiation levels >100 times higher than in today`s Large Hadron Collider (LHC). Current Radiation Monitoring system, like the RADMONs employed in the LHC, will not be capable to function and withstand this harsh environment. The development of a new Ultra High Fluence and Dose Radiation Sensor is a key element to allow irradiation tests of FCC equipment and, at a later stage, to monitor radiation levels in the FCC itself. In this paper, we present an innovative dosimetry solution based on thin layers of metals, which resistivity is shown to increase significantly due to the accumulated displacement damage. After describing the fabrication techniques used to manufacture these Radiation Dependent Resistors (RDR), we show and discuss the results of the irradiation experiments carried out ...

  1. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4

    International Nuclear Information System (INIS)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R.

    2014-01-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H p (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm 3 , composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm 2 ). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  2. BPW34 Commercial p-i-n Diodes for High-Level 1-MeV Neutron Equivalent Fluence Monitoring

    CERN Document Server

    Ravotti, F; Moll, M; Saigne, F

    2008-01-01

    The BPW34 p-i-n diode was characterized at CERN in view of its utilization as radiation monitor at the LHC to cover the broad 1-MeV neutron equivalent fluence (Phieq) range expected for the LHC machine and experiments during operation. Electrical measurements for both forward and reverse bias were used to characterize the device and to understand its behavior under irradiation. When the device is powered forward, a sensitivity to fast hadrons for Phieq > 2 times1012 cm-2 has been observed. With increasing particle fluences the forward I- V characteristics of the diode shifts towards higher voltages. At Phieq > 3times1013 cm-2, the forward characteristic starts to bend back assuming a thyristor-like behavior. An explanation for this phenomenon is given in this article. Finally, detailed radiation-response curves for the forward bias-operation and annealing studies of the diode's forward voltage are presented for proton, neutron and gamma irradiation.

  3. A high reliability oxygen deficiency monitoring system

    International Nuclear Information System (INIS)

    Parry, R.; Claborn, G.; Haas, A.; Landis, R.; Page, W.; Smith, J.

    1993-05-01

    The escalating use of cryogens at national laboratories in general and accelerators in particular, along with the increased emphasis placed on personnel safety, mandates the development and installation of oxygen monitoring systems to insure personnel safety in the event of a cryogenic leak. Numerous vendors offer oxygen deficiency monitoring systems but fail to provide important features and/or flexibility. This paper describes a unique oxygen monitoring system developed for the Magnet Test Laboratory (MTL) at the Superconducting Super Collider Laboratory (SSCL). Features include: high reliability, oxygen cell redundancy, sensor longevity, simple calibration, multiple trip points, offending sensor audio and visual indication, global alarms for building evacuation, local and remote analog readout, event and analog data logging, EMAIL event notification, phone line voice status system, and multi-drop communications network capability for reduced cable runs. Of particular importance is the distributed topology of the system which allows it to operate in a stand-alone configuration or to communicate with a host computer. This flexibility makes it ideal for small applications such as a small room containing a cryogenic dewar, as well as larger systems which monitor many offices and labs in several buildings

  4. A high reliability oxygen deficiency monitoring system

    International Nuclear Information System (INIS)

    Parry, R.; Claborn, G.; Haas, A.; Landis, R.; Page, W.; Smith, J.

    1993-01-01

    The escalating use of cryogens at national laboratories in general and accelerators in particular, along with the increased emphasis placed on personnel safety, mandates the development and installation of oxygen monitoring systems to insure personnel safety in the event of a cryogenic leak. Numerous vendors offer oxygen deficiency monitoring systems but fail to provide important features and/or flexibility. This paper describes a unique oxygen monitoring system developed for the Magnet Test Laboratory (MTL) at the Superconducting Super Collider Laboratory (SSCL). Features include: high reliability, oxygen cell redundancy, sensor longevity, simple calibration, multiple trip points, offending sensor audio and visual indication, global alarms for building evacuation, local and remote analog readout, event and analog data logging, EMAIL event notification, phone line voice status system, and multi-drop communications network capability for reduced cable runs. Of particular importance is the distributed topology of the system which allows it to operate in a stand-alone configuration or to communicate with a host computer. This flexibility makes it ideal for small applications such as a small room containing a cryogenic dewar, as well as larger systems which monitor many offices and labs in several buildings

  5. Atomic Oxygen Erosion Yield Dependence Upon Texture Development in Polymers

    Science.gov (United States)

    Banks, Bruce A.; Loftus, Ryan J.; Miller, Sharon K.

    2016-01-01

    The atomic oxygen erosion yield (volume of a polymer that is lost due to oxidation per incident atom) of polymers is typically assumed to be reasonably constant with increasing fluence. However polymers containing ash or inorganic pigments, tend to have erosion yields that decrease with fluence due to an increasing presence of protective particles on the polymer surface. This paper investigates two additional possible causes for erosion yields of polymers that are dependent upon atomic oxygen. These are the development of surface texture which can cause the erosion yield to change with fluence due to changes in the aspect ratio of the surface texture that develops and polymer specific atomic oxygen interaction parameters. The surface texture development under directed hyperthermal attack produces higher aspect ratio surface texture than isotropic thermal energy atomic oxygen attack. The fluence dependence of erosion yields is documented for low Kapton H (DuPont, Wilmington, DE) effective fluences for a variety of polymers under directed hyperthermal and isotropic thermal energy attack.

  6. Development of neutron fluence measurement and evaluation technology for the test materials in the capsule

    Energy Technology Data Exchange (ETDEWEB)

    Hong, U.; Choi, S. H.; Kang, H. D. [Kyungsan University, Kyungsan (Korea)

    2000-03-01

    The four kinds of the fluence monitor considered by self-shielding are design and fabricated for evaluation of neutron irradiation fluence. They are equipped with dosimeters consisting of Ni, Fe and Ti wires and so forth. The nuclear reaction rate is obtained by measurement on dosimeter using the spectroscopic analysis of induced {gamma}-ray. We established the nuetron fluence evaluating technology that is based on the measurement of the reaction rate considering reactor's irradiation history, burn-out, self-shielding in fluence monitor, and the influence of impurity in dosimeter. The distribution of high energy neutron flux on the vertical axis of the capsule shows fifth order polynomial equation and is good agree with theoretical value in the error range of 30% by MCNP/4A code. 22 refs., 50 figs., 27 tabs. (Author)

  7. The determination of fast neutron fluence in radiation stability tests of steel samples

    International Nuclear Information System (INIS)

    Hogel, J.; Vespalec, R.

    1979-01-01

    The activation method is described of determining fast neutron fluence. Samples of steel designed for WWER type reactor pressure vessels were irradiated in the CHOUCA-rigs in the core of the WWR-S reactor. The neutron spectrum was measured by the multiple activation foil method and the effective cross sections of fluence monitors were calculated. The fluences obtained from the reactions 54 Fe(n,p) 54 Mn and 63 Cu(n,α) 60 Co are presented and the method is discussed. (author)

  8. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads

    OpenAIRE

    Wang, Lin; Acosta, Miguel A.; Leach, Jennie B.; Carrier, Rebecca L.

    2013-01-01

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and ...

  9. Radiance and particle fluence

    International Nuclear Information System (INIS)

    Papiez, L.; Battista, J.J.

    1994-01-01

    The International Commission on Radiological Units and Measurements (ICRU) has defined fluence in terms of the number of the radiation particles crossing a small sampling sphere. A second definition has been proposed in which the length of track segments contained within any sampling volume are used to calculate the incident fluence. This approach is often used in Monte Carlo simulations of individual particle tracks, allowing the fluence to be scored in small volumes of any shape. In this paper we stress that the second definition generalizes the classical (ICRU) concept of fluence. We also identify the assumptions inherent in the two definitions of fluence and prove their equivalence for the case of straight-line particle trajectories. (author)

  10. A fibre-optic oxygen sensor for monitoring human breathing

    International Nuclear Information System (INIS)

    Chen, Rongsheng; Formenti, Federico; Hahn, Clive E W; Farmery, Andrew D; Obeid, Andy

    2013-01-01

    The development and construction of a tapered-tip fibre-optic fluorescence based oxygen sensor is described. The sensor is suitable for fast and real-time monitoring of human breathing. The sensitivity and response time of the oxygen sensor were evaluated in vitro with a gas pressure chamber system, where oxygen partial pressure was rapidly changed between 5 and 15 kPa, and then in vivo in five healthy adult participants who synchronized their breathing to a metronome set at 10, 20, 30, 40, 50, and 60 breaths min –1 . A Datex Ultima medical gas analyser was used to monitor breathing rate as a comparator. The sensor's response time in vitro was less than 150 ms, which allows accurate continuous measurement of inspired and expired oxygen pressure. Measurements of breathing rate by means of our oxygen sensor and of the Datex Ultima were in strong agreement. The results demonstrate that the device can reliably resolve breathing rates up to 60 breaths min –1 , and that it is a suitable cost-effective alternative for monitoring breathing rates and end-tidal oxygen partial pressure in the clinical setting. The rapid response time of the sensor may allow its use for monitoring rapid breathing rates as occur in children and the newborn. (note)

  11. A novel wide range, real-time neutron fluence monitor based on commercial off the shelf gallium arsenide light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, B., E-mail: bhaskar.mukherjee@uk-essen.de [Westdeutsches Protonentherapiezentrum Essen (WPE) gGmbH, Hufelandstrasse 55, D-45147 Essen (Germany); Hentschel, R. [Strahlenklinik, University Hospital Essen (Germany); Lambert, J. [Westdeutsches Protonentherapiezentrum Essen (WPE) gGmbH, Hufelandstrasse 55, D-45147 Essen (Germany); Deya, W. [Strahlenklinik, University Hospital Essen (Germany); Farr, J. [Westdeutsches Protonentherapiezentrum Essen (WPE) gGmbH, Hufelandstrasse 55, D-45147 Essen (Germany)

    2011-10-01

    Displacement damage produced by high-energy neutrons in gallium arsenide (GaAs) light emitting diodes (LED) results in the reduction of light output. Based on this principle we have developed a simple, cost effective, neutron detector using commercial off the shelf (COTS) GaAs-LED for the assessment of neutron fluence and KERMA at critical locations in the vicinity of the 230 MeV proton therapy cyclotron operated by Westdeutsches Protonentherapiezentrum Essen (WPE). The LED detector response (mV) was found to be linear within the neutron fluence range of 3.0x10{sup 8}-1.0x10{sup 11} neutron cm{sup -2}. The response of the LED detector was proportional to neutron induced displacement damage in LED; hence, by using the differential KERMA coefficient of neutrons in GaAs, we have rescaled the calibration curve for two mono-energetic sources, i.e. 1 MeV neutrons and 14 MeV neutrons generated by D+T fusion reaction. In this paper we present the principle of the real-time GaAs-LED based neutron fluence monitor as mentioned above. The device was calibrated using fast neutrons produced by bombarding a thick beryllium target with 14 MeV deuterons from a TCC CV 28 medical cyclotron of the Strahlenklinik University Hospital Essen.

  12. Measured thermal and fast neutron fluence rates ATR Cycle 99-A, November 23, 1992--January 23, 1993

    International Nuclear Information System (INIS)

    Murray, R.K.; Rogers, J.W.

    1993-03-01

    This report contains the thermal (2200 m/s) and fast (E>me) neutron fluence rate data for ATR Cycle 99-A which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power ReactorPrograms (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations and proper header identification of all monitor positions contained herein. The fluence rates reported are for the average power levels given in the table of power history and distribution. All ''H'' holder monitor wires for this cycle are 54 inches long. All ''SR'' holder monitor wires for this cycle are 55 inches long. This length allows measurement of the full core region and makes the first count elevation 24.73 inches above core midplane. Due to the safety rod problems in the west lobe, ''BR'' holders were used in the W-1, 2, 3, and 4 positions. All ''BR'' holder monitor wires for this cycle are 56.25 inches long. The distance from the end of the wires to the first count position was 4.25 inches for all wires counted from this cycle

  13. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads.

    Science.gov (United States)

    Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L

    2013-04-21

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.

  14. Radiation hardening of oxygen-doped niobium by 14-MeV neutrons

    International Nuclear Information System (INIS)

    Bradley, E.R.; Jones, R.H.

    1983-09-01

    The flow properties of niobium containing 185 and 480 wt ppM oxygen have been studied following irradiation at 300K with T(d,n) neutrons to fluence levels ranging from 6 x 10 20 to 2 x 10 22 m -2 . Two hardening stages connected by a plateau region were observed in the niobium containing 185 wt ppM oxygen. Increasing the oxygen content by 300 wt ppM oxygen shifted the beginning of the high-fluence hardening stage from 6 x 10 21 to 1 x 10 21 m -2 , thereby eliminating the plateau region. This shift resulted in 1.5 times more hardening in the oxygen-doped niobium irradiated to fluence levels above 5 x 10 21 m -2

  15. Near-infrared spectroscopy for monitoring muscle oxygenation

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Piantadosi, C A

    2000-01-01

    Near-infrared spectroscopy (NIRS) is a non-invasive method for monitoring oxygen availability and utilization by the tissues. In intact skeletal muscle, NIRS allows semi-quantitative measurements of haemoglobin plus myoglobin oxygenation (tissue O2 stores) and the haemoglobin volume. Specialized...... algorithms allow assessment of the oxidation-reduction (redox) state of the copper moiety (CuA) of mitochondrial cytochrome c oxidase and, with the use of specific tracers, accurate assessment of regional blood flow. NIRS has demonstrated utility for monitoring changes in muscle oxygenation and blood flow...... during submaximal and maximal exercise and under pathophysiological conditions including cardiovascular disease and sepsis. During work, the extent to which skeletal muscles deoxygenate varies according to the type of muscle, type of exercise and blood flow response. In some instances, a strong...

  16. A neutron source of variable fluence

    International Nuclear Information System (INIS)

    Brachet, Guy; Demichel, Pascal; Prigent, Yvon; Riche, J.C.

    1975-01-01

    The invention concerns a variable fluence neutron source, like those that use in the known way a reaction between a radioactive emitter and a target, particularly of type (α,n). The emitter being in powder form lies in a carrier fluid forming the target, inside a closed containment. Facilities are provided to cause the fluidisation of the emitter by the carrier fluid in the containment. The fluidisation of the emitting powder is carried out by a booster with blades, actuated from outside by a magnetic coupling. The powder emitter is a α emitter selected in the group of curium, plutonium, thorium, actinium and americium oxides and the target fluid is formed of compounds of light elements selected from the group of beryllium, boron, fluorine and oxygen 18. The target fluid is a gas used under pressure or H 2 O water highly enriched in oxygen 18 [fr

  17. Fast reactor fluence dosimetry. Technical progress report, January--November 1976

    International Nuclear Information System (INIS)

    1976-01-01

    The objectives of this task are to: (1) develop and demonstrate the use of 10 B and 6 Li helium accumulation fluence monitors (HAFM's) as a reliable and accurate method of measuring reactor neutron fluence; (2) develop and apply an expanded set of HAFM's which will provide fluence responses in different but overlapping neutron energy ranges; (3) identify, through the precise measurement of spectrum-integrated helium production cross sections, those elements which produce significant helium when used individually or as components of advanced alloys in FTR and LMFBR neutron environments, so that their use might be eliminated, minimized, or controlled; (4) use this information to predict, with confidence, the helium production rate for any alloy or material considered for fast reactor use, and (5) maintain a centralized helium measurements laboratory available to the research community, and upgrade the sample throughput capacity to handle FTR dosimetry requirements

  18. Measured thermal and fast neutron fluence rates, ATR Cycle 102-A, 11/28/93 thru 1/16/94

    International Nuclear Information System (INIS)

    Murray, R.K.; Rogers, J.W.

    1994-02-01

    This report contains the thermal (2,200 m/s) and fast (E > 1MeV) neutron fluence rate data for ATR Cycle 102-A which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations and proper header identification of all monitor positions contained herein. The fluence rates reported are for the average power levels given in the table of power history and distribution. All ''H'' holder monitoring wires for this cycle are 54 inches long. All ''SR'' holder monitor wires for this cycle are 55 inches long. This length allows measurement of the full core region and makes the first count elevation 24.73 inches above core midplane. Due to the safety rod problems in the west lobe, ''BR'' holders were used in the W-1, 2, 3, and 4 positions. All ''BR'' holder monitor wires for this cycle are 56.25 inches long. The distance from the end of the wires to the first count position was 4.25 inches for all wires counted from this cycle

  19. Measured thermal and fast neutron fluence rates, ATR Cycle 100-BC, April 23, 1993--May 13, 1993

    International Nuclear Information System (INIS)

    Smith, L.D.; Murray, R.K.; Rogers, J.W.

    1993-07-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for ATR Cycle 100-BC which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations and proper header identification of all monitor positions contained herein. The fluence rates reported are for the average power levels given in the table of power history and distribution. All open-quotes Hclose quotes holder monitor wires for this cycle are 54 inches long. All open-quotes SRclose quotes holder monitor wires for this cycle are 55 inches long. This length allows measurement of the full core region and makes the first count elevation 24.73 inches above core midplane. Due to the safety rod problems in the west lobe, open-quotes BRclose quotes holders were used in the W-1, 2, 3, and 4 positions. All open-quotes BRclose quotes holder monitor wires for this cycle are 56.25 inches long. The distance from the end of the wires to the first count position was 4.25 inches for all wires counted from this cycle. The results from the measurements in the W-1, 2, 3, 4 monitor positions indicate that the safety rod followers were rotated to a different azimuthal orientation relative to the normal orientation. The results indicate that the rotation was counterclockwise from their normal orientation. This is the same condition observed starting with Cycle 99-B

  20. The nursing perspective on monitoring hemodynamics and oxygen transport.

    Science.gov (United States)

    Tucker, Dawn; Hazinski, Mary Fran

    2011-07-01

    Maintenance of adequate systemic oxygen delivery requires careful clinical assessment integrated with hemodynamic measurements and calculations to detect and treat conditions that may compromise oxygen delivery and lead to life-threatening shock, respiratory failure, or cardiac arrest. The bedside nurse constantly performs such assessments and measurements to detect subtle changes and trends in patient condition. The purpose of this editorial is to highlight nursing perspectives about the hemodynamic and oxygen transport monitoring systems summarized in the Pediatric Cardiac Intensive Care Society Evidence- Based Review and Consensus Statement on Monitoring of Hemodynamics and Oxygen Transport Balance. There is no substitute for the observations of a knowledgeable and experienced clinician who understands the patient's condition and potential causes of deterioration and is able to evaluate response to therapy.

  1. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study

    Science.gov (United States)

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Deyo, Donald J.; Motamedi, Massoud; Prough, Donald S.

    2002-08-01

    Replacement of invasive monitoring of cerebral venous oxygenation with noninvasive techniques offers great promise in the management of life-threatening neurologic illnesses including traumatic brain injury. We developed and built an optoacoustic system to noninvasively monitor cerebral venous oxygenation; the system includes a nanosecond Nd:YAG laser and a specially designed optoacoustic probe. We tested the system in vitro in sheep blood with experimentally varied oxygenation. Our results demonstrated that (1) the amplitude and temporal profile of the optoacoustic waves increase with blood oxygenation in the range from 24% to 92%, (2) optoacoustic signals can be detected despite optical and acoustic attenuation by thick bone, and (3) the system is capable of real-time and continuous measurements. These results suggest that the optoacoustic technique is technically feasible for continuous, noninvasive monitoring of cerebral venous oxygenation.

  2. The fluence research of filter material for fast neutron fluence measurement

    International Nuclear Information System (INIS)

    Tang Xiding

    2010-01-01

    When the fast neutron fluence is measured by radioactivation techniques in the nuclear reactor the fast neutron is also filtered a little by the thermal neutron filter material, and if the filter material thickness increase the filtered fast neutron increases therewith. For fast neutron fluenc measurement, there are only cadmium, boron and gadolinium three elements filtering fluence can be calculated ordinarily. In order to calculate the filtered fast neutron fluence of the all elements in the filter material, the many total cross sections of nuclides had checked out from nuclear cross section data library, converted them into the same energy group structure, then element's total cross section, compound's total cross section and multilayer filters' total cross section had calculated from these total cross sections with same energy group structure, a new cross section data library can be obtained lastly through merging these cross sections into the old cross section data library used for neutron fluence measurement. The calculation analysis indicates that the results of the unit 2 surveillance capsule U of DAYA Bay NPP and the unit 1 surveillance capsule A of the Second Nuclear Power Plant of Qinshan by considering the all elements subtracting iron are smaller about 1.5% and 2.6% respectively than the ones only to consider cadmium, boron. The old measured results accord with the new values under the measurement uncertainty, are reliable. The new results are more accuracy. (authors)

  3. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    Science.gov (United States)

    deGroh, Kim; Berger, Lauren; Roberts, Lily

    2009-01-01

    The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.

  4. Holographic monitoring of spatial distributions of singlet oxygen in water

    Science.gov (United States)

    Belashov, A. V.; Bel'tyukova, D. M.; Vasyutinskii, O. S.; Petrov, N. V.; Semenova, I. V.; Chupov, A. S.

    2014-12-01

    A method for monitoring spatial distributions of singlet oxygen in biological media has been developed. Singlet oxygen was generated using Radachlorin® photosensitizer, while thermal disturbances caused by nonradiative deactivation of singlet oxygen were detected by the holographic interferometry technique. Processing of interferograms yields temperature maps that characterize the deactivation process and show the distribution of singlet oxygen species.

  5. A brief clinical case of monitoring of oxygenator performance and patient-machine interdependency during prolonged veno-venous extracorporeal membrane oxygenation.

    Science.gov (United States)

    Belliato, Mirko; Degani, Antonella; Buffa, Antonino; Sciutti, Fabio; Pagani, Michele; Pellegrini, Carlo; Iotti, Giorgio Antonio

    2017-10-01

    Monitoring veno-venous extracorporeal membrane oxygenation (vvECMO) during 76 days of continuous support in a 42-years old patient with end-stage pulmonary disease, listed for double-lung transplantation. Applying a new monitor (Landing ® , Eurosets, Medolla, Italy) and describing how measured and calculated parameters can be used to understand the variable interdependency between artificial membrane lung (ML) and patient native lung (NL). During vvECMO, in order to understand how the respiratory function is shared between ML and NL, ideally we should obtain data about oxygen transfer and CO 2 removal, both by ML and NL. Measurements for NL can be made on the mechanical ventilator. Measurements for ML are typically made from gas analysis on blood samples drawn from the ECMO system before and after the oxygenator, and therefore are non-continuous. Differently, the Landing monitor provides a continuous measurement of the oxygen transfer from the ML, combined with hemoglobin level, saturation of drained blood and saturation of reinfused blood. Moreover, the Landing monitor provides hemodynamics data about circulation through the ECMO system, with blood flow, pre-oxygenator pressure and post-oxygenator pressure. Of note, measurements include the drain negative pressure, whose monitoring may be particularly useful to prevent hemolysis. Real-time monitoring of vvECMO provides data helpful to understand the complex picture of a patient with severely damaged lungs on one side and an artificial lung on the other side. Data from vvECMO monitoring may help to adapt the settings of both mechanical ventilator and vvECMO. Data about oxygen transfer by the oxygenator are important to evaluate the performance of the device and may help to avoid unnecessary replacements, thus reducing risks and costs.

  6. Evolution of arsenic in high fluence plasma immersion ion implanted silicon: Behavior of the as-implanted surface

    Energy Technology Data Exchange (ETDEWEB)

    Vishwanath, V. [Applied Materials, 3225 Oakmead Village Drive, Santa Clara, CA 95052 (United States); Demenev, E. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Department of Molecular Science and Nanosystems, Ca’Foscari University, Dorsoduro 2137, 30123 Venice (Italy); Giubertoni, D., E-mail: giuberto@fbk.eu [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Vanzetti, L. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Koh, A.L. [Stanford Nanocharacterization Laboratory, Stanford University, 476 Lomita Mall, Stanford, CA 94305 (United States); Steinhauser, G. [Colorado State University, Environmental and Radiological Health Sciences, Fort Collins, CO 80523 (United States); Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz, 30419 Hannover (Germany); Pepponi, G.; Bersani, M. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Meirer, F., E-mail: f.meirer@uu.nl [Inorganic Chemistry and Catalysis, Utrecht University, Utrecht 3584 CG (Netherlands); Foad, M.A. [Applied Materials, 3225 Oakmead Village Drive, Santa Clara, CA 95052 (United States)

    2015-11-15

    Highlights: • Samples prepared by high fluence, low-energy PIII of AsH{sub 3}{sup +} on Si(1 0 0) were studied. • PIII is of high technological interest for ultra-shallow doping and activation. • We used a multi-technique approach to study the As-implanted surface. • We show that PIII presents a new set of problems that needs to be tackled. • The presented study goes toward understanding the root mechanisms involved. - Abstract: High fluence (>10{sup 15} ions/cm{sup 2}) low-energy (<2 keV) plasma immersion ion implantation (PIII) of AsH{sub 3}{sup +} on (1 0 0) silicon was investigated, with the focus on stability and retention of the dopant. At this dose, a thin (∼3 nm) amorphous layer forms at the surface, which contains about 45% arsenic (As) in a silicon and oxygen matrix. The presence of silicon indicates that the layer is not only a result of deposition, but predominantly ion mixing. High fluence PIII introduces high concentration of arsenic, modifying the stopping power for incoming ions resulting in an increased deposition. When exposed to atmosphere, the arsenic rich layer spontaneously evolves forming arsenolite As{sub 2}O{sub 3} micro-crystals at the surface. The micro-crystal formation was monitored over several months and exhibits typical crystal growth kinetics. At the same time, a continuous growth of native silicon oxide rich in arsenic was observed on the exposed surface, suggesting the presence of oxidation enhancing factors linked to the high arsenic concentration at the surface.

  7. Development of a Secondary Neutron Fluence Standard at GELINA

    International Nuclear Information System (INIS)

    Heyse, Jan; Eykens, Roger; Moens, Andre; Plompen, Arjan J.M.; Schillebeeckx, Peter; Wynants, Ruud; Anastasiou, Maria

    2013-06-01

    The MetroFission project, a Joint Research Project within the European Metrology Research Program, aims at addressing a number of metrological problems involved in the design of proposed Generation IV nuclear reactors. One of the objectives of this multidisciplinary project is the improvement of neutron cross section measurement techniques in order to arrive at uncertainties as required for the design and safety assessment of new generation power plants and fuel cycles. This objective is in line with the 'Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations' published by a working party of the OECD Nuclear Energy Agency in 2008. These requests are often very challenging, being at or beyond the state-of-the-art in neutron measurements, which is set by self-normalizing methods and the neutron data standards used at laboratories where the data are measured. A secondary neutron fluence standard has been developed and calibrated at the neutron time-of-flight facility GELINA of the JRC's Institute for Reference Materials and Measurements (IRMM). It consists of a flux monitor, a reference ionization chamber containing a 10 B layer and a 235 U layer, and a parallel plate ionization chamber with 8 well characterized 235 U deposits. These devices are used to determine the neutron fluence, based on the well-known neutron induced fission reaction on 235 U. All deposits have been prepared and characterized at the IRMM target preparation lab. The secondary fluence standard at the GELINA facility can be used for reliable determination of the efficiency of fluence measurement devices used in neutron data measurements at IRMM and elsewhere. It is an essential tool to reliably calibrate fluence normalization devices used in neutron time-of-flight cross section measurements. (authors)

  8. Measured thermal and fast neutron fluence rates ATR Cycle 101-B, October 11, 1993--November 27, 1993

    International Nuclear Information System (INIS)

    Murray, R.K.; Rogers, J.W.

    1994-01-01

    This report contains the thermal (2200 m/s) and fast (E>lMeV) neutron fluence rate data for ATR Cycle 101-B which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations proper header identification of all monitor positions contained herein

  9. Non-invasive monitoring of tissue oxygenation during laparoscopic donor nephrectomy

    Directory of Open Access Journals (Sweden)

    Kirk Allan D

    2008-04-01

    Full Text Available Abstract Background Standard methods for assessment of organ viability during surgery are typically limited to visual cues and tactile feedback in open surgery. However, during laparoscopic surgery, these processes are impaired. This is of particular relevance during laparoscopic renal donation, where the condition of the kidney must be optimized despite considerable manipulation. However, there is no in vivo methodology to monitor renal parenchymal oxygenation during laparoscopic surgery. Methods We have developed a method for the real time, in vivo, whole organ assessment of tissue oxygenation during laparoscopic nephrectomy to convey meaningful biological data to the surgeon during laparoscopic surgery. We apply the 3-CCD (charge coupled device camera to monitor qualitatively renal parenchymal oxygenation with potential real-time video capability. Results We have validated this methodology in a porcine model across a range of hypoxic conditions, and have then applied the method during clinical laparoscopic donor nephrectomies during clinically relevant pneumoperitoneum. 3-CCD image enhancement produces mean region of interest (ROI intensity values that can be directly correlated with blood oxygen saturation measurements (R2 > 0.96. The calculated mean ROI intensity values obtained at the beginning of the laparoscopic nephrectomy do not differ significantly from mean ROI intensity values calculated immediately before kidney removal (p > 0.05. Conclusion Here, using the 3-CCD camera, we qualitatively monitor tissue oxygenation. This means of assessing intraoperative tissue oxygenation may be a useful method to avoid unintended ischemic injury during laparoscopic surgery. Preliminary results indicate that no significant changes in renal oxygenation occur as a result of pneumoperitoneum.

  10. Monitoring Detrusor Oxygenation and Hemodynamics Noninvasively during Dysfunctional Voiding

    Science.gov (United States)

    Macnab, Andrew J.; Stothers, Lynn S.; Shadgan, Babak

    2012-01-01

    The current literature indicates that lower urinary tract symptoms (LUTSs) related to benign prostatic hyperplasia (BPH) have a heterogeneous pathophysiology. Pressure flow studies (UDSs) remain the gold standard evaluation methodology for such patients. However, as the function of the detrusor muscle depends on its vasculature and perfusion, the underlying causes of LUTS likely include abnormalities of detrusor oxygenation and hemodynamics, and available treatment options include agents thought to act on the detrusor smooth muscle and/or vasculature. Hence, near infrared spectroscopy (NIRS), an established optical methodology for monitoring changes in tissue oxygenation and hemodynamics, has relevance as a means of expanding knowledge related to the pathophysiology of BPH and potential treatment options. This methodological report describes how to conduct simultaneous NIRS monitoring of detrusor oxygenation and hemodynamics during UDS, outlines the clinical implications and practical applications of NIRS, explains the principles of physiologic interpretation of NIRS voiding data, and proposes an exploratory hypothesis that the pathophysiological causes underlying LUTS include detrusor dysfunction due to an abnormal hemodynamic response or the onset of oxygen debt during voiding. PMID:23019422

  11. Monitoring Detrusor Oxygenation and Hemodynamics Noninvasively during Dysfunctional Voiding

    Directory of Open Access Journals (Sweden)

    Andrew J. Macnab

    2012-01-01

    Full Text Available The current literature indicates that lower urinary tract symptoms (LUTSs related to benign prostatic hyperplasia (BPH have a heterogeneous pathophysiology. Pressure flow studies (UDSs remain the gold standard evaluation methodology for such patients. However, as the function of the detrusor muscle depends on its vasculature and perfusion, the underlying causes of LUTS likely include abnormalities of detrusor oxygenation and hemodynamics, and available treatment options include agents thought to act on the detrusor smooth muscle and/or vasculature. Hence, near infrared spectroscopy (NIRS, an established optical methodology for monitoring changes in tissue oxygenation and hemodynamics, has relevance as a means of expanding knowledge related to the pathophysiology of BPH and potential treatment options. This methodological report describes how to conduct simultaneous NIRS monitoring of detrusor oxygenation and hemodynamics during UDS, outlines the clinical implications and practical applications of NIRS, explains the principles of physiologic interpretation of NIRS voiding data, and proposes an exploratory hypothesis that the pathophysiological causes underlying LUTS include detrusor dysfunction due to an abnormal hemodynamic response or the onset of oxygen debt during voiding.

  12. A fibre optic oxygen sensor for monitoring of human breathing

    Science.gov (United States)

    Chen, Rongsheng; Farmery, Andrew D.; Chen, Rui; Hahn, Clive E. W.

    2011-11-01

    A reliable and cost effective fibre optic oxygen sensor for monitoring of human breathing has been developed using a normal 200μm silica core/silica cladding optical fibre and a polymer sensing matrix. The fibre optic oxygen sensor is based on the fluorescence quenching of a fluorophore by oxygen. The sensing matrix, containing immobilized Pt(II) complexes, was coated at the end of the silica core/silica cladding optical fibre. The sensitivity and time response of the sensor were evaluated using the method of luminescence lifetime measurement. The polymer substrate influence on the time response of the sensor was improved by using a fibre taper design, and the response time of the optimized sensor was less than 200ms. This silica fibre based optic oxygen sensor is suitable for monitoring of patient breathing in intensive care unit in terms of safety and low cost.

  13. Three-dimensional RAMA fluence methodology benchmarking

    International Nuclear Information System (INIS)

    Baker, S. P.; Carter, R. G.; Watkins, K. E.; Jones, D. B.

    2004-01-01

    This paper describes the benchmarking of the RAMA Fluence Methodology software, that has been performed in accordance with U. S. Nuclear Regulatory Commission Regulatory Guide 1.190. The RAMA Fluence Methodology has been developed by TransWare Enterprises Inc. through funding provided by the Electric Power Research Inst., Inc. (EPRI) and the Boiling Water Reactor Vessel and Internals Project (BWRVIP). The purpose of the software is to provide an accurate method for calculating neutron fluence in BWR pressure vessels and internal components. The Methodology incorporates a three-dimensional deterministic transport solution with flexible arbitrary geometry representation of reactor system components, previously available only with Monte Carlo solution techniques. Benchmarking was performed on measurements obtained from three standard benchmark problems which include the Pool Criticality Assembly (PCA), VENUS-3, and H. B. Robinson Unit 2 benchmarks, and on flux wire measurements obtained from two BWR nuclear plants. The calculated to measured (C/M) ratios range from 0.93 to 1.04 demonstrating the accuracy of the RAMA Fluence Methodology in predicting neutron flux, fluence, and dosimetry activation. (authors)

  14. Neutron fluence measurement in nuclear facilities

    International Nuclear Information System (INIS)

    Camacho L, M.E.

    1997-01-01

    The objective of present work is to determine the fluence of neutrons in nuclear facilities using two neutron detectors designed and built at Instituto Nacional de Investigaciones Nucleares (ININ), Mexico. The two neutron detectors are of the passive type, based on solid state nuclear tracks detectors (SSNTD). One of the two neutron detectors was used to determine the fluence distribution of the ports at the nuclear research reactor TRIGA Mark III, which belongs to ININ. In these facilities is important to know the neutron fluence distribution characteristic to carried out diverse kind of research activities. The second neutron detector was employed in order to carry out environmental neutron surveillance. The detector has the property to separate the thermal, intermediate and fast components of the neutron fluence. This detector was used to measure the neutron fluence at hundred points around the primary container of the first Mexican Nuclear Power plant 'Laguna Verde'. This last detector was also used to determine the neutron fluence in some points of interest, around and inside a low scattering neutron room at the 'Centro de Metrologia de Radiaciones Ionizantes' of the ININ, to know the background neutron field produced by the neutron sources used there. The design of the two neutron detector and the results obtained for each of the surveying facilities, are described in this work. (Author)

  15. Prediction of the Response of the Commercial BPW34FS Silicon p-i-n Diode Used as Radiation Monitoring Sensors up to Very High Fluences

    CERN Document Server

    Mekki, J; Glaser, M; Moll, M; Dusseau, L

    2010-01-01

    The effect of radiation damage on Silicon p-i-n diodes has been studied. I-V characteristics of BPW34FS silicon p-i-n diodes irradiated with 24 GeV/c protons up to 6.3 x 10(15) n(eq)/cm(2) have been measured and analyzed. A parameterization predicting the radiation response in the fluence range relevant for the use of the diodes as radiation monitors in Super-LHC experiments is presented.

  16. Oxygen depth profiling in Kr+-implanted polycrystalline alpha titanium by means of 16O(α,α)16O resonance scattering

    International Nuclear Information System (INIS)

    Nsengiyumva, S.; Riviere, J.P.; Raji, A.T.; Comrie, C.M.; Britton, D.T.; Haerting, M.

    2011-01-01

    The 16 O(α,α) 16 O resonance scattering was applied to study the effects of ion implantation on the oxygen distribution in the near surface region of polycrystalline titanium implanted with 180 keV krypton ions at fluences, ranging between 1 x 10 14 and 5 x 10 15 Kr + /cm 2 . Two sample sets were chosen: as-received polycrystalline titanium discs rolled and annealed in half-hard condition which had a thick oxygen layer and similar samples in which this surface layer was removed by polishing. An increase of the mean oxygen concentration observed in both unpolished and polished samples at low fluence suggests a knock-on implantation of surface oxygen atoms. At high fluence, an overall decrease in the mean oxygen concentration and mean oxygen depth suggests an out-diffusion of near-surface oxygen atoms.

  17. Fluence inhomogeneities due to a ripple filter induced Moiré effect.

    Science.gov (United States)

    Ringbæk, Toke Printz; Brons, Stephan; Naumann, Jakob; Ackermann, Benjamin; Horn, Julian; Latzel, Harald; Scheloske, Stefan; Galonska, Michael; Bassler, Niels; Zink, Klemens; Weber, Uli

    2015-02-07

    At particle therapy facilities with pencil beam scanning, the implementation of a ripple filter (RiFi) broadens the Bragg peak, so fewer energy steps from the accelerator are required for a homogeneous dose coverage of the planning target volume (PTV). However, sharply focusing the scanned pencil beams at the RiFi plane by ion optical settings can lead to a Moiré effect, causing fluence inhomogeneities at the isocenter. This has been experimentally proven at the Heidelberg Ionenstrahl-Therapiezentrum (HIT), Universitätsklinikum Heidelberg, Germany. 150 MeV u(-1) carbon-12 ions are used for irradiation with a 3 mm thick RiFi. The beam is focused in front of and as close to the RiFi plane as possible. The pencil beam width is estimated to be 0.78 mm at a 93 mm distance from the RiFi. Radiographic films are used to obtain the fluence profile 30 mm in front of the isocenter, 930 mm from the RiFi. The Monte Carlo (MC) code SHIELD-HIT12A is used to determine the RiFi-induced inhomogeneities in the fluence distribution at the isocenter for a similar setup, pencil beam widths at the RiFi plane ranging from σχ(RiFi to 1.2 mm and for scanning step sizes ranging from 1.5 to 3.7 mm. The beam application and monitoring system (BAMS) used at HIT is modelled and simulated. When the width of the pencil beams at the RiFi plane is much smaller than the scanning step size, the resulting inhomogeneous fluence distribution at the RiFi plane interfers with the inhomogeneous RiFi mass distribution and fluence inhomogeneity can be observed at the isocenter as large as an 8% deviation from the mean fluence. The inverse of the fluence ripple period at the isocenter is found to be the difference between the inverse of the RiFi period and the inverse of the scanning step size. We have been able to use MC simulations to reproduce the spacing of the ripple stripes seen in films irradiated at HIT. Our findings clearly indicate that pencil beams sharply focused near the RiFi plane result in

  18. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Polymers such as polyimide Kapton (DuPont) and Teflon FEP (DuPont, fluorinated ethylene propylene) are commonly used spacecraft materials because of desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low-Earth-orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft performance and durability. It is, therefore, important to understand the atomic oxygen erosion yield E (the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is a passive technique based on mass-loss measurements of samples exposed to LEO atomic oxygen during a space flight experiment. There are certain disadvantages to this technique. First, because it is passive, data are not obtained until after the flight is completed. Also, obtaining the preflight and postflight mass measurements is complicated by the fact that many polymers absorb water and, therefore, the mass change due to water absorption can affect the E data. This is particularly true for experiments that receive low atomic oxygen exposures or for samples that have a very low E. An active atomic oxygen erosion technique based on optical measurements has been developed that has certain advantages over the mass-loss technique. This in situ technique can simultaneously provide the erosion yield data on orbit and the atomic oxygen exposure fluence, which is needed for erosion yield determination. In the optical technique, either sunlight or artificial light can be used to measure the erosion of semitransparent or opaque polymers as a result of atomic oxygen attack. The technique is simple and adaptable to a rather wide range of polymers, providing that they have a sufficiently high optical absorption coefficient. If one covers a photodiode with a

  19. Structural, thermal and optical behavior of 84 MeV oxygen and 120 MeV silicon ions irradiated PES

    International Nuclear Information System (INIS)

    Samra, Kawaljeet Singh; Thakur, Sonika; Singh, Lakhwant

    2011-01-01

    In order to study structural, thermal and optical behavior, thin flat samples of polyethersulfone were irradiated with oxygen and silicon ions. The changes in properties were analyzed using different techniques viz: X-ray diffraction, thermo-gravimetric analysis, Fourier transform infrared, UV-visible and photoluminescence spectroscopy. A noticeable increase in the intensity of X-ray diffraction peaks was observed after irradiation with 84 MeV oxygen ions at low and medium fluences, which may be attributed to radiation-induced cross-linking in polymer. Fourier transform infrared and thermo-gravimetric analysis corroborated the results of X-ray diffraction analysis. No noticeable change in the Fourier transform infrared spectra of oxygen ion irradiated polyethersulfone were observed even at the highest fluence of 1 x 10 13 ions cm -2 , but after irradiation with silicon ions, a reduction in intensity of almost all characteristic bands was revealed. An increase in the activation energy of decomposition of polyethersulfone was observed after irradiation with 84 MeV oxygen ions up to medium fluences but degradation was revealed at higher fluences. Similar trends were observed by photoluminescence analysis.

  20. Monitoring cardiac output during hyperbaric oxygen treatment of haemodynamically unstable patients

    DEFF Research Database (Denmark)

    Hansen, Marco Bo; Treschow, Frederik; Skielboe, Martin

    2013-01-01

    Patients suffering from necrotizing fasciitis (NF) are often haemodynamically unstable and require extended monitoring of cardiovascular parameters; yet this is limited during hyperbaric oxygen treatment (HBOT). We aimed to evaluate the use and safety of transoesophageal Doppler (TED) monitoring ...

  1. Neutron fluence determination for operation effectiveness assessment and prediction of WWER pressure vessel lifetime at the Kozloduy NPP

    Energy Technology Data Exchange (ETDEWEB)

    Apostolov, T; Ilieva, K; Belousov, S; Petrova, T; Antonov, S; Ivanov, K; Prodanova, R; Penev, I; Taskaev, E [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika; Ivanov, I; Tsokov, P; Nelov, N; Lilkov, B; Tsocheva, V; Monev, M; Velichkov, V; Kharalampieva, Ts [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    Embrittlement processes in reactor pressure vessel (RPV) metal have been investigated by neutron dosimetry. A software package for fluence calculations has been developed and used for evaluation of the accumulated neutron fluence, the critical temperature of radiation embrittlement and the RPV lifetime. A digital reactivity meter DR-8 has been introduced for continuous neutron fluence monitoring. Estimates of the neutron fluence and the radiation state of all 6 units of the Kozloduy NPP are presented. The Unit 4 RPV is in the best state regarding metal embrittlement, while the Units 2 and 3 can be safely operated up to the end of their design lifetime only using dummy cassettes. The neutron fluence accumulation in the Unit 1 RPV is quite big and can not be reduced with annealing. Activity measurements of the Unit 1 internal wall shavings are made after the 14-th cycle which show a good agreement with calculated values (1.10{sup 5} Bq/g). The critical embrittlement temperature of the Units 1 - 4 is estimated as a function of the working cycles. 11 figs., 1 tab.

  2. Dissolved oxygen mapping: A powerful tool for site assessments and ground water monitoring

    International Nuclear Information System (INIS)

    Newman, W.A.; Kimball, G.

    1992-01-01

    Dissolved oxygen concentration profiles often provide an excellent indication of the natural biological activity of microorganisms in ground water. The analysis of dissolved oxygen in ground water also provides a rapid, inexpensive method for determining the areal extent of contaminant plumes containing aerobically degraded compounds such as petroleum hydrocarbons. Indigenous hydrocarbon degrading organisms are present at most petroleum product spills giving this technique an almost universal application for dissolved hydrocarbons in ground water. Data from several sites will be presented to demonstrate the relationship between oxygen and dissolved contaminant concentrations. The inverse relationship between oxygen concentrations and dissolved contaminants can be used in many ways. During the initial site assessment, rapid on-site testing of ground water can provide real time data to direct drilling by identification of potentially contaminated locations. Several analytical techniques are available that allow field analysis to be performed in less than five minutes. Dissolved oxygen testing also provides an inexpensive way to monitor hydrocarbon migration without expensive gas chromatography. Often a plume of oxygen depleted ground water extends farther downgradient than the dissolved hydrocarbon plume. The depletion of oxygen in a well can provide an early warning system that detects upgradient contamination before the well is impacted by detectable levels of contaminants. Another application is the measurement of the natural degradation potential for aerobic remediation. If an aerobic in-situ remediation is used, dissolved oxygen monitoring provides an inexpensive method to monitor the progress of the remediation

  3. Reactive oxygen species explicit dosimetry (ROSED) of a type 1 photosensitizer

    Science.gov (United States)

    Ong, Yi Hong; Kim, Michele M.; Huang, Zheng; Zhu, Timothy C.

    2018-02-01

    Type I photodynamic therapy (PDT) is based on the use of photochemical reactions mediated through an interaction between a tumor-selective photosensitizer, photoexcitation with a specific wavelength of light, and production of reactive oxygen species (ROS). The goal of this study is to develop a model to calculate reactive oxygen species concentration ([ROS]rx) after Tookad®-mediated vascular PDT. Mice with radiation-induced fibrosarcoma (RIF) tumors were treated with different light fluence and fluence rate conditions. Explicit measurements of photosensitizer drug concentration were made via diffuse reflective absorption spectrum using a contact probe before and after PDT. Blood flow and tissue oxygen concentration over time were measured during PDT as a mean to validate the photochemical parameters for the ROSED calculation. Cure index was computed from the rate of tumor regrowth after treatment and was compared against three calculated dose metrics: total light fluence, PDT dose, reacted [ROS]rx. The tumor growth study demonstrates that [ROS]rx serves as a better dosimetric quantity for predicting treatment outcome, as a clinically relevant tumor growth endpoint.

  4. Transperineal in vivo fluence-rate dosimetry in the canine prostate during SnET2-mediated PDT

    International Nuclear Information System (INIS)

    Lilge, Lothar; Pomerleau-Dalcourt, Natalie; Douplik, Alexander; Selman, Steven H; Keck, Rick W; Szkudlarek, Maria; Pestka, Maciej; Jankun, Jerzy

    2004-01-01

    Advances in photodynamic therapy (PDT) treatment for prostate cancer can be achieved either by improving selectivity of the photosensitizer towards prostate gland tissue or improving the dosimetry by means of individualized treatment planning using currently available photosensitizers. The latter approach requires the ability to measure, among other parameters, the fluence rate at different positions within the prostate and the ability to derive the tissue optical properties. Here fibre optic probes are presented capable of measuring the fluence rate throughout large tissue volumes and a method to derive the tissue optical properties for different volumes of the prostate. The responsivity of the sensors is sufficient to detect a fluence rate of 0.1 mW cm -2 . The effective attenuation coefficient in the canine prostate at 660 nm is higher at the capsule (2.15 ± 0.19 cm -1 ) than in proximity of the urethra (1.84 ± 0.36 cm -1 ). Significant spatial and temporal intra- and inter-canine variability in the tissue optical properties was noted, highlighting the need for individualized monitoring of the fluence rate for improved dosimetry

  5. Design of a tissue oxygenation monitor and verification on human skin

    Science.gov (United States)

    Liu, Hongyuan; Kohl-Bareis, Matthias; Huang, Xiabing

    2011-07-01

    We report the design of a tissue oxygen and temperature monitor. The non-invasive, fibre based device monitors tissue haemoglobin (Hb) and oxygen saturation (SO2) and is based on white-light reflectance spectroscopy.Visible light with wavelengths in the 500 - 650nm range is utilized. The spectroscopic algorithm takes into account the tissue scattering and melanin absorption for the calculation of tissue haemoglobin concentration and oxygen saturation. The monitor can probe superficial layers of tissue with a high spatial resolution (mm3) and a high temporal resolution (40 Hz). It provides an accurate measurement with the accuracy of SO2 at 2 % and high reliability with less than 2 % variation of continuous SO2 measurement over 12 hours. It can also form a modular system when used in conjunction with a laser Doppler monitor, enabling simultaneous measurements of Hb, SO2 and blood flow. We found experimentally that the influence of the source-detector separation on the haemoglobin parameters is small. This finding is discussed by Monte Carlo simulations for the depth sensitivity profile. The influence of probe pressure and the skin pigmentation on the measurement parameters are assessed before in vivo experimental data is presented. The combination with laser Doppler flowmetry demonstrates the importance of a measurement of both the haemoglobin and the blood flow parameters for a full description of blood tissue perfusion. This is discussed in experimental data on human skin during cuff occlusion and after hyperemisation by a pharmacological cream. Strong correlation is observed between tissue oxygen (Hb and SO2) and blood flow measurements.

  6. Modification of WS2 nanosheets with controllable layers via oxygen ion irradiation

    Science.gov (United States)

    Song, Honglian; Yu, Xiaofei; Chen, Ming; Qiao, Mei; Wang, Tiejun; Zhang, Jing; Liu, Yong; Liu, Peng; Wang, Xuelin

    2018-05-01

    As one kind of two-dimensional materials, WS2 nanosheets have drawn much attention with different kinds of research methods. Yet ion irradiation method was barely used for WS2 nanosheets. In this paper, the structure, composition and optical band gap (Eg) of the multilayer WS2 films deposited by chemical vapor deposition (CVD) method on sapphire substrates before and after oxygen ion irradiation with different energy and fluences were studied. Precise tailored layer-structures and a controllable optical band gap of WS2 nanosheets were achieved after oxygen ion irradiation. The results shows higher energy oxygen irradiation changed the shape from triangular shaped grains to irregular rectangle shape but did not change 2H-WS2 phase structure. The intensity of E2g1 (Г) and A1g (Г) modes decreased and have small shifts after oxygen ion irradiation. The peak frequency difference between the E2g1 (Г) and A1g (Г) modes (Δω) decreased after oxygen ion irradiation, and this result indicates the number of layers decreased after oxygen ion irradiation. The Eg decreased with the increase of the energy and the fluence of oxygen ions. The number of layers, thickness and optical band gap changed after ion irradiation with different ion fluences and energies. The results proposed a new strategy for precise control of multilayer nanosheets and demonstrated the high applicability of ion irradiation in super-capacitors, field effect transistors and other applications.

  7. Evolution of arsenic in high fluence plasma immersion ion implanted silicon : Behavior of the as-implanted surface

    NARCIS (Netherlands)

    Vishwanath, V.; Demenev, E.; Giubertoni, D.; Vanzetti, L.; Koh, A. L.; Steinhauser, G.; Pepponi, G.; Bersani, M.; Meirer, F.; Foad, M. A.

    2015-01-01

    High fluence (>1015 ions/cm2) low-energy (3 + on (1 0 0) silicon was investigated, with the focus on stability and retention of the dopant. At this dose, a thin (∼3 nm) amorphous layer forms at the surface, which contains about 45% arsenic (As) in a silicon and oxygen matrix. The presence of silicon

  8. Dependence of wavelength of Xe ion-induced rippled structures on the fluence in the medium ion energy range

    Energy Technology Data Exchange (ETDEWEB)

    Hanisch, Antje; Grenzer, Joerg [Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Biermanns, Andreas; Pietsch, Ullrich [Institute of Physics, University of Siegen (Germany)

    2010-07-01

    Ion-beam eroded self-organized nanostructures on semiconductors offer new ways for the fabrication of high density memory and optoelectronic devices. It is known that wavelength and amplitude of noble gas ion-induced rippled structures tune with the ion energy and the fluence depending on the energy range, ion type and substrate. The linear theory by Makeev predicts a linear dependence of the ion energy on the wavelength for low temperatures. For Ar{sup +} and O{sub 2}{sup +} it was observed by different groups that the wavelength grows with increasing fluence after being constant up to an onset fluence and before saturation. In this coarsening regime power-law or exponential behavior of the wavelength with the fluence was monitored. So far, investigations for Xe ions on silicon surfaces mainly concentrated on energies below 1 keV. We found a linear dependence of both the ion energy and the fluence on the wavelength and amplitude of rippled structures over a wide range of the Xe{sup +} ion energy between 5 and 70 keV. Moreover, we estimated the ratio of wavelength to amplitude to be constant meaning a shape stability when a threshold fluence of 2.10{sup 17} cm{sup -2} was exceeded.

  9. Comparison of sources of exit fluence variation for IMRT

    International Nuclear Information System (INIS)

    Gardner, Joseph K; Gordon, J James; Wang Song; Siebers, Jeffrey V; Clews, Luke; Greer, Peter B

    2009-01-01

    The fluence exiting a patient during beam delivery can be used as treatment delivery quality assurance, either by direct comparison with expected exit fluences or by backprojection to reconstruct the patient dose. Multiple possible sources of measured exit fluence deviations exist, including changes in the beam delivery and changes in the patient anatomy. The purpose of this work is to compare the deviations caused by these sources. Machine delivery-related variability is measured by acquiring multiple dosimetric portal images (DPIs) of several test fields without a patient/phantom in the field over a time period of 2 months. Patient anatomy-related sources of fluence variability are simulated by computing transmission DPIs for a prostate patient using the same incident fluence for 11 different computed tomography (CT) images of the patient anatomy. The standard deviation (SD) and maximum deviation of the exit fluence, averaged over 5 mm x 5 mm square areas, is calculated for each test set. Machine delivery fluence SDs as large as 1% are observed for a sample patient field and as large as 2.5% for a picket-fence dMLC test field. Simulations indicate that day-to-day patient anatomy variations induce exit fluence SDs as large as 3.5%. The largest observed machine delivery deviations are 4% for the sample patient field and 7% for the picket-fence field, while the largest difference for the patient anatomy-related source is 8.5%. Since daily changes in patient anatomy can result in substantial exit fluence deviations, care should be taken when applying fluence back-projection to ensure that such deviations are properly attributed to their source. (note)

  10. Probability model for worst case solar proton event fluences

    International Nuclear Information System (INIS)

    Xapsos, M.A.; Summers, G.P.; Barth, J.L.; Stassinopoulos, E.G.; Burke, E.A.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary orbits, polar orbits and on interplanetary missions. A predictive model of worst case solar proton event fluences is presented. It allows the expected worst case event fluence to be calculated for a given confidence level and for periods of time corresponding to space missions. The proton energy range is from >1 to >300 MeV, so that the model is useful for a variety of radiation effects applications. For each proton energy threshold, the maximum entropy principle is used to select the initial distribution of solar proton event fluences. This turns out to be a truncated power law, i.e., a power law for smaller event fluences that smoothly approaches zero at a maximum fluence. The strong agreement of the distribution with satellite data for the last three solar cycles indicates this description captures the essential features of a solar proton event fluence distribution. Extreme value theory is then applied to the initial distribution of events to obtain the model of worst case fluences

  11. Neutron fluence measurement in the cavity of Balakovo nuclear power plant, unit 3

    International Nuclear Information System (INIS)

    Voorbraak, W.P.; Baard, J.H.; Paardekooper, A.; Nolthenius, H.J.

    1996-12-01

    An international benchmark exercise has been organized by the Russian GOSATOMNADZOR. The aim was to reduce the uncertainty of fluence measurements in Nuclear Power Plants in particular VVER-1000 reactors. The benchmark was set up in the cavity of the Balakovo NPP 3. Eight institutes were involved. This report presents the results obtained by ECN. From this report, it can be concluded that the results of the relative large monitor set (13 different reaction rates with overlapping response regions) point to possible imperfections in the calculated neutron spectra. However the experimental information is not powerful enough to reduce the uncertainty of the neutron fluence rate especially in the energy region between 0.1 and 0.5 MeV below 50 percent. (orig.)

  12. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations.

    Science.gov (United States)

    Palmans, H; Al-Sulaiti, L; Andreo, P; Shipley, D; Lühr, A; Bassler, N; Martinkovič, J; Dobrovodský, J; Rossomme, S; Thomas, R A S; Kacperek, A

    2013-05-21

    The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence

  13. Oxygen depth profiling in Kr{sup +}-implanted polycrystalline alpha titanium by means of {sup 16}O({alpha},{alpha}){sup 16}O resonance scattering

    Energy Technology Data Exchange (ETDEWEB)

    Nsengiyumva, S., E-mail: schadnse@hotmail.com [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa); Department of Physics and Electronics, Rhodes University, Grahamstown 6140 (South Africa); Department of Physics, Kigali Institute of Education, P.O. Box 5039 Kigali (Rwanda); Riviere, J.P. [Laboratoire de Physique des Materiaux UMR6630-CNRS, 86960 (France); Raji, A.T.; Comrie, C.M.; Britton, D.T.; Haerting, M. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa)

    2011-07-15

    The {sup 16}O({alpha},{alpha}){sup 16}O resonance scattering was applied to study the effects of ion implantation on the oxygen distribution in the near surface region of polycrystalline titanium implanted with 180 keV krypton ions at fluences, ranging between 1 x 10{sup 14} and 5 x 10{sup 15} Kr{sup +}/cm{sup 2}. Two sample sets were chosen: as-received polycrystalline titanium discs rolled and annealed in half-hard condition which had a thick oxygen layer and similar samples in which this surface layer was removed by polishing. An increase of the mean oxygen concentration observed in both unpolished and polished samples at low fluence suggests a knock-on implantation of surface oxygen atoms. At high fluence, an overall decrease in the mean oxygen concentration and mean oxygen depth suggests an out-diffusion of near-surface oxygen atoms.

  14. Monitor hemoglobin concentration and oxygen saturation in living mouse tail using photoacoustic CT scanner

    Science.gov (United States)

    Liu, Bo; Kruger, Robert; Reinecke, Daniel; Stantz, Keith M.

    2010-02-01

    Purpose: The purpose of this study is to use PCT spectroscopy scanner to monitor the hemoglobin concentration and oxygen saturation change of living mouse by imaging the artery and veins in a mouse tail. Materials and Methods: One mouse tail was scanned using the PCT small animal scanner at the isosbestic wavelength (796nm) to obtain its hemoglobin concentration. Immediately after the scan, the mouse was euthanized and its blood was extracted from the heart. The true hemoglobin concentration was measured using a co-oximeter. Reconstruction correction algorithm to compensate the acoustic signal loss due to the existence of bone structure in the mouse tail was developed. After the correction, the hemoglobin concentration was calculated from the PCT images and compared with co-oximeter result. Next, one mouse were immobilized in the PCT scanner. Gas with different concentrations of oxygen was given to mouse to change the oxygen saturation. PCT tail vessel spectroscopy scans were performed 15 minutes after the introduction of gas. The oxygen saturation values were then calculated to monitor the oxygen saturation change of mouse. Results: The systematic error for hemoglobin concentration measurement was less than 5% based on preliminary analysis. Same correction technique was used for oxygen saturation calculation. After correction, the oxygen saturation level change matches the oxygen volume ratio change of the introduced gas. Conclusion: This living mouse tail experiment has shown that NIR PCT-spectroscopy can be used to monitor the oxygen saturation status in living small animals.

  15. Retrievable micro-inserts containing oxygen sensors for monitoring tissue oxygenation using EPR oximetry

    International Nuclear Information System (INIS)

    Dinguizli, M; Beghein, N; Gallez, B

    2008-01-01

    Tissue oxygenation is a crucial parameter in various physiopathological situations and can influence the therapeutic response of tumours. EPR oximetry is a reliable method for assessing and monitoring oxygen levels in vivo over long periods of time. Among the different paramagnetic oxygen sensors available for EPR oximetry, lithium phthalocyanine (LiPc) is a serious candidate for in vivo applications because of its narrow linewidth and its high signal-to-noise ratio. To enhance the biocompatibility of the sensors, fluoropolymer Teflon AF2400 was used to make cylindrical micro-inserts containing LiPc crystals. This new micro-pellet design has several advantages for in vivo studies, including the possibility of being able to choose the implant size, a high sensor content, the facility of in vivo insertion and complete protection with preservation of the oxygen sensor's characteristics. The response to oxygen and the kinetics of this response were tested using in vivo EPR: no differences were observed between micro-inserts and uncoated LiPc crystals. Pellets implanted in vivo in muscles conserved their responsiveness over a long period of time (∼two months), which is much longer than the few days of stability observed using LiPc crystals without protection by the implant. Finally, evaluation of the biocompatibility of the implants revealed no inflammatory reaction around the implantation area

  16. Monitoring bioremediation of weathered diesel NAPL using oxygen depletion profiles

    International Nuclear Information System (INIS)

    Davis, G.B.; Johnston, C.D.; Patterson, B.M.; Barber, C.; Bennett, M.

    1995-01-01

    Semicontinuous logging of oxygen concentrations at multiple depths has been used to evaluate the progress of an in situ bioremediation trial at a site contaminated by weathered diesel nonaqueous-phase liquid (NAPL). The evaluation trial consisted of periodic addition of nutrients and aeration of a 100-m 2 trial plot. During the bioremediation trial, aeration was stopped periodically, and decreases in dissolved and gaseous oxygen concentrations were monitored using data loggers attached to in situ oxygen sensors placed at multiple depths above and within a thin NAPL-contaminated zone. Oxygen usage rate coefficients were determined by fitting zero- and first-order rate equations to the oxygen depletion curves. For nutrient-amended sites within the trial plot, estimates of oxygen usage rate coefficients were significantly higher than estimates from unamended sites. These rates also converted to NPL degradation rates, comparable to those achieved in previous studies, despite the high concentrations and weathered state of the NAPL at this test site

  17. Vectorial and plane energy fluences - useful concepts in radiation physics

    International Nuclear Information System (INIS)

    Carlsson, C.A.

    1977-06-01

    The vectorial physical quantities describing the radiation field are defined in this report. The use of these quantities is rare in the radiation dosimetry literature since a knowledge of the directions of motion of the ionizing particle is often uninteresting when determining absorbed doses. However the plane energy fluence rate is a useful quantity in cases with plane irradiation geometries. The plane energy fluence rate is closely related to the vectorial energy fluence rate. The backscattering properties of a medium can be expressed in terms either of its albedo or its reflection-coefficient (backscatter-coefficient). These quantities are discussed in order to derive useful relations between the plane energy fluence and the energy fluence at points on an extended plane surface. Examples are also given of erroneous use of energy fluence instead of vectorial or plane energy fluence. The examples are taken from roentgen diagnostic examinations. To prevent further mistakes it could be valuable if the quantities of vectorial and plane fluences were introduced in text books in radiation dosimetry. Awaiting for this, this report may hopefully be useful. (E.R.)

  18. IMRT fluence map editing to control hot and cold spots

    International Nuclear Information System (INIS)

    Taylor Cook, J.; Tobler, Matt; Leavitt, Dennis D.; Watson, Gordon

    2005-01-01

    Manually editing intensity-modulated radiation therapy (IMRT) fluence maps effectively controls hot and cold spots that the IMRT optimization cannot control. Many times, re-optimizing does not reduce the hot spots or increase the cold spots. In fact, re-optimizing only places the hot and cold spots in different locations. Fluence-map editing provides manual control of dose delivery and provides the best treatment plan possible. Several IMRT treatments were planned using the Varian Eclipse planning system. We compare the effects on dose distributions between fluence-map editing and re-optimization, discuss techniques for fluence-map editing, and analyze differences between fluence editing on one beam vs. multiple beams. When editing a beam's fluence map, it is essential to choose a beam that least affects dose to the tumor and critical structures. Editing fluence maps gives an advantage in treatment planning and provides controlled delivery of IMRT dose

  19. Studies for improvement of WWER-440 neutron fluence determination

    International Nuclear Information System (INIS)

    Ilieva, Kr.; Belousov, S.; Apostolov, T.

    2001-01-01

    For assessment of radiation embrittlement and prediction of reactor vessel lifetime with reasonable conservatism a 'best estimated' neutron fluence is necessary. New studies purposed to improve the fluence determination are presented: 1) study on the reliability of multigroup presentation of the neutron cross sections, and 2) impact of negative gradient of reactor power in the periphery assemblies on the neutron fluence evaluation. The results of these studies are base for improvement of neutron fluence determination methodology applied by the INRNE, BAS at Kozloduy NPP. (author)

  20. Measuring oxidation processes: Atomic oxygen flux monitor

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Of the existing 95 high-energy accelerators in the world, the Stanford Linear Collider (SLC) at the Stanford Linear Accelerator Center (SLAC) is the only one of the linear-collider type, where electrons and positrons are smashed together at energies of 50 GeV using linear beams instead of beam rings for achieving interactions. Use of a collider eliminates energy losses in the form of x-rays due to the curved trajectory of the rings, a phenomena known as bremsstrauhlung. Because these losses are eliminated, higher interaction energies are reached. Consequently the SLC produced the first Z particle in quantities large enough to allow measurement of its physical properties with some accuracy. SLAC intends to probe still deeper into the structure of matter by next polarizing the electrons in the beam. The surface of the source for these polarized particles, typically gallium arsenide, must be kept clean of contaminants. One method for accomplishing this task requires the oxidation of the surface, from which the oxidized contaminants are later boiled off. The technique requires careful measurement of the oxidation process. SLAC researchers have developed a technique for measuring the atomic oxygen flux in this process. The method uses a silver film on a quartz-crystal, deposition-rate monitor. Measuring the initial oxidation rate of the silver, which is proportional to the atomic oxygen flux, determines a lower limit on that flux in the range of 10 13 to 10 17 atoms per square centimeter per second. Furthermore, the deposition is reversible by exposing the sensor to atomic hydrogen. This technique has wider applications to processes in solid-state and surface physics as well as surface chemistry. In semiconductor manufacturing where a precise thickness of oxide must be deposited, this technique could be used to monitor the critical flux of atomic oxygen in the process

  1. Inactivation of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Raballand, V; Benedikt, J; Keudell, A von [Research Group Reactive Plasmas, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Wunderlich, J [Fraunhofer Institut for Process Engineering and Packaging, Giggenhauser Strasse 35, 85354 Freising (Germany)], E-mail: Achim.vonKeudell@rub.de

    2008-06-07

    The inactivation of spores of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms is studied. Thereby, the conditions occurring in oxygen containing low pressure plasmas are mimicked and fundamental inactivation mechanisms can be revealed. It is shown that the impact of O atoms has no effect on the viability of the spores and that no etching of the spore coat occurs up to an O atom fluence of 3.5 x 10{sup 19} cm{sup -2}. The impact of argon ions with an energy of 200 eV does not cause significant erosion for fluences up to 1.15 x 10{sup 18} cm{sup -2}. However, the combined impact of argon ions and oxygen molecules or atoms causes significant etching of the spores and significant inactivation. This is explained by the process of chemical sputtering, where an ion-induced defect at the surface of the spore reacts with either the incident bi-radical O{sub 2} or with an incident O atom. This leads to the formation of CO, CO{sub 2} and H{sub 2}O and thus to erosion.

  2. Electron fluence correction factors for various materials in clinical electron beams

    International Nuclear Information System (INIS)

    Olivares, M.; Blois, F. de; Podgorsak, E.B.; Seuntjens, J.P.

    2001-01-01

    Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at d max in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than ±1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83±0.01 and 1.55±0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1σ level. Excluding the data for Cu, electron fluence

  3. Neutron fluence spectrometry using disk activation

    International Nuclear Information System (INIS)

    Loevestam, Goeran; Hult, Mikael; Fessler, Andreas; Gasparro, Joel; Kockerols, Pierre; Okkinga, Klaas; Tagziria, Hamid; Vanhavere, Filip; Wieslander, J.S. Elisabeth

    2009-01-01

    A simple and robust detector for spectrometry of environmental neutrons has been developed. The technique is based on neutron activation of a series of different metal disks followed by low-level gamma-ray spectrometry of the activated disks and subsequent neutron spectrum unfolding. The technique is similar to foil activation but here the applied neutron fluence rates are much lower than usually in the case of foil activation. The detector has been tested in quasi mono-energetic neutron fields with fluence rates in the order of 1000-10000 cm -2 s -1 , where the obtained spectra showed good agreement with spectra measured using a Bonner sphere spectrometer. The detector has also been tested using an AmBe source and at a neutron fluence rate of about 40 cm -2 s -1 , again, a good agreement with the assumed spectrum was achieved

  4. Pericellular oxygen monitoring with integrated sensor chips for reproducible cell culture experiments.

    Science.gov (United States)

    Kieninger, J; Aravindalochanan, K; Sandvik, J A; Pettersen, E O; Urban, G A

    2014-04-01

    Here we present an application, in two tumour cell lines, based on the Sensing Cell Culture Flask system as a cell culture monitoring tool for pericellular oxygen sensing. T-47D (human breast cancer) and T98G (human brain cancer) cells were cultured either in atmospheric air or in a glove-box set at 4% oxygen, in both cases with 5% CO2 in the gas phase. Pericellular oxygen tension was measured with the help of an integrated sensor chip comprising oxygen sensor arrays. Obtained results illustrate variation of pericellular oxygen tension in attached cells covered by stagnant medium. Independent of incubation conditions, low pericellular oxygen concentration levels, usually associated with hypoxia, were found in dense cell cultures. Respiration alone brought pericellular oxygen concentration down to levels which could activate hypoxia-sensing regulatory processes in cultures believed to be aerobic. Cells in culture believed to experience conditions of mild hypoxia may, in reality, experience severe hypoxia. This would lead to incorrect assumptions and suggests that pericellular oxygen concentration readings are of great importance to obtain reproducible results when dealing with hypoxic and normoxic (aerobic) incubation conditions. The Sensing Cell Culture Flask system allows continuous monitoring of pericellular oxygen concentration with outstanding long-term stability and no need for recalibration during cell culture experiments. The sensor is integrated into the flask bottom, thus in direct contact with attached cells. No additional equipment needs to be inserted into the flask during culturing. Transparency of the electrochemical sensor chip allows optical inspection of cells attached on top of the sensor. © 2014 John Wiley & Sons Ltd.

  5. Method and apparatus for monitoring oxygen partial pressure in air masks

    Science.gov (United States)

    Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)

    2006-01-01

    Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.

  6. Neutron fluence spectrometry using disk activation

    Energy Technology Data Exchange (ETDEWEB)

    Loevestam, Goeran [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium)], E-mail: goeran.loevestam@ec.europa.eu; Hult, Mikael; Fessler, Andreas; Gasparro, Joel; Kockerols, Pierre; Okkinga, Klaas [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Tagziria, Hamid [EC-JRC-Institute for the Protection and the Security of the Citizen (IPSC), Via E. Fermi 1, I-21020 Ispra (Vatican City State, Holy See,) (Italy); Vanhavere, Filip [SCK-CEN, Boeretang, 2400 Mol (Belgium); Wieslander, J.S. Elisabeth [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Department of Physics, P.O. Box 35 (YFL), FIN-40014, University of Jyvaeskylae (Finland)

    2009-01-15

    A simple and robust detector for spectrometry of environmental neutrons has been developed. The technique is based on neutron activation of a series of different metal disks followed by low-level gamma-ray spectrometry of the activated disks and subsequent neutron spectrum unfolding. The technique is similar to foil activation but here the applied neutron fluence rates are much lower than usually in the case of foil activation. The detector has been tested in quasi mono-energetic neutron fields with fluence rates in the order of 1000-10000 cm{sup -2} s{sup -1}, where the obtained spectra showed good agreement with spectra measured using a Bonner sphere spectrometer. The detector has also been tested using an AmBe source and at a neutron fluence rate of about 40 cm{sup -2} s{sup -1}, again, a good agreement with the assumed spectrum was achieved.

  7. Photoluminescence in large fluence radiation irradiated space silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Tadashi; Kawasaki, Osamu; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Tsukamoto, Kazuyoshi

    1997-03-01

    Photoluminescence spectroscopy measurements were carried out for silicon 50{mu}m BSFR space solar cells irradiated with 1MeV electrons with a fluence exceeding 1 x 10{sup 16} e/cm{sup 2} and 10MeV protons with a fluence exceeding 1 x 10{sup 13} p/cm{sup 2}. The results were compared with the previous result performed in a relative low fluence region, and the radiation-induced defects which cause anomalous degradation of the cell performance in such large fluence regions were discussed. As far as we know, this is the first report which presents the PL measurement results at 4.2K of the large fluence radiation irradiated silicon solar cells. (author)

  8. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4; Calculo de coeficientes de fluencia de neutrons para equivalente de dose individual utilizando o GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R., E-mail: rosanemribeiro@oi.com.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H{sub p} (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm{sup 3}, composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm{sup 2}). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  9. Online measurement of fluence and position for protontherapy beams

    Science.gov (United States)

    Benati, C.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cornelius, I.; Cuttone, G.; Donetti, M.; Garelli, E.; Giordanengo, S.; Guérin, L.; La Rosa, A.; Luparia, A.; Marchetto, F.; Martin, F.; Meyroneinc, S.; Peroni, C.; Pittà, G.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2004-09-01

    Tumour therapy with proton beams has been used for several decades in many centres with very good results in terms of local control and overall survival. Typical pathologies treated with this technique are located in head and neck, eye, prostate and in general at big depths or close to critical organs. The Experimental Physics Department of the University of Turin and the local Section of INFN, in collaboration with INFN Laboratori Nazionali del Sud Catania and Centre de Protontherapie de Orsay Paris, have developed detector systems that allow the measurement of beam position and fluence, obtained in real time during beam delivery. The centre in Catania (CATANA: Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been treating patients with eye pathologies since spring 2002 using a superconducting cyclotron accelerating protons up to 62 MeV.This kind of treatments need high-resolution monitor systems and for this reason we have developed a 256-strip segmented ionisation chamber, each strip being 400 μm wide, with a total sensitive area 13×13 cm2. The Centre de Protontherapie de Orsay (CPO) has been operational since 1991 and features a synchrocyclotron used for eye and head and neck tumours with proton beams up to 200 MeV. The monitor system has to work on a large surface and for this purpose we have designed a pixel-segmented ionisation chamber, each pixel being 5×5 mm2, for a total active area of 16×16 cm2. The results obtained with two prototypes of the pixel and strip chambers demonstrate that the detectors allow the measurement of fluence and centre of gravity as requested by clinical specifications.

  10. Spatial sensitivity and penetration depth of three cerebral oxygenation monitors

    Science.gov (United States)

    Gunadi, Sonny; Leung, Terence S.; Elwell, Clare E.; Tachtsidis, Ilias

    2014-01-01

    The spatial sensitivities of NIRO-100, ISS Oximeter and TRS-20 cerebral oxygenation monitors are mapped using the local perturbation method to inform on their penetration depths and susceptibilities to superficial contaminations. The results show that TRS-20 has the deepest mean penetration depth and is less sensitive than the other monitors to a localized absorption change in the superficial layer. However, an integration time of more than five seconds is required by the TRS-20 to achieve an acceptable level of signal-to-noise ratio, which is the poorest amongst the monitors. With the exception of NIRO-100 continuous wave method, the monitors are not significantly responsive to layer-wide absorption change that occurs in the superficial layer. PMID:25401006

  11. Singlet oxygen explicit dosimetry to predict local tumor control for HPPH-mediated photodynamic therapy

    Science.gov (United States)

    Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    This preclinical study examines four dosimetric quantities (light fluence, photosensitizer photobleaching ratio, PDT dose, and reacted singlet oxygen ([1O2]rx)) to predict local control rate (LCR) for 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH)-mediated photodynamic therapy (PDT). Mice bearing radiation-induced fibrosarcoma (RIF) tumors were treated with different in-air fluences (135, 250 and 350 J/cm2) and in-air fluence rates (50, 75 and 150 mW/cm2) at 0.25 mg/kg HPPH and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 665 nm wavelength. A macroscopic model was used to calculate ([1O2]rx)) based on in vivo explicit dosimetry of the initial tissue oxygenation, photosensitizer concentration, and tissue optical properties. PDT dose was defined as a temporal integral of drug concentration and fluence rate (φ) at a 3 mm tumor depth. Light fluence rate was calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. The tumor volume of each mouse was tracked for 30 days after PDT and Kaplan-Meier analyses for LCR were performed based on a tumor volume <=100 mm3, for four dose metrics: fluence, HPPH photobleaching rate, PDT dose, and ([1O2]rx)). The results of this study showed that ([1O2]rx)) is the best dosimetric quantity that can predict tumor response and correlate with LCR.

  12. Comprehensive fluence model for absolute portal dose image prediction

    International Nuclear Information System (INIS)

    Chytyk, K.; McCurdy, B. M. C.

    2009-01-01

    Amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) continue to be investigated as treatment verification tools, with a particular focus on intensity modulated radiation therapy (IMRT). This verification could be accomplished through a comparison of measured portal images to predicted portal dose images. A general fluence determination tailored to portal dose image prediction would be a great asset in order to model the complex modulation of IMRT. A proposed physics-based parameter fluence model was commissioned by matching predicted EPID images to corresponding measured EPID images of multileaf collimator (MLC) defined fields. The two-source fluence model was composed of a focal Gaussian and an extrafocal Gaussian-like source. Specific aspects of the MLC and secondary collimators were also modeled (e.g., jaw and MLC transmission factors, MLC rounded leaf tips, tongue and groove effect, interleaf leakage, and leaf offsets). Several unique aspects of the model were developed based on the results of detailed Monte Carlo simulations of the linear accelerator including (1) use of a non-Gaussian extrafocal fluence source function, (2) separate energy spectra used for focal and extrafocal fluence, and (3) different off-axis energy spectra softening used for focal and extrafocal fluences. The predicted energy fluence was then convolved with Monte Carlo generated, EPID-specific dose kernels to convert incident fluence to dose delivered to the EPID. Measured EPID data were obtained with an a-Si EPID for various MLC-defined fields (from 1x1 to 20x20 cm 2 ) over a range of source-to-detector distances. These measured profiles were used to determine the fluence model parameters in a process analogous to the commissioning of a treatment planning system. The resulting model was tested on 20 clinical IMRT plans, including ten prostate and ten oropharyngeal cases. The model predicted the open-field profiles within 2%, 2 mm, while a mean of 96.6% of pixels over all

  13. Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser.

    Science.gov (United States)

    Alexsandra da Silva Neto Trajano, Larissa; da Silva, Camila Luna; de Carvalho, Simone Nunes; Cortez, Erika; Mencalha, André Luiz; de Souza da Fonseca, Adenilson; Stumbo, Ana Carolina

    2016-07-01

    Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells.

  14. Recoil mixing in high-fluence ion implantation

    International Nuclear Information System (INIS)

    Littmark, U.; Hofer, W.O.

    1979-01-01

    The effect of recoil mixing on the collection and depth distribution of implanted projectiles during high-fluence irradiation of a random solid is investigated by model calculations based on a previously published transport theoretical approach to the general problem of recoil mixing. The most pronounced effects are observed in the maximum implantable amount of projectiles and in the critical fluence for saturation. Both values are significantly increased by recoil mixing. (Auth.)

  15. Fluence complexity for IMRT field and simplification of IMRT verification

    International Nuclear Information System (INIS)

    Hanushova, Tereza; Vondarchek, Vladimir

    2013-01-01

    Intensity Modulated Radiation Therapy (IMRT) requires dosimetric verification of each patient’s plan, which is time consuming. This work deals with the idea of minimizing the number of fields for control, or even replacing plan verification by machine quality assurance (QA). We propose methods for estimation of fluence complexity in an IMRT field based on dose gradients and investigate the relation between results of gamma analysis and this quantity. If there is a relation, it might be possible to only verify the most complex field of a plan. We determine the average fluence complexity in clinical fields and design a test fluence corresponding to this amount of complexity which might be used in daily QA and potentially replace patient-related verification. Its applicability is assessed in clinical practice. The relation between fluence complexity and results of gamma analysis has been confirmed for plans but not for single fields. There is an agreement between the suggested test fluence and clinical fields in the average gamma parameter. A critical value of average gamma has been specified for the test fluence as a criterion for distinguishing between poorly and well deliverable plans. It will not be possible to only verify the most complex field of a plan but verification of individual plans could be replaced by a morning check of the suggested test fluence, together with a well-established set of QA tests. (Author)

  16. International key comparison of neutron fluence measurements in mono-energetic neutron fields: C.C.R.I.(3)-K10

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Wang, Z.; Rong, C. [China Institute of Atomic Energy (CIAE), Beijing, People' s Republic of China (China); Lovestam, G.; Plompen, A.; Puglisi, N. [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Geel (Belgium); Gilliam, D.M.; Eisenhauer, C.M.; Nico, J.S.; Dewey, M.S. [National Institute of Standards and Technology (NIST), Gaithersburg (United States); Kudo, K.; Uritani, A.; Harano, H.; Takeda, N. [National Metrology Institute of Japan (NMIJ), Tsukuba (Japan); Thomas, D.J.; Roberts, N.J.; Bennett, A.; Kolkowski, P. [National Physical Laboratory (NPL), Teddington (United Kingdom); Moisseev, N.N.; Kharitonov, I.A. [Mendeleyev Institute for Metrology (VNIIM), St Petersburg (Russian Federation); Guldbakke, S.; Klein, H.; Nolte, R.; Schlegel, D. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2007-12-15

    C.C.R.I. Section III (neutron measurements) conducted a unique key comparison of neutron fluence measurements in mono-energetic neutron fields. In contrast to former comparisons, here the fluence measurements were performed with the participants' instruments in the same neutron fields at the P.T.B. accelerator facility. Seven laboratories- the C.I.A.E. (China), I.R.M.M. (E.C.), N.M.I.J. (Japan), N.I.S.T. (USA), N.P.L. (UK), P.T.B. (Germany) and the V.N.I.I.M. (Russia)-employed their primary standard reference methods or transfer instruments carefully calibrated against their primary standards, to determine the fluence of 0.144 MeV, 1.2 MeV, 5.0 MeV and 14.8 MeV neutrons and reported calibration coefficients for a selected neutron monitor and each neutron energy with a detailed uncertainty budget for the measurements. The key comparison reference values (K.C.R.V.) were finally evaluated as the weighted mean values of the neutron fluence at 1 m distance from the target in vacuum per neutron monitor count. The uncertainties of each K.C.R.V. amounted to about 1%. The degree of equivalence (D.o.E.), defined as the deviation of the result reported by the laboratories for each energy from the corresponding K.C.R.V., and the associated expanded uncertainty are also reported. The deviations between the results of two laboratories each with the corresponding expanded uncertainties complete the documentation of the degrees of equivalence. (authors)

  17. Oxygen ion implantation induced microstructural changes and electrical conductivity in Bakelite RPC detector material

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K. V. Aneesh, E-mail: aneesh1098@gmail.com; Ravikumar, H. B., E-mail: hbr@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Mysore-570006 (India); Ranganathaiah, C., E-mail: cr@physics.uni-mysore.ac.in [Govt. Research Centre, Sahyadri Educational Institutions, Mangalore-575007 (India); Kumarswamy, G. N., E-mail: kumy79@gmail.com [Department of Studies in Physics, Amrita Vishwa Vidyapeetham, Bangalore-560035 (India)

    2016-05-06

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite Resistive Plate Chamber (RPC) detector materials were exposed to 100 keV Oxygen ion in the fluences of 10{sup 12}, 10{sup 13}, 10{sup 14} and 10{sup 15} ions/cm{sup 2}. Ion implantation induced microstructural changes have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and X-Ray Diffraction (XRD) techniques. Positron lifetime parameters viz., o-Ps lifetime and its intensity shows the deposition of high energy interior track and chain scission leads to the formation of radicals, secondary ions and electrons at lower ion implantation fluences (10{sup 12} to10{sup 14} ions/cm{sup 2}) followed by cross-linking at 10{sup 15} ions/cm{sup 2} fluence due to the radical reactions. The reduction in electrical conductivity of Bakelite detector material is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate implantation energy and fluence of Oxygen ion on polymer based Bakelite RPC detector material may reduce the leakage current, improves the efficiency, time resolution and thereby rectify the aging crisis of the RPC detectors.

  18. Spectral fluence of neutrons generated by radiotherapeutic Linacs

    International Nuclear Information System (INIS)

    Kralik, Miloslav; Solc, Jaroslav; Smoldasova, Jana; Vondracek, Vladimir; Farkasova, Estera; Ticha, Ivana

    2015-01-01

    Spectral fluences of neutrons generated in the heads of the radiotherapeutic linacs Varian Clinac 2100 C/D and Siemens ARTISTE were measured by means of the Bonner spheres spectrometer whose active detector of thermal neutrons was replaced by an activation detector, i.e. a tablet made of pure manganese. Measurements with different collimator settings reveal an interesting dependence of neutron fluence on the area defined by the collimator jaws. The determined neutron spectral fluences were used to derive ambient dose equivalent rate along the treatment coach. To clarify at which components of the linac neutrons are mainly created, the measurements were complemented with MCNPX calculations based on a realistic model of the Varian Clinac. (authors)

  19. Biphasic Fluence-Response Curves for Phytochrome-Mediated Kalanchoë Seed Germination 1

    Science.gov (United States)

    Rethy, Roger; Dedonder, Andrée; De Petter, Edwin; Van Wiemeersch, Luc; Fredericq, Henri; De Greef, Jan; Steyaert, Herman; Stevens, Hilde

    1987-01-01

    The fluence-response curves for the effect of two red pulses separated by 24 hours on the germination of Kalanchoe blossfeldiana Poelln. cv Vesuv seeds, incubated on gibberellic acid (GA3) are biphasic for suboptimal concentrations. The response in the low fluence range corresponds with a classical red/far-red reversible phytochrome mediated reaction. GA3 induces an additional response in the very low fluence range, which is also phytochrome mediated. The sensitivity to phytochrome-far-red absorbing form (Pfr), however, is increased about 20,000-fold, so that even far-red fluences become saturating. Both in the very low and low fluence response range, the maximal responses induced by saturating fluences are modulated by the GA3 concentration. GA3 having no direct influence on the phytochrome phototransformations, alters the Pfr requirement and determines the responding seed population fraction in the very low and low fluence range. The effet of GA3 appears to be on the transduction chain of the phytochrome signal. PMID:16665187

  20. The design of a PC-based real-time system for monitoring Methane and Oxygen concentration in biogas production

    Science.gov (United States)

    Yantidewi, M.; Muntini, M. S.; Deta, U. A.; Lestari, N. A.

    2018-03-01

    Limited fossil fuels nowadays trigger the development of alternative energy, one of which is biogas. Biogas is one type of bioenergy in the form of fermented gases of organic materials such as animal waste. The components of gases present in biogas and affect the biogas production are various, such as methane and oxygen. The biogas utilization will be more optimal if both gases concentration (in this case is methane and oxygen concentration) can be monitored. Therefore, this research focused on designing the monitoring system of methane and oxygen concentration in biogas production in real-time. The results showed that the instrument system was capable of monitoring and recording the data of gases (methane and oxygen) concentration in biogas production in every second.

  1. Direct tissue oxygen monitoring by in vivo photoacoustic lifetime imaging (PALI)

    Science.gov (United States)

    Shao, Qi; Morgounova, Ekaterina; Ashkenazi, Shai

    2014-03-01

    Tissue oxygen plays a critical role in maintaining tissue viability and in various diseases, including response to therapy. Images of oxygen distribution provide the history of tissue hypoxia and evidence of oxygen availability in the circulatory system. Currently available methods of direct measuring or imaging tissue oxygen all have significant limitations. Previously, we have reported a non-invasive in vivo imaging modality based on photoacoustic lifetime. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflects the spatial and temporal distribution of tissue oxygen. We have applied PALI on tumor hypoxia in small animals, and the hypoxic region imaged by PALI is consistent with the site of the tumor imaged by ultrasound. Here, we present two studies of applying PALI to monitor changes of tissue oxygen by modulations. The first study involves an acute ischemia model using a thin thread tied around the hind limb of a normal mouse to reduce the blood flow. PALI images were acquired before, during, and after the restriction. The drop of muscle pO2 and recovery from hypoxia due to reperfusion were observed by PALI tracking the same region. The second study modulates tissue oxygen by controlling the percentage of oxygen the mouse inhales. We demonstrate that PALI is able to reflect the change of oxygen level with respect to both hyperbaric and hypobaric conditions. We expect this technique to be very attractive for a range of clinical applications in which tissue oxygen mapping would improve therapy decision making and treatment planning.

  2. Oxygen consumption through metabolism and photodynamic reactions in cells cultured on microbeads

    International Nuclear Information System (INIS)

    Schunck, T.; Poulet, P.

    2000-01-01

    Oxygen consumption by cultured cells, through metabolism and photosensitization reactions, has been calculated theoretically. From this result, we have derived the partial oxygen pressure P O 2 in the perfusion medium flowing across sensitized cultured cells during photodynamic experiments. The P O 2 variations in the perfusate during light irradiation are related to the rate of oxygen consumption through photoreactions, and to the number of cells killed per mole of oxygen consumed through metabolic processes. After irradiation, the reduced metabolic oxygen consumption yields information on the cell death rate, and on the photodynamic cell killing efficiency. The aim of this paper is to present an experimental set-up and the corresponding theoretical model that allows us to control the photodynamic efficiency for a given cell-sensitizer pair, under well defined and controlled conditions of irradiation and oxygen supply. To demonstrate the usefulness of the methodology described, CHO cells cultured on microbeads were sensitized with pheophorbide a and irradiated with different light fluence rates. The results obtained, i.e. oxygen consumption of about 0.1 μMs -1 m -3 under a light fluence rate of 1 W m -2 , 10 5 cells killed per mole of oxygen consumed and a decay rate of about 1 h -1 of living cells after irradiation, are in good agreement with the theoretical predictions and with previously published data. (author)

  3. Deuterium accumulation in tungsten at high fluences

    Energy Technology Data Exchange (ETDEWEB)

    Zibrov, Mikhail [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); FOM Institute DIFFER, De Zaale 20, 5612 AJ Eindhoven (Netherlands); Balden, Martin; Matej, Matej [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Bystrov, Kirill; Morgan, Thomas [FOM Institute DIFFER, De Zaale 20, 5612 AJ Eindhoven (Netherlands)

    2016-07-01

    The data on the deuterium (D) retention in tungsten (W) at high fluences (≥ 10{sup 27} D/m{sup 2}) are scarce and the existing results are contradictory. Since retention in W is known to be flux-dependent, the laboratory experiments addressing this issue should be carried out in reactor-relevant conditions (high fluxes of low-energy ions). In this work the samples made of polycrystalline W were exposed to D plasmas in the linear plasma generator Pilot-PSI at temperatures ranging from 360 K to 1140 K to fluences in the range of 0.3-8.7 x 10{sup 27} D/m{sup 2}. It was observed that at exposure temperatures of 360 K and 580 K the D retention was only slightly dependent on the ion fluence. In addition, the presence of blister-like structures was found after the exposures, and their density and size distributions were also only weakly dependent on the fluence. In the case of exposure at 1140 K no surface modifications of the samples after plasma exposure were detected and the concentrations of retained D were very small. At all temperatures used the total amounts of retained D were smaller compared to those obtained by other researchers at lower ion flux densities, which indicates that the incident ion flux may play an important role in the total D retention in W.

  4. Neutron fluence determination for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Gold, R.

    1994-01-01

    A general description of limitations that exist in pressure vessel neutron fluence determinations for commercial light water reactors is presented. Complexity factors that arise in light water reactor pressure vessel neutron fluence calculations are identified and used to analyze calculational limitations. Two broad categories of calculational limitations are introduced, namely benchmark field limitations and deep penetration limitations. Explicit examples of limitations that can arise in each of these two broad categories are presented. These limitations are used to show that the recent draft regulatory guide for the determination of pressure vessel neutron fluence, developed by the Nuclear Regulatory Commission, is based upon procedures and assumptions that are not valid. To eliminate the complexity and limitations of calculational methods, it is recommended that the determination of light water reactor pressure vessel neutron fluence be based upon experiment. Recommendations for improved methods of pressure vessel surveillance neutron dosimetry are advanced

  5. Ge nano-layer fabricated by high-fluence low-energy ion implantation

    International Nuclear Information System (INIS)

    Lu Tiecheng; Dun Shaobo; Hu Qiang; Zhang Songbao; An Zhu; Duan Yanmin; Zhu Sha; Wei Qiangmin; Wang Lumin

    2006-01-01

    A Ge nano-layer embedded in the surface layer of an amorphous SiO 2 film was fabricated by high-fluence low-energy ion implantation. The component, phase, nano-structure and luminescence properties of the nano-layer were studied by means of Rutherford backscattering, glancing incident X-ray diffraction, laser Raman scattering, transmission electron microscopy and photoluminescence. The relation between nano-particle characteristics and ion fluence was also studied. The results indicate that nano-crystalline Ge and nano-amorphous Ge particles coexist in the nano-layer and the ratio of nano-crystalline Ge to nano-particle Ge increases with increasing ion fluence. The intensity of photoluminescence from the nano-layer increases with increasing ion fluence also. Prepared with certain ion fluences, high-density nano-layers composed of uniform-sized nano-particles can be observed

  6. Near infrared spectroscopy (NIRS) to monitor tissue haemoglobin (and myoglobin) oxygenation

    NARCIS (Netherlands)

    Scheeren, T. W. L.

    2010-01-01

    Introduction: Tissue oxygenation may be monitored noninvasively by near infrared spectroscopy (NIRS) both on the thenar eminescence (muscle) and on the forehead (brain). Thenar measurement have been used to guide therapy in trauma patients ( 1 ) and to determine the prognosis of septic patients ( 2

  7. Fluence measurements applied to 5-20 MeV/amu ion beam dosimetry by simultaneous use of a total-absorption calorimeter and a Faraday cup

    CERN Document Server

    Kojima, T; Takizawa, H; Tachibana, H; Tanaka, R

    1998-01-01

    A Faraday cup was fabricated for measuring the beam current of a few tens MeV/amu ion beams of the TIARA AVF cyclotron. It has been applied as a beam monitor for studying the characteristics of film dosimeters that are well-established for high doses of sup 6 sup 0 Co gamma-rays and 1 to 10 MeV electrons. A total absorption calorimeter designed to measure energy fluence has also been tested for estimating the uncertainty in fluence measurement of 5-20 MeV/amu ion beams, by simultaneous use of the calorimeter and the Faraday cup in a broad uniform fluence field. The estimated fluence was evaluated on the basis of nominal particle energy values derived from the cyclotron acceleration parameters. The average ratio of the measured fluence values to the estimated values is 1.024, and the average precision is within +-2% at a 68% confidence level, for most of the ion beams with a range of kinetic energy per nucleon, 5-20 MeV/amu, at an integrated charge above 5 nC/cm sup 2.

  8. Fluence scan: an unexplored property of a laser beam

    International Nuclear Information System (INIS)

    Chalupsky, Jaromir; Hajkova, Vera; Burian, Tomas; Juha, Libor; Polcar, Tomas; Gaudin, Jerome; Nagasono, Mitsuru; Yabashi, Makina; Sobierajski, Ryszard; Krzywinski, Jacek

    2013-01-01

    We present an extended theoretical background of so-called fluence scan (f-scan or F-scan) method, which is frequently being used for offline characterization of focused short-wavelength (EUV, soft X-ray, and hard X-ray) laser beams [J. Chalupsky et al., Opt. Express 18, 27836 (2010)]. The method exploits ablative imprints in various solids to visualize iso-fluence beam contours at different fluence and/or clip levels. An f-scan curve (clip level as a function of the corresponding iso-fluence contour area) can be generated for a general non-Gaussian beam. As shown in this paper, fluence scan encompasses important information about energy distribution within the beam profile, which may play an essential role in laser-matter interaction research employing intense non-ideal beams. Here we for the first time discuss fundamental properties of the f-scan function and its inverse counterpart (if-scan). Furthermore, we extensively elucidate how it is related to the effective beam area, energy distribution, and to the so called Liu's dependence [J.M. Liu, Opt. Lett. 7, 196 (1982)]. A new method of the effective area evaluation based on weighted inverse f-scan fit is introduced and applied to real data obtained at the SCSS (SPring-8 Compact SASE Source) facility. (authors)

  9. Development and characterization of multi-sensory fluence rate probes

    International Nuclear Information System (INIS)

    Pomerleau-Dalcourt, Natalie; Lilge, Lothar

    2006-01-01

    Multi-sensory fluence rate probes (MSPs) yield several simultaneous measurements of photodynamic therapy (PDT) treatment light fluence from a single interstitial probe. Fluorescent sensors are embedded at desired positions along the axis of the optical fibre. A single fluorescence emission spectrum is obtained and decomposed using a partial least squares (PLS)-based analysis to yield the fluence at each sensor's location. The responsivity, linearity and possible photodegradation of each fluorophore chosen for the MSPs were evaluated using single-sensor probes. The performance of two- and three-sensor MSPs was evaluated experimentally. Individual fluorescence spectra collected from each sensor on the MSP were used to construct the training set necessary for the PLS-based analysis. The MSPs' responsivity, spatial resolution and accuracy were evaluated relative to a single scattering-tip detector. Three-fluorophore MSPs permitted three simultaneous measurements of the fluence rate gradient in a tissue-like phantom, with an average accuracy of 6.7%. No appreciable photodegradation or cross-talk was observed

  10. Fluence-dependent sputtering yield of micro-architectured materials

    Energy Technology Data Exchange (ETDEWEB)

    Matthes, Christopher S.R.; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu; Li, Gary Z.; Matlock, Taylor S.; Goebel, Dan M.; Dodson, Chris A.; Wirz, Richard E.

    2017-06-15

    Highlights: • Sputtering yield is shown to be transient and heavily dependent on surface architecture. • Fabricated nano- and Microstructures cause geometric re-trapping of sputtered material, which leads to a self-healing mechanism. • Initially, the sputtering yield of micro-architectured Mo is approximately 1/2 the value as that of a planar surface. • The study demonstrates that the sputtering yield is a dynamic property, dependent on the surface structure of a material. • A developed phenomenological model mathematically describes the transient behavior of the sputtering yield as a function of plasma fluence. - Abstract: We present an experimental examination of the relationship between the surface morphology of Mo and its instantaneous sputtering rate as function of low-energy plasma ion fluence. We quantify the dynamic evolution of nano/micro features of surfaces with built-in architecture, and the corresponding variation in the sputtering yield. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed, and re-growth of surface layers is confirmed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. A variety of material characterization techniques are used to show that the sputtering yield is not a fundamental property, but that it is quantitatively related to the initial surface architecture and to its subsequent evolution. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is roughly 1/2 of the corresponding value for flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22 ± 5%, converging to 0.4 ± 5% at high fluence. The sputtering yield exhibits a transient behavior as function of the integrated ion fluence, reaching a steady-state value that is independent of initial surface conditions. A phenomenological model is proposed to explain the observed transient sputtering phenomenon, and to

  11. Photon energy-fluence correction factor in low energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)

    2017-07-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  12. Photon energy-fluence correction factor in low energy brachytherapy

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Yoriyaz, Hélio; Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D tis ) and dose-to-water (D w ). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the 125 I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  13. Fast fluence measurement for JOYO irradiation field using niobium dosimeter

    International Nuclear Information System (INIS)

    Ito, Chikara

    2004-03-01

    Neutron fluence and spectrum are key parameters in various irradiation tests and material surveillance tests so they need to be evaluated accurately. The reactor dosimetry test has been conducted by the multiple foil activation method, and a niobium dosimeter has been developed for measurement of fast neutron fluence in the experimental fast reactor JOYO. The inelastic scattering reaction of 93 Nb has a low threshold energy, about 30 keV, and the energy distribution of reaction cross section is similar to the displacement cross section for iron. Therefore, a niobium dosimeter is suitable for evaluation of the fast neutron fluence and the displacement per atom for iron. Moreover, a niobium dosimeter is suited to measure neutron fluence in long-term irradiation test because 93 Nb, which is produced by the reaction, has a long half-life (16.4 years). This study established a high precision measurement technique using the niobium reaction rate. The effect of self-absorption was decreased by the solution and evaporation to dryness of niobium dosimeter. The dosimeter weight was precisely measured using the inductively coupled plasma mass spectrometer. This technique was applied to JOYO dosimetry. The fast neutron fluences (E > 0.1 MeV) found by measuring the reaction rate in the niobium dosimeter were compared with the values evaluated using the multiple foil activation method. The ratio of measured fast neutron fluences by means of niobium dosimeter and multiple foil activation method range from 0.97 to 1.03 and agree within the experimental uncertainty. The measurement errors of fast neutron fluence by niobium dosimeter range from 4.5% (fuel region) to 10.1% (in-vessel storage rack). As a result of this study, the high precision measurement of fast neutron fluence by niobium dosimeters was confirmed. The accuracy of fast reactor dosimetry will be improved by application of niobium dosimeters to the irradiation tests in the JOYO MK-III core. (author)

  14. Optoacoustic monitoring of central and peripheral venous oxygenation during simulated hemorrhage

    Science.gov (United States)

    Petrov, Andrey; Kinsky, Michael; Prough, Donald S.; Petrov, Yuriy; Petrov, Irene Y.; Henkel, S. Nan; Seeton, Roger; Salter, Michael G.; Khan, Muzna N.; Esenaliev, Rinat O.

    2014-03-01

    Circulatory shock may be fatal unless promptly recognized and treated. The most commonly used indicators of shock (hypotension and tachycardia) lack sensitivity and specificity. In the initial stages of shock, the body compensates by reducing blood flow to the peripheral (skin, muscle, etc.) circulation in order to preserve vital organ (brain, heart, liver) perfusion. Characteristically, this can be observed by a greater reduction in peripheral venous oxygenation (for instance, the axillary vein) compared to central venous oxygenation (the internal jugular vein). While invasive measurements of oxygenation are accurate, they lack practicality and are not without complications. We have developed a novel optoacoustic system that noninvasively determines oxygenation in specific veins. In order to test this application, we used lower body negative pressure (LBNP) system, which simulates hemorrhage by exerting a variable amount of suction on the lower body, thereby reducing the volume of blood available for central circulation. Restoration of normal blood flow occurs promptly upon cessation of LBNP. Using two optoacoustic probes, guided by ultrasound imaging, we simultaneously monitored oxygenation in the axillary and internal jugular veins (IJV). LBNP began at -20 mmHg, thereafter was reduced in a step-wise fashion (up to 30 min). The optoacoustically measured axillary oxygenation decreased with LBNP, whereas IJV oxygenation remained relatively constant. These results indicate that our optoacoustic system may provide safe and rapid measurement of peripheral and central venous oxygenation and diagnosis of shock with high specificity and sensitivity.

  15. Investigation on the improved radiation hardness of silicon detectors with high oxygen concentration

    CERN Document Server

    Moll, Michael; Lindström, G

    2000-01-01

    We present an investigation on the influence of the oxygen concentration on radiation-induced changes in the effective doping concentration of silicon detectors. Diodes fabricated from silicon with interstitial oxygen content ranging from below 2*10/sup 14/ to 9*10/sup 17/ cm/sup -3/ have been irradiated with fast neutrons up to a fluence of 2*10/sup 15/ cm/sup -2/. Our main interest focused on the so-called stable damage component in the change of the effective doping concentration being of prime importance for the application of silicon detectors in high-energy physics experiments. We demonstrate, that with a high oxygen enrichment the donor removal is appreciably reduced, reaching a value of only 10601130f the initial doping concentration for [O/sub i/]=9*10/sup 17/ cm/sup -3/, while for normal detector grade material with [O/sub i/] below 5*10/sup 16/ cm /sup -3/ that value is 60-90Furthermore, we show that the fluence proportional introduction of stable acceptors is independent of the oxygen concentratio...

  16. Neutron fluence measurements

    International Nuclear Information System (INIS)

    1970-01-01

    For research reactor work dealing with such subjects as radiation effects on solids and such disciplines as radiochemistry and radiobiology, the radiation dose or neutron fluence is an essential parameter in evaluating results. Unfortunately it is very difficult to determine. Even when the measurements have been accurate, it is difficult to compare results obtained in different experiments because present methods do not always reflect the dependence of spectra or of different types of radiation on the induced processes. After considering the recommendations of three IAEA Panels, on 'In-pile dosimetry' held in July 1964, on 'Neutron fluence measurements' in October 1965, and on 'In-pile dosimetry' in November 1966, the Agency established a Working Group on Reactor Radiation Measurements. This group consisted of eleven experts from ten different Member States and two staff members of the Agency. In the measurement of energy absorbed by materials from neutrons and gamma rays, there are various reports and reviews scattered throughout the literature. The group, however, considered that the time was ripe for all relevant information to be evaluated and gathered together in the form of a practical guide, with the aim of promoting consistency in the measurement and reporting of reactor radiation. The group arranged for the material to be divided into two manuals, which are expected to be useful both for experienced workers and for beginners

  17. Sci-Thur AM: Planning - 04: Evaluation of the fluence complexity, solution quality, and run efficiency produced by five fluence parameterizations implemented in PARETO multiobjective radiotherapy treatment planning software.

    Science.gov (United States)

    Champion, H; Fiege, J; McCurdy, B; Potrebko, P; Cull, A

    2012-07-01

    PARETO (Pareto-Aware Radiotherapy Evolutionary Treatment Optimization) is a novel multiobjective treatment planning system that performs beam orientation and fluence optimization simultaneously using an advanced evolutionary algorithm. In order to reduce the number of parameters involved in this enormous search space, we present several methods for modeling the beam fluence. The parameterizations are compared using innovative tools that evaluate fluence complexity, solution quality, and run efficiency. A PARETO run is performed using the basic weight (BW), linear gradient (LG), cosine transform (CT), beam group (BG), and isodose-projection (IP) methods for applying fluence modulation over the projection of the Planning Target Volume in the beam's-eye-view plane. The solutions of each run are non-dominated with respect to other trial solutions encountered during the run. However, to compare the solution quality of independent runs, each run competes against every other run in a round robin fashion. Score is assigned based on the fraction of solutions that survive when a tournament selection operator is applied to the solutions of the two competitors. To compare fluence complexity, a modulation index, fractal dimension, and image gradient entropy are calculated for the fluence maps of each optimal plan. We have found that the LG method results in superior solution quality for a spine phantom, lung patient, and cauda equina patient. The BG method produces solutions with the highest degree of fluence complexity. Most methods result in comparable run times. The LG method produces superior solution quality using a moderate degree of fluence modulation. © 2012 American Association of Physicists in Medicine.

  18. Femtosecond laser fluence based nanostructuring of W and Mo in ethanol

    Science.gov (United States)

    Bashir, Shazia; Rafique, Muhammad Shahid; Nathala, Chandra Sekher; Ajami, Ali Asghar; Husinsky, Wolfgang

    2017-05-01

    The effect of femtosecond laser fluence on nanostructuring of Tungsten (W) and Molybdenum (Mo) has been investigated after ablation in ethanol environment. A Ti: Sapphire laser (800 nm, 30 fs) at fluences ranging from 0.6 to 5.7 J cm-2 was employed to ablate targets. The growth of structures on the surface of irradiated targets is investigated by Field Emission Scanning Electron Microscope (FESEM) analysis. The SEM was performed for both central as well as the peripheral ablated regions. It is observed that both the development and shape of nanoscale features is dependent upon deposited energies to the target surface as well as nature of material. Nanostructures grown on Mo are more distinct and well defined as compared to W. At central ablated areas of W, unorganized Laser Induced Periodic Surface Structures (LIPSS) are grown at low fluences, whereas, nonuniform melting along with cracking is observed at higher fluences. In case of Mo, well-defined and organized LIPSS are observed for low fluences. With increasing fluence, LIPSS become unorganized and broken with an appearance of cracks and are completely vanished with the formation of nanoscale cavities and conical structures. In case of peripheral ablated areas broken and bifurcated LIPSS are grown for all fluences for both materials. The, ablated diameter, ablation depth, ablation rate and the dependence of periodicity of LIPSS on the laser fluence are also estimated for both W and Mo. Parametric instabilities of laser-induced plasma along with generation and scattering of surface plasmons is considered as a possible cause for the formation of LIPSS. For ethanol assisted ablation, the role of bubble cavitation, precipitation, confinement and the convective flow is considered to be responsible for inducing increased hydrodynamic instabilities at the liquid-solid interface.

  19. Femtosecond laser fluence based nanostructuring of W and Mo in ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria); Centre for Advanced Studies in Physics, Government College University Lahore (Pakistan); Rafique, Muhammad Shahid [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria); Department of Physics, University of Engineering and Technology Lahore (Pakistan); Nathala, Chandra Sekher [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria); Ajami, Ali Asghar [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria); Faculty of Physics, Semnan University, Semnan (Iran, Islamic Republic of); Husinsky, Wolfgang [Institute of Applied Physics, Vienna University of Technology, Vienna (Austria)

    2017-05-15

    The effect of femtosecond laser fluence on nanostructuring of Tungsten (W) and Molybdenum (Mo) has been investigated after ablation in ethanol environment. A Ti: Sapphire laser (800 nm, 30 fs) at fluences ranging from 0.6 to 5.7 J cm{sup −2} was employed to ablate targets. The growth of structures on the surface of irradiated targets is investigated by Field Emission Scanning Electron Microscope (FESEM) analysis. The SEM was performed for both central as well as the peripheral ablated regions. It is observed that both the development and shape of nanoscale features is dependent upon deposited energies to the target surface as well as nature of material. Nanostructures grown on Mo are more distinct and well defined as compared to W. At central ablated areas of W, unorganized Laser Induced Periodic Surface Structures (LIPSS) are grown at low fluences, whereas, nonuniform melting along with cracking is observed at higher fluences. In case of Mo, well-defined and organized LIPSS are observed for low fluences. With increasing fluence, LIPSS become unorganized and broken with an appearance of cracks and are completely vanished with the formation of nanoscale cavities and conical structures. In case of peripheral ablated areas broken and bifurcated LIPSS are grown for all fluences for both materials. The, ablated diameter, ablation depth, ablation rate and the dependence of periodicity of LIPSS on the laser fluence are also estimated for both W and Mo. Parametric instabilities of laser-induced plasma along with generation and scattering of surface plasmons is considered as a possible cause for the formation of LIPSS. For ethanol assisted ablation, the role of bubble cavitation, precipitation, confinement and the convective flow is considered to be responsible for inducing increased hydrodynamic instabilities at the liquid-solid interface.

  20. Realization of a scanning ion beam monitor

    International Nuclear Information System (INIS)

    Pautard, C.

    2008-07-01

    During this thesis, a scanning ion beam monitor has been developed in order to measure on-line fluence spatial distributions. This monitor is composed of an ionization chamber, Hall Effect sensors and a scintillator. The ionization chamber set between the beam exit and the experiment measures the ion rate. The beam spot is localized thanks to the Hall Effect sensors set near the beam sweeping magnets. The scintillator is used with a photomultiplier tube to calibrate the ionization chamber and with an imaging device to calibrate the Hall Effect sensors. This monitor was developed to control the beam lines of a radiobiology dedicated experimentation room at GANIL. These experiments are held in the context of the research in hadron-therapy. As a matter of fact, this new cancer treatment technique is based on ion irradiations and therefore demands accurate knowledge about the relation between the dose deposit in biological samples and the induced effects. To be effective, these studies require an on-line control of the fluence. The monitor has been tested with different beams at GANIL. Fluence can be measured with a relative precision of ±4% for a dose rate ranging between 1 mGy/s and 2 Gy/s. Once permanently set on the beam lines dedicated to radiobiology at GANIL, this monitor will enable users to control the fluence spatial distribution for each irradiation. The scintillator and the imaging device are also used to control the position, the spot shape and the energy of different beams such as those used for hadron-therapy. (author)

  1. A comparative study of 30MeV boron4+ and 60MeV oxygen8+ ion irradiated Si NPN BJTs

    International Nuclear Information System (INIS)

    Kumar, M. Vinay; Krishnaveni, S.; Yashoda, T.; Dinesh, C. M.; Krishnakumar, K. S.; Jayashree, B.; Ramani

    2015-01-01

    The impact of 30MeV boron 4+ and 60MeV oxygen 8+ ion irradiation on electrical characteristics of 2N3773 Si NPN Bipolar junction transistors (BJTs) is reported in the present study. The transistors were decapped and irradiated at room temperature. Gummel characteristics, DC current gain and Capacitance-voltage (C-V) characteristics were studied before and after irradiation at different fluences. DC current gain has decreased significantly in both boron and oxygen ion irradiation. Also the value of capacitance decreased 3-4 times with increase in fluence. Both 30MeV boron ion and 60MeV oxygen ion induced similar extent of degradation in electrical characteristics of the transistor

  2. Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project.

    Science.gov (United States)

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghesso, Gaudenzio; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe; Cenedese, Angelo

    2018-04-07

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of the winemaking process, both for monitoring and for control. The WOW project (Deployment of WSAN technology for monitoring Oxygen in Wine products) has focused on the design and the development of an innovative device for monitoring the oxygen levels in wine. This system is based on the use of an optical fiber to measure the luminescent lifetime variation of a reference metal/porphyrin complex, which decays in presence of oxygen. The developed technology results in a high sensitivity and low cost sensor head that can be employed for measuring the dissolved oxygen levels at several points inside a wine fermentation or aging tank. This system can be complemented with dynamic modeling techniques to provide predictive behavior of the nutrient evolution in space and time given few sampled measuring points, for both process monitoring and control purposes. The experimental validation of the technology has been first performed in a controlled laboratory setup to attain calibration and study sensitivity with respect to different photo-luminescent compounds and alcoholic or non-alcoholic solutions, and then in an actual case study during a measurement campaign at a renown Italian winery.

  3. Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project

    Science.gov (United States)

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe

    2018-01-01

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of the winemaking process, both for monitoring and for control. The WOW project (Deployment of WSAN technology for monitoring Oxygen in Wine products) has focused on the design and the development of an innovative device for monitoring the oxygen levels in wine. This system is based on the use of an optical fiber to measure the luminescent lifetime variation of a reference metal/porphyrin complex, which decays in presence of oxygen. The developed technology results in a high sensitivity and low cost sensor head that can be employed for measuring the dissolved oxygen levels at several points inside a wine fermentation or aging tank. This system can be complemented with dynamic modeling techniques to provide predictive behavior of the nutrient evolution in space and time given few sampled measuring points, for both process monitoring and control purposes. The experimental validation of the technology has been first performed in a controlled laboratory setup to attain calibration and study sensitivity with respect to different photo-luminescent compounds and alcoholic or non-alcoholic solutions, and then in an actual case study during a measurement campaign at a renown Italian winery. PMID:29642468

  4. Development of a simple, low cost, indirect ion beam fluence measurement system for ion implanters, accelerators

    Science.gov (United States)

    Suresh, K.; Balaji, S.; Saravanan, K.; Navas, J.; David, C.; Panigrahi, B. K.

    2018-02-01

    We developed a simple, low cost user-friendly automated indirect ion beam fluence measurement system for ion irradiation and analysis experiments requiring indirect beam fluence measurements unperturbed by sample conditions like low temperature, high temperature, sample biasing as well as in regular ion implantation experiments in the ion implanters and electrostatic accelerators with continuous beam. The system, which uses simple, low cost, off-the-shelf components/systems and two distinct layers of in-house built softwarenot only eliminates the need for costly data acquisition systems but also overcomes difficulties in using properietry software. The hardware of the system is centered around a personal computer, a PIC16F887 based embedded system, a Faraday cup drive cum monitor circuit, a pair of Faraday Cups and a beam current integrator and the in-house developed software include C based microcontroller firmware and LABVIEW based virtual instrument automation software. The automatic fluence measurement involves two important phases, a current sampling phase lasting over 20-30 seconds during which the ion beam current is continuously measured by intercepting the ion beam and the averaged beam current value is computed. A subsequent charge computation phase lasting 700-900 seconds is executed making the ion beam to irradiate the samples and the incremental fluence received by the sampleis estimated usingthe latest averaged beam current value from the ion beam current sampling phase. The cycle of current sampling-charge computation is repeated till the required fluence is reached. Besides simplicity and cost-effectiveness, other important advantages of the developed system include easy reconfiguration of the system to suit customisation of experiments, scalability, easy debug and maintenance of the hardware/software, ability to work as a standalone system. The system was tested with different set of samples and ion fluences and the results were verified using

  5. Fractal characterization of the silicon surfaces produced by ion beam irradiation of varying fluences

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, R.P. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); Kumar, T. [Department of Physics, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123029 (India); Mittal, A.K. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Dwivedi, S., E-mail: suneetdwivedi@gmail.com [K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, PO Box 10502, New Delhi 110 067 (India)

    2015-08-30

    Highlights: • Fractal analysis of Si(1 0 0) surface morphology at varying ion fluences. • Autocorrelation function and height–height correlation function as fractal measures. • Surface roughness and lateral correlation length increases with ion fluence. • Ripple pattern of the surfaces is found at higher ion fluences. • Wavelength of the ripple surfaces is computed for each fluence. - Abstract: Si (1 0 0) is bombarded with 200 keV Ar{sup +} ion beam at oblique incidence with fluences ranging from 3 × 10{sup 17} ions/cm{sup 2} to 3 × 10{sup 18} ions/cm{sup 2}. The surface morphology of the irradiated surfaces is captured by the atomic force microscopy (AFM) for each ion fluence. The fractal analysis is performed on the AFM images. The autocorrelation function and height–height correlation function are used as fractal measures. It is found that the average roughness, interface width, lateral correlation length as well as roughness exponent increase with ions fluence. The analysis reveals the ripple pattern of the surfaces at higher fluences. The wavelength of the ripple surfaces is computed for each ion fluence.

  6. Lifetime Neutron Fluence Analysis of the Ringhals Unit 1 Boiling Water Reactor

    Directory of Open Access Journals (Sweden)

    Kulesza Joel A.

    2016-01-01

    Full Text Available This paper describes a neutron fluence assessment considering the entire commercial operating history (35 cycles or ∼ 25 effective full power years of the Ringhals Unit 1 reactor pressure vessel beltline region. In this assessment, neutron (E >1.0 MeV fluence and iron atom displacement distributions were calculated on the moderator tank and reactor pressure vessel structures. To validate those calculations, five in-vessel surveillance chain dosimetry sets were evaluated as well as material samples taken from the upper core grid and wide range neutron monitor tubes to act as a form of retrospective dosimetry. During the analysis, it was recognized that delays in characterizing the retrospective dosimetry samples reduced the amount of reactions available to be counted and complicated the material composition determination. However, the comparisons between the surveillance chain dosimetry measurements (M and calculated (C results show similar and consistent results with the linear average M/C ratio of 1.13 which is in good agreement with the resultant least squares best estimate (BE/C ratios of 1.10 for both neutron (E >1.0 MeV flux and iron atom displacement rate.

  7. The monitoring of oxygen, hydrogen and carbon in the sodium circuits of the PFR

    International Nuclear Information System (INIS)

    Mason, L.; Morrison, N.S.; Robertson, C.M.; Trevillion, E.A.

    1984-01-01

    The paper reviews the instrumentation available for monitoring oxygen, hydrogen, tritium and carbon impurity levels on the primary and secondary circuits of PFR. Circuit oxygen levels measured using electrochemical oxygen meters are compared to estimates from circuit plugging meters. The data are interpreted in the light of information from cold trap temperatures. Measurements of secondary circuit hydrogen levels using both the sodium and gas phase hydrogen detection equipment are compared to estimates of circuit hydrogen levels from plugging meters and variations in sodium phase hydrogen levels during power operation are discussed. (author)

  8. Design, fabrication, and analysis of miniature reflective oxygen monitoring system for use in PDT of esophageal carcinoma

    Science.gov (United States)

    Premasiri, Amaranath; Happawana, Gemunu

    2008-02-01

    Photodynamic therapy (PDT) is an effective and minimally invasive treatment modality with relatively less side effects, which is approved by FDA for the treatment of esophageal cancer. Maximum therapeutic outcome of the PDT protocol for each individual patient requires optimization of the components of PDT operating at their highest efficacy. Tumor necrosis, the method of malignant tissue destruction by PDT, is carried out by the toxic singlet oxygen molecules that are being formed from the molecular oxygen in the tumor. The availability of molecular oxygen, hence being the rate limiting step for PDT plays a key role in the treatment protocol. Currently the PDT of esophageal carcinoma is rather a blind process since there is no method to monitor the tumor oxygen level during the treatment. In this paper we present an optical technique to monitor molecular oxygen level in the PDT milieu. The technique described herein is a reflection oximetry technique designed with small semiconductor lasers and a silicon photodiode. The light used for monitoring system comes from two semiconductor diode lasers of 650 nm and 940 nm wavelengths. The two lasers and the photodiode are mounted onto a small package which is to be imprinted onto a balloon catheter containing the PDT light delivery system. Lasers and the photodiode are powered and controlled by a control box that is connected via a cable. Light sources and the respective photodiode output are controlled by the LabVIEW virtual instrumentation. The sequential on and off light source and the respective reflective signal are processed with MATLAB. The latter code integrates with LabVIEW to make an automatic calculation of the corresponding light absorption by each chromophore and to calculate the change in oxygen level as well as the amount of blood and oxygen present in the treatment area. The designed system is capable of monitoring the change in oxygen level and the blood flow in any part of the human body where the

  9. Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation

    CERN Document Server

    Hung, J; Olaizola, A M

    2003-01-01

    Fluorescence spectral changes of Rhodamine 6G in ethanol and glycerol solutions and deposited as a film on a silica surface have been studied using a wide range of pumping field fluence at 532 nm at room temperature. Blue shift of the fluorescence spectra and fluorescence quenching of the dye molecule in solution are observed at high excitation fluence values. Such effects are not reported for the film sample. The effects are interpreted as the result of population redistribution in the solute-solvent molecular system induced by the high fluence field and the fluence dependence of the radiationless decay mechanism.

  10. Neutron irradiation characteristic tests of oxygen sensors using zirconia solid electrolyte

    International Nuclear Information System (INIS)

    Hiura, Nobuo; Endou, Yasuichi; Yamaura, Takayuki; Niimi, Motoji; Hoshiya, Taiji; Saito, Junichi; Souzawa, Shizuo; Ooka, Norikazu; Kobiyama, Mamoru.

    1997-03-01

    In the Department of JMTR of Japan Atomic Energy Research Institute (JAERI), the in-situ measuring technique of oxygen potential has been being developed to study the chemical behavior of high burn-up fuel base-irradiated in the Light Water Reactor. In this test for development of the technique, oxygen sensors using zirconia solid electrolyte stabilized by MgO, CaO and Y 2 O 3 , named MSZ, CSZ and YSZ, respectively, were irradiated by neutrons in the Japan Materials Testing Reactor (JMTR) of JAERI and the characteristics of electromotive force of these sensors under and after irradiation were discussed. From the experimental results, the electromotive force of YSZ sample under irradiation decreased with an increase in irradiation fluence within a range of neutron fluence (E>1 MeV) up to 1 x 10 23 m -2 . The electromotive force of MSZ sensor irradiated with neutron fluences (E>1 MeV) up to 9 x 10 21 m -2 was almost equal to the theoretical value of the electromotive force. It was shown that after irradiation, a decrease in the electromotive force of CSZ sensor was smaller than those of MSZ and YSZ sensors, although the electromotive forces of MSZ, CSZ and YSZ sensors were smaller than the theoretical value. (author)

  11. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-06-01

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

  12. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues.

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-06-30

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

  13. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Stoeckl, C.; Hohenberger, M.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Landen, O. L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-04-15

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ∼0.5–8 MeV protons. When the fluence of incident particles becomes too high, overlap of particle tracks leads to under-counting at typical processing conditions (5 h etch in 6N NaOH at 80 °C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 × 10{sup 6} cm{sup −2}. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ∼50, increasing the operating yield upper limit by a comparable amount.

  14. Optical properties tailoring by high fluence implantation of Ag ions on sapphire

    International Nuclear Information System (INIS)

    Marques, C.; Silva, R.C. da; Wemans, A.; Maneira, M.J.P.; Kozanecki, A.; Alves, E.

    2006-01-01

    Optical and structural properties of single crystalline α-Al 2 O 3 were changed by the implantation of high fluences of Ag ions. Colourless transparent (101-bar 0) sapphire samples were implanted at room temperature with 160keV silver ions and fluences up to 1x10 17 Agcm -2 . Surface amorphization is observed at the fluence of 6x10 16 Agcm -2 . Except for the lower fluences (below 6x10 16 Agcm -2 ) the optical absorption spectra reveal the presence of a band peaking in the region 450-500nm, depending on the retained fluence. This band has been attributed to the presence of silver colloids, being thus 1x10 16 Agcm -2 below the threshold for colloid formation during the implantation. Annealing in oxidizing atmosphere promotes the recrystallization along with segregation of Ag followed by loss through evaporation. Recrystallization is retarded for annealing in reducing atmosphere and the Ag profile displays now a double peak structure after evaporation. Playing with the implantation fluence, temperature and annealing atmosphere controllable shifts of the position and intensity of the optical bands in the visible were achieved

  15. First Results from the Online Radiation Dose Monitoring System in ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration; Deliyergiyev, M; Gorišek, A; Kramberger, G; Mikuž, M; Franz, S; Hartert, J; Dawson, I; Miyagawa, P; Nicolas, L

    2011-01-01

    High radiation doses which will accumulate in components of ATLAS experiment during data taking will causes damage to detectors and readout electronics. It is therefore important to continuously monitor the doses to estimate the level of degradation caused by radiation. Online radiation monitoring system measures ionizing dose in SiO2 , displacement damage in silicon in terms of 1-MeV(Si) equivalent neutron fluence and fluence of thermal neutrons at several locations in ATLAS detector. In this paper design of the system, results of measurements and comparison of measured integrated doses and fluences with predictions from FLUKA simulation will be shown.

  16. RAMA Methodology for the Calculation of Neutron Fluence

    International Nuclear Information System (INIS)

    Villescas, G.; Corchon, F.

    2013-01-01

    he neutron fluence plays an important role in the study of the structural integrity of the reactor vessel after a certain time of neutron irradiation. The NRC defined in the Regulatory Guide 1.190, the way must be estimated neutron fluence, including uncertainty analysis of the validation process (creep uncertainty is ? 20%). TRANSWARE Enterprises Inc. developed a methodology for calculating the neutron flux, 1,190 based guide, known as RAMA. Uncertainty values obtained with this methodology, for about 18 vessels, are less than 10%.

  17. Research progress of on-line automatic monitoring of chemical oxygen demand (COD) of water

    Science.gov (United States)

    Cai, Youfa; Fu, Xing; Gao, Xiaolu; Li, Lianyin

    2018-02-01

    With the increasingly stricter control of pollutant emission in China, the on-line automatic monitoring of water quality is particularly urgent. The chemical oxygen demand (COD) is a comprehensive index to measure the contamination caused by organic matters, and thus it is taken as one important index of energy-saving and emission reduction in China’s “Twelve-Five” program. So far, the COD on-line automatic monitoring instrument has played an important role in the field of sewage monitoring. This paper reviews the existing methods to achieve on-line automatic monitoring of COD, and on the basis, points out the future trend of the COD on-line automatic monitoring instruments.

  18. MISSE 6 Stressed Polymers Experiment Atomic Oxygen Erosion Data

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Mitchell, Gianna G.; Yi, Grace T.; Guo, Aobo; Ashmeade, Claire C.; Roberts, Lily M.; McCarthy, Catherine E.; Sechkar, Edward A.

    2013-01-01

    Polymers and other oxidizable materials used on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded away by reaction with atomic oxygen (AO). For spacecraft design, it is important to know the LEO AO erosion yield, Ey (volume loss per incident oxygen atom), of materials susceptible to AO erosion. The Stressed Polymers Experiment was developed and flown as part of the Materials International Space Station Experiment 6 (MISSE 6) to compare the AO erosion yields of stressed and non-stressed polymers to determine if erosion is dependent upon stress while in LEO. The experiment contained 36 thin film polymer samples that were exposed to ram AO for 1.45 years. This paper provides an overview of the Stressed Polymers Experiment with details on the polymers flown, the characterization techniques used, the AO fluence, and the erosion yield results. The MISSE 6 data are compared to data for similar samples flown on previous MISSE missions to determine fluence or solar radiation effects on erosion yield.

  19. Nanocrystalline SnO2 formation by oxygen ion implantation in tin thin films

    Science.gov (United States)

    Kondkar, Vidya; Rukade, Deepti; Kanjilal, Dinakar; Bhattacharyya, Varsha

    2018-03-01

    Metallic tin thin films of thickness 100 nm are deposited on fused silica substrates by thermal evaporation technique. These films are implanted with 45 keV oxygen ions at fluences ranging from 5 × 1015 to 5 × 1016 ions cm-2. The energy of the oxygen ions is calculated using SRIM in order to form embedded phases at the film-substrate interface. Post-implantation, films are annealed using a tube furnace for nanocrystalline tin oxide formation. These films are characterized using x-ray diffraction, Raman spectroscopy, UV-vis spectroscopy and photoluminescence spectroscopy. XRD and Raman spectroscopy studies reveal the formation of single rutile phase of SnO2. The size of the nanocrystallites formed decreases with an increase in the ion fluence. The nanocrystalline SnO2 formation is also confirmed by UV-vis and photoluminescence spectroscopy.

  20. Safety factors for neutron fluences in NPP safety assessment

    International Nuclear Information System (INIS)

    Demekhin, V.L.; Bukanov, V.N.; Il'kovich, V.V.; Pugach, A.M.

    2016-01-01

    In accordance with global practice and a number of existing regulations, the use of conservative approach is required for the calculations related to nuclear safety assessment of NPP. It implies the need to consider the determination of neutron fluence errors that is rather complicated. It is proposed to carry out the consideration by the way of multiplying the neutron fluences obtained with transport calculations by safety factors. The safety factor values are calculated by the developed technique based on the theory of errors, features of the neutron transport calculation code and the results obtained with the code. It is shown that the safety factor value is equal 1.18 with the confidence level of not less than 0.95 for the majority of VVER-1000 reactor places where neutron fluences are determined by MCPV code, and its maximum value is 1.25

  1. The irradiation creep characteristics of graphite to high fluences

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Cundy, M.; Kleist, G.

    1988-01-01

    High-temperature gas-cooled reactors (HTGR) have massive blocks of graphite with thermal and neutron-flux gradients causing high internal stresses. Thermal stresses are transient; however, stresses generated by differential growth due to neutron damage continue to increase with time. Fortunately, graphite also experiences creep under irradiation allowing relaxation of stresses to nominally safe levels. Because of complexity of irradiation creep experiments, data demonstrating this phenomenon are generally limited to fairly low fluences compared to the overall fluences expected in most reactors. Notable exceptions have been experiments at 300/degree/C and 500/degree/C run at Petten under tension and compression creep stresses to fluences greater than 4 /times/ 10 26 (E > 50 keV) neutrons/m 2 . This study complements the previous results by extending the irradiation temperature to 900/degree/C. 2 refs., 3 figs

  2. Laser Fluence Recognition Using Computationally Intelligent Pulsed Photoacoustics Within the Trace Gases Analysis

    Science.gov (United States)

    Lukić, M.; Ćojbašić, Ž.; Rabasović, M. D.; Markushev, D. D.; Todorović, D. M.

    2017-11-01

    In this paper, the possibilities of computational intelligence applications for trace gas monitoring are discussed. For this, pulsed infrared photoacoustics is used to investigate SF6-Ar mixtures in a multiphoton regime, assisted by artificial neural networks. Feedforward multilayer perceptron networks are applied in order to recognize both the spatial characteristics of the laser beam and the values of laser fluence Φ from the given photoacoustic signal and prevent changes. Neural networks are trained in an offline batch training regime to simultaneously estimate four parameters from theoretical or experimental photoacoustic signals: the laser beam spatial profile R(r), vibrational-to-translational relaxation time τ _{V-T} , distance from the laser beam to the absorption molecules in the photoacoustic cell r* and laser fluence Φ . The results presented in this paper show that neural networks can estimate an unknown laser beam spatial profile and the parameters of photoacoustic signals in real time and with high precision. Real-time operation, high accuracy and the possibility of application for higher intensities of radiation for a wide range of laser fluencies are factors that classify the computational intelligence approach as efficient and powerful for the in situ measurement of atmospheric pollutants.

  3. SU-F-T-261: Reconstruction of Initial Photon Fluence Based On EPID Images

    Energy Technology Data Exchange (ETDEWEB)

    Seliger, T; Engenhart-Cabillic, R [Philipp University of Marburg, Marburg (Germany); Czarnecki, D; Maeder, U; Zink, K [Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen (Germany); Kussaether, R [MedCom GmbH, Darmstadt (Germany); Poppe, B [University Hospital for Medical Radiation Physics, Pius-Hospital, Medical Campus, Carl von Ossietzky University of Oldenburg (Germany)

    2016-06-15

    Purpose: Verifying an algorithm to reconstruct relative initial photon fluence for clinical use. Clinical EPID and CT images were acquired to reconstruct an external photon radiation treatment field. The reconstructed initial photon fluence could be used to verify the treatment or calculate the applied dose to the patient. Methods: The acquired EPID images were corrected for scatter caused by the patient and the EPID with an iterative reconstruction algorithm. The transmitted photon fluence behind the patient was calculated subsequently. Based on the transmitted fluence the initial photon fluence was calculated using a back-projection algorithm which takes the patient geometry and its energy dependent linear attenuation into account. This attenuation was gained from the acquired cone-beam CT or the planning CT by calculating a water-equivalent radiological thickness for each irradiation direction. To verify the algorithm an inhomogeneous phantom consisting of three inhomogeneities was irradiated by a static 6 MV photon field and compared to a reference flood field image. Results: The mean deviation between the reconstructed relative photon fluence for the inhomogeneous phantom and the flood field EPID image was 3% rising up to 7% for off-axis fluence. This was probably caused by the used clinical EPID calibration, which flattens the inhomogeneous fluence profile of the beam. Conclusion: In this clinical experiment the algorithm achieved good results in the center of the field while it showed high deviation of the lateral fluence. This could be reduced by optimizing the EPID calibration, considering the off-axis differential energy response. In further progress this and other aspects of the EPID, eg. field size dependency, CT and dose calibration have to be studied to realize a clinical acceptable accuracy of 2%.

  4. Interior point algorithms: guaranteed optimality for fluence map optimization in IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, Dionne M [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, ON M5S 3G8 (Canada); Glaser, Daniel [Division of Optimization and Systems Theory, Department of Mathematics, Royal Institute of Technology, Stockholm (Sweden); Romeijn, H Edwin [Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109-2117 (United States); Dempsey, James F, E-mail: aleman@mie.utoronto.c, E-mail: romeijn@umich.ed, E-mail: jfdempsey@viewray.co [ViewRay, Inc. 2 Thermo Fisher Way, Village of Oakwood, OH 44146 (United States)

    2010-09-21

    One of the most widely studied problems of the intensity-modulated radiation therapy (IMRT) treatment planning problem is the fluence map optimization (FMO) problem, the problem of determining the amount of radiation intensity, or fluence, of each beamlet in each beam. For a given set of beams, the fluences of the beamlets can drastically affect the quality of the treatment plan, and thus it is critical to obtain good fluence maps for radiation delivery. Although several approaches have been shown to yield good solutions to the FMO problem, these solutions are not guaranteed to be optimal. This shortcoming can be attributed to either optimization model complexity or properties of the algorithms used to solve the optimization model. We present a convex FMO formulation and an interior point algorithm that yields an optimal treatment plan in seconds, making it a viable option for clinical applications.

  5. Interior point algorithms: guaranteed optimality for fluence map optimization in IMRT

    International Nuclear Information System (INIS)

    Aleman, Dionne M; Glaser, Daniel; Romeijn, H Edwin; Dempsey, James F

    2010-01-01

    One of the most widely studied problems of the intensity-modulated radiation therapy (IMRT) treatment planning problem is the fluence map optimization (FMO) problem, the problem of determining the amount of radiation intensity, or fluence, of each beamlet in each beam. For a given set of beams, the fluences of the beamlets can drastically affect the quality of the treatment plan, and thus it is critical to obtain good fluence maps for radiation delivery. Although several approaches have been shown to yield good solutions to the FMO problem, these solutions are not guaranteed to be optimal. This shortcoming can be attributed to either optimization model complexity or properties of the algorithms used to solve the optimization model. We present a convex FMO formulation and an interior point algorithm that yields an optimal treatment plan in seconds, making it a viable option for clinical applications.

  6. Database of episode-integrated solar energetic proton fluences

    Science.gov (United States)

    Robinson, Zachary D.; Adams, James H.; Xapsos, Michael A.; Stauffer, Craig A.

    2018-04-01

    A new database of proton episode-integrated fluences is described. This database contains data from two different instruments on multiple satellites. The data are from instruments on the Interplanetary Monitoring Platform-8 (IMP8) and the Geostationary Operational Environmental Satellites (GOES) series. A method to normalize one set of data to one another is presented to create a seamless database spanning 1973 to 2016. A discussion of some of the characteristics that episodes exhibit is presented, including episode duration and number of peaks. As an example of what can be understood about episodes, the July 4, 2012 episode is examined in detail. The coronal mass ejections and solar flares that caused many of the fluctuations of the proton flux seen at Earth are associated with peaks in the proton flux during this episode. The reasoning for each choice is laid out to provide a reference for how CME and solar flares associations are made.

  7. Database of episode-integrated solar energetic proton fluences

    Directory of Open Access Journals (Sweden)

    Robinson Zachary D.

    2018-01-01

    Full Text Available A new database of proton episode-integrated fluences is described. This database contains data from two different instruments on multiple satellites. The data are from instruments on the Interplanetary Monitoring Platform-8 (IMP8 and the Geostationary Operational Environmental Satellites (GOES series. A method to normalize one set of data to one another is presented to create a seamless database spanning 1973 to 2016. A discussion of some of the characteristics that episodes exhibit is presented, including episode duration and number of peaks. As an example of what can be understood about episodes, the July 4, 2012 episode is examined in detail. The coronal mass ejections and solar flares that caused many of the fluctuations of the proton flux seen at Earth are associated with peaks in the proton flux during this episode. The reasoning for each choice is laid out to provide a reference for how CME and solar flares associations are made.

  8. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets of NAND Flash Memory

    Science.gov (United States)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond; Kim, Hak; Phan, Anthony; Seidleck, Christina; LaBel, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found the single-event upset (SEU) cross section varied inversely with fluence. The SEU cross section decreased with increasing fluence. We attribute the effect to the variable upset sensitivities of the memory cells. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, heavy ion irradiation of devices with variable upset sensitivity distribution using typical fluence levels may underestimate the cross section and on-orbit event rate.

  9. Oxygen sensor nanoparticles for monitoring bacterial growth and characterization of dose–response functions in microfluidic screenings

    International Nuclear Information System (INIS)

    Cao, Jialan; Köhler, J. Michael; Nagl, Stefan; Kothe, Erika

    2015-01-01

    We are presenting a microfluidic droplet-based system for non-invasive, simultaneous optical monitoring of oxygen during bacterial cultivation in nL-sized droplets using ∼350 nm nanobeads made from polystyrene and doped with the NIR-emitting oxygen probe platinum (II) 5, 10, 15, 20-meso-tetraphenyltetrabenzoporphyrin (PtTPTBP). Data were readout by a two-channel micro flow-through fluorimeter and a two-channel micro flow-through photometer. The time-resolved miniaturized optical multi endpoint detection was applied to simultaneously sense dissolved oxygen, cellular autofluorescence, and cell density in nL-sized segments. Two bacterial strains were studied that are resistant to heavy metal ions, viz. Streptomyces acidiscabies E13 and Psychrobacillus psychrodurans UrPLO1. The study has two main features in that it demonstrates (a) the possibility to monitor the changes in oxygen partial pressure during metabolic activity of different bacterial cultures inside droplets, and (b) the efficiency of droplet-based microfluidic techniques along with multi-parameter optical sensing for highly resolved microtoxicological screenings in aquatic systems. (author)

  10. The Effect of Ash and Inorganic Pigment Fill on the Atomic Oxygen Erosion of Polymers and Paints (ISMSE-12)

    Science.gov (United States)

    Banks, Bruce A.; Simmons, Julie C.; de Groh, Kim K.; Miller, Sharon K.

    2012-01-01

    Low atomic oxygen fluence (below 1x10(exp 20) atoms/sq cm) exposure of polymers and paints that have a small ash content and/or inorganic pigment fill does not cause a significant difference in erosion yield compared to unfilled (neat) polymers or paints. However, if the ash and/or inorganic pigment content is increased, the surface population of the inorganic content will begin to occupy a significant fraction of the surface area as the atomic oxygen exposure increases because the ash is not volatile and remains as a loosely attached surface layer. This results in a reduction of the flux of atomic oxygen reacting with the polymer and a reduction in the rate of erosion of the polymer remaining. This paper presents the results of ground laboratory and low Earth orbital (LEO) investigations to evaluate the fluence dependence of atomic oxygen erosion yields of polymers and paints having inorganic fill content.

  11. Fluence compensated photoacoustic tomography in small animals (Conference Presentation)

    Science.gov (United States)

    Hussain, Altaf; Pool, Martin; Daoudi, Khalid; de Vries, Liesbeth G.; Steenbergen, Wiendelt

    2017-03-01

    Light fluence inside turbid media can be experimentally mapped by measuring ultrasonically modulated light (Acousto-optics). To demonstrate the feasibility of fluence corrected Photoacoustic (PA) imaging, we have realized a tri-modality (i.e. photoacoustic, acousto-optic and ultrasound) tomographic small animal imaging system. Wherein PA imaging provides high resolution map of absorbed optical energy density, Acousto-optics yields the fluence distribution map in the corresponding PA imaging plane and Ultrasound provides morphological information. Further, normalization of the PA image with the acousto-optically measured fluence map results in an image that directly represents the optical absorption. Human epidermal growth factor receptor 2 (HER2) is commonly found overexpressed in human cancers, among which breast cancers, resulting in a more aggressive tumor phenotype. Identification of HER2-expression is clinically relevant, because cancers overexpressing this marker are amenable to HER2-directed therapies, among which antibodies trastuzumab and pertuzumab. Here, we investigate the feasibility and advantage of acousto-optically assisted fluence compensated PA imaging over PA imaging alone in visualizing and quantifying HER2 expression. For this experiment, nude mice were xenografted with human breast cancer cell lines SKBR3 and BT474 (both HER2 overexpressing), as well as HER2-negative MDA-MB-231. To visualize HER2 expression in these mice, HER2 monoclonal antibody pertuzumab (Perjeta®, Roche), was conjugated to near-infrared dye IRDye 800CW (800CW, LICOR Biosciences) at a ratio of 1∶2 antibody to 800CW. When xenograft tumors measured ≥ 100 mm3, mice received 100 µg 800CW-pertuzumab intravenously. Three days post injection, mice were scanned for fluorescence signal with an IVIS scanner. After fluorescence scans, mice were euthanized and imaged in our PA tomographic imaging system.

  12. Biphasic fluence-response curves for phytochrome-mediated kalanchoë seed germination : sensitization by gibberellic Acid.

    Science.gov (United States)

    Rethy, R; Dedonder, A; De Petter, E; Van Wiemeersch, L; Fredericq, H; De Greef, J; Steyaert, H; Stevens, H

    1987-01-01

    The fluence-response curves for the effect of two red pulses separated by 24 hours on the germination of Kalanchoe blossfeldiana Poelln. cv Vesuv seeds, incubated on gibberellic acid (GA(3)) are biphasic for suboptimal concentrations. The response in the low fluence range corresponds with a classical red/far-red reversible phytochrome mediated reaction. GA(3) induces an additional response in the very low fluence range, which is also phytochrome mediated. The sensitivity to phytochrome-far-red absorbing form (Pfr), however, is increased about 20,000-fold, so that even far-red fluences become saturating. Both in the very low and low fluence response range, the maximal responses induced by saturating fluences are modulated by the GA(3) concentration. GA(3) having no direct influence on the phytochrome phototransformations, alters the Pfr requirement and determines the responding seed population fraction in the very low and low fluence range. The effet of GA(3) appears to be on the transduction chain of the phytochrome signal.

  13. Evolution of extended defects in polycrystalline Au-irradiated UO{sub 2} using in situ TEM: Temperature and fluence effects

    Energy Technology Data Exchange (ETDEWEB)

    Onofri, C., E-mail: claire.onofri@cea.fr [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Sabathier, C. [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Baumier, C.; Bachelet, C. [CSNSM/CNRS, PARIS-SUD University, F-91400 Orsay (France); Palancher, H. [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Legros, M. [CEMES/CNRS, F-31055 Toulouse Cedex 4 (France)

    2016-12-15

    In situ Transmission Electron Microscopy irradiations were performed on polycrystalline UO{sub 2} thin foils with 4 MeV gold ions at three different temperatures: 600 °C, room and liquid nitrogen temperature. In order to study the dislocation evolution and to determine the growth mechanisms, the dislocation loop and line densities and the loop size repartition were monitored as a function of fluence, and irradiation temperature. We show that dislocation loops, with Burgers vectors along the <110> directions, evolve into dislocation lines with increasing fluence by a loop overlapping mechanism. Furthermore, a fluence offset is highlighted between the irradiations performed at high and low temperature due to an increase of the defect mobility. Indeed, a growth by Oswald ripening is probably activated at room temperature and 600 °C and changes the kinetic evolution of loops into lines. After this transformation, and for all the irradiation temperatures, a steady state equilibrium is reached where both extended defects (dislocation lines and small dislocations loops -around 5 nm in size-) are observed simultaneously. A continuous nucleation of small dislocation loops and of nanometer-sized cavities formed directly by irradiation is also highlighted.

  14. Neutron Fluence Evaluation using an Am-Be Neutron Sources Assembly and P ADC Detectors

    International Nuclear Information System (INIS)

    Seddik, U.

    2008-01-01

    An assembly of four 241 Am-Be sources has been constructed at Nuclear Reactions Unit (NRU) of Nuclear Research Center (NRU) to perform analysis of different materials using thermal and fast neutrons. In the present paper, we measure the value of transmittance (T) in percentage of etched CR-39 detectors using a spectrophotometer at different neutron fluences ,to relate the transmittance of the detector with the neutron fluence values. The exposed samples to neutrons with accumulated fluence of order between 10 10 and 10 12 cm -2 were etched for 15 time intervals between 10-600 min in 6.25 N NaOH at 70 degree C. The etched samples were analyzed using Tech 8500 II spectrophotometer. A trend of the sample transmission and the etching time is observed which is different for each fluence value. A linear relation between the transmittance decay constant and the neutron fluence is observed which could be used as a calibration to determine unknown neutron fluence

  15. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media.

    Science.gov (United States)

    Meunier, Sarah M; Todorovic, Biljana; Dare, Emma V; Begum, Afroza; Guillemette, Simon; Wenger, Andrew; Saxena, Priyanka; Campbell, J Larry; Sasges, Michael; Aucoin, Marc G

    2016-01-01

    Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media.

  16. Incorporating the effects of lateral spread of the primary fluence, into compensator design

    International Nuclear Information System (INIS)

    Reece, P.J.; Hoban, P.

    2000-01-01

    Full text: In this study we extended ideas developed by Faddegon and Pfalzner on the construction of patient specific compensating filters. Their research was essentially focused on formulating a general method for creating compensators using a 3D planning system. In their work Faddegon and Pfalzner utilized a simple attenuation model to convert transmission arrays into filter thickness arrays. The compensators constructed from these arrays produce the primary fluence required to give a uniform dose distribution at a specified depth. This technique does not account for local geometric variations hi compensator scattering conditions. Therefore we have devised a method to incorporate the effects of lateral spread of the primary fluence passing through the compensating filter. A 2D Gaussian kernel, generated from Monte Carlo measurements, was used to model the spread of the primary fluence in the compensating filter. A 'maximum likelihood' optimisation algorithm was employed to deconvolve the kernel from the desired primary fluence to produce a more realistic incident fluence and compensator thickness array. The CMS FOCUS planning system was used to generate transmission maps corresponding to the desired influence of the compensating filter. Two compensating filters were constructed for each map, one using the standard attenuation method and the other with our method. For each method, an assessment was made using film dosimetry, on the degree of correlation between the desired primary fluence and the primary fluence produced by the compensating filter. Our results indicate that for compensating filters which are relatively uniform in thickness, there is good agreement between desired and delivered fluence maps for both methods. For non-uniform compensating filters the attenuation method deviates more notably from the desired fluence map. As expected, both methods also show significant deviations around the edges of the filter. It is anticipated that the work done here

  17. Oxygen isotope separation by isotopically selective infrared multiphoton dissociation of 2,3-dihydropyran

    International Nuclear Information System (INIS)

    Yokoyama, Atsushi; Ohba, Hironori; Akagi, Hiroshi; Yokoyama, Keiichi; Saeki, Morihisa; Katsumata, Keiichi

    2008-01-01

    Oxygen isotopic selectivity on infrared multiphoton dissociation of 2,3-dihydropyran has been studied by the examination of the effects of excitation frequency, laser fluence, and gas pressure on the dissociation probability of 2,3-dihydropyran and isotopic composition of products. Oxygen-18 was enriched in a dissociation product: 2-propenal. The enrichment factor of 18 O and the dissociation probability were measured at laser frequency between 1033.5 and 1057.3 cm -1 ; the laser fluence of 2.2 - 2.3 J/cm 2 ; and the 2,3-dihydropyran pressure of 0.27 kPa. The dissociation probability decreases as the laser frequency being detuned from the absorption peak of 2,3-dihydropyran around 1081 cm -1 . On the other hand, the enrichment factor increases with detuning the frequency. The enrichment factor of 18 O increases with increasing the 2,3-dihydropyran pressure at the laser fluence below 3 J/cm 2 and the laser frequency of 1033.5 cm -1 , whereas the yield of 2-propenal decreases with increasing the pressure. Very high enrichment factor of 751 was obtained by the irradiation of 0.53 kPa of 2,3-dihydropyran at 2.1 J/cm 2 . (author)

  18. Real-Time Molecular Monitoring of Chemical Environment in ObligateAnaerobes during Oxygen Adaptive Response

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David. A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-02-25

    Determining the transient chemical properties of the intracellular environment canelucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms which enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier Transform Infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bonding in their cellular water. We observed a sequence of wellorchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.

  19. Influence of Atomic Oxygen Exposure on Friction Behavior of 321 Stainless Steel

    Science.gov (United States)

    Liu, Y.; Yang, J.; Ye, Z.; Dong, S.; Zhang, L.; Zhang, Z.

    Atomic oxygen (AO) exposure testing has been conducted on a 321 stainless steel rolled 1 mm thick sheet to simulate the effect of AO environment on steel in low Earth orbit (LEO). An atomic oxygen exposure facility was employed to carry out AO experiments with the fluence up to ~1021 atom/cm2. The AO exposed specimens were evaluated in air at room temperature using a nanoindenter and a tribological system. The exposed surfaces were analyzed usign XPS technique.

  20. Fluence dependence of disorder depth profiles in Pb implanted Si

    International Nuclear Information System (INIS)

    Christodoulides, C.E.; Kadhim, N.J.; Carter, G.

    1980-01-01

    The total, depth integrated disorder, induced by Pb implantation into Si at room temperature, initially increases rapidly with implantation fluence and then reaches a quasi saturation level where the increase with fluence is slow. Measurements of the depth distributions of the disorder, using high resolution low angle exit Rutherford Backscattering/Channelling analysis, suggest that the quasi saturation results from overlapping of disordered zones generated deep in the tail of the disorder-depth profiles. The depth of the disordered solid-crystal boundary, xsub(D), increases with ion fluence PHI, according to the relation xsub(D) = x bar + f(PHI).σ, where x bar is the most probable projected depth and σ the projected standard deviation of disorder generation. It is shown that this relationship is consistent with an approximately Gaussian depth distribution of disorder production. (author)

  1. Epitaxial silicon detectors for particle tracking-Radiation tolerance at extreme hadron fluences

    International Nuclear Information System (INIS)

    Lindstroem, Gunnar; Dolenc, Irena; Fretwurst, Eckhart; Hoenniger, Frank; Kramberger, Gregor; Moll, Michael; Nossarzewska, Elsbieta; Pintilie, Ioana; Roeder, Ralf

    2006-01-01

    Diodes processed on n-type epitaxial silicon with a thickness of 25, 50 and 75 μm had been irradiated with reactor neutrons and high-energy protons (24 GeV/c) up to integrated fluences of Φ eq =10 16 cm -2 . Systematic experiments on radiation-induced damage effects revealed the following results: in contrast to standard and oxygen-enriched float zone (FZ) silicon devices no space charge sign inversion was observed after irradiation. It is shown that the radiation-generated concentration of deep acceptors, dominating the behavior of n-type FZ diodes, is compensated by creation of shallow donors. Thus a positive space charge is maintained throughout the irradiation up to the highest fluence and even during prolonged elevated-temperature annealing cycles. Defect analysis studies using thermally stimulated current measurements attribute the effect to a damage-induced shallow donor at E C -0.23 eV. It is argued that, as in the case of thermal donors, oxygen dimers, out diffusing from the Cz substrate during the diode processing, are responsible precursers. Results from extensive annealing experiments at elevated temperatures are verified by comparison with prolonged room-temperature annealing. These results showed that in contrast to FZ detectors, which always have to be cooled, room-temperature storage during beam off periods of future elementary particle physics experiments would even be beneficial for n-type epi-silicon detectors. A dedicated experiment at CERN-PS had successfully proven this expectation. It was verified, that in such a scenario the depletion voltage for the epi-detector could always be kept at a moderate level throughout the full S-LHC operation (foreseen upgrade of the large hadron collider). Practically no difference with respect to FZ-silicon devices was found in the damage-induced bulk generation current. The charge trapping measured with 90 Sr electrons (mip's) is also almost identical to what was expected. A charge collection efficiency of

  2. Epitaxial silicon detectors for particle tracking-Radiation tolerance at extreme hadron fluences

    Energy Technology Data Exchange (ETDEWEB)

    Lindstroem, Gunnar [Institute for Experimental Physics, University of Hamburg, Hamburg, 22761 (Germany)]. E-mail: gunnar.lindstroem@desy.de; Dolenc, Irena [Jozef Stefan Institute, University of Ljubljana, Ljubljana, 100 (Slovenia); Fretwurst, Eckhart [Institute for Experimental Physics, University of Hamburg, Hamburg, 22761 (Germany); Hoenniger, Frank [Institute for Experimental Physics, University of Hamburg, Hamburg, 22761 (Germany); Kramberger, Gregor [Jozef Stefan Institute, University of Ljubljana, Ljubljana, 100 (Slovenia); Moll, Michael [CERN, Geneva, 1211 (Switzerland); Nossarzewska, Elsbieta [ITME, Institute for Electronocs Materials Technology, Warsaw, 01919 (Poland); Pintilie, Ioana [National Institute of Materials Physics, Bucharest, 077125 (Romania); Roeder, Ralf [CiS Institute for Microsensors gGmbH, Erfurt, 99099 (Germany)

    2006-11-30

    Diodes processed on n-type epitaxial silicon with a thickness of 25, 50 and 75 {mu}m had been irradiated with reactor neutrons and high-energy protons (24 GeV/c) up to integrated fluences of {phi} {sub eq}=10{sup 16} cm{sup -2}. Systematic experiments on radiation-induced damage effects revealed the following results: in contrast to standard and oxygen-enriched float zone (FZ) silicon devices no space charge sign inversion was observed after irradiation. It is shown that the radiation-generated concentration of deep acceptors, dominating the behavior of n-type FZ diodes, is compensated by creation of shallow donors. Thus a positive space charge is maintained throughout the irradiation up to the highest fluence and even during prolonged elevated-temperature annealing cycles. Defect analysis studies using thermally stimulated current measurements attribute the effect to a damage-induced shallow donor at E {sub C}-0.23 eV. It is argued that, as in the case of thermal donors, oxygen dimers, out diffusing from the Cz substrate during the diode processing, are responsible precursers. Results from extensive annealing experiments at elevated temperatures are verified by comparison with prolonged room-temperature annealing. These results showed that in contrast to FZ detectors, which always have to be cooled, room-temperature storage during beam off periods of future elementary particle physics experiments would even be beneficial for n-type epi-silicon detectors. A dedicated experiment at CERN-PS had successfully proven this expectation. It was verified, that in such a scenario the depletion voltage for the epi-detector could always be kept at a moderate level throughout the full S-LHC operation (foreseen upgrade of the large hadron collider). Practically no difference with respect to FZ-silicon devices was found in the damage-induced bulk generation current. The charge trapping measured with {sup 90}Sr electrons (mip's) is also almost identical to what was expected

  3. Cutaneous respirometry by dynamic measurement of mitochondrial oxygen tension for monitoring mitochondrial function in vivo.

    Science.gov (United States)

    Harms, Floor A; Voorbeijtel, Wilhelmina J; Bodmer, Sander I A; Raat, Nicolaas J H; Mik, Egbert G

    2013-09-01

    Progress in diagnosis and treatment of mitochondrial dysfunction in chronic and acute disease could greatly benefit from techniques for monitoring of mitochondrial function in vivo. In this study we demonstrate the feasibility of in vivo respirometry in skin. Mitochondrial oxygen measurements by means of oxygen-dependent delayed fluorescence of protoporphyrin IX are shown to provide a robust basis for measurement of local oxygen disappearance rate (ODR). The fundamental principles behind the technology are described, together with an analysis method for retrievel of respirometry data. The feasibility and reproducibility of this clinically useful approach are demonstrated in a series of rats. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Characterization of oxygen dimer-enriched silicon detectors

    CERN Document Server

    Boisvert, V; Moll, M; Murin, L I; Pintilie, I

    2005-01-01

    Various types of silicon material and silicon p+n diodes have been treated to increase the concentration of the oxygen dimer (O2i) defect. This was done by exposing the bulk material and the diodes to 6 MeV electrons at a temperature of about 350 °C. FTIR spectroscopy has been performed on the processed material confirming the formation of oxygen dimer defects in Czochralski silicon pieces. We also show results from TSC characterization on processed diodes. Finally, we investigated the influence of the dimer enrichment process on the depletion voltage of silicon diodes and performed 24 GeV/c proton irradiations to study the evolution of the macroscopic diode characteristics as a function of fluence.

  5. Single Cell Responses to Spatially Controlled Photosensitized Production of Extracellular Singlet Oxygen

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Sinks, Louise E.; Breitenbach, Thomas

    2011-01-01

    The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which served...... to localize the sensitized production of singlet oxygen. Cells in close proximity to the domain of singlet oxygen production showed morphological changes commonly associated with necrotic cell death. The elapsed post-irradiation “waiting period” before necrosis became apparent depended on (a) the distance...... between the cell membrane and the domain irradiated, (b) the incident laser fluence and, as such, the initial concentration of singlet oxygen produced, and (c) the lifetime of singlet oxygen. The data imply that singlet oxygen plays a key role in this process of light-induced cell death. The approach...

  6. Burnup influence on the VVER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of the Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of VVER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in 1/4 depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (authors)

  7. Burnup influence on the WWER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of WWER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in ? depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (Authors)

  8. Dependence of laser assisted cleaning of clad surfaces on the laser fluence

    International Nuclear Information System (INIS)

    Nilaya, J.P.; Raote, P.; Sai Prasad, M.B.; Biswas, D.J.; Aniruddha Kumar

    2005-01-01

    The decontamination factor is studied as a function of laser fluence for three kinds of clad surfaces viz., plain zircaloy, autoclaved zircaloy and SS with cesium as the test contamination. It has been found that the decontamination factor exhibits a maximal behaviour with the laser fluence and its maximum value occurs at different laser fluences in the three cases. The maximal behaviour is attributed to reduced coupling of energy from the laser beam to the substrate due to the initiation of surface-assisted optical breakdown. The results obtained in the experiment carried out in helium environment qualitatively support this explanation (author)

  9. Magnetic field effects on spectrally resolved lifetime of on-line oxygen monitoring using magneto-optic probes

    Science.gov (United States)

    Mermut, O.; Gallant, P.; Le Bouch, N.; Leclair, S.; Noiseux, I.; Vernon, M.; Morin, J.-F.; Diamond, K.; Patterson, M. S.; Samkoe, K.; Pogue, B.

    2009-02-01

    Multimodal agents that serve as both probes for contrast and light-activated effectors of cellular processes in diseased tissue were developed. These agents were introduced into multicellular tumor spheroids (3D tissue models) and in the chorioallantoic membrane (CAM) of a chicken embryo. The luminescence decay was examined using a novel technique involving a spectrally-resolved fluorescence lifetime apparatus integrated with a weak electromagnet. A spectrallyresolved lifetime setup was used to identify magneto-optic species sensitive to magnetic field effects and distinguish from background emissions. We demonstrate that the applied magnetic fields can alter reaction rates and product distribution of some dyes detected by time- and spectrally-resolved luminescence changes. We will discuss the use of exogenous magneto-optical probes taken up in tumors to both induce phototoxicity, a process that is governed by complex and dynamically evolving mechanisms involving reactive oxygen species, and monitor treatment progress. The magnetic field enhancement, measured over a range of weak fields (0-300 mT) is correlated to oxygenation and may be used to monitor dynamic changes occurring due to oxygen consumption over the course of photodynamic therapy. Such online measurements provide the possibility to derive real-time information about response to treatment via monitoring magnetic field enhancement/suppression of the time-resolved, spectrally-resolved luminescence of the probe at the site of the treatment directly. Magnetic perturbation of lifetime can serve as a status reporter, providing optical feedback of oxygen-mediated treatments in situ and allowing for real-time adjustment of a phototherapy treatment plan.

  10. Optical monitoring of kidney oxygenation and hemodynamics using a miniaturized near-infrared sensor

    Science.gov (United States)

    Shadgan, Babak; Macnab, Andrew; Nigro, Mark; Nguan, Christopher

    2017-02-01

    Background: Following human renal allograft transplant primary graft dysfunction can occur early in the postoperative period as a result of acute tubular necrosis, acute rejection, drug toxicity, and vascular complications. Successful treatment of graft dysfunction requires early detection and accurate diagnosis so that disease-specific medical and/or surgical intervention can be provided promptly. However, current diagnostic methods are not sensitive or specific enough, so that identifying the cause of graft dysfunction is problematic and often delayed. Near-infrared spectroscopy (NIRS) is an established optical method that monitors changes in tissue hemodynamics and oxygenation in real time. We report the feasibility of directly monitoring kidney the kidney in an animal model using NIRS to detect renal ischemia and hypoxia. Methods: In an anesthetized pig, a customized continuous wave spatially resolved (SR) NIRS sensor was fixed directly to the surface of the surgically exposed kidney. Changes in the concentration of oxygenated (O2Hb) deoxygenated (HHb) and total hemoglobin (THb) were monitored before, during and after renal artery clamping and reperfusion, and the resulting fluctuations in chromophore concentration from baseline used to measure variations in renal perfusion and oxygenation. Results: On clamping the renal artery THb and O2Hb concentrations declined progressively while HHb rose. With reperfusion after releasing the artery clamp O2Hb and THb rose while HHb fell with all parameters returning to its baseline. This pattern was similar in all three trials. Conclusion: This pilot study indicates that a miniaturized NIRS sensor applied directly to the surface of a kidney in an animal model can detect the onset of renal ischemia and tissue hypoxia. With modification, our NIRS-based method may contribute to early detection of renal vascular complications and graft dysfunction following renal transplant.

  11. Singlet oxygen explicit dosimetry to predict long-term local tumor control for Photofrin-mediated photodynamic therapy

    Science.gov (United States)

    Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    Although photodynamic therapy (PDT) is an established modality for the treatment of cancer, current dosimetric quantities do not account for the variations in PDT oxygen consumption for different fluence rates (φ). In this study we examine the efficacy of reacted singlet oxygen concentration ([1O2]rx) to predict long-term local control rate (LCR) for Photofrin-mediated PDT. Radiation-induced fibrosarcoma (RIF) tumors in the right shoulders of female C3H mice are treated with different in-air fluences of 225-540 J/cm2 and in-air fluence rate (φair) of 50 and 75 mW/cm2 at 5 mg/kg Photofrin and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 630 nm wavelength. [1O2]rx is calculated by using a macroscopic model based on explicit dosimetry of Photofrin concentration, tissue optical properties, tissue oxygenation and blood flow changes during PDT. The tumor volume of each mouse is tracked for 90 days after PDT and Kaplan-Meier analyses for LCR are performed based on a tumor volume defined as a temporal integral of photosensitizer concentration and Φ at a 3 mm tumor depth. φ is calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. Our preliminary studies show that [1O2]rx is the best dosimetric quantity that can predict tumor response and correlate with LCR. Moreover, [1O2]rx calculated using the blood flow changes was in agreement with [1O2]rx calculated based on the actual tissue oxygenation.

  12. Neutron dosimetry intercomparison run for verification of the neutron fluence

    International Nuclear Information System (INIS)

    Penev, I.; Kinova, L.

    2001-01-01

    For the neutron fluence verification the intercomparison runs Balakovo and KORPUS have been carried out. The participation in the international intercomparison runs shows that in order to more precisely verify the calculated values of the neutron fluence more intercomparison exercises are necessary. Due to such exercises the results improved after calibration of Nb performed and are in a very good agreement with RIIAR results in spite of the different approaches in the determination of its activity

  13. Neutron fluence-to-dose conversion coefficients for embryo and fetus

    International Nuclear Information System (INIS)

    Chen, J.; Meyerhof, D.; Vlahovich, S.

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus. (authors)

  14. Neutron fluence-to-dose conversion coefficients for embryo and fetus.

    Science.gov (United States)

    Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus.

  15. Nickel Foil as Transmutation Detector for Neutron Fluence Measurements

    Directory of Open Access Journals (Sweden)

    Klupák Vít

    2016-01-01

    Full Text Available Activation detectors are very often used for determination of the neutron fluence in reactor dosimetry. However, there are few disadvantages concerning these detectors; it is the demand of the knowledge of the irradiation history and a loss of information due to a radioactive decay in time. Transmutation detectors TMD could be a solution in this case. The transmutation detectors are materials in which stable or long-lived nuclides are produced by nuclear reactions with neutrons. From a measurement of concentration of these nuclides, neutron fluence can be evaluated regardless of the cooling time.

  16. Correlating Fast Fluence to dpa in Atypical Locations

    Directory of Open Access Journals (Sweden)

    Drury Thomas H.

    2016-01-01

    Full Text Available Damage to a nuclear reactor's materials by high-energy neutrons causes changes in the ductility and fracture toughness of the materials. The reactor vessel and its associated piping's ability to withstand stress without brittle fracture are paramount to safety. Theoretically, the material damage is directly related to the displacements per atom (dpa via the residual defects from induced displacements. However in practice, the material damage is based on a correlation to the high-energy (E > 1.0 MeV neutron fluence. While the correlated approach is applicable when the material in question has experienced the same neutron spectrum as test specimens which were the basis of the correlation, this approach is not generically acceptable. Using Monte Carlo and discrete ordinates transport codes, the energy dependent neutron flux is determined throughout the reactor structures and the reactor vessel. Results from the models provide the dpa response in addition to the high-energy neutron flux. Ratios of dpa to fast fluence are calculated throughout the models. The comparisons show a constant ratio in the areas of historical concern and thus the validity of the correlated approach to these areas. In regions above and below the fuel however, the flux spectrum has changed significantly. The correlated relationship of material damage to fluence is not valid in these regions without adjustment. An adjustment mechanism is proposed.

  17. Correlating Fast Fluence to dpa in Atypical Locations

    Science.gov (United States)

    Drury, Thomas H.

    2016-02-01

    Damage to a nuclear reactor's materials by high-energy neutrons causes changes in the ductility and fracture toughness of the materials. The reactor vessel and its associated piping's ability to withstand stress without brittle fracture are paramount to safety. Theoretically, the material damage is directly related to the displacements per atom (dpa) via the residual defects from induced displacements. However in practice, the material damage is based on a correlation to the high-energy (E > 1.0 MeV) neutron fluence. While the correlated approach is applicable when the material in question has experienced the same neutron spectrum as test specimens which were the basis of the correlation, this approach is not generically acceptable. Using Monte Carlo and discrete ordinates transport codes, the energy dependent neutron flux is determined throughout the reactor structures and the reactor vessel. Results from the models provide the dpa response in addition to the high-energy neutron flux. Ratios of dpa to fast fluence are calculated throughout the models. The comparisons show a constant ratio in the areas of historical concern and thus the validity of the correlated approach to these areas. In regions above and below the fuel however, the flux spectrum has changed significantly. The correlated relationship of material damage to fluence is not valid in these regions without adjustment. An adjustment mechanism is proposed.

  18. Standard Test Method for Oxygen Content Using a 14-MeV Neutron Activation and Direct-Counting Technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers the measurement of oxygen concentration in almost any matrix by using a 14-MeV neutron activation and direct-counting technique. Essentially, the same system may be used to determine oxygen concentrations ranging from over 50 % to about 10 g/g, or less, depending on the sample size and available 14-MeV neutron fluence rates. Note 1 - The range of analysis may be extended by using higher neutron fluence rates, larger samples, and higher counting efficiency detectors. 1.2 This test method may be used on either solid or liquid samples, provided that they can be made to conform in size, shape, and macroscopic density during irradiation and counting to a standard sample of known oxygen content. Several variants of this method have been described in the technical literature. A monograph is available which provides a comprehensive description of the principles of activation analysis using a neutron generator (1). 1.3 The values stated in either SI or inch-pound units are to be regarded...

  19. Irradiation embrittlement of some 15Kh2MFA pressure vessel steels under varying neutron fluence rates

    Energy Technology Data Exchange (ETDEWEB)

    Valo, M; Bars, B [Technical Research Centre of Finland, Espoo (Finland); Ahlstrand, A [Imatran Voima Oy (IVO), Helsinki (Finland)

    1994-12-31

    Irradiation sensitivity of two forging materials was measured with Charpy-V and fracture mechanic tests, and with different fluence, fluence rate and irradiation time values. Irradiation sensitivity of the materials was found to be less or equal to the current Russian standard, and appears to be well described by the fluence parameter only. A slight additional effect on embrittlement from a long term low fluence irradiation is noticed, but it stays within the total scatter band of data. 7 refs., 17 figs., 4 tabs.

  20. Measurement of angular distribution of cosmic-ray muon fluence rate

    International Nuclear Information System (INIS)

    Lin, Jeng-Wei; Chen, Yen-Fu; Sheu, Rong-Jiun; Jiang, Shiang-Huei

    2010-01-01

    In this work a Berkeley Lab cosmic ray detector was used to measure the angular distribution of the cosmic-ray muon fluence rate. Angular response functions of the detector at each measurement orientation were calculated by using the FLUKA Monte Carlo code, where no energy attenuation was taken into account. Coincidence counting rates were measured at ten orientations with equiangular intervals. The muon angular fluence rate spectrum was unfolded from the measured counting rates associated with the angular response functions using both the MAXED code and the parameter adjusting method.

  1. Neutron fluence measurement in nuclear facilities.; Medicion de flujos de neutrones en instalaciones nucleares.

    Energy Technology Data Exchange (ETDEWEB)

    Camacho L, M E

    1997-12-01

    The objective of present work is to determine the fluence of neutrons in nuclear facilities using two neutron detectors designed and built at Instituto Nacional de Investigaciones Nucleares (ININ), Mexico. The two neutron detectors are of the passive type, based on solid state nuclear tracks detectors (SSNTD). One of the two neutron detectors was used to determine the fluence distribution of the ports at the nuclear research reactor TRIGA Mark III, which belongs to ININ. In these facilities is important to know the neutron fluence distribution characteristic to carried out diverse kind of research activities. The second neutron detector was employed in order to carry out environmental neutron surveillance. The detector has the property to separate the thermal, intermediate and fast components of the neutron fluence. This detector was used to measure the neutron fluence at hundred points around the primary container of the first Mexican Nuclear Power plant `Laguna Verde`. This last detector was also used to determine the neutron fluence in some points of interest, around and inside a low scattering neutron room at the `Centro de Metrologia de Radiaciones Ionizantes` of the ININ, to know the background neutron field produced by the neutron sources used there. The design of the two neutron detector and the results obtained for each of the surveying facilities, are described in this work. (Author).

  2. Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property

    Science.gov (United States)

    Yao, Caizhen; Ye, Yayun; Jia, Baoshen; Li, Yuan; Ding, Renjie; Jiang, Yong; Wang, Yuxin; Yuan, Xiaodong

    2017-12-01

    In this paper, micro/nano structures on stainless steel were prepared in single spot irradiation mode and scan mode by using femtosecond laser technique. The influence of polarization and fluence on the formation of micro/nano structures were explored. Surface morphology, microstructure, roughness and composition of prepared samples were characterized. The antireflection property and wettability of laser treated samples were also tested and compared with that of original stainless steel.Results showed that the laser-induced spot consists of two distinct regions due to the Gaussian beam profile: a core region of moth-eye-like structure and a peripheral region of nanoparticles-covered laser-induced periodic surface structure (NC-LIPSS). The proportion of the core region and dimension of micro/nano structure increase with increasing laser fluence. Polarization can be used to tune the direction of NC-LIPSS. Atomic ratios of Cr and Mn increase and atomic ratio of Ni decreases after laser irradiation. Oxygen is not detected on laser irradiated samples, indicating that oxidation reactions are not significant during the interaction process between femtosecond laser and 304 stainless steel. These are good for the application of stainless steel as its physical properties would not change or even enhanced. The overlaps between two laser scan lines significantly influence the surface roughness and should be controlled carefully during the preparation process. The laser irradiated surface has a better antireflection property in comparison with that of original stainless steel, which may due to the scattering and absorption of micro/nano structures. Contact angle of micro/nano structured stainless steel decreases with the increase of laser fluence. The hydrophilic property can be explained by Wenzel's model. The interference between the surface plasmon wave and the incident light wave leads to the formation of NC-LIPSS.

  3. Nitrogen ion induced nitridation of Si(111) surface: Energy and fluence dependence

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Kumar, Mahesh [Physics and Energy Harvesting Group, National Physical Laboratory, New Delhi 110012 (India); Nötzel, R. [ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Shivaprasad, S.M., E-mail: smsprasad@jncasr.ac.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2014-06-01

    We present the surface modification of Si(111) into silicon nitride by exposure to energetic N{sub 2}{sup +} ions. In-situ UHV experiments have been performed to optimize the energy and fluence of the N{sub 2}{sup +} ions to form silicon nitride at room temperature (RT) and characterized in-situ by X-ray photoelectron spectroscopy. We have used N{sub 2}{sup +} ion beams in the energy range of 0.2–5.0 keV of different fluence to induce surface reactions, which lead to the formation of Si{sub x}N{sub y} on the Si(111) surface. The XPS core level spectra of Si(2p) and N(1s) have been deconvoluted into different oxidation states to extract qualitative information, while survey scans have been used for quantifying of the silicon nitride formation, valence band spectra show that as the N{sub 2}{sup +} ion fluence increases, there is an increase in the band gap. The secondary electron emission spectra region of photoemission is used to evaluate the change in the work function during the nitridation process. The results show that surface nitridation initially increases rapidly with ion fluence and then saturates. - Highlights: • A systematic study for the formation of silicon nitride on Si(111). • Investigation of optimal energy and fluence for energetic N{sub 2}{sup +} ions. • Silicon nitride formation at room temperature on Si(111)

  4. Calculations of electron fluence correction factors using the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Siegbahn, E A; Nilsson, B; Fernandez-Varea, J M; Andreo, P

    2003-01-01

    In electron-beam dosimetry, plastic phantom materials may be used instead of water for the determination of absorbed dose to water. A correction factor φ water plastic is then needed for converting the electron fluence in the plastic phantom to the fluence at an equivalent depth in water. The recommended values for this factor given by AAPM TG-25 (1991 Med. Phys. 18 73-109) and the IAEA protocols TRS-381 (1997) and TRS-398 (2000) disagree, in particular at large depths. Calculations of the electron fluence have been done, using the Monte Carlo code PENELOPE, in semi-infinite phantoms of water and common plastic materials (PMMA, clear polystyrene, A-150, polyethylene, Plastic water TM and Solid water TM (WT1)). The simulations have been carried out for monoenergetic electron beams of 6, 10 and 20 MeV, as well as for a realistic clinical beam. The simulated fluence correction factors differ from the values in the AAPM and IAEA recommendations by up to 2%, and are in better agreement with factors obtained by Ding et al (1997 Med. Phys. 24 161-76) using EGS4. Our Monte Carlo calculations are also in good accordance with φ water plastic values measured by using an almost perturbation-free ion chamber. The important interdependence between depth- and fluence-scaling corrections for plastic phantoms is discussed. Discrepancies between the measured and the recommended values of φ water plastic may then be explained considering the different depth-scaling rules used

  5. Singlet oxygen explicit dosimetry to predict long-term local tumor control for BPD-mediated photodynamic therapy

    Science.gov (United States)

    Kim, Michele M.; Penjweini, Rozhin; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    Photodynamic therapy (PDT) is a well-established treatment modality for cancer and other malignant diseases; however, quantities such as light fluence, photosensitizer photobleaching rate, and PDT dose do not fully account for all of the dynamic interactions between the key components involved. In particular, fluence rate (Φ) effects are not accounted for, which has a large effect on the oxygen consumption rate. In this preclinical study, reacted singlet oxygen [1O2]rx was investigated as a dosimetric quantity for PDT outcome. The ability of [1O2]rx to predict the long-term local tumor control rate (LCR) for BPD-mediated PDT was examined. Mice bearing radioactivelyinduced fibrosarcoma (RIF) tumors were treated with different in-air fluences (250, 300, and 350 J/cm2) and in-air ϕ (75, 100, and150 mW/cm2) with a BPD dose of 1 mg/kg and a drug-light interval of 3 hours. Treatment was delivered with a collimated laser beam of 1 cm diameter at 690 nm. Explicit dosimetry of initial tissue oxygen concentration, tissue optical properties, and BPD concentration was used to calculate [1O2]rx. Φ was calculated for the treatment volume based on Monte-Carlo simulations and measured tissue optical properties. Kaplan-Meier analyses for LCR were done for an endpoint of tumor volume defined as the product of the timeintegral of photosensitizer concentration and Φ at a 3 mm tumor depth. Preliminary studies show that [1O2]rx better correlates with LCR and is an effective dosimetric quantity that can predict treatment outcome.

  6. The role of oxygen in the uptake of deuterium in lithiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C. N.; Luitjohan, K. E. [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Dadras, J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37998 (United States); Allain, J. P. [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, West Lafayette, Indiana 47907 (United States); Krstic, P. S. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37998 (United States); Joint Institute of Computational Sciences, University of Tennessee, Knoxville, Tennessee 37998 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Skinner, C. H. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2013-12-14

    We investigate the mechanism of deuterium retention by lithiated graphite and its relationship to the oxygen concentration through surface sensitive experiments and atomistic simulations. Deposition of lithium on graphite yielded 5%–8% oxygen surface concentration and when subsequently irradiated with D ions at energies between 500 and 1000 eV/amu and fluences over 10{sup 16} cm{sup −2} the oxygen concentration rose to between 25% and 40%. These enhanced oxygen levels were reached in a few seconds compared to about 300 h when the lithiated graphite was allowed to adsorb oxygen from the ambient environment under equilibrium conditions. Irradiating graphite without lithium deposition, however, resulted in complete removal of oxygen to levels below the detection limit of XPS (e.g., <1%). These findings confirm the predictions of atomistic simulations, which had concluded that oxygen was the primary component for the enhanced hydrogen retention chemistry on the lithiated graphite surface.

  7. International intercomparison of fluence of fast neutrons using 115In(n,γ) activation

    International Nuclear Information System (INIS)

    Lesiecki, H.; Cosack, M.

    1985-07-01

    The Physikalisch-Technische Bundesanstalt (PTB) has participated in an international intercomparison of fluence measurements of fast neutrons. This was organized under the auspices of the ''Comite Consultatif pour les Etalons de Mesure des Rayonnements Ionisants (CCEMRI)'', Sect. 3 (Mesures Neutronique). The National Physical Laboratory (NPL), Teddington, UK volunteered to assume responsibility for the experimental realization and final evaluation. This report deals with the measurements performed at the PTB for the neutron fluence intercomparison at neutron energies of Esub(n) = 144 keV and 570 keV which was based on the 115 In(n,γ) 116 Insup(m) reaction. The count rate of a 4πβ-counter which had to be used to determine the activation of the In sample was to be compared with the neutron fluence by which the sample was irradiated. A description of the neutron production, the fluence determination, the 4πβ-counting, and the evaluation of the results will be given. (orig.) [de

  8. Ringhals unit 3 and 4 - Fluence determination in a historic and future perspective

    Energy Technology Data Exchange (ETDEWEB)

    Green, E.L. [Primary Systems Inspection and Repair, Vattenfall/Ringhals AB, 432 85 Vaeroebacka (Sweden); Rouden, J. [Material and Analytical Services, Vattenfall/Ringhals AB, 432 85 Vaeroebacka (Sweden); Efsing, P. [Materials Mechanics, Research and Nuclear Development, Vattenfall/Ringhals AB, 432 85 Vaeroebacka (Sweden)

    2011-07-01

    Document available in abstract form only, full text of document follows: The Ringhals site is situated on the Swedish southwest coastline. At the site, there are four operating nuclear power plants. Historically, the Swedish policy has been that the nuclear power plants were to be closed in 2010. The present position is to operate the units until their technical and economic lifetime has run out. The units shall be maintained and invested in to ensure a lifetime of at least 50 years, but the actions taken shall not limit the time to this date. When the initial surveillance capsules were evaluated, it was noted that the material properties of the weld material of unit 3 and 4 showed some deviations from the expected behaviour. Currently there is an extensive project running for re-evaluating the embrittlement situation from a long-term operating perspective. One part of the project is aimed at more accurately determining the fluence levels of the reactor pressure vessels (RPVs). The basis for the early evaluations of the dosimeters in the surveillance capsules and the corresponding fluence evaluation had an operating lifetime of 25 years as a target value. Therefore, the accuracy and refinement of the measurement and calculation were taken to be good enough to suit this life span. Looking back at the results from the dosimetry measurements there are a few discrepancies. Some of the dosimeters were disintegrated and some measurements had comparatively large uncertainties. When starting this project there were some re-evaluations done with the old fluence prediction model. For every new run and refinement there appeared new difficulties, and the decision was to start the evaluation from scratch. Then there are two questions remaining regarding the fluence: What is the current fluence level? What will the resulting fluence be after 60 years of operation, when we have up-rated output power of both reactors? This paper aims to describe the view of the fluence evaluation

  9. Tissue effects of Ho:YAG laser with varying fluences and pulse widths

    Science.gov (United States)

    Vari, Sandor G.; van der Veen, Maurits J.; Pergadia, Vani R.; Shi, Wei-Qiang; Duffy, J. T.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1994-02-01

    We investigated the effect of varying fluence and pulse width on the ablation rate and consequent thermal damage of the Ho:YAG (2.130 micrometers ) laser. The rate of ablation on fresh bovine knee joint tissues, fibrous cartilage, hyaline cartilage, and bone in saline was determined after varying the fluence (160 - 640 J/cm2) and pulse width (150, 250, 450 microsecond(s) ec, FWHM) at a repetition rate of 2 Hz. A 400/440 micrometers fiber was used. The ablation rate increased linearly with the fluence. In fibrocartilage, different pulse durations generated significant changes in the ablation rates, but showed minor effects on hyaline cartilage and bone. The heat of ablation for all three tissue types decreased after lengthening the pulse.

  10. New principle for measuring arterial blood oxygenation, enabling motion-robust remote monitoring

    OpenAIRE

    Mark van Gastel; Sander Stuijk; Gerard de Haan

    2016-01-01

    Finger-oximeters are ubiquitously used for patient monitoring in hospitals worldwide. Recently, remote measurement of arterial blood oxygenation (SpO2) with a camera has been demonstrated. Both contact and remote measurements, however, require the subject to remain static for accurate SpO2 values. This is due to the use of the common ratio-of-ratios measurement principle that measures the relative pulsatility at different wavelengths. Since the amplitudes are small, they are easily corrupted ...

  11. Measured Thermal and Fast Neutron Fluence Rates for ATF-1 Holders During ATR Cycle 157D

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Larry Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, David Torbet [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 157D which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains measurements of the fluence rates corresponding to the particular elevations relative to the 80-ft. core elevation. The data in this report consist of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, and (3) plots of both the thermal and fast neutron fluence rates. The fluence rates reported are for the average power levels given in the table of power history and distribution.

  12. WE-AB-209-10: Optimizing the Delivery of Sequential Fluence Maps for Efficient VMAT Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Craft, D [Massachusetts General Hospital, Cambridge, MA (United States); Balvert, M [Tilburg University, Tilburg (Netherlands)

    2016-06-15

    Purpose: To develop an optimization model and solution approach for computing MLC leaf trajectories and dose rates for high quality matching of a set of optimized fluence maps to be delivered sequentially around a patient in a VMAT treatment. Methods: We formulate the fluence map matching problem as a nonlinear optimization problem where time is discretized but dose rates and leaf positions are continuous variables. For a given allotted time, which is allocated across the fluence maps based on the complexity of each fluence map, the optimization problem searches for the best leaf trajectories and dose rates such that the original fluence maps are closely recreated. Constraints include maximum leaf speed, maximum dose rate, and leaf collision avoidance, as well as the constraint that the ending leaf positions for one map are the starting leaf positions for the next map. The resulting model is non-convex but smooth, and therefore we solve it by local searches from a variety of starting positions. We improve solution time by a custom decomposition approach which allows us to decouple the rows of the fluence maps and solve each leaf pair individually. This decomposition also makes the problem easily parallelized. Results: We demonstrate method on a prostate case and a head-and-neck case and show that one can recreate fluence maps to high degree of fidelity in modest total delivery time (minutes). Conclusion: We present a VMAT sequencing method that reproduces optimal fluence maps by searching over a vast number of possible leaf trajectories. By varying the total allotted time given, this approach is the first of its kind to allow users to produce VMAT solutions that span the range of wide-field coarse VMAT deliveries to narrow-field high-MU sliding window-like approaches.

  13. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device.

    Science.gov (United States)

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh; Szita, Nicolas

    2016-09-01

    Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real-time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time-course data for bulk and peri-cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non-invasive and label-free approach. Additionally, we confirmed non-invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell(-1) s(-1) , and 5 and 35 amol cell(-1) s(-1) were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non-invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell-based therapies. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Monitoring Cerebral and Renal Oxygenation Status during Neonatal Digestive Surgeries Using Near Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jonathan Beck

    2017-06-01

    Full Text Available BackgroundDepending on the initial pathology, hypovolemia, intra-abdominal hypertension, and sepsis are often encountered in neonatal digestive surgery. Accurate newborn monitoring during and after surgery is essential to adapt resuscitation protocols. Near infrared spectroscopy (NIRS is non-invasive and can detect hypoperfusion which indicates a low circulatory blood flow, regardless of the cause.ObjectiveEvaluating changes in cerebral and renal regional oxygen saturation during neonatal digestive surgeries, conducted according to normal practices, with commonly used monitoring parameters. Analyzing retrospectively the inter-relationships between NIRS values and mean arterial pressure (MAP values as well as pre-ductal SpO2.MethodsProspective, descriptive, monocentric study. All neonates referred for surgery were included. NIRS allows the measurement of cerebral and renal oxygenation fluctuations, as well as calculating difference in intraoperative and postoperative values.ResultsNineteen patients were included. Cerebral regional oxygen saturation (C rSO2 values were stable while renal regional oxygen saturation (R rSO2 values tended to decrease with time during surgery. Indeed, 72% of rSO2 decline episodes occurred after the first 30 min of surgery, without any significant statistical differences for the next 90 min of surgery. After surgery, the lowest average C and R rSO2 values were evidenced during the first 6 h, with 60% of C rSO2 and R rSO2 anomalies occurring in that time frame. There was no significant statistical difference observed in the following 18 h. There was a significant correlation between R rSO2 and SpO2 values (p < 0.01, but not with C rSO2 values. There was no correlation with the MAP either for the C rSO2 values or R rSO2 ones.ConclusionNIRS is a promising non-invasive bedside tool to monitor cerebral and tissue perfusion, analyzing tissue microcirculation. NIRS has its interest to guide neonatal digestive

  15. Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants.

    Science.gov (United States)

    Svanberg, Emilie Krite; Lundin, Patrik; Larsson, Marcus; Åkeson, Jonas; Svanberg, Katarina; Svanberg, Sune; Andersson-Engels, Stefan; Fellman, Vineta

    2016-04-01

    Newborn infants may have pulmonary disorders with abnormal gas distribution, e.g., respiratory distress syndrome. Pulmonary radiography is the clinical routine for diagnosis. Our aim was to investigate a novel noninvasive optical technique for rapid nonradiographic bedside detection of oxygen gas in the lungs of full-term newborn infants. Laser spectroscopy was used to measure contents of oxygen gas (at 760 nm) and of water vapor (at 937 nm) in the lungs of 29 healthy newborn full-term infants (birth weight 2,900-3,900 g). The skin above the lungs was illuminated using two low-power diode lasers and diffusely emerging light was detected with a photodiode. Of the total 390 lung measurements performed, clear detection of oxygen gas was recorded in 60%, defined by a signal-to-noise ratio of >3. In all the 29 infants, oxygen was detected. Probe and detector positions for optimal pulmonary gas detection were determined. There were no differences in signal quality with respect to gender, body side or body weight. The ability to measure pulmonary oxygen content in healthy full-term neonates with this technique suggests that with further development, the method might be implemented in clinical practice for lung monitoring in neonatal intensive care.

  16. Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Liu, Chung-Chiun

    2011-01-01

    An ambient temperature oxygen microsensor, based on a Nafion polymer electrolyte, has been developed and was microfabricated using thin-film technologies. A challenge in the operation of Nafion-based sensor systems is that the conductivity of Nafion film depends on the humidity in the film. Nafion film loses conductivity when the moisture content in the film is too low, which can affect sensor operation. The advancement here is the identification of a method to retain the operation of the Nafion films in lower humidity environments. Certain salts can hold water molecules in the Nafion film structure at room temperature. By mixing salts with the Nafion solution, water molecules can be homogeneously distributed in the Nafion film increasing the film s hydration to prevent Nafion film from being dried out in low-humidity environment. The presence of organics provides extra sites in the Nafion film to promote proton (H+) mobility and thus improving Nafion film conductivity and sensor performance. The fabrication of ambient temperature oxygen microsensors includes depositing basic electrodes using noble metals, and metal oxides layer on one of the electrode as a reference electrode. The use of noble metals for electrodes is due to their strong catalytic properties for oxygen reduction. A conducting polymer Nafion, doped with water-retaining components and extra sites facilitating proton movement, was used as the electrolyte material, making the design adequate for low humidity environment applications. The Nafion solution was coated on the electrodes and air-dried. The sensor operates at room temperature in potentiometric mode, which measures voltage differences between working and reference electrodes in different gases. Repeat able responses to 21-percent oxygen in nitrogen were achieved using nitrogen as a baseline gas. Detection of oxygen from 7 to 21 percent has also been demonstrated. The room-temperature oxygen micro sensor developed has extremely low power

  17. Protocol for Determining Ultraviolet Light Emitting Diode (UV-LED) Fluence for Microbial Inactivation Studies.

    Science.gov (United States)

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2018-06-15

    Determining fluence is essential to derive the inactivation kinetics of microorganisms and to design ultraviolet (UV) reactors for water disinfection. UV light emitting diodes (UV-LEDs) are emerging UV sources with various advantages compared to conventional UV lamps. Unlike conventional mercury lamps, no standard method is available to determine the average fluence of the UV-LEDs, and conventional methods used to determine the fluence for UV mercury lamps are not applicable to UV-LEDs due to the relatively low power output, polychromatic wavelength, and specific radiation profile of UV-LEDs. In this study, a method was developed to determine the average fluence inside a water suspension in a UV-LED experimental setup. In this method, the average fluence was estimated by measuring the irradiance at a few points for a collimated and uniform radiation on a Petri dish surface. New correction parameters were defined and proposed, and several of the existing parameters for determining the fluence of the UV mercury lamp apparatus were revised to measure and quantify the collimation and uniformity of the radiation. To study the effect of polychromatic output and radiation profile of the UV-LEDs, two UV-LEDs with peak wavelengths of 262 and 275 nm and different radiation profiles were selected as the representatives of typical UV-LEDs applied to microbial inactivation. The proper setup configuration for microorganism inactivation studies was also determined based on the defined correction factors.

  18. A new method for the determination of unknown neutron fluence for 14.0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Fariha [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan)]. E-mail: fariha@pinstech.org.pk; Khan, Ehsan U. [Department of Physics, CIIT, Islamabad (Pakistan); Qureshi, Imtinan [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Husaini, Syed N. [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Ahmad, Waqar [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Rajput, Usman [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Raza, Qaiser [Applied Physics Division, PINSTECH, Nilore, Islamabad (Pakistan)

    2006-11-15

    Measuring the correct neutron fluence in various energy intervals in and around the neutron sources is important for the purpose of personnel and environmental neutron dosimetry. In this paper, we present a new method for the measurement of the fluence of mono-energetic neutrons having the energy of 14.0 MeV. The samples exposed to neutrons from the 14.0 MeV neutron generator at PINSTECH with various fluence values ranging from 10{sup 7} to 10{sup 10} n cm{sup -2} were etched for 10 min in 6 N NaOH at 70.0{+-}1.0 {sup o}C and the transmittance of UV radiation was measured using a spectrophotometer. This procedure was repeated 20 times after etching the same sample each time for increasing time intervals till the stage when transmittance reached the constant minimum value. An exponential decay of the transmittance has been observed with respect to the increasing etching time interval in each of the samples exposed to various neutron fluence. Further, it has also been observed that there is a linear relationship between the transmittance decay constant and neutron fluence. Hence, the linear graph can be used as a calibration for measuring the unknown fluence of 14.0 MeV neutrons.

  19. Solid State Track Recorder fission rate measurements at high neutron fluence and high temperature

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.

    1985-01-01

    Solid State Track Recorder (SSTR) techniques have been used to measure 239-Pu, 235-U, and 237-Np fission rates for total neutron fluences approaching 5 x 10 17 n/cm 2 at temperatures in the range 680 to 830 0 F. Natural quartz crystal SSTRs were used to withstand the high temperature environment and ultra low-mass fissionable deposits of the three isotopes were required to yield scannable track densities at the high neutron fluences. The results of these high temperature, high neutron fluence measurements are reported

  20. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams

    International Nuclear Information System (INIS)

    Lourenço, Ana; Thomas, Russell; Bouchard, Hugo; Kacperek, Andrzej; Vondracek, Vladimir; Royle, Gary; Palmans, Hugo

    2016-01-01

    Purpose: The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Methods: Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the FLUKA code [A. Ferrari et al., “FLUKA: A multi-particle transport code,” in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., “The FLUKA Code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014)], to partial fluence corrections measured experimentally. Results: A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Conclusions: Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary

  1. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Lourenço, Ana, E-mail: am.lourenco@ucl.ac.uk [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Thomas, Russell; Bouchard, Hugo [Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Kacperek, Andrzej [National Eye Proton Therapy Centre, Clatterbridge Cancer Centre, Wirral CH63 4JY (United Kingdom); Vondracek, Vladimir [Proton Therapy Center, Budinova 1a, Prague 8 CZ-180 00 (Czech Republic); Royle, Gary [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT (United Kingdom); Palmans, Hugo [Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW, United Kingdom and Medical Physics Group, EBG MedAustron GmbH, A-2700 Wiener Neustadt (Austria)

    2016-07-15

    Purpose: The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Methods: Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the FLUKA code [A. Ferrari et al., “FLUKA: A multi-particle transport code,” in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., “The FLUKA Code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014)], to partial fluence corrections measured experimentally. Results: A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Conclusions: Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary

  2. Real-Time In Vivo Monitoring of Reactive Oxygen Species in Guard Cells.

    Science.gov (United States)

    Park, Ky Young; Roubelakis-Angelakis, Kalliopi A

    2018-01-01

    The intra-/intercellular homeostasis of reactive oxygen species (ROS), and especially of superoxides (O 2 .- ) and hydrogen peroxide (O 2 .- ) participate in signalling cascades which dictate developmental processes and reactions to biotic/abiotic stresses. Polyamine oxidases terminally oxidize/back convert polyamines generating H 2 O 2 . Recently, an NADPH-oxidase/Polyamine oxidase feedback loop was identified to control oxidative burst under salinity. Thus, the real-time localization/monitoring of ROS in specific cells, such as the guard cells, can be of great interest. Here we present a detailed description of the real-time in vivo monitoring of ROS in the guard cells using H 2 O 2 - and O 2 .- specific fluorescing probes, which can be used for studying ROS accumulation generated from any source, including the amine oxidases-dependent pathway, during development and stress.

  3. Lethality in repair-proficient Escherichia coli after 365nm ultraviolet light irradiation is dependent on fluence rate

    International Nuclear Information System (INIS)

    Peak, J.G.; Peak, M.J.

    1982-01-01

    Reciprocity (total applied fluence produces the same response, regardless of the fluence rate) for the lethal effects caused by 365 and 254 nm ultraviolet light (UV) was studied for repair-proficient and -deficient Escherichia coli strains. In the repair-proficient strain, E. coli WP2 uvr A + recA + , reciprocity after 365 nm UV was only observed at fluence rates of about 750 Wm -2 and above. Below this rate, the cells became increasingly sensitive as the fluence rate was decreased. Similar lack of reciprocity was obtained whether the cells were exposed at 0 or 25 0 C. The double repair-defective mutant, E. coli WP100 uvr A recA, showed complete reciprocity after 365 nm UV over the same range of fluence rates measured for the repair-proficient strain. For 254 nm UV, complete reciprocity occurred in both strains over a range of fluence rates differing by an order of magnitude. (author)

  4. [Monitorization of the effects of spinal anaesthesia on cerebral oxygen saturation in elder patients using near-infrared spectroscopy].

    Science.gov (United States)

    Kusku, Aysegul; Demir, Guray; Cukurova, Zafer; Eren, Gulay; Hergunsel, Oya

    2014-01-01

    Central blockage provided by spinal anaesthesia enables realization of many surgical procedures, whereas hemodynamic and respiratory changes influence systemic oxygen delivery leading to the potential development of series of problems such as cerebral ischemia, myocardial infarction and acute renal failure. This study was intended to detect potentially adverse effects of hemodynamic and respiratory changes on systemic oxygen delivery using cerebral oxymetric methods in patients who underwent spinal anaesthesia. Twenty-five ASA I-II Group patients aged 65-80 years scheduled for unilateral inguinal hernia repair under spinal anaesthesia were included in the study. Following standard monitorization baseline cerebral oxygen levels were measured using cerebral oximetric methods. Standardized Mini Mental Test (SMMT) was applied before and after the operation so as to determine the level of cognitive functioning of the cases. Using a standard technique and equal amounts of a local anaesthetic drug (15mg bupivacaine 5%) intratechal blockade was performed. Mean blood pressure (MBP), maximum heart rate (MHR), peripheral oxygen saturation (SpO2) and cerebral oxygen levels (rSO2) were preoperatively monitored for 60min. Pre- and postoperative haemoglobin levels were measured. The variations in data obtained and their correlations with the cerebral oxygen levels were investigated. Significant changes in pre- and postoperative measurements of haemoglobin levels and SMMT scores and intraoperative SpO2 levels were not observed. However, significant variations were observed in intraoperative MBP, MHR and rSO2 levels. Besides, a correlation between variations in rSO2, MBP and MHR was determined. Evaluation of the data obtained in the study demonstrated that post-spinal decline in blood pressure and also heart rate decreases systemic oxygen delivery and adversely effects cerebral oxygen levels. However, this downward change did not result in deterioration of cognitive functioning

  5. Monitorization of the effects of spinal anaesthesia on cerebral oxygen saturation in elder patients using near-infrared spectroscopy.

    Science.gov (United States)

    Kusku, Aysegul; Demir, Guray; Cukurova, Zafer; Eren, Gulay; Hergunsel, Oya

    2014-01-01

    Central blockage provided by spinal anaesthesia enables realization of many surgical procedures, whereas hemodynamic and respiratory changes influence systemic oxygen delivery leading to the potential development of series of problems such as cerebral ischemia, myocardial infarction and acute renal failure. This study was intended to detect potentially adverse effects of hemodynamic and respiratory changes on systemic oxygen delivery using cerebral oxymetric methods in patients who underwent spinal anaesthesia. Twenty-five ASA I-II Group patients aged 65-80 years scheduled for unilateral inguinal hernia repair under spinal anaesthesia were included in the study. Following standard monitorization baseline cerebral oxygen levels were measured using cerebral oximetric methods. Standardized Mini Mental Test (SMMT) was applied before and after the operation so as to determine the level of cognitive functioning of the cases. Using a standard technique and equal amounts of a local anaesthetic drug (15mg bupivacaine 5%) intratechal blockade was performed. Mean blood pressure (MBP), maximum heart rate (MHR), peripheral oxygen saturation (SpO2) and cerebral oxygen levels (rSO2) were preoperatively monitored for 60min. Pre- and postoperative haemoglobin levels were measured. The variations in data obtained and their correlations with the cerebral oxygen levels were investigated. Significant changes in pre- and postoperative measurements of haemoglobin levels and SMMT scores and intraoperative SpO2 levels were not observed. However, significant variations were observed in intraoperative MBP, MHR and rSO2 levels. Besides, a correlation between variations in rSO2, MBP and MHR was determined. Evaluation of the data obtained in the study demonstrated that post-spinal decline in blood pressure and also heart rate decreases systemic oxygen delivery and adversely effects cerebral oxygen levels. However, this downward change did not result in deterioration of cognitive functioning

  6. Hydrogen generation monitoring and mass gain analysis during the steam oxidation for Zircaloy using hydrogen and oxygen sensors

    International Nuclear Information System (INIS)

    Fukumoto, Michihisa; Hara, Motoi; Kaneko, Hiroyuki; Sakuraba, Takuya

    2015-01-01

    The oxidation behavior of Zircaloy-4 at high temperatures in a flowing Ar-H_2O (saturated at 323 K) mixed gas was investigated using hydrogen and oxygen sensors installed at a gas outlet, and the utility of the gas sensing methods by using both sensors was examined. The generated amount of hydrogen was determined from the hydrogen partial pressure continuously measured by the hydrogen sensor, and the resultant calculated oxygen amount that reacted with the specimen was in close agreement with the mass gain gravimetrically measured after the experiment. This result demonstrated that the hydrogen partial pressure measurement using a hydrogen sensor is an effective method for examining the steam oxidation of this metal as well as monitoring the hydrogen evolution. The advantage of this method is that the oxidation rate of the metal at any time as a differential quantity is able to be obtained, compared to the oxygen amount gravimetrically measured as an integral quantity. When the temperature was periodically changed in the range of 1173 K to 1523 K, highly accurate measurements could be carried out using this gas monitoring method, although reasonable measurements were not gravimetrically performed due to the fluctuating thermo-buoyancy during the experiment. A change of the oxidation rate was clearly detected at a monoclinic tetragonal transition temperature of ZrO_2. From the calculation of the water vapor partial pressure during the thermal equilibrium condition using the hydrogen and oxygen partial pressures, it became clear that a thermal equilibrium state is maintained when the isothermal condition is maintained, but is not when the temperature increases or decreases with time. Based on these results, it was demonstrated that the gas monitoring system using hydrogen and oxygen sensors is very useful for investigating the oxidation process of the Zircaloy in steam. (author)

  7. Towards real-time non contact spatial resolved oxygenation monitoring using a multi spectral filter array camera in various light conditions

    Science.gov (United States)

    Bauer, Jacob R.; van Beekum, Karlijn; Klaessens, John; Noordmans, Herke Jan; Boer, Christa; Hardeberg, Jon Y.; Verdaasdonk, Rudolf M.

    2018-02-01

    Non contact spatial resolved oxygenation measurements remain an open challenge in the biomedical field and non contact patient monitoring. Although point measurements are the clinical standard till this day, regional differences in the oxygenation will improve the quality and safety of care. Recent developments in spectral imaging resulted in spectral filter array cameras (SFA). These provide the means to acquire spatial spectral videos in real-time and allow a spatial approach to spectroscopy. In this study, the performance of a 25 channel near infrared SFA camera was studied to obtain spatial oxygenation maps of hands during an occlusion of the left upper arm in 7 healthy volunteers. For comparison a clinical oxygenation monitoring system, INVOS, was used as a reference. In case of the NIRS SFA camera, oxygenation curves were derived from 2-3 wavelength bands with a custom made fast analysis software using a basic algorithm. Dynamic oxygenation changes were determined with the NIR SFA camera and INVOS system at different regional locations of the occluded versus non-occluded hands and showed to be in good agreement. To increase the signal to noise ratio, algorithm and image acquisition were optimised. The measurement were robust to different illumination conditions with NIR light sources. This study shows that imaging of relative oxygenation changes over larger body areas is potentially possible in real time.

  8. A fluence device for precise radiation dosimetry

    International Nuclear Information System (INIS)

    Arnott, R.G.T.; Peak, M.J.

    1979-01-01

    An instrument is described which has been designed to ensure precise positioning of samples and sensing devices in three dimensions at all times during irradiation procedures. The system, which is both robust and sensitive, overcomes difficulties experienced when slight variations in the positioning of a sample under irradiation results in large changes in fluence. (UK)

  9. Determination of fluence-to-dose conversion coefficients by means of artificial neural networks

    International Nuclear Information System (INIS)

    Soto B, T. G.; Rivera P, E.; De Leon M, H. A.; Hernandez D, V. M.; Vega C, H. R.; Gallego, E.; Lorente, A.

    2012-10-01

    In this paper is presented an Artificial Neural Network (Ann) that has been designed, trained and validated to determinate the effective dose e, ambient dose equivalent h(10) and personal dose equivalent hp(10,θ) fluence-to-dose conversion coefficients at different positions, having as only input data 7 count rates obtained with a Bonner Sphere Spectrometer (Bss) system. A set of 211 neutron spectra and the fluence-to-dose conversion coefficients published by the International Atomic Energy Agency were used to train and validate the Ann. This set was divided into 2 subsets, one of 181 elements to train the Ann and the remaining 30 to validate it. The Ann was trained using Bss count rates as input data and the fluence-to-dose conversion coefficients as output data. The network was validated and tested with the set of 30 elements that were not used during the training process. Good results were obtained proving that Ann are a good choice for calculating the fluence-to-dose conversion coefficients having as only data the count rates obtained with a Bss. (Author)

  10. Determination of fluence-to-dose conversion coefficients by means of artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Soto B, T. G.; Rivera P, E.; De Leon M, H. A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: tzinnia.soto@gmail.com [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal No. 2, 28006 Madrid (Spain)

    2012-10-15

    In this paper is presented an Artificial Neural Network (Ann) that has been designed, trained and validated to determinate the effective dose e, ambient dose equivalent h(10) and personal dose equivalent hp(10,{theta}) fluence-to-dose conversion coefficients at different positions, having as only input data 7 count rates obtained with a Bonner Sphere Spectrometer (Bss) system. A set of 211 neutron spectra and the fluence-to-dose conversion coefficients published by the International Atomic Energy Agency were used to train and validate the Ann. This set was divided into 2 subsets, one of 181 elements to train the Ann and the remaining 30 to validate it. The Ann was trained using Bss count rates as input data and the fluence-to-dose conversion coefficients as output data. The network was validated and tested with the set of 30 elements that were not used during the training process. Good results were obtained proving that Ann are a good choice for calculating the fluence-to-dose conversion coefficients having as only data the count rates obtained with a Bss. (Author)

  11. Phototransistor response under a neutron fluence

    International Nuclear Information System (INIS)

    Santos, Luiz A.P.; Barros, Fabio R.; Ursulino, Luciano C.; Silva Junior, Eronides F.; Antonio Filho, Joao

    2009-01-01

    The purpose of this communication is to show some effects on a bipolar phototransistor after it has been under a neutron fluence. Unlike a transistor, a phototransistor is designed so that the collector has a large area and consequently it has a higher radiation detection probability. Then, it is possible to have a certain number of interactions so that any changes in the internal structure of the phototransistor can be observed after a neutron irradiation. If a phototransistor is under a certain spectra of neutron fluence the interaction depends on the cross section of the either silicon chip or its encapsulation, and recoil protons could be the charged particle responsible for changes in the semiconductor structure. Furthermore, neutron irradiation could give to the device a state of vanishing in its electrical characteristic which can be performed tracing the current versus voltage curve (I x V). The experimental arrangement basically consists of a photonic device, a neutron-gamma radiation source and a Flip-Flop electrometer second generation (EFF-2G). One of the main parameters of evaluation was the phototransistor dark current. In fact, the first results demonstrate that when the phototransistor is neutron irradiated there is a significant variation in its I x V characteristic curve. (author)

  12. Microstructural interpretation of the fluence and temperature dependence of the mechanical properties of irradiated AISI 316

    International Nuclear Information System (INIS)

    Johnson, G.D.; Garner, F.A.; Brager, H.R.; Fish, R.L.

    1980-01-01

    The effects of neutron irradiation on the mechanical properties of annealed and 20% cold-worked AISI 316 irradiated in EBR-II were determined for the temperature regime of 370 to 760 0 C for fluences up to 8.4 x 10 22 n/cm 2 (E > 0.1 MeV). At irradiation temperatures below about 500 0 C, both annealed and cold-worked material exhibit a substantial increase in the flow stress with increasing fluence. Furthermore, both materials eventually exhibit the same flow stress, which is independent of fluence. At temperatures in the range of 538 to 650 0 C, the cold-worked material exhibits a softening with increasing fluence. Annealed AISI 316 in this temperature regime exhibits hardening and at a fluence of 2 to 3 x 10 22 n/cm 2 (E > 0.1 MeV) reaches the same value of flow stress as the cold-worked material

  13. Characterization of saturation of CR-39 detector at high alpha-particle fluence

    Directory of Open Access Journals (Sweden)

    M. El Ghazaly

    2018-04-01

    Full Text Available The occurrence of saturation in the CR-39 detector reduces and limits its detection dynamic range; nevertheless, this range could be extended using spectroscopic techniques and by measuring the net bulk rate of the saturated CR-39 detector surface. CR-39 detectors were irradiated by 1.5 MeV high alpha-particle fluence varying from 0.06 × 108 to 7.36 × 108 alphas/cm2 from Am-241 source; thereafter, they were etched in a 6.25N NaOH solution at a temperature of 70°C for different durations. Net bulk etch rate measurement of the 1.5 MeV alpha-irradiated CR-39 detector surface revealed that rate increases with increasing etching time and reaches its maximum value at the end of the alpha-particle range. It is also correlated with the alpha-particle fluence. The measurements of UV–Visible (UV–Vis absorbance at 500 and 600 nm reveal that the absorbance is linearly correlated with the fluence of alpha particles at the etching times of 2 and 4 hour. For extended etching times of 6, 10, and 14.5 hour, the absorbance is saturated for fluence values of 4.05 × 108, 5.30 × 108, and 7.36 × 108 alphas/cm2. These new methods pave the way to extend the dynamic range of polymer-based solid state nuclear track detectors (SSNTDs in measurement of high fluence of heavy ions as well as in radiation dosimetry. Keywords: Alpha Particle, Bulk Etch Rate, CR-39 Detector, Saturated Regime, UV–Vis Spectroscopy

  14. Neutron fluence rate and energy spectrum in SPRR-300 reactor thermal column

    International Nuclear Information System (INIS)

    Dou Haifeng; Dai Junlong

    2006-01-01

    In order to modify the simple one-dimension model, the neutron fluence rate distribution calculated with ANISN code ws checked with that calculated with MCNP code. To modify the error caused by ignoring the neutron landscape orientation leaking, the reflector that can't be modeled in a simple one-dimension model was dealt by extending landscape orientation scale. On this condition the neutron fluence rate distribution and the energy spectrum in the thermal column of SPRR-300 reactor were calculated with one-dimensional code ANISN, and the results of Cd ratio are well accorded with the experimental results. The deviation between them is less than 5% and it isn't above 10% in one or two special positions. It indicates that neutron fluence rate distribution and energy spectrum in the thermal column can be well calculated with one-dimensional code ANISN. (authors)

  15. Evaluation of tissue oxygen measurements for flap monitoring in an animal model

    DEFF Research Database (Denmark)

    Bonde, Christian; Elberg, Jens; Holstein-Rathlou, N.-H.

    2008-01-01

    Tissue oxygen tension (p(ti)O(2)) measurements are common in neurosurgery but uncommon in plastic surgery. We examined this technique as a monitoring method with probe placement in the subcutaneous tissue and addressed the importance of probe placement. Myocutaneous flaps were raised in an animal...... model and p(ti)O(2) measurements performed at different levels in the subcutaneous fat. Flap artery and vein were occluded until a 50% p(ti)O(2) reduction had occurred (T(1/2)). We found no significant effect of depth (P>0.10) on the level of p(ti)O(2). T(1/2)(arterial) was 7.2 minutes and T(1/2)(venous......) was 18 minutes. We found no significant relation between initial levels of p(ti)O(2) and T(1/2). Location of the probe and absolute p(ti)O(2) value is of little relevance for flap monitoring. It is the relative change in p(ti)O(2) that is important. The p(ti)O(2) technique is well suited for monitoring...

  16. Method to measure composition modifications in polyethylene terephthalate during ion beam irradiation

    Science.gov (United States)

    Abdesselam, M.; Stoquert, J. P.; Chami, S.; Djebara, M.; Chami, A. C.; Siad, M.

    2009-01-01

    Matter losses of polyethylene terephthalate (PET, Mylar) films induced by 1600 keV deuteron beams have been investigated in situ simultaneously by nuclear reaction analysis (NRA), deuteron forward elastic scattering (DFES) and hydrogen elastic recoil detection (HERD) in the fluence range from 1 × 10 14 to 9 × 10 16 cm -2. Volatile degradation products escape from the polymeric film, mostly as hydrogen-, oxygen- and carbon-containing molecules. Appropriate experimental conditions for observing the composition and thickness changes during irradiation are determined. 16O(d,p 0) 17O, 16O(d,p 1) 17O and 12C(d,p 0) 13C nuclear reactions were used to monitor the oxygen and carbon content as a function of deuteron fluence. Hydrogen release was determined simultaneously by H(d,d)H DFES and H(d,H)d HERD. Comparisons between NRA, DFES and HERD measurements show that the polymer carbonizes at high fluences because most of the oxygen and hydrogen depletion has already occured below a fluence of 3 × 10 16 cm -2. Release curves for each element are determined. Experimental results are consistent with the bulk molecular recombination (BMR) model.

  17. The activation method for determining neutron spectra and fluences

    International Nuclear Information System (INIS)

    Hogel, J.; Vespalec, R.

    1980-01-01

    3 mm thick foils of 4 and 17 mm in diameter were used for measurements. NaI scintillation detectors 45 mm in diameter by 50 mm thick and 40 mm in diameter by 1 mm thick, and a Ge-Li spectrometer of 53 cm 3 in volume were used for gamma detection. A photopeak or a certain part of the integral spectrum was measured for each radionuclide. Computer code PIKAR was applied in automatic calculation of a simple gamma spectrum obtained using the semiconductor spectrometer. The FACT code was used for calculating foil activity. Codes SAND II and RFSP were used for neutron spectra unfolding. Ge-Li detector spectrometry was used for determining neutron fluence. Code FLUE was used for determining the mean value of neutron flux density and fluence. (J.P.)

  18. Subcutaneous and Intramuscular Hemodynamics and Oxygenation After Cold-Spray Application as Monitored by Near-Infrared Spectroscopy

    Science.gov (United States)

    Shadgan, Babak; Pakravan, Amir H.; Hoens, Alison; Reid, W. Darlene

    2015-01-01

    Context Vapocoolant spray, commonly known as cold spray (CS), is a cryotherapy modality used in sports medicine, athletic training, and rehabilitation settings. Proposed physiologic effects of cryotherapy modalities include reductions in tissue blood flow, oxygenation, and cell metabolism in addition to attenuation of pain perception attributed to reduced superficial nerve conduction velocity. Objective To examine the effects of CS on subcutaneous and intramuscular blood flow and oxygenation on the thigh muscle using near-infrared spectroscopy, an optical method to monitor changes in tissue oxygenated (O2Hb), deoxygenated (HHb), and total (tHb) hemoglobin. Design Cross-sectional study. Setting Muscle Biophysics Laboratory. Patients or Other Participants Participants were 13 healthy adults (8 men, 5 women; age = 37.4 ± 6 years, body mass index = 27.4 ± 2.6, adipose tissue thickness = 7.2 ± 1.8 mm). Intervention(s) Conventional CS was applied to the vastus medialis muscles. Main Outcome Measure(s) Changes in chromophore concentrations of O2Hb, HHb, and tHb at superficial and deep layers were monitored for 5 minutes using a 2-channel near-infrared spectroscopy. Results Thirty seconds after CS application, we observed a decrease from baseline in O2Hb and tHb only in the superficial layer that was maintained for 3 minutes. Conclusions Application of CS induced a transient change in blood flow and oxygenation of the superficial tissues with no change in deeper tissues over the healthy vastus medialis muscle. The limited physiologic effect of CS on the superficial hemodynamics and oxygenation of limb muscles may limit the therapeutic benefit of this cryotherapy modality to a temporary analgesic effect, a hypothesis that warrants a clinical trial on traumatized muscles. PMID:26098273

  19. SU-F-T-289: MLC Fluence Sonogram Based Delivery Quality Assurance for Bilateral Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Thiyagarajan, Rajesh; Karrthick, KP; Kataria, Tejinder; Mahendran, Ramu; Selvan, Tamil; Duraikannu, Palani [Division of Radiation Oncology, Medanta The Medicity, Gurgaon, Haryana (India); Raj, Nambi [Department of Physics, School of Advanced sciences, VIT University, Vellore (India); Arunai, N

    2016-06-15

    Purpose: Performing DQA for Bilateral (B-L) breast tomotherapy is a challenging task due to the limitation of any commercially available detector array or film. Aim of this study is to perform DQA for B-L breast tomotherapy plan using MLC fluence sinogram. Methods: Treatment plan was generated on Tomotherapy system for B-L breast tumour. B-L breast targets were given 50.4 Gy prescribed over 28 fractions. Plan is generated with 6 MV photon beam & pitch was set to 0.3. As the width of the total target is 39 cm (left & right) length is 20 cm. DQA plan delivered without any phantom on the mega voltage computed tomography (MCVT) detector system. The pulses recorded by MVCT system were exported to the delivery analysis software (Tomotherapy Inc.) for reconstruction. The detector signals are reconstructed to a sonogram and converted to MLC fluence sonogram. The MLC fluence sinogram compared with the planned fluence sinogram. Also point dose measured with cheese phantom and ionization chamber to verify the absolute dose component Results: Planned fluence sinogram and reconstructed MLC fluence sinogram were compared using Gamma metric. MLC positional difference and intensity of the beamlet were used as parameters to evaluate gamma. 3 mm positional difference and 3% beamlet intensity difference were used set for gamma calculation. A total of 26784 non-zero beamlets were included in the analysis out of which 161 beamlets had gamma more than 1. The gamma passing rate found to be 99.4%. Point dose measurements were within 1.3% of the calculated dose. Conclusion: MLC fluence sinogram based delivery quality assurance performed for bilateral breast irradiation. This would be a suitable alternate for large volume targets like bilateral breast, Total body irradiation etc. However conventional method of DQA should be used to validate this method periodically.

  20. Estimates of neutron fluence for the SDC detector

    International Nuclear Information System (INIS)

    Job, P.K.; Price, L.E.; Handler, T.; Gabriel, T.A.

    1994-01-01

    The high energy and high luminosity of SSC cause radiation problems to detectors. Almost all the radiation in the SDC detector comes from the 20 TeV on 20 TeV pp collisions. The design luminosity corresponds to 10 8 collisions per second. This luminosity is maintained for 10 7 seconds (one SSC year). It is important to know the radiation fields experienced by the tracking volume, calorimeter, electronics and the phototubes. The loss of light due to the radiation damage to the scintillators can adversely affect the physics performance of the calorimeter. Studies have been carried out earlier to estimate the radiation dose in the SDC detector. In this note the authors use ISAJET in combination with CALOR89 to make an accurate prediction of neutron fluence at the various locations of the SDC detector. The low energy neutrons are important because they can produce radioactive nuclides in large quantities. In CALOR89 the low energy neutron fluence is accurately estimated by MORSE code

  1. Damage induced by high energy multiply charged oxygen ions in oxide coated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India)]. E-mail: sanjay@physics.unipune.ernet.in; Dahiwale, S.S. [Department of Physics, University of Pune, Pune 411 007 (India); Kulkarni, V.R. [Department of Physics, University of Pune, Pune 411 007 (India); Bogle, K.A. [Department of Physics, University of Pune, Pune 411 007 (India); Shinde, N.S. [Ecotopia Science Institute, Division of Energy Science, Nagoya University, Nagoya (Japan); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India)

    2006-03-15

    P-type oxide coated silicon samples of resistivity 120 {omega} cm were irradiated with 60 MeV oxygen ions of fixed charge states 4{sup +}, 5{sup +}, 6{sup +} and 7{sup +} at an equal fluence of, {phi}, {approx}10{sup 13} ions/cm{sup 2}. The induced damage was estimated by Hall voltage, Hall coefficient, carrier concentration and lifetime of minority carriers. The results indicate that Hall voltage (V {sub H}) and Hall coefficient (R {sub H}) increases, while carrier concentration (n) decreases with the charge state of impinging oxygen ions. The V {sub H} increases from 22 mV to 76.5 mV at typical current of 0.5 mA, R {sub H} from 0.42 x 10{sup 5} cm{sup 3}/C to 2.16 x 10{sup 5} cm{sup 3}/C and n decreases from 9 x 10{sup 13} cm{sup -3} to 2.88 x 10{sup 13} cm{sup -3} for the different charge states. This fact is an evidence that the oxygen ions with an individual fixed charge state passing through very thin 40 A layer of silicon dioxide, induces significant damage at the SiO{sub 2}-Si interface through the mechanism of electronic stopping power. The lifetime of minority charge carriers, {tau} (bulk property), remains constant at around 6 {mu}s for all the charge states of the 60 MeV energy oxygen ion irradiated samples at a constant fluence of, {phi}, 10{sup 13} ions/cm{sup 2}.

  2. Investigation on the improved radiation hardness of silicon detectors with high oxygen concentration

    International Nuclear Information System (INIS)

    Moll, M.; Fretwurst, E.; Lindstroem, G.

    2000-01-01

    We present an investigation on the influence of the oxygen concentration on radiation-induced changes in the effective doping concentration of silicon detectors. Diodes fabricated from silicon with interstitial oxygen content ranging from below 2x10 14 to 9x10 17 cm -3 have been irradiated with fast neutrons up to a fluence of 2x10 15 cm -2 . Our main interest focused on the so-called stable damage component in the change of the effective doping concentration being of prime importance for the application of silicon detectors in high-energy physics experiments. We demonstrate, that with a high oxygen enrichment the donor removal is appreciably reduced, reaching a value of only 10% of the initial doping concentration for [O i ]=9x10 17 cm -3 , while for normal detector grade material with [O i ] below 5x10 16 cm -3 that value is 60-90%. Furthermore, we show that the fluence proportional introduction of stable acceptors is independent of the oxygen concentration with an averaged introduction rate of (1.49±0.03)x10 -2 cm -1 . Only one material was found exhibiting a significantly smaller value of about 0.6x10 -2 cm -1 and thus indicating the possibility to suppress the radiation-induced acceptor creation by material modification. Finally, we show that the experimental findings disagree in several important aspects with predictions made by microscopic defect kinetics models, leaving the physical background of some of the measured data as an open question

  3. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets in a NAND Flash Memory

    Science.gov (United States)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond L.; Kim, Hak; Phan, Anthony; Seidleck, Christina; Label, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found that the single-event upset (SEU) cross section varied inversely with cumulative fluence. We attribute the effect to the variable upset sensitivities of the memory cells. Furthermore, the effect impacts only single cell upsets in general. The rate of multiple-bit upsets remained relatively constant with fluence. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, traditional SEE testing techniques may underestimate the on-orbit event rate for a device with variable upset sensitivity.

  4. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    Energy Technology Data Exchange (ETDEWEB)

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  5. Neutron irradiation effects on intermetallic precipitates in Zircaloy as a function of fluence

    International Nuclear Information System (INIS)

    Etoh, Y.; Shimada, S.

    1993-01-01

    Intermetallic precipitates in Zircaloy-2 and -4, recrystallized at the α-phase temperature, have been examined using analytical electron microscopy. The specimens were irradiated in BWRs up to a fast neutron fluence of 1.4x10 26 n/m 2 (E>1 MeV). Neutron irradiation induces a crystalline-to-amorphous transition, depleting Fe in the amorphous phase of Zr(Fe, Cr) 2 precipitates in the alloys. Amorphization starts from the periphery of the precipitates and all of them are totally amorphized at higher fluences than 1.2x10 26 n/m 2 . The width of the Fe-depleted zone increases in proportion to the 0.45 power of fluence. This result indicates that diffusion of Fe is the rate-controlling process for Fe depletion in Zr(Fe, Cr) 2 precipitates. Dissolution of Zr 2 (Fe, Ni) precipitates in Zircaloy-2 occurs during neutron irradiation. At a high fluence, such as 1.2x10 26 n/m 2 , Zr 2 (Fe, Ni) precipitates are almost completely dissolved into the matrix and the dissolution rate of Fe is faster than that of Ni. (orig.)

  6. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure

    Science.gov (United States)

    2008-04-01

    28. Alagoz, T., R. Buller, B. Anderson, K. Terrell , R...and oxygenation Ann . New Acad. Sci. 838 29–45 Chapman J D, Stobbe C C, Arnfield M R, Santus R, Lee J and McPhee M S 1991 Oxygen dependency of tumor

  7. Superconductivity in irradiated A-15 compounds at low fluences. I. Neutron-irradiated V3Si

    International Nuclear Information System (INIS)

    Viswanathan, R.; Caton, R.; Pande, C.S.

    1978-01-01

    The behavior of the superconducting transition temperature T/sub c/ of single-crystal and polycrystalline V 3 Si was investigated as a function of low-fluence neutron irradiation. It is found that the initial degradation of T/sub c/ is sample-dependent, some specimens showing no degradation in T/sub c/ up to a fluence of 2 x 10 18 n/cm 2 . This and many other earlier observations on low-fluence behavior are explained in terms of a recently proposed model of radiation damage in A-15 compounds

  8. Red light-induced shift of the fluence-response curve for first positive curvature of maize [Zea mays] coleoptiles

    International Nuclear Information System (INIS)

    Hofmann, E.; Schäfer, E.

    1987-01-01

    The fluence-response curve for first positive phototropic curvture of dark-grown maize coleoptiles is shifted to ten-fold higher fluences if the coieoptiles are irradiated with red light 2 h prior to the phototropic induction with blue light. Fluence-response curves for this red-induced shift were obtained with unilateral red irradiations 2 h prior to inductive blue pulses of different fluences. They differ significantly depending on whether the red light was given from the same side as or the opposite side to the respective inductive blue pulse, thus demonstrating that the red light effect is a local response of the coleoptile. The fluence-response curves for an inductive blue pulse in the ascending part were compared with those for an inductive blue pulse in the descending part of the fluence-response curve for blue light induced phototropism. They are quite different in threshold of red light sensitivity and shape for irradiations from both the same and the opposite sides. This offers evidence for the hypothesis that at least two different photosystems are involved in phototropism, and that they are modulated differently by a red light preirradiation. All these fluence-response curves indicate that it is possible to increase the response in the coleoptile, if the red light preirradiation is given opposite to the inductive blue pulse. This is supported by blue light fluence-response curves obtained after a weak unilateral red preirradiation. (author)

  9. Spectral distribution of particle fluence in small field detectors and its implication on small field dosimetry.

    Science.gov (United States)

    Benmakhlouf, Hamza; Andreo, Pedro

    2017-02-01

    Correction factors for the relative dosimetry of narrow megavoltage photon beams have recently been determined in several publications. These corrections are required because of the several small-field effects generally thought to be caused by the lack of lateral charged particle equilibrium (LCPE) in narrow beams. Correction factors for relative dosimetry are ultimately necessary to account for the fluence perturbation caused by the detector. For most small field detectors the perturbation depends on field size, resulting in large correction factors when the field size is decreased. In this work, electron and photon fluence differential in energy will be calculated within the radiation sensitive volume of a number of small field detectors for 6 MV linear accelerator beams. The calculated electron spectra will be used to determine electron fluence perturbation as a function of field size and its implication on small field dosimetry analyzed. Fluence spectra were calculated with the user code PenEasy, based on the PENELOPE Monte Carlo system. The detectors simulated were one liquid ionization chamber, two air ionization chambers, one diamond detector, and six silicon diodes, all manufactured either by PTW or IBA. The spectra were calculated for broad (10 cm × 10 cm) and narrow (0.5 cm × 0.5 cm) photon beams in order to investigate the field size influence on the fluence spectra and its resulting perturbation. The photon fluence spectra were used to analyze the impact of absorption and generation of photons. These will have a direct influence on the electrons generated in the detector radiation sensitive volume. The electron fluence spectra were used to quantify the perturbation effects and their relation to output correction factors. The photon fluence spectra obtained for all detectors were similar to the spectrum in water except for the shielded silicon diodes. The photon fluence in the latter group was strongly influenced, mostly in the low-energy region, by

  10. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation: an ex vivo study.

    Science.gov (United States)

    Tunnell, J W; Nelson, J S; Torres, J H; Anvari, B

    2000-01-01

    Higher laser fluences than currently used in therapy (5-10 J/cm(2)) are expected to result in more effective treatment of port wine stain (PWS) birthmarks. However, higher incident fluences increase the risk of epidermal damage caused by absorption of light by melanin. Cryogen spray cooling offers an effective method to reduce epidermal injury during laser irradiation. The objective of this study was to determine whether high laser incident fluences (15-30 J/cm(2)) could be used while still protecting the epidermis in ex vivo human skin samples. Non-PWS skin from a human cadaver was irradiated with a Candela ScleroPlus Laser (lambda = 585 nm; pulse duration = 1.5 msec) by using various incident fluences (8-30 J/cm(2)) without and with cryogen spray cooling (refrigerant R-134a; spurt durations: 40-250 msec). Assessment of epidermal damage was based on histologic analysis. Relatively short spurt durations (40-100 msec) protected the epidermis for laser incident fluences comparable to current therapeutic levels (8-10 J/cm(2)). However, longer spurt durations (100-250 msec) increased the fluence threshold for epidermal damage by a factor of three (up to 30 J/cm(2)) in these ex vivo samples. Results of this ex vivo study show that epidermal protection from high laser incident fluences can be achieved by increasing the cryogen spurt duration immediately before pulsed laser exposure. Copyright 2000 Wiley-Liss, Inc.

  11. Biochemical changes related to hypoxia during cerebral aneurysm surgery: combined microdialysis and tissue oxygen monitoring: case report.

    Science.gov (United States)

    Hutchinson, P J; Al-Rawi, P G; O'Connell, M T; Gupta, A K; Pickard, J D; Kirkpatrick, P J

    2000-01-01

    The objective of this study was to monitor brain metabolism on-line during aneurysm surgery, by combining the use of a multiparameter (brain tissue oxygen, brain carbon dioxide, pH, and temperature) sensor with microdialysis (extracellular glucose, lactate, pyruvate, and glutamate). The case illustrates the potential value of these techniques by demonstrating the effects of adverse physiological events on brain metabolism and the ability to assist in both intraoperative and postoperative decision-making. A 41-year-old woman presented with a World Federation of Neurological Surgeons Grade I subarachnoid hemorrhage. Angiography revealed a basilar artery aneurysm that was not amenable to coiling, so the aneurysm was clipped. Before the craniotomy was performed, a multiparameter sensor and a microdialysis catheter were inserted to monitor brain metabolism. During the operation, the brain oxygen level decreased, in relation to biochemical changes, including the reduction of extracellular glucose and pyruvate and the elevation of lactate and glutamate. These changes were reversible. However, when the craniotomy was closed, a second decrease in brain oxygen occurred in association with brain swelling, which immediately prompted a postoperative computed tomographic scan. The scan demonstrated acute hydrocephalus, requiring external ventricular drainage. The patient made a full recovery. The monitoring techniques influenced clinical decision-making in the treatment of this patient. On-line measurement of brain tissue gases and extracellular chemistry has the potential to assist in the perioperative and postoperative management of patients undergoing complex cerebrovascular surgery and to establish the effects of intervention on brain homeostasis.

  12. Effect of fluence and ambient environment on the surface and structural modification of femtosecond laser irradiated Ti

    International Nuclear Information System (INIS)

    Umm-i-Kalsoom; Ali, Nisar; Husinsky, Wolfgang; Nathala, Chandra S R; Bashir, Shazia; Shahid Rafique, M; Makarov, Sergey V; Begum, Narjis

    2016-01-01

    Under certain conditions, ultrafast pulsed laser interaction with matter leads to the formation of self-organized conical as well as periodic surface structures (commonly reffered to as, laser induced periodic surface structures, LIPSS). The purpose of the present investigations is to explore the effect of fsec laser fluence and ambient environments (Vacuum and O 2 ) on the formation of LIPSS and conical structures on the Ti surface. The surface morphology was investigated by scanning electron microscope (SEM). The ablation threshold with single and multiple (N = 100) shots and the existence of an incubation effect was demonstrated by SEM investigations for both the vacuum and the O 2 environment. The phase analysis and chemical composition of the exposed targets were performed by x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS), respectively. SEM investigations reveal the formation of LIPSS (nano and micro). FFT d-spacing calculations illustrate the dependence of periodicity on the fluence and ambient environment. The periodicity of nano-scale LIPSS is higher in the case of irradiation under vacuum conditions as compared to O 2 . Furthermore, the O 2 environment reduces the ablation threshold. XRD data reveal that for the O 2 environment, new phases (oxides of Ti) are formed. EDS analysis exhibits that after irradiation under vacuum conditions, the percentage of impurity element (Al) is reduced. The irradiation in the O 2 environment results in 15% atomic diffusion of oxygen. (paper)

  13. Monte Carlo analysis of the oxygen knock-on effects induced by synchrotron x-ray radiation in the B i2S r2CaC u2O8 +δ superconductor

    Science.gov (United States)

    Torsello, Daniele; Mino, Lorenzo; Bonino, Valentina; Agostino, Angelo; Operti, Lorenza; Borfecchia, Elisa; Vittone, Ettore; Lamberti, Carlo; Truccato, Marco

    2018-01-01

    We investigate the microscopic mechanism responsible for the change of macroscopic electrical properties of the B i2S r2CaC u2O8 +δ high-temperature superconductor induced by intense synchrotron hard x-ray beams. The possible effects of secondary electrons on the oxygen content via the knock-on interaction are studied by Monte Carlo simulations. The change in the oxygen content expected from the knock-on model is computed convoluting the fluence of photogenerated electrons in the material with the Seitz-Koehler cross section. This approach has been adopted to analyze several experimental irradiation sessions with increasing x-ray fluences. A close comparison between the expected variations in oxygen content and the experimental results allows determining the irradiation regime in which the knock-on mechanism can satisfactorily explain the observed changes. Finally, we estimate the threshold displacement energy of loosely bound oxygen atoms in this material Td=0 .15-0.01+0.025eV .

  14. Poster - 52: Smoothing constraints in Modulated Photon Radiotherapy (XMRT) fluence map optimization

    International Nuclear Information System (INIS)

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao

    2016-01-01

    Purpose: Modulated Photon Radiotherapy (XMRT), which simultaneously optimizes photon beamlet energy (6 and 18 MV) and fluence, has recently shown dosimetric improvement in comparison to conventional IMRT. That said, the degree of smoothness of resulting fluence maps (FMs) has yet to be investigated and could impact the deliverability of XMRT. This study looks at investigating FM smoothness and imposing smoothing constraint in the fluence map optimization. Methods: Smoothing constraints were modeled in the XMRT algorithm with the sum of positive gradient (SPG) technique. XMRT solutions, with and without SPG constraints, were generated for a clinical prostate scan using standard dosimetric prescriptions, constraints, and a seven coplanar beam arrangement. The smoothness, with and without SPG constraints, was assessed by looking at the absolute and relative maximum SPG scores for each fluence map. Dose volume histograms were utilized when evaluating impact on the dose distribution. Results: Imposing SPG constraints reduced the absolute and relative maximum SPG values by factors of up to 5 and 2, respectively, when compared with their non-SPG constrained counterparts. This leads to a more seamless conversion of FMS to their respective MLC sequences. This improved smoothness resulted in an increase to organ at risk (OAR) dose, however the increase is not clinically significant. Conclusions: For a clinical prostate case, there was a noticeable improvement in the smoothness of the XMRT FMs when SPG constraints were applied with a minor increase in dose to OARs. This increase in OAR dose is not clinically meaningful.

  15. Poster - 52: Smoothing constraints in Modulated Photon Radiotherapy (XMRT) fluence map optimization

    Energy Technology Data Exchange (ETDEWEB)

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao [Department of Medical Physics, CancerCare Manitoba, Winnipeg, MB, CAN, Department of Physics and Astronomy, University of Calgary, Calgary, AB, CAN, Department of Mathematics and Statistics, University of Calgary, Calgary, AB, CAN, Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO (United States)

    2016-08-15

    Purpose: Modulated Photon Radiotherapy (XMRT), which simultaneously optimizes photon beamlet energy (6 and 18 MV) and fluence, has recently shown dosimetric improvement in comparison to conventional IMRT. That said, the degree of smoothness of resulting fluence maps (FMs) has yet to be investigated and could impact the deliverability of XMRT. This study looks at investigating FM smoothness and imposing smoothing constraint in the fluence map optimization. Methods: Smoothing constraints were modeled in the XMRT algorithm with the sum of positive gradient (SPG) technique. XMRT solutions, with and without SPG constraints, were generated for a clinical prostate scan using standard dosimetric prescriptions, constraints, and a seven coplanar beam arrangement. The smoothness, with and without SPG constraints, was assessed by looking at the absolute and relative maximum SPG scores for each fluence map. Dose volume histograms were utilized when evaluating impact on the dose distribution. Results: Imposing SPG constraints reduced the absolute and relative maximum SPG values by factors of up to 5 and 2, respectively, when compared with their non-SPG constrained counterparts. This leads to a more seamless conversion of FMS to their respective MLC sequences. This improved smoothness resulted in an increase to organ at risk (OAR) dose, however the increase is not clinically significant. Conclusions: For a clinical prostate case, there was a noticeable improvement in the smoothness of the XMRT FMs when SPG constraints were applied with a minor increase in dose to OARs. This increase in OAR dose is not clinically meaningful.

  16. Nonlocal ultrafast magnetization dynamics in the high fluence limit

    NARCIS (Netherlands)

    Kuiper, K.C.; Malinowski, G.; Dalla Longa, F.; Koopmans, B.

    2011-01-01

    In order to explain a number of recent experimental observations of laser-induced femtosecond demagnetization in the large fluence limit, we discuss the consequences of a recently proposed nonlocal approach. A microscopic description of spin flip scattering is implemented in an effective three

  17. Study on measurement technique contrast of 14 MeV neutron fluence

    International Nuclear Information System (INIS)

    Jiang Li; Hu Jun; Wen Dezhi

    2005-10-01

    The stability and repetition of the associated-particle method to measure DT neutron fluence was tested. The neutron activation iron method was contrasted with the associated-particle method, the preparatory experiment was done. The neutron fluence measured with associated-particle method was contrasted with neutron activation Al method, the Al activated foil was measured with 4πβ (PC)-γ coincidence standard device. The contrast result's standard deviation of the two method was less than the expand uncertainty of the associated-particle method. Therein, the uncertainty of the associated-particle method is 1.6%, the uncertainty of the activation Al method is 1.8%. (authors)

  18. Surface damage on polycrystalline β-SiC by xenon ion irradiation at high fluence

    Science.gov (United States)

    Baillet, J.; Gavarini, S.; Millard-Pinard, N.; Garnier, V.; Peaucelle, C.; Jaurand, X.; Duranti, A.; Bernard, C.; Rapegno, R.; Cardinal, S.; Escobar Sawa, L.; De Echave, T.; Lanfant, B.; Leconte, Y.

    2018-05-01

    Polycrystalline β-silicon carbide (β-SiC) pellets were prepared by Spark Plasma Sintering (SPS). These were implanted at room temperature with 800 keV xenon at ion fluences of 5.1015 and 1.1017 cm-2. Microstructural modifications were studied by electronic microscopy (TEM and SEM) and xenon profiles were determined by Rutherford Backscattering Spectroscopy (RBS). A complete amorphization of the implanted area associated with a significant oxidation is observed for the highest fluence. Large xenon bubbles formed in the oxide phase are responsible of surface swelling. No significant gas release has been measured up to 1017 at.cm-2. A model is proposed to explain the different steps of the oxidation process and xenon bubbles formation as a function of ion fluence.

  19. Epoxy-paint stripping using TEA CO2 laser: Determination of threshold fluence and the process parameters

    Science.gov (United States)

    Kumar, Manoj; Bhargava, P.; Biswas, A. K.; Sahu, Shasikiran; Mandloi, V.; Ittoop, M. O.; Khattak, B. Q.; Tiwari, M. K.; Kukreja, L. M.

    2013-03-01

    It is shown that the threshold fluence for laser paint stripping can be accurately estimated from the heat of gasification and the absorption coefficient of the epoxy-paint. The threshold fluence determined experimentally by stripping of the epoxy-paint on a substrate using a TEA CO2 laser matches closely with the calculated value. The calculated threshold fluence and the measured absorption coefficient of the paint allowed us to determine the epoxy paint thickness that would be removed per pulse at a given laser fluence even without experimental trials. This was used to predict the optimum scan speed required to strip the epoxy-paint of a given thickness using a high average power TEA CO2 laser. Energy Dispersive X-Ray Fluorescence (EDXRF) studies were also carried out on laser paint-stripped concrete substrate to show high efficacy of this modality.

  20. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a {open_quotes}best estimate{close_quotes} of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards.

  1. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    International Nuclear Information System (INIS)

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a open-quotes best estimateclose quotes of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards

  2. Internal-reference solid-electrolyte oxygen sensor

    International Nuclear Information System (INIS)

    Haaland, D.M.

    1977-01-01

    A new solid-electrolyte oxygen sensor has been developed that eliminates the conventional oxygen reference in previous solid-electrolyte oxygen sensor designs and is, therefore, ideally suited as an insertion device for remote oxygen monitoring applications. It is constructed with two cells of stabilized zirconia sealed into a small unit using a new high-temperature platinum-zirconia seal. One electrochemical cell monitors the ratio of oxygen partial pressures inside and outside the sensor while the other solid-electrolyte cell is used for quantitative electrochemical pumping of oxygen. The internal oxygen reference is generated by initially pumping all oxygen out of the known internal volume of the sensor and then quantitatively pumping oxygen back in until oxygen partial pressures are equal inside and out. This information is used with the ideal gas law to calculate oxygen partial pressures. Tests were conducted from 400 to 1000 0 C in mixtures of oxygen and nitrogen spanning approximately 0.2 to 21 percent oxygen concentration range. Sensors with sputtered platinum and porous platinum paste electrodes were compared

  3. Time-resolved angular distributions of plume ions from silver at low and medium laser fluence

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    Even at moderate fluence (0.6 -2.4 J/cm2) laser impact on metals in the UV regime results in a significant number of ions emitted from the surface. The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence. We have irradiated silver...... in a vacuum chamber (~ 10-7 mbar) with a Nd:YAG laser at a wavelength of 355 nm and made detailed measurements of the time-resolved angular distribution. The ion flow in different directions has been measured with a hemispherical array of Langmuir probes, by which the time-of-flight spectra, as well...

  4. SU-E-T-436: Fluence-Based Trajectory Optimization for Non-Coplanar VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, G; Bamber, JC; Bedford, JL [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London (United Kingdom); Evans, PM [Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford (United Kingdom); Saran, FH; Mandeville, HC [The Royal Marsden NHS Foundation Trust, Sutton (United Kingdom)

    2015-06-15

    Purpose: To investigate a fluence-based trajectory optimization technique for non-coplanar VMAT for brain cancer. Methods: Single-arc non-coplanar VMAT trajectories were determined using a heuristic technique for five patients. Organ at risk (OAR) volume intersected during raytracing was minimized for two cases: absolute volume and the sum of relative volumes weighted by OAR importance. These trajectories and coplanar VMAT formed starting points for the fluence-based optimization method. Iterative least squares optimization was performed on control points 24° apart in gantry rotation. Optimization minimized the root-mean-square (RMS) deviation of PTV dose from the prescription (relative importance 100), maximum dose to the brainstem (10), optic chiasm (5), globes (5) and optic nerves (5), plus mean dose to the lenses (5), hippocampi (3), temporal lobes (2), cochleae (1) and brain excluding other regions of interest (1). Control point couch rotations were varied in steps of up to 10° and accepted if the cost function improved. Final treatment plans were optimized with the same objectives in an in-house planning system and evaluated using a composite metric - the sum of optimization metrics weighted by importance. Results: The composite metric decreased with fluence-based optimization in 14 of the 15 plans. In the remaining case its overall value, and the PTV and OAR components, were unchanged but the balance of OAR sparing differed. PTV RMS deviation was improved in 13 cases and unchanged in two. The OAR component was reduced in 13 plans. In one case the OAR component increased but the composite metric decreased - a 4 Gy increase in OAR metrics was balanced by a reduction in PTV RMS deviation from 2.8% to 2.6%. Conclusion: Fluence-based trajectory optimization improved plan quality as defined by the composite metric. While dose differences were case specific, fluence-based optimization improved both PTV and OAR dosimetry in 80% of cases.

  5. Isotopic dependence of GCR fluence behind shielding

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Hu, Xiaodong; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.

    2006-01-01

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (±100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (∼170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past; however, less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies

  6. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring

    DEFF Research Database (Denmark)

    Ingerslev, Hans Jakob; Hindkjær, Johnny Juhl; Kirkegaard, Kirstine

    2012-01-01

    -points for each cell division and blastocyst stages were registered until 120 hours after oocyte retrieval. Only 2PN embryos completing the first cleavage were evaluated. The groups were compared using one-way ANOVA or Kruskall-Wallis test. Estimates are reported as medians with 95% confidence intervals. Time......Introduction: Data from a number of studies indicate -but not unequivocally- that culture of embryos in 5% O2 compared to 20% O2 improves blastocyst formation in humans and various animal species and may yield better pregnancy rates in IVF. The detrimental effects of atmospheric oxygen were...... was to evaluate the influence of oxygen tension on human pre-implantation development using time-lapse monitoring. Materials and methods: Human embryos were cultured to the blastocyst stage in a time-lapse incubator (EmbryoScope™) in 20% O2 (group 1), 20% O2 for 24 hours followed by culture in 5% O2 (group 2...

  7. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    Science.gov (United States)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  8. Effects of laser focusing and fluence on the analysis of pellets of plant materials by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Gustinelli Arantes de Carvalho, Gabriel; Santos, Dario; Nunes, Lidiane Cristina; Gomes, Marcos da Silva; Leme, Flavio de Oliveira; Krug, Francisco José

    2012-01-01

    The effects of laser focusing and fluence on LIBS analysis of pellets of plant leaves was evaluated. A Q-switched Nd:YAG laser (5 ns, 10 Hz, 1064 nm) was used and the emission signals were collected by lenses into an optical fiber coupled to a spectrometer with Echelle optics and ICCD. Data were acquired from the accumulation of 20 laser pulses at 2.0 μs delay and 5.0 μs integration time gate. The emission signal intensities increased with both laser fluence and spot size. Higher sensitivities for Ca, K, Mg, P, Al, B, Cu, Fe, Mn, and Zn determinations were observed for fluences in the range from 25 to 60 J cm −2 . Coefficients of variation of site-to-site measurements were generally lower than 10% (n = 30 sites, 20 laser pulses/site) for a fluence of 50 J cm −2 and 750 μm spot size. For most elements, there is an indication that accuracy is improved with higher fluences. - Highlights: ► Laser focusing and fluence affect the quality of LIBS results. ► Improvements on sensitivity and precision were observed for most analytes. ► Matrix effects can be minimized by choosing the most appropriate fluence.

  9. High-energy and high-fluence proton irradiation effects in silicon solar cells

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Taylor, S.J.; Yang, M.; Matsuda, S.; Kawasaki, O.; Hisamatsu, T.

    1996-01-01

    We have examined proton irradiation damage in high-energy (1 endash 10 MeV) and high-fluence (approx-gt 10 13 cm -2 ) Si n + -p-p + structure space solar cells. Radiation testing has revealed an anomalous increase in short-circuit current I sc followed by an abrupt decrease and cell failure, induced by high-fluence proton irradiation. We propose a model to explain these phenomena by expressing the change in carrier concentration p of the base region as a function of the proton fluence in addition to the well-known model where the short-circuit current is decreased by minority-carrier lifetime reduction after irradiation. The reduction in carrier concentration due to majority-carrier trapping by radiation-induced defects has two effects. First, broadening of the depletion layer increases both the generation endash recombination current and also the contribution of the photocurrent generated in this region to the total photocurrent. Second, the resistivity of the base layer is increased, resulting in the abrupt decrease in the short circuit current and failure of the solar cells. copyright 1996 American Institute of Physics

  10. Development of the processing software package for RPV neutron fluence determination methodology

    International Nuclear Information System (INIS)

    Belousov, S.; Kirilova, K.; Ilieva, K.

    2001-01-01

    According to the INRNE methodology the neutron transport calculation is carried out by two steps. At the first step reactor core eigenvalue calculation is performed. This calculation is used for determination of the fixed source for the next step calculation of neutron transport from the reactor core to the RPV. Both calculation steps are performed by state of the art and tested codes. The interface software package DOSRC developed at INRNE is used as a link between these two calculations. The package transforms reactor core calculation results to neutron source input data in format appropriate for the neutron transport codes (DORT, TORT and ASYNT) based on the discrete ordinates method. These codes are applied for calculation of the RPV neutron flux and its responses - induced activity, radiation damage, neutron fluence etc. Fore more precise estimation of the neutron fluence, the INRNE methodology has been supplemented by the next improvements: - implementation of more advanced codes (PYTHIA/DERAB) for neutron-physics parameter calculations; - more detailed neutron source presentation; - verification of neutron fluence by statistically treated experimental data. (author)

  11. Performance evaluation of photoacoustic oximetry imaging systems using a dynamic blood flow phantom with tunable oxygen saturation

    Science.gov (United States)

    Vogt, William C.; Zhou, Xuewen; Andriani, Rudy; Wear, Keith A.; Garra, Brian S.; Pfefer, Joshua

    2018-02-01

    Photoacoustic Imaging (PAI) is an emerging technology with strong potential for broad clinical applications from breast cancer detection to cerebral monitoring due to its ability to compute maps of blood oxygen saturation (SO2) distribution in deep tissues using multispectral imaging. However, no well-validated consensus test methods currently exist for evaluating oximetry-specific performance characteristics of PAI devices. We have developed a phantombased flow system capable of rapid SO2 adjustment to serve as a test bed for elucidation of factors impacting SO2 measurement and quantitative characterization of device performance. The flow system is comprised of a peristaltic pump, membrane oxygenator, oxygen and nitrogen gas, and in-line oxygen, pH, and temperature sensors that enable real-time estimation of SO2 reference values. Bovine blood was delivered through breast-relevant tissue phantoms containing vessel-mimicking fluid channels, which were imaged using a custom multispectral PAI system. Blood was periodically drawn for SO2 measurement in a clinical-grade CO-oximeter. We used this flow phantom system to evaluate the impact of device parameters (e.g.,wavelength-dependent fluence corrections) and tissue parameters (e.g. fluid channel depth, blood SO2, spectral coloring artifacts) on oximetry measurement accuracy. Results elucidated key challenges in PAI oximetry and device design trade-offs, which subsequently allowed for optimization of system performance. This approach provides a robust benchtop test platform that can support PAI oximetry device optimization, performance validation, and clinical translation, and may inform future development of consensus test methods for performance assessment of photoacoustic oximetry imaging systems.

  12. Concurrent Longitudinal EPR Monitoring of Tissue Oxygenation, Acidosis, and Reducing Capacity in Mouse Xenograft Tumor Models.

    Science.gov (United States)

    Bobko, Andrey A; Evans, Jason; Denko, Nicholas C; Khramtsov, Valery V

    2017-06-01

    Tissue oxygenation, extracellular acidity, and tissue reducing capacity are among crucial parameters of tumor microenvironment (TME) of significant importance for tumor pathophysiology. In this paper, we demonstrate the complementary application of particulate lithium octa-n-butoxy-naphthalocyanine and soluble nitroxide paramagnetic probes for monitoring of these TME parameters using electron paramagnetic resonance (EPR) technique. Two different types of therapeutic interventions were studied: hypothermia and systemic administration of metabolically active drug. In summary, the results demonstrate the utility of EPR technique for non-invasive concurrent longitudinal monitoring of physiologically relevant chemical parameters of TME in mouse xenograft tumor models, including that under therapeutic intervention.

  13. Relationship Between Cerebral Oxygenation and Hemodynamic and Oxygen Transport Parameters in Surgery for Acquired Heart Diseases

    Directory of Open Access Journals (Sweden)

    A. I. Lenkin

    2012-01-01

    Full Text Available Objective: to evaluate the relationship between cerebral oxygenation and hemodynamic and oxygen transport parameters in surgical correction of concomitant acquired heart diseases. Subjects and methods. Informed consent was received from 40 patients who required surgery because of concomitant (two or more acquired heart defects. During procedure, perioperative monitoring of oxygen transport and cerebral oxygenation was performed with the aid of PiCCO2 monitor (Pulsion Medical Systems, Germany and a Fore-Sight cerebral oximeter (CASMED, USA. Anesthesia was maintained with propofol and fen-tanyl, by monitoring the depth of anesthesia. Early postoperative intensive therapy was based on the protocol for early targeted correction of hemodynamic disorders. Oxygen transport and cerebral oxygenation parameters were estimated intraopera-tively and within 24 postoperative hours. A statistical analysis including evaluation of Spearman correlations was performed with the aid of SPSS 15.0. Results. During perfusion, there was a relationship between cerebral oximetry values and hemat-ocrit levels, and oxygen partial pressure in the venous blood. Furthermore, a negative correlation between cerebral oximetry values and blood lactate levels was found 30 minutes after initiation of extracorporeal circulation (EC. During the study, there was a positive correlation between cerebral oxygenation and values of cardiac index, central venous saturation, and oxygen delivery index. There was a negative relationship between cerebral oxygenation and extravascular lung water at the beginning of surgery and a correlation between cerebral oximetry values and oxygenation index by the end of the first 24 postoperative hours. Conclusion. The cerebral oxygenation values correlate -with the main determinants of oxygen transport during EC and after cardiac surgical procedures. Cerebral oximetry may be used in early targeted therapy for the surgical correction of acquired combined

  14. Oxygen status during haemodialysis. The Cord-Group

    DEFF Research Database (Denmark)

    Nielsen, A L; Jensen, H Æ; Hegbrant, J

    1995-01-01

    Hypoxia during haemodialysis, mainly acetate, has been reported several times. In our study we have monitored oxygen status during 258 bicarbonate haemodialyses. A significant drop below 80 mmHg in mean oxygen tension occurred. Mean oxygen saturation reflected this drop but did not reach levels...... below 90%. The mean oxygen concentration was on the whole critical low, though slightly increasing during each haemodialysis session due to ultrafiltration. It is concluded that both hypoxia and hypoxaemia do occur during bicarbonate haemodialysis. To a group of patients generally having limited cardiac...... reserves, a poor oxygen status is a potentially serious complication to haemodialysis. Monitoring oxygen status is thus advisable....

  15. Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casey, D. T., E-mail: casey21@llnl.gov; Munro, D. H.; Grim, G. P.; Landen, O. L.; Spears, B. K.; Fittinghoff, D. N.; Field, J. E.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Volegov, P. L.; Merrill, F. E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

  16. Very low-energy and low-fluence ion beam bombardment of naked plasmid DNA

    International Nuclear Information System (INIS)

    Norarat, R.; Semsang, N.; Anuntalabhochai, S.; Yu, L.D.

    2009-01-01

    Ion beam bombardment of biological organisms has been recently applied to mutation breeding of both agricultural and horticultural plants. In order to explore relevant mechanisms, this study employed low-energy ion beams to bombard naked plasmid DNA. The study aimed at simulation of the final stage of the process of the ion beam bombardment of real cells to check whether and how very low-energy and low-fluence of ions can induce mutation. Argon and nitrogen ions at 5 keV and 2.5 keV respectively bombarded naked plasmid DNA pGFP to very low-fluences, an order of 10 13 ions/cm 2 . Subsequently, DNA states were analyzed using electrophoresis. Results provided evidences that the very low-energy and low-fluence ion bombardment indeed altered the DNA structure from supercoil to short linear fragments through multiple double strand breaks and thus induced mutation, which was confirmed by transfer of the bombarded DNA into bacteria Escherichia coli and subsequent expression of the marker gene.

  17. Effect of high fluence neutron irradiation on transport properties of thermoelectrics

    Science.gov (United States)

    Wang, H.; Leonard, K. J.

    2017-07-01

    Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This study is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300-400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. These results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.

  18. Calculation of fluence rate distributions in a pre design clinical facility for BNCT at the LFR

    International Nuclear Information System (INIS)

    Peeters, T.T.J.M.; Freudenreich, W.E.

    1995-12-01

    In a previous study [1], it was demonstrated that the creation of a thermal neutron facility for clinical BNCT in the LFR is feasible. Monte Carlo calculations had shown that the neutron fluence rates and gamma dose rates at the detector position of a model representing a first outline of a clinical facility met all requirements that are necessary for clinical BNCT. In order to gain more information about the neutron fluence rates at several positions, a second step is required. Calculations have been performed for the free beam and for a tumour bearing phantom at 5 cm and 10 cm distance from the irradiation window. Due to thermalization and back scattering, the thermal fluence rates in the tumour at 5 and 10 cm distance from the bismuth shield appeared to be approximately twice as high as the thermal fluence rates in the free beam at the corresponding positions of 5 to 6 cm and 10 to 11 cm from the irradiation window. (orig.)

  19. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, L.L.; Campos, V.M.A.; Magalhaes, L.A.G. [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Departamento de Morfologia; Fonseca, A.S., E-mail: adnfonseca@ig.com.br [Universidade Federal do Estado do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Ciencias Fisiologicas

    2015-10-15

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm{sup 2}) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols. (author)

  20. Pulsed laser ablation of Germanium under vacuum and hydrogen environments at various fluences

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Hassan [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Dawood, Asadullah; Akram, Mahreen; Mahmood, Khaliq; Hayat, Asma; Ahmad, Riaz; Hussain, Tousif [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Mahmood, Arshad [National Institute of Laser and Optronics (NILOP), Islamabad (Pakistan)

    2015-07-30

    Highlights: • Germanium targets were exposed under vacuum and H{sub 2} environment by nanosecond laser pulses. • The effect of laser fluence and ambient environment has been investigated. • The surface morphology is investigated by SEM analysis. • Raman and FTIR Spectroscopy are performed to reveal structural modification. • Electrical conductivity is probed by four probe method. - Abstract: Laser fluence and ambient environment play a significant role for the formation and development of the micro/nano-structures on the laser irradiated targets. Single crystal (1 0 0) Germanium (Ge) has been ablated under two environments of vacuum (10{sup −3} Torr) and hydrogen (100 Torr) at various fluences ranging from 4.5 J cm{sup −2} to 6 J cm{sup −2}. For this purpose KrF Excimer laser with wavelength of 248 nm, pulse duration of 18 ns and repetition rate of 20 Hz has been employed. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets was explored by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy. Electrical conductivity of the irradiated Ge is measured by four probe method. SEM analysis exhibits the formation of laser-induced periodic surface structures (LIPSS), cones and micro-bumps in both ambient environments (vacuum and hydrogen). The formation as well as development of these structures is strongly dependent upon the laser fluence and environmental conditions. The periodicity of LIPSS or ripples varies from 38 μm to 60 μm in case of vacuum whereas in case of hydrogen environment, the periodicity varies from 20 μm to 45 μm. The difference in number of ripples and periodicity as well as in shape and size of cones and bumps in vacuum and hydrogen is explained on the basis of confinement and shielding effect of plasma. FTIR spectroscopy reveals that no new bands are formed for laser ablated Ge under vacuum, whereas C−H stretching vibration band is

  1. Upper limits of the photon fluence rate on CT detectors: Case study on a commercial scanner

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Mats, E-mail: mats.persson@mi.physics.kth.se; Bornefalk, Hans; Danielsson, Mats [Department of Physics, Royal Institute of Technology, Stockholm SE-10691 (Sweden); Bujila, Robert; Nowik, Patrik; Andersson, Henrik [Unit of X-ray Physics, Section of Imaging Physics Solna, Department of Medical Physics, Karolinska University Hospital, Stockholm SE-17176 (Sweden); Kull, Love [Medical Radiation Physics, Sunderby Hospital, Luleå SE-97180 (Sweden); Andersson, Jonas [Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå SE-90185 (Sweden)

    2016-07-15

    Purpose: The highest photon fluence rate that a computed tomography (CT) detector must be able to measure is an important parameter. The authors calculate the maximum transmitted fluence rate in a commercial CT scanner as a function of patient size for standard head, chest, and abdomen protocols. Methods: The authors scanned an anthropomorphic phantom (Kyoto Kagaku PBU-60) with the reference CT protocols provided by AAPM on a GE LightSpeed VCT scanner and noted the tube current applied with the tube current modulation (TCM) system. By rescaling this tube current using published measurements on the tube current modulation of a GE scanner [N. Keat, “CT scanner automatic exposure control systems,” MHRA Evaluation Report 05016, ImPACT, London, UK, 2005], the authors could estimate the tube current that these protocols would have resulted in for other patient sizes. An ECG gated chest protocol was also simulated. Using measured dose rate profiles along the bowtie filters, the authors simulated imaging of anonymized patient images with a range of sizes on a GE VCT scanner and calculated the maximum transmitted fluence rate. In addition, the 99th and the 95th percentiles of the transmitted fluence rate distribution behind the patient are calculated and the effect of omitting projection lines passing just below the skin line is investigated. Results: The highest transmitted fluence rates on the detector for the AAPM reference protocols with centered patients are found for head images and for intermediate-sized chest images, both with a maximum of 3.4 ⋅ 10{sup 8} mm{sup −2} s{sup −1}, at 949 mm distance from the source. Miscentering the head by 50 mm downward increases the maximum transmitted fluence rate to 5.7 ⋅ 10{sup 8} mm{sup −2} s{sup −1}. The ECG gated chest protocol gives fluence rates up to 2.3 ⋅ 10{sup 8} − 3.6 ⋅ 10{sup 8} mm{sup −2} s{sup −1} depending on miscentering. Conclusions: The fluence rate on a CT detector reaches 3 ⋅ 10{sup 8

  2. Photon-Fluence-Weighted let for Radiation Fields Subjected to Epidemiological Studies.

    Science.gov (United States)

    Sasaki, Michiya

    2017-08-01

    In order to estimate the uncertainty of the radiation risk associated with the photon energy in epidemiological studies, photon-fluence-weighted LET values were quantified for photon radiation fields with the target organs and irradiation conditions taken into consideration. The photon fluences giving a unit absorbed dose to the target organ were estimated by using photon energy spectra together with the dose conversion coefficients given in ICRP Publication 116 for the target organs of the colon, bone marrow, stomach, lung, skin and breast with three irradiation geometries. As a result, it was demonstrated that the weighted LET values did not show a clear difference among the photon radiation fields subjected to epidemiological studies, regardless of the target organ and the irradiation geometry.

  3. Optoacoustic measurements of human placenta and umbilical blood oxygenation

    Science.gov (United States)

    Nanovskaya, T. N.; Petrov, I. Y.; Petrov, Y.; Patrikeeva, S. L.; Ahmed, M. S.; Hankins, G. D. V.; Prough, D. S.; Esenaliev, R. O.

    2016-03-01

    Adequate oxygenation is essential for normal embryogenesis and fetal growth. Perturbations in the intrauterine oxidative environment during pregnancy are associated with several pathophysiological disorders such as pregnancy loss, preeclampsia, and intrauterine growth restriction. We proposed to use optoacoustic technology for monitoring placental and fetal umbilical blood oxygenation. In this work, we studied optoacoustic monitoring of oxygenation in placenta and umbilical cord blood ex vivo using technique of placenta perfusion. We used a medical grade, nearinfrared, tunable, optoacoustic system developed and built for oxygenation monitoring in blood vessels and in tissues. First, we calibrated the system for cord blood oxygenation measurements by using a CO-Oximeter (gold standard). Then we performed validation in cord blood circulating through the catheters localized on the fetal side of an isolated placental lobule. Finally, the oxygenation measurements were performed in the perfused placental tissue. To increase or decrease blood oxygenation, we used infusion of a gas mixture of 95% O2 + 5% CO2 and 95% N2 + 5% CO2, respectively. In placental tissue, up to four cycles of changes in oxygenation were performed. The optoacoustically measured oxygenation in circulating cord blood and in placental lobule closely correlated with the actual oxygenation data measured by CO-Oximeter. We plan to further test the placental and cord blood oxygenation monitoring with optoacoustics in animal and clinical studies.

  4. Absolute measurement and international intercomparison of 0.1-0.8 MeV monoenergetic neutron fluence rate

    International Nuclear Information System (INIS)

    Ma Hongchang; Lu Hanlin; Rong Chaofan

    1988-01-01

    The methods for absolute measurement of 0.1-18MeV monoenergetic neutron fluence rate are described. Which include proton recoil telescope, semicoducetor telescope, hydrogen filled proportional counter and associated particale method. A long counter used as secondary recent international intercomparison of neutron fluence rate organized by BIPM, and the results were given

  5. A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2010-01-01

    A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)

  6. Determination of fast neutron fluence at WWER-1000 pressure vessel

    International Nuclear Information System (INIS)

    Valenta, V. et al.

    1989-01-01

    The influence function method is an effective tool making it possible, by means of tabulated values to rapidly perform three-dimensional calculations of fast neutron fluences for various reactor core loadings and for various nuclear power plant units. The procedure for determining the spatial dependence of the fast neutron fluences in a WWER-1000 pressure vessel is described. For this, the reactor core is divided into sufficiently fine volume elements within which the neutron source can be regarded as coordinate-independent. The influence functions point to a substantial role of sources lying at the reactor core periphery. In WWER-1000 reactors, only 1 or 2 rows of peripheral assemblies are important. The influence function method makes possible a rapid and easy determination of preconditions for the assessment of the residual lifetime of the pressure vessel based on the actual reactor core loadings. (Z.M.). 7 figs., 8 refs

  7. Investigating multi-objective fluence and beam orientation IMRT optimization

    Science.gov (United States)

    Potrebko, Peter S.; Fiege, Jason; Biagioli, Matthew; Poleszczuk, Jan

    2017-07-01

    Radiation Oncology treatment planning requires compromises to be made between clinical objectives that are invariably in conflict. It would be beneficial to have a ‘bird’s-eye-view’ perspective of the full spectrum of treatment plans that represent the possible trade-offs between delivering the intended dose to the planning target volume (PTV) while optimally sparing the organs-at-risk (OARs). In this work, the authors demonstrate Pareto-aware radiotherapy evolutionary treatment optimization (PARETO), a multi-objective tool featuring such bird’s-eye-view functionality, which optimizes fluence patterns and beam angles for intensity-modulated radiation therapy (IMRT) treatment planning. The problem of IMRT treatment plan optimization is managed as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. To achieve this, PARETO is built around a powerful multi-objective evolutionary algorithm, called Ferret, which simultaneously optimizes multiple fitness functions that encode the attributes of the desired dose distribution for the PTV and OARs. The graphical interfaces within PARETO provide useful information such as: the convergence behavior during optimization, trade-off plots between the competing objectives, and a graphical representation of the optimal solution database allowing for the rapid exploration of treatment plan quality through the evaluation of dose-volume histograms and isodose distributions. PARETO was evaluated for two relatively complex clinical cases, a paranasal sinus and a pancreas case. The end result of each PARETO run was a database of optimal (non-dominated) treatment plans that demonstrated trade-offs between the OAR and PTV fitness functions, which were all equally good in the Pareto-optimal sense (where no one objective can be improved without worsening at least one other). Ferret was able to produce high quality solutions even though a large number of parameters

  8. Positron annihilation investigation and nuclear reaction analysis of helium and oxygen-implanted zirconia

    International Nuclear Information System (INIS)

    Grynszpan, R.I.; Saude, S.; Anwand, W.; Brauer, G.

    2005-01-01

    Since irradiation affects in-service properties of zirconia, we investigated the fluence dependence on production and thermal stability of defects induced by helium and oxygen-ion implantation in single crystals of yttria-fully-stabilized zirconia. In either case, depth profiling by slow positron implantation spectroscopy (SPIS) detects a distribution of vacancy-type defects peaking at 60% of the projected ion range R p . Owing to the saturation of positron-trapping occurring for low fluences, which depends on the ion mass, we could estimate a critical size of clusters ranging from 0.4 to 1.6 nm. The lack of SPIS-evidence of an open-volume excess at R p is explained by the presence of over-pressurized gas bubbles. This assumption is confirmed by Nuclear Reaction Analysis of 3 He concentration profiles, which shows that helium remains partly trapped at R p , even after annealing above 400 o C

  9. Vessel fluence evaluation for SMART using DLC-23 and DLC-185 data libraries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyo Youn; Cho, Byung Oh; Joo, Han Gyu [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    In this report, it was performed the vessel fluence evaluation for SMART using nuclear cross-section libraries of DLC-23/CASK and DLC-185/BUGLE-96 and it was compared with the results. It was shown that the maximum neutron fluences for the inner surface of SMART vessel, which has 60 years lifetime and 90% capacity factor, resulted from using DLC-23/CASK and DLC-185/BUGLE-96 are 2.88x10{sup 16} n/cm{sup 2} and 1.98 x10{sup 16} n/cm{sup 2}, respectively. It is concluded that the fast neutron fluence at the reactor pressure vessel of SMART is far less than 1.0x10{sup 20} n/cm{sup 2} which is specified by the requirement of 10 CFR 50.61 and the SMART has the preservation of reactor vessel integrity throughout the reactor lifetime. Also, it was shown that the result using DLC-23/CASK has conservatism of about 30% comparing with the result using DLC-185/BUGLE-96. 15 refs., 7 figs., 13 tabs. (Author)

  10. The limitations of tissue-oxygen measurement and positron emission tomography as additional methods for postoperative breast reconstruction free-flap monitoring.

    Science.gov (United States)

    Schrey, Aleksi; Niemi, Tarja; Kinnunen, Ilpo; Minn, Heikki; Vahlberg, Tero; Kalliokoski, Kari; Suominen, Erkki; Grénman, Reidar; Aitasalo, Kalle

    2010-02-01

    Twelve patients who underwent breast reconstruction with a microvascular flap were monitored postoperatively with continuous partial tissue oxygenation (p(ti)O(2)) measurement. The regional blood flow (BF) of the entire flap was evaluated with positron emission tomography (PET) using oxygen-15-labelled water on the first postoperative (POP) morning to achieve data of the perfusion of the entire flap. A re-exploration was carried out if the p(ti)O(2) value remained lower than 15 mmHg for over 30 min. The mean p(ti)O(2) value of the flaps was 52.9+/-5.5 mmHg, whereas the mean BF values were 3.3+/-1.0 ml per 100 g min(-1). One false-positive result was detected by p(ti)O(2) measurement, resulting in an unnecessary re-exploration. Another re-operation suggested by the low p(ti)O(2) results was avoided due to the normal BF results assessed with PET. Totally, three flaps were re-explored. This prospective study suggests that continuous tissue-oxygen measurement with a polarographic needle probe is reliable for monitoring free breast flaps from one part of the flap, but assessing perfusion of the entire flap requires more complex monitoring methods, for example, PET. Clinical examination by experienced personnel remains important in free-breast-flap monitoring. PET could be useful in assessing free-flap perfusion in selected high-risk patients as an alternative to a re-operation when clinical examination and evaluation by other means are unreliable or present controversial results. 2008 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Realization of a scanning ion beam monitor; Realisation d'un dispositif de controle et d'imagerie de faisceaux balayes d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Pautard, C

    2008-07-15

    During this thesis, a scanning ion beam monitor has been developed in order to measure on-line fluence spatial distributions. This monitor is composed of an ionization chamber, Hall Effect sensors and a scintillator. The ionization chamber set between the beam exit and the experiment measures the ion rate. The beam spot is localized thanks to the Hall Effect sensors set near the beam sweeping magnets. The scintillator is used with a photomultiplier tube to calibrate the ionization chamber and with an imaging device to calibrate the Hall Effect sensors. This monitor was developed to control the beam lines of a radiobiology dedicated experimentation room at GANIL. These experiments are held in the context of the research in hadron-therapy. As a matter of fact, this new cancer treatment technique is based on ion irradiations and therefore demands accurate knowledge about the relation between the dose deposit in biological samples and the induced effects. To be effective, these studies require an on-line control of the fluence. The monitor has been tested with different beams at GANIL. Fluence can be measured with a relative precision of {+-}4% for a dose rate ranging between 1 mGy/s and 2 Gy/s. Once permanently set on the beam lines dedicated to radiobiology at GANIL, this monitor will enable users to control the fluence spatial distribution for each irradiation. The scintillator and the imaging device are also used to control the position, the spot shape and the energy of different beams such as those used for hadron-therapy. (author)

  12. SU-F-T-540: Comprehensive Fluence Delivery Optimization with Multileaf Collimation

    Energy Technology Data Exchange (ETDEWEB)

    Weppler, S; Villarreal-Barajas, J [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta (Canada); Department of Medical Physics, Tom Baker Cancer Center, Calgary, Alberta (Canada); McGeachy, P [Department of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Khan, R [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States)

    2016-06-15

    Purpose: Multileaf collimator (MLC) leaf sequencing is performed via commercial black-box implementations, on which a user has limited to no access. We have developed an explicit, generic MLC sequencing model to serve as a tool for future investigations of fluence map optimization, fluence delivery optimization, and rotational collimator delivery methods. Methods: We have developed a novel, comprehensive model to effectively account for a variety of transmission and penumbra effects previously treated on an ad hoc basis in the literature. As the model is capable of quantifying a variety of effects, we utilize the asymmetric leakage intensity across each leaf to deliver fluence maps with pixel size smaller than the narrowest leaf width. Developed using linear programming and mixed integer programming formulations, the model is implemented using state of the art open-source solvers. To demonstrate the versatility of the algorithm, a graphical user interface (GUI) was developed in MATLAB capable of accepting custom leaf specifications and transmission parameters. As a preliminary proof-ofconcept, we have sequenced the leaves of a Varian 120 Leaf Millennium MLC for five prostate cancer patient fields and one head and neck field. Predetermined fluence maps have been processed by data smoothing methods to obtain pixel sizes of 2.5 cm{sup 2}. The quality of output was analyzed using computer simulations. Results: For the prostate fields, an average root mean squared error (RMSE) of 0.82 and gamma (0.5mm/0.5%) of 91.4% were observed compared to RMSE and gamma (0.5mm/0.5%) values of 7.04 and 34.0% when the leakage considerations were omitted. Similar results were observed for the head and neck case. Conclusion: A model to sequence MLC leaves to optimality has been proposed. Future work will involve extensive testing and evaluation of the method on clinical MLCs and comparison with black-box leaf sequencing algorithms currently used by commercial treatment planning systems.

  13. Simultaneous, noninvasive, in vivo, continuous monitoring of hematocrit, vascular volume, hemoglobin oxygen saturation, pulse rate and breathing rate in humans and other animal models using a single light source

    Science.gov (United States)

    Dent, Paul; Tun, Sai Han; Fillioe, Seth; Deng, Bin; Satalin, Josh; Nieman, Gary; Wilcox, Kailyn; Searles, Quinn; Narsipur, Sri; Peterson, Charles M.; Goodisman, Jerry; Mostrom, James; Steinmann, Richard; Chaiken, J.

    2018-02-01

    We previously reported a new algorithm "PV[O]H" for continuous, noninvasive, in vivo monitoring of hematocrit changes in blood and have since shown its utility for monitoring in humans during 1) hemodialysis, 2) orthostatic perturbations and 3) during blood loss and fluid replacement in a rat model. We now show that the algorithm is sensitive to changes in hemoglobin oxygen saturation. We document the phenomenology of the effect and explain the effect using new results obtained from humans and rat models. The oxygen sensitivity derives from the differential absorption of autofluorescence originating in the static tissues by oxy and deoxy hemoglobin. Using this approach we show how to perform simultaneous, noninvasive, in vivo, continuous monitoring of hematocrit, vascular volume, hemoglobin oxygen saturation, pulse rate and breathing rate in mammals using a single light source. We suspect that monitoring of changes in this suite of vital signs can be provided with improved time response, sensitivity and precision compared to existing methodologies. Initial results also offer a more detailed glimpse into the systemic oxygen transport in the circulatory system of humans.

  14. In-vivo continuous monitoring of mixed venous oxygen saturation by photoacoustic transesophageal echocardiography (Conference Presentation)

    Science.gov (United States)

    Li, Li; Subramaniam, Balachundhar; Aguirre, Aaron D.; Andrawes, Michael N.; Tearney, Guillermo J.

    2016-02-01

    Mixed venous oxygen saturation (SvO2), measured from pulmonary arteries, is a gold-standard measure of the dynamic balance between the oxygen supply and demand in the body. In critical care, continuous monitoring of SvO2 plays a vital role in early detection of circulatory shock and guiding goal-oriented resuscitation. In current clinical practice, SvO2 is measured by invasive pulmonary artery catheters (PAC), which are associated with a 10% risk of severe complications. To address the unmet clinical need for a non-invasive SvO2 monitor, we are developing a new technology termed photoacoustic transesophageal echocardiography (PA-TEE). PA-TEE integrates transesophageal echocardiography with photoacoustic oximetry, and enables continuous assessment of SvO2 through an esophageal probe that can be inserted into the body in a minimally invasive manner. We have constructed a clinically translatable PA-TEE prototype, which features a mobile OPO laser, a modified ultrasonography console and a dual-modality esophageal probe. Comprised of a rotatable acoustic array detector, a flexible optical fiber bundle and a light-integrating acoustic lens, the oximetric probe has an outer diameter smaller than 15 mm and will be tolerable for most patients. Through custom-made C++/Qt software, our device acquires and displays ultrasonic and photoacoustic images in real time to guide the deployment of the probe. SvO2 is calculated on-line and updated every second. PA-TEE has now been used to evaluate SvO2 in living swine. Our findings show that changing the fraction of oxygen in the inspired gas modulates SvO2 measured by PA-TEE. Statistic comparison between SvO2 measurements from PA-TEE in vivo the gold-standard laboratorial analysis on blood samples drawn from PACs will be presented.

  15. New approach for absolute fluence distribution calculations in Monte Carlo simulations of light propagation in turbid media

    International Nuclear Information System (INIS)

    Böcklin, Christoph; Baumann, Dirk; Fröhlich, Jürg

    2014-01-01

    A novel way to attain three dimensional fluence rate maps from Monte-Carlo simulations of photon propagation is presented in this work. The propagation of light in a turbid medium is described by the radiative transfer equation and formulated in terms of radiance. For many applications, particularly in biomedical optics, the fluence rate is a more useful quantity and directly derived from the radiance by integrating over all directions. Contrary to the usual way which calculates the fluence rate from absorbed photon power, the fluence rate in this work is directly calculated from the photon packet trajectory. The voxel based algorithm works in arbitrary geometries and material distributions. It is shown that the new algorithm is more efficient and also works in materials with a low or even zero absorption coefficient. The capabilities of the new algorithm are demonstrated on a curved layered structure, where a non-scattering, non-absorbing layer is sandwiched between two highly scattering layers

  16. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring

    International Nuclear Information System (INIS)

    Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth

    2013-01-01

    Graphical abstract: -- Highlights: •Novel simply-fabricated all-organic electronics pH and oxygen optical monitor. •Excitation sources: directionally emitting, narrowed multicolor microcavity OLEDs. •Photodetectors: small molecule- or polymer-based with selective spectral responses. •Sensor film: structured high molecular weight polystyrene:polyethylene glycol blend. •×1.9 sensitivity enhancement and ×2.7 increase in the photoluminescence for oxygen. -- Abstract: Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs’ broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ∼20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ 0 /τ 100 (PL decay time τ at 0% O 2 /τ at 100% O 2 ) that is often used to express S

  17. Time-resolved and integrated angular distributions of plume ions from silver at low and medium laser fluence

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    2013-01-01

    Laser impact on metals in the UV regime results in a significant number of ablated plume ions even at moderate fluence (0.7–2.4 J/cm2). The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence. The ion flow in different directions...... from a silver target irradiated by a laser beam at a wavelength of 355 nm in vacuum was measured with a hemispherical array of Langmuir probes. The time-of-flight spectra in all directions, as well as the total angular yield were determined. The angular distribution peaks strongly in forward direction...

  18. Neutron monitoring measurements for the CIT [Compact Ignition Tokamak] materials irradiations in the ATR I1 position

    International Nuclear Information System (INIS)

    Rogers, J.W.; Anderl, R.A.

    1989-12-01

    Measurements were performed to help characterize the neutron environments in which the Compact Ignition Tokamak (CIT) materials were irradiated. These materials were irradiated in a lead shield plug assembly at the ATR I1 position. Neutron monitor materials were placed in the capsules in proximity with the CIT specimens. The neutron monitors sensed the neutrons through reactions that have different neutron energy region responses. By measuring the radioactivity of the neutron monitors it was possible to determine the neutron fluence rates (n/cm 2 /sec) and fluences (n/cm 2 ) at the locations of the monitors. It was also possible to determine the axial and radial gradients of the neutron environments near the specimens. This report presents the results obtained from these measurements for both the CIT number-sign 1 (ORNL 64-2) and CIT number-sign 2 (ORNL 64-1) capsules. In general, ASTM methods and procedures were used in all neutron monitoring associated activities. 7 refs., 9 figs., 10 tabs

  19. Nonlinear optical and optical limiting properties of fullerene, multi-walled carbon nanotubes, graphene and their derivatives with oxygen-containing functional groups

    International Nuclear Information System (INIS)

    Zhang, Xiao-Liang; Li, Xiao-Chun; Liu, Zhi-Bo; Yan, Xiao-Qing; Tian, Jian-Guo; Chen, Yong-Sheng

    2015-01-01

    Nonlinear optical properties (NLO) and optical limiting effect of fullerene (C 60 ), multi-walled carbon nanotubes (MWNTs), reduced graphene oxide (RGO) and their oxygenated derivatives were investigated by open-aperture Z-scan technique with nanosecond pulses at 532 nm. C 60 functionalized by oxygen-containing functional groups exhibits weaker NLO properties than that of pristine C 60 . Graphene oxide (GO) with many oxygen-containing functional groups also shows weaker NLO properties than that of RGO. That can be attributed to the disruption of conjugative structures of C 60 and graphene by oxygen-containing functional groups. However, MWNTs and their oxygenated derivatives exhibit comparable NLO properties due to the small weight ratio of these oxygen-containing groups. To investigate the correlation between structures and NLO response for these carbon nanomaterials with different dimensions, nonlinear scattered signal spectra versus input fluence were also measured. (paper)

  20. Towards a laser fluence dependent nanostructuring of thin Au films on Si by nanosecond laser irradiation

    International Nuclear Information System (INIS)

    Ruffino, F.; Pugliara, A.; Carria, E.; Romano, L.; Bongiorno, C.; Fisicaro, G.; La Magna, A.; Spinella, C.; Grimaldi, M.G.

    2012-01-01

    Highlights: ► Au nanoclusters are produced by nanosecond laser irradiations of thin Au film on Si. ► The shape, size, and surface density of the Au nanoclusters are tunable by laser fluence. ► The formation dynamic of the Au nanoclusters under nanosecond laser irradiation is analyzed. - Abstract: In this work, we study the nanostructuring effects of nanosecond laser irradiations on 5 nm thick Au film sputter-deposited on Si. After deposition of Au on Si substrate, nanosecond laser irradiations were performed increasing the laser fluence from 750 to 1500 mJ/cm 2 . Several analyses techniques, such as Rutherford backscattering spectrometry, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy were crossed to study the morphological evolution of the Au film as a function of laser fluence. In particular, the formation of Au nanoparticles was observed. The analyses allowed a quantitative evaluation of the evolution of the nanoparticles size, surface density, and shape as a function of the laser fluence. Therefore, a control the structural properties of the Au nanoparticles is reached, for example, for applications in Si nanowires growth or plasmonics.

  1. DOUBLE-EXPONENTIAL FITTING FUNCTION FOR EVALUATION OF COSMIC-RAY-INDUCED NEUTRON FLUENCE RATE IN ARBITRARY LOCATIONS.

    Science.gov (United States)

    Li, Huailiang; Yang, Yigang; Wang, Qibiao; Tuo, Xianguo; Julian Henderson, Mark; Courtois, Jérémie

    2017-12-01

    The fluence rate of cosmic-ray-induced neutrons (CRINs) varies with many environmental factors. While many current simulation and experimental studies have focused mainly on the altitude variation, the specific rule that the CRINs vary with geomagnetic cutoff rigidity (which is related to latitude and longitude) was not well considered. In this article, a double-exponential fitting function F=(A1e-A2CR+A3)eB1Al, is proposed to evaluate the CRINs' fluence rate varying with geomagnetic cutoff rigidity and altitude. The fitting R2 can have a value up to 0.9954, and, moreover, the CRINs' fluence rate in an arbitrary location (latitude, longitude and altitude) can be easily evaluated by the proposed function. The field measurements of the CRINs' fluence rate and H*(10) rate in Mt. Emei and Mt. Bowa were carried out using a FHT-762 and LB 6411 neutron prober, respectively, and the evaluation results show that the fitting function agrees well with the measurement results. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Task-Driven Optimization of Fluence Field and Regularization for Model-Based Iterative Reconstruction in Computed Tomography.

    Science.gov (United States)

    Gang, Grace J; Siewerdsen, Jeffrey H; Stayman, J Webster

    2017-12-01

    This paper presents a joint optimization of dynamic fluence field modulation (FFM) and regularization in quadratic penalized-likelihood reconstruction that maximizes a task-based imaging performance metric. We adopted a task-driven imaging framework for prospective designs of the imaging parameters. A maxi-min objective function was adopted to maximize the minimum detectability index ( ) throughout the image. The optimization algorithm alternates between FFM (represented by low-dimensional basis functions) and local regularization (including the regularization strength and directional penalty weights). The task-driven approach was compared with three FFM strategies commonly proposed for FBP reconstruction (as well as a task-driven TCM strategy) for a discrimination task in an abdomen phantom. The task-driven FFM assigned more fluence to less attenuating anteroposterior views and yielded approximately constant fluence behind the object. The optimal regularization was almost uniform throughout image. Furthermore, the task-driven FFM strategy redistribute fluence across detector elements in order to prescribe more fluence to the more attenuating central region of the phantom. Compared with all strategies, the task-driven FFM strategy not only improved minimum by at least 17.8%, but yielded higher over a large area inside the object. The optimal FFM was highly dependent on the amount of regularization, indicating the importance of a joint optimization. Sample reconstructions of simulated data generally support the performance estimates based on computed . The improvements in detectability show the potential of the task-driven imaging framework to improve imaging performance at a fixed dose, or, equivalently, to provide a similar level of performance at reduced dose.

  3. CALCULATION OF FLUENCE-TO-EFFECTIVE DOSE CONVERSION COEFFICIENTS FOR THE OPERATIONAL QUANTITY PROPOSED BY ICRU RC26.

    Science.gov (United States)

    Endo, Akira

    2017-07-01

    Fluence-to-effective dose conversion coefficients have been calculated for photons, neutrons, electrons, positrons, protons, muons, pions and helium ions for various incident angles of radiations. The aim of this calculation is to provide a set of conversion coefficients to the Report Committee 26 (RC26) of the International Commission on Radiation Units and Measurements (ICRU) for use in defining personal dose equivalent for individual monitoring. The data sets comprise effective dose conversion coefficients for incident angles of radiations from 0° to ±90° in steps of 15° and at ±180°. Conversion coefficients for rotational, isotropic, superior hemisphere semi-isotropic and inferior hemisphere semi-isotropic irradiations are also included. Numerical data of the conversion coefficients are presented as supplementary data. The conversion coefficients are used to define the personal dose equivalent, which is being considered by the ICRU RC26, as the operational quantity for individual monitoring. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Electrical and optical analyses of low fluence fast neutron damage to JFETs

    International Nuclear Information System (INIS)

    Hoffmann, A.; Charles, J.P.; Kerns, S.E.; Kerns, D.V. Jr.; Bardonnie, M. de la; Mialhe, P.

    1999-01-01

    The effects of fast neutron irradiation (30 MeV) on silicon n-channel JFETs are studied. Electrical parameters of the gate-channel junction are analysed at 3 fluences: 4,06*10 10 , 8,12*10 10 and 1,22*10 11 n/cm 2 for a flux of 2,82*10 6 n/s*cm 2 and using a custom software. Electrical parameter changes are attributed to bulk semi-conductor defects. Irradiation effects on passivation overlayers are evacuate using analysis of gate-channel junction electroluminescence. This study shows that even for low neutron fluences (10 11 n/cm 2 ), n-channel JFETs, characterized in direct conducting mode and submitted to neutron radiation, present a decrease in the reverse saturation current associated with recombination. (A.C.)

  5. Determination of photon fluence spectra from a 60Co therapy unit based on PENELOPE and MCNP simulations

    International Nuclear Information System (INIS)

    Baumgartner, Andreas; Hranitzky, Christian; Stadtmann, Hannes; Maringer, Franz Josef

    2011-01-01

    Photon fluence spectra of the Seibersdorf Labor/BEV Picker 60 Co therapy unit were calculated using two generally recognised Monte Carlo codes, PENELOPE-2006 and MCNP5. The complexity of the simulation model was increased in three steps (from a pure source capsule and a simplified model using rotational symmetry to a realistic model of the facility). Photon fluence spectra of both codes generally agree within their statistical standard uncertainties for the case of identical geometry set-up and particle transport parameter settings. Resulting total fluence values were about 0.3% higher for MCNP as compared to PENELOPE. The verification of the simulated photon fluence spectra was based upon depth-dose measurements in water performed with a PTW 31003 ionisation chamber and a thick-walled chamber type CC01. The depth-dose curve calculated with PENELOPE agreed with the curve obtained from measurements within 0.4% across the available depth region in the 30 cm x 30 cm x 30 cm water phantom. The comparison of measured and simulated beam quality indices (TPR 20,10 ) revealed deviations of less than 0.2%.

  6. Working group written presentation: Atomic oxygen

    International Nuclear Information System (INIS)

    Leger, L.J.; Visentine, J.T.

    1989-01-01

    Earlier Shuttle flight experiments have shown NASA and SDIO spacecraft designed for operation in low-Earth orbit (LEO) must take into consideration the highly oxidative characteristics of the ambient flight environment. Materials most adversely affected by atomic oxygen interactions include organic films, advanced (carbon-based) composites, thermal control coatings, organic-based paints, optical coatings, and thermal control blankets commonly used in spacecraft applications. Earlier results of NASA flight experiments have shown prolonged exposure of sensitive spacecraft materials to the LEO environment will result in degraded systems performance or, more importantly, lead to requirements for excessive on-orbit maintenance, with both conditions contributing significantly to increased mission costs and reduced mission objectives. Flight data obtained from previous Space Shuttle missions and results of the Solar Max recovery mission are limited in terms of atomic oxygen exposure and accuracy of fluence estimates. The results of laboratory studies to investigate the long-term (15 to 30 yrs) effects of AO exposure on spacecraft surfaces are only recently available, and qualitative correlations of laboratory results with flight results have been obtained for only a limited number of materials. The working group recommended the most promising ground-based laboratories now under development be made operational as soon as possible to study the full-life effects of atomic oxygen exposure on spacecraft systems

  7. Divergence of Cs-137 sources fluence used in brachytherapy

    International Nuclear Information System (INIS)

    Vianello, E.A.; Almeida, C.E. de

    1998-01-01

    In this work the experimental determination of correction factor for fluence divergence (kln) of linear Cs-137 sources CDCS J4, with Farmer ionization chamber model 2571 in a central and perpendicular plan to source axis, for distances range from 1 to 7 cm., has been presented. The experimental results were compared to calculating by Kondo and Randolph (1960) isotropic theory and Bielajew (1990) anisotropic theory. (Author)

  8. Single Cell Oxygen Mapping (SCOM) by Scanning Electrochemical Microscopy Uncovers Heterogeneous Intracellular Oxygen Consumption

    OpenAIRE

    Santos, Carla Santana; Kowaltowski, Alicia J.; Bertotti, Mauro

    2017-01-01

    We developed a highly sensitive oxygen consumption scanning microscopy system using platinized platinum disc microelectrodes. The system is capable of reliably detecting single-cell respiration, responding to classical regulators of mitochondrial oxygen consumption activity as expected. Comparisons with commercial multi-cell oxygen detection systems show that the system has comparable errors (if not smaller), with the advantage of being able to monitor inter and intra-cell heterogeneity in ox...

  9. Effects of high thermal and high fast fluences on the mechanical properties of type 6061 aluminum in the HFBR

    International Nuclear Information System (INIS)

    Weeks, J.R.; Czajkowski, C.J.; Tichler, P.R.

    1988-01-01

    The High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) is an epithermal, externally moderated (by D 2 O) facility designed to produce neutron beams for research. Type 6061 T-6 aluminum was used for the beam tubes, pressure vessel, fuel cladding, and most other components in the high flux area. The HFBR has operated since 1965. The epithermal, external moderation of the HFBR means that materials irradiated in different areas of the facility receive widely different flux spectra. Thus, specimens from a control rod drive follower tube (CRDF) have received 1.5 /times/ 10 22 n/cm 2 (E > 0.1 MeV) and 3.2 /times/ 10 23 n/cm 2 thermal fluence, while those from a vertical thimble flow shroud received 1.9 /times/ 10 23 n/cm 2 (E > 0.1 MeV) and 1.0 /times/ 10 23 n/cm 2 thermal. These numbers correspond to fast to thermal fluence ratios ranging from 0.05 to 1.9. Irradiations are occurring at approximately 333/degree/K. The data indicate that the increase in tensile strength and decrease in ductility result primarily from the thermal fluence, i.e., the transmutation of aluminum to silicon. These effects appear to be saturating at fluences above approximately 1.8 /times/ 10 23 n/cm 2 thermal at values of 90,000 psi (6700 Kg/mm 2 ) and 9%, respectively. The specimens receiving the highest fluence ratios appear to have less increase in tensile strength and less decrease in ductility than specimens with a lower fast to thermal fluence ratio and the same thermal fluence, suggesting a possible beneficial effect of the high energy neutrons in preventing formation of silicon crystallites. 7 refs., 11 figs., 3 tabs

  10. Realization of a scanning ion beam monitor; Realisation d'un dispositif de controle et d'imagerie de faisceaux balayes d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Pautard, C

    2008-07-15

    During this thesis, a scanning ion beam monitor has been developed in order to measure on-line fluence spatial distributions. This monitor is composed of an ionization chamber, Hall Effect sensors and a scintillator. The ionization chamber set between the beam exit and the experiment measures the ion rate. The beam spot is localized thanks to the Hall Effect sensors set near the beam sweeping magnets. The scintillator is used with a photomultiplier tube to calibrate the ionization chamber and with an imaging device to calibrate the Hall Effect sensors. This monitor was developed to control the beam lines of a radiobiology dedicated experimentation room at GANIL. These experiments are held in the context of the research in hadron-therapy. As a matter of fact, this new cancer treatment technique is based on ion irradiations and therefore demands accurate knowledge about the relation between the dose deposit in biological samples and the induced effects. To be effective, these studies require an on-line control of the fluence. The monitor has been tested with different beams at GANIL. Fluence can be measured with a relative precision of {+-}4% for a dose rate ranging between 1 mGy/s and 2 Gy/s. Once permanently set on the beam lines dedicated to radiobiology at GANIL, this monitor will enable users to control the fluence spatial distribution for each irradiation. The scintillator and the imaging device are also used to control the position, the spot shape and the energy of different beams such as those used for hadron-therapy. (author)

  11. Anesthesia for arthroscopic shoulder surgery in the beach chair position: monitoring of cerebral oxygenation using combined bispectral index and near-infrared spectroscopy.

    Science.gov (United States)

    Kawano, Hiroaki; Matsumoto, Tomomi

    2014-10-01

    Recent research has shown that cerebrovascular complications following shoulder surgery performed in the beach chair position under general anesthesia arise secondary to cerebral ischemia. Appropriate management of cerebral oxygenation is thus one of the primary goals of anesthetic management during such procedures. The present report describes the case of a 65-year-old male patient, in which both bispectral index (BIS) and near-infrared spectroscopy (NIRS) were used to monitor cerebral oxygenation. During the positioning, we observed an increased suppression ratio (SR) while BIS and regional cerebral oxygen saturation (rSO2) were at adequate level. In view of the difference in blood pressure between the heart and the base of the brain, blood pressure was maintained to ensure adequate cerebral perfusion. Although intraoperative rSO2 was at or around the cut-off point (a 12% relative decrease from baseline), no marked decrease in BIS or further increase in the SR was observed. Monitoring of cerebral perfusion using combined BIS and NIRS optimized anesthetic management during the performance of arthroscopic shoulder surgery in the beach chair position.

  12. Effects of laser fluence on silicon modification by four-beam laser interference

    International Nuclear Information System (INIS)

    Zhao, Le; Li, Dayou; Wang, Zuobin; Yue, Yong; Zhang, Jinjin; Yu, Miao; Li, Siwei

    2015-01-01

    This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm 2 , 495 mJ/cm 2 , and 637 mJ/cm 2 , the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, and the pulse duration of 7–9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications

  13. Monitoring mixed venous oxygen saturation in patients with obstructive shock after massive pulmonary embolism.

    Science.gov (United States)

    Krivec, Bojan; Voga, Gorazd; Podbregar, Matej

    2004-05-31

    Patients with massive pulmonary embolism and obstructive shock usually require hemodynamic stabilization and thrombolysis. Little is known about the optimal and proper use of volume infusion and vasoactive drugs, or about the titration of thrombolytic agents in patients with relative contraindication for such treatment. The aim of the study was to find the most rapidly changing hemodynamic variable to monitor and optimize the treatment of patients with obstructive shock following massive pulmonary embolism. Ten consecutive patients hospitalized in the medical intensive care unit in the community General Hospital with obstructive shock following massive pulmonary embolism were included in the prospective observational study. Heart rate, systolic arterial pressure, central venous pressure, mean pulmonary-artery pressure, cardiac index, total pulmonary vascular-resistance index, mixed venous oxygen saturation, and urine output were measured on admission and at 1, 2, 3, 4, 8, 12, and 16 hours. Patients were treated with urokinase through the distal port of a pulmonary-artery catheter. At 1 hour, mixed venous oxygen saturation, systolic arterial pressure and cardiac index were higher than their admission values (31+/-10 vs. 49+/-12%, p<0.0001; 86+/-12 vs. 105+/-17 mmHg, p<0.01; 1.5+/-0.4 vs. 1.9+/-0.7 L/min/m2, p<0.05; respectively), whereas heart rate, central venous pressure, mean pulmonary-artery pressure and urine output remained unchanged. Total pulmonary vascular-resistance index was lower than at admission (29+/-10 vs. 21+/-12 mmHg/L/min/m2, p<0.05). The relative change of mixed venous oxygen saturation at hour 1 was higher than the relative changes of all other studied variables (p<0.05). Serum lactate on admission and at 12 hours correlated to mixed venous oxygen saturation (r=-0.855, p<0.001). In obstructive shock after massive pulmonary embolism, mixed venous oxygen saturation changes more rapidly than other standard hemodynamic variables.

  14. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors

    Science.gov (United States)

    Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue

    2018-04-01

    Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.

  15. Laser heating and oxygen partial pressure effects on the dynamic magnetic properties of perpendicular CoFeAlO films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Di [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Li, Wei [State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062 (China); Tang, Minghong [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Zhang, Zongzhi, E-mail: zzzhang@fudan.edu.cn [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Lou, Shitao [State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062 (China); Jin, Q.Y. [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062 (China)

    2016-07-01

    The impact of oxidation and laser heating on the dynamic magnetic properties of perpendicularly magnetized Co{sub 50}Fe{sub 25}Al{sub 25}O films has been studied by time-resolved magneto-optical Kerr effect in a fs-laser pump-probe setup. We find that pump laser fluence F{sub p} can affect the effective magnetic anisotropy field and thus the precession frequency f seriously, leading to an increased dependence of effective magnetic damping factor α{sub eff} on the external field at higher fluences. Moreover, the α{sub eff} increases with increasing the oxygen partial pressure P{sub O2} while the uniaxial anisotropy energy K{sub u} and Landau factor g decrease, owing to the increased proportion of superparamagnetic CoFe oxides formed by over-oxidation. By optimizing both the F{sub p} and P{sub O2}, the intrinsic damping factor is determined to be lower than 0.028 for the perpendicular film showing a uniaxial anisotropy energy as high as 4.3×10{sup 6} erg/cm{sup 3}. The results in this study provide a promising approach to manipulate the magnetic parameters for possible applications in spintronic devices. - Highlights: • A new kind of perpendicular thin film material, oxidized CoFeAl, has been fabricated. • The precession frequency and effective damping are strongly affected by higher fluence. • The effective damping factor increases with oxygen partial pressure. • The intrinsic damping factor is below 0.028 for the CFAO film with K{sub u}=4.3×10{sup 6} erg/cm{sup 3}.

  16. Fuel cell serves as oxygen level detector

    Science.gov (United States)

    1965-01-01

    Monitoring the oxygen level in the air is accomplished by a fuel cell detector whose voltage output is proportional to the partial pressure of oxygen in the sampled gas. The relationship between output voltage and partial pressure of oxygen can be calibrated.

  17. Expected neutrino fluence from short Gamma-Ray Burst 170817A and off-axis angle constraints

    Science.gov (United States)

    Biehl, D.; Heinze, J.; Winter, W.

    2018-05-01

    We compute the expected neutrino fluence from SGRB 170817A, associated with the gravitational wave event GW 170817, directly based on Fermi observations in two scenarios: structured jet and off-axis (observed) top-hat jet. While the expected neutrino fluence for the structured jet case is very small, large off-axis angles imply high radiation densities in the jet, which can enhance the neutrino production efficiency. In the most optimistic allowed scenario, the neutrino fluence can reach only 10-4 of the sensitivity of the neutrino telescopes. We furthermore demonstrate that the fact that gamma-rays can escape limits the baryonic loading (energy in protons versus photons) and the off-axis angle for the internal shock scenario. In particular, for a baryonic loading of 10, the off-axis angle is more strongly constrained by the baryonic loading than by the time delay between the gravitational wave event and the onset of the gamma-ray emission.

  18. Oxygen assisted interconnection of silver nanoparticles with femtosecond laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Zhou, Y., E-mail: nzhou@uwaterloo.ca [Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Duley, W. W. [Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2015-12-14

    Ablation of silver (Ag) nanoparticles in the direction of laser polarization is achieved by utilizing femtosecond laser irradiation in air at laser fluence ranging from ∼2 mJ/cm{sup 2} to ∼14 mJ/cm{sup 2}. This directional ablation is attributed to localized surface plasmon induced localized electric field enhancement. Scanning electron microscopy observations of the irradiated particles in different gases and at different pressures indicate that the ablation is further enhanced by oxygen in the air. This may be due to the external heating via the reactions of its dissociation product, atomic oxygen, with the surface of Ag particles, while the ablated Ag is not oxidized. Further experimental observations show that the ablated material re-deposits near the irradiated particles and results in the extension of the particles in laser polarization direction, facilitating the interconnection of two well-separated nanoparticles.

  19. Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, T. V.; Komlenok, M. S.; Konov, V. I. [Natural Sciences Center, General Physics Institute, Vavilov str. 38, 119991 Moscow (Russian Federation); National Research Nuclear University, “MEPhI,” Kashirskoye shosse 31, 115409 Moscow (Russian Federation); Freitag, C. [Universität Stuttgart, Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany); GSaME Graduate School of Excellence Advanced Manufacturing Engineering, Nobelstrasse 12, 70569 Stuttgart (Germany); Onuseit, V.; Weber, R.; Graf, T. [Universität Stuttgart, Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany)

    2014-03-14

    Deep multipass cutting of bidirectional and unidirectional carbon fiber reinforced plastics (CFRP) with picosecond laser pulses was investigated in different static atmospheres as well as with the assistance of an oxygen or nitrogen gas flow. The ablation rate was determined as a function of the kerf depth and the resulting heat affected zone was measured. An assisting oxygen gas flow is found to significantly increase the cutting productivity, but only in deep kerfs where the diminished evaporative ablation due to the reduced laser fluence reaching the bottom of the kerf does not dominate the contribution of reactive etching anymore. Oxygen-supported cutting was shown to also solve the problem that occurs when cutting the CFRP parallel to the fiber orientation where a strong deformation and widening of the kerf, which temporarily slows down the process speed, is revealed to be typical for processing in standard air atmospheres.

  20. Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses

    International Nuclear Information System (INIS)

    Kononenko, T. V.; Komlenok, M. S.; Konov, V. I.; Freitag, C.; Onuseit, V.; Weber, R.; Graf, T.

    2014-01-01

    Deep multipass cutting of bidirectional and unidirectional carbon fiber reinforced plastics (CFRP) with picosecond laser pulses was investigated in different static atmospheres as well as with the assistance of an oxygen or nitrogen gas flow. The ablation rate was determined as a function of the kerf depth and the resulting heat affected zone was measured. An assisting oxygen gas flow is found to significantly increase the cutting productivity, but only in deep kerfs where the diminished evaporative ablation due to the reduced laser fluence reaching the bottom of the kerf does not dominate the contribution of reactive etching anymore. Oxygen-supported cutting was shown to also solve the problem that occurs when cutting the CFRP parallel to the fiber orientation where a strong deformation and widening of the kerf, which temporarily slows down the process speed, is revealed to be typical for processing in standard air atmospheres

  1. Pulsed laser ablation of silicon with low laser fluence in a low-pressure of ammonia ambient

    International Nuclear Information System (INIS)

    Choo, Cheow-Keong; Tohara, Makoto; Enomoto, Kazuhiro; Tanaka, Katsumi

    2004-01-01

    Silicon was ablated by 532 nm wavelength of Nd:YAG laser in ammonia gas ambient. The influence of laser fluence and gas ambient pressures between 1.33x10 1 to 1.33x10 -5 Pa on the deposited compound was studied by in situ X-ray photoelectron spectroscopy and transmission Fourier transform infrared spectroscopy techniques. The results indicate that the deposited compound is composed of nonstoichiometric silicon nitride (SiN x , x=0-0.84). It has been shown that the composition of nitrogen to silicon is sensitive to the laser fluence; it increases with decreasing laser fluence. However, the ammonia gas ambient in these low pressures range had no influence on the composition of the deposited compound. The reaction of the ablated silicon with low-pressure ambient ammonia is proposed to be occurred on the substrate

  2. Fluence to Dose Equivalent Conversion Coefficients for Evaluation of Accelerator Radiation Environments

    International Nuclear Information System (INIS)

    Thomas, Ralph H.; Zeman, Gary H.

    2001-01-01

    The derivation of a set of conversion functions for the expression of neutron fluence measurements in terms of Effective Dose, E, is described. Four functions in analytical form are presented, covering the neutron energy range from 2.5 10-8 to 10+4 MeV, for the interpretation of fluence measurements in the typical irradiation conditions experienced around high-energy proton accelerators such as the Bevatron. For neutron energies below 200 MeV the analytical functions were modeled after the ISO and ROT conversion coefficients in ICRU 57. For neutron energies above 200 MeV, the analytical function was derived from an analysis of recent published data. Sample calculations using either the analytical expressions or the tabulated conversion coefficients from which the analytical expressions are derived show agreement to better than plus/minus 5%

  3. A new deconvolution approach to robust fluence for intensity modulation under geometrical uncertainty

    Science.gov (United States)

    Zhang, Pengcheng; De Crevoisier, Renaud; Simon, Antoine; Haigron, Pascal; Coatrieux, Jean-Louis; Li, Baosheng; Shu, Huazhong

    2013-09-01

    This work addresses random geometrical uncertainties that are intrinsically observed in radiation therapy by means of a new deconvolution method combining a series expansion and a Butterworth filter. The method efficiently suppresses high-frequency components by discarding the higher order terms of the series expansion and then filtering out deviations on the field edges. An additional approximation is made in order to set the fluence values outside the field to zero in the robust profiles. This method is compared to the deconvolution kernel method for a regular 2D fluence map, a real intensity-modulated radiation therapy field, and a prostate case. The results show that accuracy is improved while fulfilling clinical planning requirements.

  4. A new deconvolution approach to robust fluence for intensity modulation under geometrical uncertainty

    International Nuclear Information System (INIS)

    Zhang Pengcheng; Coatrieux, Jean-Louis; Shu Huazhong; De Crevoisier, Renaud; Simon, Antoine; Haigron, Pascal; Li Baosheng

    2013-01-01

    This work addresses random geometrical uncertainties that are intrinsically observed in radiation therapy by means of a new deconvolution method combining a series expansion and a Butterworth filter. The method efficiently suppresses high-frequency components by discarding the higher order terms of the series expansion and then filtering out deviations on the field edges. An additional approximation is made in order to set the fluence values outside the field to zero in the robust profiles. This method is compared to the deconvolution kernel method for a regular 2D fluence map, a real intensity-modulated radiation therapy field, and a prostate case. The results show that accuracy is improved while fulfilling clinical planning requirements. (paper)

  5. Cerebral oxygenation monitoring in patients with bilateral carotid stenosis undergoing urgent cardiac surgery: Observational case series

    Directory of Open Access Journals (Sweden)

    Dincer Aktuerk

    2016-01-01

    Full Text Available Background: Patients with significant bilateral carotid artery stenosis requiring urgent cardiac surgery have an increased risk of stroke and death. The optimal management strategy remains inconclusive, and the available evidence does not support the superiority of one strategy over another. Materials and Methods: A number of noninvasive strategies have been developed for minimizing perioperative stroke including continuous real-time monitoring of cerebral oxygenation with near-infrared spectroscopy (NIRS. The number of patients presenting with this combination (bilateral significant carotid stenosis requiring urgent cardiac surgery in any single institution will be small and hence there is a lack of large randomized studies. Results: This case series describes our early experience with NIRS in a select group of patients with significant bilateral carotid stenosis undergoing urgent cardiac surgery (n = 8. In contrast to other studies, this series is a single surgeon, single center study, where the entire surgery (both distal ends and proximal ends was performed during single aortic clamp technique, which effectively removes several confounding variables. NIRS monitoring led to the early recognition of decreased cerebral oxygenation, and corrective steps (increased cardiopulmonary bypass flow, increased pCO 2 , etc., were taken. Conclusion: The study shows good clinical outcome with the use of NIRS. This is our "work in progress," and we aim to conduct a larger study.

  6. Depth distribution of carrier lifetime in 65 MeV oxygen ion irradiated silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, N.S. [Ecotopia Science Institute, Division of Energy Science, Nagoya University, Nagoya (Japan); Dahiwale, S.S. [Department of Physics, University of Pune, Pune 411 007 (India); Kanjilal, D. [Nuclear Science Centre, New Delhi (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India)]. E-mail: sanjay@physics.unipune.ernet.in

    2006-03-15

    CZ-grown, n-doped crystalline Si(1 1 1) of resistivity 60 {omega} cm and 140 {omega} cm were irradiated with 65 MeV energy oxygen ions, in the fluence range of 2 x 10{sup 1}-10{sup 14} ions/cm{sup 2}. The depth and spatial profile of excess minority carrier recombination time {tau} (lifetime) was measured using photoconductive decay (PCD) method. Lifetime measurements were carried out before the stopping range of impinging ions. Results show a monotonous decrease in lifetime with fluence, which is attributed to defect creation mechanism by electronic energy loss based on the thermal spike model. Also, surface modification is expected with a small loss in crystalline quality. This surface is considered to be a multi-crystalline surface with large grain boundaries that act as trapping sites for excess holes in n-Si(1 1 1). Annealing of the irradiated samples showed a near complete recovery at 750 deg. C for a period of 1 h.

  7. Charpy impact test results of ferritic alloys at a fluence of 6 x 1022n/cm2

    International Nuclear Information System (INIS)

    Hu, W.L.

    1985-01-01

    Charpy impact tests on specimens in the AD-2 reconstitution experiment were completed. One hundred ten specimens made of HT-9 base metal, 9Cr-1Mo base metal and 9Cr-1Mo weldment at various heat treatment conditions were tested in temperature range from -73 0 C to 260 0 C. The specimens were irradiated from 390 0 C to 550 0 C and the fluence of the specimens reached 6 x 10 22 n/cm 2 . This is the first time that the transition behavior of ferritic alloys at high fluence was obtained. This is also the first time that comprehensive results on the irradiated 9Cr-1Mo weldment are available. The test results show a small additional shift in transition temperature for HT-9 base metal irradiated at 390 0 C and 450 0 C as the fluence was raised to 6 x 10 22 n/cm 2 . At higher irradiation temperatures, however, the shift in transition temperature is less conclusive. Further reduction in USE was observed at higher fluence for all the irradiation temperatures. There is no apparent fluence effect for 9Cr-1Mo base metal at all the irradiation temperatures studied. Contrary to the previous finding on HT-9 base metal and weldment, the 9Cr-1Mo weldment shows a higher transition temperature ( + 60 0 C) and a higher USE ( + 100%) as compared to the 9Cr-1MO base metal for the same irradiation conditions. 6 references, 7 figures, 7 tables

  8. Probabilistic model for fluences and peak fluxes of solar energetic particles

    International Nuclear Information System (INIS)

    Nymmik, R.A.

    1999-01-01

    The model is intended for calculating the probability for solar energetic particles (SEP), i.e., protons and Z=2-28 ions, to have an effect on hardware and on biological and other objects in the space. The model describes the probability for the ≥10 MeV/nucleon SEP fluences and peak fluxes to occur in the near-Earth space beyond the Earth magnetosphere under varying solar activity. The physical prerequisites of the model are as follows. The occurrence of SEP is a probabilistic process. The mean SEP occurrence frequency is a power-law function of solar activity (sunspot number). The SEP size (taken to be the ≥30 MeV proton fluence size) distribution is a power-law function within a 10 5 -10 11 proton/cm 2 range. The SEP event particle energy spectra are described by a common function whose parameters are distributed log-normally. The SEP mean composition is energy-dependent and suffers fluctuations described by log-normal functions in separate events

  9. Measuring neutron fluences and gamma/x-ray fluxes with CCD cameras

    International Nuclear Information System (INIS)

    Yates, G.J.; Smith, G.W.; Zagarino, P.; Thomas, M.C.

    1991-01-01

    The capability to measure bursts of neutron fluences and gamma/x-ray fluxes directly with charge coupled device (CCD) cameras while being able to distinguish between the video signals produced by these two types of radiation, even when they occur simultaneously, has been demonstrated. Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCDs) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (4--12 MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate ∼.05 V/rad responsivity with ≥1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or ''peaks'' binned by area and amplitude as functions of fluence in the 10 5 to 10 7 n/cm 2 range indicate smearing over ∼1 to 10% of CCD array with charge per pixel ranging between noise and saturation levels

  10. Effects of vegetation, a clay cap and environmental variables on 222Rn fluence rate from reclaimed U mill tailings

    International Nuclear Information System (INIS)

    Morris, R.C.; Fraley, L. Jr.

    1989-01-01

    We measured 222 Rn fluence rate and several environmental variables on two plots with U mill tailings buried beneath 30 cm of overburden and 20 cm of topsoil. An additional 30 cm of clay covered the tailings on one plot and each plot was subdivided into bare soil and vegetated subplots. We used linear correlation, two-way ANOVA and stepwise multiple regression to analyze the effects of the plot characteristics and the environmental variables on 222 Rn fluence rate. The most important effect on 222 Rn fluence rates from these plots was the combination of a clay cap and a vegetated surface. The mean annual fluence rate from the plot having both of these characteristics (520 +/- 370 mBq m-2 s-1) was over three times that of the vegetated plot without a clay cap (170 +/- 130 mBq m-2 s-1) and 18 times that of the bare plot with a clay cap (29 +/- 13 mBq m-2 s-1). The interaction effect may have been due to the growth of roots in the moist clay and active transport of dissolved 222 Rn to the surface in water. This speculation is supported by the observation that on vegetated plots with a clay cap, moisture in the clay enhanced the fluence rate

  11. Neutron fluence-to-dose equivalent conversion factors: a comparison of data sets and interpolation methods

    International Nuclear Information System (INIS)

    Sims, C.S.; Killough, G.G.

    1983-01-01

    Various segments of the health physics community advocate the use of different sets of neutron fluence-to-dose equivalent conversion factors as a function of energy and different methods of interpolation between discrete points in those data sets. The major data sets and interpolation methods are used to calculate the spectrum average fluence-to-dose equivalent conversion factors for five spectra associated with the various shielded conditions of the Health Physics Research Reactor. The results obtained by use of the different data sets and interpolation methods are compared and discussed. (author)

  12. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure

    National Research Council Canada - National Science Library

    Xia, Mengna

    2005-01-01

    The goals of the study in the first stage are 1) to develop a mathematic model by which we can derive tumor blood flow and metabolic rate of oxygen from hemoglobin concentration during interventions, 2...

  13. Statistical Analysis of Reactor Pressure Vessel Fluence Calculation Benchmark Data Using Multiple Regression Techniques

    International Nuclear Information System (INIS)

    Carew, John F.; Finch, Stephen J.; Lois, Lambros

    2003-01-01

    The calculated >1-MeV pressure vessel fluence is used to determine the fracture toughness and integrity of the reactor pressure vessel. It is therefore of the utmost importance to ensure that the fluence prediction is accurate and unbiased. In practice, this assurance is provided by comparing the predictions of the calculational methodology with an extensive set of accurate benchmarks. A benchmarking database is used to provide an estimate of the overall average measurement-to-calculation (M/C) bias in the calculations ( ). This average is used as an ad-hoc multiplicative adjustment to the calculations to correct for the observed calculational bias. However, this average only provides a well-defined and valid adjustment of the fluence if the M/C data are homogeneous; i.e., the data are statistically independent and there is no correlation between subsets of M/C data.Typically, the identification of correlations between the errors in the database M/C values is difficult because the correlation is of the same magnitude as the random errors in the M/C data and varies substantially over the database. In this paper, an evaluation of a reactor dosimetry benchmark database is performed to determine the statistical validity of the adjustment to the calculated pressure vessel fluence. Physical mechanisms that could potentially introduce a correlation between the subsets of M/C ratios are identified and included in a multiple regression analysis of the M/C data. Rigorous statistical criteria are used to evaluate the homogeneity of the M/C data and determine the validity of the adjustment.For the database evaluated, the M/C data are found to be strongly correlated with dosimeter response threshold energy and dosimeter location (e.g., cavity versus in-vessel). It is shown that because of the inhomogeneity in the M/C data, for this database, the benchmark data do not provide a valid basis for adjusting the pressure vessel fluence.The statistical criteria and methods employed in

  14. Monitoring and measurement of oxygen concentrations in liquid sodium

    International Nuclear Information System (INIS)

    Smith, D.L.

    1976-01-01

    The measurement of oxygen concentrations in sodium at levels of interest for LMFBR applications is reviewed. Additional data are presented to support the validity of the vanadium-equilibration method as a reference for determination of oxygen concentrations in sodium at levels equal to or less than 15 ppM. Operating experience with electrochemical oxygen meters that have a thoria-yttria electrolyte and a Na--Na 2 O reference electrode is described. Meter lifetimes in excess of one year have generally been achieved for operating temperatures of 352 and 402 0 C, and fairly stable emfs have been observed for periods of several months. 7 fig, 21 references

  15. Irradiation induced creep in graphite with respect to the flux effect and the high fluence behaviour

    International Nuclear Information System (INIS)

    Cundy, M.R.

    1984-01-01

    In accelerated irradiation creep tests, performed in the HFR Petten, in a fast neutron flux of about 2x10 4 cm -2 s -1 and at temperatures of 300 and 500 0 C, a fast neutron fluence in excess of 20x10 21 cm -2 (EDN) has been attained so far. As a supplement to this, an analogous creep test was conducted in a fast neutron flux lower by a factor of four which is more typical for the service conditions in a HTR, with a maximum fast fluence of only 4x10 21 cm -2 (EDN). This experiment was aimed at answering the question if, for equal fast fluence, enhanced irradiation creep and Wigner dimensional change would take place in a reduced fast neutron flux. This problem has more generally been addressed to as the ''flux effect'' or the ''equivalent temperature concept''. (orig./IHOE)

  16. Textural feature calculated from segmental fluences as a modulation index for VMAT.

    Science.gov (United States)

    Park, So-Yeon; Park, Jong Min; Kim, Jung-In; Kim, Hyoungnyoun; Kim, Il Han; Ye, Sung-Joon

    2015-12-01

    Textural features calculated from various segmental fluences of volumetric modulated arc therapy (VMAT) plans were optimized to enhance its performance to predict plan delivery accuracy. Twenty prostate and twenty head and neck VMAT plans were selected retrospectively. Fluences were generated for each VMAT plan by summations of segments at sequential groups of control points. The numbers of summed segments were 5, 10, 20, 45, 90, 178 and 356. For each fluence, we investigated 6 textural features: angular second moment, inverse difference moment, contrast, variance, correlation and entropy (particular displacement distances, d = 1, 5 and 10). Spearman's rank correlation coefficients (rs) were calculated between each textural feature and several different measures of VMAT delivery accuracy. The values of rs of contrast (d = 10) with 10 segments to both global and local gamma passing rates with 2%/2 mm were 0.666 (p <0.001) and 0.573 (p <0.001), respectively. It showed rs values of -0.895 (p <0.001) and 0.727 (p <0.001) to multi-leaf collimator positional errors and gantry angle errors during delivery, respectively. The number of statistically significant rs values (p <0.05) to the changes in dose-volumetric parameters during delivery was 14 among a total of 35 tested parameters. Contrast (d = 10) with 10 segments showed higher correlations to the VMAT delivery accuracy than did the conventional modulation indices. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface.

    Science.gov (United States)

    Hamdy, Omnia; El-Azab, Jala; Al-Saeed, Tarek A; Hassan, Mahmoud F; Solouma, Nahed H

    2017-09-20

    Optical differentiation is a promising tool in biomedical diagnosis mainly because of its safety. The optical parameters' values of biological tissues differ according to the histopathology of the tissue and hence could be used for differentiation. The optical fluence rate distribution on tissue boundaries depends on the optical parameters. So, providing image displays of such distributions can provide a visual means of biomedical diagnosis. In this work, an experimental setup was implemented to measure the spatially-resolved steady state diffuse reflectance and transmittance of native and coagulated chicken liver and native and boiled breast chicken skin at 635 and 808 nm wavelengths laser irradiation. With the measured values, the optical parameters of the samples were calculated in vitro using a combination of modified Kubelka-Munk model and Bouguer-Beer-Lambert law. The estimated optical parameters values were substituted in the diffusion equation to simulate the fluence rate at the tissue surface using the finite element method. Results were verified with Monte-Carlo simulation. The results obtained showed that the diffuse reflectance curves and fluence rate distribution images can provide discrimination tools between different tissue types and hence can be used for biomedical diagnosis.

  18. Robust fluence map optimization via alternating direction method of multipliers with empirical parameter optimization

    International Nuclear Information System (INIS)

    Gao, Hao

    2016-01-01

    For the treatment planning during intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT), beam fluence maps can be first optimized via fluence map optimization (FMO) under the given dose prescriptions and constraints to conformally deliver the radiation dose to the targets while sparing the organs-at-risk, and then segmented into deliverable MLC apertures via leaf or arc sequencing algorithms. This work is to develop an efficient algorithm for FMO based on alternating direction method of multipliers (ADMM). Here we consider FMO with the least-square cost function and non-negative fluence constraints, and its solution algorithm is based on ADMM, which is efficient and simple-to-implement. In addition, an empirical method for optimizing the ADMM parameter is developed to improve the robustness of the ADMM algorithm. The ADMM based FMO solver was benchmarked with the quadratic programming method based on the interior-point (IP) method using the CORT dataset. The comparison results suggested the ADMM solver had a similar plan quality with slightly smaller total objective function value than IP. A simple-to-implement ADMM based FMO solver with empirical parameter optimization is proposed for IMRT or VMAT. (paper)

  19. A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface

    Directory of Open Access Journals (Sweden)

    Omnia Hamdy

    2017-09-01

    Full Text Available Optical differentiation is a promising tool in biomedical diagnosis mainly because of its safety. The optical parameters’ values of biological tissues differ according to the histopathology of the tissue and hence could be used for differentiation. The optical fluence rate distribution on tissue boundaries depends on the optical parameters. So, providing image displays of such distributions can provide a visual means of biomedical diagnosis. In this work, an experimental setup was implemented to measure the spatially-resolved steady state diffuse reflectance and transmittance of native and coagulated chicken liver and native and boiled breast chicken skin at 635 and 808 nm wavelengths laser irradiation. With the measured values, the optical parameters of the samples were calculated in vitro using a combination of modified Kubelka-Munk model and Bouguer-Beer-Lambert law. The estimated optical parameters values were substituted in the diffusion equation to simulate the fluence rate at the tissue surface using the finite element method. Results were verified with Monte-Carlo simulation. The results obtained showed that the diffuse reflectance curves and fluence rate distribution images can provide discrimination tools between different tissue types and hence can be used for biomedical diagnosis.

  20. Update on the use of dissolved oxygen addition to monitor the effectiveness of noble metal applications in external manifolds

    International Nuclear Information System (INIS)

    Varela, J.A.; Huie, H.H.; Seeman, R.A.; Bourne, C.M.; Odell, A.D.

    2014-01-01

    Electrochemical corrosion potential (ECP) measurements in a Mitigation Monitoring System (MMS) ECP manifold have historically been a primary indicator of the effectiveness of an On-Line NobleChem™ (OLNC) application, with the MMS ECP intended to measure the catalytic effect of noble metal deposited on the ECP manifold surface. In some plants ECP measurements made on untreated surfaces prior to an OLNC application were significantly lower than what would be expected for stainless steel under reactor bulk chemistry conditions. This is due to the consumption and depletion of bulk liquid dissolved oxygen (DO) in the lines supplying reactor water to these external ECP measurement locations. This phenomenon degrades the ability to use these external manifolds to confirm noble metal deposition. Previous papers have described how the injection of an oxygen-rich stream to the MMS supply stream (DO Addition) can be used to re-establish the capability of external ECP measurements to monitor the catalytic behavior of platinum deposited during an OLNC injection. This paper will provide an update of how this method is being successfully used in operating BWRs to monitor OLNC injections. The paper will outline the overall approach used to characterize the catalytic behavior of external ECP manifolds before and after the noble metal application and present plant data collected during DO Additions performed under various conditions. (author)

  1. Validation of neutron-transport calculations in benchmark facilities for improved damage-fluence predictions

    International Nuclear Information System (INIS)

    Williams, M.L.; Stallmann, F.W.; Maerker, R.E.; Kam, F.B.K.

    1983-01-01

    An accurate determination of damage fluence accumulated by reactor pressure vessels (RPV) as a function of time is essential in order to evaluate the vessel integrity for both pressurized thermal shock (PTS) transients and end-of-life considerations. The desired accuracy for neutron exposure parameters such as displacements per atom or fluence (E > 1 MeV) is of the order of 20 to 30%. However, these types of accuracies can only be obtained realistically by validation of nuclear data and calculational methods in benchmark facilities. The purposes of this paper are to review the needs and requirements for benchmark experiments, to discuss the status of current benchmark experiments, to summarize results and conclusions obtained so far, and to suggest areas where further benchmarking is needed

  2. Classical dynamics simulation of the fluence dependence of sputtering properties for the 2 keV Cu → Cu(1 0 0) system

    International Nuclear Information System (INIS)

    Karolewski, M.A.

    2004-01-01

    Classical dynamics simulations of sputtering have been carried out for 2 keV Cu projectiles incident on a Cu(1 0 0) crystallite target, in order to study the effects of projectile fluence on sputtering properties. Five projectiles are delivered into a 400 Ang 2 region of a Cu crystallite target at 5 ps intervals, giving a maximum fluence of 1.25 x 10 14 cm -2 in the primary impact zone. The altitudinal angle (φ) of the projectiles was 30 deg. (measured with respect to the surface), and the azimuthal (phi) direction of incidence was parallel to the surface atomic rows. The sputter yield is found not to depend sensitively on fluence. Over the fluence range investigated, the predicted standard deviation of the sputter yield is only 5% of the mean value of 11.7. Resputtered projectiles contribute less than 2% of the total sputter yield. With increasing fluence, the angular distribution of sputtered atoms tends to become less anisotropic. For example, the intensity modulations in the azimuthal angular distribution are reduced. This effect is due to the increasing contribution from atoms that are sputtered from defective structural environments. However, sputtered atom energy distributions and emission statistics show little dependence on fluence. The information depth of sputtered atoms increases rapidly with fluence, from 0.11 monolayers (ML) initially, to 1.2 ML after sputtering 0.25 ML from the primary impact zone

  3. Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro.

    Science.gov (United States)

    Li, Weitao; Huang, Dong; Zhang, Yan; Liu, Yangyang; Gu, Yueqing; Qian, Zhiyu

    2016-09-01

    Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging.

  4. Investigation of the drastic change in the sputter rate of polymers at low ion fluence

    International Nuclear Information System (INIS)

    Zekonyte, J.; Zaporojtchenko, V.; Faupel, F.

    2005-01-01

    The polymer sputter rate dependence on ion fluence and ion chemistry (Ar, N 2 , O 2 ) at 1 keV energy was investigated using a quartz crystal microbalance (QCM) which allowed to do real time etch rate measurements and to study kinetics of sputtering. The obtained sputter rates differed drastically from polymer to polymer showing, that the chemical structure of polymer is an important factor in the polymer etch yield. A decrease in the sputter rate was observed up to ion fluence of 5 x 10 14 -5 x 10 15 cm -2 (depending on the polymer type and ion chemistry) followed by the saturation in the rate at prolonged ion bombardment. Polymer removal was accompanied by the formation of degradation products, cross-linking or branching, modification of the surface chemical structure, which was studied in situ using XPS. The dependence of the surface glass transition temperature, T gs on the ion fluence was studied using the method based on the embedding of metallic nanoparticles. The correlation between chemical yield data and ablation rate is discussed

  5. MISSE PEACE Polymers Atomic Oxygen Erosion Results

    Science.gov (United States)

    deGroh, Kim, K.; Banks, Bruce A.; McCarthy, Catherine E.; Rucker, Rochelle N.; Roberts, Lily M.; Berger, Lauren A.

    2006-01-01

    Forty-one different polymer samples, collectively called the Polymer Erosion and Contamination Experiment (PEACE) Polymers, have been exposed to the low Earth orbit (LEO) environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of Materials International Space Station Experiment 2 (MISSE 2). The objective of the PEACE Polymers experiment was to determine the atomic oxygen erosion yield of a wide variety of polymeric materials after long term exposure to the space environment. The polymers range from those commonly used for spacecraft applications, such as Teflon (DuPont) FEP, to more recently developed polymers, such as high temperature polyimide PMR (polymerization of monomer reactants). Additional polymers were included to explore erosion yield dependence upon chemical composition. The MISSE PEACE Polymers experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), tray 1, on the exterior of the ISS Quest Airlock and was exposed to atomic oxygen along with solar and charged particle radiation. MISSE 2 was successfully retrieved during a space walk on July 30, 2005, during Discovery s STS-114 Return to Flight mission. Details on the specific polymers flown, flight sample fabrication, pre-flight and post-flight characterization techniques, and atomic oxygen fluence calculations are discussed along with a summary of the atomic oxygen erosion yield results. The MISSE 2 PEACE Polymers experiment is unique because it has the widest variety of polymers flown in LEO for a long duration and provides extremely valuable erosion yield data for spacecraft design purposes.

  6. ArF laser surface modification of polyethersulfone film: Effect of laser fluence in improving surface biocompatibility

    International Nuclear Information System (INIS)

    Pazokian, H.; Jelvani, S.; Mollabashi, M.; Barzin, J.; Azizabadi Farahani, G.

    2011-01-01

    ArF laser treatment of polyethersulfone (PES) films was performed to improve biocompatibility of surfaces. For this purpose, the threshold fluence for laser ablation of PES was obtained from experimental measurements and then samples were irradiated at 2 separate ranges of fluences, i.e. below and above the ablation threshold. In order to investigate the physico-chemical changes, the modified surfaces were characterized by attenuated total reflectance (ATR) infrared spectroscopy and contact-angle measurements. The biocompatibility of the treated samples in comparison to those untreated was examined in vitro using a platelet adhesion test. The number of adhered platelets was obtained using the lactate dehydrogenase (LDH) method. For surfaces irradiated below the ablation threshold, a high reduction in the number of the adhered platelets was observed; while this number increased in samples treated at the fluence above the ablation threshold. The change in platelet adhesion was attributed to the change in chemistry and roughness of the irradiated surfaces.

  7. Bonding structure and mechanical properties of B-C-N thin films synthesized by pulsed laser deposition at different laser fluences

    International Nuclear Information System (INIS)

    Wang, C.B.; Xiao, J.L.; Shen, Q.; Zhang, L.M.

    2016-01-01

    Boron carbon nitride (B-C-N) thin films have been grown by pulsed laser deposition under different laser fluences changing from 1.0 to 3.0 J/cm"2. The influence of laser fluence on microstructure, bonding structure, and mechanical properties of the films was studied, so as to explore the possibility of improving their mechanical properties by controlling bonding structure. The bonding structure identified by FT-IR and XPS indicated the coexistence of B-N, B-C, N-C and N=C bonds in the films, suggesting the formation of a ternary B-C-N hybridization. There is a clear evolution of bonding structure in the B-C-N films with the increasing of laser fluence. The variation of the mechanical properties as a function of laser fluence was also in accordance with the evolution of B-C and sp"3 N-C bonds whereas contrary to that of sp"2 B-N and N=C bonds. The hardness and modulus reached the maximum value of 33.7 GPa and 256 GPa, respectively, at a laser fluence of 3.0 J/cm"2, where the B-C-N thin films synthesized by pulsed laser deposition possessed the highest intensity of B-C and N-C bonds and the lowest fraction of B-N and N=C bonds. - Highlights: • Improvement of mechanical property by controlling bonding structure is explored. • A clear evolution of bonding structure with the increasing of laser fluence • Variation of property is in accordance with the evolution of B−C and N−C bonds.

  8. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    International Nuclear Information System (INIS)

    Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q.

    2015-01-01

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery

  9. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Taoran, E-mail: taoran.li.duke@gmail.com; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q. [Department of Radiation Oncology, Duke University Medical Center Durham, North Carolina 27710 (United States)

    2015-01-15

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery

  10. Quality assurance for online adapted treatment plans: benchmarking and delivery monitoring simulation.

    Science.gov (United States)

    Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q

    2015-01-01

    An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system's performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Online adapted plans were

  11. CO2 reactivity and brain oxygen pressure monitoring in severe head injury.

    Science.gov (United States)

    Carmona Suazo, J A; Maas, A I; van den Brink, W A; van Santbrink, H; Steyerberg, E W; Avezaat, C J

    2000-09-01

    To investigate the effect of hyperventilation on cerebral oxygenation after severe head injury. A prospective, observational study. Neurointensive care unit at a university hospital. A total of 90 patients with severe head injury (Glasgow Coma Scale score brain tissue oxygen pressure (PbrO2) was performed as a measure of cerebral oxygenation. Arterial PCO2 was decreased each day over a 5-day period for 15 mins by increasing minute volume on the ventilator setting to 20% above baseline. Arterial blood gas analysis was performed before and after changing ventilator settings. Multimodality monitoring, including PbrO2, was performed in all patients. Absolute and relative PbrO2/PaCO2 reactivity was calculated. Outcome at 6 months was evaluated according to the Glasgow Outcome Scale. Effective hyperventilation, defined by a decrease of PaCO2 > or =2 torr (0.27 kPa), was obtained in 218 (84%) of 272 tests performed. Baseline PaCO2 averaged 32.3 +/- 4.5 torr (4.31 +/- 0.60 kPa). Average reduction in PaCO2 was 3.8 +/- 1.7 torr (0.51 +/- 0.23 kPa). PbrO2 decreased by 2.8 +/- 3.7 torr (0.37 +/- 0.49 kPa; p < .001) from a baseline value of 26.5 +/- 11.6 torr (3.53 +/- 1.55 kPa). PbrO2/PaCO2 reactivity was low on day 1 (0.8 +/- 2.3 torr [0.11 +/- 0.31 kPa]), increasing on subsequent days to 6.1 +/- 4.4 torr (0.81 +/- 0.59 kPa) on day 5. PbrO2/PaCO2 reactivity on days 1 and 2 was not related to outcome. In later phases in patients with unfavorable outcome, relative reactivity was increased more markedly, reaching statistical significance on day 5. Increased hyperventilation causes a significant reduction in PbrO2, providing further evidence for possible increased risk of secondary ischemic damage during hyperventilation. The low PbrO2/PaCO2 reactivity on day 1 indicates the decreased responsiveness of cerebral microvascular vessels to PaCO2 changes, caused by generalized vascular narrowing. The increasing PbrO2/PaCO2 reactivity from days 2 to 5 suggests that the risk of

  12. Effects of laser fluence and liquid media on preparation of small Ag nanoparticles by laser ablation in liquid

    Science.gov (United States)

    Moura, Caroline Gomes; Pereira, Rafael Santiago Floriani; Andritschky, Martin; Lopes, Augusto Luís Barros; Grilo, João Paulo de Freitas; Nascimento, Rubens Maribondo do; Silva, Filipe Samuel

    2017-12-01

    This study aims to assess a method for preparation of small and highly stable Ag nanoparticles by nanosecond laser ablation in liquid. Effect of liquid medium and laser fluence on the size, morphology and structure of produced nanoparticles has been studied experimentally. Pulses of a Nd:YAG laser of 1064 nm wavelength at 35 ns pulse width at different fluences were employed to irradiate the silver target in different environments (water, ethanol and acetone). The UV-Visible absorption spectra of nanoparticles exhibit surface plasmon resonance absorption peak in the UV region. STEM and TEM micrographs were used to evaluate the size and shape of nanoparticles. The stability of silver colloids in terms of oxidation at different liquid media was analyzed by SAED patterns. The results showed that characteristics of Ag nanoparticles and their production rate were strongly influenced by varying laser fluence and liquid medium. Particles from 2 to 80 nm of diameter were produced using different conditions and no oxidation was found in ethanol and acetone media. This work puts in evidence a promising approach to produce small nanoparticles by using high laser fluence energy.

  13. Dependence of fluence errors in dynamic IMRT on leaf-positional errors varying with time and leaf number

    International Nuclear Information System (INIS)

    Zygmanski, Piotr; Kung, Jong H.; Jiang, Steve B.; Chin, Lee

    2003-01-01

    In d-MLC based IMRT, leaves move along a trajectory that lies within a user-defined tolerance (TOL) about the ideal trajectory specified in a d-MLC sequence file. The MLC controller measures leaf positions multiple times per second and corrects them if they deviate from ideal positions by a value greater than TOL. The magnitude of leaf-positional errors resulting from finite mechanical precision depends on the performance of the MLC motors executing leaf motions and is generally larger if leaves are forced to move at higher speeds. The maximum value of leaf-positional errors can be limited by decreasing TOL. However, due to the inherent time delay in the MLC controller, this may not happen at all times. Furthermore, decreasing the leaf tolerance results in a larger number of beam hold-offs, which, in turn leads, to a longer delivery time and, paradoxically, to higher chances of leaf-positional errors (≤TOL). On the other end, the magnitude of leaf-positional errors depends on the complexity of the fluence map to be delivered. Recently, it has been shown that it is possible to determine the actual distribution of leaf-positional errors either by the imaging of moving MLC apertures with a digital imager or by analysis of a MLC log file saved by a MLC controller. This leads next to an important question: What is the relation between the distribution of leaf-positional errors and fluence errors. In this work, we introduce an analytical method to determine this relation in dynamic IMRT delivery. We model MLC errors as Random-Leaf Positional (RLP) errors described by a truncated normal distribution defined by two characteristic parameters: a standard deviation σ and a cut-off value Δx 0 (Δx 0 ∼TOL). We quantify fluence errors for two cases: (i) Δx 0 >>σ (unrestricted normal distribution) and (ii) Δx 0 0 --limited normal distribution). We show that an average fluence error of an IMRT field is proportional to (i) σ/ALPO and (ii) Δx 0 /ALPO, respectively, where

  14. Noninvasive diffuse optical monitoring of head and neck tumor blood flow and oxygenation during radiation delivery

    Science.gov (United States)

    Dong, Lixin; Kudrimoti, Mahesh; Cheng, Ran; Shang, Yu; Johnson, Ellis L.; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang

    2012-01-01

    This study explored using a novel diffuse correlation spectroscopy (DCS) flow-oximeter to noninvasively monitor blood flow and oxygenation changes in head and neck tumors during radiation delivery. A fiber-optic probe connected to the DCS flow-oximeter was placed on the surface of the radiologically/clinically involved cervical lymph node. The DCS flow-oximeter in the treatment room was remotely operated by a computer in the control room. From the early measurements, abnormal signals were observed when the optical device was placed in close proximity to the radiation beams. Through phantom tests, the artifacts were shown to be caused by scattered x rays and consequentially avoided by moving the optical device away from the x-ray beams. Eleven patients with head and neck tumors were continually measured once a week over a treatment period of seven weeks, although there were some missing data due to the patient related events. Large inter-patient variations in tumor hemodynamic responses were observed during radiation delivery. A significant increase in tumor blood flow was observed at the first week of treatment, which may be a physiologic response to hypoxia created by radiation oxygen consumption. Only small and insignificant changes were found in tumor blood oxygenation, suggesting that oxygen utilizations in tumors during the short period of fractional radiation deliveries were either minimal or balanced by other effects such as blood flow regulation. Further investigations in a large patient population are needed to correlate the individual hemodynamic responses with the clinical outcomes for determining the prognostic value of optical measurements. PMID:22312579

  15. A Sensitive Technique Using Atomic Force Microscopy to Measure the Low Earth Orbit Atomic Oxygen Erosion of Polymers

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne M.; Youngstrom, Erica E.; Kaminski, Carolyn; Fine, Elizabeth S.; Marx, Laura M.

    2001-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen erosion of polymers occurs in LEO and is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data is rare and very costly, short-term exposures such as on the shuttle are often relied upon for atomic oxygen erosion determination. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, the atomic oxygen fluence is often so small that mass loss measurements can not produce acceptable uncertainties. Therefore, a recession measurement technique has been developed using selective protection of polymer samples, combined with postflight atomic force microscopy (AFM) analysis, to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences. This paper discusses the procedures used for this recession depth technique along with relevant characterization issues. In particular, a polymer is salt-sprayed prior to flight, then the salt is washed off postflight and AFM is used to determine the erosion depth from the protected plateau. A small sample was salt-sprayed for AFM erosion depth analysis and flown as part of the Limited Duration Candidate Exposure (LDCE-4,-5) shuttle flight experiment on STS-51. This sample was used to study issues such as use of contact versus non-contact mode imaging for determining recession depth measurements. Error analyses were conducted and the percent probable

  16. Fast Radio Bursts’ Recipes for the Distributions of Dispersion Measures, Flux Densities, and Fluences

    Science.gov (United States)

    Niino, Yuu

    2018-05-01

    We investigate how the statistical properties of dispersion measure (DM) and apparent flux density/fluence of (nonrepeating) fast radio bursts (FRBs) are determined by unknown cosmic rate density history [ρ FRB(z)] and luminosity function (LF) of the transient events. We predict the distributions of DMs, flux densities, and fluences of FRBs taking account of the variation of the receiver efficiency within its beam, using analytical models of ρ FRB(z) and LF. Comparing the predictions with the observations, we show that the cumulative distribution of apparent fluences suggests that FRBs originate at cosmological distances and ρ FRB increases with redshift resembling the cosmic star formation history (CSFH). We also show that an LF model with a bright-end cutoff at log10 L ν (erg s‑1 Hz‑1) ∼ 34 are favored to reproduce the observed DM distribution if ρ FRB(z) ∝ CSFH, although the statistical significance of the constraints obtained with the current size of the observed sample is not high. Finally, we find that the correlation between DM and flux density of FRBs is potentially a powerful tool to distinguish whether FRBs are at cosmological distances or in the local universe more robustly with future observations.

  17. Cooking and oxygen. An explosive recipe.

    Science.gov (United States)

    Burns, H L; Ralston, D; Muller, M; Pegg, S

    2001-02-01

    Home oxygen therapy is commonly prescribed for the treatment of chronic obstructive pulmonary disease (COPD). The risks of smoking while using this therapy have been well described. To discuss the Royal Brisbane Hospital Burns Unit's experience and present case studies which illustrate the danger of alternative ignition sources while using home oxygen. The dangers of home oxygen therapy can be minimised by careful patient selection, education and ongoing monitoring.

  18. The TL fluence response to heavy charged particles using the track interaction model and track structure information

    International Nuclear Information System (INIS)

    Rodriguez-Villafuerte, M.; Avila, O.

    2002-01-01

    The extended track interaction model, ETIM, has recently been proposed to explain the TLD-100 fluence response of peak 5 to heavy ions. This model includes the track structure information through the use of the luminescent-centre occupation probability obtained from radial dose distributions produced by the ions as they travel through the dosemeter. In this work an implementation of ETIM using Monte Carlo techniques is presented. The simulation was applied to calculate the response of peak 5 of both sensitised and normal TLD-100 crystals to 2.6 and 6.8 MeV 4 He ions. The simulation shows that the TL-fluence response has a strong dependence on ion energy, in disagreement with experimental observations. In spite of this, good agreement between the simulated TL-fluence response calculated for the 6.8 MeV 4 He radial distributions and the experimental data for the two energies was achieved. (author)

  19. Real-time monitoring of luminescent lifetime changes of PtOEP oxygen sensing film with LED/photodiode-based time-domain lifetime device.

    Science.gov (United States)

    Ji, Shaomin; Wu, Wanhua; Wu, Yubo; Zhao, Taiyang; Zhou, Fuke; Yang, Yubin; Zhang, Xin; Liang, Xiaofen; Wu, Wenting; Chi, Lina; Wang, Zhonggang; Zhao, Jianzhang

    2009-05-01

    A cost-effective LED/photodiode(PD)-based time-domain luminescent lifetime measuring device with rugged electronics and simplified algorithms was assembled and successfully used to characterize oxygen sensing films, by continuously monitoring phosphorescence lifetime changes of phosphorescent platinum octaethylporphyrin (PtOEP) in cardo poly(aryl ether ketone) polymer (IMPEK-C) vs. variation of the oxygen partial pressure in a gas mixture (O(2)/N(2)). The results determined by both phosphorescence lifetime and intensity monitoring were compared and the lifetime mode gave results which are in good agreement with the intensity mode. The lifetime-based linear Stern-Volmer plot indicates that the PtOEP molecules are nearly homogeneously distributed in the sensing film. The phosphorescent lifetime of the PtOEP film changes from 75 micros in neat N(2) to less than 2 micros in neat O(2). The sensing system (by combination of the PtOEP sensing film with the home-assembled lifetime device) gives a high lifetime-based O(2) sensing resolution, e.g. about 2 micros Torr(-1) for low O(2) concentration (below 3.5% O(2), V/V). This feasible lifetime device configuration is affordable to most sensor laboratories and the device may facilitate the study of O(2) sensing material with the continuous lifetime monitoring method.

  20. Evolution of Oxygen Deficiency Center on Fused Silica Surface Irradiated by Ultraviolet Laser and Posttreatment

    Directory of Open Access Journals (Sweden)

    Hai-Bing Lü

    2014-01-01

    Full Text Available Evolution of oxygen deficiency centers (ODCs on a fused silica surface irradiated using a 355 nm ultraviolet (UV laser beam in both vacuum and atmospheric conditions was quantitatively studied using photoluminescence and X-ray photoelectron spectroscopy. When the fusedsilica surface was exposed to the UV laser in vacuum, the laser damage threshold was decreased whereas the concentration of the ODCs was increased. For the fuse silica operated under the high power lasers, creation of ODCs on their surface resulted from the UV laser irradiation, and this is more severe in a high vacuum. The laser fluence and/or laser intensity have significant effects on the increase of the ODCs concentration. The ODCs can be effectively repaired using postoxygen plasma treatment and UV laser irradiation in an excessive oxygen environment. Results also demonstrated that the “gain” and “loss” of oxygen at the silica surface is a reversible and dynamic process.

  1. Fluence-rate effects on irradiation embrittlement and composition and temperature effects on annealing/reirradiation sensitivity

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Hiser, A.L.

    1988-01-01

    Recent MEA investigation on the effect of neutron fluence rate on radiation-induced embrittlement accrual and the contributions of metallurgical variables to postirradiation annealing and re-irradiation behavior are reviewed. Studies of fluence-rate effects involved experiments in the UBR test reactor and separately, radiation sensitivity determinations for the decommissioned Gundremmingen (KRB-A) vessel material. Annealing-reirradiation studies employed 399 0 C and 454 0 C heat treatments. Material composition is shown to play a major role in postirradiation annealing recovery. Results illustrate effects of variable copper and variable nickel contents on recoveray of steel plate having low phosphorus levels. Composition effects on recovery were also observed for prototypic welds depicting high/low copper and high/low nickel contents and three flux types. The welds, in addition, indicate major differences in re-irradiation sensitivity. The UBR investigations revealed a significant difference in fluence rate sensitivity between the ASTM A 302-B reference plate and a submerged-arc (S/A) Linde 80 weld. Studies of the Gundremmingen reactor vessel, representing a joint USA-FRG-UK undertaking revealed an anomaly in strong vs. weak test orientation radiation sensitivity. (orig./HP)

  2. Magnetic collimation and metal foil filtering for electron range and fluence modulation

    International Nuclear Information System (INIS)

    Phaisangittisakul, N.; D'Souza, W.D.; Ma Lijun

    2004-01-01

    We investigated the use of magnetically collimated electron beams together with metal filters for electron fluence and range modulation. A longitudinal magnetic field collimation method was developed to reduce skin dose and to improve the electron beam penumbra. Thin metal foils were used to adjust the energies of magnetically collimated electrons. The effects for different types of foils such as Al, Be, Cu, Pb, and Ti were studied using Monte Carlo calculations. An empirical pencil beam dose calculation model was developed to calculate electron dose distributions under magnetic collimation and foil modulation. An optimization method was developed to produce conformal dose distributions for simulated targets such as a horseshoe-shaped target. Our results show that it is possible to produce an electron depth dose enhancement peak using similar techniques of producing a spread-out Bragg peak. In conclusion, our study demonstrates new aspects of using magnetic collimation and foil filtration for producing fluence and range modulated electron dose distributions

  3. Dosimetric And Fluence Measurements At Hadron Facilities For LHC Radiation Damage Studies

    CERN Document Server

    León-Florián, E

    2001-01-01

    Dosimetry plays an essential role in experiments assessing radiation damage and hardness for the components of detectors to be operated at the future Large Hadron Collider (LHC), CERN (European Laboratory for Particle Physics), Geneva, Switzerland. Dosimetry is used both for calibration of the radiation fields and estimate of fluences and doses during the irradiation tests. The LHC environment will result in a complex radiation field composed of hadrons (mainly neutrons, pions and protons) and photons, each having an energy spectrum ranging from a few keV to several hundreds of MeV or several GeV, even. In this thesis, are exposed the results of measurements of particle fluences and doses at different hadron irradiation facilities: SARA, πE1-PSI and ZT7PS used for testing the radiation hardness of materials and equipment to be used in the future experiments at LHC. These measurements are applied to the evaluation of radiation damage inflicted to various semiconductors (such as silicon) and electronics ...

  4. Electrocatalytic oxygen reduction and hydrogen evolution reactions on phthalocyanine modified electrodes: Electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif, E-mail: akoca@eng.marmara.edu.tr [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey); Kalkan, Ayfer; Bayir, Zehra Altuntas [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey)

    2011-06-30

    Highlights: > Electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines were performed. > The presence of O{sub 2} influences both oxygen reduction reaction and the electrochemical behaviors of the complexes. > Homogeneous catalytic ORR process occurs via an 'inner sphere' chemical catalysis process. > CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. - Abstract: This study describes electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring of the electrocatalytic reduction of molecular oxygen and hydronium ion on the phthalocyanine-modified electrodes. For this purpose, electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines (MPc) bearing tetrakis-[4-((4'-trifluoromethyl)phenoxy)phenoxy] groups were performed. While CoPc gives both metal-based and ring-based redox processes, H{sub 2}Pc, ZnPc and CuPc show only ring-based electron transfer processes. In situ electrocolorimetric method was applied to investigate the color of the electrogenerated anionic and cationic forms of the complexes. The presence of O{sub 2} in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes, which indicate electrocatalytic activity of the complexes for the oxygen reduction reaction. Perchloric acid titrations monitored by voltammetry represent possible electrocatalytic activities of the complexes for hydrogen evolution reaction. CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. The nature of the metal center changes the electrocatalytic activities for hydrogen evolution reaction in aqueous solution. Although CuPc has an inactive metal center, its electrocatalytic activity is recorded more than CoPc for H{sup +} reduction in aqueous

  5. Implantable oxygen microelectrode suitable for medium-term investigations of post-surgical tissue hypoxia and changes in tumor tissue oxygenation produced by radiotherapy

    International Nuclear Information System (INIS)

    Burke, T.R.; Johnson, R.J.; Krishnamsetty, C.B.; Sako, K.; Karakousis, C.; Wojtas, F.

    1980-01-01

    Teflon-covered platinum oxygen probes were used to monitor tissue oxygen levels in post-surgical cancer patients and those treated with radiotherapy. Progressive wound healing was usually accompanied by a decrease in tissue pO2. Radiotherapy produced a slight increase in pO2 while hyperthermia effected a significant increase in the oxygen level during 100% oxygen breathing

  6. Oxygen diffusion in bilayer polymer films

    DEFF Research Database (Denmark)

    Poulsen, Lars; Zebger, Ingo; Tofte, Jannik Pentti

    2004-01-01

    Experiments to quantify oxygen diffusion have been performed on polymer samples in which a film of poly(ethylene-co-norbornene) was cast onto a film of polystyrene which, in turn, was cast onto an oxygen-impermeable substrate. In the technique employed, the time evolution of oxygen transport...... through the film of poly(ethylene-co-norbornene) and into the polystyrene film was monitored using the phosphorescence of singlet oxygen as a spectroscopic probe. To analyze the data, it was necessary to solve Fick's second law of diffusion for both polymer films. Tractable analytical and numerical...

  7. Pain during photodynamic therapy is associated with protoporphyrin IX fluorescence and fluence rate

    DEFF Research Database (Denmark)

    Wiegell, S.R.; Skiveren, J.; Philipsen, P.A.

    2008-01-01

    and protoporphyrin IX (PpIX) fluorescence, lesion type, lesion preparation and lesion localization. Methods Twenty-six patients with actinic keratoses (AKs) in different localizations and 34 patients with facial acne vulgaris were treated with methyl aminolaevulinate-PDT. Patients with acne were illuminated using......) patients with acne had a pain score of 6 [interquartile range (IQR) 5-7] compared with 8 (IQR 6-10) when using a fluence rate of 68 mW cm(-2) (P = 0.018). After correcting the pain score for PpIX fluorescence no differences in pain scores were found between first and second acne treatment, locations of AK...... lesions or between the two types of lesions. Conclusions Pain during PDT was correlated with the PpIX fluorescence in the treatment area prior to illumination. Pain was reduced using a lower fluence rate during PDT of acne Udgivelsesdato: 2008/4...

  8. SIFT: A method to verify the IMRT fluence delivered during patient treatment using an electronic portal imaging device

    International Nuclear Information System (INIS)

    Vieira, Sandra C.; Dirkx, Maarten L.P.; Heijmen, Ben J.M.; Boer, Hans C.J. de

    2004-01-01

    Purpose: Radiotherapy patients are increasingly treated with intensity-modulated radiotherapy (IMRT) and high tumor doses. As part of our quality control program to ensure accurate dose delivery, a new method was investigated that enables the verification of the IMRT fluence delivered during patient treatment using an electronic portal imaging device (EPID), irrespective of changes in patient geometry. Methods and materials: Each IMRT treatment field is split into a static field and a modulated field, which are delivered in sequence. Images are acquired for both fields using an EPID. The portal dose image obtained for the static field is used to determine changes in patient geometry between the planning CT scan and the time of treatment delivery. With knowledge of these changes, the delivered IMRT fluence can be verified using the portal dose image of the modulated field. This method, called split IMRT field technique (SIFT), was validated first for several phantom geometries, followed by clinical implementation for a number of patients treated with IMRT. Results: The split IMRT field technique allows for an accurate verification of the delivered IMRT fluence (generally within 1% [standard deviation]), even if large interfraction changes in patient geometry occur. For interfraction radiological path length changes of 10 cm, deliberately introduced errors in the delivered fluence could still be detected to within 1% accuracy. Application of SIFT requires only a minor increase in treatment time relative to the standard IMRT delivery. Conclusions: A new technique to verify the delivered IMRT fluence from EPID images, which is independent of changes in the patient geometry, has been developed. SIFT has been clinically implemented for daily verification of IMRT treatment delivery

  9. Investigation into the optimum beam shape and fluence for selective ablation of dental calculus at lambda = 400 nm.

    Science.gov (United States)

    Schoenly, Joshua E; Seka, Wolf; Rechmann, Peter

    2010-01-01

    A frequency-doubled Ti:sapphire laser is shown to selectively ablate dental calculus. The optimal transverse shape of the laser beam, including its variability under water-cooling, is determined for selective ablation of dental calculus. Intensity profiles under various water-cooling conditions were optically observed. The 400-nm laser was coupled into a multimode optical fiber using an f = 2.5-cm lens and light-shaping diffuser. Water-cooling was supplied coaxially around the fiber. Five human tooth samples (four with calculus and one pristine) were irradiated perpendicular to the tooth surface while the tooth was moved back and forth at 0.3 mm/second, varying between 20 and 180 iterations. The teeth were imaged before and after irradiation using light microscopy with a flashing blue light-emitting diode (LED). An environmental scanning electron microscope imaged each tooth after irradiation. High-order super-Gaussian intensity profiles are observed at the output of a fiber coiled around a 4-in. diameter drum. Super-Gaussian beams have a more-homogenous fluence distribution than Gaussian beams and have a higher energy efficiency for selective ablation. Coaxial water-cooling does not noticeably distort the intensity distribution within 1 mm from the optical fiber. In contrast, lasers focused to a Gaussian cross section (Calculus is preferentially ablated at high fluences (> or =2 J/cm(2)); below this fluence, stalling occurs because of photo-bleaching of the calculus. Healthy dental hard tissue is not removed at fluences calculus with a frequency-doubled Ti:sapphire laser. Fluences over 2 J/cm(2) are required to remove calculus efficiently since photo-bleaching stalls calculus removal below that value.

  10. Calculation of neutron fluence-to-dose conversion factors for extremities

    International Nuclear Information System (INIS)

    Stewart, R.D.; Harty, R.; McDonald, J.C.; Tanner, J.E.

    1993-04-01

    The Pacific Northwest Laboratory is developing a standard for the performance testing of personnel extremity dosimeters for the US Department of Energy. Part of this effort requires the calculation of neutron fluence-to-dose conversion factors for finger and wrist extremities. This study focuses on conversion factors for two types of extremity models: namely the polymethyl methacrylate (PMMA) phantom (as specified in the draft standard for performance testing of extremity dosimeters) and more realistic extremity models composed of tissue-and-bone. Calculations for each type of model are based on both bare and D 2 O-moderated 252 Cf sources. The results are then tabulated and compared with whole-body conversion factors. More appropriate energy-averaged quality factors for the extremity models have also been computed from the neutron fluence in 50 equally spaced energy bins with energies from 2.53 x 10 -8 to 15 MeV. Tabulated results show that conversion factors for both types of extremity phantom are 15 to 30% lower than the corresponcung whole-body phantom conversion factors for 252 Cf neutron sources. This difference in extremity and whole-body conversion factors is attributable to the proportionally smaller amount of back-scattering that occurs in the extremity phantoms compared with whole-body phantoms

  11. Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 The purpose of this test method is to define a general procedure for determining an unknown thermal-neutron fluence rate by neutron activation techniques. It is not practicable to describe completely a technique applicable to the large number of experimental situations that require the measurement of a thermal-neutron fluence rate. Therefore, this method is presented so that the user may adapt to his particular situation the fundamental procedures of the following techniques. 1.1.1 Radiometric counting technique using pure cobalt, pure gold, pure indium, cobalt-aluminum, alloy, gold-aluminum alloy, or indium-aluminum alloy. 1.1.2 Standard comparison technique using pure gold, or gold-aluminum alloy, and 1.1.3 Secondary standard comparison techniques using pure indium, indium-aluminum alloy, pure dysprosium, or dysprosium-aluminum alloy. 1.2 The techniques presented are limited to measurements at room temperatures. However, special problems when making thermal-neutron fluence rate measurements in high-...

  12. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core

    International Nuclear Information System (INIS)

    Lucatero, M.A.; Xolocostli M, J.V.; Gomez T, A.M.; Palacios H, J.C.

    2006-01-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, rΘ, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  13. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.

    2009-01-01

    The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.

  14. Met-myoglobin formation, accumulation, degradation, and myoglobin oxygenation monitoring based on multiwavelength attenuance measurement in porcine meat

    Science.gov (United States)

    Nguyen, Thien; Phan, Kien Nguyen; Lee, Jee-Bum; Kim, Jae Gwan

    2016-05-01

    We propose a simple, rapid, and nondestructive method to investigate formation, accumulation, and degradation of met-myoglobin (met-Mb) and myoglobin oxygenation from the interior of porcine meat. For the experiment, color photos and attenuance spectra of porcine meat (well-bled muscle, fat, and mixed) were collected daily to perform colorimetric analysis and to obtain the differences of attenuance between 578 and 567 nm (A578-A567) and between 615 and 630 nm (A630-A615), respectively. Oxy-, deoxy-, and met-myoglobin concentration changes over storage time were also calculated using Beer-Lamberts' law with reflectance intensities at 557, 582, and 630 nm. The change of A578-A567 was well matched with the change of myoglobin oxygenation, and the change of A630-A615 corresponded well with the formation and degradation of met-Mb. In addition, attenuation differences, A578-A567 and A630-A615, were able to show the formation of met-Mb earlier than colorimetric analysis. Therefore, the attenuance differences between wavelengths can be indicators for estimating myoglobin oxygenation and met-Mb formation, accumulation, and degradation, which enable us to design a simple device to monitor myoglobin activities in porcine meat.

  15. Oxygen activity measurements in simulated converter matte

    CSIR Research Space (South Africa)

    Tshilombo, KG

    2007-01-01

    Full Text Available to the composition of the gas atmosphere over the melt. The measured oxygen activity was generally close to that predicted by FactSage calculations. This indicates that such oxygen activity measurements could be useful to monitor iron removal during converting...

  16. Calculation of neutron fluence in the region of the pressure vessel for the history of different reactors by using the Monte-Carlo-method

    International Nuclear Information System (INIS)

    Barz, H.U.; Bertram, W.

    1992-01-01

    Embrittlement of pressure vessel material caused by neutron irradiation is a very important problem for VVER-440 reactors. For the estimation of the fracture risk highly reliable neutron fluence values are necessary. For this reason a special theoretical determination of space dependent neutron fluences has been performed mainly on the basis of Monte-Carlo calculations. The described method allows the accurate calculation of neutron fluences near the pressure vessel in the height of the core region for all reactor histories and loading cycles in an efficient manner. To illustrate the accuracy of the suggested method a comparison with experimental results was done. The calculated neutron fluence values can be used for planning the loading schemes of each reactor according to the safety requirements against brittle fracture. (orig.)

  17. Implementing oxygen control in chip-based cell and tissue culture systems.

    Science.gov (United States)

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  18. RAMA Methodology for the Calculation of Neutron Fluence; Metodologia RAMA para el Calculo de la Fluencia Neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Villescas, G.; Corchon, F.

    2013-07-01

    he neutron fluence plays an important role in the study of the structural integrity of the reactor vessel after a certain time of neutron irradiation. The NRC defined in the Regulatory Guide 1.190, the way must be estimated neutron fluence, including uncertainty analysis of the validation process (creep uncertainty is ? 20%). TRANSWARE Enterprises Inc. developed a methodology for calculating the neutron flux, 1,190 based guide, known as RAMA. Uncertainty values obtained with this methodology, for about 18 vessels, are less than 10%.

  19. Effect of epidural blockade and oxygen therapy on changes in subcutaneous oxygen tension after abdominal surgery

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, U; Erichsen, C J

    1994-01-01

    The effect of oxygen therapy (37% by face mask) and epidural local anesthetic blockade (9 ml 0.5% bupivacaine at Th9-11 level) on wound oxygenation was evaluated in eight otherwise healthy patients undergoing elective colorectal resection. The patients were monitored continuously for subcutaneous...... without epidural blockade and 15 (10-20) min with blockade (P surgery....

  20. Comparison of neutron and gamma irradiation effects on KU1 fused silica monitored by electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, D. [Department Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain)], E-mail: david.bravo@uam.es; Lagomacini, J.C. [Department Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Leon, M.; Martin, P. [Materiales para Fusion, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain); Martin, A. [Department Fisica e Instalaciones, ETS Arquitectura UPM, E-28040 Madrid (Spain); Lopez, F.J. [Department Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Ibarra, A. [Materiales para Fusion, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain)

    2009-06-15

    Electron paramagnetic resonance (EPR) studies have been carried out on KU1 fused silica irradiated with neutrons at fluences 10{sup 21} and 10{sup 22} n/m{sup 2}, and gamma-ray doses up to 12 MGy. The effects of post-irradiation thermal annealing treatments, up to 850 deg. C, have also been investigated. Paramagnetic oxygen-related defects (POR and NBOHC) and E'-type defects have been identified and their concentration has been measured as a function of neutron fluence, gamma dose and post-irradiation annealing temperature. It is found that neutrons at the highest fluence generate a much higher concentration of defects (mainly E' and POR, both at concentrations about 5 x 10{sup 18} spins/cm{sup 3}) than gamma irradiations at the highest dose (mainly E' at a concentration about 4 x 10{sup 17} spins/cm{sup 3}). Moreover, for gamma-irradiated samples a lower treatment temperature (about 400 deg. C) is required to annihilate most of the observed defects than for neutron-irradiated ones (about 600 deg. C)

  1. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste.

    Science.gov (United States)

    Dubber, Donata; Gray, Nicholas F

    2010-10-01

    Chemical oxygen demand (COD) is widely used for wastewater monitoring, design, modeling and plant operational analysis. However this method results in the production of hazardous wastes including mercury and hexavalent chromium. The study examined the replacement of COD with total organic carbon (TOC) for general performance monitoring by comparing their relationship with influent and effluent samples from 11 wastewater treatment plants. Biochemical oxygen demand (BOD5) was also included in the comparison as a control. The results show significant linear relationships between TOC, COD and BOD5 in settled (influent) domestic and municipal wastewaters, but only between COD and TOC in treated effluents. The study concludes that TOC can be reliably used for the generic replacement of both COD (COD=49.2+3.00*TOC) and BOD5 (BOD5=23.7+1.68*TOC) in influent wastewaters but only for COD (COD=7.25+2.99*TOC) in final effluents.

  2. A new expression for determination of fluences from a spherical moderator neutron source for the calibration of spherical neutron measuring devices

    International Nuclear Information System (INIS)

    Khoshnoodi, M.; Sohrabi, M.

    1997-01-01

    A new expression modifying the inverse square law for determination of neutron fluences from spherical moderator neutron sources is reported. The formalism is based on the neutron fluence at a point outside the moderator as the summation of fluxes of two groups of neutrons: direct neutrons from the central region of the moderator, and moderated neutrons which, to a first approximation, are scattered from the outermost layers of the spherical moderator. The expression has been further developed for spherical neutron measuring devices with an appropriate geometry factor which corrects the reading of the device for non-uniform irradiation of the detector. The combination of the new fluence function and those of the air and room scattered components introduce a calibration model. The fluence relationship obtained for moderated sources may conveniently be used for calculating the more rapid change of neutron dose at close distances than that which is based on the inverse square dependence. (author)

  3. Contribution to time resolved X-ray fluence and differential spectra measurement method improvement in 5-200 KeV range. Application to pulsed emission sources

    International Nuclear Information System (INIS)

    Vie, M.

    1983-09-01

    Two types of sensors have been developed to measure locally the time-resolved fluence and differential energetic spectrum of pulsed X-ray in the energy range 5 to 200 keV. Rise time of these sensors is very short (10 ns) in order to permit time-resolved measurements. Fluence sensors have been developed by putting filters in front of detector in order to make sensor response independent of X-ray energy and proportional to X-ray fluence. The energetic differential spectrum was calculated by way of a method similar to the ROSS method but using filters separated within a pair defining adjacent spectral width. A detailed analysis of uncertainties affecting calculated fluence and spectrum has been done [fr

  4. Development of oxygen sensors using zirconia solid electrolyte for fuel rods

    International Nuclear Information System (INIS)

    Hiura, Nobuo; Endou, Yasuichi; Yamaura, Takayuki; Matui, Yoshinori; Niimi, Motoji; Hoshiya, Taiji; Kobiyama, Mamoru; Motohashi, Yoshinobu

    1999-01-01

    The oxygen potential in oxide fuel pellet is an important parameter to understand behavior of high burn up fuel and its integrity. Zirconia solid electrolyte which is durable under irradiation and high temperature is considered as candidate material for the oxygen potential. Combined use of solid electrolyte and Ni/NiO as a solid standard electrode will realize small size oxygen sensor which can be easily loaded in the fuel rod. Prototypes of the oxygen sensor made of these materials were irradiated with neutrons the Japan Materials Testing Reactor (JMTR), and characteristics of electromotive force (EMF) by sensors were examined under irradiation. For a prototype using zirconia solid electrolyte stabilized by Y 2 O 3 (YSZ), measured EMF under irradiation was nearly equivalent to the value under unirradiated condition, and very stable within a range of neutron fluence (E>1 MeV) up to 1.52 x 10 23 m -2 and for the time of 600 h. However, the measured EMFs were slightly smaller than the theoretical values. The reason for this decrease of the EMF was thought as due to insufficient adhesion forces between solid electrolyte and standard electrode. After modification of the sensor to increase adhesion force, EMF was measured again under irradiation. The results showed improvement of the characteristics of the sensor in which measured EMFs were almost equivalent to the theoretical values. (author)

  5. Color matters--material ejection and ion yields in UV-MALDI mass spectrometry as a function of laser wavelength and laser fluence.

    Science.gov (United States)

    Soltwisch, Jens; Jaskolla, Thorsten W; Dreisewerd, Klaus

    2013-10-01

    The success of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) as a widely employed analytical tool in the biomolecular sciences builds strongly on an effective laser-material interaction that is resulting in a soft co-desorption and ionization of matrix and imbedded biomolecules. To obtain a maximized ion yield for the analyte(s) of interest, in general both wavelength and fluence need to be tuned to match the specific optical absorption profile of the used matrix. However, commonly only lasers with fixed emission wavelengths of either 337 or 355 nm are used for MALDI-MS. Here, we employed a wavelength-tunable dye laser and recorded both the neutral material ejection and the MS ion data in a wide wavelength and fluence range between 280 and 377.5 nm. α-Cyano-4-hydroxycinnamic acid (HCCA), 4-chloro-α-cyanocinnamic acid (ClCCA), α-cyano-2,4-difluorocinnamic acid (DiFCCA), and 2,5-dihydroxybenzoic acid (DHB) were investigated as matrices, and several peptides as analytes. Recording of the material ejection was achieved by adopting a photoacoustic approach. Relative ion yields were derived by division of photoacoustic and ion signals. In this way, distinct wavelength/fluence regions can be identified for which maximum ion yields were obtained. For the tested matrices, optimal results were achieved for wavelengths corresponding to areas of high optical absorption of the respective matrix and at fluences about a factor of 2-3 above the matrix- and wavelength-dependent ion detection threshold fluences. The material ejection as probed by the photoacoustic method is excellently fitted by the quasithermal model, while a sigmoidal function allows for an empirical description of the ion signal-fluence relationship.

  6. Efficacy of intense pulsed light therapy in the treatment of facial acne vulgaris: Comparison of two different fluences

    Directory of Open Access Journals (Sweden)

    Monika V Patidar

    2016-01-01

    Full Text Available Background: Acne vulgaris is the most common disease of the skin affecting adolescents and young adults causing psychological distress. The combination of antibiotic resistance, adverse effects of topical and systemic anti acne medications and desire for high tech approaches have all led to new enthusiasm for light based acne treatment. Intense pulse light (IPL therapy has three modes of action in acne vulgaris i.e., photochemical, photo thermal and photo immunological. Aims: (1 to study efficacy of IPL therapy in facial acne vulgaris. (2 To compare two fluences - one normal and other subnormal on right and left side of face respectively. Methods: (Including settings and design and statistical analysis used. Total 45 patients in age group 16 to 28 years with inflammatory facial acne vulgaris were included in prospective study. Baseline data for each patient was recorded. All patients were given 4 sittings of IPL at 2 weeks interval and were followed for 2 months every 2 weeks. Fluence used was 35J/cm2 on right and 20J/cm2 on left side. Percentage reduction in lesion count was calculated at each sitting and follow up and graded as mild (0-25%, moderate (26-50%, good (51-75% and excellent (76-100%. Side effects were noted. The results were analysed using Mann-Whitney Test. Results: On right side, excellent results were achieved in 10(22%, good in 22(49% and moderate in 13(29% patients. On left side excellent were results achieved in 7(15%, good in 19(42% and moderate in 16(43% patients. There was no statically significant difference noted in efficacy of two fluences used in treatment of facial acne vulgaris. Conclusions: IPL is a effective and safe option for inflammatory acne vulgaris with minimal reversible side effects. Subnormal fluence is as effective as normal fluence in Indian skin.

  7. The role of DNA-protein interaction in the UV damage of T7 bacteriophage at high fluences

    International Nuclear Information System (INIS)

    Fekete, A.; Ronto, G.

    1980-01-01

    The influence of higher fluences (0.5-10 kJm -2 ) and that of phage protein coat on the UV (lambda = 254 nm) damage of T7 DNA were studied by UV difference spectroscopy. Beside the pyrimidine dimers and adducts produced also in isolated DNA in the case of intact phages and fluences exceeding 0.5 kJ m -2 other photoproducts, probably DNA-protein cross-links were identified as well. Phages deprived of their protein coat by a thermal treatment show similar UV damage to that of isolated DNA. (author)

  8. Automatic control and monitoring of the MIT fission converter beam

    International Nuclear Information System (INIS)

    Wilson, B.A.; Riley, K.J.; Harling, O.K.

    2000-01-01

    An automated control and monitoring system for the new MIT high intensity epithermal neutron irradiation facility has been designed and constructed. The neutron beam is monitored with fission counters located at the periphery of the beam near the patient position. Control of the beam is accomplished with redundant Programmable Logic Controllers (PLCs). These industrial controllers open and close the three shutters of the Fission Converter Beam. The control system uses a series of robust components to assure that the prescribed fluence is delivered. This paper discusses the design and implementation of this system. (author)

  9. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Xiao, Teng; Cui, Weipan [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Joseph, E-mail: jshinar@iastate.edu [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Ruth, E-mail: rshinar@iastate.edu [Microelectronics Research Center and Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2013-05-17

    Graphical abstract: -- Highlights: •Novel simply-fabricated all-organic electronics pH and oxygen optical monitor. •Excitation sources: directionally emitting, narrowed multicolor microcavity OLEDs. •Photodetectors: small molecule- or polymer-based with selective spectral responses. •Sensor film: structured high molecular weight polystyrene:polyethylene glycol blend. •×1.9 sensitivity enhancement and ×2.7 increase in the photoluminescence for oxygen. -- Abstract: Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs’ broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ∼20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ{sub 0}/τ{sub 100} (PL decay time τ at 0% O{sub 2}/τ at 100% O{sub 2}) that is often used

  10. High-accuracy fluence determination in ion beams using fluorescent nuclear track detectors

    DEFF Research Database (Denmark)

    Osinga, J.-M.; Akselrod, M.S.; Herrmann, Rochus

    2013-01-01

    We present an approach to use Al2O3:C,Mg-based fluorescent nuclear track detectors (FNTDs) and confocal laser scanning microscopy as a semiautomatic tool for fluence measurements in clinical ion beams. The method was found to cover a linear energy transfer (LET) range from at least L∞(Al2O3) = 0...

  11. Real time continuous oxygen concentration monitoring system during malaxation for the production of Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Aiello, G.

    2012-10-01

    Full Text Available During the mechanical extraction process of Virgin Olive Oil (VOO some important physical phenomena and enzymatic transformations occur which influence the quality of the final product. The control of process parameters is crucial to ensure the quality of VOO, therefore process monitoring and control is a fundamental requirement in the modern VOO processing industry. The present work proposes an innovative Real-Time Monitoring System (RTMS aimed at continuously measuring the oxygen concentration during the malaxation process in order to establish a correlation with the quality of the final product obtained. This monitoring system is based on an oxygen concentration sensor directly connected to the malaxation chamber and a data acquisition system to analyze and store the measured values in a process database. The experimental results obtained show that the use of oxygen during malaxation improves some qualitative parameters of VOO such as free fatty acids and total polyphenols while others (peroxide values and spectrophotometric indexes worsen. These results are similar to those obtained by employing nitrogen, which is the traditional technique to avoid the wellknown oxidation processes studied by several researchers, thus demonstrating that the presence of oxygen during the malaxation process can have beneficial effects on the quality of VOO when its concentration is properly controlled.

    Durante el proceso de extracción mecánica del aceite de oliva virgen ocurren importantes fenómenos físicos y transformaciones enzimáticas que influyen en la calidad del producto final. El control de los parámetros del proceso es crucial para garantizar la calidad del aceite de oliva virgen, por tanto la monitorización y el control del proceso son requisitos fundamentales en el moderno tratamiento industrial del aceite de oliva virgen. El presente trabajo propone un sistema de monitorización innovador en tiempo real dirigido a medir continuamente

  12. Thickness optimization of various moderator materials for maximization of thermal neutron fluence

    International Nuclear Information System (INIS)

    Dhang, Prosenjit; Verma, Rishi; Shyam, Anurag

    2015-01-01

    Plasma focus device is widely being used as pulsed neutron source for variety of applications. Measurements of neutron yield by largely preferred Helium-3 proportional counter and Silver activation counter are mainly sensitive to thermal neutrons and are typically used with a neutron moderator. Thermalization of neutron is based on scattering reaction and hydrogenous materials are the best thermalizing medium. The efficiency of aforementioned neutron detectors is considerably affected by physical and geometrical properties of thermalizing medium i.e. moderator material, its thickness and shape. In view of the same, simulations have been performed to explore the effective utilization of Polyethylene, Perspex and Light water as moderating mediums for cylindrical and spherical geometry. In this study, estimated thermal fluence value up to 0.5 eV has been considered as the benchmark factor for comparing efficient thermalization by specific material, its thickness and shape. In either of the shapes being cylindrical or spherical, use of Polyethylene as moderating medium has resulted in minimum optimum thickness along with highest thermal fluence. (author)

  13. Structural evaluation of reduced graphene oxide in graphene oxide during ion irradiation: X-ray absorption spectroscopy and in-situ sheet resistance studies

    Science.gov (United States)

    Saravanan, K.; Jayalakshmi, G.; Suresh, K.; Sundaravel, B.; Panigrahi, B. K.; Phase, D. M.

    2018-03-01

    We report the structural evolution of reduced graphene oxide (rGO) in graphene oxide (GO) flakes during 1 MeV Si+ ion irradiation. In-situ electrical resistivity measurements facilitate monitoring the sheet resistance with the increase in the fluence. The electrical sheet resistance of the GO flake shows the exponential decay behaviour with the increasing ion fluence. Raman spectra of the GO flake reveal the increase in the ID/IG ratio, indicating restoration of the sp2 network upon irradiation. The C/O ratio estimated from resonant Rutherford backscattering spectrometry analysis directly evidenced the reduction of oxygen moieties upon irradiation. C K-edge X-ray absorption near edge structure spectra reveal the restoration of C=C sp2-hybridized carbon atoms and the removal of oxygen-containing functional groups in the GO flake. STM data reveal the higher conductance in the rGO regime in comparison with the regime, where the oxygen functional groups are present. The experimental investigation demonstrates that the ion irradiation can be employed for efficient reduction of GO with tunable electrical and structural properties.

  14. Application of the adjoint function methodology for neutron fluence determination

    International Nuclear Information System (INIS)

    Haghighat, A.; Nanayakkara, B.; Livingston, J.; Mahgerefteh, M.; Luoma, J.

    1991-01-01

    In previous studies, the neutron fluence at a reactor pressure vessel has been estimated based on consolidation of transport theory calculations and experimental data obtained from in-vessel capsules and/or cavity dosimeters. Normally, a forward neutron transport calculation is performed for each fuel cycle and the neutron fluxes are integrated over the reactor operating time to estimate the neutron fluence. Such calculations are performed for a geometrical model which is composed of one-eighth (0 to 45 deg) of the reactor core and its surroundings; i.e., core barrel, thermal shield, downcomer, reactor vessel, cavity region, concrete wall, and instrumentation well. Because the model is large, transport theory calculations generally require a significant amount of computer memory and time; hence, more efficient methodologies such as the adjoint transport approach have been proposed. These studies, however, do not address the necessary sensitivity studies needed for adjoint function calculations. The adjoint methodology has been employed to estimate the activity of a cavity dosimeter and that of an in-vessel capsule. A sensitivity study has been performed on the mesh distribution used in and around the cavity dosimeter and the in-vessel capsule. Further, since a major portion of the detector response is due to the neutrons originated in the peripheral fuel assemblies, a study on the use of a smaller calculational model has been performed

  15. Naphthalene degradation in seawater by UV irradiation: The effects of fluence rate, salinity, temperature and initial concentration

    International Nuclear Information System (INIS)

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Zheng, Jisi; Liu, Bo

    2014-01-01

    Highlights: • The removal of naphthalene follows first order kinetics in seawater. • Irradiance and temperature are the most influential factors. • An increase in irradiance can linearly promote photodegradation. • High salinity suppresses the photodegradation of naphthalene. - Abstract: A large amount of oil pollution at sea is produced by the operational discharge of oily wastewater. The removal of polycyclic aromatic hydrocarbons (PAHs) from such sources using UV irradiation has become attractive, yet the photolysis mechanism in seawater has remained unclear. This study examines the photodegradation kinetics of naphthalene in natural seawater through a full factorial design of experiments (DOE). The effects of fluence rate, salinity, temperature and initial concentration are investigated. Results show that fluence rate, temperature and the interaction between temperature and initial concentration are the most influential factors. An increase in fluence rate can linearly promote the photodegradation process. Salinity increasingly impedes the removal of naphthalene because of the existence of free-radical scavengers and photon competitors. The results will help understand the photolysis mechanism of PAHs and develop more effective methods for treating oily seawater generated from offshore industries

  16. SU-D-201-03: During-Treatment Delivery Monitoring System for TomoTherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q; Read, P [University of Virginia, Charlottesville, VA (United States)

    2016-06-15

    Purpose: Multiple error pathways can lead to delivery errors during the treatment course that cannot be caught with pre-treatment QA. While in vivo solutions are being developed for linacs, no such solution exists for tomotherapy. The purpose of this study is to develop a near real-time system for tomotherapy that can monitor the delivery and dose accumulation process during the treatment-delivery, which enable the user to assess the impact of delivery variations and/or errors and to interrupt the treatment if necessary. Methods: A program running on a tomotherapy planning station fetches the raw DAS data during treatment. Exit detector data is extracted as well as output, gantry angle, and other machine parameters. For each sample, the MLC open-close state is determined. The delivered plan is compared with the original plan via a Monte Carlo dose engine which transports fluence deviations from a pre-treatment Monte Carlo run. A report containing the difference in fluence, dose and DVH statistics is created in html format. This process is repeated until the treatment is completed. Results: Since we only need to compute the dose for the difference in fluence for a few projections each time, dose with 2% statistical uncertainty can be computed in less than 1 second on a 4-core cpu. However, the current bottleneck in this near real-time system is the repeated fetching and processing the growing DAS data file throughout the delivery. The frame rate drops from 10Hz at the beginning of treatment to 5Hz after 3 minutes and to 2Hz after 10 minutes. Conclusion: A during-treatment delivery monitor system has been built to monitor tomotherapy treatments. The system improves patient safety by allowing operators to assess the delivery variations and errors during treatment delivery and adopt appropriate actions.

  17. SU-D-201-03: During-Treatment Delivery Monitoring System for TomoTherapy

    International Nuclear Information System (INIS)

    Chen, Q; Read, P

    2016-01-01

    Purpose: Multiple error pathways can lead to delivery errors during the treatment course that cannot be caught with pre-treatment QA. While in vivo solutions are being developed for linacs, no such solution exists for tomotherapy. The purpose of this study is to develop a near real-time system for tomotherapy that can monitor the delivery and dose accumulation process during the treatment-delivery, which enable the user to assess the impact of delivery variations and/or errors and to interrupt the treatment if necessary. Methods: A program running on a tomotherapy planning station fetches the raw DAS data during treatment. Exit detector data is extracted as well as output, gantry angle, and other machine parameters. For each sample, the MLC open-close state is determined. The delivered plan is compared with the original plan via a Monte Carlo dose engine which transports fluence deviations from a pre-treatment Monte Carlo run. A report containing the difference in fluence, dose and DVH statistics is created in html format. This process is repeated until the treatment is completed. Results: Since we only need to compute the dose for the difference in fluence for a few projections each time, dose with 2% statistical uncertainty can be computed in less than 1 second on a 4-core cpu. However, the current bottleneck in this near real-time system is the repeated fetching and processing the growing DAS data file throughout the delivery. The frame rate drops from 10Hz at the beginning of treatment to 5Hz after 3 minutes and to 2Hz after 10 minutes. Conclusion: A during-treatment delivery monitor system has been built to monitor tomotherapy treatments. The system improves patient safety by allowing operators to assess the delivery variations and errors during treatment delivery and adopt appropriate actions.

  18. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring

    DEFF Research Database (Denmark)

    Ingerslev, Hans Jakob; Hindkjær, Johnny Juhl; Kirkegaard, Kirstine

    2012-01-01

    recently demonstrated to occur from first cleavage cycle in mice using time-lapse microscopy, with the largest impact on the pre-compaction stages. However, embryonic development in mice differs in many aspects from human embryonic development. The objective of this retrospective, descriptive study...... was to evaluate the influence of oxygen tension on human pre-implantation development using time-lapse monitoring. Materials and methods: Human embryos were cultured to the blastocyst stage in a time-lapse incubator (EmbryoScope™) in 20% O2 (group 1), 20% O2 for 24 hours followed by culture in 5% O2 (group 2......) or in 5% O2 (group 3). Eligible were patients with age 8 oocytes retrieved. Group 1 consisted of 120 IVF/ICSI embryos from 26 patients recruited to a study conducted to evaluate the safety of the time-lapse incubator by randomising 1:1 embryos from a patient to culture...

  19. Determination of the Neutron Fluence, the Beam Characteristics and the Backgrounds at the CERN-PS TOF Facility

    CERN Multimedia

    Leal, L C; Kitis, G; Guber, K H; Quaranta, A; Koehler, P E

    2002-01-01

    In the scope of our programme we propose to start in July 2000 with measurements on elements of well known cross sections, in order to check the reliability of the whole experimental installation at the CERN-TOF facility. These initial exploratory measurements will provide the key-parameters required for the further experimentation at the CERN-TOF neutron beam. The neutron fluence and energy resolution will be determined as a function of the neutron kinetic energy by reproducing standard capture and fission cross sections. The measurements of capture cross sections on elements with specific cross section features will allow to us to disentangle the different components of backgrounds and estimate their level in the experimental area. The time-energy calibration will be determined and monitored with a set of monoenergetic filters as well as by the measurements of elements with resonance-dominated cross sections. Finally, in this initial phase the behaviour of several detectors scheduled in successive measureme...

  20. Does the fluence map editing in electronic tissue compensator improve dose homogeneity in bilateral field plan of head and neck patients?

    Directory of Open Access Journals (Sweden)

    Kinhikar Rajesh

    2008-01-01

    Full Text Available The purpose of this study was to evaluate the effect of fluence map editing in electronic tissue compensator (ETC on the dose homogeneity for head and neck cancer patients. Treatment planning using 6-MV X-rays and bilateral field arrangement employing ETC was carried out on the computed tomography (CT datasets of 20 patients with head and neck cancer. All the patients were planned in Varian Eclipse three-dimensional treatment planning system (3DTPS with dynamic multileaf collimator (DMLC. The treatment plans, with and without fluence editing, was compared and the effect of pre-editing and post-editing the fluence maps in the treatment field was evaluated. The skin dose was measured with thermoluminescent dosimeters (TLDs and was compared with the skin dose estimated by TPS. The mean percentage volume of the tissue receiving at least 107% of the prescription dose was 5.4 (range 1.5-10; SD 2.4. Post-editing fluence map showed that the mean percentage volume of the tissue receiving at least 107% of the prescription dose was 0.47 (range 0.1-0.9; SD 0.3. The mean skin dose measured with TLD was found to be 74% (range 71-80% of the prescribed dose while the TPS showed the mean skin dose as 85% (range 80-90%. The TPS overestimated the skin dose by 11%. Fluence map editing thus proved to be a potential tool for improving dose homogeneity in head and neck cancer patients planned with ETC, thus reducing the hot spots in the treatment region as well. The treatment with ETC is feasible with DMLC and does not take any additional time for setup or delivery. The method used to edit the fluence maps is simple and time efficient. Manual control over a plan is essential to create the best treatment plan possible.

  1. Analysis of radiation damage to Si solar cells under high-fluence electron irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, Masafumi; Taylor, S.J.; Yang, Ming-Ju; Matsuda, Sumio; Kawasaki, Osamu; Hisamatsu, Tadashi.

    1996-01-01

    Radiation testing of Si n + -p-p + space solar cells has revealed an anomalous increase in short-circuit current I sc , followed by an abrupt decrease and cell failure, induced by high-fluence (>10 16 cm -2 ) electron irradiation. A model which can be used to explain these phenomena by expressing the change in majority-carrier concentration p of the base region as a function of the electron fluence has been proposed in addition to the well-known model in which I sc is decreased due to minority-carrier lifetime reduction with irradiation. The reduction in p due to majority-carrier trapping by radiation-induced defects has two effects; one is broadening of the depletion layer which contributes to the increase in the generated photocurrent and that in the recombination-generation current in the depletion layer, and the second is an increase in the resistivity of the base layer resulting in an abrupt decrease of I sc and failure of the solar cells. (author)

  2. Time changes of vertical profile of neutron fluence rate in LVR-15 reactor

    International Nuclear Information System (INIS)

    Viererbl, L.; Stehno, J.; Erben, O.; Lahodova, Z.; Marek, M.

    2003-01-01

    The LVR-15 reactor is a light water research type reactor, which is situated, in Nuclear Research Institute, Rez near Prague. The reactor is used as a multipurpose facility. For some experiments and material productions, e.g. for homogeneity of silicon resistance in production of radiation doped silicon, the time changes of vertical profile of neutron fluence rate are particularly important. The assembly used for silicon irradiation has two self-powered neutron detectors installed in a vertical irradiation channel in LVR-15 reactor. Vertical profile of thermal neutron fluence rate was automatically scanned during reactor operation. The results of measurements made in 2002 and 2003 with these detectors are presented. A set of vertical profile measurements was made during two 21-days reactor cycles. During the cycle the vertical profile slightly changes both in the position of its maximum and in the shape. The time dependences of the position of profile maximum and the profile width at half maximum during the cycle are given. (author)

  3. Accuracy of neutron dose evaluation in the area monitoring for LHD experiments

    CERN Document Server

    Yamanishi, H; Uda, T; Tanahashi, S; Saitou, M; Handa, H

    2000-01-01

    The error in the evaluation of neutron dose during calculation of the neutron field around the large helical device (LHD) in D-D operation is discussed. The expected neutron dose at each monitoring point was derived from the dose conversion factor and neutron fluence data, which was calculated with the radiation transport code DOT-3.5. In contrast, the detected dose at the neutron counter was obtained from the fluence data and the detector response given by calculation with MCNP-4b. The neutron counter used in these calculations consisted of a helium-3 proportional counter with a cylindrical polyethylene moderator. According to the results of the calculations, the ratio of the detected dose to the expected dose was found to lie in the range 1.0-3.0 on the outdoor monitoring points. Since the response of a single neutron counter may lead to inconsistencies in the dose conversion factor, we attempted to minimize these inconsistencies by using a pair of counters with moderators of different thickness. The ratio ...

  4. Cerebral oxygenation in contusioned vs. nonlesioned brain tissue: monitoring of PtiO2 with Licox and Paratrend.

    Science.gov (United States)

    Sarrafzadeh, A S; Kiening, K L; Bardt, T F; Schneider, G H; Unterberg, A W; Lanksch, W R

    1998-01-01

    Brain tissue PO2 in severely head injured patients was monitored in parallel with two different PO2-microsensors (Licox and Paratrend). Three different locations of sensor placement were chosen: (1) both catheters into non lesioned tissue (n = 3), (2) both catheters into contusioned tissue (n = 2), and (3) one catheter (Licox) into pericontusional versus one catheter (Paratrend) into non lesioned brain tissue (n = 2). Mean duration of PtiO2-monitoring with both microsensors in parallel was 68.1 hours. Brain tissue PO2 varied when measured in lesioned and nonlesioned tissue. In non lesioned tissue both catheters closely correlated (delta Licox/Paratrend: mean PtiO2 delta lesioned/non lesioned: mean PtiO2: 10.3 mm Hg). In contusioned brain tissue PtiO2 was always below the "hypoxic threshold" of 10 mm Hg, independent of the type of microsensor used. During a critical reduction in cerebral perfusion pressure (PO2, only increased PtiO2 when measured in pericontusional and nonlesioned brain. To recognize critical episodes of hypoxia or ischemia, PtiO2-monitoring of cerebral oxygenation is recommended in nonlesioned brain tissue.

  5. Test measurements on a secco white-lead containing model samples to assess the effects of exposure to low-fluence UV laser radiation

    International Nuclear Information System (INIS)

    Raimondi, Valentina; Andreotti, Alessia; Colombini, Maria Perla; Cucci, Costanza; Cuzman, Oana; Galeotti, Monica; Lognoli, David; Palombi, Lorenzo; Picollo, Marcello; Tiano, Piero

    2015-01-01

    Highlights: • A set of a secco model samples was prepared using white lead and four different organic binders (animal glue and whole egg, whole egg, skimmed milk, egg-oil tempera). • The samples were irradiated with low-fluence UV laser pulses (0.1–1 mJ/cm 2 ). • The effects of laser irradiation were analysed by using different techniques. • The analysis did not point out changes due to low-fluence laser irradiation. • High fluence (88 mJ/cm 2 ) laser radiation instead yielded a chromatic change ascribed to the inorganic component. - Abstract: Laser-induced fluorescence technique is widely used for diagnostic purposes in several applications and its use could be of advantage for non-invasive on-site characterisation of pigments or other compounds in wall paintings. However, it is well known that long-time exposure to UV and VIS radiation can cause damage to wall paintings. Several studies have investigated the effects of lighting, e.g., in museums: however, the effects of low-fluence laser radiation have not been studied much so far. This paper investigates the effects of UV laser radiation using fluences in the range of 0.1 mJ/cm 2 –1 mJ/cm 2 on a set of a secco model samples prepared with lead white and different type of binders (animal glue and whole egg, whole egg, skimmed milk, egg-oil tempera). The samples were irradiated using a Nd:YAG laser (emission wavelength at 355 nm; pulse width: 5 ns) by applying laser fluences between 0.1 mJ/cm 2 and 1 mJ/cm 2 and a number of laser pulses between 1 and 500. The samples were characterised before and after laser irradiation by using several techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy, FT-IR spectroscopy Attenuated Total Reflectance microscopy and gas chromatography/mass spectrometry), to detect variations in the morphological and physico-chemical properties. The results did not point out significant changes in the sample properties after irradiation in the proposed

  6. Development of sensors for monitoring oxygen and free radicals in plant physiology

    Science.gov (United States)

    Chaturvedi, Prachee

    Oxygen plays a critical role in the physiology of photosynthetic organisms, including bioenergetics, metabolism, development, and stress response. Oxygen levels affect photosynthesis, respiration, and alternative oxidase pathways. Likewise, the metabolic rate of spatially distinct plant cells (and therefore oxygen flux) is known to be affected by biotic stress (e.g., herbivory) and environmental stress (e.g., salt/nutrient stress). During aerobic metabolism, cells produce reactive oxygen species (ROS) as a by product. Plants also produce ROS during adaptation to stress (e.g., abscisic acid (ABA) mediated stress responses). If stress conditions are prolonged, ROS levels surpass the capacity of detoxifying mechanisms within the cell, resulting in oxidative damage. While stress response pathways such as ABA-mediated mechanisms have been well characterized (e.g., water stress, inhibited shoot growth, synthesis of storage proteins in seeds), the connection between ROS production, oxygen metabolism and stress response remains unknown. In part, this is because details of oxygen transport at the interface of cell(s) and the surrounding microenvironment remains nebulous. The overall goal of this research was to develop oxygen and Free radical sensors for studying stress signaling in plants. Recent developments in nanomaterials and data acquisition systems were integrated to develop real-time, non-invasive oxygen and Free radical sensors. The availability of these sensors for plant physiologists is an exciting opportunity to probe the functional realm of cells and tissues in ways that were not previously possible.

  7. A new fibre optic pulse oximeter probe for monitoring splanchnic organ arterial blood oxygen saturation.

    Science.gov (United States)

    Hickey, M; Samuels, N; Randive, N; Langford, R; Kyriacou, P A

    2012-12-01

    A new, continuous method of monitoring splanchnic organ oxygen saturation (SpO(2)) would make the early detection of inadequate tissue oxygenation feasible, reducing the risk of hypoperfusion, severe ischaemia, and, ultimately, death. In an attempt to provide such a device, a new fibre optic based reflectance pulse oximeter probe and processing system were developed followed by an in vivo evaluation of the technology on seventeen patients undergoing elective laparotomy. Photoplethysmographic (PPG) signals of good quality and high signal-to-noise ratio were obtained from the small bowel, large bowel, liver and stomach. Simultaneous peripheral PPG signals from the finger were also obtained for comparison purposes. Analysis of the amplitudes of all acquired PPG signals indicated much larger amplitudes for those signals obtained from splanchnic organs than those obtained from the finger. Estimated SpO(2) values for splanchnic organs showed good agreement with those obtained from the finger fibre optic probe and those obtained from a commercial device. These preliminary results suggest that a miniaturized 'indwelling' fibre optic sensor may be a suitable method for pre-operative and post-operative evaluation of splanchnic organ SpO(2) and their health. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes.

    Science.gov (United States)

    Opitz, N; Lübbers, D W

    1987-01-01

    range of PO2 values, resulting in a higher resolution. Use of suitable polymer alloys as indicator matrices can even enhance oxygen sensitivity; therefore, the application of optodes for trace analysis of oxygen might be possible, especially with regard to the application of highly oxygen-sensitive phosphorescent indicators. Finally, owing to the reversibility of fluorescence quenching, monitoring of oxygen by fluorescence optical sensors allows a continuous and remote control of biomedical parameters as well as regulation of biotechnological processes.(ABSTRACT TRUNCATED AT 400 WORDS)

  9. Assessment and Use of Optical Oxygen Sensors as Tools to Assist in Optimal Product Component Selection for the Development of Packs of Ready-to-Eat Mixed Salads and for the Non-Destructive Monitoring of in-Pack Oxygen Levels Using Chilled Storage.

    Science.gov (United States)

    Hempel, Andreas W; O'Sullivan, Maurice G; Papkovsky, Dmitri B; Kerry, Joseph P

    2013-05-22

    Optical oxygen sensors were used to ascertain the level of oxygen consumed by individual salad leaves for optimised packaging of ready-to-eat (RTE) Italian salad mixes during refrigerated storage. Seven commonly found leaves in Italian salad mixes were individually assessed for oxygen utilisation in packs. Each leaf showed varying levels of respiration throughout storage. Using the information obtained, an experimental salad mix was formulated (termed Mix 3) which consisted of the four slowest respiring salad leaves-Escarole, Frisee, Red Batavia, Lollo Rosso. Mix 3 was then compared against two commercially available Italian salads; Mix 1 (Escarole, Frisee, Radicchio, Lollo Rosso) and Mix 2 (Cos, Frisee, Radicchio, Lollo Rosso). Optical sensors were used to non-destructively monitor oxygen usage in all mixes throughout storage. In addition to oxygen consumption, all three salad mixes were quality assessed in terms of microbial load and sensorial acceptability. In conclusion, Mix 3 was found to consume the least amount of oxygen over time, had the lowest microbial load and was most sensorially preferred ( p products.

  10. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong [Multimedia University, Centre for Advanced Devices and Systems (CADS), Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yong, Thian-Khok [Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Setapak, Kuala Lumpur (Malaysia); Yap, Seong-Shan [Norwegian University of Science and Technology, Institute of Physics, Trondheim (Norway)

    2010-08-15

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm{sup 2} to 8 J/cm{sup 2}. The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  11. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    International Nuclear Information System (INIS)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong; Yong, Thian-Khok; Yap, Seong-Shan

    2010-01-01

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm 2 to 8 J/cm 2 . The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  12. Monitoring of the Adult Patient on Venoarterial Extracorporeal Membrane Oxygenation

    Directory of Open Access Journals (Sweden)

    Mabel Chung

    2014-01-01

    Full Text Available Venoarterial extracorporeal membrane oxygenation (VA ECMO provides mechanical support to the patient with cardiac or cardiopulmonary failure. This paper reviews the physiology of VA ECMO including the determinants of ECMO flow and gas exchange. The efficacy of this therapy may be determined by assessing patient hemodynamics and device flow, overall gas exchange support, markers of adequate oxygen delivery, and pulsatility of the arterial blood pressure waveform.

  13. The importance of bilateral monitoring of cerebral oxygenation (NIRS): Clinical case of asymmetry during cardiopulmonary bypass secondary to previous cerebral infarction.

    Science.gov (United States)

    Matcan, S; Sanabria Carretero, P; Gómez Rojo, M; Castro Parga, L; Reinoso-Barbero, F

    2018-03-01

    Cerebral oximetry based on near infrared spectroscopy (NIRS) technology is used to determine cerebral tissue oxygenation. We hereby present the clinical case of a 12-month old child with right hemiparesis secondary to prior left middle cerebral artery stroke 8 months ago. The child underwent surgical enlargement of the right ventricular outflow tract (RVOT) with cardiopulmonary bypass. During cardiopulmonary bypass, asymmetric NIRS results were detected between both hemispheres. The utilization of multimodal neuromonitoring (NIRS-BIS) allowed acting on both perfusion pressure and anesthetic depth to balance out the supply and demand of cerebral oxygen consumption. No new neurological sequelae were observed postoperatively. We consider bilateral NIRS monitoring necessary in order to detect asymmetries between cerebral hemispheres. Although asymmetries were not present at baseline, they can arise intraoperatively and its monitoring thus allows the detection and treatment of cerebral ischemia-hypoxia in the healthy hemisphere, which if undetected and untreated would lead to additional neurological damage. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Effect of hydrogen on mechanical fluence during storage in dry; Efecto del hidrogeno en la fluencia mecanica durante el almacenamiento en seco

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2011-07-01

    One of the challenges in the field of the mechanical fluence modeling is to include the effect of hydrogen as an additional hardening factor associated with reactor irradiation. For this it is necessary to identify the weight of each variable in the factor hardening of the classical laws of mechanics fluence.

  15. Crew Cerebral Oxygen Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal is aimed at developing a non-invasive, optical method for monitoring the state of consciousness of crew members in operational...

  16. Crew Cerebral Oxygen Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II SBIR proposal is aimed at developing a non-invasive, optical method for monitoring crew member state of awareness in operational environments. All...

  17. Evaluation of the Fluence Conversion Factor for 32P in Sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-18

    When 32S is exposed to neutrons it undergoes a 32S(n,p)32P reaction with a neutron cross section as shown in Figure 1. This reaction may be used to characterize the neutron fluence for neutrons greater than 3 MeV.

  18. Expected Particle Fluences and Performance of the LHCb Trigger Tracker

    CERN Document Server

    Siegler, M; Needham, M; Steinkamp, O

    2004-01-01

    Monte Carlo simulations of the expected 1 MeV-neutron equivalent fluence in the Trigger Tracker (TT) station of the LHCb detector have been used to investigate the effect of radiation damage on the performance of the detector. The build-up of leakage currents and the corresponding increase in electronic noise has been investigated, as well as the effect of bulk damage on the full-depletion voltage of the sensors and the risk of thermal runaway due to the power generated due to the leakage currents.

  19. Realization of fluence field modulated CT on a clinical TomoTherapy megavoltage CT system

    International Nuclear Information System (INIS)

    Szczykutowicz, Timothy P; Hermus, James; Geurts, Mark; Smilowitz, Jennifer

    2015-01-01

    The multi-leaf collimator (MLC) assembly present on TomoTherapy (Accuray, Madison WI) radiation therapy (RT) and mega voltage CT machines is well suited to perform fluence field modulated CT (FFMCT). In addition, there is a demand in the RT environment for FFMCT imaging techniques, specifically volume of interest (VOI) imaging.A clinical TomoTherapy machine was programmed to perform VOI. Four different size ROIs were placed at varying distances from isocenter. Projections intersecting the VOI received ‘full dose’ while those not intersecting the VOI received 30% of the dose (i.e. the incident fluence for non VOI projections was 30% of the incident fluence for projections intersecting the VOI). Additional scans without fluence field modulation were acquired at ‘full’ and 30% dose. The noise (pixel standard deviation) and mean CT number were measured inside the VOI region and compared between the three scans. Dose maps were generated using a dedicated TomoTherapy treatment planning dose calculator.The VOI-FFMCT technique produced an image noise 1.05, 1.00, 1.03, and 1.05 times higher than the ‘full dose’ scan for ROI sizes of 10 cm, 13 cm, 10 cm, and 6 cm respectively within the VOI region. The VOI-FFMCT technique required a total imaging dose equal to 0.61, 0.69, 0.60, and 0.50 times the ‘full dose’ acquisition dose for ROI sizes of 10 cm, 13 cm, 10 cm, and 6 cm respectively within the VOI region.Noise levels can be almost unchanged within clinically relevant VOIs sizes for RT applications while the integral imaging dose to the patient can be decreased, and/or the image quality in RT can be dramatically increased with no change in dose relative to non-FFMCT RT imaging. The ability to shift dose away from regions unimportant for clinical evaluation in order to improve image quality or reduce imaging dose has been demonstrated. This paper demonstrates that FFMCT can be performed using the MLC on a clinical TomoTherapy machine for the

  20. A new Recoil Proton Telescope for energy and fluence measurement of fast neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, Lena; Bachaalany, Mario [IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons), Cadarache Bat.159, 13115 Saint Paul-lez-Durance, (France); Husson, Daniel; Higueret, Stephane [IPHC / RaMsEs (Institut Pluridisciplinaire Hubert Curien / Radioprotection et Mesures Environnementales), 23 rue du loess - BP28, 67037 Strasbourg cedex 2, (France)

    2015-07-01

    The spectrometer ATHENA (Accurate Telescope for High Energy Neutron metrology Applications), is being developed at the IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons) and aims at characterizing energy and fluence of fast neutron fields. The detector is a Recoil Proton Telescope and measures neutron fields in the range of 5 to 20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50{sub m} thick silicon sensors that use CMOS technology for the proton tracking and a 3 mm thick silicon diode to measure the residual proton energy. This first prototype used CMOS sensors called MIMOSTAR, initially developed for heavy ion physics. The use of CMOS sensors and silicon diode increases the intrinsic efficiency of the detector by a factor of ten compared with conventional designs. The first prototype has already been done and was a successful study giving the results it offered in terms of energy and fluence measurements. For mono energetic beams going from 5 to 19 MeV, the telescope offered an energy resolution between 5 and 11% and fluence difference going from 5 to 7% compared to other home standards. A second and final prototype of the detector is being designed. It will hold upgraded CMOS sensors called FastPixN. These CMOS sensors are supposed to run 400 times faster than the older version and therefore give the telescope the ability to support neutron flux in the order of 107 to 108cm{sup 2}:s{sup 1}. The first prototypes results showed that a 50 m pixel size is enough for a precise scattering angle reconstruction. Simulations using MCNPX and GEANT4 are already in place for further improvements. A DeltaE diode will replace the third CMOS sensor and will be installed right before the silicon diode for a better recoil proton selection. The final prototype with

  1. Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys

    Science.gov (United States)

    Ni, Kai; Ma, Qian; Wan, Hao; Yang, Bin; Ge, Junjie; Zhang, Lingyu; Si, Naichao

    2018-02-01

    The evolution of microstructure for 7075 aluminum alloys with 50 Kev helium ions irradiation were studied by using optical microscopy (OM), scanning electron microscopy (SEM), x-ray diffraction (XRD) and transmission electron microscopy (TEM). The fluences of 1 × 1015, 1 × 1016 and 1 × 1017 ions cm-2 were selected, and irradiation experiments were conducted at room temperatures. The transmission process of He+ ions was simulated by using SRIM software, including distribution of ion ranges, energy losses and atomic displacements. Experimental results show that irradiated pits and micro-cracks were observed on irradiation sample surface, and the size of constituent particles (not including Mg2Si) decreased with the increasing dose. The x-ray diffraction results of the pair of peaks is better resolved in irradiated samples might indicate that the stressed structure consequence due to crystal defects (vacancies and interstitials) after He+ implantation. TEM observation indicated that the density of MgZn2 phase was significantly reduced after helium ion irradiation which is harmful to strength. Besides, the development of compressive stress produced a large amount of dislocation defects in the 1015 ions cm-2 sample. Moreover, higher fluence irradiation produced more dislocations in sample. At fluence of 1016 ions cm-2, dislocation wall formed by dislocation slip and aggregation in the interior of grains, leading to the refinement of these grains. As fluence increased to 1017 ions cm-2, dislocation loops were observed in pinned dislocation. Moreover, dislocation as effective defect sink, irradiation-induced vacancy defects aggregated to these sinks, and resulted in the formation of helium bubbles in dislocation.

  2. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence

    International Nuclear Information System (INIS)

    Mahdieh, Mohammad Hossein; Fattahi, Behzad

    2015-01-01

    Highlights: • Colloidal aluminum- and titanium-based nanoparticles fabricated by laser ablation. • Various liquid environments and laser fluences were applied as variable parameters. • Physical characteristics of liquid medium influence ablation process and nanoparticle formation. • Size properties of prepared nanoparticles depend on liquid medium and laser fluence. • Ablation of both metals in ethanol results in nanoparticles with smaller size. - Abstract: In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet–visible (UV–vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles’ mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution

  3. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Mohammad Hossein, E-mail: mahdm@iust.ac.ir; Fattahi, Behzad

    2015-02-28

    Highlights: • Colloidal aluminum- and titanium-based nanoparticles fabricated by laser ablation. • Various liquid environments and laser fluences were applied as variable parameters. • Physical characteristics of liquid medium influence ablation process and nanoparticle formation. • Size properties of prepared nanoparticles depend on liquid medium and laser fluence. • Ablation of both metals in ethanol results in nanoparticles with smaller size. - Abstract: In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet–visible (UV–vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles’ mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution.

  4. Oxygen dynamics around buried lesser sandeels Ammodytes tobianus (Linnaeus 1785): mode of ventilation and oxygen requirements

    DEFF Research Database (Denmark)

    Behrens, Jane W; Stahl, Henrik J; Steffensen, John F

    2007-01-01

    The oxygen environment around buried sandeels (Ammodytes tobianus) was monitored by planar optodes. The oxygen penetration depth at the sediment interface was only a few mm. Thus fish, typically buried at 1-4 cm depth, were generally in anoxic sediment. However, they induced an advective transport...... down along the body, referred to as ;plume ventilation'. Yet, within approximately 30 min the oxic plume was replenished by oxygen-depleted water from the gills. The potential for cutaneous respiration by the buried fish was thus of no quantitative importance. Calculations derived by three independent...... methods (each with N=3) revealed that the oxygen uptake of sandeel buried for 6-7 h was 40-50% of previous estimates on resting respirometry of non-buried fish, indicating lower O(2) requirements during burial on a diurnal timescale. Buried fish exposed to decreasing oxygen tensions gradually approached...

  5. Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle.

    Science.gov (United States)

    Nugent, William H; Song, Bjorn K; Pittman, Roland N; Golub, Aleksander S

    2016-05-01

    Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10 Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130 mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98 ± 0.03 ml O2/100 cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Passive detectors for neutron fluence measurement

    International Nuclear Information System (INIS)

    Holt, P.D.

    1985-01-01

    The use of neutron activation detectors (slow neutron detectors and threshold detectors) and fission track detectors for radiological protection purposes, principally in criticality dosimetry, dosimetry of pulsed accelerators and calibration of neutron fluxes is discussed. References are given to compilations of cross sections. For the determination of the activity induced, either beta ray or gamma ray counting may be used. For beta-ray counting, thin foils are usually necessary which result in low neutron sensitivity. When fission track detectors are used, it is necessary to know the efficiency of track registration. Alternatively, a detector-counter system may be calibrated by exposure to a known flux of monoenergetic neutrons. Usually, the sensitivity of activation detectors is low because small foils are used. For criticality dosimetry, calibration work and shielding studies on accelerators, low sensitivity is acceptable. However, there are some instances where, by the use of long integration times, or very large quantities of detector material with gamma ray detection, neutron fluences in operational areas have been measured. (author)

  7. Resistive switching behavior in single crystal SrTiO{sub 3} annealed by laser

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xinqiang [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Shuai, Yao, E-mail: yshuai@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wu, Chuangui, E-mail: cgwu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Luo, Wenbo [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Sun, Xiangyu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yuan, Ye; Zhou, Shengqiang [Helmholtz-Zentrum Dresden Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, D-01328 Dresden (Germany); Ou, Xin [State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Wanli [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-12-15

    Highlights: • Laser annealing was used to introduce oxygen vacancies into the single crystal SrTiO{sub 3}. • The effect of laser annealing with different fluence on the single crystal SrTiO{sub 3} was systematically studied. • The concentration of oxygen vacancies can be tuned by changing the fluence of laser. • Resistive switching behavior was observed in the sample with relatively high laser fluence after an electro-forming process. - Abstract: Single crystal SrTiO{sub 3} (STO) wafers were annealed by XeCl laser (λ = 308 nm) with different fluences of 0.4 J/cm{sup 2}, 0.6 J/cm{sup 2} and 0.8 J/cm{sup 2}, respectively. Ti/Pt electrodes were sputtered on the surface of STO wafer to form co-planar capacitor-like structures of Pt/Ti/STO/Ti/Pt. Current-Voltage measurements show that the leakage current is enhanced by increasing laser fluence. Resistive switching behavior is only observed in the sample annealed by laser with relatively high fluence after an electro-forming process. The X-ray photoelectron spectroscopy measurements indicate that the amount of oxygen vacancies increases with the increase of laser fluence. This work indicates resistive switching appears when enough oxygen vacancies are generated by the laser, which form conductive filaments under an external electric field.

  8. Test measurements on a secco white-lead containing model samples to assess the effects of exposure to low-fluence UV laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, Valentina, E-mail: v.raimondi@ifac.cnr.it [‘Nello Carrara’ Applied Physics Institute - National Research Council of Italy (CNR-IFAC), Firenze (Italy); Andreotti, Alessia; Colombini, Maria Perla [Chemistry and Industrial Chemistry Department (DCCI) - University of Pisa, Pisa (Italy); Cucci, Costanza [‘Nello Carrara’ Applied Physics Institute - National Research Council of Italy (CNR-IFAC), Firenze (Italy); Cuzman, Oana [Institute for the Conservation and Promotion of Cultural Heritage - National Research Council (CNR-ICVBC), Firenze (Italy); Galeotti, Monica [Opificio delle Pietre Dure (OPD), Firenze (Italy); Lognoli, David; Palombi, Lorenzo; Picollo, Marcello [‘Nello Carrara’ Applied Physics Institute - National Research Council of Italy (CNR-IFAC), Firenze (Italy); Tiano, Piero [Institute for the Conservation and Promotion of Cultural Heritage - National Research Council (CNR-ICVBC), Firenze (Italy)

    2015-05-15

    Highlights: • A set of a secco model samples was prepared using white lead and four different organic binders (animal glue and whole egg, whole egg, skimmed milk, egg-oil tempera). • The samples were irradiated with low-fluence UV laser pulses (0.1–1 mJ/cm{sup 2}). • The effects of laser irradiation were analysed by using different techniques. • The analysis did not point out changes due to low-fluence laser irradiation. • High fluence (88 mJ/cm{sup 2}) laser radiation instead yielded a chromatic change ascribed to the inorganic component. - Abstract: Laser-induced fluorescence technique is widely used for diagnostic purposes in several applications and its use could be of advantage for non-invasive on-site characterisation of pigments or other compounds in wall paintings. However, it is well known that long-time exposure to UV and VIS radiation can cause damage to wall paintings. Several studies have investigated the effects of lighting, e.g., in museums: however, the effects of low-fluence laser radiation have not been studied much so far. This paper investigates the effects of UV laser radiation using fluences in the range of 0.1 mJ/cm{sup 2}–1 mJ/cm{sup 2} on a set of a secco model samples prepared with lead white and different type of binders (animal glue and whole egg, whole egg, skimmed milk, egg-oil tempera). The samples were irradiated using a Nd:YAG laser (emission wavelength at 355 nm; pulse width: 5 ns) by applying laser fluences between 0.1 mJ/cm{sup 2} and 1 mJ/cm{sup 2} and a number of laser pulses between 1 and 500. The samples were characterised before and after laser irradiation by using several techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy, FT-IR spectroscopy Attenuated Total Reflectance microscopy and gas chromatography/mass spectrometry), to detect variations in the morphological and physico-chemical properties. The results did not point out significant changes in the sample properties after

  9. Constant-Fluence Area Scaling for Laser Propulsion

    International Nuclear Information System (INIS)

    Sinko, John E.

    2008-01-01

    A series of experiments was conducted on polyoxymethylene (POM, trade name Delrin registered ) propellants in air at atmospheric pressure. A TEA CO 2 laser with maximum output power up to 20 J was used to deliver 300 ns pulses of 10.6 μm radiation to POM targets. Ablation at a constant fluence and a range of spot areas was achieved by varying combinations of the laser energy and spot size. Relevant empirical scaling laws governing laser propulsion parameters such as the momentum coupling coefficient (C m ) and specific impulse (I sp ) for spot areas within a range of about 0.05-0.25 cm 2 are presented. Experimental measurements of imparted impulse, C m , I sp , and ablated mass per pulse were made using dynamic piezoelectric force sensors and a scientific balance. Finally, Schlieren ICCD imaging of shock waves and vapor plumes was performed and analyzed

  10. First Results from the Online Radiation Dose Monitoring System in ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration; Deliyergiyev, M; Gorišek, A; Kramberger, G; Mikuž, M; Franz, S; Hartert, J; Dawson, I; Miyagawa, P S; Nicolas, L

    2011-01-01

    High radiation doses which will accumulate in components of ATLAS experiment during data taking will cause damage to detectors and readout electronics. It is therefore important to continuously monitor the doses to estimate the level of degradation caused by radiation. Online radiation monitoring system measures ionizing dose in SiO2 and fluences of 1-MeV(Si) equivalent neutrons and thermal neutrons at several locations in ATLAS detector. In this paper measurements collected during two years of ATLAS data taking are presented and compared to predictions from radiation background simulations.

  11. EFFECTS OF IRRADIATION ON THERMAL CONDUCTIVITY OF ALLOY 690 AT LOW NEUTRON FLUENCE

    Directory of Open Access Journals (Sweden)

    WOO SEOG RYU

    2013-04-01

    Full Text Available Alloy 690 has been selected as a steam generator tubing material for SMART owing to a near immunity to primary water stress corrosion cracking. The steam generators of SMART are faced with a neutron flux due to the integrated arrangement inside a reactor vessel, and thus it is important to know the irradiation effects of the thermal conductivity of Alloy 690. Alloy 690 was irradiated at HANARO to fluences of (0.7−28 × 1019n/cm2 (E>0.1MeV at 250°C, and its thermal conductivity was measured using the laser-flash equipment in the IMEF. The thermal conductivity of Alloy 690 was dependent on temperature, and it was a good fit to the Smith-Palmer equation, which modified the Wiedemann-Franz law. The irradiation at 250°C did not degrade the thermal conductivity of Alloy 690, and even showed a small increase (1% at fluences of (0.7∼28 × 1019n/cm2 (E>0.1MeV.

  12. Preliminary results with a strip ionization chamber used as beam monitor for hadrontherapy treatments

    Energy Technology Data Exchange (ETDEWEB)

    Boriano, A. [Dipartimento di Fisica Sperimentale e INFN, Via P.Giuria 1, 1-10125 Turin (Italy); Bourhaleb, F. [Fondazione TERA, Via Puccini 1, 1-28100 Novara (Italy); Cirio, R. [Dipartimento di Fisica Sperimentale e INFN, Via P.Giuria 1, 1-10125 Turin (Italy)] (and others)

    2006-01-15

    Preliminary results are presented from a test of a parallel plate ionization chamber with the anode segmented in strips (MOPI) to be used as a beam monitor for therapeutical treatments on the 62 MeV proton beam line of the INFN-LNS Superconducting Cyclotron. Ocular pathologies have been treated at the Catana facility since March 2002. The detector, placed downstream of the patient collimator, will allow the measurement of the relevant beam diagnostic parameters during treatment such as integrated beam fluence, for dose determination; the beam baricentre, width and asymmetry will be obtained from the fluence profile sampled with a resolution of about 100 Urn at a rate up to 1 kHz with no dead time. In this test, carried out at LNS, the detector has been exposed to different beam shapes and the integrated fluence derived by the measured beam profiles has been compared with that obtained with other dosimeters normally used for treatment. The skewness of the beam profile has been measured and shown to be suitable to on-line check variations of the beam shape.

  13. Preliminary results with a strip ionization chamber used as beam monitor for hadrontherapy treatments

    International Nuclear Information System (INIS)

    Boriano, A.; Bourhaleb, F.; Cirio, R.

    2006-01-01

    Preliminary results are presented from a test of a parallel plate ionization chamber with the anode segmented in strips (MOPI) to be used as a beam monitor for therapeutical treatments on the 62 MeV proton beam line of the INFN-LNS Superconducting Cyclotron. Ocular pathologies have been treated at the Catana facility since March 2002. The detector, placed downstream of the patient collimator, will allow the measurement of the relevant beam diagnostic parameters during treatment such as integrated beam fluence, for dose determination; the beam baricentre, width and asymmetry will be obtained from the fluence profile sampled with a resolution of about 100 Urn at a rate up to 1 kHz with no dead time. In this test, carried out at LNS, the detector has been exposed to different beam shapes and the integrated fluence derived by the measured beam profiles has been compared with that obtained with other dosimeters normally used for treatment. The skewness of the beam profile has been measured and shown to be suitable to on-line check variations of the beam shape

  14. Preliminary results with a strip ionization chamber used as beam monitor for hadrontherapy treatments

    Science.gov (United States)

    Boriano, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cuttone, G.; Donetti, M.; Garelli, E.; Giordanengo, S.; Luparia, A.; Marchette, F.; Peroni, C.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2006-01-01

    Preliminary results are presented from a test of a parallel plate ionization chamber with the anode segmented in strips (MOPI) to be used as a beam monitor for therapeutical treatments on the 62 MeV proton beam line of the INFN-LNS Superconducting Cyclotron. Ocular pathologies have been treated at the Catana facility since March 2002. The detector, placed downstream of the patient collimator, will allow the measurement of the relevant beam diagnostic parameters during treatment such as integrated beam fluence, for dose determination; the beam baricentre, width and asymmetry will be obtained from the fluence profile sampled with a resolution of about 100 Urn at a rate up to 1 kHz with no dead time. In this test, carried out at LNS, the detector has been exposed to different beam shapes and the integrated fluence derived by the measured beam profiles has been compared with that obtained with other dosimeters normally used for treatment. The skewness of the beam profile has been measured and shown to be suitable to on-line check variations of the beam shape.

  15. Multi-Fibre Optode Microsensors: affordable designs for monitoring oxygen in soils under varying environmental conditions

    Science.gov (United States)

    Rezanezhad, F.; Milojevic, T.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2017-12-01

    Molecular oxygen (O2) measurements in field and laboratory soil and sediment systems provide useful insight into the biogeochemical functioning of natural environments. However, monitoring soil and sediment O2 is often challenging due to high costs, analyte consumption, and limited customizability and durability of existing O2 sensors. To meet this challenge, an in-house luminescence-based Multi Fibre Optode (MuFO) microsensor system was developed to monitor O2 levels under changing moisture and temperature regimes. The design is simplified by the use of a basic DSLR camera, LED light and fibre optic cables. The technique is based on O2 quenching the luminescent light intensity emitted from a luminophore (platinum(II) meso-tetra(pentafluorophenyl)porphyrin, PtTFPP) that is dip-coated onto the tips of the fibre optic cables, where increasing O2 corresponds to decreasing light intensity, based on the classic Stern-Volmer relationship. High-resolution digital images of the sensor-emitted light are then converted into % O2 saturation. The method was successfully tested in two artificial soil (20% peat, 80% sand) column experiments designed to simulate freeze-thaw cycles (temperature cycling from -10°C to 25°C) and water table fluctuations under controlled conditions. Depth distributions of O2 levels were monitored without interruption for multiple freeze-thaw and water table cycles. No degradation of optode performance or O2 signals were observed for the duration of the column experiments, which supports the long-term deployment of the microsensors for continuous O2 monitoring in field and laboratory settings. The technical specifications of the system are fair, with a detection limit of 0.2% O2 saturation. The main advantages of the MuFO system over commercial applications are the comparatively low cost ($1,800 USD; about ¼ the cost of commercial versions) and ease of customizability. The system has been further developed for near real-time monitoring in the field

  16. Optimal oxygen saturation in premature infants

    Directory of Open Access Journals (Sweden)

    Meayoung Chang

    2011-09-01

    Full Text Available There is a delicate balance between too little and too much supplemental oxygen exposure in premature infants. Since underuse and overuse of supplemental oxygen can harm premature infants, oxygen saturation levels must be monitored and kept at less than 95% to prevent reactive oxygen species-related diseases, such as retinopathy of prematurity and bronchopulmonary dysplasia. At the same time, desaturation below 80 to 85% must be avoided to prevent adverse consequences, such as cerebral palsy. It is still unclear what range of oxygen saturation is appropriate for premature infants; however, until the results of further studies are available, a reasonable target for pulse oxygen saturation (SpO2 is 90 to 93% with an intermittent review of the correlation between SpO2 and the partial pressure of arterial oxygen tension (PaO2. Because optimal oxygenation depends on individuals at the bedside making ongoing adjustments, each unit must define an optimal target range and set alarm limits according to their own equipment or conditions. All staff must be aware of these values and adjust the concentration of supplemental oxygen frequently.

  17. Tracking the Oxygen Status in the Cell Nucleus with a Hoechst-Tagged Phosphorescent Ruthenium Complex.

    Science.gov (United States)

    Hara, Daiki; Umehara, Yui; Son, Aoi; Asahi, Wataru; Misu, Sotaro; Kurihara, Ryohsuke; Kondo, Teruyuki; Tanabe, Kazuhito

    2018-05-04

    Molecular oxygen in living cells is distributed and consumed inhomogeneously, depending on the activity of each organelle. Therefore, tractable methods that can be used to monitor the oxygen status in each organelle are needed to understand cellular function. Here we report the design of a new oxygen-sensing probe for use in the cell nucleus. We prepared "Ru-Hoechsts", each consisting of a phosphorescent ruthenium complex linked to a Hoechst 33258 moiety, and characterized their properties as oxygen sensors. The Hoechst unit shows strong DNA-binding properties in the nucleus, and the ruthenium complex shows oxygen-dependent phosphorescence. Thus, Ru-Hoechsts accumulated in the cell nucleus and showed oxygen-dependent signals that could be monitored. Of the Ru-Hoechsts prepared in this study, Ru-Hoechst b, in which the ruthenium complex and the Hoechst unit were linked through a hexyl chain, showed the most suitable properties for monitoring the oxygen status. Ru-Hoechsts are probes with high potential for visualizing oxygen fluctuations in the nucleus. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of spot size and fluence on Q-switched alexandrite laser treatment for pigmentation in Asians: a randomized, double-blinded, split-face comparative trial.

    Science.gov (United States)

    Wang, Chia-Chen; Chen, Chih-Kang

    2012-10-01

    Q-switched laser treatment for pigment disorders commonly leads to postinflammatory hyperpigmentation (PIH) in Asians. To evaluate the effect of spot size and fluence on Q-switched alexandrite laser (QSAL) treatment for pigmentation in Asians. Ten patients with freckles, 18 with lentigines, and 8 with acquired bilateral nevus of Ota-like macules (ABNOM) received 1 session of QSAL treatment for a 3-mm spot on one cheek and a 4-mm spot on the other cheek. The lowest fluences to achieve a visible biologic effect were chosen. The patients with freckles experienced the highest improvement rate (83-84%), followed by those with lentigines (52%) and ABNOM (35%). Similar efficacy was observed for both cheeks (p > 0.05). PIH developed in 10% (1/10), 44% (8/18), and 75% (6/8) of the patients with freckles, lentigines, and ABNOM, respectively. The severity of PIH was lower in the 4-mm spot with a lower fluence than in the 3-mm spot with a higher fluence in patients with lentigines (p = 0.03), but not in those with freckles or ABNOM. Using a larger spot to achieve the same biologic effect at a lower fluence is associated with equal efficacy and less-severe PIH in patients with lentigines.

  19. Production and aging of paramagnetic point defects in P-doped floating zone silicon irradiated with high fluence 27 MeV electrons

    Science.gov (United States)

    Joita, A. C.; Nistor, S. V.

    2018-04-01

    Enhancing the long term stable performance of silicon detectors used for monitoring the position and flux of the particle beams in high energy physics experiments requires a better knowledge of the nature, stability, and transformation properties of the radiation defects created over the operation time. We report the results of an electron spin resonance investigation in the nature, transformation, and long term stability of the irradiation paramagnetic point defects (IPPDs) produced by high fluence (2 × 1016 cm-2), high energy (27 MeV) electrons in n-type, P-doped standard floating zone silicon. We found out that both freshly irradiated and aged (i.e., stored after irradiation for 3.5 years at 250 K) samples mainly contain negatively charged tetravacancy and pentavacancy defects in the first case and tetravacancy defects in the second one. The fact that such small cluster vacancy defects have not been observed by irradiation with low energy (below 5 MeV) electrons, but were abundantly produced by irradiation with neutrons, strongly suggests the presence of the same mechanism of direct formation of small vacancy clusters by irradiation with neutrons and high energy, high fluence electrons, in agreement with theoretical predictions. Differences in the nature and annealing properties of the IPPDs observed between the 27 MeV electrons freshly irradiated, and irradiated and aged samples were attributed to the presence of a high concentration of divacancies in the freshly irradiated samples, defects which transform during storage at 250 K through diffusion and recombination processes.

  20. Structure and morphologies of ZnO nanoparticles synthesized by pulsed laser ablation in liquid: Effects of temperature and energy fluence

    Energy Technology Data Exchange (ETDEWEB)

    Guillén, G. García; Palma, M.I. Mendivil [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455 (Mexico); Krishnan, B. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455 (Mexico); Universidad Autónoma de Nuevo León – Centro de Innovación, Investigación y Desarrollo de Ingeniería y Tecnología, Apodaca, Nuevo León 66600 (Mexico); Avellaneda, D.; Castillo, G.A.; Roy, T.K. Das [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455 (Mexico); and others

    2015-07-15

    Zinc oxide nanoparticles were prepared by pulsed laser ablation of a zinc metal target at different water temperatures (room temperature, 50, 70 and 90 °C). Ablation was carried out using 532 nm output from a pulsed (10 ns, 10 Hz) Nd:YAG laser at three different laser fluence. Analysis of the morphology, crystalline phase, elemental composition, optical and luminescent properties were done using Transmission Electron Microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS), UV–visible absorption spectroscopy and photoluminescence spectroscopy. TEM analysis showed that a change in temperature resulted in ZnO and Zn(OH){sub 2} nanoparticles with different sizes and morphologies. XPS results confirmed the compositions and chemical states of these nanoparticles. These zinc nanomaterials showed emission in the ultraviolet (UV) and blue regions. The results of this work demonstrated that by varying the liquid medium temperature, the structure, composition, morphology and optical properties of the nanomaterials could be modified during pulsed laser ablation in liquid. - Graphical abstract: Display Omitted - Highlights: • Zinc nanomaterial colloids were synthesized by PLAL. • Effects of laser fluence and the distilled water temperature were analyzed. • The final structure varied with the distilled water temperature and laser fluence. • The morphology was dependent on the distilled water temperature and laser fluence. • Zinc nanocolloids showed emission in the UV and blue region.

  1. Structure and morphologies of ZnO nanoparticles synthesized by pulsed laser ablation in liquid: Effects of temperature and energy fluence

    International Nuclear Information System (INIS)

    Guillén, G. García; Palma, M.I. Mendivil; Krishnan, B.; Avellaneda, D.; Castillo, G.A.; Roy, T.K. Das

    2015-01-01

    Zinc oxide nanoparticles were prepared by pulsed laser ablation of a zinc metal target at different water temperatures (room temperature, 50, 70 and 90 °C). Ablation was carried out using 532 nm output from a pulsed (10 ns, 10 Hz) Nd:YAG laser at three different laser fluence. Analysis of the morphology, crystalline phase, elemental composition, optical and luminescent properties were done using Transmission Electron Microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS), UV–visible absorption spectroscopy and photoluminescence spectroscopy. TEM analysis showed that a change in temperature resulted in ZnO and Zn(OH) 2 nanoparticles with different sizes and morphologies. XPS results confirmed the compositions and chemical states of these nanoparticles. These zinc nanomaterials showed emission in the ultraviolet (UV) and blue regions. The results of this work demonstrated that by varying the liquid medium temperature, the structure, composition, morphology and optical properties of the nanomaterials could be modified during pulsed laser ablation in liquid. - Graphical abstract: Display Omitted - Highlights: • Zinc nanomaterial colloids were synthesized by PLAL. • Effects of laser fluence and the distilled water temperature were analyzed. • The final structure varied with the distilled water temperature and laser fluence. • The morphology was dependent on the distilled water temperature and laser fluence. • Zinc nanocolloids showed emission in the UV and blue region

  2. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial.

    Science.gov (United States)

    Okonkwo, David O; Shutter, Lori A; Moore, Carol; Temkin, Nancy R; Puccio, Ava M; Madden, Christopher J; Andaluz, Norberto; Chesnut, Randall M; Bullock, M Ross; Grant, Gerald A; McGregor, John; Weaver, Michael; Jallo, Jack; LeRoux, Peter D; Moberg, Dick; Barber, Jason; Lazaridis, Christos; Diaz-Arrastia, Ramon R

    2017-11-01

    A relationship between reduced brain tissue oxygenation and poor outcome following severe traumatic brain injury has been reported in observational studies. We designed a Phase II trial to assess whether a neurocritical care management protocol could improve brain tissue oxygenation levels in patients with severe traumatic brain injury and the feasibility of a Phase III efficacy study. Randomized prospective clinical trial. Ten ICUs in the United States. One hundred nineteen severe traumatic brain injury patients. Patients were randomized to treatment protocol based on intracranial pressure plus brain tissue oxygenation monitoring versus intracranial pressure monitoring alone. Brain tissue oxygenation data were recorded in the intracranial pressure -only group in blinded fashion. Tiered interventions in each arm were specified and impact on intracranial pressure and brain tissue oxygenation measured. Monitors were removed if values were normal for 48 hours consecutively, or after 5 days. Outcome was measured at 6 months using the Glasgow Outcome Scale-Extended. A management protocol based on brain tissue oxygenation and intracranial pressure monitoring reduced the proportion of time with brain tissue hypoxia after severe traumatic brain injury (0.45 in intracranial pressure-only group and 0.16 in intracranial pressure plus brain tissue oxygenation group; p injury after severe traumatic brain injury based on brain tissue oxygenation and intracranial pressure values was consistent with reduced mortality and increased proportions of patients with good recovery compared with intracranial pressure-only management; however, the study was not powered for clinical efficacy. Management of severe traumatic brain injury informed by multimodal intracranial pressure and brain tissue oxygenation monitoring reduced brain tissue hypoxia with a trend toward lower mortality and more favorable outcomes than intracranial pressure-only treatment. A Phase III randomized trial to assess

  3. Monitoring of blood oxygenation in brain by resonance Raman spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A; Thomsen, Kirsten; Lønstrup, Micael

    2018-01-01

    Blood oxygenation in cerebral vessels is an essential parameter to evaluate brain function and to investigate the coupling between local blood flow and neuronal activity. We apply resonance Raman spectroscopy in vivo to study hemoglobin oxygenation in cortex vessels of anesthetized ventilated mice....... We demonstrate that the pairs of Raman peaks at 1355 and1375 cm-1(symmetric vibrations of pyrrol half-rings in the heme molecule), 1552 and 1585 cm-1and 1602 and 1638 cm-1(vibrations of methine bridges in heme molecule) are reliable markers for quantitative estimation of the relative amount...

  4. Micro-oxygenation of red wine: techniques, applications, and outcomes.

    Science.gov (United States)

    Schmidtke, Leigh M; Clark, Andrew C; Scollary, Geoff R

    2011-02-01

    Wine micro-oxygenation (MOX) is the controlled addition of oxygen to wine in a manner designed to ensure that complete mass transfer of molecular oxygen from gaseous to dissolved state occurs. MOX was initially developed to improve the body, structure, and fruitfulness in red wines with high concentrations of tannins and anthocyanins, by replicating the ingress of oxygen thought to arise from barrel maturation, but without the need for putting all wine to barrel. This review describes the operational parameters essential for the effective performance of the micro-oxidation process as well as the chemical and microbiological outcomes. The methodologies for introducing oxygen into the wine, the rates of oxygen addition, and their relationship to oxygen solubility in the wine matrix are examined. The review focuses on the techniques used for monitoring the MOX process, including sensory assessment, physicochemical properties, and the critical balance of the rate of oxygen addition in relation to maintaining the sulfur dioxide concentration. The chemistry of oxygen reactivity with wine components, the changes in wine composition that occur as a consequence of MOX, and the potential for wine spoilage if proper monitoring is not adopted are examined. Gaps in existing knowledge are addressed focusing on the limitations associated with the transfer of concepts from research trials in small volume tanks to commercial practice, and the dearth of kinetic data for the various chemical and physical processes that are claimed to occur during MOX.

  5. Swelling in several commercial alloys irradiated to very high neutron fluence

    International Nuclear Information System (INIS)

    Gelles, D.S.; Pintler, J.S.

    1984-01-01

    Swelling values have been obtained from a set of commercial alloys irradiated in EBR-II to a peak fluence of 2.5 x 10 23 n/cm 2 (E > 0.1 MeV) or approx. 125 dpa covering the range 400 to 650 0 C. The alloys can be ranked for swelling resistance from highest to lowest as follows: the martensitic and ferritic alloys, the niobium based alloys, the precipitation strengthened iron and nickel based alloys, the molybdenum alloys and the austenitic alloys

  6. Hyperbaric Oxygen Therapy and Oxygen Compatibility of Skin and Wound Care Products.

    Science.gov (United States)

    Bernatchez, Stéphanie F; Tucker, Joseph; Chiffoleau, Gwenael

    2017-11-01

    Objective: Use test methods to assess the oxygen compatibility of various wound care products. Approach: There are currently no standard test methods specifically for evaluating the oxygen compatibility and safety of materials under hyperbaric oxygen (HBO) conditions. However, tests such as the oxygen index (OI), oxygen exposure (OE), and autogenous ignition temperature (AIT) can provide useful information. Results: The OI test measures the minimum oxygen concentration that will support candle-like burning, and it was used to test 44 materials. All but two exhibited an OI equal to or greater (safer) than a control material commonly used in HBO. The OE test exposes each material to an oxygen-enriched atmosphere (>99.5% oxygen) to monitor temperature and pressure for an extended duration. The results of the OE testing indicated that none of the 44 articles tested with this method self-ignited within the 60°C, 3 atm pressurized oxygen atmosphere. The AIT test exposes materials to a rapid ramp up in temperature in HBO conditions at 3 atm until ignition occurs. Ten wound care materials and seven materials usually avoided in HBO chambers were tested. The AIT ranged from 138°C to 384°C for wound care products and from 146°C to 420°C for the other materials. Innovation: This work provides useful data and recommendations to help develop a new standard approach for evaluating the HBO compatibility of wound care products to ensure safety for patients and clinicians. Conclusion: The development of an additional test to measure the risk of electrostatic discharge of materials in HBO conditions is needed.

  7. Influence of the depth of sedation on regional cerebral oxygen saturation monitoring in neurosurgery of supratentorial gliomas

    Directory of Open Access Journals (Sweden)

    ZHANG Kai⁃ying

    2012-12-01

    Full Text Available Objective To investigate the influence on regional cerebral oxygen saturation (rScO2 of sedation depth during anesthesia induction and maintenance in supratentorial glioma resections. Methods Thirty patients with Ⅰ - Ⅱ supratentorial glioma (graded by American Society of Anesthesiologists underwent elective supratentorial glioma resection were included in this study. Rocuronium, sufentanil and propofol were used for anesthesia induction. After trachea cannula, total intravenous anesthesia (TIVA was maintained with plasma concentration of propofol 2.80-3.20 μg/ml and remifentanil 0.10-0.20 μg/(kg·min. Thirty groups of rScO2, bispectral index (BIS, mean arterial pressure (MAP and heart rate (HR were recorded continuously till the incision. Results During anesthesia induction, BIS decreased along with the infusion of anesthetics, and there was significant negative correlation between BIS and rScO2 (r = ⁃0.803, P = 0.001. During anesthesia maintenance, rScO2 and BIS were not significantly related (r = 0.147, P = 0.396. Conclusion The rScO2 monitoring can reflect the influence of sedation depth on cerebral oxygen delivery and consumption balance during supratentorial glioma resection under TIVA.

  8. Simulation of high fluence swelling behavior in technological materials

    International Nuclear Information System (INIS)

    Garner, F.A.; Powell, R.W.; Diamond, S.; Lauritzen, T.; Rowcliffe, A.F.; Sprague, J.A.; Keefer, D.

    1977-06-01

    The U.S. Breeder Reactor Program is employing charged particle irradiation experiments at accelerated displacement rates to simulate neutron-induced microstructural changes in materials of technological interest. Applications of the simulation technique range from the study of fundamental microstructural mechanisms to the development of predictions of the high fluence swelling behavior of candidate alloys for breeder reactor ducts and fuel cladding. An exact equivalence probably cannot be established between all facets of the microstructural evolution which occurs in the disparate charged-particle and neutron environments. To aid in the correlation of data developed in the two environments an assessment has been made of the factors influencing the simulation process. A series of intercorrelation programs and analysis activities have been conducted to identify and explore the relevant phenomena. The factors found to exert substantial influence on the correlation process fall into two categories, one which deals with those variables which are atypical of the neutron environment and one which deals with the additional factors which arise due to the large differences in displacement rate of the two irradiation environments. While the various simulation techniques have been invaluable in determining the basic mechanisms and parametric dependencies of swelling, the potential of these tools in the confident prediction of swelling at high neutron fluence has yet to be realized. The basic problem lies in the inability of the simulation technique to reproduce the early microstructural development in the period that precedes and encompasses the incubation of voids. The concepts of temperature shift and dose equivalency have also been found to be more complicated than previously imagined. Preconditioning of metals in a neutron environment prior to simulation testing is now being employed in order to provide more appropriate starting microstructures

  9. A Low-Pressure Oxygen Storage System for Oxygen Supply in Low-Resource Settings.

    Science.gov (United States)

    Rassool, Roger P; Sobott, Bryn A; Peake, David J; Mutetire, Bagayana S; Moschovis, Peter P; Black, Jim Fp

    2017-12-01

    Widespread access to medical oxygen would reduce global pneumonia mortality. Oxygen concentrators are one proposed solution, but they have limitations, in particular vulnerability to electricity fluctuations and failure during blackouts. The low-pressure oxygen storage system addresses these limitations in low-resource settings. This study reports testing of the system in Melbourne, Australia, and nonclinical field testing in Mbarara, Uganda. The system included a power-conditioning unit, a standard oxygen concentrator, and an oxygen store. In Melbourne, pressure and flows were monitored during cycles of filling/emptying, with forced voltage fluctuations. The bladders were tested by increasing pressure until they ruptured. In Mbarara, the system was tested by accelerated cycles of filling/emptying and then run on grid power for 30 d. The low-pressure oxygen storage system performed well, including sustaining a pressure approximately twice the standard working pressure before rupture of the outer bag. Flow of 1.2 L/min was continuously maintained to a simulated patient during 30 d on grid power, despite power failures totaling 2.9% of the total time, with durations of 1-176 min (mean 36.2, median 18.5). The low-pressure oxygen storage system was robust and durable, with accelerated testing equivalent to at least 2 y of operation revealing no visible signs of imminent failure. Despite power cuts, the system continuously provided oxygen, equivalent to the treatment of one child, for 30 d under typical power conditions for sub-Saharan Africa. The low-pressure oxygen storage system is ready for clinical field trials. Copyright © 2017 by Daedalus Enterprises.

  10. Neutron Fluence and Energy Reconstruction with the LNE-IRSN/MIMAC Recoil Detector MicroTPC at 27 keV

    Energy Technology Data Exchange (ETDEWEB)

    Maire, D.; Lebreton, L.; Querre, Ph. [Institute for Radioprotection and Nuclear Safety - IRSN, site of Cadarache, 13115 Saint Paul lez Durance (France); Bosson, G.; Guillaudin, O.; Muraz, J.F.; Riffard, Q.; Santos, D. [Laboratoire de Physique Subatomique et de Cosmologie - LPSCCNRSIN2P3/ UJF/INP, 38000 Grenoble (France)

    2015-07-01

    The French Institute for Radiation protection and Nuclear Safety (IRSN), designated by the French Metrology Institute (LNE) for neutron metrology, is developing a time projection chamber using a Micromegas anode: microTPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize the energy distribution of neutron fluence in the energy range 8 keV - 5 MeV with a primary procedure. The time projection chambers are gaseous detectors able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gas is used as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulation of the detector response. The μTPC is a new reliable detector able to measure energy distribution of the neutron fluence without unfolding procedure or prior neutron calibration contrary to usual gaseous counters. The microTPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27 keV and 144 keV are shown and compared to the complete detector response simulation. This work

  11. Atomic mixing effects on high fluence Ge implantation into Si at 40 keV

    International Nuclear Information System (INIS)

    Gras-Marti, A.; Jimenez-Rodriguez, J.J.; Peon-Fernandez, J.; Rodriguez-Vidal, M.; Tognetti, N.P.; Carter, G.; Nobes, M.J.; Armour, D.G.

    1982-01-01

    Ion implanted profiles of 40 keV Ge + into Si at fluences ranging from approx. equal to 10 15 ions/cm 2 up to saturation have been measured using the RBS technique. The profiles compare well with the predictions of an analytical model encompasing sputter erosion plus atomic relocation. (orig.)

  12. Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence

    Science.gov (United States)

    Caricato, A. P.; Belviso, M. R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Rella, R.; Taurino, A.

    2011-11-01

    Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3-4 nm and 35-50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser ( λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.

  13. Can systemically generated reactive oxygen species help to monitor disease activity in generalized vitiligo? A pilot study

    Directory of Open Access Journals (Sweden)

    Richeek Pradhan

    2014-01-01

    Full Text Available Background: Generalized vitiligo is a disease with unpredictable bursts of activity, goal of treatment during the active phase being to stabilize the lesions. This emphasizes the need for a prospective marker for monitoring disease activity to help decide the duration of therapy. Aims and Objectives: In the present study, we examined whether reactive oxygen species (ROS generated in erythrocytes can be translated into a marker of activity in vitiligo. Materials and Methods: Level of intracellular ROS was measured flow cytometrically in erythrocytes from venous blood of 21 patients with generalized vitiligo and 21 healthy volunteers using the probe dichlorodihydrofluorescein diacetate. Results: The levels of ROS differed significantly between patients and healthy controls, as well as between active versus stable disease groups. In the active disease group, ROS levels were significantly lower in those being treated with systemic steroids than those that were not. ROS levels poorly correlated with disease duration or body surface area involved. Conclusion: A long-term study based on these findings can be conducted to further validate the potential role of ROS in monitoring disease activity vitiligo.

  14. Toxin detection using a tyrosinase-coupled oxygen electrode.

    Science.gov (United States)

    Smit, M H; Rechnitz, G A

    1993-02-15

    An enzyme-based "electrochemical canary" is described for the detection of cyanide. The sensing system imitates cyanide's site of toxicity in the mitochondria. The terminal sequence of electron transfer in aerobic respiration is mimicked by mediator coupling of tyrosinase catalysis to an electro-chemical system. An enzyme-coupled oxygen electrode is created which is sensitive to selective poisoning. Biocatalytic reduction of oxygen is promoted by electrochemically supplying tyrosinase with electrons. Thus, ferrocyanide is generated at a cathode and mediates the enzymatic reduction of oxygen to water. An enzyme-dependent reductive current can be monitored which is inhibited by cyanide in a concentration-dependent manner. Oxygen depletion in the reaction layer can be minimized by addressing enzyme activity using a potential pulsing routine. Enzyme activity is electrochemically initiated and terminated and the sensor becomes capable of continuous monitoring. Cyanide poisoning of the biological component is reversible, and it can be reused after rinsing. The resulting sensor detects cyanide based on its biological activity rather than its physical or chemical properties.

  15. Brain and muscle oxygenation monitoring using near-infrared spectroscopy (NIRS) during all-night sleep

    Science.gov (United States)

    Zhang, Zhongxing; Khatami, Ramin

    2013-03-01

    The hemodynamic changes during natural human sleep are still not well understood. NIRS is ideally suited for monitoring the hemodynamic changes during sleep due to the properties of local measurement, totally safe application and good tolerance to motion. Several studies have been conducted using NIRS in both normal subjects and patients with various sleep disorders during sleep to characterize the hemodynamic changing patterns during different sleep stages and during different symptoms such as obstructive apneas. Here we assessed brain and muscle oxygenation changes in 7 healthy adults during all-night sleep with combined polysomnography measurement to test the notion if hemodynamic changes in sleep are indeed brain specific. We found that muscle and brain showed similar hemodynamic changes during sleep initiation. A decrease in HbO2 and tissue oxygenation index (TOI) while an increase in HHb was observed immediately after sleep onset, and an opposite trend was found after transition with progression to deeper slow-wave sleep (SWS) stage. Spontaneous low frequency oscillations (LFO) and very low frequency oscillations (VLFO) were smaller (Levene's test, psleep (LS) and rapid-eye-movement (REM) sleep in both brain and muscle. Spectral analysis of the NIRS signals measured from brain and muscle also showed reductions in VLFO and LFO powers during SWS with respect to LS and REM sleep. These results indicate a systemic attenuation rather than local cerebral reduction of spontaneous hemodynamic activity in SWS. A systemic physiological mechanism may exist to regulate the hemodynamic changes in brain and muscle during sleep.

  16. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: experimental and modeling studies

    OpenAIRE

    Sgouralis, Ioannis; Kett, Michelle M.; Ow, Connie P. C.; Abdelkader, Amany; Layton, Anita T.; Gardiner, Bruce S.; Smith, David W.; Lankadeva, Yugeesh R.; Evans, Roger G.

    2016-01-01

    Oxygen tension (Po2) of urine in the bladder could be used to monitor risk of acute kidney injury if it varies with medullary Po2. Therefore, we examined this relationship and characterized oxygen diffusion across walls of the ureter and bladder in anesthetized rabbits. A computational model was then developed to predict medullary Po2 from bladder urine Po2. Both intravenous infusion of [Phe2,Ile3,Orn8]-vasopressin and infusion of NG-nitro-l-arginine reduced urinary Po2 and medullary Po2 (8–1...

  17. Performance of core modifications to reduce the reactor pressure vessel fluence

    International Nuclear Information System (INIS)

    Kiehlmann, H.D.; Lisdat, R.; Sommer, D.

    1997-01-01

    It's often discussed that nuclear power plants (NPP) are designed for an operation of 40 years equivalent to 32 full power years (FPY) assuming a load factor of 0.8. Such fixed plant life times are subjects of US operating licenses but not, as in most other countries, in the Federal Republic of Germany. Here the operating licenses are issued for an indefinite period. However, the German utilities are continuously upgrading their plants to attain a safety level that meets all current requirements. These upgrading measures also include the replacement of bigger components like e.g. the steam generator. The reactor pressure vessel (RPV), however, has a special status. Unlike most other components of a NPP which most likely will be exchanged during its service life a replacement or annealing treatment of the RPV certainly require more efforts to be economically justified. Thus the embrittlement of the RPV has an essential impact on the life time of a NPP. The end-of-life (EOL) RPV material toughness in essential depends on the steel quality and the accumulated neutron fluence. For a given NPP the reduction of the neutron flux at the inner surface of the RPV is the only way to limit its embrittlement. The resulting modifications for the core loadings in combination with the insertion of additional core components like steel elements are described and the impact on core performance and RPV fluence considered. (UK)

  18. Role of laser fluence in protein synthesis of cultured DRG neurons following low-level laser irradiation

    Science.gov (United States)

    Zheng, Liqin; Qiu, Caimin; Wang, Yuhua; Zeng, Yixiu; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2014-11-01

    Low-level lasers have been used to relieve pain in clinical for many years. But the mechanism is not fully clear. In animal models, nitric oxide (NO) has been reported involving in the transmission and modulation of nociceptive signals. So the objective of this study was to establish whether low-level laser with different fluence could stimulate the production of nitric oxide synthese (NOS), which produces NO in cultured primary dorsal root ganglion neurons (DRG neurons). The primary DRG neurons were isolated from healthy Sprague Dawley rats (8-12 weeks of age) and spread on 35 mm culture dishes specially used for confocal microscopy. 24 hours after spreading, cells were irradiated with 658 nm laser for two consecutive days at the energy density of 20, 40, 60 and 80 mJ·cm-2 respectively. Control groups were not exposed to the laser, but were kept under the same conditions as the irradiated ones. The synthesis of NOS after laser irradiation was detected by immunofluorescence assay, and the changes of NOS were evaluated using confocal microscopy and Image J software. The results showed that all the laser fluence could promote the production of NOS in DRG neurons, especially the 60 mJ·cm-2 . These results demonstrated that low-level laser irradiation could modify protein synthesis in a dose- or fluence- dependent manner, and indicated that low-level laser irradiation might achieve the analgesic effect through modulation of NO production.

  19. An electrochemical sensor for monitoring oxygen or hydrogen in water

    International Nuclear Information System (INIS)

    Leitai Yang; Morris, D.R.; Lister, D.H.

    1997-01-01

    Preliminary studies have been done on a simple electrochemical sensor which shows promise as a cheap, robust instrument for measuring dissolved oxygen or hydrogen in water. The sensor is based upon the solid-state electrolyte ''Nafion'' (trade name of perfluorinated sulphonic acid, manufactured by DuPont Inc.). The Nafion was dissolved in a mixture of aliphatic alcohols, made into a slurry with platinum black, and applied to a ∼1 cm-square electrode made of stainless steel gauze. The potential of the electrode was measured relative to a standard calomel electrode (SCE) in acid solutions at room temperature through which mixtures of oxygen and nitrogen or hydrogen and nitrogen were bubbled. The sensor was responsive to the equilibrating gas with good reproducibility. A similar sensor without the Nafion was not at all sensitive to changes in oxygen concentration. The voltage response of the sensor showed non-Nernstian behaviour, which suggests that the electrochemical reactions at the electrode surface are complex. Further testing of the sensor is required to verify its sensitivity and responsiveness in typical reactor coolant chemistries and to demonstrate its durability over a range of temperatures. (author). 4 refs, 4 figs, 1 tab

  20. An electrochemical sensor for monitoring oxygen or hydrogen in water

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Leitai; Morris, D R; Lister, D H [University of New Brunswick, Fredericton (Canada). Dept. of Chemical Engineering

    1997-02-01

    Preliminary studies have been done on a simple electrochemical sensor which shows promise as a cheap, robust instrument for measuring dissolved oxygen or hydrogen in water. The sensor is based upon the solid-state electrolyte ``Nafion`` (trade name of perfluorinated sulphonic acid, manufactured by DuPont Inc.). The Nafion was dissolved in a mixture of aliphatic alcohols, made into a slurry with platinum black, and applied to a {approx}1 cm-square electrode made of stainless steel gauze. The potential of the electrode was measured relative to a standard calomel electrode (SCE) in acid solutions at room temperature through which mixtures of oxygen and nitrogen or hydrogen and nitrogen were bubbled. The sensor was responsive to the equilibrating gas with good reproducibility. A similar sensor without the Nafion was not at all sensitive to changes in oxygen concentration. The voltage response of the sensor showed non-Nernstian behaviour, which suggests that the electrochemical reactions at the electrode surface are complex. Further testing of the sensor is required to verify its sensitivity and responsiveness in typical reactor coolant chemistries and to demonstrate its durability over a range of temperatures. (author). 4 refs, 4 figs, 1 tab.

  1. Dosimetry and fluence calculations on french PWR vessels comparisons between experiments and calculations

    International Nuclear Information System (INIS)

    Nimal, J.C.; Bourdet, L.; Guilleret, J.C.; Hedin, F.

    1988-01-01

    Fluence and damage calculations on PWR pressure vessels and irradiation test specimens are presented for two types of reactor: the franco-belgian (reactor CHOOZ) and the french reactors (CPY program). Comparisons with measurements are given for activation foils and fission detectors; most of them are about irradiation test specimen locations; comparisons are made for the Chooz plant on vessel stainless steel samplings and in the reactor pit

  2. Charged particle mutagenesis at low dose and fluence in mouse splenic T cells

    Energy Technology Data Exchange (ETDEWEB)

    Grygoryev, Dmytro [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Gauny, Stacey [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lasarev, Michael; Ohlrich, Anna [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Kronenberg, Amy [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Turker, Mitchell S., E-mail: turkerm@ohsu.edu [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239 (United States)

    2016-06-15

    Highlights: • Densely ionizing forms of space radiation induce mutations in splenic T cells at low fluence. • Large interstitial deletions and discontinuous LOH patterns are radiation signature mutations. • Space radiation mutagenesis suggests a cancer risk from deep space travel. - Abstract: High-energy heavy charged particles (HZE ions) found in the deep space environment can significantly affect human health by inducing mutations and related cancers. To better understand the relation between HZE ion exposure and somatic mutation, we examined cell survival fraction, Aprt mutant frequencies, and the types of mutations detected for mouse splenic T cells exposed in vivo to graded doses of densely ionizing {sup 48}Ti ions (1 GeV/amu, LET = 107 keV/μm), {sup 56}Fe ions (1 GeV/amu, LET = 151 keV/μm) ions, or sparsely ionizing protons (1 GeV, LET = 0.24 keV/μm). The lowest doses for {sup 48}Ti and {sup 56}Fe ions were equivalent to a fluence of approximately 1 or 2 particle traversals per nucleus. In most cases, Aprt mutant frequencies in the irradiated mice were not significantly increased relative to the controls for any of the particles or doses tested at the pre-determined harvest time (3–5 months after irradiation). Despite the lack of increased Aprt mutant frequencies in the irradiated splenocytes, a molecular analysis centered on chromosome 8 revealed the induction of radiation signature mutations (large interstitial deletions and complex mutational patterns), with the highest levels of induction at 2 particles nucleus for the {sup 48}Ti and {sup 56}Fe ions. In total, the results show that densely ionizing HZE ions can induce characteristic mutations in splenic T cells at low fluence, and that at least a subset of radiation-induced mutant cells are stably retained despite the apparent lack of increased mutant frequencies at the time of harvest.

  3. Development of beam instruments at JAERI cyclotron facility

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Susumu; Fukuda, Mitsuhiro; Ishibori, Ikuo; Agematsu, Takashi; Yokota, Watalu; Nara, Takayuki; Nakamura, Yoshiteru; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A beam phase monitor and two kinds of fluence distribution monitors have been developed for measuring characteristics of cyclotron beams. The beam phase monitor provides a beam phase signal for tuning a beam chopping system and a beam phase selection system. A two-dimensional fluence distribution on a large area is measured with fluence distribution monitors. (author)

  4. The refractive index distributions of KTP crystal waveguides formed with He-ions at high fluences and low energy

    International Nuclear Information System (INIS)

    Yin, Jiao-Jian; Lu, Fei; Ming, Xian-Bing; Ma, Yu-Jie

    2013-01-01

    The 300 keV He + ions have been implanted into z-cut KTP crystals with fluences of 4 × 10 16 , 6 × 10 16 , 8 × 10 16 and 10 × 10 16 ions/cm 2 . The Rutherford back scattering spectrometry (RBS)/channelling spectra of KTP crystals and the dark-mode spectrum have been measured. According to the multiple scattering formulae of Feldman and Rodgers, the damage profiles of z-cut KTP crystals have been calculated and extracted. The relations between the damage ratio, fluence and the ion-implanted depth have been established. The refractive index profiles over depth have been calculated, which are very close to the real distribution in waveguide

  5. Real-time monitoring of nitric oxide (NO) and pO2 levels under ischemic conditions associated with small bowel ischemia/reperfusion injury using selective electrodes for NO and oxygen molecules.

    Science.gov (United States)

    Watanabe, T; Owada, S; Kobayashi, H; Ishiuchi, A; Nakano, H; Asakuta, T; Shimamura, T; Asano, T; Koizumi, S; Jinnouchi, Y; Katayama, M; Kamibayasi, M; Murakami, E; Otsubo, T

    2007-12-01

    The present study demonstrated the feasibility of monitoring nitric oxide (NO) and pO2 levels under ischemic conditions associated with small bowel ischemia/reperfusion (I/R) injury through the use of selective electrodes for NO and oxygen molecules. NO levels gradually increased during ischemia. When reperfusion was started, the NO level decreased suddenly and returned to pre-ischemia values within 10 minutes. After clamping, pO2 decreased rapidly. When reperfusion was started, pO2 increased suddenly, returning to pre-ischemia values within 10 minutes. We concluded that it is feasible to monitor NO and pO2 levels under ischemic conditions of small bowel I/R injury through the use of electrodes selective for NO and oxygen molecules.

  6. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 160A

    International Nuclear Information System (INIS)

    Walker, B. J.; Miller, D. T.

    2017-01-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 160A which were measured by the Radiation Measurements Laboratory (RML).

  7. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 160A

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, D. T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-06

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 160A which were measured by the Radiation Measurements Laboratory (RML).

  8. Study of the effects of low-fluence laser irradiation on wall paintings: Test measurements on fresco model samples

    Science.gov (United States)

    Raimondi, Valentina; Cucci, Costanza; Cuzman, Oana; Fornacelli, Cristina; Galeotti, Monica; Gomoiu, Ioana; Lognoli, David; Mohanu, Dan; Palombi, Lorenzo; Picollo, Marcello; Tiano, Piero

    2013-11-01

    Laser-induced fluorescence is widely applied in several fields as a diagnostic tool to characterise organic and inorganic materials and could be also exploited for non-invasive remote investigation of wall paintings using the fluorescence lidar technique. The latter relies on the use of a low-fluence pulsed UV laser and a telescope to carry out remote spectroscopy on a given target. A first step to investigate the applicability of this technique is to assess the effects of low-fluence laser radiation on wall paintings. This paper presents a study devoted to investigate the effects of pulsed UV laser radiation on a set of fresco model samples prepared using different pigments. To irradiate the samples we used a tripled-frequency Q-switched Nd:YAG laser (emission wavelength: 355 nm; pulse width: 5 ns). We varied the laser fluence from 0.1 mJ/cm2 to 1 mJ/cm2 and the number of laser pulses from 1 to 500 shots. We characterised the investigated materials using several diagnostic and analytical techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy and ATR-FT-IR microscopy) to compare the surface texture and their composition before and after laser irradiation. Results open good prospects for a non-invasive investigation of wall paintings using the fluorescence lidar technique.

  9. Study of the effects of low-fluence laser irradiation on wall paintings: Test measurements on fresco model samples

    International Nuclear Information System (INIS)

    Raimondi, Valentina; Cucci, Costanza; Cuzman, Oana; Fornacelli, Cristina; Galeotti, Monica; Gomoiu, Ioana; Lognoli, David; Mohanu, Dan; Palombi, Lorenzo; Picollo, Marcello; Tiano, Piero

    2013-01-01

    Laser-induced fluorescence is widely applied in several fields as a diagnostic tool to characterise organic and inorganic materials and could be also exploited for non-invasive remote investigation of wall paintings using the fluorescence lidar technique. The latter relies on the use of a low-fluence pulsed UV laser and a telescope to carry out remote spectroscopy on a given target. A first step to investigate the applicability of this technique is to assess the effects of low-fluence laser radiation on wall paintings. This paper presents a study devoted to investigate the effects of pulsed UV laser radiation on a set of fresco model samples prepared using different pigments. To irradiate the samples we used a tripled-frequency Q-switched Nd:YAG laser (emission wavelength: 355 nm; pulse width: 5 ns). We varied the laser fluence from 0.1 mJ/cm 2 to 1 mJ/cm 2 and the number of laser pulses from 1 to 500 shots. We characterised the investigated materials using several diagnostic and analytical techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy and ATR-FT-IR microscopy) to compare the surface texture and their composition before and after laser irradiation. Results open good prospects for a non-invasive investigation of wall paintings using the fluorescence lidar technique.

  10. Validation of a novel device to objectively measure adherence to long-term oxygen therapy

    Directory of Open Access Journals (Sweden)

    Sun-Kai V Lin

    2008-10-01

    Full Text Available Sun-Kai V Lin1, Daniel K Bogen1, Samuel T Kuna2,31Department of Bioengineering; 2Department of Medicine, Pulmonary, Allergy and Critical Care Division, and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, Pennsylvania, USA; 3Department of Medicine, Philadelphia Veterans Affairs Medical Center Philadelphia, Pennsylvania, USARationale: We have developed a novel oxygen adherence monitor that objectively measures patient use of long-term oxygen therapy. The monitor attaches to the oxygen source and detects whether or not the patient is wearing the nasal cannula.Objective: The study’s purpose was to validate the monitor’s performance in patients with chronic obstructive pulmonary disease during wakefulness and sleep.Methods: Ten adult males with stable chronic obstructive pulmonary disease (mean ± SD FEV1 37.7 ± 14.9% of predicted on long-term continuous oxygen therapy were tested in a sleep laboratory over a 12–13 hour period that included an overnight polysomnogram.Measurements: The monitor’s measurements were obtained at 4-minute intervals and compared to actual oxygen use determined by review of time-synchronized video recordings.Main results: The monitor made 1504/1888 (79.7% correct detections (unprocessed data across all participants: 957/1,118 (85.6% correct detections during wakefulness and 546/770 (70.9% during sleep. All errors were false negatives, ie, the monitor failed to detect that the participant was actually wearing the cannula. Application of a majority-vote filter to the raw data improved overall detection accuracy to 84.9%.Conclusions: The results demonstrate the monitor’s ability to objectively measure whether or not men with chronic obstructive pulmonary disease are receiving their oxygen treatment. The ability to objectively measure oxygen delivery, rather than oxygen expended, may help improve the management of patients on long-term oxygen therapy.Keywords: chronic obstructive pulmonary

  11. Plasma instability control toward high fluence, high energy x-ray continuum source

    Science.gov (United States)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  12. Oxygen-transfer performance of a newly designed, very low-volume membrane oxygenator.

    Science.gov (United States)

    Burn, Felice; Ciocan, Sorin; Carmona, Natalia Mendez; Berner, Marion; Sourdon, Joevin; Carrel, Thierry P; Tevaearai Stahel, Hendrik T; Longnus, Sarah L

    2015-09-01

    Oxygenation of blood and other physiological solutions are routinely required in fundamental research for both in vitro and in vivo experimentation. However, very few oxygenators with suitable priming volumes (parallel-oriented microporous polypropylene hollow fibres, placed inside a hollow shell with a lateral-luer outlet, and sealed at both extremities. With this design, perfusate is delivered via the core-tube to the centre of the mini-oxygenator, and exits via the luer port. A series of mini-oxygenators were constructed and tested in an in vitro perfusion circuit by monitoring oxygen transfer using modified Krebs-Henseleit buffer or whole porcine blood. Effects of perfusion pressure and temperature over flows of 5-60 ml × min(-1) were assessed. Twelve mini-oxygenators with a mean priming volume of 1.5 ± 0.3 ml were evaluated. With buffer, oxygen transfer reached a maximum of 14.8 ± 1.0 ml O2 × l(-1) (pO2: 450 ± 32 mmHg) at perfusate flow rates of 5 ml × min(-1) and decreased with an increase in perfusate flow to 7.8 ± 0.7 ml ml O2 × l(-1) (pO2: 219 ± 24 mmHg) at 60 ml × min(-1). Similarly, with blood perfusate, oxygen transfer also decreased as perfusate flow increased, ranging from 33 ± 5 ml O2 × l(-1) at 5 ml × min(-1) to 11 ± 2 ml O2 × l(-1) at 60 ml × min(-1). Furthermore, oxygen transfer capacity remained stable with blood perfusion over a period of at least 2 h. We have developed a new miniaturized membrane oxygenator with an ultra-low priming volume (circuits, such as small animal extracorporeal circulation and ex vivo organ perfusion. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  13. Structural and electronic characterization of 355 nm laser-crystallized silicon: Interplay of film thickness and laser fluence

    International Nuclear Information System (INIS)

    Semler, Matthew R.; Swenson, Orven F.; Hoey, Justin M.; Guruvenket, Srinivasan; Gette, Cody R.; Hobbie, Erik K.

    2014-01-01

    We present a detailed study of the laser crystallization of amorphous silicon thin films as a function of laser fluence and film thickness. Silicon films grown through plasma-enhanced chemical vapor deposition were subjected to a Q-switched, diode-pumped solid-state laser operating at 355 nm. The crystallinity, morphology, and optical and electronic properties of the films are characterized through transmission and reflectance spectroscopy, resistivity measurements, Raman spectroscopy, X-ray diffraction, atomic force microscopy, and optical and scanning-electron microscopy. Our results reveal a unique surface morphology that strongly couples to the electronic characteristics of the films, with a minimum laser fluence at which the film properties are optimized. A simple scaling model is used to relate film morphology to conductivity in the laser-processed films

  14. In-vivo singlet oxygen threshold doses for PDT.

    Science.gov (United States)

    Zhu, Timothy C; Kim, Michele M; Liang, Xing; Finlay, Jarod C; Busch, Theresa M

    2015-02-01

    Dosimetry of singlet oxygen ( 1 O 2 ) is of particular interest because it is the major cytotoxic agent causing biological effects for type-II photosensitizers during photodynamic therapy (PDT). An in-vivo model to determine the singlet oxygen threshold dose, [ 1 O 2 ] rx,sh , for PDT was developed. An in-vivo radiation-induced fibrosarcoma (RIF) tumor mouse model was used to correlate the radius of necrosis to the calculation based on explicit PDT dosimetry of light fluence distribution, tissue optical properties, and photosensitizer concentrations. Inputs to the model include five photosensitizer-specific photochemical parameters along with [ 1 O 2 ] rx,sh . Photosensitizer-specific model parameters were determined for benzoporphyrin derivative monoacid ring A (BPD) and compared with two other type-II photosensitizers, Photofrin ® and m-tetrahydroxyphenylchlorin (mTHPC) from the literature. The mean values (standard deviation) of the in-vivo [ 1 O 2 ] rx,sh are approximately 0.56 (0.26) and 0.72 (0.21) mM (or 3.6×10 7 and 4.6×10 7 singlet oxygen per cell to reduce the cell survival to 1/e) for Photofrin ® and BPD, respectively, assuming that the fraction of generated singlet oxygen that interacts with the cell is 1. While the values for the photochemical parameters (ξ, σ, g , β) used for BPD were preliminary and may need further refinement, there is reasonable confidence for the values of the singlet oxygen threshold doses. In comparison, the [ 1 O 2 ] rx,sh value derived from in-vivo mouse study was reported to be 0.4 mM for mTHPC-PDT. However, the singlet oxygen required per cell is reported to be 9×10 8 per cell per 1/ e fractional kill in an in-vitro mTHPC-PDT study on a rat prostate cancer cell line (MLL cells) and is reported to be 7.9 mM for a multicell in-vitro EMT6/Ro spheroid model for mTHPC-PDT. A theoretical analysis is provided to relate the number of in-vitro singlet oxygen required per cell to reach cell killing of 1/ e to in-vivo singlet

  15. Controlling Fluences of Reactive Species Produced by Multipulse DBDs onto Wet Tissue: Frequency and Liquid Thickness

    Science.gov (United States)

    Tian, Wei; Kushner, Mark J.

    2015-09-01

    Tissue covered by a thin liquid layer treated by atmospheric pressure plasmas for biomedical applications ultimately requires a reproducible protocol for human healthcare. The outcomes of wet tissue treatment by dielectric barrier discharges (DBDs) depend on the plasma dose which determines the integral fluences of radicals and ions onto the tissue. These fluences are controlled in part by frequency and liquid thickness. In this paper, we report on results from a computational investigation of multipulse DBDs interacting with wet tissue. The DBDs were simulated for 100 stationary or random streamers at different repetition rates and liquid thicknesses followed by 10 s to 2 min of afterglow. At 100 Hz, NOaq and OHaq are mixed by randomly striking streamers, although they have different rates of solvation. NOaq is nearly completely consumed by reactions with OHaq at the liquid surface. Only H2O2aq, produced through OHaq mutual reactions, survives to reach the tissue. After 100 pulses, the liquid becomes ozone-rich, in which the nitrous ion, NO2-aq, is converted to the nitric ion, NO3-aq. Reducing the pulse frequency to 10 Hz results in significant fluence of NOaq to the tissue as NOaq can escape during the interpulse period from the liquid surface where OHaq is formed. For the same reason, NO2-aq can also reach deeper into the liquid at lower frequency. Frequency and thickness of the liquid are methods to control the plasma produced aqueous species to the underlying tissue. Work supported by DOE (DE-SC0001319) and NSF (CHE-1124724).

  16. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    International Nuclear Information System (INIS)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-01-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center

  17. In situ measurements of oxygen dynamics in unsaturated archaeological deposits

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hollesen, Jørgen; Dunlop, Rory

    2015-01-01

    Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more ...... of the soil exceeds 10–15% vol, while oxygen dissolved in infiltrating rainwater is of less importance for the supply of oxygen in the unsaturated zone....... than a year. It is shown that there is a significant spatial and temporal variation in the oxygen concentration, which is correlated to measured soil characteristics, precipitation, soil water content and degradation of organic material. In these deposits oxygen typically occurs when the air content...

  18. Fluence dependence of the ultraviolet-light-induced accumulation of chalcone synthase mRNA and effects of blue and far-red light in cultured parsley

    International Nuclear Information System (INIS)

    Bruns, B.; Hahlbrock, K.; Schäfer, E.

    1986-01-01

    The fluence dependence of the time course of accumulation of chalcone synthase mRNA in ultraviolet (UV)-light-irradiated cell suspension cultures of parsley (Petroselinum crispum) and the additional effects of blue and far-red light have been investigated. Variations of the UV fluence had no detectable influence on the initial rate of increase in mRNA amount or translational activity, nor on the preceding lag period of approximately 3 h, but strongly influenced the duration of the transient increase. The effects were the same whether the fluence rate or the time of irradiation was varied to obtain a given fluence. Blue-light pretreatment of the cells resulted in increased amounts of mRNA and abolished the apparent lag period. This effect remained cryptic without the subsequent UV-light treatment. Irradiation with long-wavelength far-red light following UV-light pulses shortened the duration of the mRNA accumulation period. This effect was not altered by a preceding blue-light treatment. Thus, three photoreceptors, a UV-B receptor, a blue-light receptor and phytochrome, participate in the regulation of chalcone synthase mRNA accumulation in this system

  19. Oxygen ordering in Nb(1 1 0) films

    International Nuclear Information System (INIS)

    Hellwig, O.; Zabel, H.

    2003-01-01

    Synchrotron X-ray diffraction (XRD) during the atmospheric oxidation of epitaxial Nb(1 1 0) films at elevated temperature reveals the formation of highly ordered oxygen phases within the Nb lattice. The oxygen is stored on interstitial lattice sites without destroying the basic BCC structure of the Nb host lattice. However the lattice exhibits an out-of-plane lattice expansion of up to 4.3%. During oxidation we observe the formation of a non-ordered lattice gas phase succeeded by a well-defined sequence of oxygen superstructures until finally the whole film is consumed by the formation of amorphous Nb 2 O 5 . We show that XRD is an excellent tool to monitor the exact evolution of the different oxygen phases. In addition we demonstrate that UHV post-annealing of partially oxidized films can be used to rearrange the oxygen within the sample while keeping the overall amount of oxygen constant

  20. Novel low fluence combination laser treatment of solar lentigines in type III Asian skin

    Directory of Open Access Journals (Sweden)

    Brian Wei Cheng Anthony Tian

    2015-01-01

    Full Text Available Objective: To demonstrate a novel low fluence combination laser technique [Erbium-doped yttrium aluminum garnet (Erb:YAG and neodymium-doped yttrium aluminum garnet (Nd:YAG] to effectively treat solar lentigines in type III Asian skin in a single session. Design: A prospective study. Setting: A Singapore-based clinic. Participants: Five patients (all females were enrolled into the study. The ages ranged 35-60 years; all patients had Fitzpatrick skin type III. Measurements: Photographs were taken at baseline and at 1-month follow-up. These were reviewed by two independent physicians who were blinded to the study. Changes in pigment severity were assessed by a 5-point scale (1: Aggravation of pigment, 2: No change, 3: 25-50% improvement, 4: 51-75% improvement, and 5: 76-100% improvement. Results: All patients received a single treatment session. At 1-month follow-up, a reduction in pigment was observed in all patients. Both physicians′ reports were independently agreeable. All patients scored 5, having >90% improvement in pigment severity. No hypopigmentation, postinflammatory hyperpigmentation (PIH, or recurrence was seen. Conclusion: Low fluence combination laser is effective and safe for clearance of solar lentigines in type III Asian skin.

  1. Reliable monitoring of oxygen saturation via pulse oximetry: Which ...

    African Journals Online (AJOL)

    This study focuses on identifying the best site for placement of pulse oximeter probe accurate measuring of oxygen saturation. Twenty-three healthy male volunteers aged 20 to 40 years old were recruited in this study. Cold pressor test was done to stim 460 measurements of SpO2level were obtained throughout the study.

  2. Effects of high thermal neutron fluences on Type 6061 aluminum

    International Nuclear Information System (INIS)

    Weeks, J.R.; Czajkowski, C.J.; Farrell, K.

    1992-01-01

    The control rod drive follower tubes of the High Flux Beam Reactor are contructed from precipitation-hardened 6061-T6 aluminum alloy and they operate in the high thermal neutron flux regions of the core. It is shown that large thermal neutron fluences up to ∼4 x 10 23 n/cm 2 at 333K cause large increases in tensile strength and relatively modest decreases in tensile elongation while significantly reducing the notch impact toughness at room temperature. These changes are attributed to the development of a fine distribution of precipitates of amorphous silicon of which about 8% is produced radiogenically. A proposed role of thermal-to-fast flux ratio is discussed

  3. The Meteoroid Fluence at Mars Due to Comet Siding Spring

    Science.gov (United States)

    Moorhead, Althea V.

    2014-01-01

    Long-period comet C/2013 A1 (Siding Spring) is headed for a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comets coma may envelop Mars and its man-made satellites. We present an analytic model of the dust component of cometary comae that describes the spatial distribution of cometary dust and meteoroids and their size distribution. If the coma reaches Mars, we estimate a total incident particle fluence on the planet and its satellites of 0.01 particles per square meter. We compare our model with numerical simulations, data from past comet missions, and recent Siding Spring observations.

  4. Radiation hard detectors from silicon enriched with both oxygen and thermal donors improvements in donor removal and long-term stability with regard to neutron irradiation

    CERN Document Server

    Li, Z; Eremin, V; Dezillie, B; Chen, W; Bruzzi, M

    2002-01-01

    Detectors made on the silicon wafers with high concentration of thermal donors (TD), which were introduced during the high temperature long time (HTLT) oxygenation procedure, have been investigated in the study of radiation hardness with regard to neutron irradiation and donor removal problems in irradiated high resistivity Si detectors. Two facts have been established as the evidence of radiation hardness improvement of HTLT(TD) Si detectors irradiated below approx 10 sup 1 sup 4 n/cm sup 2 compared to detectors made on standard silicon wafers: the increase of space charge sign inversion fluence (of 1 MeV neutrons) due to lower initial Si resistivity dominated by TD, and the gain in the reverse annealing time constant tau favourable for this material. Coupled with extremely high radiation tolerance to protons observed earlier ('beta zero' behaviour in a wide range of fluence), detectors from HTLT(TD) Si may be unique for application in the experiments with multiple radiations. The changes in the effective sp...

  5. Preliminary Study of Oxygen-Enhanced Longitudinal Relaxation in MRI: A Potential Novel Biomarker of Oxygenation Changes in Solid Tumors

    International Nuclear Information System (INIS)

    O'Connor, James P.B.; Naish, Josephine H.; Parker, Geoff J.M.; Waterton, John C.; Watson, Yvonne; Jayson, Gordon C.; Buonaccorsi, Giovanni A.; Cheung, Sue; Buckley, David L.; McGrath, Deirdre M.; West, Catharine M.L.; Davidson, Susan E.; Roberts, Caleb; Mills, Samantha J.; Mitchell, Claire L.; Hope, Lynn; Ton, N. Chan; Jackson, Alan

    2009-01-01

    Purpose: There is considerable interest in developing non-invasive methods of mapping tumor hypoxia. Changes in tissue oxygen concentration produce proportional changes in the magnetic resonance imaging (MRI) longitudinal relaxation rate (R 1 ). This technique has been used previously to evaluate oxygen delivery to healthy tissues and is distinct from blood oxygenation level-dependent (BOLD) imaging. Here we report application of this method to detect alteration in tumor oxygenation status. Methods and materials: Ten patients with advanced cancer of the abdomen and pelvis underwent serial measurement of tumor R 1 while breathing medical air (21% oxygen) followed by 100% oxygen (oxygen-enhanced MRI). Gadolinium-based dynamic contrast-enhanced MRI was then performed to compare the spatial distribution of perfusion with that of oxygen-induced ΔR 1 . Results: ΔR 1 showed significant increases of 0.021 to 0.058 s -1 in eight patients with either locally recurrent tumor from cervical and hepatocellular carcinomas or metastases from ovarian and colorectal carcinomas. In general, there was congruency between perfusion and oxygen concentration. However, regional mismatch was observed in some tumor cores. Here, moderate gadolinium uptake (consistent with moderate perfusion) was associated with low area under the ΔR 1 curve (consistent with minimal increase in oxygen concentration). Conclusions: These results provide evidence that oxygen-enhanced longitudinal relaxation can monitor changes in tumor oxygen concentration. The technique shows promise in identifying hypoxic regions within tumors and may enable spatial mapping of change in tumor oxygen concentration.

  6. Distributed Radiation Monitoring System for Linear Accelerators based on CAN Bus

    CERN Document Server

    Kozak, T; Napieralski, A

    2010-01-01

    Abstract—Gamma and neutron radiation is produced during the normal operation of linear accelerators like Free-Electron Laser in Hamburg (FLASH) or X-ray Free Electron Laser (X-FEL). Gamma radiation cause general degeneration of electronics devices and neutron fluence can be a reason of soft error in memories and microcontrollers. X-FEL accelerator will be built only in one tunnel, therefore most of electronic control systems will be placed in radiation environment. Exposing control systems to radiation may lead to many errors and unexpected failure of the whole accelerator system. Thus, the radiation monitoring system able to monitor radiation doses produced near controlling systems is crucial. Knowledge of produced radiation doses allows to detect errors caused by radiation, make plans of essential exchange of control systems and prevent accelerator from serious damages. The paper presents the project of radiation monitoring system able to monitor radiation environment in real time.

  7. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  8. Phenobarbital and neonatal seizures affect cerebral oxygen metabolism: a near-infrared spectroscopy study.

    Science.gov (United States)

    Sokoloff, Max D; Plegue, Melissa A; Chervin, Ronald D; Barks, John D E; Shellhaas, Renée A

    2015-07-01

    Near-infrared spectroscopy (NIRS) measures oxygen metabolism and is increasingly used for monitoring critically ill neonates. The implications of NIRS-recorded data in this population are poorly understood. We evaluated NIRS monitoring for neonates with seizures. In neonates monitored with video-electroencephalography, NIRS-measured cerebral regional oxygen saturation (rSO2) and systemic O2 saturation were recorded every 5 s. Mean rSO2 was extracted for 1-h blocks before, during, and after phenobarbital doses. For each electrographic seizure, mean rSO2 was extracted for a period of three times the duration of the seizure before and after the ictal pattern, as well as during the seizure. Linear mixed models were developed to assess the impact of phenobarbital administration and of seizures on rSO2 and fractional tissue oxygen extraction. For 20 neonates (estimated gestational age: 39.6 ± 1.5 wk), 61 phenobarbital doses and 40 seizures were analyzed. Cerebral rSO2 rose (P = 0.005), and fractional tissue oxygen extraction declined (P = 0.018) with increasing phenobarbital doses. rSO2 declined during seizures, compared with baseline and postictal phases (baseline 81.2 vs. ictal 77.7 vs. postictal 79.4; P = 0.004). Fractional tissue oxygen extraction was highest during seizures (P = 0.002). Cerebral oxygen metabolism decreases after phenobarbital administration and increases during seizures. These small, but clear, changes in cerebral oxygen metabolism merit assessment for potential clinical impact.

  9. Study of the effects of low-fluence laser irradiation on wall paintings: Test measurements on fresco model samples

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, Valentina, E-mail: v.raimondi@ifac.cnr.it [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Cucci, Costanza [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Cuzman, Oana [Institute for the Conservation and Promotion of Cultural Heritage-National Research Council (CNR-ICVBC), Firenze (Italy); Fornacelli, Cristina [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Galeotti, Monica [Opificio delle Pietre Dure (OPD), Firenze (Italy); Gomoiu, Ioana [National University of Art, Bucharest (Romania); Lognoli, David [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Mohanu, Dan [National University of Art, Bucharest (Romania); Palombi, Lorenzo; Picollo, Marcello [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Tiano, Piero [Institute for the Conservation and Promotion of Cultural Heritage-National Research Council (CNR-ICVBC), Firenze (Italy)

    2013-11-01

    Laser-induced fluorescence is widely applied in several fields as a diagnostic tool to characterise organic and inorganic materials and could be also exploited for non-invasive remote investigation of wall paintings using the fluorescence lidar technique. The latter relies on the use of a low-fluence pulsed UV laser and a telescope to carry out remote spectroscopy on a given target. A first step to investigate the applicability of this technique is to assess the effects of low-fluence laser radiation on wall paintings. This paper presents a study devoted to investigate the effects of pulsed UV laser radiation on a set of fresco model samples prepared using different pigments. To irradiate the samples we used a tripled-frequency Q-switched Nd:YAG laser (emission wavelength: 355 nm; pulse width: 5 ns). We varied the laser fluence from 0.1 mJ/cm{sup 2} to 1 mJ/cm{sup 2} and the number of laser pulses from 1 to 500 shots. We characterised the investigated materials using several diagnostic and analytical techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy and ATR-FT-IR microscopy) to compare the surface texture and their composition before and after laser irradiation. Results open good prospects for a non-invasive investigation of wall paintings using the fluorescence lidar technique.

  10. Creation of an atlas of filter positions for fluence field modulated CT

    Energy Technology Data Exchange (ETDEWEB)

    Szczykutowicz, Timothy P., E-mail: TSzczykutowicz@uwhealth.org [Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Hermus, James [Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, Wisconsin 53706 (United States)

    2015-04-15

    Purpose: Fluence field modulated CT (FFMCT) and volume of interest (VOI) CT imaging applications require adjustment of the profile of the x-ray fluence incident on a patient as a function of view angle. Since current FFMCT prototypes can theoretically take on an infinite number of configurations, measuring a calibration data set for all possible positions would not be feasible. The present work details a methodology for calculating an atlas of configurations that will span all likely body regions, patient sizes, patient positioning, and imaging modes. The hypothesis is that there exists a finite number of unique modulator configurations that effectively span the infinite number of possible fluence profiles with minimal loss in performance. Methods: CT images of a head, shoulder, thorax, abdominal, wrist, and leg anatomical slices were dilated and contracted to model small, medium, and large sized patients. Additionally, the images were positioned from iso-center by three different amounts. The modulator configurations required to compensate for each image were computed assuming a FFMCT prototype, digital beam attenuator, (DBA), was set to equalize the detector exposure. Each atlas configuration should be different from the other atlas configurations. The degree of difference was quantified using the sum of the absolute differences in filter thickness between configurations. Using this metric, a set of unique wedge configurations for which no two configurations have a metric value smaller than some threshold can be constructed. Differences in the total number of incident photons between the unconstrained filters and the atlas were studied as a function of the number of atlas positions for each anatomical site and size/off-centering combination. Results: By varying the threshold used in creating the atlas, it was found that roughly 322 atlas positions provided an incident number of photons within 20% of using 19 440 unique filters (the number of atlas entries

  11. Creation of an atlas of filter positions for fluence field modulated CT

    International Nuclear Information System (INIS)

    Szczykutowicz, Timothy P.; Hermus, James

    2015-01-01

    Purpose: Fluence field modulated CT (FFMCT) and volume of interest (VOI) CT imaging applications require adjustment of the profile of the x-ray fluence incident on a patient as a function of view angle. Since current FFMCT prototypes can theoretically take on an infinite number of configurations, measuring a calibration data set for all possible positions would not be feasible. The present work details a methodology for calculating an atlas of configurations that will span all likely body regions, patient sizes, patient positioning, and imaging modes. The hypothesis is that there exists a finite number of unique modulator configurations that effectively span the infinite number of possible fluence profiles with minimal loss in performance. Methods: CT images of a head, shoulder, thorax, abdominal, wrist, and leg anatomical slices were dilated and contracted to model small, medium, and large sized patients. Additionally, the images were positioned from iso-center by three different amounts. The modulator configurations required to compensate for each image were computed assuming a FFMCT prototype, digital beam attenuator, (DBA), was set to equalize the detector exposure. Each atlas configuration should be different from the other atlas configurations. The degree of difference was quantified using the sum of the absolute differences in filter thickness between configurations. Using this metric, a set of unique wedge configurations for which no two configurations have a metric value smaller than some threshold can be constructed. Differences in the total number of incident photons between the unconstrained filters and the atlas were studied as a function of the number of atlas positions for each anatomical site and size/off-centering combination. Results: By varying the threshold used in creating the atlas, it was found that roughly 322 atlas positions provided an incident number of photons within 20% of using 19 440 unique filters (the number of atlas entries

  12. Clustered vacancies in ZnO: chemical aspects and consequences on physical properties

    Science.gov (United States)

    Pal, S.; Gogurla, N.; Das, Avishek; Singha, S. S.; Kumar, Pravin; Kanjilal, D.; Singha, A.; Chattopadhyay, S.; Jana, D.; Sarkar, A.

    2018-03-01

    The chemical nature of point defects, their segregation, cluster or complex formation in ZnO is an important area of investigation. The evolution of a defective state with MeV Ar ion irradiation fluence 1  ×  1014 and 1  ×  1016 ions cm-2 has been monitored here using x-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and Raman spectroscopy. The XPS study shows the presence of oxygen vacancies (V O) in Ar irradiated ZnO. Zn(LMM) Auger spectra clearly identifies a transition involving metallic zinc in the irradiated samples. An intense PL emission from interstitial Zn (I Zn)-related shallow donor bound excitons (DBX) is visible in the 10 K spectra for all samples. Although overall PL is largely reduced with irradiation disorder, DBX intensity is increased for the highest fluence irradiated sample. The Raman study indicates damage in both the zinc and oxygen sub-lattice by an energetic ion beam. Representative Raman modes from defect complexes involving V O, I Zn and I O are visible after irradiation with intermediate fluence. A further increase of fluence shows, to some extent, a homogenization of disorder. A huge reduction of resistance is also noted for this sample. Certainly, high irradiation fluence induces a qualitative modification of the conventional (and highly resistive) grain boundary (GB) structure of granular ZnO. A low resistive path, involving I Zn related shallow donors, across the GB can be presumed to explain resistance reduction. Open volumes (V Zn and V O) agglomerate more and more with increasing irradiation fluence and are finally transformed to voids. The results as a whole have been elucidated with a model which emphasizes the possible evolution of a new defect microstructure that is distinctively different from the GB-related disorder. Based on the model, qualitative explanations of commonly observed radiation hardness, colouration and ferromagnetism in disordered ZnO have been put forward. A coherent scenario

  13. Application of fluence field modulation to proton computed tomography for proton therapy imaging.

    Science.gov (United States)

    Dedes, G; De Angelis, L; Rit, S; Hansen, D; Belka, C; Bashkirov, V; Johnson, R P; Coutrakon, G; Schubert, K E; Schulte, R W; Parodi, K; Landry, G

    2017-07-12

    This simulation study presents the application of fluence field modulated computed tomography, initially developed for x-ray CT, to proton computed tomography (pCT). By using pencil beam (PB) scanning, fluence modulated pCT (FMpCT) may achieve variable image quality in a pCT image and imaging dose reduction. Three virtual phantoms, a uniform cylinder and two patients, were studied using Monte Carlo simulations of an ideal list-mode pCT scanner. Regions of interest (ROI) were selected for high image quality and only PBs intercepting them preserved full fluence (FF). Image quality was investigated in terms of accuracy (mean) and noise (standard deviation) of the reconstructed proton relative stopping power compared to reference values. Dose calculation accuracy on FMpCT images was evaluated in terms of dose volume histograms (DVH), range difference (RD) for beam-eye-view (BEV) dose profiles and gamma evaluation. Pseudo FMpCT scans were created from broad beam experimental data acquired with a list-mode pCT prototype. FMpCT noise in ROIs was equivalent to FF images and accuracy better than  -1.3%(-0.7%) by using 1% of FF for the cylinder (patients). Integral imaging dose reduction of 37% and 56% was achieved for the two patients for that level of modulation. Corresponding DVHs from proton dose calculation on FMpCT images agreed to those from reference images and 96% of BEV profiles had RD below 2 mm, compared to only 1% for uniform 1% of FF. Gamma pass rates (2%, 2 mm) were 98% for FMpCT while for uniform 1% of FF they were as low as 59%. Applying FMpCT to preliminary experimental data showed that low noise levels and accuracy could be preserved in a ROI, down to 30% modulation. We have shown, using both virtual and experimental pCT scans, that FMpCT is potentially feasible and may allow a means of imaging dose reduction for a pCT scanner operating in PB scanning mode. This may be of particular importance to proton therapy given the low integral dose found

  14. 1H nuclear magnetic resonance studies of sarcoplasmic oxygenation in the red cell-perfused rat heart

    OpenAIRE

    Jelicks, L.A.; Wittenberg, B.A.

    1995-01-01

    The proximal histidine N delta H proton of deoxymyoglobin experiences a large hyperfine shift resulting in its 1H nuclear magnetic resonance (NMR) signal appearing at approximately 76 ppm (at 35 degrees C), downfield of the diamagnetic spectral region. 1H NMR of this proton is used to monitor sarcoplasmic oxygen pressure in isolated perfused rat heart. This method monitors intracellular oxygenation in the whole heart and does not reflect oxygenation in a limited region. The deoxymyoglobin res...

  15. Evaluating a radiation monitor for mixed-field environments based on SRAM technology

    CERN Document Server

    Tsiligiannis, G; Bosio, A; Girard, P; Pravossoudovitch, S; Todri, A; Virazel, A; Mekki, J; Brugger, M; Wrobel, F; Saigne, F

    2014-01-01

    Instruments operating in particle accelerators and colliders are exposed to radiations that are composed of particles of different types and energies. Several of these instruments often embed devices that are not hardened against radiation effects. Thus, there is a strong need for mon- itoring the levels of radiation inside the mixed-field radiation areas, throughout different positions. Different metrics exist for measuring the radiation damage induced to electronic devices, such as the Total Ionizing Dose (TID), the Displacement Damage (DD) and of course the fluence of parti- cles for estimating the error rates of the electronic devices among other applications. In this paper, we propose an SRAM based monitor, that is used to define the fluence of High Energy Hadrons (HEH) by detecting Single Event Upsets in the memory array. We evaluated the device by testing it inside the H4IRRAD area of CERN, a test area that reproduces the radiation conditions inside the Large Hadron Collider (LHC) tunnel and its shield...

  16. Test measurements on a secco white-lead containing model samples to assess the effects of exposure to low-fluence UV laser radiation

    Science.gov (United States)

    Raimondi, Valentina; Andreotti, Alessia; Colombini, Maria Perla; Cucci, Costanza; Cuzman, Oana; Galeotti, Monica; Lognoli, David; Palombi, Lorenzo; Picollo, Marcello; Tiano, Piero

    2015-05-01

    Laser-induced fluorescence technique is widely used for diagnostic purposes in several applications and its use could be of advantage for non-invasive on-site characterisation of pigments or other compounds in wall paintings. However, it is well known that long-time exposure to UV and VIS radiation can cause damage to wall paintings. Several studies have investigated the effects of lighting, e.g., in museums: however, the effects of low-fluence laser radiation have not been studied much so far. This paper investigates the effects of UV laser radiation using fluences in the range of 0.1 mJ/cm2-1 mJ/cm2 on a set of a secco model samples prepared with lead white and different type of binders (animal glue and whole egg, whole egg, skimmed milk, egg-oil tempera). The samples were irradiated using a Nd:YAG laser (emission wavelength at 355 nm; pulse width: 5 ns) by applying laser fluences between 0.1 mJ/cm2 and 1 mJ/cm2 and a number of laser pulses between 1 and 500. The samples were characterised before and after laser irradiation by using several techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy, FT-IR spectroscopy Attenuated Total Reflectance microscopy and gas chromatography/mass spectrometry), to detect variations in the morphological and physico-chemical properties. The results did not point out significant changes in the sample properties after irradiation in the proposed range of laser fluences.

  17. New principle for measuring arterial blood oxygenation, enabling motion-robust remote monitoring.

    Science.gov (United States)

    van Gastel, Mark; Stuijk, Sander; de Haan, Gerard

    2016-12-07

    Finger-oximeters are ubiquitously used for patient monitoring in hospitals worldwide. Recently, remote measurement of arterial blood oxygenation (SpO 2 ) with a camera has been demonstrated. Both contact and remote measurements, however, require the subject to remain static for accurate SpO 2 values. This is due to the use of the common ratio-of-ratios measurement principle that measures the relative pulsatility at different wavelengths. Since the amplitudes are small, they are easily corrupted by motion-induced variations. We introduce a new principle that allows accurate remote measurements even during significant subject motion. We demonstrate the main advantage of the principle, i.e. that the optimal signature remains the same even when the SNR of the PPG signal drops significantly due to motion or limited measurement area. The evaluation uses recordings with breath-holding events, which induce hypoxemia in healthy moving subjects. The events lead to clinically relevant SpO 2 levels in the range 80-100%. The new principle is shown to greatly outperform current remote ratio-of-ratios based methods. The mean-absolute SpO 2 -error (MAE) is about 2 percentage-points during head movements, where the benchmark method shows a MAE of 24 percentage-points. Consequently, we claim ours to be the first method to reliably measure SpO 2 remotely during significant subject motion.

  18. Online analysis of oxygen inside silicon-glass microreactors with integrated optical sensors

    DEFF Research Database (Denmark)

    Ehgartner, Josef; Sulzer, Philipp; Burger, Tobias

    2016-01-01

    A powerful online analysis set-up for oxygen measurements within microfluidic devices is presented. It features integration of optical oxygen sensors into microreactors, which enables contactless, accurate and inexpensive readout using commercially available oxygen meters via luminescent lifetime...... monitoring of enzyme transformations, including d-alanine or d-phenylalanine oxidation by d-amino acid oxidase, and glucose oxidation by glucose oxidase....

  19. Combination of On-line pH and Oxygen Transfer Rate Measurement in Shake Flasks by Fiber Optical Technique and Respiration Activity MOnitoring System (RAMOS

    Directory of Open Access Journals (Sweden)

    Jochen Büchs

    2007-12-01

    Full Text Available Shake flasks are commonly used for process development in biotechnologyindustry. For this purpose a lot of information is required from the growth conditions duringthe fermentation experiments. Therefore, Anderlei et al. developed the RAMOS technology[1, 2], which proviedes on-line oxygen and carbondioxide transfer rates in shake flasks.Besides oxygen consumption, the pH in the medium also plays an important role for thesuccessful cultivation of micro-organisms and for process development. For online pHmeasurement fiber optical methods based on fluorophores are available. Here a combinationof the on-line Oxygen Transfer Rate (OTR measurements in the RAMOS device with anon-line, fiber optical pH measurement is presented. To demonstrate the application of thecombined measurement techniques, Escherichia coli cultivations were performed and on-line pH measurements were compared with off-line samples. The combination of on-lineOTR and pH measurements gives a lot of information about the cultivation and, therefore, itis a powerful technique for monitoring shake flask experiments as well as for processdevelopment.

  20. SU-F-T-684: Analysis of Cherenkov Excitation in Tissue and the Feasibility of Cherenkov Excited Photodynamic Therapy

    International Nuclear Information System (INIS)

    Saunders, Sara L; Andreozzi, Jacqueline M; Pogue, Brian W; Glaser, Adam K

    2016-01-01

    Purpose: The irradiation of photodynamic agents with radiotherapy beams has been demonstrated to enhance tumor killing in various studies, and one proposed mechanism is the optical fluence of Cherenkov emission activating the photosensitizer. This mechanism is explored in Monte Carlo simulations of fluence as well as laboratory measurements of fluence and radical oxygen species. Methods: Simulations were completed using GAMOS/GEANT4 with a 6 MV photon beam in tissue. The effects of blood vessel diameter, blood oxygen saturation, and beam size were examined, recording spectral fluence. Experiments were carried out in solutions of photosensitizer and phantoms. Results: Cherenkov produced by a 100×100um"2 6 MV beam resulted in fluence of less than 1 nJ/cm"2/Gy per 1 nm wavelength. At this microscopic level, differences in absorption of blood and water in the tissue affected the fluence spectrum, but variation in blood oxygenation had little effect. Light in tissue resulting from larger (10mm ×10mm) 6 MV beams had greater fluence due to light transport and elastic scattering of optical photons, but this transport process also resulted in higher absorption shifts. Therefore, the spectrum produced by a microscopic beam was weighted more heavily in UV/blue wavelengths than the spectrum at the macroscopic level. At the macroscopic level, the total fluence available for absorption by Verteporfin (BPD) in tissue approached uJ/cm"2 for a high radiation dose, indicating that photodynamic activation seems unlikely. Tissue phantom confirmation of these light levels supported this observation, and photosensitization measurements with a radical oxygen species reporter are ongoing. Conclusion: Simulations demonstrated that fluence produced by Cherenkov in tissue by 6 MV photon beams at typical radiotherapy doses appears insufficient to activate photosensitizers to the level required for threshold effects, yet this disagrees with published biological experiments. Experimental

  1. SU-F-T-684: Analysis of Cherenkov Excitation in Tissue and the Feasibility of Cherenkov Excited Photodynamic Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Sara L; Andreozzi, Jacqueline M; Pogue, Brian W [Dartmouth College, Hanover, NH (United States); Glaser, Adam K [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: The irradiation of photodynamic agents with radiotherapy beams has been demonstrated to enhance tumor killing in various studies, and one proposed mechanism is the optical fluence of Cherenkov emission activating the photosensitizer. This mechanism is explored in Monte Carlo simulations of fluence as well as laboratory measurements of fluence and radical oxygen species. Methods: Simulations were completed using GAMOS/GEANT4 with a 6 MV photon beam in tissue. The effects of blood vessel diameter, blood oxygen saturation, and beam size were examined, recording spectral fluence. Experiments were carried out in solutions of photosensitizer and phantoms. Results: Cherenkov produced by a 100×100um{sup 2} 6 MV beam resulted in fluence of less than 1 nJ/cm{sup 2}/Gy per 1 nm wavelength. At this microscopic level, differences in absorption of blood and water in the tissue affected the fluence spectrum, but variation in blood oxygenation had little effect. Light in tissue resulting from larger (10mm ×10mm) 6 MV beams had greater fluence due to light transport and elastic scattering of optical photons, but this transport process also resulted in higher absorption shifts. Therefore, the spectrum produced by a microscopic beam was weighted more heavily in UV/blue wavelengths than the spectrum at the macroscopic level. At the macroscopic level, the total fluence available for absorption by Verteporfin (BPD) in tissue approached uJ/cm{sup 2} for a high radiation dose, indicating that photodynamic activation seems unlikely. Tissue phantom confirmation of these light levels supported this observation, and photosensitization measurements with a radical oxygen species reporter are ongoing. Conclusion: Simulations demonstrated that fluence produced by Cherenkov in tissue by 6 MV photon beams at typical radiotherapy doses appears insufficient to activate photosensitizers to the level required for threshold effects, yet this disagrees with published biological experiments

  2. Online measurement of fluence and position for protontherapy beams

    International Nuclear Information System (INIS)

    Benati, C.; Boriano, A.

    2004-01-01

    Tumour therapy with proton beams has been used for several decades in many centers with very good results in terms of local control and overall survival. Typical pathologies treated with this technique are located in head and neck, eye, prostate and in general at big depths or close to critical organs. The Experimental Physics Department of the University of Turin and the local Section of INFN, in collaboration with INFN Laboratori Nazionali del Sud Catania and Centre de Protontherapie de Orsay Paris, have developed detector systems that allow the measurement of beam position and fluence, obtained in real time during beam delivery. The Centre in Catania (CATANA: Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been treating patients with eye pathologies since spring 2002 using a superconducting cyclotron accelerating protons up to 62 MeV

  3. Online measurement of fluence and position for protontherapy beams

    Energy Technology Data Exchange (ETDEWEB)

    Benati, C.; Boriano, A. [Torino Univ., Torino (Italy). Dipartimento di Fisica Sperimentale; Bourhaleb, F. [TERA Foundation, Novara (Italy)] [and others

    2004-10-01

    Tumour therapy with proton beams has been used for several decades in many centers with very good results in terms of local control and overall survival. Typical pathologies treated with this technique are located in head and neck, eye, prostate and in general at big depths or close to critical organs. The Experimental Physics Department of the University of Turin and the local Section of INFN, in collaboration with INFN Laboratori Nazionali del Sud Catania and Centre de Protontherapie de Orsay Paris, have developed detector systems that allow the measurement of beam position and fluence, obtained in real time during beam delivery. The Centre in Catania (CATANA: Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been treating patients with eye pathologies since spring 2002 using a superconducting cyclotron accelerating protons up to 62 MeV.

  4. Oxygen, the lung and the diver: friends and foes?

    Science.gov (United States)

    van Ooij, Pieter-Jan A M; Sterk, Peter J; van Hulst, Robert A

    2016-12-01

    Worldwide, the number of professional and sports divers is increasing. Most of them breathe diving gases with a raised partial pressure of oxygen (P O 2 ). However, if the P O 2 is between 50 and 300 kPa (375-2250 mmHg) (hyperoxia), pathological pulmonary changes can develop, known as pulmonary oxygen toxicity (POT). Although in its acute phase, POT is reversible, it can ultimately lead to non-reversible pathological changes. Therefore, it is important to monitor these divers to prevent them from sustaining irreversible lesions.This review summarises the pulmonary pathophysiological effects when breathing oxygen with a P O 2 of 50-300 kPa (375-2250 mmHg). We describe the role and the limitations of lung function testing in monitoring the onset and development of POT, and discuss new techniques in respiratory medicine as potential markers in the early development of POT in divers. Copyright ©ERS 2016.

  5. Excess oxygen limited diffusion and precipitation of iron in amorphous silicon dioxide

    Science.gov (United States)

    Leveneur, J.; Langlois, M.; Kennedy, J.; Metson, James B.

    2017-10-01

    In micro- and nano- electronic device fabrication, and particularly 3D designs, the diffusion of a metal into sublayers during annealing needs to be minimized as it is usually detrimental to device performance. Diffusion also causes the formation and growth of nanoprecipitates in solid matrices. In this paper, the diffusion behavior of low energy, low fluence, ion implanted iron into a thermally grown silicon oxide layer on silicon is investigated. Different ion beam analysis and imaging techniques were used. Magnetization measurements were also undertaken to provide evidence of nanocrystalline ordering. While standard vacuum furnace annealing and electron beam annealing lead to fast diffusion of the implanted species towards the Si/SiO2 interface, we show that furnace annealing in an oxygen rich atmosphere prevents the diffusion of iron that, in turn, limits the growth of the nanoparticles. The diffusion and particle growth is also greatly reduced when oxygen atoms are implanted in the SiO2 prior to Fe implantation, effectively acting as a diffusion barrier. The excess oxygen is hypothesized to trap Fe atoms and reduce their mean free path during the diffusion. Monte-Carlo simulations of the diffusion process which consider the random walk of Fe, Fick's diffusion of O atoms, Fe precipitation, and desorption of the SiO2 layer under the electron beam annealing were performed. Simulation results for the three preparation conditions are found in good agreement with the experimental data.

  6. Shield design for next-generation, low-neutron-fluence, superconducting tokamaks

    International Nuclear Information System (INIS)

    Lee, V.D.; Gohar, Y.

    1985-01-01

    A shield design using stainless steel (SST), water, boron carbide, lead, and concrete materials was developed for the next-generation tokamak device with superconducting toroidal field (TF) coils and low neutron fluence. A device such as the Tokamak Fusion Core Experiment (TFCX) is representative of the tokamak design which could use this shield design. The unique feature of this reference design is that a majority of the bulk steel in the shield is in the form of spherical balls with two small, flat spots. The balls are purchased from ball-bearing manufacturers and are added as bulk shielding to the void areas of builtup, structural steel shells which form the torus cavity of the plasma chamber. This paper describes the design configuration of the shielding components

  7. Shield design for next-generation, low-neutron-fluence, superconducting tokamaks

    International Nuclear Information System (INIS)

    Lee, V.D.; Gohar, Y.

    1985-01-01

    A shield design using stainless steel (SST), water, boron carbide, lead, and concrete materials was developed for the next-generation tokamak device with superconducting toroidal field (TF) coils and low neutron fluence. A device such as the Tokamak Fusion Core Experiment (TFCX) is representative of the tokamak design which could use this shield design. The unique feature of this reference design is that a majority of the bulk steel in the shield is in the form of spherical balls with two small, flat spots. The balls are purchased from ball-bearing manufacturers and are added as bulk shielding to the void areas of built-up, structural steel shells which form the torus cavity of the plasma chamber. This paper describes the design configuration of the shielding components

  8. Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Kuimova, Marina; Gbur, Peter

    2009-01-01

    be monitored using viability assays. Time- and spatially-resolved optical measurements of both singlet oxygen and its precursor, the excited state sensitizer, reflect the complex and dynamic morphology of the cell. These experiments help elucidate photoinduced, oxygen-dependent events that compromise cell...

  9. Cerebral blood oxygenation measurements in neonates with optoacoustic technique

    Science.gov (United States)

    Herrmann, Stephen; Petrov, Irene Y.; Petrov, Yuriy; Richardson, C. Joan; Fonseca, Rafael A.; Prough, Donald S.; Esenaliev, Rinat O.

    2017-03-01

    Cerebral hypoxia is a major contributor to neonatal/infant mortality and morbidity including severe neurological complications such as mental retardation, cerebral palsy, motor impairment, and epilepsy. Currently, no technology is capable of accurate monitoring of neonatal cerebral oxygenation. We proposed to use optoacoustics for this application by probing the superior sagittal sinus (SSS), a large central cerebral vein. We developed and built a multi-wavelength, optical parametric oscillator (OPO) and laser diode optoacoustic systems for measurement of SSS blood oxygenation in the reflection mode through open anterior or posterior fontanelles and in the transmission mode through the skull in the occipital area. In this paper we present results of initial tests of the laser diode system for neonatal cerebral oxygenation measurements. First, the system was tested in phantoms simulating neonatal SSS. Then, using the data obtained in the phantoms, we optimized the system's hardware and software and tested it in neonates admitted in the Neonatal Intensive Care Unit. The laser diode system was capable of detecting SSS signals in the reflection mode through the open anterior and posterior fontanelles as well as in the transmission mode through the skull with high signal-to-noise ratio. Using the signals measured at different wavelengths and algorithms developed for oxygenation measurements, the laser diode system provided real-time, continuous oxygenation monitoring with high precision at all these locations.

  10. Nuclear electronic equipment for control and monitoring boards. Specifications and test methods of direct current period meters

    International Nuclear Information System (INIS)

    Roquefort, Henri; Chapelot; Ramard; Tardif; Tournier; Vaux

    1973-11-01

    After a few words of introduction, mention of the main notations used and the definition of certain terms, the field of application of the document is outlined and a list of references given. The main specifications of electronic 'direct current period meter' subassemblies for the monitoring, control and safety of nuclear reactors are then defined and the corresponding test methods described. The apparatus measures on a logarithmic scale the neutron fluence rate of a reactor by means of an ionisation chamber and supplies 'period' data relative to the fluence rate variation in time. The specifications and test methods are given for the different components: logarithmic amplifier, time derivative unit, threshold releases, high tension supply for ionisation chamber, auxiliary circuits and finally the complete period meter. (author) [fr

  11. Full-fluence tests of experimental thermosetting fuel rods for the high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Bullock, R.E.

    1981-01-01

    The irradiation performance of injected thermosetting fuel rods is compared to that of standard pitch-temperature gas-cooled reactor requirements. The primary objective of the experiments reported here was to obtain additional irradiation data at higher fluences for resin-based rods with intermediate binder char contents within the 15 to 30 wt% ''window of acceptability'' that had been previously established. 12 refs

  12. Evaluation of fluence to dose equivalent conversion factors for high energy radiations, (1)

    International Nuclear Information System (INIS)

    Sato, Osamu; Uehara, Takashi; Yoshizawa, Nobuaki; Iwai, Satoshi; Tanaka, Shun-ichi.

    1992-09-01

    Computer code system and basic data have been investigated for evaluating fluence to dose equivalent conversion factors for photons and neutrons up to 10 GeV. The present work suggested that the conversion factors would be obtained by incorporating effective quality factors of charged particles into the HERMES (High Energy Radiation Monte Carlo Elaborate System) code system. The effective quality factors for charged particles were calculated on the basis of the Q-L relationships specified in the ICRP Publication-60. (author)

  13. Optical monitoring of gases with cholesteric liquid crystals.

    Science.gov (United States)

    Han, Yang; Pacheco, Katherine; Bastiaansen, Cees W M; Broer, Dirk J; Sijbesma, Rint P

    2010-03-10

    A new approach to optical monitors for gases is introduced using cholesteric liquid crystals doped with reactive chiral compounds. The approach is based on cholesteric pitch length changes caused by a change in helical twisting power (HTP) of the chiral dopants upon reaction with the analyte. The concept is demonstrated for monitoring carbon dioxide via reversible carbamate formation and for oxygen using the irreversible oxidation of a chiral dithiol to a disulfide. Monitoring of CO(2) was achieved by doping a commercial cholesteric liquid crystalline mixture (E7) with 1.6% mol of the 1:1 complex of an optically pure diamine with a TADDOL derivative. Upon exposure to carbon dioxide, the reflection band of a thin film of the mixture shifted from 637 to 495 nm as a consequence of dissociation of the complex after carbamate formation of the diamine. An O(2) monitor was obtained by doping E7 with a chiral binaphthyl dithiol derivative and a nonresponsive codopant. The reflection band of the oxygen monitor film changed from 542 to 600 nm, due to the conformational change accompanying oxidation of the dithiol to disulfide. These monitoring mechanisms hold promise for application in smart packaging, where carbon dioxide and oxygen are of special interest because of their roles in food preservation.

  14. The effect of the fluence on the properties of La-Ca-Mn-O thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Canulescu, S.; Lippert, Th.; Wokaun, A.; Doebeli, M.; Weidenkaff, A.; Robert, R.; Logvinovich, D.

    2007-01-01

    Thin films of La 0.6 Ca 0.4 MnO 3-δ were deposited on SrTiO 3 (100) by PRCLA (Pulsed Reactive Crossed-Beam Laser Ablation). The dependence of the structural and transport properties of the films on the laser fluence and different target to substrate distances during the growth are studied. Both parameters have a direct influence on the films thickness and velocity of the ions arriving at the substrate, which influence the film properties directly. The surface roughness of the La 0.6 Ca 0.4 MnO 3-δ thin films is depending mainly on the laser fluence and less on the target-substrate distance. Lower laser fluences and therefore lower growth rates yield film with lower roughness, i.e. in the range of 0.2 nm. The electronic transport measurements show a decrease of the transition temperature from metal to semiconductor with an increase of the target to substrate distance. This is related to an increase of the films thickness and therefore decrease of the strain in the films due to the lattice mismatch with the substrate. The magnetoresistance values are also strongly affected by the tensile strain, i.e. they increase for higher strained films

  15. The human ear canal: investigation of its suitability for monitoring photoplethysmographs and arterial oxygen saturation

    International Nuclear Information System (INIS)

    Budidha, K; Kyriacou, P A

    2014-01-01

    For the last two decades, pulse oximetry has been used as a standard procedure for monitoring arterial oxygen saturation (SpO 2 ). However, SpO 2 measurements made from extremities such as the finger, ear lobe and toes become susceptible to inaccuracies when peripheral perfusion is compromised. To overcome these limitations, the external auditory canal has been proposed as an alternative monitoring site for estimating SpO 2 , on the hypothesis that this central site will be better perfused. Therefore, a dual wavelength optoelectronic probe along with a processing system was developed to investigate the suitability of measuring photoplethysmographic (PPG) signals and SpO 2 in the human auditory canal. A pilot study was carried out in 15 healthy volunteers to validate the feasibility of measuring PPGs and SpO 2  from the ear canal (EC), and comparative studies were performed by acquiring the same signals from the left index finger (LIF) and the right index finger (RIF) in conditions of induced peripheral vasoconstriction (right hand immersion in ice water). Good quality baseline PPG signals with high signal-to-noise ratio were obtained from the EC, the LIF and the RIF sensors. During the ice water immersion, significant differences in the amplitude of the red and infrared PPG signals were observed from the RIF and the LIF sensors. The average drop in amplitude of red and infrared PPG signals from the RIF was 52.7% and 58.3%. Similarly, the LIF PPG signal amplitudes have reduced by 47.52% and 46.8% respectively. In contrast, no significant changes were seen in the red and infrared EC PPG amplitude measurements, which changed by +2.5% and −1.2% respectively. The RIF and LIF pulse oximeters have failed to estimate accurate SpO 2  in seven and four volunteers respectively, while the EC pulse oximeter has only failed in one volunteer. These results suggest that the EC may be a suitable site for reliable monitoring of PPGs and SpO 2 s even in the presence of

  16. Ketogenic diet for high partial pressure oxygen diving.

    Science.gov (United States)

    Valadao, Jason M; Vigilante, John A; DiGeorge, Nicholas W; O'Connor, Sunila E; Bear, Alexandria; Kenyon, Jeffrey; Annis, Heather; Dituri, Joseph; Dituri, Amy E; Whelan, Harry T

    2014-01-01

    A ketogenic diet (KD) may decrease central nervous system oxygen toxicity symptoms in divers, and in view of this implication a feasibility/ toxicity pilot study was performed to demonstrate tolerance of KD while performing normal diving profiles. The exact mechanism of neuroprotection from the KD remains unknown; however, evidence to support the efficacy of the KD in reducing seizures is present in epilepsy and oxygen toxicity studies, and may provide valuable insight in diving activities. Three divers (two males and one female ages 32-45 with a history of deep diving and high pO2 exposure) on the KD made dives to varying depths in Hawaii using fully closed-circuit MK-15 and Inspiration rebreathers. These rebreathers have an electronically controlled set point, allowing the divers to monitor and control the oxygen level in the breathing loop, which can be varied manually by the divers. Oxygen level was varied during descent, bottom depth and ascent (decompression). Divers fasted for 12-18 hours before diet initiation. The ketosis level was verified by urinating on a Ketostix (reagent strips for urinalysis). Ketosis was achieved and was easily monitored with Ketostix in the simulated operational environment. The KD did not interfere with the diving mission; no seizure activity or signs or symptoms of CNS toxicity were observed, and there were no adverse effects noted by the divers while on the KD.

  17. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry

    Directory of Open Access Journals (Sweden)

    Böttrich Marcel

    2015-09-01

    Full Text Available Transabdominal fetal pulse oximetry is a method to monitor the oxygen supply of the unborn child non-invasively. Due to the measurement setup, the received signal of the detector is composed of photons coding purely maternal and photons coding mixed fetal-maternal information. To analyze the wellbeing of the fetus, the fetal signal is extracted from the mixed component. In this paper we assess source-detector configurations, such that the mixed fetal-maternal components of the acquired signals are maximized. Monte-Carlo method is used to simulate light propagation and photon distribution in tissue. We use a plane layer and a spherical layer geometry to model the abdomen of a pregnant woman. From the simulations we extracted the fluence at the detector side for several source-detector distances and analyzed the ratio of the mixed fluence component to total fluence. Our simulations showed that the power of the mixed component depends on the source-detector distance as expected. Further we were able to visualize hot spot areas in the spherical layer model where the mixed fluence ratio reaches the highest level. The results are of high importance for sensor design considering signal composition and quality for non-invasive fetal pulse oximetry.

  18. Oxygen general saturation after bronchography under general ...

    African Journals Online (AJOL)

    Thirty-six patients undergoing bronchography or bronchoscopy under general anaesthesia were continuously monitored by pulse oximetry for 5 hours after these procedures. Significant falls in oxygen saturation were observed in the first hour and were of most clinical relevance in patients with preexisting pulmonary ...

  19. Fast neutron fluence calculations as support for a BWR pressure vessel and internals surveillance program

    International Nuclear Information System (INIS)

    Lucatero, Marco A.; Palacios-Hernandez, Javier C.; Ortiz-Villafuerte, Javier; Xolocostli-Munguia, J. Vicente; Gomez-Torres, Armando M.

    2010-01-01

    Materials surveillance programs are required to detect and prevent degradation of safety-related structures and components of a nuclear power reactor. In this work, following the directions in the Regulatory Guide 1.190, a calculational methodology is implemented as additional support for a reactor pressure vessel and internals surveillance program for a BWR. The choice of the neutronic methods employed was based on the premise of being able of performing all the expected future survey calculations in relatively short times, but without compromising accuracy. First, a geometrical model of a typical BWR was developed, from the core to the primary containment, including jet pumps and all other structures. The methodology uses the Synthesis Method to compute the three-dimensional neutron flux distribution. In the methodology, the code CORE-MASTER-PRESTO is used as the three-dimensional core simulator; SCALE is used to generate the fine-group flux spectra of the components of the model and also used to generate a 47 energy-groups job cross section library, collapsed from the 199-fine-group master library VITAMIN-B6; ORIGEN2 was used to compute the isotopic densities of uranium and plutonium; and, finally, DORT was used to calculate the two-dimensional and one-dimensional neutron flux distributions required to compute the synthesized three-dimensional neutron flux. Then, the calculation of fast neutron fluence was performed using the effective full power time periods through six operational fuel cycles of two BWR Units and until the 13th cycle for Unit 1. The results showed a maximum relative difference between the calculated-by-synthesis fast neutron fluxes and fluences and those measured by Fe, Cu and Ni dosimeters less than 7%. The dosimeters were originally located adjacent to the pressure vessel wall, as part of the surveillance program. Results from the computations of peak fast fluence on pressure vessel wall and specific weld locations on the core shroud are

  20. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E., E-mail: ezekiel.omotoso@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Departments of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Diale, M.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2016-01-01

    Irradiation experiments have been carried out on 1.9×10{sup 16} cm{sup −3} nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×10{sup 10} to 9.2×10{sup 11} cm{sup −2}. Current–voltage (I–V), capacitance–voltage (C–V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBH{sub I–V}) decreased from 1.47 to 1.34 eV. Free carrier concentration, N{sub d} decreased with increasing fluence from 1.7×10{sup 16} to 1.1×10{sup 16} cm{sup −2} at approximately 0.70 μm depth. The reduction in N{sub d} shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm{sup −1}. Alpha-particle irradiation introduced two electron traps (E{sub 0.39} and E{sub 0.62}), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E{sub 0.39} as attribute related to silicon or carbon vacancy, while the E{sub 0.62} has the attribute of Z{sub 1}/Z{sub 2}.